
On the Logic of Bunched

Implications
- and its relation to separation logic

Bodil Biering

June 2004

Master’s Thesis for the Cand.Scient degree in mathematics
at the University of Copenhagen.
Supervisors: Lars Birkedal (ITU) and Gunnar Forst.

Abstract

We study propositional and predicate logic of bunched implications (BI), a new substructural
logic, and clarify the presentations of the semantics given so far. In particular we give an
elaborate description of Day’s construction for presheaves as well as for Grothendieck sheaves.
We present a notion of predicate BI and show how it can be modeled soundly and completely
by BI-hyperdoctrines. Furthermore we show how separation logic fits into this notion of
predicate BI.

Contents

1 Introduction 3
1.1 Overview and contributions . 6
1.2 Acknowledgments . 9

2 Toposes 10
2.1 Subobjects . 11
2.2 Image factorization . 12
2.3 The subobject lattice . 13
2.4 The internal Heyting algebra . 15
2.5 Presheaves . 16

2.5.1 Yoneda Lemma . 17
2.5.2 Limits and colimits in functor categories 18
2.5.3 A category of presheaves is a topos . 21

2.6 Grothendieck sheaves . 22
2.6.1 The associated sheaf functor . 26
2.6.2 Subsheaves . 27
2.6.3 A category of sheaves is a topos . 29

3 Ends and coends 31
3.1 Dinatural transformations . 31
3.2 Ends and coends . 33

3.2.1 Ends with parameters . 35
3.2.2 Ends are limits . 36
3.2.3 Abstract definition of end and coend 38
3.2.4 Parameterized representability . 39
3.2.5 Fubini for coends . 42
3.2.6 Density . 47

4 Doubly closed categories 48
4.1 Symmetric monoidal closed categories . 48
4.2 Day’s construction . 50

4.2.1 Coherence laws . 53
4.2.2 Symmetry . 54
4.2.3 Closed structure . 55
4.2.4 Properties of Day’s construction . 56

4.3 Day’s construction on sheaves . 58

1

CONTENTS CONTENTS

4.4 Subobjects in DCC’s . 65

5 Propositional intuitionistic logic 71
5.1 Algebraic models . 71
5.2 Categorical models . 74
5.3 Kripke-Joyal semantics . 78

5.3.1 Kripke-Joyal semantics in functor categories 82

6 Propositional BI 86
6.1 Algebraic models for BI . 86
6.2 Categorical models . 88
6.3 Kripke-Joyal semantics for BI . 90

6.3.1 Kripke-Joyal semantics for BI in functor categories 92

7 Predicate BI 97
7.1 First order hyperdoctrines . 97

7.1.1 First order BI-hyperdoctrines . 102
7.2 Separation logic modelled by BI-hyperdoctrines 105

A On Pym’s notion of predicate BI 110
A.1 The axiom relation . 110
A.2 Semantics for predicate BI . 112

A.2.1 Substitution and soundness . 115

B Notation 117

2

Chapter 1

Introduction

The purpose of this Master’s Thesis is to study propositional and predicate logic of bunched
implications (BI), a new substructural logic, and clarify the presentations of the semantics
given so far. In particular Day’s construction, which gives rise to a class of models of BI, will
be studied in detail. Furthermore, it is the aim to study the relation between separation logic
and BI.

We assume that the reader is familiar with basic category theory and some categorical
logic.

It is well known how intuitionistic logic can be modeled in a topos by what is called a
subobject semantics. This semantics can also be defined in terms of a forcing relation known
as Kripke-Joyal semantics. The (propositional) logic of bunched implications is intuitionistic
logic equipped with two new connectives and logical rules for these. Consequently, it is natural
to ask how the semantics for BI fits into these frameworks. This question is partly answered
in [Yan02] and in [Pym02], which provide a Kripke semantics for BI in presheaves, sheaves
over topological spaces, and in one specific Grothendieck sheaf category. In this thesis we will
explore the subobject semantics for BI and its relation to the Kripke semantics for BI. We will
also clarify the link between BI and separation logic, in particular in what sense separation
logic is a predicate BI logic.

David Pym’s monograph: “The Semantics and Proof Theory of the Logic of Bunched
Implications”, [Pym02] contains a suggestion of a proof theory and a Kripke semantics for
predicate BI, which, in David Pym’s own words is sketchy. Since it is also the only attempt to
define predicate BI, which has been made so far, we believe that this is a subject which deserves
some attention. One object for this thesis has thus been to give a more precise presentation
of Pym’s predicate BI and to generalize the Kripke semantics that is given for it. This turned
out to be much more problematic than expected. The author and her supervisors have spent
quite some time trying to understand this sketchy proof theory and David Pym himself has
not been able to help us on this matter. We believe that we have clarified some of it, and this
clarification reveals some serious problems. In particular we found examples showing that the
sequent calculus does not preserve well-formed sequents. An in depth examination of these
problems can be found in Appendix A.

We now briefly present two examples to illustrate the motivation for the logic of bunched
implications.

3

CHAPTER 1. INTRODUCTION

Resources. The logic of bunched implications (BI) belongs to a family of logics known as
substructural logics. A substructural logic is a logic which lacks one or more of the so called
structural rules, which are rules such as

Γ ` q

Γ, p ` q
Weakening

Γ, p, p ` q

Γ, p ` q
Contraction.

Weakening means that whenever some proposition q is provable under the assumptions of Γ,
then q is also provable if we make additional assumptions. Contraction says that it does not
matter how many times we make the same assumption. A logic that does not allow these
rules is sensitive to the number of times an assumption is used – it is resource sensitive.

A particularly famous substructural logic is Girard’s linear logic, which BI resembles. They
both have an additive part (∨,∧,→,>,⊥), which is intuitionistic logic and a multiplicative
part (∗,−−∗, I), which is substructural. The essential difference between the two logics is
the modal operator “!” in linear logic, which takes a formula φ and makes as many copies
of it as we want !φ. Intuitionistic implication can be defined in terms of this operator as
φ → ψ :=!φ −−∗ ψ. The operator ! is interpreted as a functor, which is not present in all
models of BI (this is shown in [Pym02] and [Yan02]), showing that the two logics are indeed
different. Consider the following example, inspired by [Amb91], that illustrates the difference
between the additive conjunction, ∧, and the multiplicative conjunction ∗: Let p, q, r denote
the following propositions:

p = to have e1
q = to have a packet of Camels
r = to have a packet of Marlboro

A proof of the implication p→ q is given by the possibility of spending e1 and buying a packet
of Camels. A proof of the multiplicative implication p −−∗ q is given by actually spending e1
and buying a packet of Camels. The proposition (q ∧ r) represents the possibility of having a
packet of Camels and the possibility of having a packet of Marlboro whereas (q ∗ r) represents
actually having both packets at the same time. One euro is enough to buy a packet of Camels
and it is also enough to buy a packet of Marlboro, so p → q ∧ r is provable. But e1 is not
enough to buy both a packet of Camels and a packet of Marlboro so p→ q ∗r is not provable.
Instead we have p ∗ p → q ∗ r, since (p ∗ p) means to have e1 and to have (another) e1.
Another way to put it is to say that in q ∗ r, q and r have access to disjoint resources. The
multiplicative implication −−∗ can also be given a resource interpretation: a −−∗ b is a function
that has access to disjoint resources from its argument, for example the following is provable

p ` p −−∗ (q ∗ r),

Since if we have e1, we can make the functions argument p true. If we have another e1,
we can show that −−∗ is a function going from p to (q ∗ r) (or equivalently that p −−∗ (q ∗ r)
holds). The combined resources p and p makes (q ∗ r) true. The additive implication a → b
is a function that have access to the same resources as its argument.

Separation logic. Separation logic, which is a very active research field, provides a good
example of how BI can be used to reason about resources in systems. Separation logic is
used for reasoning about low-level programs that use shared mutable data structure, and the
resources in consideration are memory cells. Separation logic illustrates how the intuitionistic

4

CHAPTER 1. INTRODUCTION

part of BI considers stable truth, whereas the substructural part depends on the internal state
of a dynamic system. The following is from a paper by John C. Reynolds [Rey02].

The use of shared mutable data structures, i.e., of structures where an updatable
field can be referenced from more than one point, is widespread in areas as di-
verse as systems programming and artificial intelligence. Approaches to reasoning
about this technique have been studied for three decades, but the results has been
methods that suffer from either limited applicability or extreme complexity [...].

Separation logic uses the notions heap and store. One can think of the store as a description
of the contents of registers and the heap as a description of the contents of an (active)
addressable memory. Values are integers and we require Addresses ⊆ Values. A heap is a
finite, partial function h from Addresses to Values×Values. And StoreV : V → Values, where
V is a finite set of variables. The basic predicate is the “points-to” relation, which has the
form x 7→ v, w, where x is a variable in V and v, w ∈ Values×Values, asserting that the heap
contains only one active cell, at address StoreV (x) (i.e., dom(h) = {StoreV (x)}) with contents
v, w. We give a few illustrative examples:

1. x 7→ 3, y asserts that x points to an adjacent pair of cells containing 3 and y (i.e., the
store maps x and y into some values α and β, α is an address, and the heap maps α
into 3 and α+ 1 into β).

1. 2. 3. 4.

x 3

y

x y
x

y
333y

x

3

2. y 7→ 3, x asserts that y points to an adjacent pair of cells containing 3 and x.

3. x 7→ 3, y ∗ y 7→ 3, x asserts that situations (1) and (2) hold for separate parts of the
heap.

4. x 7→ 3, y ∧ y 7→ 3, x asserts that situations (1) and (2) hold for the same heap, which
can only happen if the values for x and y are the same (because the heap has only one
active cell).

Traditionally, aliasing complicates reasoning about low-level imperative programs, because
changing the value of a single memory cell may affect the values of many syntactically unre-
lated expressions. In separation logic we solve this problem by reasoning locally about the
contents of the store. To reason about how programs affect the memory we use a Hoare logic:
For predicates p, q and a command c, {p}c{q} reads: if p holds before c is executed, and if c
terminates, then q holds after c has been executed. For example

{x 7→ 3}[x] := 4{x 7→ 4}.

Since this sort of reasoning has a local nature we need a rule of the kind

{p}c{q}

{p ∧ r}c{q ∧ r}

5

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND CONTRIBUTIONS

where no variable occurring free in r is modified by c. However, this rule is not sound for
separation logic. For example, the conclusion of the instance

{x 7→ −}[x] := 4{x 7→ 4}

{x 7→ − ∧ y 7→ 3}[x] := 4{x 7→ 4 ∧ y 7→ 3}

is not valid, since its precondition does not preclude the aliasing that will occur if x = y.
Using the multiplicative conjunction instead gives the frame rule

{p}c{q}

{p ∗ r}c{q ∗ r}

where no variable occurring free in r is modified by c. This rule is sound for separation logic.
John Reynolds puts it this way in [Rey02]:

By using the frame rule, one can extend a local specification, involving only the
variables and part of the heap that are actually used by c (...), by adding arbitrary
predicates about variables and parts of the heap that are not modified or mutated
by c.

1.1 Overview and contributions

This section contains a detailed overview of the contents of each chapter. The chapters 2-4
contains a thorough presentation of categorical concepts which will be needed subsequently.
Chapter 5 considers various notions of models and semantics for propositional intuitionistic
logic including soundness and completeness results. Chapter 6 has the same contents as
chapter 5, only now the logic has been extended to BI. Chapter 7 gives, jointly with Lars
Birkedal and Noah Torp-Smith, a presentation of the separation logic in the frame of first
order hyperdoctrines. Finally, the Appendix A contains a discussion and criticism of an
attempt to define predicate BI.

The seven chapters should be readable by any graduate student who is familiar with basic
category theory and has some knowledge of mathematical logic. To understand what is going
on in Appendix A one has to be acquainted with David Pym’s monograph: “The Semantics
and Proof Theory of the Logic of Bunched Implications”, [Pym02].

Chapter 2 This chapter provides a brief presentation of standard results of topos theory, in
particular regarding presheaf and Grothendieck sheaf categories, which are used subse-
quently.

Only proofs and examples that are considered relevant or instructive are included. More
details, proofs and examples are available in the literature.

Literature: [MLM94], [LS86], [ML98], [Oos], [Win01].

Chapter 3 This is a detailed introduction to dinatural transformations, ends and coends,
including main results of this subject such as Fubini Theorem and Density. There are
no new results, but the content of this chapter is less standard. The chapter is mainly
based on [Win01] which contains a good introduction to ends and coends.

Literature: [Win01], [ML98].

6

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND CONTRIBUTIONS

Chapter 4 In Section 4.1 we define symmetric monoidal closed categories and doubly closed
categories. Section 4.2 contains an elaborate (and original) description of Day’s con-
struction including original proofs of the following observations:

• The Yoneda embedding preserves the monoidal closed structure of Day’s construc-
tion, and

• Day’s tensor product does not preserve monos.

Section 4.3 explores Day’s construction in the category of sheaves, and provides several
new contributions some of which contradict earlier claims stated in [Pym02] and [Yan02].
In particular it is shown that Day’s construction for presheaves induces a monoidal
structure on the subcategory of sheaves, and that this tensor product does not in general
have a right adjoint in the category of sheaves, i.e., Day’s construction for presheaves
does not in general induce a doubly closed structure on the subcategory of sheaves. It
is then shown that under certain conditions we do get a doubly closed structure on the
category of sheaves.

The new result is negative in the sense that the doubly closed structure which ensure
that propositional BI can be soundly interpreted is not always present in the category of
sheaves. However, the next Section 4.4 presents results that are adequate to repair this
flaw, namely that for certain sheaf categories, the structure of Sub(1) is a BI algebra.
All results of sections 4.3 and 4.4 are new.

Literature: [Pym02] and [Yan02].

Chapter 5 We present standard soundness and completeness results for propositional in-
tuitionistic logic. The purpose of treating the intuitionistic and substructural parts
separately is to point out the fact that Grothendieck topologies are needed in order to
get a completeness result for intuitionistic propositional logic, and also to clarify how
standard methods can be used to show soundness and completeness for propositional
BI.

Section 5.1 presents the notion of algebraic models for propositional intuitionistic logic
and soundness and completeness results for these. Section 5.2 presents two notions
of categorical models for propositional intuitionistic logic: a model of provability (also
known as subobject semantics) specialized to propositional logic, and a model of proofs
(propositions as types) specialized to propositional logic. The latter is included because
this kind of model is used in the presentation of propositional BI given in [Yan02] and
in [Pym02] which we would like to comment on, since one aim of this thesis is to clarify
that presentation.

For the categorical models of provability we give a completeness result, and in section
5.3 we develop Kripke semantics for different classes of the models presented in 5.2.

Literature: [LS86], [MLM94]

Chapter 6 In this chapter we give an original presentation of soundness and completeness
results for propositional BI.

The chapter is built up exactly like the previous chapter in order to clarify how the stan-
dard ideas presented in chapter 5 can be used to derive similar results for propositional
BI.

7

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND CONTRIBUTIONS

Section 6.1 presents the notion of algebraic models for propositional BI and soundness
and completeness results for these following the presentation given in [Yan02]. Section
6.2 presents two notions of categorical models of propositional BI and completeness
results for these. We conclude that a completeness result for the substructural or mul-
tiplicative part of the logic is obtained by the observation made in chapter 4 that
the Yoneda embedding preserves the monoidal closed structure. In particular we get
completeness for the multiplicative part alone without the use of sheaves. Sheaves are
necessary only because the Yoneda embedding does not preserve ∨ and ⊥ for presheaves.
In Section 6.3 we derive a Kripke semantics for BI which is more general than the ones
presented in [Yan02] and [Pym02]. We also derive Kripke semantics for the more spe-
cific classes of models living in presheaf and sheaf categories, and conclude that these
correspond to those of [Yan02] and [Pym02].

In [Yan02] and [Pym02] the Kripke semantics is used to define the models and com-
pleteness is shown for these directly. The presentation we give of propositional BI uses
an approach that differs from this since we use the subobject semantics to define the
notion of a model and show soundness and completeness for these; Kripke semantics
(and completeness for this) is then derived. This approach follows the lines of [LS86]
and [MLM94] and has the advantage that the role of the Yoneda embedding becomes
clearer. It also shows how the Kripke semantics is actually calculated using Day’s con-
struction on subobjects of 1, (so one does not even need any bright or lucky ideas to
cook up a Kripke semantics for the new connectives).

Literature: [LS86], [MLM94],[Yan02] and [Pym02]

Chapter 7 This chapter presents joint work with Lars Birkedal and Noah Torp-Smith. We
first recall the notion of first order hyperdoctrines which models first order predicate
logic. Then we define first order BI-hyperdoctrines and show that they model first order
predicate BI. It should be noted that this is not predicate BI in the sense that Pym has
suggested in [Pym02] (in particular we do not have the new quantifiers). Finally, and
most importantly, we show how separation logic can be viewed as predicate BI with a
particular signature, and the pointer model as an interpretation of separation logic in
a particular kind of BI-hyperdoctrine.

Literature: [Pit02] and [Yan02].

Appendix A This appendix contains some clarifications and comments to the part of David
Pym’s monograph [Pym02] that treats predicate BI and it will only make sense to those
who are acquainted with this.

The main conclusion of the appendix is that we have not been able to understand the
proof theory and semantics of predicate BI suggested by Pym in [Pym02]. In particular
we provide examples that shows that the deduction system does not preserve well-formed
sequents.

Literature: [Pym02] and [Amb91].

Summary of contributions

• Construction of a monoidal tensor product on any Grothendieck sheaf category using
Day’s construction and the associated sheaf functor.

8

CHAPTER 1. INTRODUCTION 1.2. ACKNOWLEDGMENTS

• A counter example showing that the monoidal tensor product on sheaves over topological
spaces does not in general have a right adjoint. Thus contradicting [Yan02] and [Pym02].

• Under certain conditions there is a right adjoint to the tensor for sheaves.

• For a topos E which is symmetric monoidal closed, SubE(1) is a BI algebra.

• For any Grothendieck topos over a cover preserving monoidal category, Sub(1) in the
category of sheaves is a BI algebra (even though the Grothendieck topos is not symmetric
monoidal closed).

• An original and more general presentation of results presented in [Yan02] regarding the
semantics of propositional BI.

• Jointly with Lars Birkedal and Noah Torp-Smith a presentation of separation logic and
the pointer model in the context of BI-hyperdoctrines.

• Discussion and criticism of the presentation of predicate BI given in [Pym02].

In addition this thesis contains

• An elaborate description of Day’s construction.

• Proofs of the observations that

– The Yoneda embedding preserves the monoidal closed structure of Day’s construc-
tion, and

– Day’s tensor product does not preserve monos.

1.2 Acknowledgments

I would like to thank my supervisor Lars Birkedal who has not only offered excellent guidance
and encouragement, but has also introduced me to the enthusiastic and dynamic research
environment at ITU. Carsten Butz has been co-supervisor through most of the process, and
as such has offered invaluable input. Noah Torp-Smith, who has also been involved throughout
the process, has helped me understand the relevance and potential of separation logic. The
weekly meetings at ITU with Lars, Carsten and Noah, which were always conducted in a
good spirit, have been a great source of inspiration.

In April 2004 I got the chance to meet with Hongseok Yang, who was invited to ITU. I
found this meeting very inspiring.

I would also like to thank Marie Bjerrum for always having time to discuss mathematical
problems, and for sharing her strong opinions on category theory; hopefully, with time, I will
learn to appreciate the French way. Finally, thanks to the people from the lunch- and coffee
club in S15, who have had to listen to many of our incomprehensible discussions.

9

Chapter 2

Toposes

[Literature: [MLM94], [LS86], [Oos] and [Win01].]
In this chapter we introduce some basic definitions and results of topos theory for reference,

in particular the categories of presheaves and Grothendieck sheaves will be treated. Many
results will be stated without proof since proofs of these are standard in many books on topos
theory (see references above).

Definition 2.0.1 (Subobject classifier). In a category C with a terminal object 1, a subob-
ject classifier Ω is an object in C together with an arrow > : 1 → Ω such that for every mono
m : Y � X, there is a unique arrow χm : X → Ω in C such that the diagram

Y // m //

1Y

��

X

χm

��
1

>
// Ω

is a pullback.

The arrow χm is called the characteristic morphism of m, this is due to the situation in
Set, where Ω = {0, 1}, a mono m : X � Y corresponds to a subset of Y and χm is the
characteristic morphism of m.

We are now able to define the notion of a topos.

Definition 2.0.2 (Topos). 1 An (elementary) topos is a Cartesian closed category (ccc),
which is finitely complete and has a subobject classifier Ω,> : 1 → Ω.

When Ω exists it is unique up to isomorphism.

Remark 2.0.3. We now list some basic properties of elementary toposes. Proofs can be found
in e.g. [MLM94].

Fact 1. A topos has all finite colimits. [MLM94, IV.5]

Fact 2. For any object B in a topos E, the slice category E/B is also a topos. [MLM94, IV.7]

1In [MLM94] an elementary topos has a definition that differs from this one, but they are equivalent.

10

CHAPTER 2. TOPOSES 2.1. SUBOBJECTS

The change-of-base functor Let k : A→ B be a morphism in a category C with pullbacks,
then k induces a change-of-base or pullback functor k∗ between the slice categories

k∗ : C/B → C/A

by pullback along k.

Fact 3. For any k : A → B in a topos E, the change-of-base functor k∗ : E/B → E/A has
both a left adjoint

∑
k, given by composition with k, and a right adjoint

∏
k.

[MLM94, IV.7]

Fact 4. Let T be a topos and C an object of T , there is an arrow C → 0 iff C ∼= 0.
[MLM94, IV.7]

Fact 5. In a topos, every arrow 0 → B, where 0 is the initial object is mono. [MLM94, IV.7]

Fact 6. Epis are stable under pullback, and pullback preserve coproducts. [MLM94, IV.7]

2.1 Subobjects

For an object X of a category C, we define a partial order Sub(X) which can be thought of
as the external categorical correspondence of the powerset of a set X. Sub(X) is defined as
follows: Elements are equivalence classes of monosm : Y � X with codomainX. m : Y � X
and m′ : Y ′ � X are equivalent if there is an iso f : Y → Y ′ such that m′f = m. Such an
equivalence class is called a subobject of X. We define m ≤ m′ if there is an arrow f : Y → Y ′

not necessarily iso (but it will actually always be mono) satisfying m′f = m. It is not hard
to check that this defines a partial order.

In the category Set we have a canonical choice of representatives, namely the inclusion
of the subset to which the subobject corresponds. Such a choice is not available in general.
However, in a presheaf category Ĉ we do actually have a correspondence to the inclusion, as
we shall see.

Remark 2.1.1. By usual abuse of language we will often refer to m : Y � X as a subobject
of X, when we really mean the equivalence class that m represents. In categories such as Set
where we have a canonical choice of representatives we may even identify a subobject of X
with just an object Y ↪→ X.

Lemma 2.1.2. In a category C with finite limits, each pair of elements of Sub(X) has a
greatest lower bound. Moreover, Sub(X) has a largest element.

Proof: The largest element of Sub(X) is the identity idX : X � X.
If m : Y � X and m′ : Y ′ � X are two subobjects of X, then the pullback Y ∧ Y ′ → X,

which is mono, represents the greatest lower bound.

Y ∧ Y ′ // //
��

��

Y��

m

��
Y ′ //

m′
// X

11

CHAPTER 2. TOPOSES 2.2. IMAGE FACTORIZATION

The subobject functor Given a topos E ,

Sub(−) : Eop → Set

is functorial. For an arrow k : A → B in E , Sub(k) = k∗ : Sub(B) → Sub(A), i.e., the
change-of-base functor, where we require that the arrows are monos. The fact that the
pullback of a mono is mono makes it well-defined. For each k : A → B in E the morphism
k∗ : Sub(B) → Sub(A) preserves the order.

The following explains the name of the subobject classifier Ω, since it shows how Ω relates
to the subobjects in a topos.

Proposition 2.1.3. In a category with finite limits and a subobject classifier there is an
isomorphism

Sub(X) ∼= Hom(X,Ω)

natural in X. That is, the subobject functor is representable.

2.2 Image factorization

Proposition 2.2.1. In a topos2, every arrow f : X → Y can be factored as f = me :

X
e // E

m // Y where e is epi and m is mono. The object E is called the image of f and
is denoted Im(f). This kind of factorization is known as image factorization or epi-mono
factorization.

Moreover, for any commuting diagram of the form

X //

e′
����

M��

m′

��
E //

>>

Y

with e epi and m mono there is a unique arrow from E to M making both triangles commute.
In particular epi-mono factorizations are unique up to isomorphism.

Proof: In a topos there are two ways to construct the epi-mono factorization.

(i) The kernel pair of f are two arrows p0, p1 : Z → X such that the diagram

Z
p0 //

p1
��

X

f
��

X
f

// Y

is pullback. Let e be the coequalizer of p0, p1, since fp1 = fp0 there is a unique
m : E → Y such that f = me, as illustrated by the diagram

Y

Z
p0 //

p1
// X e

// //

f
>>||||||||
E.

m

OO

We claim without proof that m is mono.

2The proposition actually holds for regular, categories which have much less structure than toposes.

12

CHAPTER 2. TOPOSES 2.3. THE SUBOBJECT LATTICE

(ii) Epi-mono factorization can also be constructed dually by taking the cokernel pair of f ,
which is a pushout diagram:

X
f //

f
��

Y

x1

��
Y x0

// Z.

Let m : E � Y be the equalizer of x0, x1, then, since x0f = x1f there is a unique arrow
e : X → E such that f = me. It can be shown that e is an epi.

We now show that the second statement of the proposition is equivalent to saying that epi-
mono factorizations are unique up to isomorphism. (For a proof that epi-mono factorizations
are unique up to isomorphism see [Oos].) Suppose that for all commutative diagrams of the
form

X
f

 B
BB

BB
BB

B

a //

e
����

M��

m

��
E

b
// Y

(2.1)

there is a unique arrow E → M making the triangles commute, now any two epi-mono
factorizations will fit into such a diagram, therefore we have arrows u : E →M and u ′ : M →
E making the diagram commute, and it easy to see that u and u′ are each other’s inverses.

On the other hand, suppose we know that epi-mono factorizations are unique up to iso-
morphism, and we have a commuting diagram like 2.1, then we can factorize a and b into an
epi followed by a mono and then use the isomorphism of epi-mono factorizations of f to get
the desired arrow.

2.3 The subobject lattice

Definition 2.3.1 (Lattice). A lattice is a partial order L with a least and a greatest element
0 and 1, and with binary meets x ∧ y and joins x ∨ y for all x, y ∈ L.

Categorically this corresponds to finite products and finite coproducts.

Definition 2.3.2 (Complete lattice). A lattice is complete when, regarded as a category,
it has all (small) limits and colimits.

Definition 2.3.3 (Heyting algebra). A Heyting algebra H is a lattice with greatest and
least elements in which the meet a∧b is residuated, which is to say that there is an implication
operator, →, satisfying

a ∧ b ≤ c iff a ≤ b→ c

Categorically this corresponds to a ccc with finite coproducts. Note that for a Heyting
algebra the underlying lattice is always distributive, which is to say that for all a, b, c ∈ H,

c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b).

To see why, just note that saying ∧ is residuated is the same as saying that it has a right
adjoint, i.e., ∧ preserves all colimits, which means that it preserves ∨.

13

CHAPTER 2. TOPOSES 2.3. THE SUBOBJECT LATTICE

Definition 2.3.4 (Frame). A frame is a complete lattice that satisfies the infinite distributive
law: ∨

i∈I

(b ∧ ai) = b ∧
∨

i∈I

ai.

Any frame is a Heyting algebra, since we can define the implication x→ y by
∨

l∈L′

l, where l ∈ L′ iff l ∧ x ≤ y.

Definition 2.3.5 (Complete Heyting algebra). A complete Heyting algebra is a Heyting
algebra which is complete as a lattice.

This corresponds categorically to a ccc with all small limits and colimits. It follows that
the infinite distributive law holds because ∧ has a right adjoint so it preserves all colimits,
i.e., it commutes with

∨
, so a complete Heyting algebra is also a frame.

Definition 2.3.6 (Boolean algebra). A Boolean algebra is a distributive lattice with el-
ements 0 and 1 such that every element x has a complement ¬x; thus, x ∧ ¬x = 0 and
x ∨ ¬x = 1.

Lemma 2.3.7. In a topos3 E each pair of elements of Sub(X) has a least upper bound.

Proof: Let m : Y → X and m′ : Y ′ → X be two subobjects of X, m ∨m′ : Y ∨ Y ′ → X is
the image factorization of the coproduct arrow [m,m′] : Y + Y ′ → X:

Y + Y ′

e

%% %%KKKKKKKKKK
Yoo
��

m

��

Y ∨ Y ′
##

m∨m′

##G
GG

GG
GG

GG

Y ′

OO

//
m′

// X

Clearly m ≤ m ∨m′ and m′ ≤ m ∨m′. Suppose there is a subobject k : Z � X such that
m,m′ ≤ k, then by the universal property of the coproduct there is a unique arrow u from
Y + Y ′ to Z, such that

Y + Y ′

u

##G
GG

GG
GG

GG
Yoo
��

m

��

Z ��
k

��@
@@

@@
@@

@

Y ′

OO

//
m′

// X

commutes. This means that ku is a factorization of [m,m′] and since (m ∨m′)e is the least
such factorization, there is an arrow s : Y ∨ Y ′ → Z such that ks = m∨m′ which shows that
m ∨m′ ≤ k.

Combined with Lemma 2.1.2 this shows that in a topos, for every object X, the partial
order Sub(X) is a lattice, with least element 0 � X, which is always mono in a topos.

3The proposition holds even for coherent categories.

14

CHAPTER 2. TOPOSES 2.4. THE INTERNAL HEYTING ALGEBRA

Corollary 2.3.8. In a topos E which has all small limits and colimits, the subobject lattices
are complete.

Proof: Least upper bounds and greatest lower bounds over arbitrary index sets are con-
structed be means of limits and colimits.

Lemma 2.3.9. In any topos E, SubE(1) is a Heyting algebra.

Proof: We have already shown that Sub(1) is a lattice. It remains to be shown that it has
implications. Let U � 1, V � 1 be subobjects of 1. The topos is ccc so it has exponentials
(−)U and these preserve limits since exponentiation is right adjoint to product. Therefore
the arrow

(V U) // (1V)U

// (1U) ∼= 1

is mono and (1U) ∼= 1 follows from 1 being a limit and (−)U preserves limits, so 1U must also
be the terminal object.

Remark 2.3.10. For future reference we record that for any topos E, and A � 1, B � 1 in
Sub(1), the Heyting structure on SubE(1) is given by:

> = id1

⊥ = 0 � 1 the unique arrow from the initial object.
A ∧B = A×E B the pullback of A and B (see Lemma 2.1.2).
A ∨B = Im(A+B) see Lemma 2.3.7.
A→ B = BA � 1 see Lemma 2.3.9.

In fact the following holds:

Theorem 2.3.11. For any object X in a topos E, the partially ordered set Sub(X) is a
Heyting algebra.

Proof: By Lemma 2.3.9 above, in any topos E ,SubE(1) is a Heyting algebra. Use the identity
SubE(X) ∼= SubE/X(1) and the fact that E/X is a topos (by Remark 2.0.3) to conclude that
SubE(X) is a Heyting algebra.

2.4 The internal Heyting algebra

The Heyting algebra structure on the subobject lattices Sub(X) in a topos E induces an
internal Heyting algebra4 on Ω via the isomorphism

Sub(X) ∼= E(X,Ω).

For example to define the arrow ∧ : Ω × Ω → Ω we consider the commutative diagram

Sub(X) × Sub(X)

∼

∩ // Sub(X)

∼

��

Hom(X,Ω) × Hom(X,Ω)

∼

Hom(X,Ω × Ω)
∧X

// Hom(X,Ω)

4The exact definition can be found in [MLM94]

15

CHAPTER 2. TOPOSES 2.5. PRESHEAVES

natural in X. Put X = Ω × Ω and follow the identity round the diagram to get the arrow

∧ : Ω × Ω → Ω.

By the Yoneda Lemma, which we show in the next section,

Ê(y(Ω × Ω),y(Ω)) ∼= y(Ω)(Ω × Ω) = E(Ω × Ω,Ω),

so the natural transformation (∧X)X∈E is uniquely determined by the arrow ∧ ∈ E(Ω×Ω,Ω)
by composition:

X

f

��

X

f

��
Ω × Ω ∧X7→ Ω × Ω

∧

��
Ω.

Given subobjects a � X, b � X with characteristic maps χa, χb, this implies that the
characteristic map for a ∩ b � x, χa∩b is the arrow ∧ ◦ 〈χa, χb〉. The latter is often written
χa ∧ χb.

In a similar fashion one can derive arrows ∨,→: Ω×Ω → Ω. The arrows >,⊥ : 1 → Ω are
induced by the top element id1 : 1 → 1 of Sub(1) and the bottom element 0 � 1 of Sub(1),
which is mono in a topos.

2.5 Presheaves

Definition 2.5.1 (Locally Small). A category C is called locally small if for all objects
X,Y in C, the collection C(X,Y) is a set.

Definition 2.5.2 (Small). A locally small category is small if the collection of objects is a
set.

Given a small category C, a functor F : Cop → Set is called a presheaf. The functor
category SetC

op

which is also denoted Ĉ, has presheaves as objects and natural transformations
as arrows. That is, a map α : F → G in Ĉ is a family of maps 〈αC〉C∈Obj(C) such that for
each arrow f : C → D

FD
αD //

F (f)
��

GD

G(f)
��

FC αC

// GC

commutes.

Lemma 2.5.3. If C is small then Ĉ is locally small.

Let (M,≤) be a preorder (i.e., reflexive and transitive), (M,≤) defines a category M with
the elements of M as objects and with Hom(m,n) = {∗} if m ≤ n, Hom(m,n) = ∅ otherwise.
A presheaf F over M can then be viewed as an M -indexed family of sets 〈F (m)〉m∈M such
that for each m ≤ n there is a map Fmn : F (n) → F (m). Satisfying the functor laws

Fnn = idF (n), FmnFnk = Fmk

16

CHAPTER 2. TOPOSES 2.5. PRESHEAVES

for all m ≤ n ≤ k in M , that is, the diagram

F (k)
Fnk

##G
GG

GG
GG

GG

Fmk

��

F (n)

Fmn{{www
ww

ww
ww

F (m)

commutes.

2.5.1 Yoneda Lemma

Given a locally small category C 5, we can define the Yoneda functor y : C → SetC
op

which
plays a central role in category theory. It is defined as follows

C

g

��
7−→

yC = C(−, C)

yg=〈g◦−〉C∈C

��
D yD = C(−, D).

There is also a contravariant version y◦ : Cop → SetC of the Yoneda functor, which works as
follows

C

g

��
7−→

y◦C = C(C,−)

D y◦D = C(D,−).

y
◦(g)=〈−◦g〉C∈C

OO

Theorem 2.5.4 (Yoneda Lemma). For C ∈ C and F ∈ Ĉ there is an isomorphism

Ĉ(yC,F)
θC,F
∼= FC

natural in C and F .

The theorem states that there is a bijection between natural transformations from yC to
F and elements of the set FC. Let α : yC → F be a natural transformation, then θC,F sends
it to the element

α̌ := αC(idC) ∈ FC.

On the other hand if x ∈ FC then we get a corresponding natural transformation x̂ : yC → F
defined by

x̂D = F (−)(x)

which is easily shown to be a natural transformation. The −̂ and the −̌ operations are each
others inverses. There is a dual result for the contravariant Yoneda functor:

5The Yoneda functor and Yoneda Lemma can be generalized to Class instead of Set, so that C does not
have to be a small category. For this reason, many authors (including this one) allow themselves to be sloppy
with regard to this requirement.

17

CHAPTER 2. TOPOSES 2.5. PRESHEAVES

Theorem 2.5.5 (Contravariant Yoneda Lemma). For C ∈ C end F ∈ SetC, there is an
isomorphism

SetC(y◦C,F)
θC,F
∼= FC

natural in C and F .

The isomorphism θ is defined in the exact same way as for the covariant case.

Corollary 2.5.6. The Yoneda functor is full and faithful, i.e., given C,D ∈ C, the Yoneda
functor defines a bijection between C(C,D) and Ĉ(yC,yD).

Proposition 2.5.7. For C,D ∈ C we have C ∼= D in C iff yC ∼= yD in Ĉ.

And dually:

Proposition 2.5.8. For C,D ∈ C we have C ∼= D in C iff y◦C ∼= y◦D in Ĉ.

Definition 2.5.9 (Representables). A representation for a functor F : C op → Set consists
of an object C ∈ C and a natural isomorphism

yC = C(−, C) ∼= F.

If there exists a representation for F we say that F is representable.

If G : C → Set is a covariant functor, we have C = Cop
op

so a representation for G is an
object C together with an iso such that

Cop(−, C) ∼= G

which is the same as saying
C(C,−) ∼= G

In other words, when G is covariant a representation (also called a corepresentation) consists
of an object C ∈ C and a natural isomorphism

y◦C = C(C,−) ∼= G.

2.5.2 Limits and colimits in functor categories

Limits and colimits are computed pointwise in a presheaf category, that is, if F : I → Ĉ is a
diagram from a small indexing category I to Ĉ, the limit limI F is given by

(lim
I∈I

F (I))(C) = lim
I∈I

(F (I)(C)).

Colimits are defined similarly. For example the product of two functors F,G is the functor
defined (on objects) by (F ×G)(C) = FC ×GC. The terminal object of a presheaf category
is the constant functor 1, defined by 1(C) = {∗} for each object C ∈ C. Since Set has all
small limits and colimits, and the limits and colimits of Ĉ are computed in Set, we get the
following

Proposition 2.5.10. The category Ĉ has all small limits and colimits.

18

CHAPTER 2. TOPOSES 2.5. PRESHEAVES

The category Ĉ also has exponentials (i.e., a right adjoint to the product functor), using
the Yoneda Lemma we find that for F,G : Cop → Set exponentiation must satisfy

GF (C) ∼= HombC(yC,G
F) ∼= HombC(yC × F,G),

so we are led to define
GF (C) = HombC(yC × F,G).

The unit εG,F : GF × F → G is given explicitly by

εC(α, c) = αC(idC , c)

for α ∈ GF (C), c ∈ FC. For β : H × F → G the transposed β̃ : H → GF is defined by

(β̃A(a))C (f, c) = βC(H(f)(a), c)

for f ∈ HomC(C,A), a ∈ HA, c ∈ FC. It is now routine to verify that β̃ is the unique arrow
that makes

H × F
β //

β̃×F %%LLLLLLLLLL G

GF × F

εG,F

;;wwwwwwwww

commute.
We have shown that

Proposition 2.5.11. The category Ĉ is Cartesian closed.

For a presheaf P we define the category of elements
∫
P . Objects are pairs (C, p), where

C ∈ Obj(C) and p ∈ PC. Each arrow f : D → C in C and each p ∈ PC induces a map
(D, p � f) → (C, p), where p � f stands for P (f)(p). There is a canonical functor

y ◦ π :

∫
P → Ĉ

that maps (C, p) to y(C). Using the category of elements as index category we have:

Proposition 2.5.12. Each presheaf P is the colimit of representables P ∼= colimR
Py ◦ π.

Corresponding to the notion of subsets in the category Set we have the notion of subfunc-
tors in the category Ĉ.

Definition 2.5.13 (Subfunctor). A functor A : Cop → Set is a subfunctor of a functor
B : Cop → Set iff

1. A(C) ⊆ B(C) for all C ∈ Obj(C), and

2. A(f) : A(C) → A(D) is the restriction of B(f) to A(C) for any arrow f : D → C.

It is not hard to see that for each subobject α : G → F of an object F ∈ Ĉ, there is a
unique subfunctor F ′ ↪→ F that represents it, so F ′ ↪→ F is a canonical representative.

19

CHAPTER 2. TOPOSES 2.5. PRESHEAVES

Definition 2.5.14 (Sieve). 6 A sieve is a collection of arrows S in a category C, closed
under right composition, i.e., satisfying: if h ∈ S and cod(g) = dom(h) then hg ∈ S.

Of particular interest are subfunctors of representables yC. Such a subfunctor can be
characterized by a collection of arrows called a C-sieve.

Definition 2.5.15 (Sieve). For an object C of a category C, a C-sieve (or an ideal on C)
is a collection S of arrows with codomain C, such that S is a sieve.

For any object A of a category C there are two trivial examples of sieves, the empty set and
the set of all arrows with codomain A, the latter is called the maximal sieve and is denoted
C/A.

If M is a preorder (viewed as a category) then an m-sieve on M is a set S ⊆ M of
elements that are all smaller than m and such that if n ∈ S and k ≤ n then k ∈ S. We know
that in a preorder a hom-set Hom(n,m) is either the empty set or a singleton, so given a
codomain, we can identify an arrow with its domain.

Lemma 2.5.16. There is a bijective correspondence between subfunctors of yC and C-sieves.

Proof: A subfunctor G of yC is defined by the sets GA ⊆ Hom(A,C) for A ∈ C, and the
union of these sets defines a sieve on C. On the other hand, given a C-sieve S, we can define
a subfunctor G of yC by putting GA = {f ∈ S | dom(f) = A}.

Sieves can be used to characterize the subfunctors of the terminal object 1.

Proposition 2.5.17. There is a bijective correspondence between subfunctors of 1 and sieves
on C.

Proof: Let S be a sieve and consider the set of objects

OS = {C ∈ C | C = dom(f) and f ∈ S}

consisting of all the domains of the arrows from S.
Given a subfunctor F � 1, we define a sieve by

F̃ = {C → 1 | FC = {∗}}

and from a sieve I we get a subfunctor by

Î(C) =

{
{∗} if C ∈ OS
∅ otherwise

We have seen in Remark 2.3.10 how to define the Heyting algebra structure of Sub(1) in
terms of limits, colimits and exponentials. In view of the proposition above, we now give a
definition of the Heyting algebra structure in terms of sieves, or rather the set of objects OS

corresponding to a sieve S. 7

6This is what an algebraist will usually refer to as an ideal.
7This actually corresponds to regarding the category C as a preorder with A ≤ B iff there exists an arrow

from A to B. The sieves of a preorder are downwards closed sets.

20

CHAPTER 2. TOPOSES 2.5. PRESHEAVES

Corollary 2.5.18. Suppose I, J are sieves represented by the domains of the arrows they
contain, then the complete Heyting algebra on Sub(1) is defined by

> = Obj(C)
⊥ = ∅
I ∨ J = I ∪ J
I ∧ J = I ∩ J
I → J =

⋃
{W | W ∩ I ≤ J},

order is inclusion.

Proof: Use the definition of the Heyting algebra structure of Sub(1) given in Remark 2.3.10
together with the correspondence between sieves and subfunctors of 1 and the calculations
of limits and colimits in functor categories. For example consider I ∧ J . Let Î and Ĵ be the
corresponding subfuntors of 1, Î ∧ Ĵ is the pullback, which is characterized by

Î ∧ Ĵ(C) =

{
∗ if ∗ ∈ Î(C) and ∗ ∈ Ĵ(C)
∅ otherwise.

We translate this back to a sieve, and get

I ∧ J = Î ∧ Ĵ = {C | C ∈ I and C ∈ J}
= I ∩ J.

2.5.3 A category of presheaves is a topos

We have shown that Ĉ is Cartesian closed. To be a topos it must also have a subobject
classifier Ω, which we now define.

The requirement Sub(F) ∼= Hom(F,Ω) for all F ∈ Ĉ, together with the Yoneda Lemma
leads to the following:

Ω(A) ∼= Hom(yA,Ω) ∼= Sub(yA).

So we define Ω(A) to be the set of all subfunctors of yA. By Lemma 2.5.16 this is the same
as the set of all A-sieves. For f : A→ B, Ω(f) : Ω(B) → Ω(A) is given by

Ω(f)(S) =
⋃

C∈C

{g : C → A | fg ∈ S}

for any B-sieve S. This is clearly an A-sieve.
The natural transformation > : 1 → Ω is given by

>A(∗) = C/A

It can be verified that Sub(F) ∼= Hom(F,Ω) for all F ∈ Ĉ.

Consider the category M̂ of presheaves over a preorder M. The subfunctors of ym are
the m-sieves, so if we put ↓(m) = {n ∈ M | n ≤ m} the definition of Ω becomes

Ω(m) = {S ⊆↓(m) | if n ≤ k and k ∈ S then n ∈ S}

and for m ≤ n,
Ωmn(S) = S∩ ↓(m)

and
>m(∗) =↓(m).

21

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

2.6 Grothendieck sheaves

Definition 2.6.1. A Grothendieck topology on a category C is a function J which assigns to
each object C ∈ C a collection J(C) of sieves on C, in such a way that

1. the maximal sieve C/C = {f | cod(f) = C} is in J(C):

2. (stability) if S ∈ J(C), then h∗(S) = {g | cod(g) = D, hg ∈ S} ∈ J(D) for any arrow
h : D → C:

3. (transitivity) if S ∈ J(C) and R is any sieve on C such that h∗(R) ∈ J(D) for all
h : D → C in S, then R ∈ J(C).

Definition 2.6.2. A site is a pair (C, J) consisting of a small category C and a Grothendieck
topology J on C. If S ∈ J(C), then S is called a covering sieve.

Grothendieck topologies generalize topological spaces as the following example shows.

Example 2.6.3 (Topological space). Let X be a topological space (a set with open subsets
specified by O(X) ⊆ P(X)) and consider the corresponding category: objects are the open
subsets of X, that is, the elements of O(X), there is an arrow U → V iff U ⊆ V . A sieve
on U is a family S of open subsets of U with the property that for all V ∈ S if V ′ ⊆ V then
V ′ ∈ S (it is downwards closed). A sieve S on U covers U iff U is the union of the sets in S.

The maximal sieve on U is the family of all open subsets of U , which covers U since U
itself is in the maximal sieve.

Stability: Suppose S = {Ci ⊆ C | i ∈ I} is a sieve such that
⋃
i∈I Ci = C and D ⊆ C. We

must show that D∗(S) = {B ∈ O(X) | B ⊆ D,B ∈ S} covers D. To see this just note that
D∗(S) = {Ci ∩D | Ci ∈ S} and

⋃
i∈I(Ci ∩D) =

⋃
i∈I Ci ∩D = D.

Transitivity: Let S = {Ci ⊆ C | i ∈ I} be a cover of C and R = {Rj ⊆ C | j ∈ J} any
sieve on C such that for all Ci ∈ S,

⋃
j∈J(Rj ∩ Ci) = Ci. Then

⋃
j∈J Rj =

⋃
j∈J Rj ∩ C =⋃

j∈J Rj ∩
⋃
i∈I Ci =

⋃
i∈I

⋃
j∈J(Rj ∩ Ci) =

⋃
i∈I Ci = C.

This is also referred to as the open cover topology.

Recall that when working with topological spaces, it is often enough to consider the open
sets of a basis for the topology. The notion of a basis can be generalized to Grothendieck
topologies if C is a category with pullbacks.

Definition 2.6.4 (Basis for Grothendieck topology). A basis for a Grothendieck topology
on a category C with pullbacks is a function K which assigns to each object C a collection
K(C) consisting of families of morphisms with codomain C, such that

(1’) if f : C ′ → C is an isomorphism, then {f : C ′ → C} ∈ K(C):

(2’) if {fi : Ci → C | i ∈ I} ∈ K(C), then for any morphism g : D → C, the family of
pullbacks {π2 : Ci ×C D → D | i ∈ I} is in K(D);

(3’) if {fi : Ci → C | i ∈ I} ∈ K(C), and if for each i ∈ I one has a family
{gij : Dij → Ci | j ∈ Ii} ∈ K(Ci), then the family of composites
{fi ◦ gij : Dij → C | i ∈ I, j ∈ Ii} is in K(C).

22

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

Note that the families of K(C) are not necessarily sieves but they generate sieves in an
obvious way. The notion of a basis can even be defined for categories without pullbacks, by
substituting (2’) with

(2”) If {fi : Ci → C | i ∈ I} ∈ K(C), then for any morphism g : D → C there exists a cover
{hj : Dj → D | j ∈ I ′} ∈ K(D) such that for each j, ghj factors through some fi.

Example 2.6.5 (The finite sup topology). Let H be a distributive lattice regarded as a
category, then H can be equipped with a basis for a Grothendieck topology K, given by

{ai | i ∈ I} ∈ K(c) iff
∨

i∈I

ai = c.

where the index set I must be finite.
(1’): To have an iso from c′ to c in this category means that c = c′, clearly c ∈ K(c).
(2’): The pullback of two arrows ci ≤ c and d ≤ c is ci∧d ≤ c. Suppose

∨
I ci = c and d ≤ c,

we must show that
∨
I d∧ci = d. Since d ≤ c we have d∧c = d, now d∧c = d∧

∨
I ci =

∨
I d∧ci.

(3’): If c =
∨
I ci and for each i ∈ I, ci =

∨
J dij then c =

∨
I,J dij.

Example 2.6.6 (The sup topology). Let H be a complete Heyting algebra regarded as a
category, then H can be equipped with a basis for a Grothendieck topology K, given by

{ai | i ∈ I} ∈ K(c) iff
∨

i∈I

ai = c,

where I is any index set.

Example 2.6.7 (The atomic topology). Let C be a category that satisfies: for any two
morphisms f : D → C and g : E → C with a common codomain C, there exists a commutative
square of the form

• //

��

D

f
��

E g
// C.

This is a condition which is much weaker than existence of pullbacks. The condition is nec-
essary to ensure that the stability axiom is satisfied for the atomic topology, which is defined
by:

S ∈ J(C) iff the sieve S is nonempty.

As an example consider the category Iop, where I is the category of finite sets and injective
functions. This category satisfies the above condition since for f : D → C, g : E → C in I op

we must show in I that there is a commutative square

C
f //

g

��

D

��
E // •.

Now, f, g are injective so we can put • = C] (E \ Im(g))] (D \ Im(f)) (the disjoint union)
and define f ′ : D → • by

f ′(d) =

{
the unique (C, c) such that f(c) = d if d ∈ Im(f)
(D, d) otherwise.

23

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

g′ : E → • is defined in a similar way. The arrows so defined are injective. Both composites
f ′f and g′g are the inclusion c 7→ (C, c), showing that the square commutes. Thus, the atomic
topology is well-defined for the category I op. Actually the square we have constructed is a
pullback in the category I (it is also a pushout in the category Set, but not in I op, since the
mediating arrow is not always injective). We shall return to this example later.

Sheaves on a site. Let (C, J) be a site. Consider a presheaf P : Cop → Set and a covering
sieve S ∈ J(C).

Definition 2.6.8 (Matching family). A matching family for S of elements of P is a
function which assigns to each element f : D → C of S an element xf ∈ P (D), in such a
way that

xf � g = xfg for all g : E → D in C.

Here fg is again an element of S, because S is a sieve, and xf � g stands for P (g)(xf).

Definition 2.6.9 (Amalgamation). An amalgamation for such a matching family is a
single element x ∈ P (C) with

x � f = xf for all f ∈ S.

Definition 2.6.10 (Sheaf). A presheaf P is a sheaf (for J) precisely when for every cover
S of an object C, every matching family has a unique amalgamation.

Given a site (C, J), the category of sheaves over the site is denoted Sh(C, J) (arrows are
natural transformations), the category of sheaves over a topological space O(X) is denoted
Sh(X). The category of sheaves over the site Sh(C, J) is called the associated Grothendieck
topos, and it is a full subcategory of Ĉ.

A sieve S on C is the same as a subfunctor of yC, and a matching family is the same as a
natural transformation α : S → P . An amalgamation is then a unique extension of α to yC.
The condition that P has to satisfy to be a sheaf can then be expressed as: for any object
C, subfunctor S of yC and natural transformation α : S → P , there is a unique natural
transformation that makes the diagram

S
α //

� _

��

P

yC

>>

commute.

Remark 2.6.11. The sheaf condition can also be expressed w.r.t. a basis K: Let C be a
category with pullbacks, and K a basis for a topology on C. If R = {fi : Ci → C | i ∈ I} is a
K-cover of C, a family of elements xi ∈ P (Ci) is said to be matching for R iff

xi � πi = xj � πj for all i, j ∈ I,

where πi, πj are the projections from the pullback, as in

Ci ×C Cj
πj //

πi

��

Cj

fj

��
Ci fi

// C.

24

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

An amalgamation for {xi}I is an element x ∈ P (C) with the property that x � fi = xi for all
i ∈ I.

Example 2.6.12 (Sheaves over a topological space). Let X be a set with an open cover
topology O(X) and let F : O(X)op → Set. Whenever V ⊆ U for open sets V,U , there is an
arrow FV U : FU → FV . For an element s ∈ FU (s is called a section over U), FV U (s) is
called the restriction of s to V and is denoted s �V . Given a cover

⋃
i Ui of a set U a matching

family is a set of pairwise compatible sections {si ∈ F (Ui)} such that

si �Ui∩Uj
= sj �Ui∩Uj

for all i, j ∈ I. And an amalgamation is a section over U , s ∈ FU , such that s �Ui
= si for

all i ∈ I.
An example of a sheaf over a topological space where the so called restriction really is a

restriction map is given by the sheaf of continuous real valued functions on X:

F (V) = Cont(V,R),

which is the set of continuous functions from V to R.

The trivial topology, defined by S ∈ J(C) iff S is the maximal sieve, makes every presheaf
a sheaf.

Definition 2.6.13 (Subcanonical). A Grothendieck topology J on a category C is called
subcanonical if for every object C in C the hom-functor yC is a sheaf.

Example 2.6.14. As an example consider again a topological space X. For open sets U,C
we have

y(C)(U) = Hom(U,C) =

{
{∗} if U ⊆ C
∅ otherwise.

To show that this is a sheaf suppose
⋃
i∈I Ui is a cover of U and {xi ∈ Hom(Ui, C)} a matching

family (then xi = ∗), that is, Ui ⊆ C for all i ∈ I, which implies U =
⋃
i∈I Ui ⊆ C, so that

∗ ∈ Hom(U,C) which is exactly what we need to have an amalgamation. This shows that the
open cover topology is subcanonical.

Consider the site (Iop, J) where I is the category of finite sets and injective functions and
J the atomic topology. Sheaves F : I → Set over this site are called atomic sheaves over I op.

Proposition 2.6.15. Let I be the category of finite sets and injective functions. A presheaf
P : I → Set is an atomic sheaf over Iop iff P preserves pullbacks.

Proof: Suppose the presheaf P : I → Set preserves pullbacks. That P preserves pullbacks
means that for any pullback square

A
h //

k
��

B

f
��

C g
// D

in I, there is an isomorphism PA ∼= {(x, y) ∈ PB × PC | x � f = y � g}, such that for each
(x, y) on the right hand side there is a unique a ∈ PA satisfying a � h = x and a � k = y.

25

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

Let S = {fi : C → Ci | i ∈ I} be a cover of C and {xi}I , xi ∈ PCi a matching family.
Suppose fi, fj ∈ S, then for any commuting square

C
fj //

fi

��

Cj

sj

��
Ci si

// D

(2.2)

we have xi � si = xj � sj, by the matching family property. In particular this holds if the
above square is pullback, and we have seen how we can always construct a pullback in I
given arrows fi, fj as above. By the assumption that P is pullback preserving, this implies
that there is a unique x ∈ PC such that x � fi = xi and x � fj = xj . This x is a unique
amalgamation: For any k ∈ I construct the pullback in I with fi, fk as above. Then we get a
unique x′ such that x′ � fi = xi and x′ � fk = xk, but then x′ � fi = xi = x � fi which implies
that x′ = x because P (fi) is mono (by the assumption that P preserves pullbacks).

For the converse, suppose P is a sheaf and 2.2 is a pullback in I. Observe that P preserves
monos, since any arrow f : C → D of I is a cover of C, and a matching family for such a cover
consists of one element xf ∈ PD, so there is a one-one correspondence between elements of
PD and elements of PC (unique amalgamations), showing that P (f) is iso.

Now the arrow sifi = sjfj : C → D is a cover of C. Suppose xi ∈ PCi, xj ∈ PCj satisfies
xi � si = xj � sj = xD, then there is a unique amalgamation (for the matching family xD)
x ∈ PC such that x � sifi = xD. To see that we have x � fi = xi and x � fj = xj as required,
we calculate: x � sifi = P (sifi)(x) = xD = P (si)(xi) which implies P (fi)(x) = xi, since P (si)
is mono.

2.6.1 The associated sheaf functor

Let (C, J) be a fixed site. The inclusion functor

i : Sh(C, J) ↪→ Ĉ

has a left adjoint
a : Ĉ → Sh(C, J)

called the associated sheaf functor. The functor a commutes with finite limits (it is left exact).
Moreover, the composite

ai : Sh(C, J) → Sh(C, J)

is naturally isomorphic to the identity functor.
Limits in Sh(C, J) are calculated pointwise as in Ĉ, and the category Sh(C, J) is closed

under limits, meaning that a limit of sheaves is a sheaf. In particular, Sh(C, J) has all small
limits. Note that since the terminal object 1 of the presheaf category Ĉ is the empty limit, it
is a sheaf.

Colimits in Sh(C, J) are calculated using the associated sheaf functor: For sheaves Fj ,

colimShFj = a(colim bCiFj).

Where the subscripts indicate in which category the colimit is calculated. As a consequence,
Sh(C, J) has all small colimits.

26

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

Image factorizations in Ĉ are constructed by means of finite limits and colimits, so if
f : P → Q is a morphism in Ĉ with image factorization

P
f //

e
����

Q

Im(f)
<< m

<<zzzzzzzzz

the arrow a(f) : aP → aQ has image factorization

aP
a(f) //

a(e)
����

aQ.

a Im(f)
:: a(m)

::vvvvvvvvv

Representables for sheaves. Consider the Yoneda embedding y : C → Ĉ. If the topology
on C is subcanonical, then y(C) is a sheaf, if it is not subcanonical we can, however, still
define a canonical functor by composing Yoneda with the associated sheaf functor to get a
sheaf:

ay : C → Sh(C, J).

For any sheaf F , the Yoneda Lemma states that Ĉ(y(C), iF) ∼= FC. Using the adjunction
a a i this implies

Sh(ay(C), F) ∼= FC.

Every presheaf is a colimit of representables, so a sheaf F regarded as a presheaf iF can be
written as iF ∼= colimiy(Ci), which implies

F ∼= ai(F) ∼= a colimiy(Ci) ∼= colimShay(Ci).

Proposition 2.6.16. A family of morphisms {fi : Ci → C}i∈I covers C iff the induced
morphism ∐

i∈I

ay(Ci) → ay(C)

is epi.

2.6.2 Subsheaves

A subsheaf A � F of a sheaf F is a subfunctor of F which is also a sheaf. This can be given
by the following definition.

Definition 2.6.17. A functor A : Cop → Set is a subsheaf of a sheaf F iff A is a subfunctor
of F and for each object C of C and each cover S of C, and each element x ∈ FC,

x � f ∈ A(D) for every f : D → C in S implies x ∈ A(C).

27

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

Since a mono is a limit, the monos in Sh(C, J) are the monos of Ĉ, that is, a mono in
Sh(C, J) is a natural transformation which is pointwise injective in Set. Hence, every element
(equivalence class) of Sub(F), where F is a sheaf, can be canonically represented by a subsheaf
of F .

The initial object 0 in Sh(C, J) is not always the empty functor as it is in Ĉ. The subfunctor
0 ↪→ 1 is not always a sheaf; suppose an object C has an empty cover, then by the definition
above, we must have a unique amalgamation ∗ ∈ 0(C). The definition of 0 in Sh(C, J) then
becomes

0(C) =

{
{∗} if ∅ ∈ J(C)
∅ otherwise.

For subfunctors of 1, the sheaf condition is particularly simple: A subfunctor A ↪→ 1 is a
subsheaf of 1 if for each object C of C and for every cover S of C,

A(D) 6= ∅ for every f : D → C in S implies A(C) 6= ∅.

As in the presheaf category, we can characterize the subobjects of 1 in the sheaf category:

Proposition 2.6.18. In a category Sh(X) of sheaves over a topological space there is a
bijective correspondence between subfunctors of 1 and representables yU , U ∈ O(X).

Proof: In example 2.6.14 we have shown that every representable is a sheaf w.r.t. the open
cover topology. Suppose F is a subsheaf of 1, then

F ∼= yU where U =
⋃

{V | FV = {∗}}.

FU 6= ∅ because by definition U is covered by the sets V such that FV 6= ∅. Since F is a
presheaf it follows that V ⊆ U iff FV 6= ∅. This shows that F ∼= yU .

Definition 2.6.19 (Ideal). An ideal on a site (C, J) is a set of objects I ⊆ Obj(C) satisfying

1. If C ∈ I and there exists an arrow D → C then D ∈ I.

2. For any object C of C and for any cover S ∈ J(C), if for every f : C ′ → C ∈ S, C ′ ∈ I
then C ∈ I.

The first condition makes I a subpresheaf of 1, and the second makes it a sheaf.

Proposition 2.6.20. There is a bijective correspondence between subsheaves of 1 and ideals.

Proof: Let I be an ideal, we define a subfunctor Î of 1 by

Î(C) =

{
{∗} iff C ∈ I
∅ otherwise.

It is not hard to see that the sheaf condition of definition 2.6.17 corresponds exactly to the
second condition of being an ideal. On the other hand let F ↪→ 1 be a subsheaf of 1, then

F = {C ∈ Obj(C) | F (C) = {∗}}

clearly defines an ideal.

28

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

Corollary 2.6.21. The complete Heyting algebra on SubSh(C,J)(1) can be defined in terms of
ideals as follows:

> = Obj(C)
⊥ = {C | ∅ ∈ J(C)}
I ∨ J = {C | there exists a cover S of C such that for all Ci ∈ S,Ci ∈ I or Ci ∈ J}
I ∧ J = I ∩ J
I → J =

⋃
{W | W ∩ I ≤ J}

Proof: Again, this is a calculation from the definition of limits, colimits and the construction
of the Heyting structure in SubSh(C,J)(1). Note that I ∨ J and ⊥ differs from definition in
presheaf categories. This is due to the fact that these are calculated by the means of colimits,
and a colimit in the sheaf category is calculated by taking the colimit in Ĉ and then using the
associated sheaf functor.

2.6.3 A category of sheaves is a topos

We have already seen that the category of sheaves have all small limits and colimits, we now
show that if it has exponentials GF for sheaves G,F , then we must have i(GF) ∼= i(G)i(F).
To see why, let P ∈ Ĉ be any presheaf, and consider the following string of isomorphisms

Ĉ(P, i(GF))
∼= Sh(a(P), GF) since a a i
∼= Sh(a(P) × F,G) by the assumption that GF is exponential
∼= Sh(a(P) × ai(F), G) ai ∼= id
∼= Sh(a(P × iF), G) because a commutes with finite limits
∼= Ĉ(P × iF, iG) again by a a i
∼= Ĉ(P, i(G)i(F)) by exponentiation in Ĉ.

All the above isomorphisms are natural in P ∈ Ĉ, so because the Yoneda embedding is full
and faithful (actually we are using Proposition 2.5.7), we conclude that i(GF) ∼= i(G)i(F). We
still do not know that it is a sheaf, though. This follows from the following proposition.

Proposition 2.6.22. Let P, F ∈ Ĉ, if F is a sheaf, then so is the exponential (iF)P .

A proof of this can found in [MLM94, p. 136]. We have shown the following:

Corollary 2.6.23. The category of sheaves over a cite, Sh(C, J) is Cartesian closed.

To see that the category of sheaves over a cite is a in fact a topos it must be shown that
it has a subobject classifier. The requirement Sub(F) ∼= Hom(F,Ω) leads to

iΩ(A) ∼= Ĉ(yA, iΩ) ∼= Sh(ayA,Ω) ∼= Sub(ayA),

so Ω(A) is the set of subsheaves of ayA. For sheaves over a topological space X with the
usual open cover topology these are characterized by the principal sieves ↓ (V) on A, where
↓(V) = {V ′ | V ′ ⊆ V }, i.e., the subobject classifier of Sh(X) is defined as follows:

Ω(U) = {↓(V) | V ⊆ U}
= {y(V) | V ⊆ U}

29

CHAPTER 2. TOPOSES 2.6. GROTHENDIECK SHEAVES

Being a principal sieve is equivalent to being a sieve which is closed under arbitrary unions
of its elements, i.e., for a sieve S, and for any open W ⊆ U , if S covers W then W ∈ S. The
notion of principal sieve can be generalized to arbitrary sites, this is done in [MLM94], which
also gives a proof of the fact that Ω is indeed a subobject classifier. For the record:

Corollary 2.6.24. Every Grothendieck sheaf category is a topos.

30

Chapter 3

Ends and coends

Literature: [Win01], [Cac03] and [ML98]
This chapter provides a detailed review of ends and coends for dinatural transformations

and the main results regarding these, which will be needed for Day’s construction.

3.1 Dinatural transformations

A dinatural transformation α : F→̈G between functors F,G : Cop×C → D consists of a family
〈αU : F (U,U) → G(U,U)〉U∈C of arrows in D such that for every arrow f : V → U in C the
diagram

F (U,U)
αU // G(U,U)

G(f,U)

%%LLLLLLLLLL

F (U, V)

F (U,f)
99rrrrrrrrrr

F (f,V) %%LLLLLLLLLL
G(V,U)

F (V, V)
αV // G(V, V)

G(V,f)

99rrrrrrrrrr

commutes. Here F (U, f) means F (idU , f). Every natural transformation Cop × C ⇓η

F
$$

G

:: D
gives

rise to a dinatural transformation 〈ηU,U : F (U,U) → G(U,U)〉U∈Obj(C), 〈ηU,U 〉U for short. This
is verified by the commutativity of the following diagram:

V

f

��

F (U,U)

(1)

ηU,U // G(U,U)
G(f,U)

&&LLLLLLLLLL

U F (U, V)

F (U,f)
99rrrrrrrrrr ηU,V //

F (f,V) %%LLLLLLLLLL
G(U, V) (3)

G(U,f)
99rrrrrrrrrr

G(f,V) %%LLLLLLLLLL
Gg(V,U)

F (V, V)

(2)

ηV,V

// G(V, V)

G(V,f)

88rrrrrrrrrr

where (1) and (2) commute because of naturality of η and (3) commutes because G is a
bifunctor. Dinatural transformations compose with natural transformations:

31

CHAPTER 3. ENDS AND COENDS 3.1. DINATURAL TRANSFORMATIONS

Lemma 3.1.1. Given α : F ′ ⇒ F, β : F→̈G and γ : G ⇒ G′, where F, F ′, G,G′ are all
functors from Cop × C to D, the following composites are dinatural transformations.

1. β ◦ 〈αU,U 〉U

2. 〈γU,U 〉U ◦ β

3. 〈γU,U 〉U ◦ β ◦ 〈αU,U 〉U .

The composition is defined componentwise.

Proof: 3. follows directly from 1. and 2. To show 1. consider the following diagram

V

f

��

F ′(U,U)

(2)

αU,U // F (U,U)
βU // G(U,U)

G(f,U)

%%LLLLLLLLLL

U F ′(U, V)

F ′(U,f)
88rrrrrrrrrr αU,V //

F ′(f,V) &&LLLLLLLLLL
F (U, V) (1)

F (U,f)
99rrrrrrrrrr

F (f,V) %%LLLLLLLLLL
G(V,U)

F ′(V, V)

(3)

αV,V

// F (V, V)
βV

// G(V, V)

G(V,f)

99rrrrrrrrrr

Diagram (1) commutes by dinaturality of β, (2) and (3) by naturality of α, so the whole
diagram commutes. 2. is proved similarly.

As with natural transformations, dinaturality can be verified at each component indepen-
dently:

Lemma 3.1.2. Let H,K : Aop ×A× Bop × B → C be functors. A family

〈αa,b : H(a, a, b, b) → K(a, a, b, b)〉a∈A,b∈B

is dinatural if and only if the induced families

αa,− : H(a, a,−,−) → K(a, a,−,−)

and
α−,b : H(−,−, b, b) → K(−,−, b, b)

are dinatural.

For a proof see [Cac03, p.29].
A wedge is a special case of a dinatural transformation were one of the functors is a

constant functor ∆X. For instance, consider a dinatural transformation α : ∆X→̈G. The
commuting diagram

X
αU // G(U,U)

G(f,U)

%%LLLLLLLLLL

X

idX

??��������

idX ��>
>>

>>
>>

>
G(V,U)

X αV

// G(V, V)

G(V,f)

99rrrrrrrrrr

32

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

can be redrawn as
G(U,U)

G(f,U)

&&LLLLLLLLLL

X

αU

;;wwwwwwwww

αV ##G
GGGGGGGG G(V,U).

G(V, V)

G(V,f)

88rrrrrrrrrr

The dinatural transformation α is called a wedge from X to G.

3.2 Ends and coends

Definition 3.2.1. An end of a functor F : Cop × C → D is a universal wedge ω from a
constant E to F .

That is, for every wedge β : Y → F there is a unique arrow h : Y → E such that βC = ωCh
for all C ∈ Obj(C). Thus for each arrow f : B → C of C there is a diagram

F (B,B)
F (B,f)

&&MMMMMMMMMM

Y

βB
44

βC **

h // E

ωB

;;wwwwwwwww

ωC

##G
GGGGGGGG F (B,C).

F (C,C)

F (f,C)

88qqqqqqqqqq

ω is called the ending wedge and the object E (by abuse of language) is called the end of F
and is written E =

∫
C F (C,C).

Dually, a coend for F is colimiting (or couniversal) wedge κ from F to a constant∫ C
F (C,C), as illustrated by the following diagram:

F (B,B)

κB

&&MMMMMMMMMM αB

((
F (C,B)

F (f,B)
99ssssssssss

F (C,f) %%KKKKKKKKKK

∫ C
F (C,C) // X.

F (C,C)

κC

88qqqqqqqqqq αC

66

Natural transformations provide an example of ends. Given two functors F ;G : C → D,
we can define the hom-functor

HomD(F (−), G(−)) : Cop × C → Set

Which acts on objects and arrows by sending 〈f, g〉 : (C,D) → (C ′, D′) to

HomD(FC ′, GD)
G(g)◦−◦F (f) // HomD(FC,GD′)

33

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

(We will omit the subscript to Hom when it is clear from the context which category the
hom-set lives in.)

Now if Y is any set, consider a wedge β : Y → Hom(F (−), G(−)), with components

βC : Y → Hom(FC,GC).

For each arrow f : B → C of C we have the commuting diagram

Hom(FB,GB)

Hom(FB,Gf)
RRRRR

))RRRRR

Y

βB

88rrrrrrrrrrrr

βC &&LLLLLLLLLLLL Hom(FB,GC)

Hom(FC,GC)

Hom(Ff,GC)
lllll

55lllll

Chasing the arrows, we see that for all y ∈ Y, βC(y) ◦ Ff = Gf ◦ βB(y), this states in fact
that for each y, β (y) is a natural transformation from F to G.

FB
βB(y) //

Ff
��

GB

Gf
��

FC
βC(y)

// GC.

Let ωC : Nat(F,G) → Hom(FC,GC) be the arrow that assigns to a natural transformation
λ : F → G its component λC . The collection of arrows 〈ωC〉C∈C is a wedge from Nat(F,G)
to Hom(F (−), G(−)). To see that it is an ending wedge, consider the following diagram

Y
βC //

h
��

Hom(FC,GC)

Nat(F,G)

ωC

66nnnnnnnnnnnn

where h(y) = β (y) is the unique map such that the diagram commutes, since ωC(h(y)) =
βC(y). Hence the Naturality Formula

Nat(F,G) =

∫

C
Hom(FC,GC). (3.1)

Letting F,G : I × Iop → D, a similar proof shows that

Dinat(F,G) =

∫

I
Hom(F (I, I), G(I, I)) (3.2)

which we call the Dinaturality Formula. Using the Naturality Formula and the Yoneda
Lemma, we get the following identity

∫

C
Hom(YU(C), FC) = Nat(YU,F)

θU,F
∼= FU. (3.3)

34

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

3.2.1 Ends with parameters

Proposition 3.2.2 (End of a natural transformation). Given a natural transformation
γ : F → F ′ between functors F, F ′ : Cop × C → D which both have ends ω, ω′ respectively,
there is a unique arrow ∫

C
γC,C :

∫

C
F (C,C) →

∫

C
F ′(C,C)

in D such that the following diagram commutes for every C ∈ Obj(C):

∫
C F (C,C)

ωC //

R
C
γC,C

��

F (C,C)

γC,C

��∫
C F

′(C,C)
ω′

C

// F ′(C,C)

Proof: By Lemma 3.1.1 the composite γ ◦ ω defines a wedge from
∫
C F (C,C) to F ′. Since

ω′ is a universal wedge of F ′, the arrow
∫
C γC,C exists and is unique.

The arrow
∫
C γC,C is called the end of the natural transformation γ. Composing γ with

another natural transformation γ ′ : F ′ → F ′′ yields the rule

∫

C
(γ′γ)C,C = (

∫

C
γ′C,C) ◦ (

∫

C
γC,C) (3.4)

by uniqueness of
∫
C(γ′γ)C,C .

Theorem 3.2.3 (Parameter Theorem for Ends and Limits). Let G : P ×Cop×C → D
be a functor such that G(P,−,−) for each object P ∈ Obj(P) has an end

ωP :

∫

C
G(P,C,C)→̈G(P,−,−)

in D. Then there is a unique functor U : P → D with object function UP =
∫
C G(P,C,C)

such that the components of the wedges ωP for each C ∈ Obj(C) define a transformation

(ωP)C : UP → G(P,C,C)

natural in P .

Proof: The arrow function of U must be defined such that for each arrow f : P → Q of P,
and for every C ∈ Obj(C), we have a commuting diagram

UP
(ωP)C //

Uf

��

G(P,C,C)

G(f,C,C)
��

UQ
(ωQ)C

// G(Q,C,C).

Now each f : P → Q actually defines a natural transformation G(f,−,−) : G(P,−,−) →
G(Q,−,−) so by Proposition 3.2.2, the unique choice for Uf is

∫
C G(f, C,C). The composi-

tion rule 3.4 shows that this definition does indeed determine a functor.

35

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

As the notation suggests, the functor U is the end of the functor λC,C ′.G(−, C, C ′) :
Cop × C → DP regarding U as an object of the functor category DP . This follows from the
facts that (ω−)C : U ⇒ G(−, C, C) is a natural transformation for each C ∈ C, and that
ωP : UP → G(P,−,−) is an ending wedge (essentially we are exploiting that limits are
computed pointwise in functor categories). We write U =

∫
C G(−, C, C).

There is a dual result that if G(P,−,−) has a coend for each object P ∈ Obj(P), then
there is a unique functor ∫ C

G(−, C, C) : P → D.

3.2.2 Ends are limits

Let F : Iop × I → D be a functor that has an end. We construct a category I§ and a functor
F § : I§ → D such that

lim
J∈Obj(I§)

F §(J) =

∫

I∈Obj(I)
F (I, I).

• Obj(I§) = Obj(I) ∪ arr(I)

• arr(I§) = the collection of identities and for every f : U → V in I the arrows

U

&&MMMMMMMMMMMMM

f.

V

88qqqqqqqqqqqqq

The only meaningful compositions are with identities. The category I§ is called the subdivision
category of I. The functor F § : I§ → D is defined by the following assignments

U

%%KKKKKKKKKKKKK F (U,U)
F (U,f)

((QQQQQQQQQQQQQQ

f F §

7−→ F (U, V).

V

99sssssssssssss
F (V, V)

F (f,V)

66mmmmmmmmmmmmmm

Now a limit for F § is an object L of D together with a collection of arrows 〈κJ〉J∈Obj(I§),

L
κJ // F §(J) such that

F (U,U) = F §(U)
F (U,f)

))SSSSSSSSSSSSSS

L

κU

88qqqqqqqqqqqq

κV &&MMMMMMMMMMMM
κf // F (U, V) = F §(f)

F (V, V) = F §(V)

F (f,V)

55kkkkkkkkkkkkkk

36

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

commutes. One readily sees that the collection 〈κJ 〉J∈Obj(I§) together with L defines an end

for F . Dually a coend for F is the same as a colimit for the functor F # : (I§)op → D, where
F# is defined in the same way F § is, with the following modifications: For f : U → V in I

U F (U,U)

f

99sssssssssssss

%%KKKKKKKKKKKKK F#

7−→ F (V,U)

F (f,U)
66mmmmmmmmmmmmm

F (V,f) ((QQQQQQQQQQQQQ

V F (V, V)

As a consequence, if D has all (co)limits, then D has all (co)ends.

Example 3.2.4. As an example we consider the concrete definition of a coend in Set:

∫ I

F (I, I) = colimI∈Obj(I§)F
#(I) =

⊎

I∈Obj(I§)

F#(I)/ '

Where ' is the least equivalence relation on
⊎
I∈Obj(I§) F

#(I) ×
⊎
I∈Obj(I§) F

#(I) such that

(f, x) ' (I, y) ⇔ ∃u : f → I ∈ arr((I§)op).F#(u)(x) = y. (3.5)

(Recall that F#(u)(x) = F (f, I)(x)). The couniversal wedge is the collection of injection
arrows x 7→ [I, x]', where I ∈ Obj(I§), i.e., I is an object or an arrow of I, and x ∈
F#(I). Now from this definition we deduce an equivalence relation ∼ on

⊎
I∈Obj(I) F (I, I) ×⊎

I∈Obj(I) F (I, I) such that

∫ I

F (I, I) =
⊎

I∈Obj(I)

F (I, I)/ ∼ .

∼ is the least equivalence relation such that

(I, x) ∼ (J, y)
⇔ (I, x) ' (J, y)
⇔ ∃(f, z).(I, x) ' (f, z) ' (J, y)
⇔ ∃f : I → J ∈ arr(I).∃z ∈ F (J, I).(x = F (f, I)z ∧ y = F (J, f)z),

and the couniversal wedge is the collection of injection arrows x 7→ [I, x]∼ with x ∈ F (I, I),
I ∈ Obj(I).

The following example will be useful.

Example 3.2.5. Consider a functor T : P × Cop × C → Set such that for each P ∈ P,
T (P,−,−) has a coend

κP : T (P,−,−)→̈

∫ C

T (P,C,C)

37

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

in Set. Then by the Parameter Theorem 3.2.3, there is a unique functor
∫ C

T (−, C, C) : P →
Set. To objects it assigns the collection of equivalence classes just defined in 3.2.4. For an
arrow s : Q→ P , the arrow

∫ C
T (s, C,C) must make the following diagram commute:

T (P,U,U)
(κP)U // ∫ C T (P,C,C)

T (Q,U,U)

T (s,U,U)

OO

(κQ)U

// ∫ C T (Q,C,C)

R C T (s,C,C)

OO

for all U . But since (κP)U and (κQ)U are the injections x 7→ [P,U, x]∼ and x 7→ [Q,U, x]∼,

the only choice for
∫ C

T (s, C,C) is

(

∫ C

T (s, C,C))[Q,U, x]∼ = [P,U, T (s, U, U)(x)]∼.

It is easily verified that this is well-defined. This completes the description of the functorial
action of

∫ C
T (−, C, C) : P → Set.

3.2.3 Abstract definition of end and coend

We now give more abstract definitions of ends and coends, which in some cases will be easier
to work with. An end for a functor F : Iop × I → D is a representation for the functor
Dinat(∆(−), F) : Dop → Set:

D(−,

∫

I
F (I, I))

φ
∼= Dinat(∆(−), F)

Dually a coend for F : Iop × I → D is a representation:

D(

∫ I

F (I, I),−)
ψ
∼= Dinat(F,∆(−))

for the functor Dinat(F,∆(−)) : D → Set. We can recover the concrete definition with

κ = ψR I F
(idR I F

) as the couniversal wedge (see [Win01]). Here
∫ I
F is an abbreviation of

∫ I
F (I, I). The action of ψ is, for h :

∫ I
F (I, I) → X an arrow of D:

• ψX(h) = h ◦ κ, and

• ψ−1
X (α) = UR I F

(α), where UR I F
is the function that sends α to the unique mediating

arrow from the coend
∫ I
F (I, I) to X:

F (U,U)

κU

&&LLLLLLLLLL αU

((
F (U, V)

F (U,f)
99ssssssssss

F (f,V) %%KKKKKKKKKK

∫ I
F (I, I)

UR I F
(α)

// X

F (V, V)

κV

88rrrrrrrrrr αV

66

38

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

In view of the Dinaturality Formula 3.2 we can now express coends in terms of ends:

∫

I
HomD(F (I, I), D) ∼= Dinat(F,∆D) ∼= D(

∫ I

F (I, I), D). (3.6)

Since Dinat(∆D,F) ∼= D(D,
∫
I F (I, I)) we also get

∫

I
HomD(D,F (I, I)) ∼= D(D,

∫

I
F (I, I)). (3.7)

Another way to obtain these results is to exploit the fact that the hom-functor preserves and
reverses limits.

Example 3.2.6. Given a functor F : Iop × I → Set, we know that

∫ I

F (I, I) =
⊎

I∈I

F (I, I)/ ∼

as defined in 3.2.4, and the couniversal wedge is the collection of injection arrows x 7→ [I, x]∼.
The unique mediating arrow of α ∈ Dinat(F,∆X) is then given by

[U, x]∼ 7→ αU (x),

where [U, x]∼ ∈
⊎
I∈I F (I, I)/ ∼.

3.2.4 Parameterized representability

Most isomorphisms in category theory are required to be natural, but more often than not
the proof of naturality is omitted, this is probably due to the fact that such a proof usually
is equivalent to some tedious diagram chase. The following theorem is extremely useful in
order to proof naturality results without diagram chasing.

Theorem 3.2.7. Let F : A × Bop → Set be a bifunctor such that for every A ∈ Obj(A)
there exists a representation (G[A], θA) for the functor F (A,−) : Bop → Set. Then there is a
unique extension of the mapping A 7→ G[A] to a functor G : A → B such that

B(B,G(A))
θA
B∼= F (A,B) (3.8)

is natural in A ∈ Obj(A) and B ∈ Obj(B).

Proof: Since (G[A], θA) is a representation, 3.8 is by definition natural in B. To see that it
is natural in A, let f : A→ A′ be an arrow and consider the commuting diagram

B(−, G[A])

(θA′
)−1◦F (f,−)◦θA

��

θA

∼=
F (A,−)

F (f,−)
��

B(−, G[A′]) θA′

∼=
F (A′,−).

(3.9)

Since the Yoneda functor is full and faithful there must exist a unique arrow, G(f) say, such
that

B(−, G(f)) = (θA
′

)−1 ◦ F (f,−) ◦ θA.

39

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

It is routine to verify that this definition gives a functor. The concrete definition of G(f), f :
A→ B is found by chasing idG[A] round the diagram 3.9:

G(f) = ((θB)−1 ◦ F (f,G[A]) ◦ θA)(idG[A])

Corollary 3.2.8. If the functor F of the theorem is a hom-functor B(B,H(A)) for some
functor H : A → B, then there is an isomorphism

G(A) ∼= H(A)

which is natural in A.

Proof: By the full and faithfulness of the Yoneda functor, we have for each A ∈ A that
GA ∼= HA in B, but since it is only pointwise we do not get naturality in A for free, so to see
this consider

B(B,GA)

Gf◦−
��

θA
B∼=

B(B,HA)

Hf◦−
��

B(B,GC) θC
B∼=

B(B,HC),

where f : A → C. Letting B = GA and following the identity round the diagram we get the
following commutative diagram

GA
θA
GA

(idGA)
//

θC
GA(Gf) ''PPPPPPPPPPPP HA

Hf
��

HC

to see that we also have a commuting diagram

GA
θC
GA

(Gf)

''PPPPPPPPPPPP

Gf
��

GC
θC
GC(idGC)

// HC

just follow idGC round the following commuting diagram

B(GA,GC)
θC
GA // B(GA,HC)

B(GC,GC)

−◦Gf

OO

θC
GC

// B(GC,HC).

−◦Gf

OO

A few examples:

40

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

Proposition 3.2.9. Let F : B× Iop× I → D be a functor such that for every B ∈ B the coend∫ I
F (B, I, I) exists in D. Then the function B 7→

∫ I
F (B, I, I) uniquely extends to a functor

∫ I

F (−, I, I) : B → D

such that

D(

∫ I

F (B, I, I), D)
ψB

D∼= Dinat(F (B,−,−),∆D) (3.10)

natural in B,D.

Proof: Consider the functor λB,D.Dinat(F (B,−,−),∆D) : Bop × D → Set. Since for

every B ∈ B the coend
∫ I
F (B, I, I) exists, we have a representation (ψB ,

∫ I
F (B,−,−))

for the functor λD.Dinat(F (B,−,−),∆D). So by parameterized representability there is a

unique extension of B 7→
∫ I
F (B, I, I) to a functor

∫ I
F (−, I, I) : Bop → Dop, such that

Dop(D,
∫ I
F (B, I, I)) = D(

∫ I
F (B, I, I), D)

ψB
D∼= Dinat(F (B,−,−),∆D). The definition on

arrows can be calculated as follows: For F : A→ B,

∫ I

F (f, I, I) :

∫ I

F (A, I, I) →

∫ I

F (B, I, I)

is

∫ I
F (f, I, I) = (ψAR

F (B,I,I)
)−1 ◦ Dinat(F (f,−,−),∆

∫ I
F (B, I, I)) ◦ ψBR

F (B,I,I)
(idR

F (B,I,I))

= (ψAR
F (B,I,I)

)−1 ◦ Dinat(F (f,−,−),∆
∫ I
F (B, I, I))(κB)

= (ψAR
F (B,I,I)

)−1(κB ◦ F (f,−,−))

= UR
F (A,I,I)[κ

B ◦ F (f,−,−)]

Where κB is the couniversal wedge from F (B,−,−) to
∫ I
F (B, I, I). Notice that we have

rediscovered the functor defined in Theorem 3.2.3.

Proposition 3.2.10 (Coend functor). If a category D has all coends of type I, we can
define the coend functor

Coend(−) : [I × Iop → D] → D

by

F
α
⇒ G
7→

∫ I
F (I, I)

R I αI,I
−→

∫ I
G(I, I)

where
∫ I
αI,I = UR I F

[κG ◦ α] and κG is the couniversal wedge for G. Moreover, it follows

that the formula

D(

∫ I

F (I, I), D)
ψF

D∼= Dinat(F,∆D), (3.11)

is natural in F as well as in D.

41

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

Proof: This follows from parameterized representability with respect to the functor

λF.λD.Dinat(F,∆D) : [I × Iop → D]op ×D → Set.

From Theorem 3.2.7 we also get the natural isomorphism

D(

∫ I

F (I, I), D)
ψF

D∼= Dinat(F,∆D)

and the definition on arrows is found using the formula given in Theorem 3.2.7:
∫ I
αI,I = (ψFR

G
)−1 ◦ Dinat(α,∆

∫ I
F (I, I)) ◦ ψGR

G
(idR

G)

= (ψFR
G
)−1 ◦ Dinat(α,∆

∫ I
F (I, I))(κG)

= (ψFR
G
)−1(κG ◦ α)

= UR I F
[κG ◦ α]

Where κG is the couniversal wedge corresponding to G.

3.2.5 Fubini for coends

In this section and the next we state and proof results about coends which all dualize to ends.
We shall also see plenty of justification for the notation

∫
F for ends and coends.

Proposition 3.2.11. Let G : Cop × C ×Dop ×D → B be a functor. If for every pair c1, c2 in
C the coend

∫ y
G(c1, c2, y, y) exists in B, then there is an isomorphism

∫ (x,y)

G(x, x, y, y) ∼=

∫ x ∫ y

G(x, x, y, y)

natural in G. Meaning that if one side exists so does the the other, and then they are isomor-
phic.

Proof: We claim that there is an isomorphism

Dinat(λc1, c2.

∫ y

G(c1, c2, y, y),∆b)
γ
∼= Dinat(G,∆b)

natural in b, where (γ(α))c,d is the composite

G(c, c, d, d)
εc
d //

∫ y
G(c, c, y, y)

αc // b

and εc : λd1, d2.G(c, c, d1, d2)→̈
∫ y
G(c, c, y, y) is the couniversal wedge. We now show that

this family is a wedge. In view of Lemma 3.1.2 this can be verified for each component apart.
Fixing c ∈ C, the family

〈αc ◦ ε
c
d〉d∈D

is a wedge since εc is a wedge and for an arrow f : d′ → d, the diagram

G(c, c, d, d)
εc
d

((QQQQQQQQQQQQ

G(c, c, d, d′)

G(c,c,d,f)
77nnnnnnnnnnnn

G(c,c,f,d′) ''PPPPPPPPPPPP

∫ y
G(c, c, y, y)

αc // b

G(c, c, d′, d′)

εc
d′

66mmmmmmmmmmmm

42

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

commutes. By fixing d ∈ D and for g : c′ → c, we get

G(c, c, d, d)

(1)

εc
d //

∫ y
G(c, c, y, y)

αc

%%KKKKKKKKKKKK

G(c, c′, d, d)

G(c,g,d,d)
oooo

77ooooo

εd //

G(g,c′,d,d)
OOOO

''OOOO

∫ y
G(c, c′, y, y) (3)

R y G(c,g,y,y)
llll

66llll

R y G(g,c′,y,y)
RRRR

((RRRR

b

G(c′, c′, d, d)

(2)

εc′

d

//
∫ y
G(c′, c′, y, y)

αc′

99ssssssssssss

(1) commutes since by definition
∫ y

G(c, g, y, y) is the mediating arrow defined by the
wedge εc ◦G(c, g,−,−) (by Proposition 3.2.9).

(2) commutes for the same reason as (1) but applied to the arrow
∫ y
G(g, c′, y, y).

(3) commutes because α is a wedge.
The inverse is defined by

(γ−1(β))c = UR y
G(c,c,y,y)[βc,−] :

∫ y

G(c, c, y, y) → b.

That is: fix c to get a wedge from G(c, c,−,−) to b then take the mediating arrow defined
by this wedge. We must verify that this collection defines a wedge. By Lemma 3.1.2 we have
that the family 〈βc,d〉d∈D is a wedge for any fixed c, and 〈βc,d〉c∈C is a wedge for any fixed d.
Let f : c → c′ be any arrow in C then G(c, f, d, d) : G(c, c′, d, d) ⇒ G(c, c, d, d) is a natural
transformation, and the family of composites δd defined by

G(c, c′, d, d)
G(c,f,d,d) // G(c, c, d, d)

βc,d // b

is a wedge from G(c, c′,−,−) to b. Since, by the remarks above, we have a commuting diagram

G(c, c, d, d)
βc,d

%%JJJJJJJJJJJ

G(c, c′, d, d)

G(c,f,d,d)
77nnnnnnnnnnnn

G(f,c′,d,d) ''PPPPPPPPPPPP
b,

G(c′, c′, d, d)

βc′,d

99ttttttttttt

δd is equal to βc′,d ◦ G(f, c′, d, d). Now, let g : d → d′, we have the following commuting
diagram

G(c, c′, d, d)

ωd

((QQQQQQQQQQQQ δd

((G(c, c′, d′, d)

66nnnnnnnnnnnn

((PPPPPPPPPPPP

∫ y
G(c, c′, y, y)

u // b

G(c, c′, d′, d′)

ωd′

66mmmmmmmmmmmm δd′

66

43

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

where u is the unique mediating arrow, and ω the couniversal wedge. Consider the following
diagram

G(c, c, d, d)

κd

((RRRRRRRRRRRRR

βc,d

��

G(c, c′, d, d) (1)

G(c,f,d,d)
66mmmmmmmmmmmmm

ωd ((QQQQQQQQQQQQQ

∫ y
G(c, c, y, y)

(γ−1(β))c

KKK

%%KK
KK

KK

G(c, c′, d, d′)

77nnnnnnnnnnnn

''PPPPPPPPPPPP

∫ y
G(c, c′, y, y)

R y G(c,f,y,y)
llll

66llll

R y G(f,c′,y,y)
RRRR

((RRRR

(3) u // b

G(c, c′, d′, d′) (2)

ωd′

66mmmmmmmmmmmmm

G(f,c′,d′,d′) ((QQQQQQQQQQQQQ

∫ y
G(c′, c′, y, y)

(γ−1(β))c′sss

99ssssss

G(c′, c′, d′, d′)

κd′

66lllllllllllll

βc′,d′

JJ

where (1) and (2) commute by the Parameter Theorem 3.2.3. Recall that δd = βc,d ◦
G(c, f, d, d) and δd′ = βc′,d′ ◦G(f, c′, d′, d′), now since u is unique, (3) commutes as required.

Moreover, γ so defined is natural in b, so we get

B(
∫ x ∫ y

G(x, x, y, y),−)
ψλc1,c2.

R y G(c1,c2,y,y)

∼= Dinat(λc1, c2.
∫ y
G(c1, c2, y, y),∆−)

γ
∼= Dinat(G,∆−)

(ψ is defined in Proposition 3.2.10). In other words (
∫ x ∫ y

G(x, x, y, y), γ◦ψλc1 ,c2.
R y G(c1,c2,y,y))

is a representation for the covariant functor Dinat(G,∆−). Consider the functor λG, b.Dinat(G,∆b) :
[DIop×I]op ×B → Set. By parameterized representability we have

B(

∫ x ∫ y

G(x, x, y, y), b)
γG

b
◦ψ

λc1,c2.
R y G(c1,c2,y,y)

b ∼= Dinat(G,∆b)

is natural in G. Since by Proposition 3.2.10

B(

∫ (x,y)

G(x, x, y, y), b)
ψG

b∼= Dinat(G,∆b)

we get an isomorphism

B(

∫ x ∫ y

G(x, x, y, y), b)
(ψ−1)G

b
γG

b
ψ

λc1,c2.
R y G(c1,c2,y,y)

b ∼= B(

∫ (x,y)

G(x, x, y, y), b)

natural in b,G. By Corollary 3.2.8 we then have

∫ (x,y)

G(x, x, y, y)
δG∼=

∫ x ∫ y

G(x, x, y, y)

44

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

natural in G, where by theorem 3.2.7

δG = ((ψ−1)GγGψλc1,c2.
R y G(c1,c2,y,y))R x R y G(idR x R y G)

= ((ψ−1)γ)GR x R y G
(κλc1,c2.

R y G(c1,c2,y,y))

= (ψ−1)GR x R y G
(κλc1,c2.

R y G(c1,c2,y,y) ◦ ε)

= UR (x,y)G
[κλc1,c2.

R y G(c1,c2,y,y) ◦ ε].

The following diagram may help illustrate.

G(c, c, d, d)
εc
d //

κG
c,d ((QQQQQQQQQQQQQ

∫ y
G(c, c, y, y)

κ
λc1,c2.

R y G(c1,c2,y,y)
c

SSSS

))SSSS

∫ (x,y)
G(x, x, y, y)

δG
//
∫ x ∫ y

G(x, x, y, y)

Example 3.2.12. If G is a set valued functor,

δG([〈c, d〉, x]∼) = κ
λc1,c2.

R y G
c ◦ εcd(x)

= κ
λc1,c2.

R y G
c ([d, x]∼)

= [c, [d, x]∼]∼

for x ∈ G(c, c, d, d).

Analogously, if for every pair d1, d2 ∈ D the coend
∫ x

G(x, x, d1, d2) exists in B, then there
is an isomorphism ∫ y ∫ x

G(x, x, y, y)
φG∼=

∫ (x,y)

G(x, x, y, y)

natural in G, defined by

φG = (ψ−1)
λd1,d2.

R x G(x,x,d1,d2)R (x,y)G
◦ δ−1 ◦ ψGR (x,y)G

(idR (x,y)G
).

Example 3.2.13. If G is set valued, φG([d, [c, x]∼]∼) = [〈c, d〉, x]∼.

Corollary 3.2.14 (Fubini). There is an isomorphism

∫ x ∫ y

G(x, x, y, y) ∼=

∫ y ∫ x

G(x, x, y, y)

meaning one side exists if and only if the other side does, and it is natural in G.

Example 3.2.15. If G is set valued, δG ◦ φG([d, [c, x]∼]∼) = [c, [d, x]∼]∼.

Proposition 3.2.16. Let B be a ccc and F,G functors F : Cop → B, G : C ×Dop×D → B. If
for every c ∈ C the coend

∫ y
Fc×G(c, y, y) exists in B, then there is a natural isomorphism

Fc×

∫ y

G(c′, y, y)
φc,c′

∼=

∫ y

Fc×G(c′, y, y)

45

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

Proof: Since B is ccc, the product functor Fc×− : B → B has a right adjoint and therefore
preserves colimits ([Oos] p.49). We have seen that a coend can be expressed as a colimit using
the category D#, so for each c, c′,

Fc×
∫ y
G(c′, y, y) = Fc× colimD#(G#(c′,−,−))

∼= colimD#(Fc×G#(c′,−,−))
= colimD#((Fc×G(c′,−,−))#)
=

∫ y
Fc×G(c′, y, y).

This means that for each c, c′ we have a representation

λD.D(Fc×

∫ y

G(c′, y, y), D)
ψc,c′

∼= λD.Dinat(Fc×G(c′,−,−),∆D).

By parameterized representability 3.2.7 this isomorphism is natural in c, c ′. Since by Propo-
sition 3.2.9 we also have an isomorphism

D(

∫ y

Fc×G(c′, y, y), D)
ψD

c,c′

∼= Dinat(Fc×G(c′,−,−),∆D)

natural in c, c′, D, using Corollary 3.2.8 we find that there is an isomorphism φc,c′ which is
natural in c, c′ as claimed.

Corollary 3.2.17. For F : Cop → B and G : C × Dop × D → B, and B ccc there is an
isomorphism ∫ x ∫ y

Fx×G(x, y, y) ∼=

∫ x

Fx×

∫ y

G(x, y, y)

natural in F,G.

Proof: By the proposition above, we have an isomorphism

Dinat(λc1, c2.

∫ y

Fc1 ×G(c2, y, y),∆b)
γb=−◦φ

∼= Dinat(λc1, c2.F c1 ×

∫ y

G(c2, y, y),∆b)

natural in b, since composing a natural transformation with a dinatural transformation yields
a dinatural transformation. We have the following string of isomorphisms

B(
∫ x ∫ y

Fx×G(x, y, y), b)
ψ

λc1,c2.
R y Fc1×G(c2,y,y)

b ∼= Dinat(λc1, c2.
∫ y
Fc1 ×G(c2, y, y),∆b)

γb∼= Dinat(λc1, c2.F c1 ×
∫ y
G(c2, y, y),∆b)

(ψ−1)
Fc1×

R y G(c2,y,y)
b ∼= B(

∫ x
Fx×

∫ y
G(x, y, y), b).

By parameterized representability we get an isomorphism
∫ x ∫ y

Fx×G(x, y, y) ∼=∫ x
Fx×

∫ y
G(x, y, y) that is natural in F,G.

Example 3.2.18. For set valued functors F,G the isomorphism is defined by the mapping

[U, [V, (a, b)]∼]∼ 7→ [U, (a, [V, b]∼)]∼

for a ∈ FU, b ∈ G(U, V, V).

46

CHAPTER 3. ENDS AND COENDS 3.2. ENDS AND COENDS

3.2.6 Density

Proposition 3.2.19 (Density). Let F ∈ SetC
op

. There is an isomorphism

FU ∼=

∫ W

FW × C(U,W)

natural in F,U .

Proof: For any G ∈ SetC
op

SetC
op

(
∫W

FW × yW,G)

=
∫
U Hom((

∫ W
FW × yW)U,GU) by naturality formula 3.1

=
∫
U Hom(

∫W
FW × C(U,W), GU) as coends are computed point-wise.

∼=
∫
U

∫
W Hom(FW × C(U,W), GU) by 3.6

∼=
∫
U

∫
W Hom(FW,Hom(C(U,W), GU)) by currying

∼=
∫
W

∫
U Hom(FW,Hom(C(U,W), GU)) by Fubini

∼=
∫
W Hom(FW,

∫
U Hom(C(U,W), GU)) by 3.7

∼=
∫
W Hom(FW,GW) by 3.3

∼= SetC
op

(F,G) by naturality formula 3.1.

All natural in F,G. The iso F ∼=
∫W

FW × yW follows from Prop.2.5.8 and is found by
following idR W FW×yW

through the equations. It is given by κ̃UU (−)(idW), where κ̃U is the

curried version of the couniversal wedge κU : F × C(U,−)→̈
∫W

FW × C(U,W) (which is
just the inclusion), so κ̃UU (x)(idU) = [U, (x, idU)]∼ for x ∈ FU , and the inverse is given by
[V, (y, fU→V)]∼ 7→ F (f)(y).

47

Chapter 4

Doubly closed categories

Literature: [Pym02]
This chapter presents an original and detailed description of Day’s construction for presheaves,

followed by original proofs of the properties that the Yoneda embedding preserves the monoidal
closed structure (this is important for the completeness proof of propositional BI) and that
Day’s tensor product does not preserve monos and pullbacks. The latter is an interesting
result since a soundness proof of predicate BI1 presumably requires preservation of pullbacks.

In section 4.3 we study Day’s construction for sheaves. It has been claimed (in [Pym02]
and [Yan02]) that Day’s construction works for sheaves over topological spaces, we conjecture
that Day’s tensor product does not restrict to sheaves and present a counter example showing
that whether or not the conjecture holds, there can be no right adjoint in the general case.
A monoidal tensor product for Grothendieck sheaves is then constructed using Day’s tensor
together with the associated sheaf functor, and it is shown that under certain conditions this
tensor has a right adjoint in the category of sheaves.

To interpret predicate logic in a topos one uses the Heyting algebra structure on each
subobject lattice to interpret the logic. It is therefore relevant to ask whether a topos with a
doubly closed structure induces a BI algebra structure on each subobject lattice. Propositional
logic is modeled in Sub(1) so this subobject lattice will be of particular interest. In section
4.4 we present evidence that there is not a BI structure on every subobject lattice of a doubly
closed topos, and prove that in many cases, even when the topos is not doubly closed, Sub(1)
is a BI algebra. These results are necessary for the proofs of soundness and completeness that
will be given in the next chapter.

4.1 Symmetric monoidal closed categories

Definition 4.1.1. A category C is said to be monoidal if there is a functor ⊗ : C × C → C,
an object e ∈ Obj(C), and natural isomorphisms

αa,b,c : a⊗ (b⊗ c) → (a⊗ b) ⊗ c, λa : e⊗ a→ a, ρa : a⊗ e→ a,

1Here we mean predicate BI as suggested by Pym, see Appendix A.

48

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.1. SYMMETRIC MONOIDAL CLOSED CATEGORIES

so that

a⊗ (b⊗ (c⊗ d))
α //

1⊗α
��

(a⊗ b) ⊗ (c⊗ d)

α

��
a⊗ ((b⊗ c) ⊗ d)

α

))SSSSSSSSSSSSSS
((a⊗ b) ⊗ c) ⊗ d)

(a⊗ (b⊗ c)) ⊗ d)

α⊗1
55kkkkkkkkkkkkkkk

a⊗ (e⊗ b)

α

��

1⊗λ

&&LLLLLLLLLL

a⊗ b

(a⊗ e) ⊗ b

ρ⊗1

88rrrrrrrrrr

commute. (C,⊗, e, α, λ, ρ) is then a monoidal category.

Definition 4.1.2. A monoidal category (C,⊗, e, α, λ, ρ) is said to be symmetric if there is a
natural isomorphism

γa,b : a⊗ b→ b⊗ a

so that

a⊗ b
id //

γ

$$H
HH

HH
HH

HH
a⊗ b

b⊗ a

γ
::vvvvvvvvv

, a⊗ e
ρ //

γ

$$I
IIIIII

II
a

e⊗ a

λ

<<zzzzzzzzz

and
a⊗ (b⊗ c)

α //

1⊗γ

��

(a⊗ b) ⊗ c
γ

''OOOOOOOOOOO

a⊗ (c⊗ b)

α
''OOOOOOOOOOO

c⊗ (a⊗ b)

α

��
(a⊗ c) ⊗ b

γ⊗1
// (c⊗ a) ⊗ b

commute. (C,⊗, e, α, λ, ρ, γ) is then a symmetric monoidal category.

A preordered monoid considered as a category, i.e., with an arrow a → b iff a ≤ b is
an example of a monoidal category (this is probably where the name comes from). If the
preordered monoid is commutative, the category is symmetric monoidal.

In a category with finite products (×, 1) is a monoidal tensor product. The same is true
for coproducts with the initial object as the unit.

Definition 4.1.3. A symmetric monoidal category (C,⊗, e, α, λ, ρ, γ) is called closed if the
functor

−⊗ b : C → C

has a right adjoint b (−, for all b ∈ Obj(C). (C,⊗, e, α, λ, ρ, γ, (b (−)b∈Obj(C)) is then a
symmetric monoidal closed category (smcc).

A Cartesian closed category is in particular smcc.

Definition 4.1.4 (DCC, CDCC). A doubly closed category (DCC) is a category equipped
with two monoidal closed structures. A DCC is Cartesian (CDCC) if one of the closed
structures is Cartesian and the other is symmetric monoidal and bi-Cartesian (bi-CDCC)
if it also has finite coproducts.

49

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

In the next section we shall see how to construct bi-CDCC’s from a class of well known
ccc’s.

4.2 Day’s construction

We now show that if C is small, monoidal but not necessarily closed, then SetC
op

is monoidal
closed, and if C is symmetric monoidal then so is SetC

op

. Put together with the result that
SetC

op

is bi-Cartesian closed we get a whole class of bi-CDCC’s.
In the following let (C, ·, e, α, λ, ρ) be a small, monoidal category. For objects E,F in Ĉ,

we define

(E ⊗ F)x =

∫ y,y′

Ey × Fy′ × C(x, y · y′).

The coend exists since C is cocomplete and by Proposition 3.2.9 it does indeed define a functor,
so E ⊗ F is an object of Ĉ. By example 3.2.4 we have the following concrete definition of
(E ⊗ F)(x)

∫ y,y′

Ey × Fy′ × C(x, y · y′) =
⊎

(y,y′∈Obj(C×C))

Ey × Fy′ × C(x, y · y′)/ ∼

where ∼ is the symmetric, reflexive transitive closure of ' defined by:

((y, y′), a, b, hx→y·y′) ' ((z, z′), a′, b′, h′x→z·z′)
def
⇔ ∃(f, g) : (z, z′) → (y, y′) ∈ arr(C × C). E(f)(a) = a′ ∧ F (g)(b) = b′ ∧ (f · g) ◦ h′ = h

(y, y′, a,

E(f)

��

b,

F (g)

��

hx→y·y′)

(z,

f

OO

z′,

g

OO

a′, b′, h′x→z·z′)

f ·g

OO

Definition 4.2.1. If two elements ((y, y ′), a, b, hx→y·y′) and ((z, z′), a′, b′, h′x→z·z′) are related
by ', i.e., they are in the generating relation, we say that they are atomic equivalent.

For any ȳ ∈ Ey × Fy′ × C(x, y · y′) and z̄ ∈ Ez × Fz′ × C(x, z · z′) such that ȳ ∼ z̄ there
is a finite sequence x̄1, . . . , x̄n of atomic equivalences such that

ȳ ' x̄1 ' x̄2 ' · · · ' x̄n ' z̄.

Example 4.2.2. Suppose (M, ·, e) is a preordered commutative monoid and E,F ∈ M̂, an
element x ∈ En × Fn′ × M(m,n · n′) has the form x = (xn, xn′ ,m ≤ n · n′). x is atomic
equivalent to an element y = (ys, ys′ ,m ≤ s · s′) if and only if s ≤ n and s′ ≤ n′ (or vice
versa) and Esn(xn) = ys and Fs′n′(xn′) = ys′. Thus, two elements x, y ∈ (E ⊗ F)(m) are
equivalent iff there exists a finite string of such atomic equivalences all sitting above m.

If (M, ·, 1) is the preorder with only two elements 0 ≤ 1, and · is multiplication, then we
have a preordered commutative monoid, and given functors F,G : Mop → Set the equivalence
classes are simply

(F ⊗G)(0) = F (0) ×G(0) (F ⊗G)(1) = F (1) ×G(1).

50

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

Lemma 4.2.3. There is an isomorphism

C(x, y · w)
ψx
∼=

∫ y′

C(y′, w) × C(x, y · y′)

natural in X.

Proof: The proof is very much like the the proof of density. Let G be any object in SetC
op

,
then

SetC
op

(
∫ y′

C(y′, w) × C(−, y · y′), G)

=
∫
uHom((

∫ y′
C(y′, w) × C(−, y · y′))u,Gu) by naturality formula 3.1

=
∫
uHom(

∫ y′
C(y′, w) × C(u, y · y′), Gu) since coends are computed pointwise

∼=
∫
u

∫
y′ Hom(C(y′, w) × C(u, y · y′), Gu) by 3.6

∼=
∫
u

∫
y′ Hom(C(y′, w),Hom(C(u, y · y′), Gu)) by currying

∼=
∫
y′

∫
uHom(C(y′, w),Hom(C(u, y · y′), Gu)) by Fubini

∼=
∫
y′ Hom(C(y′, w),

∫
uHom(C(u, y · y′), Gu)) by 3.7

=
∫
y′ Hom(C(y′, w),SetC

op

(y(y · y′), G)) by naturality formula 3.1
∼=

∫
y′ Hom(C(y′, w), G(y · y′)) by the Yoneda Lemma

∼= SetC
op

(yw,G(y · −)) by naturality formula 3.1
∼= G(y · w) by the Yoneda Lemma
∼= SetC

op

(y(y · w), G) by the Yoneda Lemma

All natural in G. Since Yoneda is full and faithful and Ĉ is locally small, we have
∫ y′

C(y′, w)×

C(−, y · y′) ∼= y(y · w) in Ĉ, which means that there is a natural isomorphism between them.

As usual the isomorphism is found by putting G =
∫ y′

C(y′, w)×C(−, y ·y′) and following the
identity on G through the equations.

Remark 4.2.4. We will need the concrete definition of the isomorphism ψ. First notice that

for all [u, (fu→w, gx→y·u)]∼ ∈
∫ y′

C(y′, w) × C(x, y · y′) we have

(u, (f, g)) ' (w, (idw, (idy ·f) ◦ g))

which implies
(u, (f, g)) ∼ (v, (s, t)) iff (idy ·f) ◦ g = (idy ·s) ◦ t.

Now it is clear that the following is well-defined

ψx(h) = [w, (idw, h)]

and
ψ−1
x ([u, (f, g)]∼) = (idy ·f) ◦ g.

Similarly we have

Lemma 4.2.5.

C(x,w · y′)
ψ′

x∼=

∫ y

C(y, w) × C(x, y · y′)

with
ψ′
x(h) = [w, (idw, h)]∼

and
ψ′−1
x ([u, (f, g)]∼) = (f · idy′) ◦ g.

51

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

The unit of the tensor product ⊗ is C(−, e), Yoneda taken on the unit of the monoidal
structure on C. Let us show that it actually works, i.e., that we have a natural isomorphism

C(−, e) ⊗ F
λF∼= F.

C(−, e) ⊗ F = λx.
∫ y,y′

C(y, e) × Fy′ × C(x, y · y′)
∼= λx.

∫ y ∫ y′
C(y, e) × Fy′ × C(x, y · y′) by Prop. 3.2.11

∼= λx.
∫ y′ ∫ y

C(y, e) × Fy′ × C(x, y · y′) by Fubini
∼= λx.

∫ y′
Fy′ ×

∫ y
C(y, e) × C(x, y · y′) by 3.2.17

∼= λx.
∫ y′

Fy′ × C(x, e · y′) by Lemma 4.2.5
∼= λx.

∫ y′
Fy′ × C(x, y′) by the monoid structure on C

∼= F by Density.

All the isomorphisms above are natural in F . Each component λF is a natural transformation

λF : (ye ⊗ F) ⇒ F.

Since we know all the isomorphisms involved, we can calculate the concrete action of λF . The
elements of the set (ye⊗F)x are equivalence classes [u, u′, fu→e, b ∈ Fu′, gx→u·u′]∼. λxF sends
this element to b̃ := F (λu′ ◦ (f · idu′) ◦ g)(b) ∈ Fx, where λu′ : e · u′ → u′ comes from the
monoid structure on C. The inverse is defined by

(λxF)−1(b̃) = [e, x, ide, b̃, λ
−1
x]∼.

To see that it is well-defined, note that [u, u′, fu→e, b ∈ Fu′, gx→u·u′]∼ = [e, x, ide, b̃, λ
−1
x]∼.

To see that we have an isomorphism

F ⊗ C(−, e)
ρF∼= F

natural in F , consider the following equations

F ⊗ C(−, e) = λx.
∫ y,y′

Fy × C(y′, e) × C(x, y · y′)
∼= λx.

∫ y ∫ y′
Fy × C(y′, e) × C(x, y · y′) by Prop. 3.2.11

∼= λx.
∫ y
Fy ×

∫ y′
C(y′, e) × C(x, y · y′) by Corollary 3.2.17

∼= λx.
∫ y
Fy × C(x, y · e) by Lemma 4.2.3

∼= λx.
∫ y
Fy × C(x, y) by ρy : y · e→ y

∼= F by Density.

All the above isomorphisms are natural in F . ρxF is defined by

ρxF ([u, u′, a ∈ Fu, su′→e, gx→u·u′]∼) = F (ρu ◦ (idu ·s) ◦ g)(a)

well-definedness can be verified like in the case for λ. Finally, the associativity part, a natural
isomorphism

αE,F,G : E ⊗ (F ⊗G) → (E ⊗ F) ⊗G

52

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

comes from

E ⊗ (F ⊗G)

= λx.
∫ y,y′

Ey × (
∫ z,z′

Fz ×Gz′ × C(y′, z · z′)) × C(x, y · y′)
∼= λx.

∫ y,y′ ∫ z,z′
Ey × Fz ×Gz′ × C(y′, z · z′) × C(x, y · y′) by Corollary 3.2.17

∼= λx.
∫ z,z′ ∫ y,y′

Ey × Fz ×Gz′ × C(y′, z · z′) × C(x, y · y′) by Fubini
∼= λx.

∫ z,z′ ∫ y
Ey × Fz ×Gz′ ×

∫ y′
C(y′, z · z′) × C(x, y · y′) by 3.2.11 and 3.2.17

∼= λx.
∫ z,z′ ∫ y

Ey × Fz ×Gz′ × C(x, y · (z · z′)) by Lemma 4.2.3
∼= λx.

∫ z,z′ ∫ y
Ey × Fz ×Gz′ × C(x, (y · z) · z′) using α

∼= λx.
∫ z,z′ ∫ y

Ey × Fz ×Gz′ ×
∫ y′

C(y′, y · z) × C(x, y′ · z′) by Lemma 4.2.5
∼= λx.

∫ y′,z′
(
∫ y,z

Ey × Fz × C(y′, y · z)) ×Gz′ × C(x, y′ · z′) by 3.2.17, 3.2.11 and Fubini
= (E ⊗ F) ⊗G.

Given points a, b, c ∈ Eu,Fv,Gw, we can associate an equivalence class [[a, b], c] ∈ ((E ⊗
F) ⊗G)((u · v) · w) by putting

[[a, b], c] := [u · v, w, [u, v, a, b, idu·v], c, id(u·v)·w],

[a, b] = [u, v, a, b, idu·v] is known as Day’s pairing of a and b. Now we can define α:

αxE,F,G([u, u′, a, [v, v′, b, c, gu′→v·v′], fx→u·u′]) (4.1)

= ((E ⊗ F) ⊗G)(α ◦ (idu ·g) ◦ f)([[a, b], c]) (4.2)

= [u · v, v′[u, v, a, b, idu·v], c, α ◦ idu ·g ◦ f] (4.3)

4.2.1 Coherence laws

Showing the coherence laws is not possible without “getting the fingers dirty”. Let us show
that for all objects x of C, we have a commuting triangle

(E ⊗ (C(−, e) ⊗ F))x
(E⊗λ)x

))SSSSSSSSSSSSSS

αx

��

(E ⊗ F)x .

((E ⊗ C(−, e)) ⊗ F)x

(ρ⊗F)x

55kkkkkkkkkkkkkk

Let [u, u′, a, [v, v′, h, c, gu′→v·v′], fx→u·u′] be an element of (E ⊗ (C(−, e) ⊗ F))x. Then

[u, u′, a, [v, v′, h, c, gu′→v·v′], fx→u·u′]
αx

7→

[u · v, v′, [u, v, a, h, idu·v], c, α ◦ idu ·g ◦ f]
(ρ⊗F)x

7→
[u · v, v′, E(ρu ◦ idu ·h)(a), c, α ◦ idu ·g ◦ f]

and

[u, u′, a, [v, v′, h, c, g], f]
(E⊗λ)x

7→
[u, u′, a, F (λv′ ◦ (h · idv′) ◦ g)(c), f]

53

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

In order for the triangle to commute we need

[u · v, v′, ã = E(ρu ◦ idu ·h)(a), c, α ◦ idu ·g ◦ f] = [u, u′, a, c̃ = F (λv′ ◦ (h · idv′) ◦ g)(c), f]

which can be shown in two steps: With (idu, λv′ ◦ (h · idv′) ◦ g) : (u, u′) → (u, v′) we get

(u, u′, a, c̃, f) ' (u, v′, a, c, idu ·(λv′ ◦ (h · idv′) ◦ g) ◦ f),

and with (ρu ◦ idu ·h, idv′) : (u · v, v′) → (u, v′) we get

(u · v, v′, ã, c, α ◦ idu ·g ◦ f) ' (u, v′, a, c, idu ·(λv′ ◦ (h · idv′) ◦ g) ◦ f),

to see this, we use the coherence laws for the monoidal category C, more specifically that

idu ·λv′ = ρu · idv′ ◦α. (4.4)

We need to show that

idu ·(λv′ ◦ (h · idv′) ◦ g) ◦ f = (ρu ◦ idu ·h) · idv′ ◦α ◦ idu ·g ◦ f, i.e.,

(idu ·λv′ ◦ idu) · (h · idv′) = ρu · idv′ ◦(idu ·h) · idv′ ◦α
= (ρu · idv′ ◦α) ◦ idu ·(h · idv′) by naturality of α

= idu ·λv′ ◦ idu ·(h · idv′) by 4.4 above.

Similarly, the coherence law for α can be shown using the naturality and coherence law for α.

4.2.2 Symmetry

Proposition 4.2.6. Suppose the monoidal category (C, ·, e) is also symmetric with γ a,b :

a · b→ b · a, then the monoidal structure on SetC
op

is symmetric too.

Proof: We must show that there is an isomorphism

γE,F : E ⊗ F
∼=
−→ F ⊗E

natural in E,F . This follows from

E ⊗ F = λx.
∫ y,y′

Ey × Fy′ × C(x, y · y′)
∼= λx.

∫ y,y′
Fy′ ×Ey × C(x, y · y′) by “swap”

∼= λx.
∫ y,y′

Fy′ ×Ey × C(x, y′ · y) since (C, ·, e) is symmetric
∼= λx.

∫ y′,y
Fy′ ×Ey × C(x, y′ · y) by Fubini

= F ⊗E

all natural in E,F . The action of γ on [u, v, a, b, fx→u·v] is [v, u, b, a, γ ◦ f]. It follows that

E ⊗ F

γE,F %%KKKKKKKKK

id // E ⊗ F

F ⊗E

γF,E

99sssssssss

54

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

commute. To see that

E ⊗ C(−, e)
ρE //

γ
''PPPPPPPPPPPP

E

C(−, e) ⊗E

λE

::ttttttttttt

commute just calculate and then use the corresponding coherence law for γ, ρ, λ and the
naturality of γ. The last coherence law we need to show in order to confirm symmetry (see
Definition 4.1.2) can also be confirmed by a tedious calculation using the concrete definitions
of the isomorphisms α and γ.

4.2.3 Closed structure

Like the Cartesian product, the tensor product extends to a functor

−⊗− : Ĉ × Ĉ → Ĉ.

We are already familiar with the object part, and for natural transformations α : E → E ′

and β : F → F ′,
(α⊗ β)c : (E ⊗ F)c→ (E ′ ⊗ F ′)c

maps [x, y, a ∈ Ex, b ∈ Fy, f] to [x, y, αx(a), βy(b), f]. It is now a straight forward matter to
verify that ⊗ satisfies the functor laws.

For each functor F ∈ Ĉ the functor

−⊗ F : Ĉ → Ĉ

has a right adjoint
F ◦ − : Ĉ → Ĉ

given by the formula

(F ◦ T)(x) =

∫

y
Set(Fy, T (x · y)) (4.5)

= Ĉ(F (−), T (x · −)) (4.6)

where the latter equality follows from Naturality Formula 3.1. The morphism part is that of
a hom-functor with the obvious modifications. To see that there is an isomorphism

Ĉ(S ⊗ F, T) ∼= Ĉ(S, F ◦ T)

natural in S, T , consider the following:

Ĉ(S ⊗ F, T)

= Ĉ(
∫ y,y′

Sy × Fy′ × y(y · y′), T)
∼=

∫
y,y′ Ĉ(Sy × Fy′ × y(y · y′), T) by 3.6

∼=
∫
y,y′ Hom(Sy × Fy′, Ĉ(y(y · y′), T)) by currying

∼=
∫
y,y′ Hom(Sy × Fy′, T (y · y′)) by the Yoneda Lemma

∼= Nat(S × F, T (− · −)) by Naturality Formula 3.1
∼= Nat(λy.Sy, λy.Hom bC(F, T (y · −))) by currying

= Ĉ(S, F ◦ T).

We have shown:

55

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

Theorem 4.2.7. If (C, ·, e) is a small, (symmetric) monoidal category, then (Ĉ,⊗,ye,() is
a (symmetric) monoidal closed category.

And, since the presheaf category Ĉ is bi-Cartesian:

Corollary 4.2.8. If (C, ·, e) is a small, symmetric monoidal category, then (Ĉ,⊗,ye,() is
a bi-CDCC.

4.2.4 Properties of Day’s construction

In this section we present some observations that are useful for working with the tensor
product. Consider a small, monoidal closed category (C, ·, e,−−∗).

Proposition 4.2.9. The Yoneda functor y : C → SetC
op

preserves the monoidal closed struc-
ture given by Day’s construction.

Proof: We have I = ye by definition. To see that y(m ·n) = ym⊗yn consider the following
equations

ym⊗ yn = λx.
∫ y,y′

C(y,m) × C(y′, n) × C(x, y · y′)
∼= λx.

∫ y
C(y,m) ×

∫ y′
C(y′, n) × C(x, y · y′) by 3.2.17

∼= λx.
∫ y

C(y,m) × C(x, y · n) by 4.2.3
∼= λx.C(x,m · n) by 4.2.3
= y(m · n).

Preservation of the closed structure follows from

ym (yn = λx.Ĉ(ym,HomC(x · −, n))
∼= λx.HomC(x ·m,n) by the Yoneda Lemma
∼= λx.HomC(x,m ∗ n)
= y(m ∗ n)

With Day’s construction the Yoneda functor gives us a way of embedding a symmetric
monoidal closed category into a bi-CDCC.

Definition 4.2.10 (Topological monoid). Suppose (X, ·, e) is a (commutative) monoid,
and O(X) a (open cover) topology on X, such that the pointwise defined maps

⊗ : O(X) ×O(X) → O(X),

defined by U ⊗ V = {u · v | u ∈ U, v ∈ V }, and

I : (1) → O(X)

defined by I(∗) = {e} are open. We then have a preordered (commutative) monoid which we
call a topological monoid (O(X),⊗, {e}) where the order is inclusion.

As an example, consider a monoid (X, ·, e); the power set P(X) is a topological monoid,
since all maps are open.

One thing that should be noted about this definition is that we require the maps to be
defined pointwise using the composition in X. It is possible to define a monoid structure on
a topological space which is not pointwise (just take as monoid composition a set operation
like e.g. intersection), but the above definition gives us a host of cover preserving topologies.

56

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.2. DAY’S CONSTRUCTION

Definition 4.2.11 (cover preserving). Let (C, ∗, e) be a monoidal category with a basis for
a Grothendieck topology K, then ∗ is called cover preserving if, for all covers
{fi : Ci → C} ∈ K(C) and {gj : Dj → D} ∈ K(D), we have

{fi ∗ gj : Ci ∗Dj → C ∗D} ∈ K(C ∗D).

If we have a topology J instead, and sieves S1 ∈ J(C), S2 ∈ J(D), then J is cover
preserving if (S1 ∗ S2) ∈ J(C ∗D), where (S1 ∗ S2) is the sieve generated by S1 ∗ S2.

In [Yan02] and [Pym02] cover preserving is called the continuity property.

Lemma 4.2.12. For a topological monoid (O(X), ∗, {e}), ∗ is cover preserving.

Proof: Let
⋃
i∈I Ui = U and

⋃
j∈J Vj = V .

⋃

i∈I

⋃

j∈J

(Ui ∗ Vj) =
⋃

i∈I

Ui ∗
⋃

j∈J

Vj = U ∗ V.

Proposition 4.2.13. Day’s tensor product does not preserve monos nor pullbacks.

Proof: It is enough to show that monos are not preserved, since preservation of pullbacks
implies preservation of monos. Consider the monoid of natural numbers (N,+, 0), it induces
a topological monoid on the power set (P(N),+, {0}) ordered by inclusion. Let B : P(N)op →
Set be the constant presheaf defined by B(S) = {a, b}, were a 6= b. And let A be the
subfunctor of B defined by

A(S) =

{
{a, b} if S = ∅ or S = {n}, n ∈ N
{a} otherwise.

The inclusion ι : A ↪→ B is a mono in P̂(N), but ι⊗ idB : A⊗B → B ⊗B is not:
We have x := [b, b, {2} ⊆ {1} + {0, 1}] = [b, b, {2} ⊆ {2} + {0, 1}] =: y in (B ⊗ B)({2})

because

[b, b, {2} ⊆ {1, 2}+ {0, 1}]

[b, b, {2} ⊆ {1}+

44jjjjjjjjjjjjjjjjjj
{0, 1}]

44iiiiiiiiiiiiiiiiiiii
[b, b, {2} ⊆ {2}+

jjTTTTTTTTTTTTTTTTTT

{0, 1}]

iiTTTTTTTTTTTTTTTTTT

and B({1} ⊆ {1, 2})(b) = b and B({2} ⊆ {1, 2})(b) = b but b /∈ A({1, 2}). To see that
ι⊗ idB is not mono we must show that x 6= y in (A⊗B)({2}).

Suppose x = y in (A⊗B)({2}) then there must be some finite string of atomic equivalences
in (A⊗B)({2}) that has the form

x1 xn

x

>>}}}}}}}}
x2

aaBBBBBBBB
. xn−1

;;xxxxxxxx
y

``AAAAAAAA

(4.7)

The element x1 must have either the form [b, b, {2} ⊆ {1}+T1] where {0, 1} ⊆ T1 or it is an
element of the form [b, b, {2} ⊆ S1 + T1] where {1} ⊂ S1 and b ∈ A(S1) and {0, 1} ⊆ T1. The

57

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

latter is not possible since A(S1) = {a} when S1 is not a singleton or the empty set. x2 must
then be either [b, b, {2} ⊆ {1} + T2] where T2 ⊆ T1 or [b, b, {2} ⊆ S2 + T2] where T2 ⊆ T1 and
S2 ⊂ {1}. The latter is not possible since S2 ⊂ {1} implies S2 = ∅ and ∅+T2 = ∅ + {2}, so we
must have x2 = [b, b, {2} ⊆ {1}+T2]. It follows that we must have xn = [b, b, {2} ⊆ {1}+Tn]
for some Tn ⊇ {0, 1}, but there is no map between {1} and {2}, which means that there can
not be an atomic equivalence between xn and y, so we conclude that x 6= y.

Remark 4.2.14. Let (C, ·, e) be a small monoidal category. Day’s tensor product can also be
constructed as a Kan extension. The monoid composition

σ : C × C → C

defined by σ(a, b) = a · b defines a functor from Ĉ to Ĉ × C by precomposition. By a general

result this functor has a left adjoint Σσ : Ĉ × C → Ĉ (the left Kan extension) and a right
adjoint (the right Kan extension). This left adjoint can be used to define Day’s tensor as
follows: Let π, π′ : Cop × Cop → Cop be the projections, and A,B : Cop → Set, then the
compositions Aπ,Bπ′ are functors from (C × C)op to Set, and the tensor of A and B is then

A⊗B = ΣσAπ ×Bπ′,

and Day’s pairing is the unit of this adjunction:

η : Aπ ×Bπ′ → (ΣσAπ ×Bπ′)σ = (A⊗B)(− · −).

4.3 Day’s construction on sheaves

As the category of sheaves inherits a lot of structure from the presheaf category, it is natural
to ask whether Day’s construction gives rise to a monoidal closed structure on the category
of sheaves. It turns out that we always have a monoidal tensor product while to get a closed
structure (a right adjoint to the tensor) we need a stronger requirement. Demanding the
tensor product of the source category to be both pullback preserving and cover preserving
turns out to be adequate to ensure existence of the closed structure.

There are two (obvious) ways to try to define a tensor product ⊗Sh on Sh(C, J) using the
tensor product ⊗ that we already have for Ĉ. For sheaves E,F we can try

1. E ⊗Sh F := iE ⊗ iF , or

2. E ⊗Sh F := a(iE ⊗ iF),

For the former to be well-defined we must show that iE⊗ iF is a sheaf. For the latter to work
we must show that a(iE ⊗ iF) actually defines a monoidal tensor product. Note that if the
former is a sheaf then the two definitions are equivalent. We will show (Proposition 4.3.5)
that if E ⊗Sh F := a(iE ⊗ iF) has a right adjoint then it must be the one we have by Day’s
construction in the presheaf category. This means that in order to have a closed structure
(whether we use the first or the second definition for ⊗Sh) we need iE (iF to be a sheaf
whenever E and F are.

Lemma 4.3.1. We have, for P,Q ∈ Ĉ, an isomorphism

Θ1 : a(iaP ⊗Q) ∼= a(P ⊗Q)

58

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

natural in P and Q. The inverse is defined by Θ−1
1 = a(ηP ⊗ Q), where η is the unit of

the adjunction a ` i. Moreover, if the presheaf P has the form iG for some sheaf G, then
Θ1 = a(iεG ⊗Q), where ε is the counit.

Proof: By definition of Day’s tensor,

a(iaP ⊗Q) = a(
∫ n,n′

bC iaP (n) ×Q(n′) × y(n · n′))

∼=
∫ n,n′

Sh aiaP (n) × aQ(n′) × ay(n · n′) a preserves colimits and
commutes with finite limits

∼=
∫ n,n′

Sh aP (n) × aQ(n′) × ay(n · n′) ai ∼= idSh

∼= a(
∫ n,n′

bC P (n) ×Q(n′) × y(n · n′))

= a(P ⊗Q)

all natural in P,Q. Here the subscripts Sh, Ĉ indicates in which category the coends are
calculated.

Consider the following naturality square

a(
∫ n,n′

bC iaP (n) ×Q(n′) × y(n · n′)) oo ∼ //

Θ1

��

∫ n,n′

Sh aiaP (n) × aQ(n′) × ay(n · n′)

R n,n′

Sh (εaP)n×aQ(n′)×ay(n·n′)
��

a(
∫ n,n′

bC P (n) ×Q(n′) × y(n · n′))

a(ηP ⊗Q)

OO

oo ∼ // ∫ n,n′

Sh aP (n) × aQ(n′) × ay(n · n′).

R n,n′

Sh a(ηP)n×aQ(n′)×ay(n·n′)

OO

By general properties for adjunctions we have εaP ◦ a(ηP) = idaP , which implies

(

∫ n,n′

Sh
(εaP)n × aQ(n′) × ay(n · n′)) ◦ (

∫ n,n′

Sh
a(ηP)n × aQ(n′) × ay(n · n′)) = id

using the fact that
∫
Sh is functorial. This shows that Θ−1

1 = a(η ⊗Q).
To see that Θ1 = a(iεG ⊗Q) for presheaves of the form iG, where G is a sheaf, just use

the identity ηiG ◦ iεG = id.

Similarly we have
Θ2 : a(P ⊗ iaQ) → a(P ⊗Q)

with Θ−1
2 = a(P ⊗ η).

Theorem 4.3.2. Let Sh(C, J) be a category of sheaves over a Grothendieck topology, and
E,F ∈ Sh(C, J). Define

E ⊗Sh F := a(iE ⊗ iF),

then (⊗Sh,aye) is a monoidal tensor product on the category of sheaves.

Proof: Using the definition of ⊗Sh and Lemma 4.3.1 we calculate

E ⊗Sh aye = a(iE ⊗ i(aye)) ∼= a(iE ⊗ ye) ∼= a(iE) ∼= E

and

(E ⊗Sh F) ⊗Sh G = a(ia(iE ⊗ iF) ⊗ iG)
∼= a((iE ⊗ iF) ⊗ iG) by Lemma 4.3.1
∼= a(iE ⊗ (iF ⊗ iG)) since ⊗ is a monoidal tensor
∼= a(iE ⊗ ia(iF ⊗ iG)) by Lemma 4.3.1
= E ⊗Sh (F ⊗Sh G)

59

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

For all sheaves G and presheaves P , by Lemma 4.3.1 there exist isomorphisms (omitting the
subscripts)

Θ1 : a(ia(P) ⊗ iG) ∼= a(P ⊗ iG)

and
Θ2 : a(iG⊗ ia(P)) ∼= a(iG ⊗ P)

natural in P,G. We use these to define the natural isomorphisms λSh, ρSh, αSh as follows.

a(iay(e) ⊗ iG)
λSh

//

Θ1

��

G a(iG⊗ iay(e))
ρSh

//

Θ2

��

G

a(y(e) ⊗ iG)
a(λ)

// aiG,

ε

OO

a(iG⊗ y(e))
a(ρ)

// aiG,

ε

OO

a(iE ⊗ ia(iF ⊗ iG))
αSh

//

Θ2

��

a(ia(iE ⊗ iF) ⊗ iG)

a(iE ⊗ (iF ⊗ iG))
a(α)

// a((iE ⊗ iF) ⊗ iG),

a(η⊗iG)

OO

where ε is the counit of the adjunction a a i, ε is an isomorphism because i is full and faithful.
The coherence laws can be verified by taking the corresponding coherence laws for Day’s
construction on presheaves and using the associated sheaf functor a and the isomorphisms
Θi. Let us show that id⊗ShλSh = αSh ◦ ρSh ⊗Sh id.

We must show that the following gigantic diagram

a(iE ⊗ ia(iay(e) ⊗ iG)) E⊗ShλSh

��

E⊗ShΘ1 (1)
��

αSh (5)

((

a(iE ⊗ ia(y(e) ⊗ iG))
E⊗Sh

a(λ)//

Θ2 (2)
��

a(iE ⊗ ia(iG))

E⊗Shε

((QQQQQQQQQQQQ

a(iE ⊗ (y(e) ⊗ iG))
a(iE⊗λ) //

a(α) (3)
��

a(iE ⊗ iG)

a((iE ⊗ y(e)) ⊗ iG)

a(ρ⊗iG)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Θ−1
1

(4)
��

a(ia(iE ⊗ y(e)) ⊗ iG)

Θ−1
2 ⊗ShG

��
a(ia(iE ⊗ iay(e)) ⊗ iG)

ρSh⊗ShG

88qqq

commutes: (1) commutes by the definition of λSh. (2) commutes by naturality of Θ2 and
because E⊗Shε = Θ2. (3) commutes by the corresponding coherence law for ⊗. (4) commutes
by arguments similar to those for (1) and (2). To see why (5) commutes, we first draw a

60

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

diagram

a(iE ⊗ ia(y(e) ⊗ iG))

Θ2

��

a(ia(iE ⊗ y(e)) ⊗ iG)

Θ−1
2 ⊗ShG

uu

a(iE ⊗ (y(e) ⊗ iG))
a(α) //

a(iE⊗(η⊗iG))
��

a((iE ⊗ y(e)) ⊗ iG)

a((iE⊗η)⊗iG)
��

Θ−1
1

OO

a(iE ⊗ (iay(e) ⊗ iG))
a(α) //

Θ−1
2

��

a((iE ⊗ iay(e)) ⊗ iG)

a(η⊗iG)
��

a(iE ⊗ ia(iay(e) ⊗ iG))
αSh

//

E⊗ShΘ1

55

a(ia(iE ⊗ iay(e)) ⊗ iG).

The square commute by naturality of α and by definition of αSh. Then use naturality of Θ−1
2

to get
Θ−1

2 ◦ a(iE ⊗ (η ⊗ iG)) = a(iE ⊗ ia(η ⊗ iG)) ◦ Θ−1
2 ,

where a(iE ⊗ ia(η ⊗ iG)) = E ⊗Sh a(η ⊗ iG) is the inverse of E ⊗Sh Θ1. To see that
a(ia(iE ⊗ η) ⊗ iG) ◦ Θ−1

1 = Θ−1
1 ◦ a((iE ⊗ η) ⊗ iG) use naturality of Θ−1

1 and the identity
Θ−1

2 ⊗Sh G = a(ia(iE ⊗ η) ⊗ iG).
The following conjecture contradicts Lemma 5.2 of [Pym02].

Conjecture 4.3.3. Day’s tensor does not in general preserve sheaves, not even for a category
of sheaves over a topological monoid.

To see why this is probably true, consider a topological monoid(O(X), ·, e) and sheaves
F,G. We have

(F ⊗G)(W) =

∫ U,V

FU ×GV ×O(X)(W,U · V).

Suppose we have a cover of W =
⋃
iWi and let {xi ∈ (F ⊗ G)(Wi)} be a matching family.

The xi’s are equivalence classes of the form xi = [Ui, Vi, ai ∈ FUi, bi ∈ GVi,Wi ⊆ Ui · Vi], so
that

xi �Wi∩Wj
= xj �Wi∩Wj

means that

[Ui, Vi, ai, bi,Wi ∩Wj ⊆ Ui · Vi] = [Uj , Vj , aj , bj ,Wi ∩Wj ⊆ Ui · Vi].

With the equivalence described in 4.7. We have W =
⋃
iWi ⊆

⋃
i Ui ·Vi =

⋃
i Ui ·

⋃
i Vi = U ·V ,

and we want to conclude that there is a unique element x ∈ (F ⊗G)(W) such that x �Wi
= xi

for all i, i.e., an element [U, V, a, b,W ⊆ U · V] such that

[U, V, a, b,Wi ⊆ U · V] = [Ui, Vi, ai, bi,Wi ⊆ Ui · Vi].

If we knew that for some a ∈ FU, b ∈ GV , F (Ui ⊆ U)(a) = ai and G(Vi ⊆ V)(b) = bi for all
i, then the above would hold. This condition corresponds to requiring that the elements {ai}
which are part of the representatives {xi} and {bi} are matching families for F,G. Then we
could use that F,G are sheaves to get a, b. There is, however, no apparent way of knowing
that ai �Ui∩Uj

= aj �Ui∩Uj
, on the other hand it is quite difficult to find a counter example due

to the complex nature of the equivalence relation on (F ⊗G)(W).

61

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

Proposition 4.3.4. For the topology of the pointer model, Day’s tensor restricts to sheaves.

Proof: Let (M, ∗, e) be a preordered commutative monoid. The topology of the pointer
model is defined by:

J(⊥) = {{⊥}, ∅},

J(m) = {{m}},m ∈ M,m 6= ⊥.

Suppose E,F : Mop → Set are sheaves, we must show that iE ⊗ iF is a sheaf, where ⊗ is
Day’s tensor.

Suppose m 6= ⊥ then the only cover of m is the the sieve generated by {m}, i.e., the
maximal sieve on m. Since the sieve contains the identity idm, a matching family comes with
a unique amalgamation, namely xm.

A cover of ⊥ is either {⊥} or ∅. In the case {⊥} the above argument applies, in the case
∅: a matching family for ∅ must be ∅. Now E and F are both sheaves and ∅ is a matching
for those as well so we must have E(⊥) = F (⊥) = {∗} to ensure that there is a unique
amalgamation for the empty family. To see that E ⊗ F (⊥) = {∗} as well, note that

[∗, ∗,⊥ ≤ ⊥ ∗ ⊥] = [a, b,⊥ ≤ U ∗ V]

for any element [a, b,⊥ ≤ U ∗ V] of E ⊗ F (⊥). The two equivalence classes are equal since
we always have arrows 0U : ⊥ → U, 0V : ⊥ → V and E(0U)(a) = ∗, F (0V)(b) = ∗ for any
a ∈ E(U) and b ∈ F (V).

Proposition 4.3.5. If the tensor product −⊗Sh F = a(i(−) ⊗ iF) has a right adjoint in the
category of sheaves, then it must be iF (i(−).

Proof: Let P ∈ Ĉ and F,G ∈ Sh(C, J). Suppose − ⊗Sh F has a right adjoint, F ∗ − say.
We have the following string of natural isomorphisms

Ĉ(P, i(F ∗G)) ∼= Sh(aP, F ∗G)
∼= Sh(aP ⊗Sh F,G)
∼= Sh(a(iaP ⊗ iF), G)
∼= Sh(a(P ⊗ iF), G) by Lemma 4.3.1
∼= Ĉ(P ⊗ iF, iG)
∼= Ĉ(P, iF (iG)

By full and faithfulness of the Yoneda functor it follows that i(F ∗ G) ∼= iF (iG in the
presheaf category Ĉ.

Corollary 4.3.6. If iF (iG is a sheaf for F,G sheaves, then there is a monoidal closed
structure on the category of sheaves.

A counter example. The following proposition gives a counter example to Lemma 5.3 of
[Pym02].

Proposition 4.3.7. Let O(X) be a topology on a set of points X with a monoidal ten-

sor product ∗. For a presheaf P ∈ Ô(X) and sheaf F ∈ Sh(X), the presheaf P (F =
λU.Hom(P, F (U ∗ −)) is not in general a sheaf.

62

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

Proof: Note that
λU.Hom

Ô(X)
(yC,F (U ∗ −)) ∼= λU.F (U ∗ C)

is an isomorphism natural in U ; The isomorphism holds pointwise for each U by the Yoneda
Lemma, and naturality in U is verified straight forward. This implies that yC (F =
λU.Hom

Ô(X)
(yC,F (U ∗ −)) is a sheaf iff F (− ∗ C) : O(X)op → Set is a sheaf.

(N,+, 0) is a commutative monoid, so (P(N),+, {0}) is a topological monoid. Let F :
P(N)op → Set be the sheaf defined by F (V) = Fct(V,N), that is, all functions from the
subset V to the natural numbers N. We now show that for a fixed U ∈ P(N) the presheaf
G := F (− ∗ U) is not a sheaf. For any sets V1, V2, U we have V1 ∩ V2 ⊆ V1 and V1 ∩ V2 ⊆ V2,
so we always have

(V1 ∩ V2) ∗ U ⊆ V1 ∗ U ∩ V2 ∗ U

but equality fails.
Let V = {1, 2, 3}, V1 = {1, 2}, V2 = {2, 3}, then V = V1 ∪V2. Let U = {2, 4}. We have the

following identities

1. V1 ∩ V2 ∗ U = {2} ∗ {2, 4} = {4, 6} and

2. V1 ∗ U ∩ V2 ∗ U = {3, 4, 5, 6} ∩ {4, 5, 6, 7} = {4, 5, 6}.

Let s1 ∈ G(V1) = Fct(V1 ∗ U,N) be the partial function defined by

s1(n) =

0 if n ∈ {3, 4, 6}
1 if n = 5
undefined otherwise

Let s2 ∈ G(V2) be the constant function s2(n) = 0. We have s1 �V1∩V2= G(V1∩V2 ⊆ V1)(s1) =
F (V1 ∩ V2 ∗ U ⊆ V1 ∗ U)(s1), which is the restriction of s1 to the set V1 ∩ V2 ∗ U , likewise,
s2 �V1∩V2 is the restriction of s2 to V1 ∩ V2 ∗ U , and since s1 and s2 agree on this set we have
a matching family for the cover V1 ∪ V2. However, there is no function s : V ∗ U → N such
that s �V1= s1 and s �V2= s2 because 5 ∈ V1 ∗ U ∩ V2 ∗ U and s1(5) 6= s2(5). So G is not a
sheaf.

This means that there is not in general a monoidal closed structure on the category of
sheaves, using Day’s construction.

Lemma 4.3.8. For a monoidal category (C, ·, e), J a topology, F a sheaf, P a presheaf. If
for each C ∈ C, the presheaf F (− · C) is a sheaf then P (F is a sheaf.

Proof: By definition, P (F = λX.Hom(P, F (X · −)). If P ∼= yC for some C ∈ Ĉ, we have

λX.Hom(yC,F (X · −)) ∼= λX.F (X · C) (4.8)

natural in X. Every presheaf is a colimit of representables so we have P = colim bCyCi, which
gives

λX.Hom(P, F (X · −))
∼= λX.Hom(colimiyCi, F (X · −))
∼= limi λX.Hom(yCi, F (X · −)) The Hom-functor reverses colimits
∼= limi λX.F (X · Ci) by 4.8 above

The category of sheaves is closed under limits so if λX.F (X · Ci) is a sheaf for each Ci, we
have by the above calculations that λX.Ĉ(P, F (X · −)) = P (F is a sheaf.

63

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.3. DAY’S CONSTRUCTION ON SHEAVES

Lemma 4.3.9. For a monoidal category (C, ·, e) with pullbacks, if for an element H of C,
− · H preserves pullbacks, and if · is also cover preserving w.r.t. the topology J , then for a
sheaf F over (C, J), the presheaf F (− ·H) is a sheaf.

Proof: That − ·H preserves pullbacks means that for each pair of arrows fi : Ci → C, fj :
Cj → C in C, the diagram

Ci ∧ Cj ·H
πi·H //

πj ·H

��

Ci ·H

fi·H

��
Cj ·H

fj ·H
// C ·H

(4.9)

is a pullback. To see that F (− ·H) is a sheaf, let {fi : Ci → C}I be a cover of C ∈ C, and
xfi

∈ F (Ci ·H) a matching family for this cover. Consider the pullback diagram

Ci ∧Cj
πi //

πj

��

Ci

fi

��
Cj

fj

// C.

Since fiπi = fjπj we have
xfiπi

= xfjπj

which reads
F (πi ·H)(xfi

) = F (πj ·H)(xfj
). (4.10)

Since we have assumed that the monoid composition · is cover preserving, the family S =
{fi ·H : Ci ·H → C ·H}I is a cover of C ·H (recall that fi ·H means fi · idH). We claim that

yfi·H := xfi
∈ F (Ci ·H)

constitutes a matching family of F for the cover S. To see this, first recall that by Remark
2.6.11 it is enough to show that

yfi·H �Ci·H∧Cj ·H= yfj ·H �Ci·H∧Cj ·H

for all pairs fi ·H, fj ·H in S. We now show that this is indeed the case. By diagram 4.9 we
get yfi·H �Ci·H∧Cj ·H= yfi·H �πi·H and yfj ·H �Ci·H∧Cj ·H= yfj ·H �πj ·H , so the identity that must
be shown is

yfi·H �πi·H= yfj ·H �πj ·H

which, when unwinded, is exactly what is stated in equation 4.10. Since we now have a
matching family for F and F is a sheaf there is a unique amalgamation y ∈ F (C ·H) which
obviously is an amalgamation for the family {xfi

}I as well.

Corollary 4.3.10. For a monoidal category (C, ·, e) with pullbacks, if · preserves pullbacks
and covers, the tensor product −⊗Sh F : Sh(C, J) → Sh(C, J) has right adjoint iF (−.

64

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.4. SUBOBJECTS IN DCC’S

Example 4.3.11. 2 Consider the category I of finite sets and injective functions. For the
opposite category Iop with the atomic topology, a presheaf P : I → Set is a sheaf iff it
preserves pullbacks (Prop 2.6.15). The disjoint union + of finite sets induces a monoidal
functor on I as well as Iop and it preserves pullbacks in I. This implies that for each C ∈ I,
P (C + −) : I → Set is a sheaf. By Lemma 4.3.8 this means that Day’s tensor induces a
monoidal closed structure on the category of atomic sheaves over I op.

These kinds of sheaves (plus an additional constraint) are used to interpret types of SCI+
in [O’H03].

Since I has pullbacks, the atomic topology is well-defined for I also. Moreover, + is
cover preserving: take a nonempty sieve S on C and a nonempty sieve T on D then the sieve
generated by S+T is a nonempty sieve on C+D. Using the corollary 4.3.10 we get that Day’s
tensor induces a monoidal closed structure on the category of atomic sheaves (P : I op → Set)
over I.

4.4 Subobjects in DCC’s

The algebraic counterpart of a bi-CDCC is called a BI-algebra.

Definition 4.4.1 (BI algebra). A BI algebra B is a Heyting algebra with an additional
residuated commutative monoid structure (∗, e,−−∗), such that ∗ is monotone with respect to
order on B. That is, (B, ∗, e) is a commutative monoid and (monotonicity)

a ≤ a′ and b ≤ b′ implies a ∗ a′ ≤ b ∗ b′

and (residuated)
a ∗ b ≤ c iff a ≤ b −−∗ c

Definition 4.4.2 (Complete BI algebra). A Complete BI algebra (cBIa) is a BI algebra
which is complete as a Heyting algebra.

We have seen that in a topos T the partial order Sub(A), for A ∈ Obj(T) is a Heyting
algebra. If the topos is also a DCC, we have the following:

Proposition 4.4.3. In a topos T with a symmetric monoidal closed structure (⊗, I,(), the
partial order Sub(1) on the terminal object is a BI algebra.3

Proof: We already know that in a topos, Sub(1) is a Heyting algebra. Let U � 1 and V � 1
be subobjects of 1, and define

• U ∗ V = Im(U ⊗ V), which is the image factorization

U ⊗ V

'' ''PPPPPPPPPPPP

u⊗v // 1 ⊗ 1
11⊗1 // 1

Im(U ⊗ V)
44

44iiiiiiiiiiiiiiiiiiii

2I am grateful to H. Yang for pointing out this example.
3In fact the proposition holds if T a bi-CDCC which is also regular, i.e., has epi-mono factorizations.

65

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.4. SUBOBJECTS IN DCC’S

• e = Im(I),

I
1I //

����

1

e
??

??��������

• U −−∗ V = (U (V), as in

(U (V) //U(1V// (U (1) ∼= 1.

(U −−∗ V) is well-defined since U (− : T → T is right adjoint to the tensor so it preserves

limits. A mono is a limit, so (U (V) //U(1V // (U (1) is mono. Now 1 is also a limit

so U (1 must be the terminal object as well. Commutativity: U ∗ V = Im(U ⊗ V) =
Im(V ⊗U) = V ∗U . Associativity: Since ⊗ is associative, we have U⊗(V ⊗W) = (U⊗V)⊗W .
Consider the following commutative diagram

U ⊗ (V ⊗W)

U⊗e1
����

= (U ⊗ V) ⊗W

e2⊗W
����

U ⊗ Im(V ⊗W)

����

(Im(U ⊗ V) ⊗W)

����
Im(U ⊗ Im(V ⊗W))

((

((QQQQQQQQQQQQQQ
Im(Im(U ⊗ V) ⊗W)

vv

vvnnnnnnnnnnnnnn

1

Where e1, e2 are the epis corresponding to the epi-mono factorization of V ⊗ W → 1 and
U ⊗ V → 1, and ⊗ preserves epis since it has a right adjoint. The diagram gives two epi-
mono factorizations of the arrow U ⊗ V ⊗ W → 1, by uniqueness of such factorizations,
Im(U ⊗ Im(V ⊗W)) = Im(Im(U ⊗ V) ⊗W). Unit: We must show that U ∗ e = U , by
definition of e and ∗ this means showing Im(U ⊗ Im(I)) ∼= U .

U ⊗ I

U⊗s
����

= U

idU

����

U ⊗ Im(I)

����
Im(U ⊗ Im(I))

&&

&&MMMMMMMMMMMM
U��

����
��

��
��

1,

where s : I � Im(I) is the epi part of the image factorization of 1I : I → 1. By uniqueness of
image factorizations Im(U ⊗ Im(I)) ∼= U . Monotonicity: Assume that U ≤ V and U ′ ≤ V ′

for subobjects U,U ′, V, V ′ of 1. In particular this means that there is an arrow U → V and

66

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.4. SUBOBJECTS IN DCC’S

an arrow U ′ → V ′, ⊗ is a covariant bi-functor, so we get an arrow U ⊗ U ′ → V ⊗ V ′. We
then have a commuting diagram

U ⊗ U ′ //

����

V ⊗ V ′

����
Im(U ⊗ U ′)

��

��

u // Im(V ⊗ V ′)
vv

vvmmmmmmmmmmmmmm

1

The outer square commutes because there is only one arrow from U ⊗ U ′ to 1, and u exists,
making the diagram commute, by the universal property of image factorization (see Propo-
sition 2.2.1). The diagram shows that in Sub(1) we have Im(U ⊗ U ′) ≤ Im(V ⊗ V ′), i.e.,
U ∗ U ′ ≤ V ∗ V ′. Residuated: Suppose U ∗ V ≤W , that is

U ⊗ V

���� ##
U ∗ V //

��

��

W{{

{{vvv
vv

vv
vv

v

1

so there is an arrow U ⊗ V → W ; by the adjunction in T this corresponds to an arrow
U → (V (W), which is precisely what we need to have U ≤ V −−∗ W . On the other hand,
assuming U ≤ V −−∗W , we have an arrow U → (V (W) which by adjunction gives as arrow
U ⊗ V →W (this is the dotted arrow in the diagram above). Using Proposition 2.2.1 again,
we get an arrow U ∗ V → W as needed.

Example 4.4.4. As an example consider the presheaf category Ĉ where (C, ·, e) is a small
symmetric monoidal category. Ĉ is a topos with a symmetric monoidal closed structure, so by
the proposition we get a BI algebra on Sub(1). Recall that there is a one-one correspondence
between subfunctors of 1 and sieves on C (it is only necessary to consider the domains of the
arrows in the sieve, see Proposition 2.5.17), for a presheaf P ∈ Sub(1) it is given by

P = {C | ∗ ∈ PC}

and from a sieve I we get a subfunctor of 1 by

Î(C) =

{
{∗} if C ∈ I
Ø otherwise

From the proposition above we know what the definition of P ∗Q is as a subfunctor, we now
calculate the corresponding operation on sieves. Let P,Q be subfunctors of 1, then

P ⊗Q(C) =
∫ Y,Y ′

PY ×QY ′ × C(C, Y · Y ′)
=

⋃
Y,Y ′(Y, Y ′, ∗)/ ∼ such that ∗ ∈ PY, ∗ ∈ QY ′, C ≤ Y · Y ′.

Image factorization in the presheaf category is calculated in Set, therefore

P ∗Q =

{
{∗} if there exists Y, Y ′ such that C ≤ Y · Y ′, ∗ ∈ PY, ∗ ∈ QY ′,
Ø otherwise.

67

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.4. SUBOBJECTS IN DCC’S

This implies that for sieves I, J ,

I ∗ J = Î ∗ Ĵ
= {A | there exists Y ∈ J, Y ′ ∈ I.A ≤ Y · Y ′}
= ↓{Y · Y ′ | Y ∈ I, Y ′ ∈ J}.

We now show that
I −−∗ J = {A | for all C ∈ I,A · C ∈ J}.

By definition we have I −−∗ J := Î (Ĵ , where (Î (Ĵ)(A) = Ĉ(Î , Ĵ(A · −)) and we want to
determine whether this set is empty or not. If α ∈ Ĉ(Î , Ĵ(A ·−)) we have a commuting square

Î(C)
αC //

��

Ĵ(A · C)

��
Î(B) αB

// Ĵ(A ·B)

for each B ≤ C in C (i.e., there exists an arrow B → C). Clearly such an α exists if and
only if Î(C) = {∗} implies Ĵ(A · C) = {∗} for all C.

The unit in Ĉ is y(e), which corresponds to the sieve ↓(e).

Remark 4.4.5. Let (M, ·, e) be a preordered commutative monoid. It does not seem to be
the case that this monoidal structure induces a monoidal structure on Sub(A) for all objects

A ∈ M̂.
Because of the isomorphism Sub(A) ∼= M̂(A,Ω), it is equivalent to say that Ω is not an

internal monoid. Ω is an internal monoid iff there exists an arrow ∗ : Ω×Ω → Ω and an arrow
e : 1 → Ω which render commutative the diagrams which express associative, commutative
and unit laws, for example the composite

Ω ∼= Ω × 1
id×e // Ω × Ω

∗ // Ω

must be the identity on Ω.
Such arrows do in fact exist since both (∨,⊥) and (∧,>) satisfies the monoid laws, but

these are not induced by “·”.
Ω(m) is the set of m-sieves. So the natural way to define a monoid would be pointwise

using · and then making this an m-sieve, i.e., for S1, S2 ∈ Ω(m),

S1 ∗ S2 =↓(S1 · S2)∩ ↓m = {x ≤ m | there exists s1 ∈ S1, s2 ∈ S2. x ≤ s1 · s2}.

But this is not necessarily a natural transformation from Ω × Ω to Ω. Showing naturality
amounts to showing that for S1, S2 ∈ Ω(m), and n ≤ m

(↓(S1∩ ↓n) · (S2∩ ↓n))∩ ↓n =↓(S1 · S2)∩ ↓n.

Suppose x � n, y � n and x ∈ S1, y ∈ S2 and x · y ≤ n then x · y is in the RHS but not in the
LHS.

Another way to see that · does not (in a natural way) induce a monoidal structure on
Sub(A), for any object A ∈ Ĉ, is by the following argument: Given M � A,N � A, we can

68

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.4. SUBOBJECTS IN DCC’S

construct a subobject M ∗N � A⊗A by using Day’s tensor ⊗ and image factorization, but
there is no map

A→ A⊗A or A⊗A→ A,

which means that there is no evident way to construct a subobject of A given a subobject of
A⊗A.

Example 4.4.6. For any discretely ordered monoid (M, ∗), the powerset P(M) is a complete
(Boolean) BI algebra. This can be shown in several ways:

• P(M) corresponds to sieves on M because the order is discrete so any subset of M
is downwards closed. Now, sieves on M are in bijective correspondence with Sub cM (1),
which we have shown (Proposition 4.4.3, and Corollary 2.3.8) is a (complete) BI algebra.
It is Boolean since P(M) is so.

• P(M) is a topological monoid. A topological space is in particular a complete Heyting
algebra (and it is Boolean), together with the fact that a topological monoid is cover
preserving, a right adjoint to ∗ can be defined by

U −−∗ V :=
⋃

{W ⊆M | (W ∗ U) ⊆ V },

and this make P(M) a cBIa.

Recall that a subsheaf of 1 in Sh(C, J) is the same as an ideal on C, where I is an ideal iff

1. If C ∈ I and there exists an arrow D → C then D ∈ I.

2. For any object C of C and for any cover S ∈ J(C), if for every f : C ′ → C ∈ S,
C ′ ∈ I then C ∈ I.

The monoidal structure on Sh(C, J) (which is there by 4.3.2) induces a monoidal structure
on SubSh(C,J)(1) by

A ∗B = Im(A⊗Sh B) = Im(a(iA⊗ iB)) ∼= a(Im(iA⊗ iB))

where A � 1, B � 1 are subsheaves of 1. If we translate to ideals this becomes

J ∗K = a ↓{j · k | j ∈ J, k ∈ K}.

The unit is defined by
I = Im(ay(e)) ∼= a(Im(y(e))) ∼= ay(e).

In other words

c ∈ J ∗K iff there exists a cover S ∈ J(c) (4.11)

such that for all fi : ci → c ∈ S, ci ∈↓{j ∗ k | j ∈ J, k ∈ K}.

and

c ∈ I iff (ay(e))(c) 6= ∅ (4.12)

iff there exists a cover S ∈ J(c) such that for all fi : ci → c ∈ S,y(e)(ci) 6= ∅.

69

CHAPTER 4. DOUBLY CLOSED CATEGORIES 4.4. SUBOBJECTS IN DCC’S

Lemma 4.4.7. Let · be a cover preserving, symmetric monoidal tensor product on C. If F
is a subsheaf of 1 and P a subpresheaf of 1 then P (F is a subsheaf of 1.

Proof: Let P,F be the ideals (sieves) corresponding to P, F . If P (F is an ideal, then
P (F is a subsheaf of 1.

P (F = P −−∗ F = {a | p ∈ P ⇒ p · a ∈ F}

We have already seen that this is a sieve, to see that it is an ideal, suppose {fi : di → d}i∈I ∈
J(d) and di ∈ P −−∗ F for all i. We must show that d ∈ P −−∗ F. Let p ∈ P then p · di ∈ F
for all i. By the cover preserving property, {p · di → p · d}i∈I ∈ J(p · d), so, F being an ideal,
p · d ∈ F.

Proposition 4.4.8. Whenever (C, ·, e) is a symmetric monoidal category and · is cover
preserving for the topology J , SubSh(C,J)(1) is a BI algebra. Moreover, for ideals J,K in
SubSh(C,J)(1), the BI structure is given by

J ∗K = a ↓{j · k | j ∈ J, k ∈ K},
J −−∗ K = {a | j ∈ J ⇒ j · a ∈ K},

and the unit is given by ay(e) ∼= a(↓(e)).

Proof: We know that (by Proposition 4.4.3) for a subpresheaf Q � 1, we have the adjunction

Im(−⊗Q) a Q (−

in SubbC(1), so since a ` i, for a subsheaf F � 1, we have

a(Im(−⊗ F)) a iF (i(−)

in SubSh(C,J)(1). Both a and i preserve monos so the functors are well-defined for the category
SubSh(C,J)(1). By the lemma above, iF (iG is in SubSh(C,J)(1).

Corollary 4.4.9. If (C, ∗, e,−−∗) is a small, symmetric monoidal closed category and if J is
the sup or the finite sup topology, then the partial order SubSh(1) of subobjects of the terminal
object in Sh(C, J) is a BI algebra.

Proof: Since ∗ has a right adjoint it preserves colimit. Sups are coproducts so ∗ is automat-
ically cover preserving.

The (finite) sup topology is subcanonical, i.e., ye is a sheaf. So in these cases the unit
is ye, moreover, for the (finite) sup topology the monoidal tensor product ∗ also preserves
ideals. Let I, J be ideals, then

I ∗ J =↓{i ∗ j | i ∈ I, j ∈ J}

is an ideal: Obviously I ∗ J is downwards closed. Suppose ak ∈ I ∗ J for all k in some
index set K. We must show that

∨
k∈K ak ∈ I ∗ J . ak ∈ I ∗ J iff there exists nk ∈ I and

mk ∈ J such that ak ≤ nk ∗ mk. So for all k ∈ K we have ak ≤ nk ∗ mk, it follows that∨
k∈K ak ≤

∨
k∈K(nk ∗ mk). I, J being ideals this implies

∨
k∈K nk ∈ I and

∨
k∈Kmk ∈ J .

Moreover, ∨

k∈K

ak ≤
∨

k∈K

(nk ∗mk) =
∨

k∈K

nk ∗
∨

k∈K

mk

where the last equality is by the cover preserving property of ∗.

70

Chapter 5

Propositional intuitionistic logic

Literature: [LS86], [MLM94], [Pym02] and [Yan02].
In this chapter we give three kinds of models of propositional intuitionistic logic. First a

class of algebraic models for which we prove soundness and completeness. The completeness
result that we get is not very informative, however, since one of the models is essentially
the syntax disguised as a model. It is desirably to obtain completeness for a smaller class of
models than the class consisting of all Heyting algebras. The categorical models of provability,
which are the propositional fragments of subobject semantics for predicate logic, provide such
a completeness result. The categorical models of provability are actually just algebraic models
with the property that they are Sub(1) in a topos, but the point is to narrow the class of
models to get a more informative completeness theorem. The essence of the completeness
proof is that the Yoneda embedding preserves the Heyting algebra structure. This is not
the case for presheaves, so we are led to consider Grothendieck sheaves instead. The last
model, a categorical model of proofs, is included only because this is how the categorical
models (for BI) are presented in [Pym02] and [Yan02] and we are going to comment on these
presentations.

Finally, in section 5.3 we derive a Kripke semantics for propositional logic in a topos, and
in the special cases in which the topos is a presheaf or sheaf category. This follows standard
presentations as in [LS86] and [MLM94].

5.1 Algebraic models

Propositional logic is logic without free variables. We think of propositions as statements. The
language of propositional calculus consists of a set of countably infinite many propositional
letters L = {p, q, r, . . .} including two special symbols >,⊥ and the logical connectives
∨,∧,→,¬. The set of propositions over L, Prop(L) is given by the following grammar

p ::= p | p ∨ q | p ∧ q | ¬p | p→ q | > | ⊥

Classically, a model for propositional logic is a function I : Prop(L) → {0, 1} such that
I(>) = 1, I(⊥) = 0, I(p ∧ q) = I(p) × I(q),

I(p ∨ q) =

{
0 if I(p) + I(q) = 0
1 otherwise.

71

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.1. ALGEBRAIC MODELS

p ` p

p ` q q ` r

p ` r

p ` > ⊥ ` p

p ` q p ` r

p ` q ∧ r

p ` q1 ∧ q2
p ` qi

(i = 1, 2)

p ` r q ` r

p ∨ q ` r

p ` qi
p ` q1 ∨ q2

(i = 1, 2)

p ∧ q ` r

p ` q → r

p ` s→ r q ` s

p ∧ q ` r

Table 5.1: Hilbert-type system for intuitionistic propositional logic : HIL

I(¬p) = 1 − I(p) and I(p → q) = I(¬p ∨ q). A (classical) model is thus an assignment of
truth values to the propositional letters that respects the semantics of the logical connectives.
We can also think of it as a characteristic function telling us which propositions are true. If
we have a free variable x of type X and the interpretation of X is some set U it is natural
to think of a formula p(x) as the subset P ⊆ U such that p(u) holds iff u ∈ P . Since in
propositional calculus we do not have free variables, such a subset can only be all or nothing,
so we can replace 0 with the empty set and 1 with some fixed set U and regard a model as
a map from Prop(L) to P(U). Then the interpretation of connectives becomes an operation
on subsets of U , more specifically ∧ is intersection, ∨ is union, ¬ is the complement, and →
is explained in terms of ¬ and ∨. P(U) with these four operations is a Boolean algebra.

On the set of propositions Prop(L) we define a binary relation ` by the closure rules given
in table 5.1. A rule of the form P1 P2

Q , states that if P1 and P2 are in the relation `, then
Q is also in the relation `, and a rule of the form P just states that P is in the relation. p ` q
can be thought of as: Under the assumption p, there is a (purely syntactical) proof that q
holds.

Remark 5.1.1 (conventions). We write ` p for > ` p. The system in Table 5.1 does not
use the negation symbol, but this can be defined as ¬p := p→ ⊥.

Classical propositional logic is obtained by adding the axiom

> ` p ∨ ¬p.

In intuitionistic logic the equivalence of propositions: p → q ≡ ¬p ∨ q, is not valid since
it implies law of the excluded middle (p ∨ ¬p). To see why this is, note that we can always
derive ` p → p. This implies that the interpretation of p → q must be different from the
classical one. The algebraic system that we obtain is thus not a Boolean algebra but what
is known as a Heyting algebra. The typical model is not the powerset of some set, but the
set of open subsets w.r.t. some topology. The operations corresponding to ∨ and ∧ are still
union and intersection, but U → V becomes the largest open set W such that U ∩W ⊆ V ,
and ¬U is the interior of the complement of U , i.e., U → V = ({U ∪ V)◦ and ¬U = ({U)◦.
Note that U → V can also be characterized as

⋃
{W | W ∩ U ⊆ V }. The constants > and ⊥

correspond to the greatest and least elements of a Heyting algebra. So to be specific,

72

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.1. ALGEBRAIC MODELS

Definition 5.1.2 (Algebraic model of propositional intuitionistic logic). An algebraic
model A of intuitionistic propositional logic consists of a Heyting algebra
(H,∨H ,∧H ,→H ,⊥H ,>H) and an interpretation

[[·]] : Prop(L) → H

such that the structure is preserved, i.e., [[p ◦ q]] = [[p]] ◦H [[q]] for ◦ ∈ {∨,∧,→}, and [[>]] =
>H , [[⊥]] = ⊥H .

We write [[p]]A ≤ [[q]]A if the interpretation of p is below the interpretation of q in the
Heyting algebra H, part of the model A. If [[p]]A ≤ [[q]]A for all models A, we write [[p]] ≤ [[q]].

Theorem 5.1.3 (Soundness). If p ` q is provable in HIL, then [[p]] ≤ [[q]].

Proof: By induction on the structure of proofs in HIL.

p ` p : Clearly for all interpretations in all Heyting algebras [[p]] ≤ [[p]].

p ` q q ` r

p ` r
:

The relation ≤H is transitive.

p ` > : By definition, [[>]] = >H is the greatest element in the Heyting algebra.

⊥ ` p : [[⊥]] is the least element in the model.

p ` q p ` r

p ` q ∧ r
:

[[q ∧ r]] is by definition the greatest lower bound of [[q]] and [[r]].

p ` q1 ∧ q2
p ` qi

:
Same reason as above.

p ` r q ` r

p ∨ q ` r
:

[[p ∨ q]] is the least upper bound in the model of [[p]] and [[q]].

p ` qi
p ` q1 ∨ q2

:
By the same reason as above.

p ∧ q ` r

p ` q → r
:

In a Heyting algebra H, [[p]] ∧H [[q]] ≤ [[r]] iff [[p]] ≤ [[q]] →H [[r]].

p ` s→ r q ` s

p ∧ q ` r
: We have [[p]] ∧H [[s]] ≤ [[r]] and [[q]] ≤ [[s]],

the result follows by transitivity of ≤.

We now define what is known as the free Heyting algebra on countably many variables HS.
The elements of HS are equivalence classes of propositions in the language of propositional
calculus under provability, that is

p ∼ q iff ` p↔ q

where ` p ↔ q is an abbreviation of ` p → q and ` q → p. The equivalence classes form a
Heyting algebra HS with

73

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.2. CATEGORICAL MODELS

• >HS := [>] = {p | > ` p}

• ⊥HS := [⊥] = {p | p ` ⊥}

• [p] ∨ [q] := [p ∨ q]

• [p] ∧ [q] := [p ∧ q]

• [p] → [q] := [p→ q]

ordered by
[p] ≤ [q] iff p ` q.

Well-definedness Clearly ∼ defines an equivalence relation. For well-definedness of the
operations ∨,∧,→ on equivalence classes, suppose s ∼ s′ and t ∼ t′ then [s] ∨ [t] = [s ∨ t] =
{r |` r ↔ (s ∨ t)} = {r |` r ↔ (s′ ∨ t′)} = [s′] ∨ [t′]. The others are similar.

The syntactic model consists of the Heyting algebra HS and the interpretation given by
[[p]] := [p] for propositional letters p ∈ L extended to all formulas using the operations ∧,∨,→
on HS as defined above.

Theorem 5.1.4 (Completeness). For propositional formulas p, q, p ` q iff [[p]] ≤ [[q]].

Proof: This is immediate from the definitions.

5.2 Categorical models

Though algebraic models may be adequate for some purposes, the completeness result that
they provide is not very strong in the sense that the class of models is very close to the
syntactic system HIL; it does not make much difference whether we study the logic HIL or
the models (Heyting algebras).

The aim is to find a smaller class of models that will still provide completeness. The
categorical notion of a model enables us to identify a natural class of models for which we do
have completeness.

For the purpose of modeling propositional logic it is perhaps a bit exaggerated to talk
about a categorical model since we are only using a small part of the category to actually
model the formulas, but still, the structure that we need is induced by the structure on the
whole category, so when dealing with matters in a categorical framework we can make use of
general results about categories. Besides, to define the class of models, we will need categories.

There are (at least) two different notions of a categorical model. One that is concerned
with provability of formulas only and one that also models the proofs between formulas. We
shall mainly be interested in the former ones, i.e., models that are not concerned with the
structure of a proof, but only with the provability of formulas. However, to compare some
results with results given in [Pym02] we also need to know what categorical models of proofs
are, so we give a definition of those as well.

The categorical models of provability are really just algebraic models in disguise, however,
the definition arises naturally as the propositional fragment of the categorical models of
predicate logic (where the whole category is needed).

74

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.2. CATEGORICAL MODELS

Definition 5.2.1 (Categorical model of provability in HIL). A categorical model M
of provability is a category T with the property that SubT (1) is a Heyting algebra
(SubT (1),∨T ,∧T ,→T ,⊥T ,>T), together with an interpretation function

[[·]] : Prop(L) → SubT (1)

which preserves the structure, i.e., [[p ◦ q]] = [[p]] ◦T [[q]] for ◦ ∈ {∨,∧,→}, and [[>]] =
>SubT (1), [[⊥]] = ⊥SubT (1).

We say that a formula p holds in M, written M |= p iff [[p]] = >SubT (1), i.e., iff the
interpretation of p is the maximal subobject of 1. If the interpretation of a formula p is below
the interpretation of a formula q in SubT (1) we write p |=M q.

Categorically a Heyting algebra is bi-ccc and since it is a preorder, there is at most one
arrow from an object a to an object b. If a and b are interpretations of formulas, we have b
is provable from a iff a ≤ b iff there is an arrow from a to b. If we are also interested in the
structure of a proof a ` b, it makes sense to model the logic in a category that possibly has
more than one arrow between objects a and b. This leads to the following definition.

Definition 5.2.2 (Categorical model of proofs in HIL). A categorical model of proofs
consists of a bi-ccc C and an interpretation function

[[·]] : Prop(L) → Obj(C)

satisfying
[[p ∧ q]] = [[p]] × [[q]]

[[>]] = 1

[[p ∨ q]] = [[p]] + [[q]]

[[⊥]] = 0

[[p→ q]] = [[p]] → [[q]].

Note that models of provability are contained in the models of proofs, since a Heyting
algebra considered as a category is a bi-ccc.

Consider the category ĤS of presheaves over the syntactic preorder HS. Recall that the
subobjects of 1 form a complete Heyting algebra SubdHS(1):

• >SubdHS
(1) = HS

• ⊥SubdHS
(1) = ∅

• I ∨ J = I ∪ J

• I ∧ J = I ∩ J

• I → J =
⋃
{L ∈ SubdHS(1) | L ∧ I ⊆ J}

75

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.2. CATEGORICAL MODELS

where I, J are sieves on HS (by Prop. 2.5.17 there is a one-one correspondence between

sieves on HS and subfunctors of 1 in ĤS). Order is inclusion.
The idea is to define an interpretation of the propositional calculus in SubdHS(1) as

|p| :=↓ [p] = {t | t ` p}

for p ∈ L, and extend this to all formulas t ∈ Prop(L) using the Heyting algebra operations
on SubdHS(1). Note that the map [p] 7→↓ [p] is actually the Yoneda embedding, since ↓ [p] is the
sieve corresponding to y[p]. If this is a well-defined interpretation, i.e., if for all propositional
formulas t, |t| =↓ [t], we would get an immediate completeness proof (using the Yoneda
embedding), however, it is not the case that |t| =↓ [t] for all formulas t (it does not work for
⊥ and ∨).

Proposition 5.2.3. The map ↓ (−) from HS to SubdHS(1) defined by [p] 7→↓ [p] preserves
>,∧,→ but not ⊥,∨.

Proof:

[>] 7→ ↓ [>] = HS
= >SubdHS

(1)

[t1 ∧ t2] 7→ ↓ [t1 ∧ t2] = {[s] | s ` (t1 ∧ t2)}
= {[s] | s ` t1} ∩ {[s] | s ` t2}
= ↓ [t1]∩ ↓ [t2]

[t1 → t2] 7→ ↓ [t1 → t2] = {[s] | s ` t1 → t2}
= {[s] | s ∧ t1 ` t2}
= {[s] | [s ∧ t1] ≤HS [t2]}
= {[s] |↓ [s ∧ t1] ⊆↓ [t2]} Yoneda is full and faithful
= {[s] |↓ [s]∩ ↓ [t1] ⊆↓ [t2]} by the previous calculation
=

⋃
{U | U∩ ↓ [t1] ⊆↓ [t2]}

= ↓ [t1] →↓ [t2]

But

[⊥] 7→ ↓ [⊥] = {[s] | s ` ⊥}
= {[⊥]}
6= ∅

[t1 ∨ t2] 7→ ↓ [t1 ∨ t2] = {[s] | s ` t1 ∨ t2}
⊇ {[s] | s ` t1} ∪ {[s] | s ` t2}

we have
s ` ti

s ` t1 ∨ t2 but not
s ` t1 ∨ t2
s ` ti , so the inclusion above is not an equality.

The interpretation is well-defined for the (⊥,∨)-free fragment of the logic.

Corollary 5.2.4. |t| =↓ [t] for all formulas t of the (⊥,∨)-free fragment of propositional
intuitionistic logic.

Proof: By induction on t using Proposition 5.2.3.

76

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.2. CATEGORICAL MODELS

Proposition 5.2.5 (completeness for the (⊥,∨)-free fragment). If p, q are (⊥,∨)-free
formulas of PIL, then p ` q iff |p| ⊆ |q| in SubdHS(1).

Proof:
p ` q iff [p] ≤HS [q] by Proposition 5.1.4

iff ↓ [p] ⊆ ↓ [q] Yoneda is full and faithful
iff |p| ⊆ |q| by Corollary 5.2.4

To get a completeness result for the entire logic, we embed the syntactic model HS
into the category of sheaves over the preorder HS. In chapter 2 we have seen that for any
Grothendieck topology J on a category C, Sh(C, J) is a topos and that in any topos Sub(E)
is a Heyting algebra for any object E.

We define a Grothendieck topos over the syntactic Heyting algebra HS. The topology is
the finite sup topology (see example 2.6.5), which has the basis

{ai | i ∈ I} ∈ K(c) iff
∨

i∈I

ai = c

where I is finite. Recall that a subsheaf of 1 is a subfunctor S such that

If ∗ ∈ S(ai) for all i ∈ I then ∗ ∈ S(a) for all coverings
∨
i∈I ai = a of a.

In particular, all representables are subsheaves of 1. Recall also that there is a one-one
correspondence between subsheaves of 1 and ideals (sieves that are closed under finite

∨
).

The Heyting structure of SubSh(HS)(1) is, for I, J ideals on HS:

• >SubSh(HS)(1) = HS

• ⊥SubSh(HS)(1) = {[⊥]} (ideal generated by ∅)

• I ∧ J = I ∩ J

• I ∨ J =↓{i ∨ j | i ∈ I, j ∈ J}, ideal generated by I ∪ J

• I → J =
⋃
{L ∈ SubSh(HS)(1) | L ∧ I ⊆ J}.

Proposition 5.2.6. The map ↓(−) : HS → SubSh(HS)(1) is a map of Heyting algebras, i.e.,
it preserves all the Heyting algebra structure.

Proof: For [>],∧,→ we can use the arguments given in the proof of Proposition 5.2.3.

[⊥] 7→ ↓ [⊥] = {[⊥]}

[t1 ∨ t2] 7→ ↓ [t1 ∨ t2] = ↓{[s] | s ` t1 ∨ t2}
= ↓{[s] | s ` s1 ∨ s2, where s1 ` t1, s2 ` t2}
= ↓{[s1] ∨ [s2] | s1 ` t1, s2 ` t2}
= ↓ [t1]∨ ↓ [t2] by definition of ∨ in SubSh(HS)(1)

Interpretation of propositional formulas in SubSh(HS)(1) is

{p} :=↓ [p]

for p ∈ L, extended to formulas in the usual way. For this Heyting algebra the interpretation
is well-defined.

77

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

Corollary 5.2.7. {t} =↓ [t] for all formulas t of propositional intuitionistic logic.

Proof: By induction on t using Proposition 5.2.6.

Theorem 5.2.8 (Completeness). For propositional formulas p, q, p ` q iff {p} ⊆ {q} in
the model (Sh(HS), {·}).

Proof:

p ` q iff [p] ≤ [q] by definition of HS
iff ↓ [p] ⊆ ↓ [q] since the Yoneda functor is full and faithful
iff {p} ⊆ {q} by Corollary 5.2.7
iff p |=Sh(HS) q.

This completeness result is stronger than the one in 5.1.4 because it says that if we want
to show that some sequence p ` q of HIL holds, it is enough to show that [[p]] ≤M [[q]] for all
M ∈ Models, where Models is a class of categorical models that contain the syntactic model
Sh(HS), e.g. Models could be all Grothendieck sheaf toposes (together with interpretations
that make each of them a model).

5.3 Kripke-Joyal semantics

In the categorical models of provability, a formula is true or holds for a model if and only if it
is interpreted as the maximal subobject of the terminal object. If the model lives in a topos,
this can be rephrased: We always have the pullback

[[p]] // //
��

��

1

char p

��
1

>
// Ω,

(5.1)

where [[p]] is the maximal subobject of 1 iff char p = >, which in turn is the case iff the
following square commutes for all objects C ∈ T

C
1C //

1C

��

1

char p
��

1
>

// Ω.

If the above square commutes for C, we write C p, and we say that p holds at stage C. So
by the argument above we have:

Proposition 5.3.1. Let T be a topos and M = (T , [[·]]) a categorical model of provability as
defined in 5.2.1, then for all p ∈ Prop(L), M |= p iff p holds at all stages C of T , that is, for
all objects C in T , C p.

Remark 5.3.2. Since we are working with subobjects of 1 only, using the pullback property
of diagram 5.1, we have C p iff there is an arrow from C to [[p]].

Since there is only one arrow from A to 1, we can identify a (representative) of a subobject
of 1, A � 1 with its domain A.

78

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

The advantage of this reformulation of truth of a proposition is that it enables us to give
an alternative inductive definition of truth in a model, as follows.

Theorem 5.3.3 (Kripke-Joyal semantics). Let T be a topos and M = (T , [[·]]) a cate-
gorical model of provability as defined in 5.2.1. Given propositions p, q and C ∈ Obj(T),
then

(0) C p iff char(p)1C = >1C
iff there exists an arrow C → [[p]],

(1) C p ∧ q iff C p and C q,

(2) C > always,

(3) C ⊥ iff C is the initial object of T ,

(4) C p ∨ q iff there exists an epi [k, l] : D +E → C such that D p and E q,

(5) C p→ q iff, for all h : D → C, if D p then D q.

Proof: Propositions are interpreted in SubT (1). The Heyting algebra structure of SubT (1)
is given in Remark 2.3.10.

(0) This is the definition.

(1) Suppose C p ∧ q, this means that there is an arrow C → [[p ∧ q]] = [[p]] ×T [[q]], where
[[p]] ×T [[q]] is the pullback

C

$$J
JJJ

JJJ
JJJ

[[p]] ×T [[q]]

��

// [[p]]

��
[[q]] // 1

so there are arrows C → [[p]] and C → [[q]], i.e., C p and C q. On the other hand,
if C p and C q, then there are arrows C → [[p]] and C → [[q]], by the pullback
property we then get an arrow C → [[p ∧ q]].

(2) Nothing to show.

(3) The interpretation of ⊥ is the mono 0 → 1, i.e., there is a pullback

0
[[⊥]] //

��

1

char(⊥)
��

1
>

// Ω

so C ⊥ iff there is an arrow C → 0 which holds (in a topos) iff C ∼= 0 by Remark
2.0.3.

79

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

(4) The interpretation of p ∨ q is the image factorization of the arrow from the coproduct
[[p]] + [[q]] to 1.

[[p]] + [[q]]

e

'' ''OOOOOOOOOOO
[[p]]ι1

oo

��

Im([[p]] + [[q]])
%%

%%LLLLLLLLLLLL

[[q]] //

ι2

OO

1

Suppose there is an arrow C → Im([[p]] + [[q]]) then we can take the pullback of this
arrow along eι1 and along eι2 to get

D //

k

��

[[p]]

��

E //

l

��

[[q]]

��
C // Im([[p]] + [[q]]) C // Im([[p]] + [[q]]).

Since the pullback functor preserves coproducts (it has a right adjoint) we get a pullback

D +E //

[k+l]
����

[[p]] + [[q]]

����
C // Im([[p]] + [[q]])

where [k + l] is epi because pullback preserves epis in a topos.

On the other hand suppose there are maps k : D → C and l : E → C such that
[k, l] : D +E → C is epi and D p and E q, we then have a commuting diagram

D +E

[k,l]
����

s // [[p]] + [[q]]

��

e // // Im([[p]] + [[q]])
ww

m

wwnnnnnnnnnnnnn

C
1C

// 1

Since there is only one arrow from D + E to 1, we must have 1C [k, l] = mes. [k, l] is
epi and m is mono so by Proposition 2.2.1, there is an arrow C → Im([[p]] + [[q]]), i.e.,
C p ∨ q.

(5) Suppose C p → q and h : D → C and D p, then we have D → [[p → q]], where
[[p→ q]] = [[q]][[p]], which again means that there is an arrow

D // [[p]] × ([[q]][[p]])
ε // [[q]]

where ε is the counit of the adjunction between the Cartesian product and the exponent.

To get the other implication take any C, and pull back [[p]] → 1:

C ×T [[p]]

h

��

// [[p]]

��
C // 1.

80

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

It is not hard to see that C ×T [[p]] must be the Cartesian product C × [[p]]. Now,
h : C × [[p]] → C and C × [[p]] p so by assumption we have C × [[p]] q, i.e., there is
an arrow C × [[p]] → [[q]], using the adjunction we get an arrow C → [[q]][[p]].

Proposition 5.3.4 (Kripke monotonicity). If there exists an arrow C → D in T and
D p then C p.

Proof: By remark 5.3.2, D p iff there is an arrow D → [[p]], and then we get arrow
C → D → [[p]]. In fact the proposition just states that [[p]] is a subfunctor of 1.

The definition of a categorical model 5.2.1 is the propositional case of what is sometimes
referred to as subobject semantics. Here the Kripke semantics, which is less general than
the subobject semantics since we require the category to be a topos, is derived from the
subobject semantics. However, one can also use the Kripke semantics as the definition of the
interpretation in a model, then Kripke monotonicity (and local character for sheaves) must be
requirements, ensuring well-definedness, rather than propositions. Then, given interpretations
of the propositional letters as subobjects of 1, each of the clauses (1)-(5) of Theorem 5.3.3
defines a subobject of 1 if and only if the Kripke monotonicity holds for the clause.

It turns out that we only need to consider a subset of the stages in T in order to determine
whether T |= p, namely a generating set.

Definition 5.3.5 (Generating set). A set G of objects of T is called a generating set if,
for any two arrows f, g : A ⇒ B, f = g iff for all C ∈ G and all arrows h : C → A, fh = gh.

Proposition 5.3.6. If G is a generating set of objects of a topos T , and M = (SubT (1), [[·]])
is a categorical model of HIL then M |= p iff for all stages C ∈ G, C p.

Proof: By definition M |= p iff [[p]] = >SubT (1). Suppose C p for all C ∈ G, then
char(p)1C = >1C for all C ∈ G, by definition of generating set this is equivalent to char(p) =
>, i.e., [[p]] = >SubT (1). The converse is trivial.

Sometimes the clause (4) can be strengthened:

Definition 5.3.7. An object C is called indecomposable if, for all arrows k : D → C and
l : E → C such that [k, l] : D +E → C is epi, either k or l is epi.

Lemma 5.3.8. (4’) If C is indecomposable, then C p ∨ q iff C p or C q.

Proof: Assume C is indecomposable and that C p ∨ q. By (4) of Theorem 5.3.3, there is
an epi [k, l] : D + E → C such that D p and E q. Since C is indecomposable, either
k : D → C or l : E → C is epi. We have a commuting diagram

D
k //

��

C

��

// // Im(1C)
||

||yy
yy

yy
yy

yy

[[p]] // // 1

and a similar one for l, [[q]]. If k is epi we have Im(1C) = Im(1Ck) which implies that there is
an arrow Im(1C) → [[p]] (using the universal property of image factorizations). This means,
if k is epi, C p. If l is epi there is a similar proof that C q.

81

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

On the other hand if C p then there is an arrow

C → [[p]] → [[p]] + [[q]] � Im([[p]] + [[q]]) = [[p ∨ q]]

(and similar for q if C q) showing that C p ∨ q.

Lemma 5.3.9. The clause (5) of Theorem 5.3.3 also holds when the objects C,D are restricted
to be in a generating set G.

Proof: We must show that

for all h : D → C, where D ∈ G, D p implies D q. (5.2)

implies
for all h : D → C, where D ∈ Obj(T), D p implies D q. (5.3)

Assume 5.2 and assume that h : D → C and D p for some D ∈ Obj(T). To show that
D q it is enough to show that for all E ∈ G and g : E → D, E q. Let E ∈ G and
g : E → D, then there is an arrow E → D → [[p]], hence E p, and by 5.2 then E q.

5.3.1 Kripke-Joyal semantics in functor categories

In this section we shall formulate the Kripke-Joyal semantics for the specific classes of toposes
that we have been working with.

Kripke-Joyal semantics in presheaf categories

For any small category C, the presheaf category Ĉ is a topos, so given an interpretation such
that M = (Ĉ, [[·]]) is a categorical model of provability, Theorem 5.3.3 holds. For this class of
toposes we can simplify the Kripke semantics a bit. We begin by noticing

Proposition 5.3.10. The representable functors yC, where C ∈ Obj(C), form a generating
set for Ĉ. Moreover each representable is indecomposable.

Proof: Suppose we have natural transformations f, g : F → G. We must show that f = g iff
for all representables yC and all arrows h : yC → F , fh = gh. By the Yoneda Lemma this
is the same as showing f = g iff for all C and all ȟ ∈ FC, fC(ȟ) = gC(ȟ).

To see that yC is indecomposable, suppose [k, l] : F + G → yC is epi, we claim that
either k or l is epi. Epis are defined pointwise, in particular [kC , lC] : FC + GC → C(C,C)
is surjective, therefore idC must be in the image of either kC or lC , say the former. Then
there is an element a ∈ FC such that kC(a) = idC . By the Yoneda Lemma, an element in
f ∈ C(C,C) = yC(C) corresponds uniquely to a natural transformation f̂ : yC ⇒ yC. In

particular ˆidC = idyC and ˆkC(a) = k ◦ â, so k ◦ â = idyC , which shows that k is epi.
Recall that subobjects of a presheaf have a canonical representative, so we can identify

F ∈ Sub(G) with a subfunctor F ′ of the functor G.

Theorem 5.3.11. Let C be a small category and M = (Ĉ, [[·]]) a categorical model of prov-
ability as defined in 5.2.1. Given propositions p, q and C ∈ Obj(C), then, writing C for the
representable yC,

(0) C p iff [[p]](C) 6= ∅,

82

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

(1) C p ∧ q iff C p and C q,

(2) C > always,

(3) C ⊥ never,

(4’) C p ∨ q iff C p or C q ,

(5) C p→ q iff, for all h : D → C in C, if D p then D q.

Proof: Ĉ is a topos so we can use Theorem 5.3.3. By Proposition 5.3.6 we only have to
consider stages C of a generating set, which by Proposition 5.3.10 means all representables.

(0) By 5.3.2 C p iff there is some arrow from yC to [[p]], by the Yoneda Lemma this is
equivalent to [[p]](C) 6= ∅.

(1) Nothing to show.

(2) Nothing to show.

(3) The initial object of Ĉ is the empty functor and the empty functor is not a representable
since y(C)(C) 6= ∅ for any C ∈ C.

(4’) Since all representables are indecomposable.

(5) By (5) of Theorem 5.3.3 and Lemma 5.3.9, C p→ q iff, for all h : yD → yC, if D p
then D q. Yoneda is full and faithful so arrows k : D → C in C are in bijective
correspondence with arrows y(k) : yD → yC between objects of the generating set.

If C is a preorder we get the same table except for clause (5), which then reads

C p→ q iff, for all D ≤ C in C, if D p then D q.

Kripke-Joyal semantics in sheaf categories

Proposition 5.3.12. The representables yU for U ∈ O(X) form a generating set for Sh(X).

Proof: Recall that for a topological space, every representable is a sheaf, so the claim makes
sense. The result follows directly from the fact that the representables form a generating set

for Ô(X).
There is no reason why the representables should be indecomposable in Sh(X). If [k, l] :

D + E → C is epi in Sh(X), it is not necessarily the case that i([k, l]) is epi in the presheaf

category. The inclusion functor i : Sh(X) ↪→ Ô(X) is right adjoint, hence it preserves all
limits, but an epi is a colimit, so we can not know whether it remains epi or not.

Sh(X) is a topos so we can derive a Kripke semantics for sheaves over topological spaces.
We write U p for yU p.

Theorem 5.3.13 (Kripke semantics for Sh(X)). Let O(X) be a topology over a set X,
and let M = (Sh(X), [[·]]) be a categorical model of provability as defined in 5.2.1. Given
propositions p, q and U ∈ O(X), then writing U for the representable yU ,

(0) U p iff, [[p]](U) 6= ∅.

83

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

(1) U p ∧ q iff U p and U q,

(2) U > always,

(3) U ⊥ iff U = ∅,

(4) U p ∨ q iff U = V ∪W for some V,W ∈ O(X) such that V p and W q,

(5) U p→ q iff, for all V ⊆ U , if V p then V q.

Proof: Clauses (0),(1),(2) and (5) holds by the arguments given in Theorem 5.3.11.

(3) [[⊥]] is the initial object, which is defined by

0(U) =

{
{∗} if ∅ ∈ J(U)
∅ otherwise

For a topological space the empty set is the only object with an empty cover. Hence
[[⊥]](U) 6= ∅ iff U = ∅.

(4) Suppose U p ∨ q then by Theorem 5.3.3 there are arrows k : D → yU, l : E → yU
such that [k, l] : D + E � yU is epi and D p,E q. By Proposition 2.6.18 there is
a one-one correspondence between subobjects of 1 and representables, so in particular
the image of k is a representable yV � yU , and we have V p, since there is an arrow
yV → [[p]]. Similar by image factorization we get a representable yW such that W q.
It remains to show that U = V ∪W . It is a enough to show that the coproduct arrow
[v, w] : yV + yW → yU is epi. We have

D +E

&&MMMMMMMMMM

[k,l] // // yU

yV + yW
[v,w]

99tttttttttt

and since we always have fg epi implies f epi, it follows that [v, w] is epi.

Conversely, suppose U = V ∪W and V p,W q. {V,W} is a cover of U so the
coproduct arrow yV +yW � yU is epi, which by Theorem 5.3.3 means that U p∨ q.

Proposition 5.3.14 (Local character). If
⋃
i Ui = U is a cover of U and p ∈ Prop(L), if

Ui p for all i, then C p.

Proof: This is just a reformulation of the fact that [[p]] is a subsheaf of 1.

Kripke-Joyal semantics in Grothendieck sheaf categories

If a Grothendieck topology is not sub-canonical, the representables yC are not sheaves, how-
ever, we still have a canonical embedding of the category C into the category of sheaves:

C
y // Ĉ

a //
Sh(C, J)

i
oo

Objects of the form ayC are also called representables. This should not cause any confusion
since, for a subcanonical topology we have ayC ∼= yC.

84

CHAPTER 5. PROPOSITIONAL INTUITIONISTIC LOGIC 5.3. KRIPKE-JOYAL SEMANTICS

Proposition 5.3.15. If J is a Grothendieck topology over a category C, then the representa-
bles ayC for C ∈ C form a generating set for Sh(C, J).

Proof: Suppose

ayCi // F
f //

g
// G

commute for all Ci ∈ Obj(C). By the adjunction a a i and the Yoneda Lemma,

FC ∼= Ĉ(yC, iF) ∼= Sh(ay(C), F).

Now, f = g iff for all C ∈ Obj(C) and all a ∈ FC, fC(a) = gC(a) iff for all C ∈ Obj(C) and
for all t ∈ Sh(ay(C), F), ft = gt.

Theorem 5.3.16 (Kripke semantics for Grothendieck sheaves). Let J be a Grothendieck
topology over a category C, and let M = (Sh(C, J), [[·]]) a categorical model of provability as
defined in 5.2.1. Given propositions p, q and C ∈ C, then writing C for the representable ayC,

(0) C p iff, [[p]](C) 6= ∅.

(1) C p ∧ q iff C p and C q,

(2) C > always,

(3) C ⊥ iff ∅ ∈ J(C),

(4) C p ∨ q iff there exists S ∈ J(C) such that for any Ci ∈ S, Ci p or Ci q,

(5) C p→ q iff, for all h : D → C in C, if D p then D q.

Proof: Since Sh(C, J) is a topos, we can use Theorem 5.3.3.

(0) This follows from the remark 5.3.2, the Yoneda Lemma and the adjunction a ` i.

(1)-(2) Immediate by Theorem 5.3.3.

(3) The initial object of Sh(C, J) is the functor 0 defined by

0(A) =

{
{∗} if ∅ ∈ J(A)
∅ otherwise

It follows that yC is the initial object iff ∅ ∈ J(C).

(4) For this clause it will be more simple to look at the calculations of the interpretations in
Sub(1). [[p∨q]] is interpreted as the subsheaf [[p]]∨ [[q]], where ∨ is the lub in the Heyting
algebra Sub(1), it is defined by (see Corollary 2.6.21)

[[p]]∨[[q]] = {C | there exists a cover S such that for all Ci ∈ S.[[p]](Ci) 6= ∅ or[[q]](Ci) 6= ∅},

which immediately gives clause (4).

(5) By Theorem 5.3.3 and Proposition 5.3.9

Proposition 5.3.17 (Local character). If {fi : Ci → C} is a cover of C such that Ci p
for all i, then C p.

Proof: Again, this is just a reformulation of the fact that [[p]] is a subsheaf of 1.

85

Chapter 6

Propositional BI

Literature: [LS86], [MLM94],[Yan02] and [Pym02] Following the structure of chapter
5 we extend the propositional logic with two new (multiplicative) connectives and a unit to
get propositional logic of bunched implications. As we did for the intuitionistic (additive)
part we first prove soundness and completeness for the algebraic models, then, to get a more
informative completeness result we consider a smaller class of models: categorical models of
provability. The core of the completeness proof is that there is a map going from a syntactic
algebraic model (BS) into a categorical model of provability, which essentially is the Yoneda
embedding, and which preserves all of the BI algebra structure. We show that there is such
a structure preserving map when the categorical model is presheaves over BS and when it is
sheaves over BS (for the finite sup topology). We conclude that to prove completeness for the
multiplicative part alone we only need to consider presheaves, then to get full propositional
BI we embed the syntactic model in the category of sheaves over the finite sup topology (as
was done in chapter 5). It is essential that Sub(1) of this sheaf category is a BI algebra (this
is shown in Proposition 4.4.9) since otherwise it would not be a well-defined model of BI.

In section 6.3 we give Kripke semantics for BI in doubly closed toposes (this a generaliza-
tion of the semantics of [Pym02] and [Yan02]), presheaf and sheaf categories. We conclude
that these semantics, which are derived from the subobject semantics correspond to the Kripke
semantics for presheaves and sheaves given in [Pym02] and in [Yan02]. In particular we note
that the interpretation of BI given in these references, though stated as a model of proofs,
corresponds to a model of provability.

6.1 Algebraic models for BI

To get propositional BI we take intuitionistic propositional logic and add two new connectives
∗,−−∗, which we call the multiplicative connectives, and a new propositional constant I. Well-
formed propositions are thus given by the grammar

p ::= p | p ∨ q | p ∧ q | p→ q | p ∗ q | p −−∗ q | > | ⊥ | I

We define an entailment relation between propositions by the Hilbert-type system in table
6.1.

Definition 6.1.1 (Algebraic model of propositional BI). An algebraic model B of propo-
sitional BI consists of a BI algebra (B,∨B ,∧B ,→B ,⊥B,>B , ∗B ,−−∗B, IB) and an interpreta-

86

CHAPTER 6. PROPOSITIONAL BI 6.1. ALGEBRAIC MODELS FOR BI

p ` p

p ` q q ` r

p ` r

p ` > ⊥ ` p

p ` q p ` r

p ` q ∧ r

p ` q1 ∧ q2
p ` qi

(i = 1, 2)

p ` r q ` r

p ∨ q ` r

p ` qi
p ` q1 ∨ q2

(i = 1, 2)

p ∧ q ` r

p ` q → r

p ` s→ r q ` s

p ∧ q ` r

p ∗ (q ∗ r) a` (p ∗ q) ∗ r p ∗ I a` p a` I ∗p

p ` q r ` s

p ∗ r ` q ∗ s p ∗ q ` q ∗ p

p ∗ q ` r

p ` q −−∗ r

p ` q −−∗ r s ` q

p ∗ s ` r

Table 6.1: Hilbert-type system for propositional BI: HBI

tion
[[·]] : Prop → B

such that the structure is preserved, i.e., [[p ◦ q]] = [[p]] ◦B [[q]] for ◦ ∈ {∨,∧,→, ∗,−−∗}, and
[[>]] = >B, [[⊥]] = ⊥B, [[I]] = IB.

We write [[p]]B ≤ [[q]]B if the interpretation of p is below the interpretation of q in the BI
algebra B, part of the model B. If [[p]]B ≤ [[q]]B for all models B, then we write [[p]] ≤ [[q]].

Theorem 6.1.2 (Soundness). If p ` q is provable in HBI, then [[p]] ≤ [[q]].

Proof: By induction on the structure of proofs in HBI. This is just an unwinding of defini-
tions, as was done for Heyting algebra in the previous section. The system HBI is really just
a rephrasing of the definition of a BI algebra.

As we did for intuitionistic logic in the previous chapter, we now define a syntactic BI
algebra BS. The elements of BS are equivalence classes of propositions in the language of
propositional BI under provability, that is

p ∼ q iff ` p↔ q

where ` p↔ q is an abbreviation of ` p→ q and ` q → p. The equivalence classes form a BI
algebra BS with

• >BS := [>] = {p | > ` p}

• ⊥BS := [⊥] = {p | p ` ⊥}

87

CHAPTER 6. PROPOSITIONAL BI 6.2. CATEGORICAL MODELS

• [p] ∨ [q] := [p ∨ q]

• [p] ∧ [q] := [p ∧ q]

• [p] → [q] := [p→ q]

• [p] ∗ [q] := [p ∗ q]

• [p] −−∗ [q] := [p −−∗ q]

• IBS := [I] = {p |` p↔ I}

ordered by
[p] ≤ [q] iff p ` q.

Well-definedness. This should also be clear by the arguments given in section 5.1.
The syntactic model consists of the BI algebra BS and the interpretation given by

[[p]] := [p] for propositional letters p ∈ Prop extended to all formulas using the operations
∧BS ,∨BS ,→BS , ∗BS ,−−∗BS on BS.

Theorem 6.1.3 (Completeness). For propositional formulas p, q of BI, p ` q iff [[p]] ≤ [[q]].

Proof: This is immediate from the definitions.

6.2 Categorical models

As for the intuitionistic fragment we have two kinds of categorical models.

Definition 6.2.1 (Categorical model of provability in HBI). A categorical model of
provability M is a category T with the property that SubT (1) is a BI algebra
(SubT (1),∨T ,∧T ,→T ,⊥T ,>T , ∗T ,−−∗T , IT), together with an interpretation function

[[·]] : Prop → SubT (1)

which preserves the structure, i.e., [[p ◦ q]] = [[p]] ◦T [[q]] for ◦ ∈ {∨,∧,→, ∗,−−∗}, and [[>]] =
>T , [[⊥]] = ⊥T , [[I]] = IT .

We say that a formula p holds in M, written M |= p iff [[p]] = >SubT (1), i.e., iff the
interpretation of p is the maximal subobject of 1. If the interpretation of a formula p is below
the interpretation of a formula q in SubT (1) we write p |=M q.

In section 4.4 we have shown that a topos which is DCC, has the property that Sub(1)
is a BI algebra, so given a well-defined interpretation, the presheaf toposes Ĉ, where C is
symmetric monoidal is a categorical model.

Definition 6.2.2 (Categorical model of proofs in HBI). A categorical model of proofs
consists of a bi-DCC C with the two closed structures (×, 1,→) and (⊗, I,() and an inter-
pretation function

[[·]] : Prop → Obj(C)

88

CHAPTER 6. PROPOSITIONAL BI 6.2. CATEGORICAL MODELS

satisfying
[[p ∧ q]] = [[p]] × [[q]]

[[>]] = 1 [[p ∗ q]] = [[p]] ⊗ [[q]]

[[p ∨ q]] = [[p]] + [[q]] [[I]] = I

[[⊥]] = 0 [[p −−∗ q]] = [[p]] ([[q]]

[[p→ q]] = [[p]] → [[q]]

Note that models of provability are contained in the models of proofs, since a BI algebra
considered as a category is a bi-DCC.

Consider the presheaf category B̂S. BS is a BI algebra, in particular it is a symmetric,
monoidal preorder, so B̂S is bi-CDCC, and Sub(1) of this category forms a BI algebra. The
BI structure is elaborated in example 4.4.4, we just repeat the definition of the multiplicative
part, for sieves J,K,

• ISubdBS
(1) =↓ [I]

• J ∗K =↓{j ∗ k | j ∈ J, k ∈ K}

• J −−∗ K = {a | ∀c.c ∈ J ⇒ a ∗ c ∈ K}.

To get an algebraic model we must give a well-defined interpretation. As for intuitionistic
logic we try with the Yoneda embedding. Interpretation of the propositional calculus in
SubdBS(1) is

|p| :=↓ [p] = {t | t ` p}

for p ∈ Prop. The interpretation is extended to all formulas using the BI algebra operations
on SubdBS(1). We have already seen in Proposition 5.2.3 that this interpretation is not well-
defined for formulas that contains ∨ or ⊥, what we have is the following:

Proposition 6.2.3. The map ↓ (−) from BS to SubdBS(1) defined by [p] 7→↓ [p] preserves
>,∧,→, I, ∗,−−∗ but not ⊥,∨.

Proof: Most of this has already been proved in 5.2.3, we must prove the part concerning
the new connectives. By Proposition 4.2.9 the Yoneda functor preserves all of the monoidal
closed structure, which is exactly the new connectives. For example

↓ [t1 ∗ t2]
∼= y[t1 ∗ t2]
∼= Im(y[t1 ∗ t2]) since any representable is a subobject of 1
∼= Im(y[t1] ⊗ y[t2]) by Proposition 4.2.9
∼= ↓ [t1]∗ ↓ [t2] since ↓ [t1]∗ ↓ [t2] by definition is the sieve

corresponding to Im(y[t1] ⊗ y[t2]) .

Corollary 6.2.4. |t| =↓ [t] for all formulas t of the (⊥,∨)-free fragment of BI.

Proof: By induction on t using Proposition 6.2.3.

89

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

Proposition 6.2.5 (completeness for the (⊥,∨)-free fragment). If p, q are (⊥,∨)-free
formulas of HBI, then p ` q iff ↓ [p] ≤↓ [q].

Proof:
p ` q iff [p] ≤BS [q] by Proposition 6.1.3

iff ↓ [p] ⊆ ↓ [q] Yoneda is full and faithful
iff |p| ⊆ |q| by Corollary 6.2.4

As in the previous section we consider interpretation in the Grothendieck topos with
the finite sup topology. By Corollary 4.4.9 there is a BI structure on SubSh(BS)(1), and for
this particular topology the multiplicative part is calculated as for subpresheaves. So, using
Proposition 5.2.6, we get:

Proposition 6.2.6. The map ↓ (−) : BS → SubSh(BS)(1) is a map of BI algebras, i.e., it
preserves all the BI algebra structure.

Interpretation of propositional formulas in SubSh(BS)(1) is

{p} :=↓ [p]

for p ∈ Prop, extended to formulas in the usual way.

Lemma 6.2.7. {t} =↓ [t] for all formulas t of propositional BI.

Proof: By induction on t using Proposition 6.2.6.

Theorem 6.2.8 (Completeness). For propositional BI formulas p, q, p ` q iff {p} ⊆ {q}.

Proof:

p ` q iff [p] ≤ [q] by definition of BS
iff ↓ [p] ⊆ ↓ [q] since the Yoneda functor is full and faithful
iff {p} ⊆ {q} by Lemma 6.2.7
iff p |=Sh(BS) q.

Note that the reason why we need to consider Grothendieck sheaves as models to get
completeness is the failure of the Yoneda embedding to preserve ∨,⊥. The multiplicative
connectives do not pose any problems of this sort as Proposition 6.2.5 shows.

6.3 Kripke-Joyal semantics for BI

We are going to expand the Kripke-Joyal semantics to include the new connectives ∗,−−∗ and
I. For ease of reference we give the complete table here.

Theorem 6.3.1 (Kripke-Joyal semantics for BI). Let T be a doubly closed topos (then
SubT (1) is a BI algebra) and M = (T , [[·]]) a categorical model of provability in HBI as
defined in 6.2.1. Given propositions p, q and C ∈ Obj(T), then

(0) C p iff char(p)1C = >1C ,

90

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

(1) C p ∧ q iff C p and C q,

(2) C > always,

(3) C ⊥ iff C is the initial object of T ,

(4) C p ∨ q iff there exists an epi [k, l] : D +E → C such that D p and E q,

(5) C p→ q iff, for all h : D → C, if D p then D q.

(6) C p ∗ q iff there exists an arrow h : D → E ⊗ F and an epi k : D � C, where
D,E, F ∈ Obj(T), such that E p and F q.

(7) C p −−∗ q iff for all D ∈ Obj(T), D p implies C ⊗D q.

(8) C I iff there exists an arrow h : C → [[I]].

Proof:

(0)-(5) are proven in Theorem 5.3.3.

(6) Suppose C p ∗ q, that is C → [[p ∗ q]], where

[[p]] ⊗ [[q]]
e // // Im(p ∗ q) = [[p ∗ q]] // // 1

Now take the pullback of C → Im(p ∗ q) along e:

D
h //

k
����

[[p]] ⊗ [[q]]

e
����

C // Im(p ∗ q)

k : D � C is epi since pullbacks preserve epis, and we always have [[p]] p and [[q]] q.

On the other hand, suppose we have a diagram in T

D
h //

k
����

E ⊗ F

C

such that E p, F q, then

D

k
))))TTTTTTTTTTTTTTTTTTTTTT

h // E ⊗ F // [[p]] ⊗ [[q]]
e // // Im(p ∗ q) // // 1

C // // Im(1C)

u

OO

::

::uuuuuuuuuuu

The arrow u exists by Proposition 2.2.1, so there is an arrow C → [[p ∗ q]] as required.

91

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

(7) Suppose C p −−∗ q, i.e., there is an arrow C → [[p −−∗ q]] = ([[p]] ([[q]]), by adjunction
this is the same as an arrow C ⊗ [[p]] → [[q]]. Suppose D p, then we have arrows

C ⊗D → C ⊗ [[p]] → [[q]],

i.e., C ⊗D q.

For the other implication, suppose that for all D ∈ Obj(T), D p implies C ⊗D q.
In particular, [[p]] p implies C ⊗ [[p]] q, which means that there is an arrow C →
([[p]] ([[q]]), i.e., C p −−∗ q.

(8) This is the definition.

Proposition 6.3.2 (Kripke monotonicity). If there exists an arrow C → D in T and
D p for p ∈ Prop(L), then C p.

Proof: The proposition just states that [[p]] is a subfunctor of 1, which it is by definition of
a categorical model.

6.3.1 Kripke-Joyal semantics for BI in functor categories

We now expand the examples given in the previous chapter to include the multiplicative
connectives.

Kripke-Joyal semantics for BI in presheaf categories

Theorem 6.3.3. Let (C, ·, e) be a small symmetric monoidal category and M = (Ĉ, [[·]])
a categorical model of provability in HBI as defined in 6.2.1. Given propositions p, q and
C ∈ Obj(C), then, writing C for the representable yC,

(0) C p iff [[p]](C) 6= ∅,

(1) C p ∧ q iff C p and C q,

(2) C > always,

(3) C ⊥ never,

(4’) C p ∨ q iff C p or C q ,

(5) C p→ q iff, for all h : D → C in C, if D p then D q.

(6) C p ∗ q iff for some D,D′ ∈ Obj(C) such that there is an arrow h : C → D ·D ′ in C,
D p and D′ q.

(7) C p −−∗ q iff for all D ∈ Obj(C), D p implies C ·D q.

(8) C I iff there is an arrow h : C → e in C.

Proof: Using Day’s construction we get a symmetric monoidal closed structure on Ĉ, since
Ĉ is also a topos we can use Theorem 6.3.1.

92

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

(0)-(5) Follows immediately from the corresponding theorem for intuitionistic fragment
5.3.11.

(6) Suppose h : C → D ·D′ and D p and D′ q, the identity C � C is an epi, so by clause
(6) of Theorem 6.3.1, C p ∗ q. For the converse, we consider the concrete definition
of the subobject [[p ∗ q]] which is the image of the arrow [[p]] ⊗ [[q]] → 1. By assumption
we have an arrow yC → Im([[p]] ⊗ [[q]]), which implies that Im([[p]] ⊗ [[q]])(C) 6= ∅. Now

Im([[p]] ⊗ [[q]])(C) = Im(

∫ D,D′

[[p]](D) × [[q]](D′) × C(C,D ·D′))

it follows that there exists objects D,D ′ with C → D ·D′, and [[p]](D) 6= ∅ and [[q]](D′) 6=
∅, i.e., D p and D′ q.

(7) To see that clause (7) of Theorem 6.3.1 holds when D is restricted to be in a generating
set, suppose

For all D ∈ Obj(C).D p implies C ·D q. (6.1)

It must be shown that [[p −−∗ q]](C) 6= ∅. [[p −−∗ q]](C) = [[p]] ([[q]](C) = Ĉ([[p]], [[q]](C ·−))
for all C. Assumption 6.1 gives that for all D ∈ C, if [[p]](D) 6= ∅ then [[q]](C ·D) 6= ∅ so
there is a natural transformation [[p]] → [[q]](C · −), showing that [[p −−∗ q]](C) 6= ∅.

For the converse, use (7) of Theorem 6.3.1 and the identity y(C ·D) ∼= y(C) ⊗ y(D).

(8) C I iff there is an arrow yC → [[I]] = ye iff there is an arrow C → e in C.

Remark 6.3.4. In [Pym02] a Kripke model is defined as a triple

〈M̂, |=, [[−]]〉

where M is a preordered commutative monoid, [[−]] : Prop(L) → Obj(M̂) a partial func-
tion, and |= a satisfaction relation satisfying the constraints given in 6.3.3, such that Kripke
monotonicity is satisfied.

Though the interpretation [[p]] of a proposition p is a functor in M̂, the constraints in
Theorem 6.3.3 actually refers to the image of the arrow [[p]] → 1 which is a subobject of 1,
which means that interpretation of propositions actually is in Sub cM(1). So the definition in
[Pym02] coincides with the Kripke semantics given in Theorem 6.3.3.

Kripke-Joyal semantics for BI in sheaf categories

Theorem 6.3.5 (Kripke semantics for Sh(X)). Let (O(X), ·, {e}) be a topological monoid
(Definition 4.2.10), and let M = (Sh(X), [[·]]) be a categorical model of provability as defined
in 5.2.1. Given propositions p, q and U ∈ O(X), then, writing U for the representable yU ,

(0) U p iff [[p]](U) 6= ∅,

(1) U p ∧ q iff U p and U q,

(2) U > always,

(3) U ⊥ iff U = ∅,

93

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

(4) U p ∨ q iff U = V ∪W for some V,W ∈ O(X) such that V p and W q,

(5) U p→ q iff, for all V ⊆ U , if V p then V q,

(6) U p ∗ q iff for some V, V ′ ∈ O(X), U ⊆ V · V ′ and V p and V ′ q.

(7) U p −−∗ q iff for all V ∈ O(X), V p implies U · V q.

(8) U I iff U ⊆ {e}.

Proof:

(0)-(5) These are proven in Theorem 5.3.13. For the clauses (6)-(8) we would like to deduce
them from the more general semantics given in Theorem 6.3.1 like we did when we gave
the Kripke semantics for presheaves, however, we do not in general have a symmet-
ric monoidal closed structure on the category of sheaves so the requirements for the
Theorem 6.3.1 can not be met.

What we do have is a BI algebra on Sub(1) in the category of sheaves, and since all the
action of propositional logic is taking place here, we can prove the theorem by direct
calculations in Sub(1).

(6) Consider the ideals [[p]] and [[q]] corresponding to the interpretations of p and q. (That
is, U ∈ [[p]] iff [[p]](U) 6= ∅.) By the calculations given in Example 4.4.4 and Corollary
4.4.9,

[[p ∗ q]] =↓{V · V ′ | V ∈ [[p]], V ′ ∈ [[q]]}.

Clearly U ∈ [[p ∗ q]] iff U ⊆ V · V ′, V ∈ [[p]], V ′ ∈ [[q]].

(7) Again consider the ideals corresponding to the interpretations, we have

[[p −−∗ q]] = {U | V ∈ [[p]] implies U · V ∈ [[q]]}.

The result is now immediate.

(8) U I iff there exists an arrow yU → [[I]] = ye iff U ⊆ {e}.

Since for every p ∈ Prop(L), [[p]] is a subsheaf of 1, we get:

Proposition 6.3.6 (Local character). If
⋃
i Ui = U is a cover of U and p ∈ Prop(L), then

if Ui p for all i, then C p.

Kripke-Joyal semantics for BI in Grothendieck sheaf categories

Theorem 6.3.7 (Kripke semantics for Grothendieck sheaves). Let J be a Grothendieck
topology over a symmetric monoidal category (C, ·, e) such that · is cover preserving with
respect to J , and let M = (Sh(C, J), [[·]]) be a categorical model of provability as defined in
6.2.1. Given propositions p, q and C ∈ C, then, writing C for the representable ayC,

(0) C p iff there is an arrow ay(C) → [[p]]
iff [[p]](C) 6= ∅

iff C ∈ [[p]]

94

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

(1) C p ∧ q iff C p and C q,

(2) C > always,

(3) C ⊥ iff ∅ ∈ J(C),

(4) C p ∨ q iff there exists S ∈ J(C) such that for any Ci ∈ S, Ci p or Ci q,

(5) C p→ q iff, for all h : D → C in C, if D p then D q.

(6) C p ∗ q iff there exists a cover S ∈ J(C) such that for any fi : Ci → C ∈ S there exists
Dp, Dq ∈ C such that there is an arrow Ci → Dp ·Dq and Dp p and Dq q.

(7) C p −−∗ q iff for any D ∈ C, D p implies C ·D q.

(8) C I iff there exists S ∈ J(C) such that for any fi : Ci → C ∈ S, there is an arrow
Ci → e in C.

Proof:

(0)-(5) Proven in Theorem 5.3.16. As for sheaves over topological spaces, the multiplicative
clauses must be proven by direct calculations in Sub(1) since we do not have a symmetric
monoidal closed structure on the whole category.

(6) Let [[p]] and [[q]] be the ideals corresponding to the interpretations of p, q, (as defined in
Section 2.6) then [[p ∗ q]] =
{C ∈ Obj(C) | there exists a cover S ∈ J(C) such that for any fi : Ci → C in S,Ci ∈
[[p]] ∗ [[q]]} where

[[p]] ∗ [[q]] =↓{C ·D | C ∈ [[p]], D ∈ [[q]]}

The ideal [[p ∗ q]] is the sheafification of the presheaf [[p]] ∗ [[q]] (see Proposition 4.4.8).
Now suppose C p ∗ q, then C ∈ [[p ∗ q]] so there exists a cover S ∈ J(C) such that
Ci ∈ [[p]] ∗ [[q]] for any fi : Ci → C in S. This means that for any such Ci there are
Dp, Dq with Ci → Dp ·Dq and Dp ∈ [[p]] and Dq ∈ [[q]].

The converse also follows from the definition of [[p ∗ q]].

(7) The ideal corresponding to [[p −−∗ q]] is given by

[[p −−∗ q]] = {C ∈ Obj(C) | D ∈ [[p]] implies C ·D ∈ [[q]]},

which immediately gives (7).

(8) C I iff [[I]](C) 6= ∅, [[I]] = Im(ay(e)), so by equation 4.12, [[I]](C) 6= ∅ iff there exists a
cover S ∈ J(C) such that for all fi : Ci → C ∈ S, y(e)(Ci) 6= ∅.

Proposition 6.3.8 (Local character). If {fi : Ci → C} is a cover of C and p ∈ Prop(L)
such that Ci p for all i, then C p.

95

CHAPTER 6. PROPOSITIONAL BI 6.3. KRIPKE-JOYAL SEMANTICS FOR BI

Proof: Again, this is just a reformulation of the fact that [[p]] is a subsheaf of 1, which it is
by definition of a categorical model.

In [Pym02] the Grothendieck resource model is defined as a Grothendieck topology on a
preordered commutative monoid M , which is cover preserving (continuous), together with an
interpretation function

[[−]] : L → P(M)

from the set of propositional letters to the powerset over M . The interpretation function is
subject to two conditions (called (K) and (Sh)) which ensures that [[p]] is in fact an ideal (i.e.,
a subsheaf of 1). The interpretation is then extended to all propositions Prop(L) using the
clauses of Theorem 6.3.7, the extended interpretation is well-defined if Kripke monotonicity
(K) and local character (Sh) holds for all p ∈ Prop(L). In other words, a Grothendieck
resource model is a special case of a categorical model of provability as defined in 6.2.1.

96

Chapter 7

Predicate BI

Literature: [Pit02] and [Yan02].
This chapter presents new research results due to Lars Birkedal, Noah Torp-Smith and

the author.
One goal of this thesis has been to clarify the relation between separation logic and BI.

It turns out that separation logic is predicate BI, though not in the sense that Pym defines
predicate BI in [Pym02]. (We have not been able to understand Pym’s suggestion of predicate
BI; see the discussion in Appendix A.) Free variables are kept in a set as usually, and not
in bunches as in [Pym02], so there are no substructural constraints on the level of variables,
only on the propositional level.

We first recall the notion of a first order hyperdoctrine which is the “minimal” structure
needed to soundly model first order predicate logic, and state soundness and completeness for
these. This definition is altered slightly to provide models for first order predicate BI, these
structures are named BI-hyperdoctrines and they have soundness and completeness results
similar to the ones for hyperdoctrines.

Finally we show how separation logic can be seen as predicate BI (in this sense) with
a special signature (specification of types, function symbol and predicate symbols) and the
pointer model then becomes a model of separation logic, that is, a BI-hyperdoctrine. We show
how the forcing semantics for the pointer model can be derived from the BI-hyperdoctrine.

7.1 First order hyperdoctrines

In this section we recall the notion of first order hyperdoctrines and how first order logic can
be interpreted in these.

First we define what we mean by first order intuitionistic logic. Many-sorted first order
intuitionistic logic consists of a set of types X,Y, . . ., countably infinite many variables of
each type x1 : X,x2 : X, . . ., a set of function symbols f : X1, . . . , Xn → X (constants are
functions of arity 0) and relation symbols R ⊆ X1, . . . , Xn.

Well-formed terms. Let Γ, denote a context 1 of the form {y1 : Y1, . . . , ym : Ym}, then
well-formed terms are

1The way we have formulated the signature, a context is the same as a set of free variables since the variables
are born with a type.

97

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

• variables and constants,

• If t1, . . . , tn are terms of types X1, . . . , Xn with free variables in Γ (i.e., ti : Γ → Xi),
and f : X1, . . . , Xn → X a function symbol, then f(t1, . . . , tn) : Γ → X is a term.

Atomic formulas.

• If t, t′ are both terms of type X, then t =X t′ is an atomic formula.

• If t1, . . . , tn are terms of types X1, . . . , Xn with free variables in Γ and R ⊆ X1, . . . , Xn

a relation symbol, then R(t1, . . . , tn) ⊆ Γ is an atomic formula.

Formulas. Well-formed formulas φ are given by the following grammar

φ ::= φ | > | ⊥ | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ∀x : X.φ | ∃x : X.φ

where φ, ψ ranges over atomic formulas and formulas.

Deduction. For each finite set of variables X we define a binary relation `X between
formulas such that their free variables are contained in X as follows.

1. Structural rules.

1.1 p `X p

1.2

p `X q q `X r

p `X r

1.3

p `X q

p `X∪X′ q

1.4

φ(x) `X ψ(x)

φ(b) `X\{x} ψ(b)

if x : B and b is a term of type B with free variables among X\{x}, and b is substitutable
for x on both sides.

2. Logical rules.

2.1 p `X >, ⊥ `X p

2.2

r `X p1 r `X p2

r `X p1 ∧ p2

p1 `X r p2 `X r

p1 ∨ p2 `X r

2.3

p ∧ q `X r

p `X q → r

98

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

2.4

p `X ∀x : X.φ(x)

p `X∪{x} φ(x)

∃x : X.φ(x) `X p

φ(x) `X∪{x} p

where the double rules
P
Q means

Q

P and
P
Q.

3. Axioms for equality.

3.1 `{x} x = x

3.2 x1 = x2 `{x1,x2} x2 = x1 where x1, x2 have the same type.

3.3 x1 = x2 ∧ x2 = x3 `{x1,x2,x3} x1 = x3 where x1, x2, x3 have the same type.

3.4
∧

x = y `{x,y} Rx ↔ Ry,

for any relation symbol R and using some obvious abbreviations.

The following definition and example 7.1.3 are taken from [Pit02].
First order hyperdoctrines are categorical structures tailored to model first order predicate

logic with equality. The structure has a base category C with finite products for modeling the
types and terms of a first order theory, and a C-indexed category P for modeling its formulas.
Since we are only concerned with provability rather than proofs, we restrict our attention to
indexed partially ordered sets rather than indexed categories. The following definition recalls
the properties of (C,P) needed to soundly model first order intuitionistic predicate logic with
equality.

Definition 7.1.1. Let C be a category with finite products. A first order hyperdoctrine P
over C is a contravariant functor P : Cop → Poset from C into the category Poset of partially
ordered sets and monotone functions, with the following properties.

1. For each C − object X, the partially ordered set P(X) is a Heyting algebra.

2. For each C-morphism f : X → Y , the monotone function P(f) : P(Y) → P(X) is a
homomorphism of Heyting algebras.

3. For each diagonal morphism ∆X : X → X ×X in C, the left adjoint to P(∆X) at the
top element > ∈ P(X) exists. In other words, there is an element =X of P(X × X)
satisfying for all A ∈ P(X ×X) that

> ≤ P(∆X)(A) iff =X≤ A.

4. For each product projection π : Γ×X → Γ in C, the monotone function P(π) : P(Γ) →
P(Γ ×X) has both a left adjoint (∃X)Γ and a right adjoint (∀X)Γ:

A ≤ P(π)(A′) if and only if (∃X)Γ(A) ≤ A′

P(π)(A′) ≤ A if and only if A′ ≤ (∀X)Γ(A).

99

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

Moreover, these adjoint are natural in Γ, i.e., given s : Γ → Γ′ in C, we have

P(Γ′ ×X)
P(s×idX) //

(∃X)Γ′

��

P(Γ ×X)

(∃X)Γ
��

P(Γ′ ×X)
P(s×idX) //

(∀X)Γ′

��

P(Γ ×X)

(∀X)Γ
��

P(Γ′)
P(s)

// P(Γ) P(Γ′)
P(s)

// P(Γ).

The elements of P(X), as X ranges over C-objects, will be referred to as P-predicates.

Interpretation of predicate logic in a first order hyperdoctrine. Given a first or-
der signature of types X, countably infinite many variables x : X of each type, function
symbols f : X1, . . . , Xn → X, (constants are functions of arity 0) and relation symbols
R ⊆ X1, . . . , Xn, an interpretation for the signature is a first order hyperdoctrine (C,P) that
assigns a C-object [[X]] to each type, a C-morphism [[f]] : [[X1]] × · · · × [[Xn]] → [[X]] to each
function symbol, and a P-predicate [[R]] ∈ P([[X1]] × · · · × [[Xn]]) to each relation symbol.

Each term t over the signature, with variables in Γ = {y1 : Y1, . . . , yn : Yn} and of sort X
say, can be interpreted as a C-morphism [[t]] : [[Γ]] → [[X]], where [[Γ]] = [[Y1]] × · · · × [[Yn]], by
induction on the structure of t. Interpretation of terms is given by

[[x : X]] = id[[X]]

[[f(t1, . . . , tn)]] = [[f]] ◦ (〈[[t1]], . . . , [[tn]]〉),

assuming [[ti]] : [[Γ]] → [[Xi]] for i = 1, . . . , n. Each formula φ with free variables in Γ can
be interpreted as a P-predicate [[φ]] ∈ P([[Γ]]) by induction on the structure of φ using the
properties given in Definition 7.1.1 as follows. Interpretation of atomic formulas: We have
assumed interpretation of the predicate symbols [[R]] ∈ P([[X1]]× · · · × [[Xn]]). Given terms ti,
such that [[ti]] : [[Γ]] → [[Xi]],

[[R(t1, . . . , tn)]] = P(〈[[t1]], · · · , [[tn]]〉)([[R]]) ∈ P([[Γ]])

in particular the atomic formula t =X t′ is mapped to the P-predicate P(〈[[t]], [[t′]]〉)(=[[X]]).
Interpretation of formulas: Assume φ, ψ are formulas with free variables in Γ ∪ {x : X},

then
[[φ ∧ ψ]] = [[φ]] ∧H [[ψ]]
[[φ ∨ ψ]] = [[φ]] ∨H [[ψ]]
[[φ→ ψ]] = [[φ]] →H [[ψ]]
[[>]] = >H

[[⊥]] = ⊥H

[[∀x : X.φ]] = (∀[[X]])[[Γ]]([[φ]]) ∈ P([[Γ]])

[[∃x : X.φ]] = (∃[[X]])[[Γ]]([[φ]]) ∈ P([[Γ]])

where ∧H ,∨H , etc. is the Heyting algebra structure on P([[Γ]] × [[X]]).
We say that a formula φ ∈ P(X) is satisfied if [[φ]] is the top element of P(X).

Remark 7.1.2. Note that if the source category C is ccc with a generic object G ∈ Obj(C),
i.e., an object which is an internal Heyting algebra, then we can interpret higher order logic
in any (first order) hyperdoctrine over C, where the “powerset-types” PA, for a type A are
interpreted by G[[A]]. To keep it simple we have restricted our attention to the first order
fragment, but the extension to higher order logic is straight forward. The examples that we
give all have the structure needed to interpret higher order logic.

100

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

Example 7.1.3 (Hyperdoctrine of a complete Heyting algebra). Let H be a complete
Heyting algebra. It determines a first order hyperdoctrine over the category Set as follows. For
each set X we take P(X) = HX , the X-fold product of H in the category of Heyting algebras.
The P-predicates are then indexed families of elements of H, ordered componentwise. They
can also be seen as functions from X into H, where X ranges over Set. Given f : X →
Y,P(f) : HY → HX is the Heyting algebra homomorphism given by re-indexing along f
(or, thinking in terms of functions, precomposing with f). For example if s, t ∈ P(Y), i.e.,
s, t : Y → H, then f(s) = s◦f : X → H and s∧t is defined pointwise as (s∧t)(y) = s(y)∧t(y).
Equality predicates =X in HX×X are given by

=X (x, x′)
def
=

{
> if x = x′

⊥ if x 6= x′

where > and ⊥ are respectively the greatest and least elements of H. The quantifiers use set-
indexed joins (

∨
) and meets (

∧
), which H possesses because it is complete: given A ∈ HΓ×X

one has
(∃X)Γ(A)

def
= λi ∈ Γ.

∨

x∈X

A(i, x) (∀X)Γ(A)
def
= λi ∈ Γ.

∧

x∈X

A(i, x)

in HΓ.

If we take H to be a complete Boolean algebra we get a model for classical first order
logic. There are plenty of examples of complete Heyting algebras: for any Grothendieck sheaf
topos E and object X of E , SubE(X) is a complete Heyting algebra (according to Corollary
2.3.8 and Theorem 2.3.11).

Example 7.1.4 (Hyperdoctrine over a topos). Let E be a topos, then X 7→ SubE(X)
defines a hyperdoctrine over the topos. For f : X → Y,SubE (f) : SubE(Y) → SubE(X) is
pullback along f .

This is the first order fragment of the usual subobject semantics: terms are interpreted as
morphisms in the topos, predicates as subobjects.

For each diagonal ∆X : X → X ×X in E, the element =X is defined by 〈idX , idX〉 : X �
X×X. It is also standard that each projection π : Γ×X → Γ has both left and right adjoints
(∃X)Γ, (∀X)Γ and that these satisfies the Beck-Chevalley condition.

Knowing that Ω is an internal Heyting algebra, we could also define a hyperdoctrine over
a topos by

E(−,Ω) : E → Poset

which would be isomorphic to the subobject hyperdoctrine since Sub(X) ∼= E(X,Ω).

Soundness and completeness.

Theorem 7.1.5 (Soundness). For any formulas φ, ψ if φ `X ψ then [[φ]] ≤ [[ψ]] for any
interpretation in any hyperdoctrine.

Proof: By induction on the structure of proofs.

Theorem 7.1.6 (Completeness). For any formulas φ, ψ if [[φ]] ≤ [[ψ]] for all interpretations
in all hyperdoctrines, then φ `X ψ.

101

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

Proof: (Sketch) Consider the classifying category CL (defined in [Jac99] section 2.1). Objects
are contexts Γ = {x1 : X1, . . . , xn : Xn} of variables with types, and morphisms Γ → ∆, where
∆ = {y1 : Y1, . . . , ym : Ym}, are m-tuples (M1, . . . ,Mm) of terms of types Mi : Yi with free
variables in Γ.

The classifying category has finite products. The empty context is the terminal object,
the product of two contexts Γ = {x1 : X1, . . . , xn : Xn},∆ = {y1 : Y1, . . . , ym : Ym} is their
concatenation {x1 : X1, . . . , xn : Xn, y1 : Y1, . . . , ym : Ym}, where we assume that no variable
in Γ appears in ∆, this does not imply a loss of generality, since we can always rename a
variable.

Define a syntactic model S : CL → Poset by

Γ 7→ {[φ] | FV(φ) ⊆ Γ}

where [φ] is the equivalence class of provability, that is [φ] = {ψ | `Γ ψ ↔ φ}. For a
morphism t : Γ → ∆, S(t) is substitution. We claim that this defines a hyperdoctrine.

For each context Γ the equivalence classes ordered by

[φ] ≤Γ [ψ] iff φ `Γ ψ,

constitutes a Heyting algebra.
The equality predicate =Γ∈ S(Γ × Γ) is [v = v′], where v is the tuple of variables from Γ

and v′ is the tuple of renamed variables.
Right and left adjoints to π : Γ ×X → Γ are given by

(∀X)Γ([φ(x, y)]) = [∀x : X.φ(x, y)],

similarly for ∃.
Define an interpretation in (CL, S) by

[[φ]] := [φ]

then φ `Γ ψ iff [[φ]] ≤Γ [[ψ]].

7.1.1 First order BI-hyperdoctrines

First order BI is first order intuitionistic logic extended with

Formulas.

• I,

• φ ∗ ψ,

• φ −−∗ ψ,

satisfying the following logical rules

2.5 (p ∗ q) ∗ r `X p ∗ (q ∗ r) p ∗ (q ∗ r) `X (p ∗ q) ∗ r

2.6 `X p↔ p ∗ I `X p ∗ I ↔ I ∗p

102

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

2.7

p `X q r `X s

p ∗ r `X q ∗ s

2.8 p ∗ q `X q ∗ p

2.9

p ∗ q `X r

p `X q −−∗ r

We now define the obvious extension of a hyperdoctrine to get a structure which is rich enough
to interpret first order BI. (Note that the only difference is that “Heyting” is substituted with
“BI” in 1. and 2.).

Definition 7.1.7 (BI-hyperdoctrines). Let C be a category with finite products. A first
order BI-hyperdoctrine P over C is a contravariant functor P : Cop → Poset from C into the
category Poset of partially ordered sets and monotone functions, with the following properties.

1. For each C − object X, the partially ordered set P(X) is a BI algebra.

2. For each C-morphism f : X → Y , the monotone function P(f) : P(Y) → P(X) is a
homomorphism of BI algebras.

3. For each diagonal morphism ∆X : X → X ×X in C, the left adjoint to P(∆X) at the
top element > ∈ P(X) exists. In other words there is an element =X of P(X × X)
satisfying for all A ∈ P(X ×X) that

> ≤ P(∆X)(A) iff =X≤ A.

4. For each product projection π : Γ×X → Γ in C, the monotone function P(π) : P(Γ) →
P(Γ ×X) has both a left adjoint (∃X)Γ and a right adjoint (∀X)Γ:

A ≤ P(π)(A′) if and only if (∃X)Γ(A) ≤ A′

P(π)(A′) ≤ A if and only if A′ ≤ (∀X)Γ(A).

Moreover, these adjoints are natural in Γ, i.e., given s : Γ → Γ′ in C, we have

P(Γ′ ×X)
P(s×idX) //

(∃X)Γ′

��

P(Γ ×X)

(∃X)Γ
��

P(Γ′ ×X)
P(s×idX) //

(∀X)Γ′

��

P(Γ ×X)

(∀X)Γ
��

P(Γ′)
P(s)

// P(Γ) P(Γ′)
P(s)

// P(Γ).

The elements of P(X), as X ranges over C-objects, will be referred to as P-predicates.

A BI algebra is a Heyting algebra with an additional residuated structure, so we can
interpret first order BI in the obvious way: the additive part as described in the previous
section the new connectives as [[φ∗ψ]] = [[φ]]∗′ [[ψ]] where [[φ]], [[ψ]] ∈ P(X) and ∗′ is the monoid
composition in the BI algebra P(X), −−∗ and I are interpreted in the same manner.

Here are two examples of BI-hyperdoctrines.

103

CHAPTER 7. PREDICATE BI 7.1. FIRST ORDER HYPERDOCTRINES

Example 7.1.8 (BI-hyperdoctrine of a complete BI algebra). Let B be a complete BI
algebra (cBIa). It determines a first order BI-hyperdoctrine over the category Set as follows.
For each set X we take P(X) = BX, the X-fold product of B in the category of BI algebras.
The P-predicates are then indexed families of elements of B, ordered componentwise. Given
f : X → Y,P(f) : BY → BX is the BI algebra homomorphism given by re-indexing along f .
For example if s, t ∈ P(Y), i.e., s, t : Y → B, then f(s) = s ◦ f : X → B and s ∗ t is defined
pointwise as (s ∗ t)(y) = s(y) ∗ t(y). Equality predicates =X in BX×X are given by

=X (x, x′)
def
=

{
> if x = x′

⊥ if x 6= x′

where > and ⊥ are respectively the greatest and least elements of B. The quantifiers use set-
indexed joins (

∨
) and meets (

∧
), which B possesses because it is complete: given A ∈ HΓ×X

one has
(∃X)Γ(A)

def
= λi ∈ Γ.

∨

x∈X

A(i, x) (∀X)Γ(A)
def
= λi ∈ Γ.

∧

x∈X

A(i, x)

in BΓ.

If we take B to be a complete Boolean BI algebra, i.e., the intuitionistic (additive) part
of the BI algebra is Boolean rather than Heyting, we get a model for classical first order BI.

There are plenty of examples of complete BI algebras presented in this thesis: for any
Grothendieck topos E with an additional symmetric monoidal closed structure, SubE(1) is a
complete BI algebra, and for any monoidal category C such that the monoid is cover preserving
w.r.t. the Grothendieck topology J , SubSh(C,J)(1) is a cBIa even though the category of
sheaves Sh(C, J) is not doubly closed in general (Proposition 4.4.8).

Example 7.1.9 (BI-hyperdoctrine over a topos with an internal BI algebra). We
do not in general have a BI structure on the subobject lattice in a (doubly closed) topos,
but assuming a topos E has an object B which is an internal BI algebra, we can define a
BI-hyperdoctrine by

E(−, B) : E → Poset

for f : X → Y, E(f,B) : E(Y,B) → E(X,B) is precomposing with f .
To see how formulas are interpreted in this structure consider for example φ∗ψ, assuming

[[φ]], [[ψ]] ∈ E(X,B), then [[φ ∗ ψ]] is the composite

X
〈[[φ]],[[ψ]]〉 // B ×B

∗ // B.

For s, t ∈ E(X,B) the order is defined by s ≤ t iff s∧ t = s, where s∧ t : X → B is the arrow
∧ ◦ 〈s, t〉.

The two examples we have just given are BI-hyperdoctrines over Cartesian closed cate-
gories so they actually model higher order predicate logic in the sense that for each type A,
interpreted as the object [[A]] in E , the exponent B [[A]] is an object adequate to interpret the
“powerset-type” PA.

104

CHAPTER 7. PREDICATE BI 7.2. SEPARATION LOGIC MODELLED BY BI-HYPERDOCTRINES

Soundness and completeness.

Theorem 7.1.10 (Soundness). For any formulas φ, ψ if φ `X ψ then [[φ]] ≤ [[ψ]] for any
interpretation in any BI-hyperdoctrine.

Proof: By induction on the structure of proofs.

Theorem 7.1.11 (Completeness). For any formulas φ, ψ if [[φ]] ≤ [[ψ]] for all interpreta-
tions in all hyperdoctrines, then φ `X ψ.

Proof: To proof completeness, proceed as in the proof of Theorem 7.1.6 using BI algebras
instead of Heyting algebras.

7.2 Separation logic modelled by BI-hyperdoctrines

We give a brief presentation of separation logic (for a more thorough presentation see for
instance [Rey02]), which was also discussed in the Introduction, and show how it can be
modeled by first order BI-hyperdoctrines.

Separation logic consists of a single type Val of values and a unit type 1, terms t are
defined by

t ::= x | n | t+ t | t− t

where n : Val are constants.
Formulas are defined by

φ ::= > | ⊥ | t = t | t 7→ t | φ ∧ φ | φ ∨ φ | φ→ φ | φ ∗ φ | φ −−∗ φ | emp

where t ranges over terms.
What we have defined here is really just a signature (specification of types, function

symbols and predicate symbols) for first order BI with a single type Val, function symbols
+,− : Val,Val → Val, constants n : Val, a relation symbol 7→⊆ Val,Val and units > ⊆ 1,⊥ ⊆
1, emp ⊆ 1. Thus, the general soundness and completeness results for BI hyperdoctrines
apply to separation logic.

The pointer model. The (classical) pointer model is an example of a model of separation
logic in a hyperdoctrine over Set. The Pointer model consists of a set [[Val]] interpreting
the type Val and a set [[Loc]] of locations such that [[Loc]] ⊆ [[Val]] and binary functions
on [[Val]] interpreting the function symbols +,−. Furthermore we require a set of heaps
H = [[Loc]] ⇀fin [[Val]] of finite partial functions with the discrete order (one can also define
another order on H, which gives rise to an intuitionistic model, this will be discussed briefly
at the end of this section). The set of heaps has a partial operation ∗ defined by

h1 ∗ h2 =

{
h1 ∪ h2 if h1#h2

undefined otherwise

where # is a binary relation on heaps defined by h1#h2 iff dom(h1) ∩ dom(h2) = ∅. The
interpretation of the relation 7→⊆ [[Val]]× [[Val]] is the subset of singleton heaps, i.e., for h ∈ H,
h ∈7→ iff h = {(v1, v2)}. To define the interpretation we assume a partial function (stack)

105

CHAPTER 7. PREDICATE BI 7.2. SEPARATION LOGIC MODELLED BY BI-HYPERDOCTRINES

s : Var → [[Val]] on the set of variables 2, the interpretation of terms depends on the stack
and is defined by

[[x]]s = s(x)
[[n]]s = [[n]]
[[t1 ± t2]]s = [[t1]]s± [[t2]]s

The set of heaps H is our set of possible worlds. Interpretation is usually defined by a
forcing relation s, h φ where FV(φ) ⊆ dom(s) as follows

s, h t1 = t2 iff [[t1]]s = [[t2]]s
s, h t1 7→ t2 iff dom(h) = {[[t1]]s} and h([[t1]]s) = [[t2]]s
s, h emp iff h = ∅
s, h > always
s, h ⊥ never
s, h φ ∗ ψ iff there exists h1, h2 ∈ H.h1 ∗ h2 = h and

s, h1 φ and s, h2 ψ
s, h φ −−∗ ψ iff for all h′, h′#h and s, h′ φ implies s, h ∗ h′ ψ
s, h φ ∨ ψ iff s, h φ or s, h ψ
s, h φ ∧ ψ iff s, h φ and s, h ψ
s, h φ→ ψ iff s, h φ implies s, h ψ
s, h ∀x.φ iff for all v ∈ [[Val]].s[x 7→ v], h φ
s, h ∃x.φ iff there exists v ∈ [[Val]].s[x 7→ v], h φ

This forcing semantics is trivially Kripke monotone since the order on the heaps H is discrete.
Clearly, this definition resembles the Kripke semantics for propositional BI given earlier, the
connection between the two settings goes via BI-hyperdoctrines.

The pointer model as a BI-hyperdoctrine. We now show how the pointer model is an
instance of a BI-hyperdoctrine of a complete BI algebra (example 7.1.8).

Let (H⊥, ∗) be the set of heaps with a bottom element added to represent undefined, order
is flat (i.e., discrete with an added bottom) and ⊥ ∗ h = ⊥ for all h ∈ H⊥. This defines a
partially ordered commutative monoid with emp (the empty heap) as the unit for ∗. The
powerset of H,P(H) (without ⊥) is a complete BI algebra, with inclusion as the order. This
can be shown in at least two ways:

1. Define it directly using the monoid composition ∗ : H⊥×H⊥ → H⊥ pointwise and then
remove ⊥ from the resulting set. The unit is {emp}, the subset containing the empty
heap, and the right adjoint is defined by

U −−∗ V :=
⋃

{W ⊆ H | (W ∗ U) ⊆ V }.

2. Another way to see it is by noticing that there is a one-one correspondence between
P(H) and non-empty sieves on H⊥ by respectively adding and removing ⊥. These are
precisely the ideals with respect to the “semi-trivial” Grothendieck topology on H⊥

defined by

J(h) =

{
{h} if h 6= ⊥
{{⊥}, ∅} otherwise.

2If we have more than one type, s must be a type-respecting partial function from Var to the disjoint
union of the interpretation of the types. In other words, s will be the disjoint union of partial functions:
sX : VarX → [[X]], where VarX is a finite set of variables of type X, for each type X.

106

CHAPTER 7. PREDICATE BI 7.2. SEPARATION LOGIC MODELLED BY BI-HYPERDOCTRINES

This means that P(H) ∼= SubSh(H⊥,J)(1), and SubSh(H⊥,J)(1) is a complete BI algebra.
To see this, note that ∗ preserves covers of J , then it follows from Proposition 4.4.8.

So, P(H) is a complete BI algebra which is even Boolean since P(H) is a Boolean algebra.
We define a hyperdoctrine S : Setop → P(H) by X 7→ P(H)X , where P(H)X ∼=

Set(X,P(H)) as described in example 7.1.8. A term t in context Γ = {x1 : X1, . . . , xn : Xn}
is interpreted as a morphism between sets:

• [[x : Val]] = id[[Val]],

• [[n]] is the map [[n]] : 1 → [[Val]], that sends ∗ to [[n]],

• [[t1 ± t2]] = [[t1]] ± [[t2]] : [[Γ]] → [[Val]], where ti : [[Γ]] → [[Val]], i = 1, 2.

Formulas are S-predicates: suppose FV(φ) = {x1 : X1, . . . , xn : Xn},
3 let [[Γ]] = [[X1]] ×

· · ·×[[Xn]], then we want to give an inductive definition of formulas such that [[φ]] : [[Γ]] → P(H)
satisfies

(v1, . . . , vn) 7→ {h | [x1 7→ v1, . . . , xn 7→ vn], h φ}.

If v = (v1, . . . , vn), the definition is as follows (using the hyperdoctrine structure as described
in example 7.1.8):

[[t1 7→ t2]](v) = {h | dom(h) = {[[t1]](v)} and h([[t1]](v)) = [[t2]](v)}
[[t1 = t2]](v) = H if [[t1]](v) = [[t2]](v)

∅ otherwise
[[>]](∗) = H
[[⊥]](∗) = ∅
[[emp]](∗) = {h | dom(h) = ∅}
[[φ ∧ ψ]](v) = [[φ]](v) ∩ [[ψ]](v)
[[φ ∨ ψ]](v) = [[φ]](v) ∪ [[ψ]](v)
[[φ→ ψ]](v) = {h | h ∈ [[φ]](v) implies h ∈ [[ψ]](v)}
[[φ ∗ ψ]](v) = [[φ]](v) ∗ [[ψ]](v)

= {h1 ∗ h2 | h1 ∈ [[φ]](v) and h2 ∈ [[ψ]](v)} \ {⊥}
[[φ −−∗ ψ]](v) = [[φ]](v) −−∗ [[ψ]](v)

= {h | [[φ]](v) ∗ {h} ⊆ [[ψ]](v)}
[[∀x : X.φ]](v) =

⋂
vx∈[[X]]([[φ]](vx, v))

[[∃x : X.φ]](v) =
⋃
vx∈[[X]]([[φ]](vx, v))

We can easily derive the forcing semantics of the pointer model:

Proposition 7.2.1. h ∈ [[φ]](v1, . . . , vn) iff [x1 7→ v1, . . . , xn 7→ vn], h φ.

Proof: This is immediate by structural induction on formulas φ.
Now, soundness of separation logic follows directly from the general soundness result of

hyperdoctrines. Also, Kripke monotonicity of the forcing relation follows from the fact
that P(H) ∼= SubSh(H⊥,J)(1) so that [[φ]](v) is a subobject of 1, in particular [[φ]](v) is a
presheaf which is a property that corresponds exactly to monotonicity. This may not be very
interesting in the present case since we already noted that Kripke monotonicity is trivial, but
for other models it is less trivial.

3In fact, since we only have one type, Val, apart from the unit type, all the Xi’s are Val.

107

CHAPTER 7. PREDICATE BI 7.2. SEPARATION LOGIC MODELLED BY BI-HYPERDOCTRINES

An intuitionistic model. Consider again the set of heaps (H⊥, ∗) with an added bottom
⊥, satisfying h ∗ ⊥ = ⊥ for all h ∈ H. The order is now defined by

h1 w h2 iff dom(h1) ⊆ dom(h2) and for all x ∈ dom(h1).h1(x) = h2(x).

or equivalently
h1 w h2 iff ∃h3 ∈ H.h1 ∗ h3 = h2.

The Grothendieck topology on H⊥ is again the “semi-trivial” one. From Proposition 4.4.8 it
follows that SubSh(H⊥,J)(1) is a complete BI algebra.

Now the cBIa SubSh(H⊥,J)(1) corresponds to the ideals on H⊥, an ideal in this case is
a non-empty, downwards closed subset of H⊥. Again we remove the added bottom and get
SubSh(H⊥,J)(1) is in one-one correspondence with sieves on H (downwards closed subsets of
H) which in turn corresponds to Sub bH(1). This shows that Sub bH(1) is a cBIa with inclusion
as order.

Now define a hyperdoctrine T : Set → Sub bH(1) as before except that the predicates should
now be functions from a set to Sub bH(1). Terms are defined as before. The definition of 7→ is

[[t1 7→ t2]](v) = {h | h([[t1]](v)) = [[t2]](v)},

which defines a downwards closed subset of H. Now use the BI-hyperdoctrine structure
to interpret the formulas inductively (which essentially means to use the BI structure of
SubSh(H⊥,K)(1) pointwise and then remove the ⊥ to get an element of Sub bH(1)). This will
yield a semantics which is slightly different, for example,

[[φ ∗ ψ]](v) = [[φ]](v) ∗ [[ψ]](v) = (↓{h1 ∗ h2 | h1 ∈ [[φ]](v), h2 ∈ [[ψ]](v)}) \ {⊥}

using the definition of ∗ in SubSh(H⊥,K)(1) as described in Proposition 4.4.8 and using the
fact that Day’s tensor restricts to sheaves for this topology, Proposition 4.3.4.

Conclusion: There is nothing revolutionary in the idea of interpreting predicate BI in BI-
hyperdoctrines, but the link to separation logic makes it relevant for at least two reasons:

It shows that the stack s : Var → [[Val]], which usually maps free variables to a set of
values [[Val]] (one can think of it as a substitution operator or an environment) can be a map
to something more general than a set, if we model separation logic in a hyperdoctrine over
some other category than Set.

It also shows how separation logic, being a hyperdoctrine over Set, possesses all the
expressional power of the internal language of the topos Set.4 In particular all the relations
introduced in [Rey04] to prove correctness for a garbage collector using separation logic can
be seen as abbreviations or names of predicates of the internal language of Set, since any set
is a predicate of the internal language of Set. All the rules or axioms introduced in [Rey04]
for these relations are well-known properties of sets, so they automatically become valid when
we note that we are using the internal logic of Set. One thing should be noted, though; we
are actually working with two different kinds of predicates: the usual predicates of the topos

4The internal language of a topos T has a type for each object of T , a variable of type X for each map
1 → X, a function symbol for each morphism, predicate symbols are function symbols f : X → Ω of type Ω.
The terms and formulas over this signature form the internal language of T . The internal logic is defined by
φ `X ψ iff for all objects C ∈ T and all arrows h : C → X, if φh = >1C then ψh = >1C , where φ : X → Ω
(see [LS86]).

108

CHAPTER 7. PREDICATE BI 7.2. SEPARATION LOGIC MODELLED BY BI-HYPERDOCTRINES

set, i.e., terms φ : X → Ω of type Ω and predicates that involve the heap (those are the ones
defined by the forcing relation s, h φ). When we interpret the logic in a hyperdoctrine
S : Setop → Poset, all predicates must be interpreted as functions from the set X of their
free variables to the powerset of heaps P(H). To see why this is not a problem, i.e., that
this interpretation is sound for the internal logic of Set, note that Ω = {0, 1} in Set so Ω
factors through P(H) by sending 0 to the least element, ∅ and 1 to the top element, H. This
implies that any set-theoretic predicate φ : X → Ω can be interpreted as a predicate {φ} in
the hyperdoctrine by the composite

[[X]]
char[[φ]] // Ω // P(H),

where char[[φ]] is the usual interpretation of φ in Set. In the usual subobject interpretation
we have ` φ implies [[φ]] = [[X]] (the maximal subobject), which is equivalent (in Set) to
char[[φ]] : [[X]] → Ω satisfying char[[φ]](x) = 1 for all x ∈ [[X]]. The hyperdoctrine interpretation
of φ then satisfies

{φ}(x) = H = >P(H), for all x ∈ [[X]].

Thus, for any predicate φ : X → Ω of the internal language of Set we have

` φ iff φ is provable in the internal logic of Set
iff [[φ]] = [[X]] in the subobject interpretation in Set
iff char[[φ]](x) = 1 for all x ∈ [[X]]
iff {φ}(x) = H = >P(H) for all x ∈ [[X]]

iff s, h φ always.

We believe that what Yang does in his thesis [Yan96] can also be simplified by using this
framework.

109

Appendix A

On Pym’s notion of predicate BI

Literature: [Pym02] and [Amb91].
This chapter contains mainly comments on the book [Pym02], part II, concerning predicate

BI and it will probably not make much sense to someone who has not had a look in this book.
We have not been able to understand Pym’s suggestion of predicate BI. In this chapter we
discuss some problems we have encountered. The chapter does not present predicate BI, but
we point out some important issues that should be considered by anyone who attempts to
define and model predicate BI (and other substructural predicate logics). The main point is
that for a logic that does not allow weakening for variables, some sort of variable balancing
(on each side of the `) is needed for the syntax, if there shall be any hope to give a subobject
semantics for such a logic.

A.1 The axiom relation

In [Pym02] David Pym defines a syntax of predicate BI, which involves a symmetric, transitive,
binary relation on bunches of variables. In this section we shall try to give a precise definition
of this relation and use this to point out some problems of the syntax.

The Axiom relation is a finite equivalence relation on bunches. In the beginning of a proof
the Axiom relation A ⊂ Bunch×Bunch is empty, we have a rule for introducing elements to
A:

X1 ` φ(X1) : Prop X2 ` φ(X2) : Prop A = A

(X1, X2)φ(X1) ` φ(X2) A = (A ∪ {(X1, X2)})
Axiom

where (A∪{(X1, X2)}) is the symmetric, reflexive, transitive closure of A∪{(X1, X2)}. There
is also a rule that removes elements

(Y (X,X ′))Γ ` φ A = (A ∪ {(X,X ′)})

Y (X)Γ[X/X ′] ` φ[X/X ′] A = A
C

again we take the symmetric, reflexive, transitive closure.
The substitution rule and the rules for quantifiers also involves the Axiom relation in their

side conditions, but we shall not consider these here.
Because we are mixing the multiplicative end the additive parts of the logic and keeping

variables in bunches, we need something like the Axiom relation to make sure that we get
an extension of intuitionistic predicate logic and not something completely different. For

110

APPENDIX A. ON PYM’S NOTION OF PREDICATE BI A.1. THE AXIOM RELATION

example we want to have a rule

X ` φ(X) : Prop X ` ψ(X) : Prop

X ` φ(X) ∧ ψ(X) Prop
.

This can easily be derived from the rule

X ` φ(X) : Prop Y ` ψ(Y) : Prop

X;Y ` φ(X) ∧ ψ(Y) Prop
,

using the Axiom rule and the cut rule.
We could not have chosen the first rule as the definition and then used weakening to obtain

the second one because this would violate the linearity restriction: a variable can occur at
most once in a bunch. For example, consider (y, x) ` φ : Prop and (z, x) ` ψ : Prop we do
not have weakening for the comma so because of the linearity restriction we have to rename
one of the x’s, we then get (y, x); (z, x′) ` φ ∧ ψ : Prop where (x, x′) ∈ A. If at some point
y and z are substituted for some closed terms, the bunch will have the form (x;x ′) and then
we can use the cut rule and the axiom relation to restore x from x′ in φ.

We now give some examples to show that Lemma 12.2 in [Pym02, p. 167] (and the
corrected version which appears in the Errata [Pym04] of David Pym’s monograph) does not
hold. Lemma 12.2 (the version in the Errata [Pym04]) states:

If (X)Γ ` φ in NBI, then X1 ` Γ : Prop and X2 ` φ : Prop, (A.1)

where X = X1, X2 or X = X1;X2.

Assume we have X1 ` φ(X1) : Prop and Y1 ` ψ(Y1) : Prop. If X2 is an α conversion of X1,
then we must also have X2 ` φ(X2), similarly Y2 ` ψ(Y2). This gives the following proof tree
(where A = ∅ if nothing else is indicated)

X1 ` φ(X1) : Prop X2 ` φ(X2) : Prop

(X1, X2)φ(X1) ` φ(X2) A = {(X1, X2)}

(X1)φ(X1) ` φ(X1)
C

Y1 ` ψ(Y1) : Prop Y2 ` ψ(Y2) : Prop

(Y1, Y2)ψ(Y1) ` ψ(Y2) A = {(Y1, Y2)}

(Y1)ψ(Y1) ` ψ(Y1)
C

(X1, Y1)φ(X1) ∗ ψ(Y1) ` φ(X1) ∗ ψ(Y1)

(X1, Y1)φ(X1) ` ψ(Y1) ∗ φ(X1) ∗ ψ(Y1)
−−∗

where we have X1 ` φ(X1) : Prop, but not Y1 ` ψ(Y1) −−∗ φ(X1) ∗ ψ(Y1) : Prop, since the
formation rule for −−∗ has the form

X ` φ(X) : Prop Y ` ψ(Y) : Prop

X,Y ` φ(X) −−∗ ψ(Y)
−−∗
.

There is even an example that does not involve the axiom condition: The proof of A.1
would be by induction on the structure of proofs, so consider the rule

(X)Γ, φ ` ψ

(X)Γ ` φ −−∗ ψ
−−∗ I

Now, induction hypothesis says that X1 ` Γ, φ : Prop and X2 ` ψ : Prop where either
X = X1, X2 or X = X1;X2. Suppose we have X = X1;X2. By the formation rules for
propositions we must then have Y ` Γ : Prop and Z ` φ where X1 = Y,Z and therefore
Z,X2 ` φ −−∗ ψ. However, it is not the case that ((Y,Z);X2) = (Y, (Z,X2)) and neither that
((Y,Z);X2) = (Y ; (Z,X2)) so we can not split X the way we want to. Clearly A.1 can not
be true.

111

APPENDIX A. ON PYM’S NOTION OF PREDICATE BI A.2. SEMANTICS FOR PREDICATE BI

Conclusion: The natural deduction system for predicate BI (NBI) given in [Pym02, p. 166]
does not preserve well-formed propositions as defined in [Pym02, p. 161], nor does it preserve
well-formed sequents (X)Γ ` φ.

A.2 Semantics for predicate BI

One of the aims of this thesis has been to give subobject semantics of predicate BI corre-
sponding to (and generalizing) the Kripke semantics of predicate BI given in [Pym02, p. 183].
This has turned out to be quite problematic for at least two reasons: the failure of A.1 and
the fact that Day’s tensor does not preserve pullbacks (this is needed to proof soundness for
substitution).

It is worth noticing that Simon Ambler makes some of the same observations in [Amb91]
where he gives a proof theory and semantics for first order linear logic.

The main point of this section is that in order to give a subobject semantics for a sequent
calculus, we need all interpretations to satisfy: if (X)φ ` ψ then φ and ψ are interpreted
as subobjects of the same object A and [[φ]] ≤ [[ψ]] in Sub(A).1 We argue that the calculus
for predicate BI given in [Pym02] does not have any interpretations satisfying this necessary
condition. In particular the interpretation described in [Pym02] is not sound. In the previous
section we gave a proof of

(X1, Y1)φ(X1) ` ψ(Y1) ∗ φ(X1) ∗ ψ(Y1)

how can we possibly interpret the premise and conclusion in the same subobject lattice?
It is possible, though, that a small part of the calculus (without −−∗,∀new,∃new) can be

given a meaningful interpretation. We now give a brief description of how part of the predicate
Kripke semantics given in [Pym02] relate to subobject semantics. Atomic types are interpreted

as objects of the functor category M̂, and higher types are interpreted using the doubly closed
structure on M̂, this corresponds to Definition 13.2 in [Pym02]. This defines a function [[−]]

from bunches to Obj(M̂).
As usually in subobject semantics, a term X ` t : A of type A and with free variables a

bunch X is interpreted as a morphism [[t]] : [[X]] → [[A]] in M̂, going from the interpretation
of the types of the free variables to the interpretation of the type of t. Predicate symbols
p ⊆ A are interpreted as subobjects of [[A]], and formulas X ` φ : Prop are interpreted as

subobjects of [[X]], which we can assume have the form [[φ]] � � ι // [[X]] where ι is the inclusion.

Interpretation of bunches of variables deserves some attention. David Pym claims ([Pym02,
p. 185]) that his Kripke semantics is consistent with the subobject semantics of intuitionistic
logic (as in [LS86]). In particular this presumes that if (X)φ ` ψ is purely intuitionistic, then
the bunch of free variables, which in this case has the form X = x1!X1;x2!X2; . . . ;xn!Xn, is
interpreted as the product [[X1]] × [[X2]] × · · · × [[Xn]] of the types of the free variables in the
bunch, that is, the interpretation of the bunch of variables is the interpretation of the bunch
of their types. However, Pym defines it slightly different for the basic case (see Definition
13.3 [Pym02, p. 180]): He assumes one fixed functor (object of the category) D, and defines
[[x : A]] = [[y!B]] = D for any variable x of multiplicative type A and any variable y of additive
type B. This can only match the traditional subobject semantics if the language has one
single type!

1In [Amb91] this is ensured by a balancing property: each variable must occur exactly once in φ and once
in ψ.

112

APPENDIX A. ON PYM’S NOTION OF PREDICATE BI A.2. SEMANTICS FOR PREDICATE BI

In the same definition, Pym requires that for bunches such that Axiom(X,Y) the inter-
pretation satisfies [[X]] = [[Y]].

The Kripke semantics defined in [Pym02] uses clauses of the form

(X)u |m |= φ

where m ∈ M is a world, X ` φ : Prop and u ∈ [[X]](m). Kripke and subobject semantics in
functor categories are inter-definable in the sense that (X)u |m |= φ iff there is a commuting
diagram

y(m)

û

""F
FF

FF
FFF

��
[[φ]] �

�

ι
// [[X]]

which is equivalent to saying that u ∈ [[φ]](m).
In subobject semantics the definition of [[p(t(X))]] is the pullback:

[[p(t(X))]] �
� //

��

X

[[t]]

��
[[p]] �

� // A.

This is all standard. Now (X)u | m |= p(t(X)) iff there exists an arrow from ym to [[p(t(X))]]
making the triangle

ym

u

$$I
IIIIIIIII

��
[[p(t(X))]] �

� // X

commute. This is true iff (using the pullback property) there exists an arrow from ym to [[p]]
making

ym u //

��

X

[[t]]

��
[[p]] �

� // A

commute, which again is the same as saying [[t]]m(ǔ) ∈ [[p]](m). The latter is Pym’s definition
of (X)u | m |= p(t(X)) (Pym p.183), so assuming interpretation of terms as morphism
as described above, and assuming that interpretation of the bunch of free variables X is
the interpretation of the type of X, Pym’s semantics correspond to the standard (for the
intuitionistic part, that is).

Definition A.2.1. For φ ↪→ X and ψ ↪→ Y , φ ∗ψ ↪→ X ⊗Y is defined as the image of φ and
ψ:

φ⊗ ψ
ι⊗ι //

ι⊗ι $$ $$H
HH

HH
HH

HH
X ⊗ Y

φ ∗ ψ
,
�

::uuuuuuuuu

113

APPENDIX A. ON PYM’S NOTION OF PREDICATE BI A.2. SEMANTICS FOR PREDICATE BI

Lemma A.2.2. For φ ↪→ X and ψ ↪→ Y , (X,Y)u | m |= φ ∗ ψ iff for some (ux, uy, n, n
′)

such that [ǔx, ǔy,m ≤ n · n′] = ǔ in X ⊗ Y , we have (X)ux | n |= φ and (Y)uy | n
′ |= ψ.

Proof: Note that the equivalence relation used on φ ∗ ψ is that of X ⊗ Y while it is possible
that s 6= t in φ⊗ψ even if s = t in X⊗Y (see Proposition 4.2.13). ι⊗ ι works as a point-wise
inclusion, i.e., (ι⊗ ι)[ux, uy,m ≤ l · l′] = [ι(ux), ι(uy),m ≤ l · l′]. Suppose (X,Y)u | m |= φ ∗ψ
that is ǔ ∈ φ ∗ ψ. Then there exists some s = [s1, s2,m ≤ n · n′] ∈ φ ⊗ ψ(m) such that
(ι⊗ ι)(s) = u, i.e., s = u in φ ∗ ψ(m) and in X ⊗ Y (m) (but not necessarily in φ⊗ ψ(m), we
do not know if ux ∈ φ and uy ∈ ψ). Since by definition s1 ∈ φ(n) and s2 ∈ ψ(n′) we can use
Day’s pairing to get an element s′ = [s1, s2, n ·n

′ = n ·n′] ∈ φ⊗ψ(n ·n′), so at stage or world
n we have an element s1 ∈ φ(n) ⊆ X(n), i.e., (X)s1 | n |= φ and also (Y)s2 | n′ |= ψ.

And we have a commuting diagram

ym û=ŝ //

$$I
IIIIIIII X ⊗ Y

y(n · n′)
ŝ′=s1⊗s2

99rrrrrrrrrr

which gives the other direction.

This shows that the subobject [[φ ∗ψ]] defined above matches Pym’s Kripke semantics for
the ∗.

To make any statements about soundness we need to be able to interpret sequences or
relative truth, (X)φ ` ψ, which is defined in [Pym02, p.184] as

(X)φ |= ψ iff for all m ∈ M and all u ∈ [[X1]](m),

(X1)u | m |= φ implies (X2)u | m |= ψ,

where X = X1, X2 or X = X1;X2 and Axiom(X1, X2). Assuming that Axiom(X1, X2)
ensures that the interpretation of the bunches X1, X2 satisfies [[X1]] = [[X2]], the definition
makes sense. It corresponds to the subobject semantics where we have to make sure that [[φ]]
and [[ψ]] are interpreted in the same subobject lattice (if we have weakening this is never a
problem since we can always add dummy variables).

In particular, to be able to interpret a sequence (X)φ ` ψ, we must have X = X1, X2

or X = X1;X2 and Axiom(X1, X2) and (X1) ` φ : Prop and (X2) ` ψ : Prop, but we
have already shown that A.1 can not hold, so in many cases we will not be able to interpret
sequences. In fact, whenever we apply the rule −−∗ I the resulting sequence will fail to satisfy
the above condition.

This ought to be convincing evidence that the system “predicate NBI” in [Pym02, p.166
table 12.2], and the predicate Kripke semantics p.183, Table 13.1, proposed by Pym is not
sound (or, if the partially definedness of the interpretation function is to be taken literally, it
is almost nowhere defined).

114

APPENDIX A. ON PYM’S NOTION OF PREDICATE BI A.2. SEMANTICS FOR PREDICATE BI

A.2.1 Substitution and soundness

We now make some observations assuming that the definition of φ[t/x] in the subobject
semantics is the pullback

[[φ[t/x]]] // //

��

X ⊗ Y

[[t]]⊗Y

��
[[φ]] // // A⊗ Y

where X ` t : A, (x : A, Y) ` φ : Prop and t is substitutable for x in φ.
Since a variable can only occur once in a bunch, we have, syntactically, (φ ∗ ψ)[t/x] =

φ[t/x] ∗ ψ (assuming of course it occurs in φ), so for the above definition of [[φ[t/x]]] to be
well-defined we require (among other things) that [[(φ ∗ ψ)[t/x]]] = [[φ[t/x] ∗ ψ]], i.e., that the
following square is pullback

[[φ[t/x] ∗ ψ]] // //

��

X ⊗ Y

[[t]]⊗Y

��
[[φ ∗ ψ]] // // A⊗ Y

where we can assume (by induction) that

[[φ[t/x]]] // //

��

X

[[t]]

��
[[φ]] // // A

is pullback. Conclusion: since ⊗ does not preserve pullback by Prop. 4.2.13, it is hard to see
how we can proof soundness.

Affine models. Recall that an affine model is a model where the unit of × (the terminal
object) coincides with the unit of ⊗ such that weakening is allowed for the multiplicative part
as well as for the additive part. For these models we are able to interpret all sequences since
we can add dummy variables on each side as usually.

However, the failure of pullback preservation by ⊗ implies that even for affine models we
can not prove soundness (in the usual inductive way, at least).

Remark A.2.3. The clause

(X)u |m |= ∃newx : A.φ iff for some n and some v : y(n) → [[A]]
(X,x : A)u⊗ v |m · n |= φ

of Pym’s Kripke semantics corresponds to a subobject in the following way: Suppose [[φ]] �
[[X]] ⊗ [[A]]. Consider the arrows π, σ : C × C → C, where σ(a, b) = a · b. Both π and σ defines

functors Ĉ → Ĉ × C by precomposing and each of these has a left adjoint Σπ and Σσ and a
right adjoint. Moreover, for X,A ∈ Ĉ,

ΣσXπ ×Aπ′ = X ⊗A,

Day’s tensor (this is already noted in Remark 4.2.14), and we have the unit (Day’s pairing)

Xπ ×Aπ′ → (X ⊗A)σ.

115

APPENDIX A. ON PYM’S NOTION OF PREDICATE BI A.2. SEMANTICS FOR PREDICATE BI

Finally, we have the identity (using density)

ΣπXπ ×Aπ′ =
∫ n,n′

Xn×An′ × C(−, n)

= X ×
∫ n′

An′,

showing that there is a projection

Π : ΣπXπ ×Aπ′ → X

in Ĉ. As usual this defines a functor Π∗ : Sub(X) → Sub(ΣπXπ ×Aπ′) by pullback, and Π∗

has a left adjoint ∃Π and a right adjoint ∀Π.
Take the pullback of φσ along the unit (Day’s pairing) to get the pullback diagram (omitting

the [[−]])

φ̂ //

��

Xπ ×Aπ′

��
φσ // (X ⊗A)σ

then use the functor Σπ on this diagram to get

φ��

��
Σπ(φ̂)

77 77pppppppppppppp
//

��

Σπ(Xπ ×Aπ′)

��

Π // X

Σπ(φ)σ // Σπ(X ⊗A)σ

where φ is the image factorization. Then it can be shown that [[∃newx : A.φ]] = ∃Πφ, which is
the image factorization of the arrow Σπ(φ̂) → Σπ(Xπ ×Aπ′) → X.

116

Appendix B

Notation

• Arrows: �: mono; �: epi; ↪→: inclusion.

• 1C is the unique arrow from the object C to the terminal object 1.

• If F is a bifunctor, F (f, V) means F (f, idV).

• α : F ⇒ G reads: α is a natural transformation from F to G.

• α : F→̈G reads: α is a dinatural transformation from F to G.

• fa→b just indicates that f is an arrow from a to b.

• Ĉ is the category SetC
op

.

• For a presheaf F : Mop → Set over a preorder M, and n ≤ m ∈ M, Fnm = F (n ≤ m) :
F (m) → F (n).

• If u ∈ Ĉ(yC,F) then ǔ is the corresponding element in F (C), via the Yoneda Lemma.

• If u ∈ F (C), for a presheaf F ∈ Obj(Ĉ), then û : yC ⇒ F denotes the corresponding
natural transformation.

• If f : X → Y is an arrow, Im(f) denotes the object which the epi-mono factorization
of f factors through.

• For a functor F : C → Set, an arrow f : D → C, and an element x ∈ FC, x � f denotes
F (f)(x).

Abbreviations

• ccc: Cartesian closed category.

• smcc: symmetric monoidal closed category (see 4.1.3).

• DCC: doubly closed category (see 4.1.4).

• CDCC: Cartesian doubly closed category (see 4.1.4).

• bi-CDCC: bi-Cartesian doubly closed category (see 4.1.4).

• cBIa: complete BI algebra (see 4.4.2).

117

Bibliography

[Amb91] Simon John Ambler. First order linear logic. 1991.

[Cac03] Mario J. Cáccamo. A formal calculus for categories. 2003.

[Jac99] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.

[LS86] J. Lambek and P. J. Scott. Introduction to higher order categorical logic, volume 7
of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 1986.

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[MLM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic. Universitext.
Springer-Verlag, New York, 1994. A first introduction to topos theory, Corrected
reprint of the 1992 edition.

[O’H03] Peter O’Hearn. On bunched typing. J. Funct. Programming, 13(4):747–796, 2003.

[Oos] J. V. Oosten. Basic category theory.

[Pit02] Andrew M. Pitts. Tripos theory in retrospect. Math. Structures Comput. Sci.,
12(3):265–279, 2002. Realizability (Trento, 1999).

[Pym02] David J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implica-
tions. Kluwer Academic Publishers, 2002.

[Pym04] David J. Pym. Errata and remarks for the semantics and proof theory of the logic
of bunched implications. 2004.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
2002.

[Rey04] L. Birkedal & N. Torp-Smith & J. C. Reynolds. Local reasoning about a copying
garbage collector. Proceedings of the 31-st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 220–231, 2004.

[Win01] M. Cáccamo & J. M. E. Hyland & G. Winskel. Lecture notes in category theory.
2001.

[Yan96] Hongseok Yang. Local reasoning for stateful programs (thesis). 1996.

[Yan02] David J. Pym & Peter W. OHearn & Hongseok Yang. Possible worlds and resources.
2002.

118

