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Quantum-Coherence

Outstanding quantum coherence in neutral atoms 
enables precision metrology and quantum information
• Example: atomic clocks

62 S1/2;F  3, M F  0  62 S1/2;F  4, M F  0

0  1

http://smsc.cnes.fr/PHARAO/GP_instrument.htm

Atomic fountain principle
http://www.nist.gov

Qubit fountain

Typical accuracy now better than one part in 1015

Optical
clocks
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Light-pulse atom interferometry

6S1/2

6P3/2

852 nm 
Raman laser

|� = 3	⟩

|� = 4	⟩

stimulated Raman transition

wavepacket trajectory

Kasevich, and Chu, Phys. Rev. Lett. 67, 181–184 (1991)

Gustavson, Landragin, and Kasevich, Class. Quantum. Grav 17, 2385–2398 (2000). 

• Exceptional accelerometers and 
gyroscopes  nrad/√Hz, ng/√Hz to pg/√Hz

• Large commercial and govt. interest in 
fielding this technology
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Light-pulse atom interferometry

6S1/2

6P3/2

852 nm 
Raman laser

F=4

stimulated Raman transition

Atom in 
free fall
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For an atom starting in F=3:
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Measuring acceleration and rotation with a 
particle in free-fall
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Interferometer phase shift:

Sensitivity increases with T2
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Launch and recapture

CCD images of ensemble exchange

Benefits
• Increases signal by 10x
• Data rates > 50 Hz
• Minimizes cycle dead time
• Reduced complexity
• Sufficient for:

• Demonstrated:

Base recapture efficiency r0 = 96 %

Steady state atom number:

Rakholia, McGuinness, and Biedermann, Phys. Rev. Applied 2, 054012 (2014)



Launch and recapture

36 mm

• Repeats at ≈ 60 measurements per second



Experiment platform

Picture of interferometer sensor



• Dynamic aspects of Ensemble Exchange characterized
• Robust to rotations, tilts and displacements

Characterizing ensemble exchange

Rakholia, McGuinness, and Biedermann, Phys. Rev. Applied 2, 054012 (2014)
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Gradiometer survey—path finder
Simultaneous opposed gradiometers—bias rejection

• 104 s stability—multiple orbital 
passes (SOA < 1 s)

• 10-3 E per shot with ground based 
performance—likely to improve 
in space 103x

• 104 x improvement over SOA

1 E = 10-9 /s2

• Improved gravity maps in contested areas 
for GPS-denied navigation

• Other targets
• Soil erosion (10-3 E)
• Water table levels (5 x 10-3 E)
• Strategic petroleum reserves (10-6E)



[1] Leibfried, et al., "Creation of a six-atom 'Schrödinger cat' state", Nature 438, 639 (2005)
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Entangled states for metrology

Cat states with ions [1]

Atom interferometer with single atoms

E. Rasel, Physics 5, 135 (2012)
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Building a fringe, one atom at a time

Parazzoli, et al., “Observation of free-space single-atom matterwave interference”, Phys. Rev. Lett. 109, 230401 (2012)

• 1 atom per phase through interferometer.
• Count atoms in F=3 state

• 2 atoms per phase through interferometer.

7,317 atoms
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Single atom interferometry

3.2 E-27 N

Parazzoli, et al., Phys. Rev. Lett. 109, 230401 (2012)

• We showed one can use single atoms
• Single atom control: gateway to 

harnessing quantum control in sensing
• 10-27 N ≈ mg for a cesium atom
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Rydberg state mediated interaction

A Rydberg atom can have a strong electric dipole moment.

A classical picture of an atom

core

valence electron

+

-

Cs atom
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orbital radius α n2

An example of the radial wavefunctions of a Cs atom at n = 100:



Blockade & electric dipole-dipole 
interaction

very far

Single-atom basis Two-atom basis

close enough

Blockade shift U
Normally, 1 ≤ U/h ≤ 1000 MHz.
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On-demand interactions

Zhang et al., PRA 82, 
030306(R) (2010)

Wilk et al., PRL 104, 
010502 (2010)

Two-atom entanglement using Rydberg blockade Paris

Wisconsin

CNOT gate
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Many body systems

17

“Quantum Gas Microscope” Nature 462,74 (2009) “Quantum simulation”, Nature Physics 8, 267 (2012)

“Rydberg interactions in a lattice”, Nature 491, 87 (2012) “Rydberg excitations in a BEC”, PRL 100, 033601 (2008)



New options for Rydberg-state-
mediated interactions

Comparison of methods
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Direct excitation Rydberg dressed

Population remains in ground 
state—no kx phase factors!

"Elaborate theoretical proposals for the realization of various complex phases and applications in
quantum simulation exist. Also a simple model has been already developed that describes the basic idea
of Rydberg dressing in a two-atom basis. However, an experimental realization has been elusive so far.”

T. Pfau’s group, Stuttgart, Germany
J. B. Balewski, et al., N. J. Phys. 16, 063012 (2014)
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Interaction between two Rydberg-
dressed atoms

Normal light shift: With Rydberg blockade:

+
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Rydberg-dressed interactions

I. Bouchoule, K. Mølmer, Phys. Rev. A 65, 041803 (2002). 
J. Johnson, S. Rolston, Phys. Rev. A 82, 033412 (2010). 

Tunable interaction strength (J), low sensitivity to atom motion, and effectively 
strong ground-state interactions.

Dressing laser field

Favors small detuning
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Apparatus

Picture of shield.
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Single atom control

852 nm scatter: 
LIF from laser cooling light

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, Nature (London) 411, 1024 (2001).

Spot size ≈ 1 m—collisional blockade
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Single atom control

• ≈ 5 mW, 43 nm red 
• focused to ≈ 1 m 
• gives ≈ 20 MHz or ≈ 1 mKWhy 938 nm?  It’s magic for the cooling transition.



Experiment schematic

atom 1 
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atom 2 

to APD

bandpass filter
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Optimizing for long-term 
relationships

1038 nm 1038 nm

318 nm

459 nm

Advantages:
• Reduced photon scattering
• Minimizes dipole forces

Disadvantages:
• Laser system cost and complexity

852 nm

508 nm

Cesium energy levels

Published: Phys. Rev. A 89, 033416 (2014) 25



Rydberg-dressed ground state 
interaction
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Single atom picture

• Interaction range increases as 
principal quantum number n
increases

• However, oscillator strength 
decreases as n increases—
making L smaller and thus J

• Target smallest n that your 
optical resolution can 
accommodate

• Solution—dynamic postioning
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Dynamic atom positioning

Drop & recapture
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First evidence of Rydberg-dressed 
interaction
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Off-resonance 318-nm laser pulse duration (us)

Model
TwoSinesDecay1 (User)

Equation

y = A0+exp(-r*x)*(A1*sin(
2*pi*f1*x+p1)+A2*sin(2*pi
*f2*x+p2))

Reduced Chi-Sqr
0.10992

Adj. R-Square 0.9569

Value Standard Error

B A0 6.54858 0.03748

B r 0.12806 0.01721

B A1 -2.44258 0.1357

B f1 1.18469 0.00331

B p1 -0.08137 0.06187

B A2 -2.15781 0.13303

B f2 0.95958 0.00364

B p2 -0.49055 0.06951

318
pulse

318-nm laser dressed spin echo sequence

J

2-qubit basis

2.93 um trap spacing

Qubit state

Microwave transition is via Raman laser

28

[a
rb

.]



Two-qubit microwave resonances
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J vs. R, no longer elusive
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Weighted Rydberg Energy levels: Excitation from ground-state to 64P3/2
x-polarized light; B = 4.8 G; E = 6.4 V/m;

Direct measurement of two-qubit interaction strength J as a function of two-atom 
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Producing Bell-state entanglement

Process occurs entirely and 
directly in the ground state

31



Entanglement Fidelity ≥ 81%

Verify the entanglement via parity measurements 
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Application to metrology

Cat state 2x response to phase
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Simulated CPHASE gate fidelities

• Motional errors set a high 
floor on error for the 
original scheme.

• The Doppler-free scheme is 
limited by the much smaller 
photon scattering rate.

• Entanglement fidelity 
expected to be even larger

Published:  Phys. Rev. A 91, 012337 (2015)
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Quantum Control of Ensembles

Symmetrically couple ensemble of atoms
localized with Rydberg blockade radius

Optimal Control 
0


target

For n atoms
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 cat 
1

2
0 0 0 0 0  1 1 1 1 1   (t)

Example: A 5-atom “Cat State” 

see for example arxiv.:1410.3891 36
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Summary and outlook

• Ensemble exchange technique potentially useful for deployed inertial sensors and 
Gradiometer survey pathfinder facility

• We have demonstrated an effective ground-state interaction J/h ~ 1 MHz via the 
Rydberg dressing technique

• We have shown neutral atom entanglement with a fidelity ≥ 81(2)%
• With two-atom survival of 74% and 10 s-1 data rate, we produce 6 entangled pairs per 

second
• Multi-atom entanglement can be achieved based a similar approach or with optimal 

control
• We are investigating atom interferometry with cat states and N > 2
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