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although almost exclusively in terms of Kripke-style models. Kripke semantics works bothfor intuitionistic and modal logic, using separate accessibility relations for each, and thechoices appear in deciding how these relations are to interact.The approach we persue here is somewhat di�erent. We also use models to guideour work but we prefer categorical ones. One reason is that, unlike the situation forKripke semantics, we are interested in modelling not just provability but also the proofsthemselves. This approach is often termed categorical proof theory, or simply categoricallogic [18]. Category theory provides a language for describing abstractly what is requiredof a model or, more precisely, what extra structures are needed for an arbitrary category tomodel the logic. Checking that a candidate is a concrete model then simpli�es to checkingthat it satis�es the abstract de�nition. Thus soundness, for example, need only be checkedonce and for all, for the abstract de�nition. Then all concrete models which satisfy theabstract de�nition are also sound. Thus categorical semantics provide a general and oftensimple formulation of what it is to be a model. This is of interest because it is often thecase that more traditional models lack any generality or are quite complicated to describe(or both). In particular categorical semantics enable one to model some very powerfullogics such as impredicative type theories and intuitionistic higher order logic.This paper is organised as follows. In xx2{3 we give axiomatic and sequent calculusformulations of IS42, respectively. The theorems proven in these sections are surely knownto those working in this area, although we repeat them here for completeness. In x4 wegive our natural deduction formulation and compare it to Prawitz's proposal for a similarlogic. In x5 we de�ne the �2-calculus, which is given by the Curry-Howard correspondencefrom our natural deduction formulation. We also suggest a possible computer scienceapplication for this calculus. In x6 we give in detail our categorical analysis of the necessitymodality. We give a sound de�nition of a categorical model for IS42.2 An Axiomatic Formulation of IS42Axiomatic, or Hilbert-style, formulations are probably the more familiar method of de�n-ing modal logics. They consist of a series of axioms and a few deduction rules. For IS42this consists of an axiomatic presentation of intuitionistic logic augmented with three newaxioms (K, T and 4) and a new rule, Nec. The formulation is given in Figure 1.It is worth explaining our axiomatic formulation. In giving the Nec rule it is vitalto insist that there are no free assumptions, otherwise one could deduce, for example,A � 2A. This restriction can be found in all presentations of necessity operators (e.g. [22]).Given the importance of the context for this rule, it is surprising to �nd that most authorsdisregard the context for the other rules. Here we keep the context explicit in all the rules,thus in the Identity rule we allow an arbitrary weakened context, viz. from assuming �; Awe can deduce A. The Axiom rule says that from any assumptions � we can deduce oneof the axioms from the list in Figure 1.Where it is not obvious by context a deduction in the axiomatic system is denoted bythe annotated turnstile `A. An important property possessed by this formulation, whichis not always the case for modal logics, is the deduction theorem.Theorem 1 If �; A � B then there exists a proof of � � A � B.Proof. By induction on the structure of the derivation.2



Axioms: A � (B � A)(A � B � C) � ((A � B) � (A � C))A � (B � A ^B)A ^B � AA ^B � B(A � C) � ((B � C) � (A _B � C))A � A _BB � A _B? � AK 2(A � B) � (2A � 2B)T 2A � A4 2A � 22ARules: Identity�; A � AAxiom where A is taken from above.� � A� � A � B � � A Modus Ponens�;� � B� A Nec� 2AFigure 1: Axiomatic Formulation of IS42.3 A Sequent Calculus Formulation of IS42The sequent calculus formulation presented here is adapted from Curry's book [5] and isgiven in Figure 2.�;� are used to represent sequences of formulae and A;B for single formulae. TheExchange rule simply allows the permutation of assumptions. The Weakening rule per-mits assumptions to be discarded and the Contraction rule allows an assumption to beduplicated. In what follows the Exchange rule is considered to be implicit, whence theconvention that �;� denote multisets. Negation is de�ned, as usual for intuitionistic logic,as :A def= A � ?:The sequent calculus formulation, where we use the symbol `S to represent a sequentdeduction, is equivalent to the axiomatic presentation given in the previous section.Theorem 2 `S � � A i� `A � � A.Proof. By induction on the structure of the derivation. For example consider the followingcase. Given a sequent derivation of the formD2� � A (2R)2� � 2A3



AxiomA � A� � B B;� � C Cut�;� � C�; A;B;� � C Exchange�; B;A;� � C(?L)�;? � A� � C Weakening�; A � C �; A;A � C Contraction�; A � C�; A � C �; B � C (_L)�; A _B � C � � A (_R)� � A _B � � B (_R)� � A _B�; A � C (^L)�; A ^B � C �; B � C (^L)�; A ^B � C � � A � � B (^R)� � A ^B� � A �; B � C (�L)�; A � B � C �; A � B (�R)� � A � B�; A � B (2L)�;2A � B 2� � A (2R)2� � 2AFigure 2: Sequent Calculus formulation of IS42.Then by induction we have the axiomatic deduction of D, `A 2� � A. Assume that 2�represents the multiset f2G1; : : : ;2Gng. Then we can form the following deduction.
� K

� K 2� � A=========================== D:T:n� 2G1 � (2G2 � : : : (2Gn � A)) Nec� 2(2G1 � (2G2 � : : : (2Gn � A)))� 22G1 � 2(2G2 � : : : (2Gn � A)) � 2G1 � 22G1 2G1 � 2G12G1 � 22G12G1 � 2(2G2 � : : : (2Gn � A))���2G1; : : : ;2Gn�1 � 2(2Gn � A)2G1; : : :2Gn�1 � 22Gn � 2A � 2Gn � 22Gn 2Gn � 2Gn2Gn � 22Gn M.P.2G1; : : : ;2Gn�1;2Gn � 2Awhere D:T:n represents n applications of the Deduction Theorem andK denotes a suitableinstance of the K axiom from Figure 1.An important property of sequent formulations is the so-called cut-elimination theo-4



rem. Here instances of the Cut rule are analysed and replaced with instances on smallerproofs (the technical details are a little delicate; Gallier [8] gives a nice explanation). Theimportant new case for our logic is an instance of a (2R;2L)-cut, viz.2� � A (2R)2� � 2A �; A � B (2L)�;2A � B Cut2�;� � Bwhich is rewritten to 2� � A �; A � B Cut:2�;� � BTheorem 3 Given a derivation � of � � A, a derivation �0 of � � A can be found whichcontains no instances of the Cut rule.4 A Natural Deduction Formulation of IS42In a natural deduction system, originally due to Gentzen [9], but subsequently expoundedby Prawitz [19], a deduction is a derivation of a proposition from a �nite set of assump-tion packets, using some prede�ned set of inference rules. Within a deduction, we may`discharge' any number of assumption packets. Assumption packets can be given naturalnumber labels (denoted by x) and applications of inference rules can be annotated withthe labels of those packets which they discharge.The formulation is given in Figure 3. Our formulation di�ers from others in its simplertreatment of the modality.Some care should be taken with the (2I) rule. The semantic braces, [[� � �]], mean notonly that all the assumptions are modal1 but they are all discharged (and re-introduced).The advantage of this formulation of this rule is that it satis�es a fundamental feature ofnatural deduction in that it is closed under substitution. One might have been tempted togive the rule for (2I) as 2A1 � � �2Ak���B (2I);2Bwhere the assumptions must all be modal but are not discharged and reintroduced, thoughclearly this rule is not closed under substitution. For example, substituting for 2A1, thededuction C � 2A1 C (�E)2A1we get the following deduction1In comparison with our (�I) rule where the standard notation is taken to mean that only one assump-tion, A, is discharged. 5



���? (?E )A[Ax]���B (�I)xA � B ���A � B ���A (�E)B���A ���B (^I)A ^B ���A ^B (^E)A ���A ^B (^E)B���A (_I)A _B ���B (_I)A _B ���A _B [A]���C [B]���C (_E )C���2B (2E )B ���2A1 : : : ���2Ak [[2Ax11 � � �2Axkk ]]���B (2I)x1;:::;xk2BFigure 3: Natural Deduction Formulation of IS42.C � 2A1 C (�E)2A1 � � �2Ak���B (2I)2Bwhich is no longer a valid deduction as the assumptions are not all modal. We concludethat (2I) should be formulated as in Figure 3, where the substitutions are given explicitly.2It is possible to present natural deduction rules in a `sequent-style', where given asequent � � A, then � represents all the undischarged assumptions and A represents theconclusion of the deduction. This formulation should not be confused with the sequentcalculus formulation, which di�ers by having operations which act on the left and right ofthe turnstile, rather than rules for the introduction and elimination of logical operators.The `sequent-style' formulation of natural deduction for IS42 is given in Figure 4.Two important admissible rules are� � B Weakening�; A � B and �; A;A � B Contraction:�; A � B2This rule originates from the natural deduction formulation of intuitionistic linear logic [3].6



�; A � A� � ? (?E)� � A�; A � B (�I)� � A � B � � A � B � � A (�E)� � B� � A � � B (^I)� � A ^B � � A ^B (^E)� � A � � A ^B (^E)� � B� � A (_I)� � A _B � � B (_I)� � A _B� � A _B �; A � C �; B � C (_E)� � C� � 2A1 � � � � � 2Ak 2A1; : : : ;2Ak � B (2I)� � 2B� � 2A (2E)� � AFigure 4: Natural Deduction formulation of IS42 in sequent-style.This formulation (where we use the symbol `N to represent a natural deduction) is equiv-alent to the axiomatic formulation given in x2.Theorem 4 `N � � A i� `A � � A.Proof. By induction on the structure of the derivation.4.1 Comparison with Prawitz's ProposalIn his monograph [19, Chapter VI] Prawitz considers adding both necessity and possibil-ity operators to natural deduction formulations of both intuitionistic and classical logic.Our system is equivalent in terms of provability to the system he calls IS4. Prawitz alsonoticed the problem of closure under substitution, but his solution involves a new notionof \essentially modal" formulae. What this amounts to is a relaxing of the restrictionthat all the undischarged formulae are modal, but rather that there is somewhere in thededuction a complete set of modal formulae which could have had deductions substitutedin for them. In tree-form this amounts to the rule (where the complete set of formulae isin bold face)
7



�1���2A1 � � � �k���2Ak���B (2I):2BOf course there is the extra work of �nding this complete set; and indeed there may bemore than one (the rather serious proof and model theoretic consequences of this arediscussed in x7). We feel that our proposal is conceptually clearer: the only feature weuse is the discharging of formulae, which is already present.4.2 NormalisationWith a natural deduction formulation we can produce so-called detours in a deduction,which arise where we introduce a logical connective only to eliminate it immediately af-terwards. We can de�ne a reduction relation, denoted ;�, (and called �-reduction) byconsidering each case in turn. The treatment of the familiar intuitionistic connectives isentirely standard and the reader is referred to other works [19]. The new case is where(2I) is followed by (2E ). Thus���2A1 : : : ���2Ak [[2A1 : : :2Ak]]���B (2I)2B (2E )Bis reduced to ���[[2A1 : : : ���2Ak]]���B:As is standard, we say that a proof containing no instances of a �-reduction is in �-normalform. Our formulation of IS42 has the following property.Proposition 1 If � � A in IS42 then there is a natural deduction of A from � which isin �-normal form.5 Term Assignment for IS42The Curry-Howard correspondence [11] relates constructive logics to typed �-calculi. Itessentially annotates each stage of a deduction with a `term', which is an encoding of theconstruction of the deduction so far. Consequently a logic can be viewed as a type systemfor a term assignment system. The correspondence also links proof normalisation to termreduction. 8



The Curry-Howard correspondence can be applied to the natural deduction formulationto obtain the term assignment system given in Figure 5. It should be pointed out thatthe natural number labels mentioned above, are replaced by (the more familiar) variablenames. The resulting calculus we call the �2-calculus.x:A . x:A� . M :? (?E)� .rA(M):A�; x:A .M :B (!I)� . �x:A:M :A! B � . M :A! B � . N :A (!E)� . MN :B� . M :A � . N :B (�I)� . hM;Ni:A �B � . M :A�B (�E)� . fst(M):A � . M :A�B (�E)� . snd(M):B� . M :A (+I)� . inl(M):A+B � . M :B (+I)� . inr(M):A+B� . M :A+B �; x:A . N :C �; y:B . P :C (+E)� . caseM of inl(x) ! N k inr(y) ! P :C� . M1:2A1 � � � � . Mk:2Ak x1:2A1; : : : ; xk:2Ak . N :B (2I)� . boxN withM1; : : : ;Mk for x1; : : : ; xk:2B� . M :2A (2E)� . unbox(M):AFigure 5: Term Assignment for IS42An important property of our system is that substitution is well-de�ned in the followingsense.Theorem 5 If � . N :A and �; x:A .M :B then � . M [x := N ]:B.Proof. By induction on the derivation �; x:A .M :B.Before we continue, a quick word concerning the (2I) rule. At �rst sight this seemsto imply an ordering of the Mi and xi subterms. However, the Exchange rule (which doesnot introduce any additional syntax) tells us that any such order is really just the e�ectof writing terms in a sequential manner on the page.The reduction rules derived from x4.2 can be given at the level of terms. These aregiven in Figure 6 where the symbol;� is used to denote term reduction. We have also usedthe shorthand ~M in place of the sequence M1; : : :Mk. The last reduction rule correspondsto the proof reduction discussed in x4.2. 9



(�x:A:M)N ;� M [x := N ]fst(hM;Ni) ;� Msnd(hM;Ni) ;� Ncase inl(M) of inl(x) ! N k inr(y) ! P ;� N [x :=M ]case inr(M) of inl(x) ! N k inr(y) ! P ;� P [y :=M ]unbox(boxN with ~M for ~x) ;� N [~x := ~M ]Figure 6: �-reduction rules.5.1 A Computational InterpretationAs is now well known, the typed �-calculus can be thought of as a prototypical functionalprogramming language. An alternative view is that it can be thought of as an intermediatelanguage inside a functional language compiler. (The classic treatment of this is in PeytonJones' book [12].) The equational reasoning of the �-calculus enables one to view compileroptimisations as manipulations of terms of the intermediate language.Inside a compiler there is a di�erence between values stored directly in the local stackand those stored in the heap. Of course in the intermediate language (the �-calculus) suchoperational di�erences are not distinguished. Certain optimisations in compilers involvemoving between these di�erent representations.It seems that the �2-calculus is an appropriate language for such distinctions to bemade explicit at the term, and type, level. Thus a value of type A is to be considereda `local' value of (type A) and a value of type 2A a stored one. The restriction of the2R rule can be interpreted as follows: if a value is to be placed on the heap then it mustonly reference values also on the heap (i.e. the free variables should be of type 2B).Manipulations of values to and from the heap are now represented by explicit terms.This is analogous to Moggi's [16] proposal of di�erentiating, at the term level, betweencanonical values and computations.3 Indeed it would appear that a language combiningboth Moggi's ideas and those above, is worthy of further study.46 The Categorical ModelThe fundamental idea of a categorical treatment of proof theory is that propositions shouldbe interpreted as the objects of a category and proofs should be interpreted as morphisms.The proof rules correspond to natural transformations between appropriate hom-functors.The proof theory gives a number of reduction rules, which can be viewed as equalitiesbetween proofs. In particular these equalities should hold in the categorical model.Other categorical studies have been carried out, notably by Flagg [7]; Meloni andGhilardi [10] and Reyes and Zolfaghari [20]. However these have been mainly concerned3Moggi's language, the computational �-calculus, can also be seen as a modal logic [2].4In fact, this idea is being studied (and considerably extended) by P.N. Benton (private communication).10



with categorical model theory, rather than categorical proof theory. In particular, they allassume an isomorphism, 22A �= 2A. In this work we have morphisms in both directions(as they are provably equivalent) but we have not collapsed the model so that they areisomorphic.Let us �x some notation. The interpretation of a proof is represented using seman-tic braces, [[�]], making the usual simpli�cation of using the same letter to represent aproposition as its interpretation. Given a term � . M :A where M ;� N , we shall write� . M = N :A.De�nition 1 A category, C, is said to be a categorical model of a logic/term calculus i�1. For all proofs � . M :A there is a morphism [[M ]]: �! A in C; and2. For all proof equalities � . M = N :A it is the case that [[M ]] =C [[N ]] (where =Crepresents equality of morphisms in the category C).Given this de�nition we simply analyse the introduction and elimination rules for eachconnective. Both this and consideration of the reduction rules should suggest a particularcategorical structure to model the connective. The case for intuitionistic logic is wellknown; the reader is referred to Lambek and Scott's book [13] for a good discussion.Essentially the categorical model of intuitionistic logic (with disjunction) is a cartesianclosed category (CCC) with coproducts. Hence all we need do here is consider the modality,which we shall do in some detail. The less-categorically minded reader may wish simplyto skip to De�nition 2.The introduction rule for the modality is of the form� . M1:2A1 � � � � . Mk:2Ak x1:2A1; : : : ; xk:2Ak . N :B (2I)� . boxN with ~M for ~x:2BTo interpret this rule we need a natural transformation with components��: C(�;2A1)� � � � � C(�;2Ak)� C(2A1 � � � � �2Ak; B)! C(�;2B)Given morphisms ei: � ! 2Ai, c: �0 ! � and d:2A1 � � � � � 2Ak ! B, naturality givesthe equation c; ��(e1; : : : ; ek; d) = ��0((c; e1); : : : ; (c; ek); d):In particular if we have morphisms mi: �! 2Ai then we take c = hm1; : : : ;mki, ei to bethe i-th product projection, written �i, and d to be some morphism p:2A1�� � ��2Ak ! B,then by naturality we havehm1; : : : ;mki; �2A1;:::;2Ak(�1; : : : ; �k; p) = �2A1;:::;2Ak(m1; : : : ;mk; p):Thus �(m1; : : : ;mk; p) can be expressed as the composition hm1; : : : ;mki; 	(p), where 	is a transformation	: C(2A1 � � � � �2Ak; B)! C(2A1 � � � � �2Ak;2B):For the moment, the e�ect of this transformation will be written as (�)� and so we canmake the preliminary de�nition 11



[[� . boxN withM1; : : : ;Mk for x1; : : : ; xk:2B]] def=h([[� . M1:2A1]]); : : : ; ([[� . Mk:2Ak]])i; ([[x1:2A1; : : : ; xk:2Ak . N :B]])�The elimination rule for the modality is of the form� . M :2A (2E)� . unbox(M):ATo interpret this rule we need a natural transformation�: C(�;2A)! C(�; A):It follows from the Yoneda Lemma [14, Page 61] that there is the bijection[Cop;Sets](C(�;2A); C(�; A)) �= C(2A;A):By constructing this isomorphism one can see that the components of � are induced bypostcomposition by a morphism ":2A! A. Thus we make the de�nition[[� . unbox(M):A]] def= [[� . M :2A]]; ":From Figure 6 we have the term equality� . M1:2A1 � � � � . Mk:2Ak x1:2A1; : : : ; xk:2Ak . N :B� . unbox(boxN with ~x for ~M) = N [~x := ~M ]:BTaking morphisms mi: � ! 2Ai and p:2A1 � � � � � 2Ak ! B, say, this term equalityamounts to the categorical equalityhm1; : : : ;mki; (p)�; " = hm1; : : : ;mki; p: (1)We can certainly de�ne an operation2: C(�; A)! C(2�;2A);f 7! ("; f)�:We shall make the simplifying assumption that this operation is a functor. However, noticethat if � is the object A1�� � ��Ak, then 2� will be represented by 2(A1�� � ��Ak), butclearly we mean 2A1�� � ��2Ak. Thus we shall make the further simplifying assumptionthat 2 is a symmetric monoidal functor, (2;mA;B ;m1). This notion is originally due toEilenberg and Kelly [6]. In essence this provides a natural transformationmA;B:2A�2B ! 2(A�B)and morphism m1: 1! 21which satisfy a number of conditions which are detailed in Appendix A.Equation 1 gives 12



("A; f)�; "B = "A; ffor any morphism f :A! B; or, in other words the diagram2A
A

2B
B

-2f
?" ?"-fcommutes. Given the assumption that 2 is a symmetric monoidal functor, this diagramsuggests that " is a monoidal natural transformation. Again the unfamiliar reader isreferred to the appendix for de�nitions.We have that from the identity morphism id2A:2A! 2A, we can form the canonicalmorphism �A def= (id2A)�. Equation 1 gives�A; "2A = id2A:The categorically-minded reader will recognise this equation as one of the three for acomonad. We shall make the simplifying assumption that not only does (2; "; �) form acomonad but that � is also a monoidal natural transformation. Hence the comonad isactually a monoidal comonad. Thus our de�nition of a categorical model for IS42 is asfollows.De�nition 2 A categorical model for IS42 consists of a cartesian closed category withcoproducts, together with a monoidal comonad (2; "; �;mA;B ;m1).We can now �nalise the interpretation of the introduction rule for the modality.[[� . boxN with ~M for ~x:2B]] def= h[[� . M1:2A1]]; : : : ; [[� . Mk:2Ak]]i;�A1 � � � � � �Ak ;m2A1;:::;2Ak ;2[[x1:2A1; : : : ; xk:2Ak . N :B]]Fact. Recall that by condition 2 of our de�nition of a categorical model (De�nition 1)if two proofs are equal then so are their denotations. In more traditional model-theoryparlance this is a soundness theorem. Hence any concrete model satisfying the abstractconditions of De�nition 2 is a sound model of IS42.7 Prawitz's Formulation and the Categorical ModelAlthough Prawitz's formulation has the appearence of being equivalent to the formula-tion presented in this paper, in fact it has rather unfortunate proof and model theoreticconsequences. Consider the following deduction in Prawitz's formulation.13



222A (2E )(1) 22A (2E )(2) 2A (2E )A (2I)2AThe problem is deciding which formula was the (modal) assumption when the 2 wasintroduced (the so-called `complete set' from x4.1). In particular two possibilities are (1)and (2). In our formulation presented in x4, these alternatives represent two distinctderivations, viz. 222A (2E)22A [[22A]] (2E )2A (2E)A (2I)2Aand 222A (2E)22A (2E)2A [[2A]] (2E )A (2I)2APrawitz's formulation essentially collapses these two derivations into one. In other wordshis formulation forces a seemingly unnecessary identi�cation of proofs. Let us considerthe consequences of this identi�cation with respect to the categorical model. The twoderivations above are modelled by the morphisms"22A; �2A;2("22A);2("2A):222A! Aand "22A; "2A; �A;2"A:222A! Arespectively. Insisting on these being equal amounts to the equality"22A;2"A = "22A; "2A:Precomposing this equality with the morphism �2A gives2"A = "2A:It is easy to see that this is su�cient to make the comonad idempotent, i.e. 2A �= 22A.It is worth reiterating that our formulation does not impose this identi�cation of proofsand consequently does not force an idempotency.
14



8 ConclusionsIn this paper we have considered the propositional, intuitionistic modal logic IS42, andhave given axiomatic, sequent calculus and natural deduction formulations; the corre-sponding term assignment system as well as a general categorical model.As menioned in the introduction we place particular importance on the natural de-duction proof system. In his seminal monograph, Prawitz also considered formulations ofmodal operators although he requires extra machinery speci�cally for these modalities. Atthe level of proofs his formulation introduces seemingly unnecessary identi�cations, whichin the model forces an idempotency. Other authors have proposed alternative naturaldeduction formulations but again they all require signi�cant extensions to the essentialnature of natural deduction (for example, by indexing formulae with certain informa-tion). Examples of other proposals are those of Segerberg [4, pages 29{30], Benevides andMaibaum [1] and Mints [15, Pages 221{294].5 Again we reiterate the conceptual simplicityof our proposal.We also prefer the use of categorical models. Unlike other categorical work we haveplaced emphasis on modelling the proof theory not just provability. Our resulting modelis considerably simpler than other proposals.For the future we should like to consider other modal logics within our framework. It isclear that not all of the hundreds of modal logics will �t into our framework. However wedo not view this as a weakness of our work. Rather we feel it is important to identify thosemodal logics which have interesting proof theories and mathematically appealing classesof models. We should also like to pursue the computational interpretation discussed inx5.1.AcknowledgementsThis work was �rst presented at the Logic at Work conference in Amsterdam in 1992. Thedelay in publication is due to editorial problems of the conference organisers. We shouldlike to thank Richard Crouch, Rajeev Gor�e, Martin Hyland, Frank Pfenning and AlexSimpson for useful discussions. We received �nancial support from the CLICS-II projectto present this work in Amsterdam.References[1] M. Benevides and T. Maibaum. A constructive presentation for the modal con-nective of necessity. Journal of Logic and Computation, 2(1):31{50, 1992.[2] P.N. Benton, G.M. Bierman, and V.C.V. de Paiva. Computational types froma logical perspective I. Technical Report 365, Computer Laboratory, University ofCambridge, May 1995.[3] G.M. Bierman. On Intuitionistic Linear Logic. PhD thesis, Computer Labora-tory, University of Cambridge, December 1993. Published as Computer LaboratoryTechnical Report 346, August 1994.5Since we originally wrote this paper, the work of Simpson [21] and Pfenning [17] have also come toour attention. 15
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A Monoidal ComonadsIn this appendix we simply spell out the conditions implied by requiring that (2; �; ";mA;B ;m1)is a monoidal comonad. These notions are due to Eilenberg and Kelly [6].Firstly requiring that (2; "; �) form a comonad amounts to the following two diagrams.
2A 22A 2A

2A
?�A� "2A -2("A)

���������	 id2A @@@@@@@@@Rid2A 22A 222A
2A 22A-�A

-2�A?�A ?�2ARequiring that (2;mA;B ;m1) is a monoidal functor amounts to the following four com-muting diagrams.
1�2A
21�2A

2A
2(1�A)6m1 � id2A -m1;A

?2(sndA)-snd2A 2A� 1
2A�21

2A
2(A� 1)6id2A �m1 -mA;1

?2(fstA)-fst2A
2A� (2A�2C) 2A�2(B �C) 2(A� (B �C)
(2A�2B)�2C 2(A�B)�2C 2((A�B)� C)6�2A;2B;2C 62(�A;B;C)-mA;B � id2C -mA�B;C

-id2A �mB;C -mA;B�C
2B �2A
2A�2B 2(A�B)

2(B �A)
-mA;B
-mB;A?A;B ?2(A;B)Requiring that " is a monoidal natural transformation amounts to the following two com-muting diagrams. 18



A�B
2A�2B 2(A�B)@@@@@@@@@R"A � "B -mA;B

?"A�B 21 1
1
?m1 -"1
@@@@@@@@@Rid1

Requiring that � is a monoidal natural transformation amounts to the following two com-muting diagrams.
22A�22B 2(2A�2B) 22(A�B)
2A�2B 2(A�B)

-m2A;2B -2(mA;B)?�A � �B ?�A�B
-mA;B

21 221
1 21

-2m1?m1 ?�1
-m1
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