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1 IntroductionAt the macroscopic level our world seems to be pretty much governed by thelaws of classical physics, i.e. by Newtonian mechanics on the one hand and byMaxwell theory on the other. The former describes the motion of particlesunder the inuence of forces acting on them and applies to such diverse �eldsas celestial mechanics and elasticity theory. The latter covers almost the entirespectrum of phenomena occurring in electromagnetism and optics. The dynam-ics in these two theories is governed by deterministic equations of motion and(in principle) it is possible, given the initial conditions, to predict the results ofmeasurements on the system at any later time.Classical physics could thus provide us with a very satisfactory description ofthe world we live in, were it not for the fact that it not only fails to give anexplanation for a number of phenomena observed at the microscopic level butis, in fact, in plain contradiction with experimental evidence.As an illustration of what these phenomena are and what they may be tryingto tell us about a theory which will have to replace classical physics, I wantto mention just two examples. The �rst has to do with the stability of atoms.From scattering and other experiments it had been deduced that atoms consistof a tiny positively charged nucleus orbited at some distance by negativelycharged point-like particles called electrons. Within the realms of classicalphysics such structures are highly unstable and would be predicted to collapsewithin fractions of a second, in glaring contradiction with the relative stabilityof the world around us: orbital motion is accelerated motion, and accordingto Maxwell theory accelerated charges emit radiation; the electron would thusradiate away energy and spiral into the nucleus of the atom. It was also observedthat simple atoms (like Hydrogen atoms) were able to emit and absorb energyonly in certain discrete quantities. Combining these two observations it thusappeared to be necessary to postulate the existence of stable orbits for electronsat certain discrete radii (energy levels). This suggests that at the microscopiclevel nature allows for a discrete (or quantized) structure quite unfamiliar fromclassical physics.The second is the famous two-slit (gedanken)experiment or other experimentsinvestigating the di�raction and interference patterns of beams of particles likeelectrons. These indicated that under certain circumstance particles (like elec-trons) can show interference patterns (and thus a wave-like nature) and thatunder certain conditions light (whose wave-like nature had �nally been univer-sally accepted) showed behaviour characteristic of particles and not of waves. Inshort, at the microscopic level nature was found to be mind-bogglingly strangeand wonderful. Or, in the words of Dirac (quoted from [1, p. 3], the authorita-tive book on quantum mechanics):We have here a very striking and general example of the break-down of classical mechanics - not merely an inaccurracy of its lawsof motion, but an inadequacy of its concepts to supply us with adescription of atomic events. 2



To make things worse, the outcome of these experiments appeared to dependon the measuring process itself, i.e. on whether or not one was checking throughwhich slit the electron went.1 This, for the �rst time, pointed to the necessity ofincluding the e�ects of observation of a system into a description of the systemitself. In particular, it had to be taken into account that one can not makeany observations on a suitably `small' system without perturbing the systemitself (technically this is expressed in the uncertainty principle). In the wordsof Dirac [1, p. 4]:A consequence of the preceding discussion is that we must reviseour ideas of causality. Causality applies only to a system which isleft undisturbed. If a system is small, we cannot observe it with-out producing a serious disturbance and hence we cannot expect to�nd any causal connexion between the results of our observations.Causality will still be assumed to apply to undisturbed systems andthe equations which will be set up to describe an undisturbed systemwill be di�erential equations expressing a causal connexion betweenconditions at one time and conditions at a later time. These equa-tions will be in close correspondence with the equations of classicalmechanics, but they will be connected only indirectly with the re-sults of observations. There is an unavoidable indeterminacy in thecalculation of observable results, the theory enabling us to calculatein general only the probability of our obtaining a particular resultwhen making an observation.Heisenberg and Schr�odinger provided two mathematical models (or recipes),later shown to be equivalent, which were able to reproduce the above resultsand make many other successfully tested predictions. These models, collectivelyknown as quantum mechanics, describe the quantum behaviour of (point) par-ticles in at space under the inuence of external forces. Supplemented bysome intepretation of, roughly speaking, the role of the measuring process orobserver, they constitute a major step forward in the understanding of quantumphysics in general.At a conceptual level, however, the situation was not very satisfactory. In par-ticular, it was not clear how general the proposed models were, which featureswere to be regarded as fundamental to any quantum version of a classical the-ory and which were to be attributed to particular properties of the systemsconsidered so far.In an attempt to gain some insight into this question, it was in particularDirac who emphasized the formal similarities between classical and quantummechanics and the necessity of properly understanding these. Again in thewords of the master himself [1, p. 84]:1Recent experiments indicate that interference patterns will disappear whenever there is inprinciple the possibility of detecting through which slit the particle (photon, electron) went,regardless of whether there was actually a detector there (switched on) or not. This highlycounter-intuitive result appears to be in agreement with theory.3



The value of classical analogy in the development of quantum me-chanics depends on the fact that classical mechanics provides a validdescription of dynamical systems under certain conditions, when theparticles and bodies composing the system are su�ciently massivefor the disturbance accompanying an observation to be negligible.Classical mechanics must therefore be a limiting case of quantummechanics. We should thus expect to �nd that important conceptsin classical mechanics correspond to important concepts in quantummechanics, and, from an understanding of the general nature of theanalogy between classical and quantum mechanics, we may hope toget laws and theorems in quantum mechanics appearing as simplegeneralizations of well-known results in classical mechanics; . . .Abstracting from the analogy found between classical mechanics and Schr�odingerand Heisenberg quantum mechanics, Dirac formulated a general quantum con-dition, a guideline for passing from a given classical system to the correspond-ing quantum theory. This process in general is known as quantization. And,roughly speaking, quantization consists in replacing the classical algebra of ob-servables (functions on phase space) by an algebra of operators acting on someHilbert space, the quantum condition relating the commutator of two operatorsto the Poisson bracket of their classical counterparts. I will explain these rulesof canonical quantization in section 3, after having introduced the `importantconcepts in classical mechanics' referred to in the above quote. Readers famil-iar with the mathematical description of classical mechanics may wish to moveright on to that section and read it as part of the introduction.Parenthetically, I want to issue a word of caution at this point. At �rst sight(and perhaps even at second sight), the very concept of quantization appearsto be ill-founded since it attempts to construct a `correct' theory from a theorywhich is only approximately correct. After all, our world is quantum, and whileit seems a legitimate task to try to extract classical mechanics in some limit fromquantum mechanics, their seems to be little reason to believe that the inverseconstruction can always be performed. Furthermore, there is no reason tobelieve that such a construction would be unique as there could well be (and, infact, are) lots of di�erent quantum theories which have the same classical limit.Unfortunately, however, it is conceptually very di�cult to describe a quantumtheory from scratch, without the help of a reference classical theory. Moreover,there is enough to the analogy between classical and quantum mechanics tomake quantization a worthwile approach. Perhaps, ultimately, the study ofquantization will tell us enough about quantum theory itself to allow us to doaway with the very concept of quantization.But let us now return to less philosophical matters. Unfortunately, Dirac'squantum condition is not as general as one might have hoped it to be or, atleast, not su�ciently unambiguous. Thus, to make some headway, it is desir-able to �nd a more intrinsic and constructive description of this quantizationprocedure. This is the aim of Geometric Quantization which, as the name sug-gests, attempts to provide a geometric interpretation of quantization within4



an extension of the mathematical framework of classical mechanics (symplec-tic geometry). More speci�cally, geometric quantization (abbreviated to GQhenceforth) refers to a body of ideas pioneered independently by Souriau [2]and Kostant [3] in the late 60's and early 70's.It is the purpose of these lectures to provide an introduction to the role ofsymplectic geometry in quantization in general and, as a concrete realizationof this general picture, to give an introductory account of GQ. Unfortunately,although the fundamental ideas in GQ are very elegant and simple, thingstend to become more complicated and mathematically more demanding ratherquickly. In these notes I have therefore tried to emphasize primarily thesebasic ideas and to hint at or illustrate the more advanced machinery (like half-density and half-form quantization, BKS kernels, Bohr - Sommerfeld varietiesand distributional wave functions) in terms of simple examples rather thandevelop it in any great detail. The reason for proceeding in this way is partlylack of space and time and partly that I do not want to advocate GQ as ane�cient calculational tool in quantum mechanics anyway (in fact, at present atleast it is far from being that), but rather as a procedure of more conceptualinterest.Section 2.1 is a crash-course on the formalism of symplectic geometry. It servesmainly to introduce the nomenclature and (di�erential form) notation to beused throughout. Section 2.2 explains why this is a natural framework forclassical mechanics.Section 3, in a sense the heart of these notes, is an introduction to the question`What is quantization?'. It also deals with the no less important questions`What is it not?' and `What should or can it not expected to be?'. My ownviews on this subject have been heavily inuenced by the article [4] of Ishamwhich I warmly recommend to anyone interested in these questions.Section 4 deals with the �rst step of GQ, known as prequantization. This isan elegant procedure which associates to any `quantizable' symplectic manifolda Hilbert space carrying a faithful representation of the classical observablealgebra. Section 4.1 describes the construction and contains a discussion of theconditions for existence of a prequantization, and their topological classi�cation.Certain simple and prototypical examples are discussed in section 4.2.Unfortunately, the Hilbert space provided by prequantization, as elegant asthe procedure may be, is not the correct one for quantum mechanics, and oneneeds some way of `cutting it in half'. This is achieved via the introductionof a polarization of the phase space. Splitting the quantization process intothese two steps is nevertheless useful because it serves to isolate some of theambiguities inherent in passing from a classical to a quantum system. Theambiguity in the choice of a prequantum Hilbert space corresponds, roughlyspeaking, to the presence of topological superselection rules, while the choice ofpolarization corresponds to choosing a particular representation within a giventopological sector. I hope that the meaning of this sentence will become clearerin the following sections.In section 5.1 I try to explain why, in the framework of GQ, polarizations arise5



naturally at this point. Section 5.2 deals with real polarizations, in particularwith the vertical polarization of a cotangent bundle. Section 5.3 describesthe second important class of polarizations, namely K�ahler polarizations. Asbackground material, it also contains a synopsis of facts about complex andK�ahler vector spaces and manifolds.Section 6, �nally, deals with the construction of the quantum Hilbert spaceassociated to a polarization and with the construction of operators acting on it.It is at this crucial point that GQ becomes somewhat murky. In section 6.1 Ishow how polarization preserving observables give rise directly to operators atthe quantum level and how the scheme needs to be modi�ed to quantize otherobservables (via BKS kernels). We then turn to the construction of the quantumHilbert space. I will describe three prototypical situations (vertical polarizationspositive K�ahler polarizations and real polarizations with non-simply conectedleaves), point out the complications arising in each of these, and explain brieyhow these problems can be overcome.Here these notes end rather abruptly, but I hope that they will have preparedthe ground for further inquiries into the existing literature. In particular, I wantto draw attention to the recent investigations into the polarization dependenceof GQ in [5], motivated by questions arising in topological and conformal �eldtheory, and to the application of GQ to the quantization of constrained systems[6]-[8] (which is a rather natural thing to attempt as constrained systems arealso described most e�ectively in terms of symplectic geometry).The most glaring omission of these notes is probably the representation theoreticaspect of GQ, i.e. the quantization of coadjoint orbits of a Lie group, which Ionly touch upon briey in section 3 and when discussing the quantization of thetwo-sphere in sections 4 and 6. This relation between GQ and the representationtheory of Lie groups is important both mathematically and historically. See [9]for that part of the story.The basic references for section 2 are Abraham and Marsden [10] and Arnol'd[11]. A wealth of other information on symplectic geometry can be found inthe book [12] by Guillemin and Sternberg. My favourite references for section3 are the book [1] by Dirac and the lectures [4] by Isham. Most of what Iwill say about GQ (and much more) can be found in the book by Woodhouse[13]. Its imprints on these notes are rather obvious in sections 5 and 6. Othermonographs on GQ include [14] and [15].2 Symplectic Geometry and Classical MechanicsSymplectic Geometry is the adequate mathematical framework for describingthe Hamiltonian version of classical mechanics. As such it is also the mostsuitable starting point for a geometrization of the canonical quantization pro-cedure.The purpose of section 2.1 is to introduce the formalism of symplectic geometryand the coordinate independent di�erential form notation we will use through-6



out these lectures. Section 2.2 serves to establish the relation of this formalismwith that of classical Hamiltonian mechanics.2.1 Symplectic GeometryBy a symplectic manifold (M;!) we will mean a smooth real m-dimensionalmanifoldM without boundary, equipped with a closed non-degenerate two-form!, the symplectic form.2 `Closed' means thatd! = 0 (2.1)(, @[i!jk] = 0 in local coordinates), where d is the exterior di�erentiald : 
k(M)! 
k+1(M) ; d2 = 0 ; (2.2)on di�erential forms on M . And `non-degenerate' means that at each pointx 2M the antisymmetric matrix !x is non-degenerate, i.e.det(!x) 6= 0 8x 2M : (2.3)The most important example of a symplectic manifold is a cotangent bundleM = T �Q. This is nothing but the traditional phase space of classical mechan-ics, Q being known as the con�guration space in that context. A cotangentbundle has a canonical symplectic two-form which is globally exact,! = d� (2.4)(and hence, in particular, closed). Any local coordinate system fqkg on Q canbe extended to a coordinate system fqk; pkg on T �Q such that � and ! arelocally given by � = pkdqk ; ! = dpk^dqk : (2.5)We will return to the speci�c case of cotangent bundles at the end of this section,when we discuss the relation with classical mechanics.Other examples of symplectic manifolds are orientable two-dimensional surfaces�: choose any volume form ! on �; as such it is certainly non-degenerate; as atwo-form on a two-dimensional manifold it is also certainly closed (d! is a three-form and and there are no anti-symmetric three-tensors in two dimensions); and,although it is a fact (known as Darboux's theorem) that on any symplecticmanifold one can choose a local coordinate system such that ! takes the form(2.5), ! cannot be globally exact in this case because otherwise the volume of� would be zero by Stoke's theorem: If ! = d� were true, thenVol!(�) := Z� ! = Z� d� = Z@� � = 0because @� = ;. More generally, all K�ahler manifolds are symplectic, and wewill come back to them in section 5.3.2Like a Riemannian manifold (M; g) is a manifold equipped with a non-degenerate sym-metric two-tensor g, the Riemannian metric. 7



Condition (2.3) has several important consequences. First of all, it impliesthat M is even-dimensional, m = 2n, as an odd-dimensional antisymmetricmatrix has zero determinant. The same argument as above shows that thesymplectic form of any compact symplectic manifold is cohomologically non-trivial (i.e. closed but not globally exact), because otherwise the symplecticvolume V ol!(M) := 1n! ZM !n (2.6)would be zero.Moreover, as ! is invertible, at each point x 2 M it gives an isomorphismbetween the tangent and cotangent spaces of M at x,!x : TxM iso� T �xM ; (2.7)expressed in local coordinates asXi 7! Xi!ik : (2.8)Crudely speaking, like a metric a symplectic form allows us to raise and lowerindices on tensors. This extends to an isomorphism between TM and T �M andbetween vector �elds and one-forms on M ,X 7! i(X)! = !(X; : ) 2 
1(M) (2.9)(here i(X) denotes the contraction of a di�erential form with the vector �eldX, as in (2.8), i.e. the insertion of X into the �rst `slot' of a di�erential form).In particular, therefore, the existence of ! allows us to associate a vector �eldXf to every function f 2 C1(M) viai(Xf )! = �df (2.10)(the minus sign is for later convenience only). Xf , the `symplectic gradient'of f , is known as the Hamiltonian vector �eld of f . It generates a ow on Mwhich leaves ! invariant, as the Lie derivative of ! along Xf is zero,L(Xf )! � di(Xf )! + i(Xf )d! = �ddf = 0 : (2.11)Via (2.10), the symplectic form provides an anti-symmetric pairing ff; gg be-tween functions f; g on M called the Poisson bracket of f and g. It is de�nedby ff; gg := !(Xf ;Xg) 2 C1(M) ; (2.12)and describes the change of g along Xf (or vice versa),ff; gg = i(Xg)i(Xf )! = i(Xf )dg = L(Xf )g : (2.13)In particular, f is constant (i.e. preserved) along the integral curves of Xf . ThePoisson bracket satis�es the Jacobi identityff; fg; hgg = fff; gg; hg + fg; ff; hgg : (2.14)8



This can be shown either by writing out explicitly (d!)(Xf ;Xg;Xh) = 0 (! isclosed), or by using the tensoriality of the Lie derivative and L(Xf )! = 0 todeduce L(Xf ) (!(Xg;Xh)) = !(L(Xf )Xg;Xh) + !(Xg; L(Xf )Xh)which is just a rewriting of (2.14). This gives (C1(M); f:; :g) the structure ofan in�nite dimensional Lie algebra.One further important identity we will need, which relates the Lie algebras ofvector �elds and functions on M , is[Xf ;Xg] = Xff;gg ; (2.15)which shows that the Hamiltonian vector �elds also form an in�nite dimensionalLie algebra. Moreover, regarding the map (Lie algebra homomorphism) f ! Xfas an assignment of di�erential operators to functions, the identity (2.15) is alsoan illustration of the quantization paradigm (Dirac's quantum condition)Poisson Brackets ! Commutatorsand will play an important role in the following. To prove (2.15) one againmakes use of the tensoriality of the Lie derivative, this time in the formi([X;Y ]) = L(X)i(Y )� i(Y )L(X) ;to show that i([Xf ;Xg])! = i(Xff;gg)!.Lastly, we will need to consider certain submanifolds of symplectic manifolds.A subspace (V; !jV ) of a symplectic vector space (W;!) (i.e. a vector space Wequipped with a non-degenerate antisymmetric two-tensor !) is called isotropicif !jV = 0. By linear algebra, an isotropic subspace ofW has dimension at most12 dim(W ), and in that case V is called a Lagrangian subspace3 of W . Likewise,we now de�ne a Lagrangian submanifold of (M;!) to be an n-dimensionalsubmanifold N � M such that !jTN = 0. For example, it is evident from(2.5) that Q (de�ned by pk = 0) is a Lagrangian submanifold of M = T �Q, asis the �bre T �qQ of the cotangent bundle at q 2 Q. Locally, any Lagrangiansubmanifold N is given by the vanishing of n functions Fk on M which are ininvolution, i.e. which satisfyfFk; Flg = 0 8k; l : (2.16)In fact, it follows from this condition that the Hamiltonian vector �elds XFkare tangent to TlfFl = 0g so that they locally span the tangent bundle TN .Reading (2.16) as !(XFk ;XFl) = 0 then says that !jTN = 0.This concludes our crash-course on symplectic geometry. The second half of thiscentury has witnessed a great deal of activity in this �eld, which has establisheditself as an independent mathematical descipline fertilized by the relation withclassical mechanics. I have not mentioned any results of modern symplecticgeometry which can be obtained within this framework and the adventurousreader is referred to [10] for a detailed account.3The terminology arises from the relation between such subspaces and the Hamilton-Jacobitheory of Lagrangian mechanics, see [10, 13]. 9



2.2 Relation with Classical MechanicsNow, what has all this got to do with classical mechanics? In the simplestmechanical systems the areana for classical mechanics in the Hamiltonian (or�rst order) formalism is the phase space, a 2n-dimensional real vector space� R2n with coordinates q1; : : : ; qn; p1; : : : ; pn describing the position and themomentum (velocity) of the particles involved. The dynamics (time evolution)of the system is governed by Hamilton's equationsddtqk = @H@pkddtpk = �@H@qk ; (2.17)where H(qk; pk), the Hamiltonian, is a function on phase space describing theenergy of the system.Typically, H is of the form H = T + V where T � p2 is the kinetic energy andV = V (qk) is the potential energy whose gradient descibes the forces acting onthe particles. For example, a harmonic oscillator in one dimension is describedby the Hamiltonian H = (p2 + q2)=2, the equations of motion _q = p; _p = �qleading to the characteristic oscillating behaviour q(t) = q(0) cos t+ p(0) sin t.If H does not depend on time explicitly, the equations of motion (2.17) implythat H is conserved along any trajectory in phase space,ddtH = @H@qk _qk + @H@pk _pk= @H@qk @H@pk � @H@qk @H@pk = 0 ; (2.18)(summation over repeated indices being understood) while the evolution of anyother function f on phase space (observable) is given byddtf = @f@qk @H@pk � @f@pk @H@qk : (2.19)In our simple one-dimensional example above, (2.18) already determines thephase space trajectories uniquely to be the circles p2+q2 = const:, in agreementwith the explicit solution of the equations of motion.In general, any constant of motion, i.e. any function f on phase space in invo-lution with the Hamiltonian, fH; fg = 0, can be used to reduce the dynamicalsystem to a lower dimensional one on the common level surfaces of the functionsH and f . It follows from the Jacobi identity (2.14) that the Poisson bracketof any two constants of motion is also a constant of motion. If it is possibleto �nd n constants of motion in involution (and independent in the sense thattheir Hamiltonian vector �elds are linearly independent) the system is calledintegrable and there are then standard methods available for solving the systemcompletely (Hamilton-Jacobi theory, action-angle variables, . . . ). Most text-book examples of classical mechanics are integrable, but integrability is by no10



means prototypical and only occurs in systems with a high degree of symmetry.In the general case one has to resort to more qualitative (instead of quantitative)methods of investigation. For a detailed exposition with numerous applications(e.g. to the rigid body and celestial mechanics) see [10].The equations (2.17-2.19), characterising Hamiltonian mechanics, arise natu-rally if we think of R2n as the cotangent bundle T �Rn of the con�gurationspace Rn, with the canonical symplectic form (2.5). Namely, in that case theHamiltonian vector �eld Xf of a function f(qk; pk) isXf = @f@pk @@qk � @f@qk @@pk ; (2.20)as it is easily veri�ed that i(Xf )dpk^dqk = �df (cf. (2.10)). Therefore thePoisson bracket is ff; gg = @f@pk @g@qk � @f@qk @g@pk ; (2.21)and, in particular, the canonical Poisson brackets (classical canonical commu-tation relations) between the coordinates and momenta arefqk; qlg = fpk; plg = 0fpk; qlg = � lk : (2.22)The functions qk and pl form a complete set of observables in the sense that anyfunction which Poisson commutes (has vanishing Poisson brackets with) all ofthem is a constant.The equations (2.17-2.19) can now be written succinctly as(2:17) , ddtqk = fH; qkg ; ddtpk = fH; pkg ; (2.23)(2:18) , fH;Hg = 0 ; (2.24)(2:19) , ddtf = fH; fg = XHf ; (2.25)so that time evolution in classical mechanics is determined by the Hamiltonianvector �eld XH of the Hamiltonian H.This formulation makes manifest the form-invariance of the equations of clas-sical mechanics under canonical transformations or symplectomorphisms (dif-feomorphisms leaving the symplectic form invariant). For instance, Liouville'stheorem that the volume of any portion of phase space is invariant under timeevolution (i.e. behaves like an incompressible uid) is a trivial consequence ofL(XH)! = 0 and is thus built into the formalism from the outset.It also has the added advantage of generalizing immediately to more compli-cated systems (e.g. with constraints) where the con�guration space is somecurved manifold Q, or even where the phase space is some compact symplecticmanifold (and hence cannot possibly be a cotangent bundle). The necessityto consider such more exotic systems in physics has arisen in recent years ina number of di�erent contexts, e.g. for the description of internal degrees offreedom and in topological and conformal �eld theory. In mathematics, quan-tization of compact symplectic manifolds plays a central role in representationtheory (where the symplectic manifolds in question are coadjoint orbits).11



3 What is Quantization?In this section we take a �rst step away from the classical theory outlined above.It is, in a sense, a continuation of the introduction (why quantum theory?) andtries to give a general avour of what quantization is about, without enteringtoo far into the formalism and interpretation of quantum mechanics itself.Classically, the space C1(M;!) of observables has, in addition to a Lie alge-bra structure provided by the Poisson bracket, the structure of a commutativealgebra under pointwise multiplication,4(fg)(x) = f(x)g(x) = (gf)(x) : (3.1)It appears that it is this property which has to be sacri�ced when moving fromthe classical to the quantum theory, the non-commutative nature of observablesin the quantum theory being at the heart of the phenomena discussed in theintroduction. More speci�cally, quantization usually refers to an assignmentQ : f ! Q(f) (3.2)of operators Q(f) on some Hilbert space to classical observables f . This Hilbertspace can be �nite-dimensional (in which case one can think of the Q(f)'s sim-ply as �nite-dimensional matrices) but will, in general, be in�nite-dimensional.The scalar product in the Hilbert space is necessary for the probabilistic inter-pretation of the theory and is thus of fundamental importance. This assignmentQ has to satisfy some more or less obvious requirements likeQ1: R-linearity,Q(rf + g) = rQ(f) +Q(g) 8r 2 R; f; g 2 C1(M) ; (3.3)and the condition thatQ2: the constant function 1 is mapped into the identity operator or matrix 1,Q(1) = 1 : (3.4)Furthermore, real functions should correspond to hermitian operators (as theeigenvalues of Q(f) are the possible results of measurements in the quantumtheory and hence should be real),5Q3: Q(f)� = Q(f) : (3.5)But, of course, we need more guidelines than that to construct a quantum theoryfrom a classical theory (even keeping in mind the limitations to this programmementioned in the introduction). It is here where Dirac's observation enters that4These are related by the Leibniz rule ff; ghg = ff; ggh+ gff; hg and give C1(M;!) thestructure of a Poisson algebra.5Here and in the following I will gloss over functional analytic complications. This is,however, not meant to imply that they are not important.12



it is the commutator of two operators which is the quantum counterpart of theclassical Poisson bracket. More precisely, to the conditions (3.3-3.5) one addsQ4: the quantum condition[Q(f);Q(g)] = �i�hQ(ff; gg) : (3.6)Here �h is Planck's constant, a constant of nature (dimension of an action)characteristic of quantum e�ects. It is a very small number, and for mostmacroscopic considerations the fact that it is not zero can be neglected. Thisis also reected in the fact that for �h! 0 (now treating �h just as a parameter)one recovers from (3.6) the commutative structure of classical mechanics. Atthe microscopic level, however, order �h e�ects can no longer be neglected andthis is where classical mechanics needs to be replaced by quantum mechanics.It would perhaps be more natural, if �h appeared as a (free) parameter in thetheory - see [4]. One could also contemplate the possibility of adding higher-order terms in �h to the right hand side of (3.6); this leads to what is known asdeformation quantization.Experience has taught that there is yet one more condition to be imposed forthe assignment (3.2) to produce a valid quantization (in those examples whereone `knows' what it should look like). This last requirement is some kind ofirreducibility condition. A reasonably general and satisfactory way of phrasingit makes use of the concept of a complete set of observables introduced in section2.2. In complete analogy, we de�ne a complete set of operators to be one suchthat the only operators which commute with all the operators from that set aremultiples of the identity. The condition then reads thatQ5: if ff1; : : : ; fkg is a complete set of observables, fQ(f1); : : : ;Q(fk)g is acomplete set of operators.Unfortunately, it is in general not possible to satisfy both Q4 (for all f and g)and Q5, and the best one can hope for is some `optimal' compromise, e.g. de-manding Q4 only for a complete set of observables and perhaps some additionalobservables which are of particular interest in the quantum theory. Of course,nothing tells us how to �nd a complete set of observables, or which one tochoose. Nor is it ruled out that di�erent choices of complete sets will lead toinequivalent quantum theories (i.e. to inequivalent predictions for the resultof experiments). It is here, in what one means by `optimal', that extrane-ous information and requirements enter the construction of a quantum theory,e.g. certain symmetries or geometric properties of the classical system whichmay make one complete set more `natural' than another.Common sense must be used here to avoid embarking on an over-axiomatised, and hence misguided, piece of theoretical physics. We. . . should not be trapped into axiomatising theoretical ideas out ofexistence. [4, p. 1155]This discussion shows that it is very di�cult to address the question of exis-tence and classi�cation of quantizations satsifying Q1-Q5 (in some sense) in13



general. By changing slightly the rules of the game, GQ nevertheless providesone method for doing precisely this. I will come back to this below.First, it will be instructive to see how all this works in the simplest case Q =Rn, M = T �Q. In that case we have already encountered a complete set ofobservables in section 2.2, namely the coordinate functions qk and pl. Accordingto the rule Q4 we demand the corresponding operators to satisfy the canonicalcommutation relations[Q(qk);Q(ql)] = [Q(pk);Q(pl)] = 0 ;[Q(qk);Q(pl)] = i�h�kl : (3.7)This is the so-called Heisenberg algebra and, by the Schur lemma, rule Q5 isnow equivalent to �nding an irreducible representation of the Heisenberg algebra(this is why I called Q5 `some kind of irreducibility condition' above). By theStone - von Neumann theorem any such representation is unitarily equivalentto L2(Q) = L2(Rn) with qk and pl represented byQ(qk) (x) = xk (x) ; Q(pl) (x) = ��hi @ @xl (x) (3.8)(more precisely, for this uniqueness theorem to hold, one has to require thatthe representations exponentiate to representations of the Heisenberg group -there are inequivalent representations of the Heisenberg algebra). The spectrum(range of eigenvalues) of these operators is (�1;+1). This is the standardSchr�odinger picture of quantum mechanics. It is important to keep in mindthat the fact that in this case `wave functions' can be represented by functionson the con�guration space is a consequence of our quantization rules Q1-Q5and the Stone - von Neumann theorem, and not some fundamental dogma ofquantization (as which it is often presented).Now, the coordinates and momenta are certainly not the only observables ofinterest. Can we quantize any others as well in accordance with the rule Q4?Indeed we can, albeit not many more. One important observable is the kineticenergy operator p2 � pkpl�kl and evidently it should be represented by theLaplacian, Q(pkpl) = ��h2 @2@xk@xl ;Q(p2) = ��h2�kl @2@xk@xl � ��h2� : (3.9)Likewise, we have little choice but to represent observables quadratic in the co-ordinates by multiplication operators. Classically, the Poisson bracket betweenthese two quadratic operators is proportional to pkql and we thus need to assignan operator to this third class of quadratic observables as well. Imposing eitherthe hermiticity condition Q3 or the quantum condition Q4 one �ndsQ(pkql) = 12 �Q(pk)Q(ql) +Q(ql)Q(pk)� : (3.10)14



This can be interpreted as a particular operator ordering ofQ(pkql) � Q(pk)Q(ql)(but note that a priori there is no logical necessity for the assignment Q to sat-isfy some condition like Q(fg) � Q(f)Q(g) in general).The quadratic observables form a closed Lie algebra under Poisson brackets,fpipj; pkplg = fqiqj; qkqlg = 0fpiqj; pkplg = ��jkpipl � �jl pipkfpiqj; pkqlg = �ilqjpk � �jkpiqlfpiqj; qkqlg = �ki qjql + �liqjqkfpipj; qkqlg = �kj piql + �ljpiqk + �ki pjql + �lipjqk ; (3.11)the symplectic Lie algebra sp(n) (in the non-compact form, sp(1) � sl(2;R)).Thus, what the above means is that when we quantize a symplectic vectorspace we can always obtain a representation of the symplectic Lie algebra onthe quantum Hilbert space which reects the classical symplectic invarianceof the theory (and which exponentiates to a projective representation of thesymplectic group).If we now try to extend this quantization to cubic observables we run into con-ict with the quantum condition Q4. That this is not due to some particularlyunfortunate choices we have made but rather an inevitable consequence of therules Q1-Q5 is the content of the Groenewald - van Hove theorem (for a carefulexposition see [10]). Thus, even in the simplest case of a symplectic vectorspace no full (in the sense that Q4 holds for all observables) quantization ex-ists. This is not a severe set-back, however, since there is no reason to expectany arbitrarily crazy classical `observable' to be quantizable and to qualify as atrue observable of the quantum system. The choice of classical functions whichare to be promoted to quantum operators depends on the system under con-sideration and should feed its way back into e.g. the choice of complete set ofobservables entering the condition Q5.Let us now look at the case when Q 6= Rn, M 6= R2n. Even ifM is a cotangentbundle, M = T �Q, canonical coordinates (qk; pl) will in general not exist glob-ally. It thus makes little sense to choose these as a complete set of observablesand to impose the canonical commutation relations (3.7) at the quantum level.If one does that one is ignoring completely the geometry of the phase space andis thus performing something that could be regarded as only a tangent spaceapproximation to the true quantum theory.Take, for instance, the example M = T �S1 (a cylinder) with angular coor-dinate ', angular momentum p and symplectic form dp^d'. If one requiredthe canonical commutation relations [Q(');Q(p)] = i�h, this would imply thatthe spectrum of both operators is (�1;+1), but this is wrong! In fact, it isknown that in quantum mechanics angular momentum is quantized in units of�h, specQ(p) = �hZ (while the spectrum of ' ought to be [0; 2�)). The source ofthe problem is, of course, the fact that ' is not a globally de�ned coordinateon the circle and that one is really dealing with the real line when one pretendsthat it is. 15



One way to get around this problem is to replace ' by a globally de�ned functionon the circle, like sin'. If one does that, one is also forced to include cos' toobtain a complete set of functions closed under Poisson brackets. One thenarrives at the following globally well de�ned canonical Poisson bracket algebraof the cylinder,fp; sin'g = cos' ; fp; cos'g = � sin' ; fsin'; cos'g = 0 : (3.12)Quantization of the cylinder then amounts to �nding a representation of (3.12)and this yields the expected result.Is there a more systematic way of arriving at (3.12)? And what is going toreplace the canonical commutation relations (3.7) in general? A clue to thiscomes from the following observation. The fact that the canonical coordinatesare globally de�ned for M = T �Rn implies that (via their Hamiltonian vector�elds) translations act on the phase space, completeness corresponding to thefact that these translations act transitively. The canonical Poisson bracketalgebra (2.22) can thus be regarded as a central extension of the translationalgebra, and the quantization conditions instruct one to �nd its irreduciblerepresentations.This suggests a general strategy whenever the phase space is a homogenousspace (i.e. one with a transitive action of some group G). Assuming that thisaction is generated by Hamiltonian vector �elds, the corresponding functionsform (roughly speaking) a complete set of observables. One then looks forirreducible representations of their Poisson bracket algebra. Thus the canonicalcommutation relations of the Heisenberg algebra are replaced by those of the`canonical' group G and the problem of quantization is again reduced to oneof representation theory. In general, there will be no Stone - von Neumanntheorem so that quantization will not be unique. And, even if M = T �Q, theHilbert space of the quantum theory will not necessarily turn out to be L2(Q).Applied to the above example one �nds that quantization of the cylinder amountsto �nding representations of the Euclidean group E(2) which in turn can be ex-pressed via the Poisson bracket relations (3.12), as had been anticipated above.Note that the �rst guess, that the canonical group could be chosen to be S1�Ritself, acting on the cylinder by rotations and translations, fails, because thegenerator @=@p of translations is not globally Hamiltonian. This is the sameproblem in disguise we encountered above with regard to the `naive' canonicalcommutation relations. For a detailed explanation of this programme, withmany other �nite and in�nite dimensional examples, see [4].More generally, one may say that whenever there is a preferred complete set ofobservables (in some sense) there is a preferred class of quantizations, and inthis form Isham's programme has been applied successfully to gauge theoriesand quantum gravity in the Ashtekar variables by the Syracuse group.In order to avoid these questions (which require more of a case by case analysis)and to geometrize the question of existence and classi�cation of quantizations,GQ focusses on a slightly di�erent way of looking at quantum mechanics onRn. Essentially, the concept of a complete set of observables (like the qk and16



pl) is replaced by that of a maximally (Poisson) commuting set of observables(like the qk). Thus, wave functions are considered to be functions (or sections ofsome complex line bundle) on the classical or quantum spectrum of a maximallycommuting set of observables (which are diagonal in this representation).Alternatively, still for Q = Rn, wave functions can be characterized as functionson phase space which are annihilated by the Hamiltonian vector �elds of a max-imally commuting set of observables. It is this way of looking at Schr�odingerquantization that generalizes most readily to other symplectic manifoldsM . Insection 2.2, we had already seen that such a maximally commuting set fFkgde�nes a Lagrangian submanifold of M . By varying the constants ck in theequations Fk = ck one then obtains a foliation of M by Lagrangian submani-folds. This is also called a real polarization of M . The quantum Hilbert spaceis then constructed from those functions (sections of a line bundle) onM whichare (covariantly) constant along the leaves of this foliation. It is, roughly speak-ing, this condition that replaces the quantization condition Q5 (emphasizing therole of a complete set of observables).At �rst, this approach to quantization appears to be rather restrictive. In the�nite dimensional case, however, there is considerable overlap among the resultsarising from this, Isham's, and other quantization schemes. One of the reasonsfor this is that the concept of a polarization is more exible than it perhapsseems.First of all, it is possible to replace real by complex polarizations (integrable La-grangian subbundles of the complexi�ed tangent bundle ofM - see section 5.1).This is also familiar from ordinary quantum mechanics on Rn in the form of theBargmann representation in which wave functions are represented by holomor-phic functions of zk � qk+ ipk. In many cases covered by Isham's scheme thereare more or less natural polarizations which are compatible with (i.e. invariantunder) the canonical group. GQ can then be used to construct representationsof this canonical group. In this context it can thus be regarded as investigatingthe question to which extent representations of the canonical group, featuringin Isham's approach, can be constructed from symplectic geometry.Moreover, it can be seen in examples that, with due care, it is also possible toapply GQ when the fFkg or the real polarization are not globally de�ned butare singular somewhere. Such singular polarizations are more likely to existand thus extend the range of applicability of GQ.A �nal word of warning: it is possible that GQ is overambitious in attemptingto make quantization `work' for (almost, see section 4.1) arbitrary symplecticmanifolds. Since it is really quantum theory that should be regarded as funda-mental, there is no a a priori reason to believe that every classical theory has aquantum counterpart.
17



4 Geometric Quantization I: PrequantizationAs mentioned a couple of times above, GQ accomplishes the quantization ofa symplectic manifold in a two- (or more-) step procedure. The �rst is theconstruction of a faithful representation of the Poisson algebra of functions bylinear operators on a Hilbert space. This is known as prequantization andsatis�es the quantization conditions Q1-Q4. In a second step, a variant of Q5is imposed in terms of a polarization, at the inevitable expense of sacri�cingpart of the quantum condition Q4.In section 4.1 the construction of the prequantum Hilbert space from a complexline bundle over phase space is explained, as well as the classi�cation of linebundles with connections. Examples are discussed in section 4.2.4.1 The Prequantum Hilbert SpaceIn order to geometrize the notion of quantization, it is natural to attempt toconstruct the quantum phase space (= Hilbert space) from the space of func-tions on the classical phase space M instead of regarding the two as completelyseparate entities. An important role is played by the identity (2.15),[Xf ;Xg] = Xff;gg ;which shows that Hamiltonian vector �elds give a representation of the classicalPoisson bracket algebra by �rst order di�erential operators on M . In fact, theassignment f ! �i�hXf (4.1)satis�es the conditions Q1 (obviously), Q3 (with respect to the Liouville mea-sure, because Xf leaves ! invariant), and Q4 (by (2.15)). However, since thezero vector �eld is assigned to any constant function, (4.1) fails to satisfy Q2.One may try to remedy this by replacing �i�hXf by �i�hXf + f , but this is alsonot quite right, now violating Q4. A little further experimenting shows thatif M = T �Q (where the symplectic form ! is globally the di�erential of thecanonical one-form �), the assignmentP : f ! P(f)P(f) = �i�hXf � �(Xf ) + f (4.2)indeed satis�es Q1�Q4 and thus gives a faithful representation of the Poissonalgebra by �rst order di�erential operators on L2(M;!). For Q = Rn one has(denoting the multiplication operator simply by qk)P(qk) = i�h @@pk + qk ; P(pl) = �i�h @@ql : (4.3)This evidently only reduces to the Schr�odinger representation (3.8) when actingon functions of the coordinates alone. (4.3) also shows that P fails to satisfythe irreducibility condition Q5 as e.g. the operator @=@pj commutes with all theP(qk) and P(pl). Another problem with prequantization is, that it certainly18



fails to reproduce the second order di�erential operators (3.9) associated toobservables quadratic in the momenta. To reobtain these from GQ requiresmuch more work. The crucial point is, that the operator P(p2) (being linear inthe momenta) does not even act on the space of functions of the coordinatesalone. It thus changes the representation space or, in the language of GQ, thepolarization. Thus, to associate an operator to p2 one has to compensate forthe change in the polarization caused by the ow of p2. This is an analyticallyrather involved procedure based on the so-called Blattner - Kostant - Sternberg(BKS) kernels which is very incompletely understood in general. We will onlycome back to it briey in section 6.1.There is still one minor di�culty with the above construction. Namely, insteadof � one could have chosen a symplectic potential of the form � + df for somefunction f on M . This can be compensated for by multiplying the functions ofL2(M;!) by the phase factor exp(if=�h) (showing that the resulting prequan-tizations are unitarily equivalent). f is, however, only determined by df upto a constant, resulting in an overall phase ambiguity of the prequantum wavefunctions.6 This suggests that it is more convenient to regard the operatorsP(f) as acting on the space of sections of a trivial complex line bundle L overM equipped with a connection D which in a particular trivialization takes theform D = d� (i=�h)� : (4.4)As we will need the construction later on when switching from real to complexpolarizations, I will briey explain the reation between trivializations, sections,and connection forms in the case at hand. The same arguments apply to localtrivializations (whose existence is guaranteed by the de�nition of a �ber bundle)in the general case of non-trivializable bundles.If there is a global nowhere vanishing section s of the complex line bundle L, thissection gives us an identi�cation L �M�C. Conversely, beginning withM�C(as we did above before starting to worry about line bundles) we can think of itas a line bundle L with the natural trivializing section s0(m) = (m; 1). Givena connection (covariant derivative) D on L, and a trivializing section s, thecorresponding connection one-form �s is de�ned byDs = �i�ss : (4.5)Any other section of L is of the form  s for some complex valued function  ,and one has D( s) = (d )s+  (Ds) = (d � i�s )s ; (4.6)which can be read as D = d � i�s (4.7)`in local coordinates'. If one chooses a di�erent trivializing section, say s0 =exp(�if)s then the connection one-form will change according toDs0 = D(exp(�if)s) = �i(�s + df)s0 � �i�s0s0 : (4.8)6The more exotic possibility of replacing � by � + �, where � is a closed but non-exactone-form on M , will be dealt with below. It leads to a unitarily inequivalent theory.19



With respect to s0 the section  s will be represented by exp(+if) and thisrecovers the argument given above. The upshot of this is that we should thinkof (4.4) as being valid in the trivializtion s0(m) = (m; 1) and that we nowknow how to relate changes in the symplectic potential (which it is occasion-ally convenient to perform) to changes of local trivializations. This point ofview actually becomes mandatory when one is dealing with general symplecticmanifolds (M;!) where ! is not necessarily exact. In that case expressions like(4.2) and (4.4) only make sense locally, with � ! ��, say, on a coordinate patchU� while on overlaps U� \ U� of a (good) cover one has�� � �� = df�� ; (4.9)where f�� is related to the transition function connecting the local trivializingsections s� and s� over U� \ U�.In terms of D, the prequantum operator P(f) can be written asP(f) = �i�hD(Xf ) + f : (4.10)There is another way of looking at P(f) which sheds some light on its de�nition.Via its Hamiltonian vector �eld Xf the function f generates a ow�ft : m 7! �ft (m) (4.11)of canonical transformations of M . Up to an overall phase (related to theambiguity f ! f + c, c a constant) there is a unique way of lifting this ow toan automorphism of L preserving the Hermitian structure and the compatibleconnection. This, in turn, induces a `pull-back' actionb�ft :  7! b�ft  (4.12)on sections of L and their local representatives  . Introducing the quantityLf = �(Xf )� f (4.13)= pk @f@pk � fthe Lagrangian of f , one �nds that (4.11) is given explicitly by�b�ft  � (m) =  (�ft (m)) exp�� i�h Z t0 Lf (�ft0(m))dt0� : (4.14)Thus `time evolution' is given by the exponential of the classical action, some-thing that is highly reminiscent of the path integral. There are numerous otherconnections between GQ and path integrals, see [13, 14]. Anyway, as P(f) canbe expressed in terms of Lf asP(f) = �i�hXf �Lf ; (4.15)it follows that P(f) is nothing but the derivative of (4.14) at t = 0,P(f) = �i�h ddt �b�ft  � jt=0 : (4.16)20



We can thus interpret P(f) intrinsically as the generator of a connection pre-serving automorphism of L lifting the action of the Hamiltonian vector �eld Xfon M .Let us now retrun to more down-to-earth matters. It follows from (4.4) thatthe curvature 
 of L, de�ned by
(X;Y ) = i ([D(X);D(Y )]�D([X;Y ])) ; (4.17)is 
 = iD2 = (1=�h)d� = (1=�h)! : (4.18)The de�nition (4.10) still makes sense for non-trivial line bundles and[P(f);P(g)] = �i�hP(ff; gg) (4.19)is satis�ed for all f and g provided that L is a line bundle with connection Dwhose curvature two-form is (1=�h)!. Moreover, P(f) can still be understoodas the generator of a connection preserving automorphism of (L;D).As ! is real, there always exists a compatible Hermitian structure on L and wethus arrive at the followingDe�nition: A prequantization of a symplectic manifold (M;!) is a pair (L;D)where L is a complex Hermitian line bundle overM andD a compatible connec-tion with curvature (1=�h)!. The prequantum Hilbert space H is the completionof the space of smooth sections of L, square-integrable with respect to the Li-ouville measure on M (and the Hermitian structure on the �bers).Topologically, line bundles are classi�ed by their �rst Chern class c1(L) 2H2(M; 2�Z). In de Rham cohomology, c1(L) can be represented by the cur-vature form of any connection on L (the cohomology class of the curvatureform is independent of the choice of connection). Thus a necessary (and, infact, su�cient) condition for a prequantization (L;D) of a symplectic manifoldto exist is that (1=2��h)! represent an integral cohomology class or, in otherwords, that the integral of (1=2��h)! over every closed, orientable two-surfaceinM be an integer. Such symplectic manifolds are called quantizable (althoughprequantizable would be more accurate).Cotangent bundles T �Q, equipped with the canonical symplectic structure ! =d�, are always quantizable as ! is exact. Moreover, as the cohomology class of !is trivial, so is any prequantum line bundle L over (T �Q;!) (as we had alreadynoted above). In certain cases, however, the quantizability condition imposesa quantization condition on parameters appearing in the classical system. Forinstance, Dirac's famous quantization condition on the electric charge e of aparticle moving in the �eld of a magnetic monopole can be understood in thisway. This is a consequence of the fact that the coupling of particles to anAbelian gauge �eld (connection) A with �eld strength (curvature) F = dA canbe accomplished by replacing the original symplectic structure ! = d� on T �Qby the `charged' symplectic structure!F = ! + eF21



(which is still non-degenerate and closed). This is equivalent to using the stan-dard minimal coupling prescription pl ! pl � eAl(qk) with the unmodi�edsymplectic structure !. Quantizability of (T �Q;!F ) is now equivalent to inte-grality of (e=2��h)F . If F represents a non-trivial cohomology class (so that Ais only de�ined locally), this gives a restriction on the possible values of e andthe prequantum line bundle L will be non-trivial as well. (As an aside: the cou-pling constant quantization conditions appearing in certain �eld theories likethe Wess-Zumino-Witten model and topologically massive gauge theory can beunderstood in the same way.)Likewise, if M = S2r , the two-sphere with radius r, and ! is the volume form! = r sin#d#d�, then ! is only integral for certain discrete values of r, namelyr = n�h=2; n 2 Z. It is, by the way, no coincidence that this looks like thequantization rule for angular momentum or like representation theory of SU(2).S2 is a homogeneous space for SU(2), S2 � SU(2)=U(1) (in fact, a coadjointorbit), and quantization of S2 hence leads to representations of SU(2). Theprequantum Hilbert space is, of course, in�nite dimensional, but by consideringonly holomorphic sections of the prequantum line bundle (which correspondsto a particular choice of complex polarization) one obtains �nite dimensionalHilbert spaces which are irreducible representation modules of SU(2). Thisrelation between transitive group actions (homogeneous symplectic spaces) andirreducible representations is one of the origins of GQ. It is appropriate to regardGQ as a generalization of the Borel-Weil-Bott theorem and Kirilov's method oforbits [9] to the non-homogeneous case.As the above examples may have given rise to the impression that all symplecticmanifolds (M;!) can be made quantizable by a rescaling of the symplectic form!, I will mention a simple counterexample: the product of two two-spheresM = S2r � S2s with incommensurate radii r and s. Attempts have been madeto generalize GQ to such spaces but I will have nothing to say about this here.After having discussed this necessary condition for a prequantization to exist,we now turn to a brief discussion of the classi�cation of prequantizations of aquantizable symplectic manifold (M;!). As a key role is played by the con-nection D in the de�ntion of prequantization, the topological classi�cation ofline bundles (by their Chern class) is too coarse to provide a classi�cation ofprequantizations or prequantum line bundles on (M;!). What one needs is are�nement in which two prequantizations (L;D) and (L0;D0) are regarded asequivalent if there is a bundle isomorphism f : L! L0 such that f�D0 = D.To address this problem in a somewhat more pedestrian manner, we will needthe following terminology: a connection is called at if its curvature vanishes; aat line bundle is a line bundle with a at connection. Furthermore we will needthe fact that one can form the tensor product E
F of two vector bundlesE andF (this is simply done �berwise) and that the tensor product of two complexline bundles L and L0 is again a complex line bundle (because C 
 C � C).These tensor product bundles inherit naturally a tensor product connectionDL
L0 = D 
 D0 from connections on L and L0. In a local trivialization, ifD = d� i� and D0 = d� i�0, then D
D0 = d� i(�+�0). Thus the curvature22



(4.18) of D
D0 is simply the sum of the curvatures of D and D0. Furthermore,the curvature of the complex conjugate line bundle (L�;D�) is minus that of(L;D) as D� = d + i� and (L 
 L�;D 
D� = d) is the trivial at line bundlewith trivial connection d.This implies that, given a prequantization (L;D) and a at line bundle (L0;D0),the tensor product (L 
 L0;D 
 D0) is again a prequantization. Conversely,given two prequantizations (L;D) and (L0;D0), they di�er by a at line bundlebecause (L0;D0) � (L0;D0)
 ((L;D)
 (L�;D�))� (L;D)
 �(L0;D0)
 (L�;D�)� (4.20)and the second factor in the second line is at. Thus the classi�cation ofprequantizations of (M;!) amounts to the classi�cation of at line bundleson M (and is, in particular, independent of !). This is quite standard andcan be accomplished in a number of di�erent ways. An argument using Cechcohomology and exact sequences can be found in [13] and leads to the resultthat isomorphism classes of at line bundles (and prequantizations) are in one-to-one correspondence with the elements ofH1(M;U(1)) ;the �rst cohomology group of M with coe�cients in U(1). Alternatively, onecan determine directly the (moduli) space of at U(1) connections onM modulogauge transformations which is well known to beHom(�1(M); U(1)) ;where �1(M) is the fundamental group of M . This result follows from the factthat the holonomy of a at connection along a loop is invariant under deforma-tions of the loop so that a at connection is uniquely determined, modulo gaugetransformations, by its holonomies along homotopy classes of non-contractibleloops. By the universal coe�cient theorem [16] the above two expressions areequal.There are two possible sources of non-equivalent at line bundles on M , andthus two kinds of contributions to H1(M;U(1)). One is the possibility of havingnon-equivalent at connections on a given line bundle. It is of the form7H1(M;R)=H1(M;Z) � U(1)b1(M)with b1(M) = dimH1(M;R) the �rst Betti number of M . This can be read assaying that, given a at connection D0 on the line bundle L0, so that any otherat connection on L0 is of the form D0 + � with � a closed one-form, D0 + �is inequivalent to D0 provided that � is neither integral nor (a fortiori) exact.We had already seen above that symplectic potentials di�ering by exact one-forms (in�nitesimal gauge transformations) lead to equivalent prequantizations.7More precisely, H1(M;Z) should be replaced by its image i�H1(M;Z) in H1(M;R) inthis expression, where i is the inclusion i : Z ,! R.23



Connection forms di�ering by non-trivial integral one-forms, on the other hand,are related by `large' gauge transformations. We will see an example of thistorus' worth of prequantizations below. It has the interpretation of vacuumangles or Aharonov-Bohm phases.The second contribution comes from topologically inequivalent at line bundles.As line bundles are topologically classi�ed by their Chern class (c1(L)=2�) 2H2(M;Z) and the curvature form represents the image of this class inH2(M;R),these correspond to the kernelKer i� : H2(M;Z)! H2(M;R)(i� kills the torsion in H2(M;Z)). I will not give an example where such apossibility occurs but want to just mention that the choice of isomorphism classof at line bundles can in certain cases be interpreted as a choice of statistics(Fermi versus Bose, for instance).4.2 ExamplesIn this section we will take a brief look at some two-dimensional examples, thecylinder T �S1 and the two-sphere S2. Each has its own characteristic featureswhich serves to illustrate one or the other of the issues encountered above in arather more abstract manner.Example 1 M = T �S1As M is a cotangent bundle, the symplectic form ! = dp^d' is globally exact,! = d� ; � = pd' ; (4.21)and the prequantum line bundle L is trivial. A prequantization of M is givenby the connection D = d� (i=�h)�. As M is not simply connected,�1(M) = Z ; H1(M;U(1)) = U(1) ; (4.22)we expect, however, to �nd not a unique but a U(1)'s worth of prequantiztions.This expectation is indeed borne out. d' is a non-exact closed one-form, thegenerator of H1(M;R), and we can thus modify the prequantum connection toD� := d� (i=�h)� + i�d' : (4.23)One way of seeing that for � 2 [0; 1) these are all mutually inequivalent is thefollowing. The prequantum operator P�(p) of p with respect to the connectionD� is P�(p) = �i�h @@' + �h� : (4.24)As L is trivial, we can identify the prequantum Hilbert space with the space offunctions on M which are, in particular, periodic in '. Likewise, the Hilbertspace in the Schr�odinger representation, on which (4.24) is a well de�ned op-erator, is L2(S1). Thus the spectrum of (�i@=@') is the integers and that ofP�(p) is also discrete (as expected) and isspec�P�(p)� = f(n+ �)�h; n 2 Zg : (4.25)24



As these are only equal when � is an integer, this shows that for all � 2 [0; 1) thequantum theories obtained from the prequantization (L;D�) are inequivalent.The parameter � leads to an additional contribution to the holonomy picked upby a state upon parallel transport around the circle. It can thus be regarded asa simple toy-model of the Aharonov-Bohm e�ect, �d' representing a magnetic�eld running through the interior of the circle. Alternatively, the above examplecan be regarded as an embryonic illustration of the �eld theoretic phenomenonof vacuum angles (or theta vacua). Such topological quantization ambiguities(superselection sectors) occur (almost) always when the con�guration spaceis not simply connected, most prominently in four-dimensional gauge theorieswhere they are related to the strong CP problem.Example 2 M = S2Above, we have already discussed the conditions forM to be quantizable. Herewe will �x the volume form ! by RM ! = 2��h so that (M;k!) is quantizablei� k 2 Z. As H2(M;Z) = Z and �1(M) = 0 there is a unique prequantumline bundle (Lk;Dk) with i(Dk)2 = (k=�h)! in every topological (monopole)sector. Moreover, from the arguments of the previous section we can deducethat Lk is the k'th tensor power of L1 and Dk the corresponding tensor productconnection. Thus all we need to determine is the `generator' (L1;D1). I willgive three di�erent descriptions of this bundle.� The �rst is in terms of the Hopf �bration. The three-sphere is itself a U(1)bundle over S2 with monopole (Chern) number 1. By letting U(1) act onthe complex plane C in the standard fashion, one can associate to thisU(1) bundle over S2 a complex line bundle over S2 which is just L1. Thisdescription is useful because it shows that element of the prequantumHilbert space H, sections of the non-trivial bundle L1, can be representedby complex valued functions on S3 transforming equivariantly under theaction of U(1) on S3.� The second makes use of the identi�cation of S2 with the complex pro-jective plane CP1, the space of complex lines in C2. Over CP1 thereis a natural complex line bundle obtained by attaching to each point ofCP1 the complex line it represents. For obvious reasons this bundle iscalled the tautological line bundle and it again represents L1. This de-scription is useful because it makes it evident that L1 can be regarded asa holomorphic line bundle.� Finally, the last description is in terms of local coordinates. Think ofS2 as being given by the equation x21 + x22 + x23 = 1 in R3. Let x� bethe north and south poles of S2 determined by x3 = �1. Then on thecoordinate neighbourhoods U� = S2nfx�g one can introduce the complexcoordinates z� = x1 � ix21� x3related by z+z� = 1 on the overlaps of the two regions. As the U� aretopologically trivial, any line bundle is trivial when restricted to one of25



these. Thus, all we have to do is to give a prescription for glueing thesetrivial bundles together over, say, the equator. If one does this with thetransition function (z+)k = (z�)�k one obtains the line bundle Lk. Theadvantage of this description is that it provides us with explicit expressionsfor the symplectic potentials (and hence for the prequantum connectionDk). Namely, on U� the symplectic form ! can be written as! = �i�h d�z�dz�(1 + jz�j2)2 ; (4.26)and the symplectic potentials �� can be chosen to be�� = �i�h �z�dz�1 + jz�j2 : (4.27)This explicit description will also allow us to read o� immediately thedimension of the space of holomorphic sections of Lk, which is k + 1, thedimension of the spin k=2 representation of SU(2), see section 6.3.5 Geometric Quantization II: PolarizationsUp to now, GQ has been quite straightforward and elegant. Unfortunately,prequantization is not the end of the story and some additional structures haveto be introduced to obtain a quantization of a symplectic manifold (in thesense of section 3) from this. In GQ, one of these is a polarization, and thisleads to rather severe technical complications in general. Most of them arerelated to the fact that there is no natural measure on the space of quantumstates and that, even when there is, GQ is still not completely `correct'. One isthen forced to modify the quantization scheme to what is known as half-formor metaplectic quantization. And although at this stage GQ becomes quitesuccessful, it simultanously becomes rather complicated and unwieldy.In section 5.1 I will show that the concept of a polarization arises rather natu-rally in GQ when one tries to `cut down' the prequantum Hilbert space. Thetheory of real and complex polarizations and of Lagrangian submanifolds ofsymplectic manifolds is very rich and rewarding but I will not attempt to gofar beyond the formal de�nition of a polarization.In practice, there are two classes of symplectic manifolds for which GQ isfairly well understood and works with comparative ease, cotangent bundles andK�ahler manifolds. These have natural and well-behaved polarizations which wewill take a look at in sections 5.2 and 5.3. Although there are compact sym-plectic manifolds which are not K�ahler and symplectic manifolds which admitno polarization whatsoever, an understanding of these two cases is usually suf-�cient for speci�c applications.The construction of the quantum Hilbert space and of operators acting on it isthen the subject of section 6. 26



5.1 PolarizationsIn section 3 we have already seen that a possible generalization of Schr�odingerquantum mechanics on T �Q = R2n is based not on the concept of a complete setof observables (as in Q5) but rather on that of a maximal commuting set. Wehave also seen that from that point of view it is possible to regard the Hilbertspace L2(Q) as the space of functions on the phase space constant along theleaves of a polarization.As this may appear to be a rather contrived and unnecessarily complicatedway of arriving at the Hilbert space, I will now show that the concept of apolarization arises quite naturally if one attempts to construct the quantumHilbert space from the prequantum Hilbert space H. I want to point out,however, that the physical justi�cation for this procedure. . . is not based on general mathematical results (such as the Borel-Weil theorem), but on the way in which the construction works inparticular examples. It generalizes and uni�es a number of quan-tization techniques that, in the past, have not appeared to haveany obvious connection with each other and that have sometimesseemed overspecialized with applications only to particular physicalsystems. [13, p. 171]Roughly speaking, the problem with the prequantum Hilbert space H is that itis too large, consisting of functions  which depend on all the 2n coordinatesof the symplectic manifold (M;!). A way of eliminating `half' of these is todemand that the wave functions are constant along n vector �elds on M . Asordinary di�erentiation has no invariant meaning for sections of a bundle, onemust take this to mean that they are covariantly constant. Thus, one way toproceed is to choose some n-dimensional subbundle P of the tangent bundleTM of M and to consider only those wave functions that satisfyD(X) = 0 8X 2 P (5.1)(where `X 2 P ' is short, and sloppy, for `X is a section of P '). Now there couldbe non-trivial integrability conditions for those equations which would form anobstruction to �nding any (or a su�cient number of) solutions to (5.1). From(5.1) it follows that [D(X);D(Y )] = 0 for all X;Y 2 P . Combined with (4.17)this leads to the integrability conditionD([X;Y ]) � (i=�h)!(X;Y ) = 0 8X;Y 2 P : (5.2)We see that this condition is automatically satis�ed provided thatX 2 P; Y 2 P ) [X;Y ] 2 P (5.3)and X 2 P; Y 2 P ) !(X;Y ) = 0 : (5.4)The �rst condition means that P is integrable, so that locally there exist integralmanifolds in M through P . As these are n-dimensional the second condition27



means that these integral manifolds are Lagrangian. We have thus arrivedprecisely at the de�nition of a real polarization given in section 3. We see thatthere are no local integrability conditions8 if we demand the wave functions tobe covariantly constant along the leaves (integral manifolds) of a polarizationP , i.e. of a Lagrangian subbundle of TM . This approach, which is a naturalgeneralization of that based on a maximal commuting set of observables, thusarises quite naturally from prequantization and is the one adopted in GQ.Life is, of course, not as simple as that. The problem with the above de�nition ofa polarization is that it is far too restrictive. For instance, on a two-dimensionalsurface a polarization corresponds to a nowhere vanishing vector �eld. S2 hasnone and among the closed two-dimensional surfaces the torus is the only onewhich has. The way to get around this problem is to complexify the tangentbundle of M , TM ! TM c, and to consider integrable Lagrangian subbundlesof TM c. These are more likely to exist while the integrability condition (5.2)is still satis�ed. We thus make the followingDe�nition: Let (M;!) be a symplectic manifold. A polarization P of (M;!) isan integrable maximally isotropic (Lagrangian) subbundle of the complexi�edtangent bundle TM c of M .Naively, one would now like to construct the quantum Hilbert space from thespace P (L) of polarized sections, i.e. sections of the prequantum line bundle Lcovariantly constant (parallel) along P . This is not as straightforward as onemight have hoped it to be (e.g. because H \ P (L) may be empty). We willcome back to this problem in section 6, after having seen some examples ofpolarizations.For technical reasons one imposes some additional conditions on P . The �rst,usually included in the de�nition of a polarization, is that the dimension ofPm \ �Pm \ TmM be constant. Here Pm denotes the �ber of P at m 2 M and�Pm the complex conjugate of Pm. To state the other conditions we note thatany complex subbundle Fc of TM c satisfying �Fc = Fc is the complexi�cation ofsome real subbundle F of TM , Fc = F c. Thus the complex subbundles P \ �Pand P + �P of TM c are of the formP \ �P = Dc ; P + �P = Ec ; (5.5)where D = P \ �P \ TM ; E = (P + �P ) \ TM (5.6)(this notation is standard, no confusion with the prequantum connection Dshould arise). As P is integrable, so isD. We assume that the integral manifoldsof D are complete and we denote by M=D the space of all integral manifolds ofD. A polarization is called strongly admissible if E is integrable and the spacesM=D and M=E are smooth Hausdor� manifolds.In the following we will deal almost exclusively with polarizations which areeither `real', P = �P ;8There can still be global integrability conditions related to the holonomy of D along theleaves of P . We will encounter these later on in the guise of Bohr-Sommerfeld conditions.28



i.e. the complexi�cation of a real polarization, or K�ahler,P \ �P = f0g :In the former case, D = E so that P = Dc is strongly admissible if the spaceof leaves of the underlying real polarization D is smooth and Hausdor�. In thelatter, D = f0g and hence E = TM so that any K�ahler polarization is stronglyadmissible. Other properties of polarizations will be mentioned below, in thecontext of either real or K�ahler polarizations.5.2 Real PolarizationsAs noted above, real polarizations are characterized by the property P = �Pwhich implies that P = Dc. The prime example of a real polarization is thevertical polarization of a cotangent bundle M = T �Q. In local coordinates it isspanned by the vectors (@=@pk) tangent to the �bers of T �Q. Thus D is thevertical tangent bundle, P its complexi�cation, and the integral manifolds ofD are the �bers T �qQ, isomorphic to Rn. The space M=D of integral manifoldsis just the con�guration space Q itself and all our regularity conditions areobviously satis�ed.As this vertical polarization always exists for cotangent bundles, so does (oncethe question of the measure has been settled, see section 6) the Schr�odingerrepresentation of quantum mechanics on Q, based on the Hilbert space L2(Q).Whether this is good or bad may be a matter of debate (after all, in section3 we had understood the emergence of L2(Q) for Q = Rn as a consequence ofthe Stone - von Neumann theorem which is not available for general Q), butthis is what GQ predicts.There are real polarizations that are not vertical polarizations of some cotangentbundle, but there are not many more possibilities satisfying our rather stringentregularity conditions. To see an example of such a polarization, let us go backto the cylinder M = T �S1 discussed as example 1 of section 4.2. Instead ofchoosing the vertical polarization, spanned by (@=@p), we can also choose a`horizontal' polarization spanned by (@=@') (as far as being Lagrangian andintegrable is concerned there is nothing to prove when n = 1). This leads towhat is known (for Q = Rn) as the momentum representation. In this case theintegral manifolds of D are circles S1 and M=D = R.9.However, in general something like a horizontal polarization (momentum rep-resentation) will not exist at all. And even when it does, it will not necessarilybe of the naive form ` is a function of the momenta'. This is something thatis often ignored and therefore good to keep in mind. Again, see [17]. In fact,although Q is a Lagrangian submanifold of T �Q (via the zero section, say),it cannot be an integral manifold of some polarization unless Q has the ratherspecial form Q = T k�Rn�k. This is a consequence of the interesting result that9There are some interesting subtleties arising in this representation, related to the emer-gence of vacuum angles and the discreteness of the spectrum of the momentum operator onthe real line M=D of momenta. See section 6.4 and [17]29



(under our regularity conditions) the integral manifold of a real polarization ofany symplectic manifold (M;!) is necessarily of this form. This can easily beproven by showing that the operator r de�ned byi(rXY )! = i(X)di(Y )! for X;Y 2 D (5.7)satis�es all the conditions of a (partial) connection and restricts to a torsionfree and at a�ne connection on each leaf of D. r is called the Weinsteinconnection. For instance, X;Y 2 D )rXY 2 D (5.8)is equivalent to !(rXY;Z) = 0 8Z 2 D(by the maximality of P ) and follows from the formulae of section 2:!(rXY;Z) = (i(rXY )!)(Z)= i(Z)i(X)di(Y )!= L(X)i(Z)i(Y )! � i([X;Z])i(Y )! = 0 : (5.9)Likewise the property that r is torsion free,rXY �rYX = [X;Y ] ; (5.10)can be established by calculatingi(rXY �rYX)! = i(X)di(Y )! � i(Y )di(X)!= i(X)L(Y )! � L(Y )i(X)! = i([X;Y ])! ; (5.11)etc.. . . Thus the most general possibility is indeed an integral manifold of theform T k � Rn�k. The two above examples are of the type k = 0 and k = nrespectively. And if the leaves are simply connected (k = 0) then essentiallythe only possibility is the vertical polarization.10This concludes our discussion of real polarizations. Polarizations with k 6= 0have their subtleties and generally force one to consider either distributional orcohomological wave functions, see section 6.4.5.3 K�ahler PolarizationsK�ahler polarizations are characterized by the condition P \ �P = f0g. Theyhave this name because every K�ahler manifold (complex manifold with a com-patible symplectic structure) has a natural K�ahler polarization and converselythe existence of such a polarization implies that (M;!) is (pseudo) K�ahler (the`pseudo' referring to the possible inde�niteness of the K�ahler metric).10The precise statement is [13] that if k = 0 and if there is some Lagrangian submanifoldN of (M;!) intersecting each leaf nicely (transversally) in exactly one point, then there is anatural identi�cation of M with T �N . 30



We shall �rst take a look at what this means and how it works in the case of a2n-dimensional symplectic vector space (V; !) (where, for concreteness, we canthink of V = T �Rn). We begin with some linear algebra. V is a real vectorspace. A complex structure on V is a linear transformation J : V ! V withJ2 = �1. Such a J gives V the structure of a complex vector space wheremultiplication by the complex number a+ ib is de�ned by(a+ ib)v := av + bJv : (5.12)The complex structure J is called compatible with the symplectic structure !if !(Jv; Jw) = !(v; w) 8v; w 2 V : (5.13)In that case, !(v; Jw) is symmetric in v and w and de�nes a non-degeneratesymmetric bilinear form g(:; :) and a Hermitian metric h(:; :) on V viag(v; w) := !(v; Jw) ;h(v; w) := g(v; w) + i!(v; w) : (5.14)h is antilinear in the �rst entry and linear in the second so that e.g.h(Jv;w) = �ih(v; w) : (5.15)J is called positive if g is positive de�nite. A symplectic structure with acompatible complex structure is called a pseudo K�ahler structure and a K�ahlerstructure if J is positive.V can be complexi�ed in the obvious (J -independent) way, V ! V c, and V c isa complex 2n-dimensional vector space. If J is a complex structure on V thenJ can be diagonalized in V c. The �i eigenspaces of J are denoted by V (1;0) andV (0;1) and are spanned by vectors of the form v � iJv. Obviously, V (1;0) andV (0;1) are complex n-dimensional complex conjugates of each other and satisfyV (1;0) \ V (0;1) = f0g :If J is compatible with !, then V (1;0) and V (0;1) are Lagrangian subspaces ofV c. Conversely, a Lagrangian subspace P of V c satisfying �P \ P = f0g de�nesa compatible complex structure on V such that P is its +i or �i eigenspacein V c (we will, by a slightly misleading usage of terms, refer to the latter asa holomorphic polarization because the corresponding polarized states can berepresented by holomorphic functions).Comparing with our above de�nition of a K�ahler polarization we see that aK�ahler polarization equips each tangent space of M with a compatible com-plex structure. A smoothly varying complex structure on the tangent bundleof a manifold M is called an almost complex structure. If this almost complexstructure is integrable in the sense that the �i eigenbundles are integrable, J iscalled a complex structure on M and gives M the structure of a complex man-ifold (i.e. there are local holomorphic coordinates with holomorphic transitionfunctions). Thus, because polarizations are integrable, a K�ahler polarization31



gives (M;!) the structure of a complex manifold with a compatible symplecticstructure. Such manifolds are called (pseudo) K�ahler manifolds. And converselyevery K�ahler structure (J; !) on M de�nes a positive holomorphic K�ahler po-larization of (M;!) via P = T (0;1)M , the �i eigenspace subbundle of TM c.In local holomorphic coordinates zk one has! = i!jkdzjd�zk ; �!jk = !kj (5.16)(it would be better to introduce barred and unbarred indices at this point, butI will refrain from doing so). Locally, any K�ahler form can be written as! = i@ �@K (5.17)for some real valued function K, the K�ahler potential, where@ = dzk^ @@zk ; �@ = d�zk^ @@�zk ;d = @ + �@ ;@2 = �@2 = @ �@ + �@@ = 0 : (5.18)Thus natural local symplectic potentials on a K�ahler manifold are i�@K and�i@K.All this is best illustrated in the case of a at phase space M = T �Rn withcoordinates (qk; pl) and the canonical symplectic form. We will give it thestructure of a (at) K�ahler manifold, R2n � Cn, by introducing the complexcoordinates zk = 1p2(pk + iqk) (5.19)corresponding to the complex structure de�ned byJ(@=@pk) = (@=@qk) ; J(@=@qk) = �(@=@pk) : (5.20)The symplectic form can be written as! = i�kldzkd�zl = i@ �@K ;K = �klzk�zl = jzj2 : (5.21)The holomorphic polarization P is spanned by the vectors @=@�zk or, equiva-lently, by the Hamiltonian vector �elds of the coordinate functions zk. Later onwe will use the symplectic potential �K = �i@K which vanishes on P so thatthe covariant derivative along directions in P takes the particularly simple formD(@=@�zk) = (@=@�zk). This has the advantage that P -polarized sections can beidenti�ed directly with holomorphic functions in the corresponding trivializa-tion. Generally, a connection potential vanishing on a given polarization P ,�jP = 0, is called adapted to P . Under our regularity conditions local adaptedpotentials always exist.Another example of a K�ahler manifold is the two-sphere which we investigatedfrom the point of view of prequantiztion in section 4.2. For the third descriptionof its prequantum line bundle we introduced complex coordinates on S2 � CP1.32



We now recognize the symplectic form (4.26) as a K�ahler form with K�ahlerpotential K = �h log(1 + jzj2) (5.22)The local symplectic potentials given in (4.27) are also adapted to the holomor-phic polarization spanned locally by (@=@�z�).6 Geometric Quantization III: QuantizationNow �nally, after having accumulated all these bits and pieces of information,we come to the quantization of symplectic manifolds. This involves the deter-mination of the quantum Hilbert space HP corresponding to a polarization P ,and the construction of operators acting on HP .After some general remarks we will look at the question how to construct op-erators on the quantum Hilbert space. This turns out to be straightforwardfor observables preserving the polarization, but a rather drastic modi�cationof that procedure is required to associate operators to observables whose owmoves the polarization. This will lead us to the pairing construction of Blattner,Kostant, and Sternberg and to BKS kernels whose construction I will sketch inthe simplest of cases (a family of positive K�ahler polarizations).We will then deal seperately with the three examples of polarizations we havediscussed above: vertical polarizatons (section 6.2), K�ahler polarizations (sec-tion 6.3), and real polarizations with non-simply connected leaves (section 6.4).They all have their particular complications and pitfalls. Initially one is likelyto expect the example of a vertical polarizations to be the least problematicof the lot, coresponding just to the familiar Schr�odinger representation gener-alized to curved con�guartion spaces. However, it turns out that there is nonatural measure on the space of polarized states and although certain more orless ad hoc resolutions of this problem are conceivable one is eventually con-fronted with the necessity of modifying the entire quantization scheme. I willpresent a version of the half-density quantization scheme which is fairly easyto understand. Eventually this would have to be replaced by the signi�cantlyless transparent half-form quantization scheme, but this will only make a briefappearance in the following.In the case of a general real polarization the situation is even worse because theremay be no polarized sections at all. One is then forced to permit distributionalwave functions to appear whose support is concentrated on the so-called Bohr-Sommerfeld varieties in M=D. In section 6.4 we will see how these arise in thecase of the cylinder and the harmonic oscillator in the energy representation.Given all these di�culties it may thus come as a surprise that in the case ofK�ahler polarizations there is a natural measure on the space of polarized statesand no obstruction to constructing HP . In fact, a positive K�ahler polarizationjust picks out a particular subspace of the prequantum Hilbert space H. Un-fortunately, this construction fails to give correct results in even the simplestof quantum mechanical examples, the harmonic oscillator. The same (wrong)33



spectrum of the harmonic oscillator is also predicted if one tries to quantize thesystem in a real polarization. The required modi�cation is again that whichworks in the case of vertical polarizations, namely half-form or metaplecticquantization. This scheme also appears to account correctly for changes in thepolarization and for the quantization of certain operators which do not preservea given polarization, but the general theory is far from completely understoodat the moment.6.1 Polarized States and the Construction of Quantum Opera-torsWe begin with some general remarks. Let us �x a prequantization (L;D) of asymplectic manifold (M;!) and a strongly admissible polarization P . The basicidea is, as mentioned repeatedly above, to construct the quantum Hilbert spacefrom the linear space P (L) of P -polarized sections of (L;D), i.e. of (smooth)sections  of L satisfying D(X) = 0 8X 2 P : (6.1)Ideally, one would like to go ahead and de�ne the quantum Hilbert space HP asHP := H\P (L), i.e. as the space of P -polarized sections of L square integrablewith respect to the Liouville measure on (M;!). This, however, usually doesnot work, either because polarized sections are not square integrable (e.g. theSchr�odinger wave functions, which depend only on the coordinates so that themomentum integral will diverge), or because there are no smooth polarizedsections of L at all. These di�culties are best illustrated by concrete examplesand we will do this below. First, however, we will come to the issue of quantumoperators acting on polarized states, which can be stated and addressed in moregenerality.In section 4, to every function on M we were able to associatexd a prequantumoperator P(f), P(f) = �i�hD(Xf ) + f ;acting on the sections of L and satisfying the quantization conditions Q1-Q4;in particular,Q4 : [P(f);P(g)] = �i�hP(ff; gg) 8f; g 2 C1(M) : (6.2)On the basis of our experience with at space quantum mechanics and keepingin mind the Groenewald - van Hove theorem we expect to have to sacri�ce atleast parts of (6.2) when moving from prequantization to quantization. Wealso expect to have to modify the assignment P in general because we don'texpect nor want all quantum operators to be at most �rst order di�erentialoperators. In fact, we know from quantum mechanics (3.9) that the usualkinetic energy term quadratic in the momenta should come out as proportionalto the Laplacian, at least if Q = Rn.The �rst step is to check which of the prequantum operators P(f) can bepromoted directly to operators on P (L) (the necessary modi�cations due to half-density quantization are irrelevant for our present purposes and will be given in34



the next section). The requirement is obviously that P(f) map polarized statesto polarized states, i.e.D(X) = 0 8X 2 P ) D(X)P(f) = 0 8X 2 P : (6.3)The obstruction to this comes from the term D([Xf ;X]) so that (6.3) is equiv-alent to (6:3) , [Xf ;X] 2 P 8X 2 P, [Xf ; P ] � P : (6.4)This is a very intuitive result because it says that a classical observable f de�nesan operator on the space of P -polarized states via the prequantum assignmentf ! P(f) provided that its ow leaves the polarization P invariant. Thisfollows also from the argument given in (4.11-4.16): if �ft leaves P invariant,one can use (4.16) directly to de�ne the operator Q(f) on polarized states. Letus call the space of these functions, which is not particularly large, C1P (M).It is closed under Poisson brackets and contains, in particular, the functionswhose Hamiltonian vector �elds span the polarization. The latter are diagonalon polarized states in the sense thatQ(f) = f : (6.5)For example, in the case of the vertical polarization of a cotangent bundle one�nds f 2 C1P (T �Q) , [Xf ; @@pk ] 2 P 8k, � @2@pk@ql f� @@pl � � @2@pk@pl f� @@ql 2 P 8k, @2@pk@plf = 0 ; (6.6)so that f 2 C1P (T �Q) i� it is at most linear in the momenta,f 2 C1P (T �(Q)), f(q; p) = f0(q) + fk(q)pk : (6.7)For such f the quantum operator is(Q(f) )(q) = f0(q) (q) � i�hfk � @@qk � (q) : (6.8)This expression will still have to be modi�ed by a correction term coming fromthe measure, see (6.25) below. By the same reasoning as above one �nds thatthe only real valued observables preserving the holomorphic polarization onT �Rn � Cn (see section 5.3) are of the formf(z; �z) = f0 + fkzk + �fk�zk + fklzk�zl ; (6.9)where f0 2 R and fk and fkl = �flk are complex constants. This makes theholomorphic representation particularly suitable for the quantization of the har-monic oscillator whose Hamiltonian is proportional to jzj2, see section 6.3.35



For the time being, this is all I have to say about polarization preserving observ-ables and we are now confronted with the question what to do with functionswhich move the given polarization P . Another way of stating this, in which thepolarization plays a more passive role, is that via its canonical lift b�ft (4.14)to (L;D) the Hamiltonian ow on M generated by such a function f moves aP -polarized state  out of P (L). The evolved state t � b�ft  (6.10)is now polarized with respect to the pulled-back polarizationPt � ��ft �� P ; (6.11) 2 P (L))  t 2 Pt(L) : (6.12)Thus evidently what we need is a way of relating states to each other which arepolarized with respect to di�erent polarizations. To proceed, let us make thesimplifying assumption that the quantum Hilbert spaces Ht � HPt constructedfrom the family of polarizations Pt can all be regarded as subspaces of theprequantum Hilbert space H. This assumption holds, for instance, when Pt isa family of positive K�ahler polarizations. In that case we have the orthogonal(wrt the scalar product on H) projections�t0t : Ht !Ht0 ;�0t � �t : Ht !H0 � HP (6.13)available to project the state  t back to HP . Thus, in analogy with (4.16) wecan now attempt to de�ne the quantum operator Q(f) on HP byQ(f) := �i�h ddt (�t t) jt=0= �i�h ddt ��t b�ft  � jt=0 : (6.14)This is the basic idea of the Blattner - Kostant - Sternberg construction. Evenin this situation, determining when (6.14) exists, when it exists as a self-adjointoperator and when the projections are unitary is a highly non-trivial problem.In the general case, when the quantum Hilbert spaces cannot be regarded assubspaces of H, the orthogonal projection operators have to be replaced bysome other, less natural, linear maps from one Hilbert space HP to the other,HP 0 , and the problem becomes correspondingly more di�cult.One case which is tractable is the following: Consider a symplectic vector space,regarded as the at symplectic manifold M = T �Rn, and let P , P 0 and P 00 bethe vertical, horizontal, and holomorphic polarization respectively. In all threecases we have an irreducible representation of the Heisenberg group on thecorresponding quantum Hilbert space. Thus, by the Stone - von Neumanntheorem (section 3), the existence of unitary(!) linear operators from HP toHP 0 and HP to HP 00 is guaranteed. The former is just the Fourier transformfrom the coordinate to the momentum representation, and the latter is the36



Bargmann transform realizing the unitary equivalence of the con�guration andholomorphic representations.It can, moreover, be shown that in the case of a vertical polarization the quan-tum operator associated to the kinetic energy function in at space comes outcorrectly to be the Laplacian (plus scalar curvature terms in the case of acurved con�guration space). The calculation is, unfortunately, too lengthy tobe reproduced here, see [14, 13].By such considerations one is also naturally led to the important and subtlequestion to which extent the resulting quantum theory depends on the choice ofpolarization and which polarizations give rise to unitarily equivalent theories.Some interesting progress has been made on this question recently [5] motivatedby topological and conformal �eld theory. Unfortunately, I will not be able togo into this here. For an explanation of half-form quantization from this pointof view see [13].6.2 The Vertical Polarization and Half-DensitiesWe now discuss the construction of the quantum Hilbert space in the mostfamiliar looking case of the vertical polarization. Recall that this is the polar-ization P = Dc spanned by the tangents to the �bers of a cotangent bundleM = T �Q. The prequantum line bundle (L;D) is trivializable and in termsof the trivializing section s0(m) = (m; 1) the Hermitian structure on the �bersand the compatible connection potential are< s0; s0 > (m) = 1 ; � = (1=�h)� = (1=�h)pkdqk : (6.15)� is adapted to the vertical polarization so that the covariant derivative alongthe �bers of P is simply the ordinary derivative acting on functions on T �Q,D(@=@pk) = @=@pk ;Thus polarized sections corespond to functions which are independent of themomenta pk, i.e. to functions on Q. We now need to turn this into a Hilbertspace. The �rst guess would be to use the Hilbert space structure on theprequantum Hilbert space H and to de�ne the quantum Hilbert space HP asH \ P (L), i.e. as the space of sqare integrable P -polarized sections of L. Un-fortunately, this space is empty as pk-independent wave functions are certainlynot square integrable with respect to the Liouville measure - the integral overthe �bers diverges.In this particular example a (partial) remedy to the problem immediately comesto mind: one should integrate polarized sections not over M but over Q (whichis, more invariantly, to be regarded as the space M=D of leaves of the polariza-tion). However, there is no natural measure on Q. If a metric on Q is given,perhaps implicitly via a Hamiltonian of the form H = gklpkpl=2 + : : :, thenone can construct the density pgdnq (g = det gkl) which can be used to de�nea scalar product on P (L). Alternatively, and more generally, one can try towork from the outset with a bundle whose (polarized) sections are square-roots37



of densities (n-forms) on Q so that the scalar product of two such objects isautomatically well de�ned. This leads to the half-density quantization scheme.Under the assumption that Q is oriented we can, following [13], proceed asfollows (for the full edged half-density quantization scheme see [14] or the �rstedition of [13]). The material will be presented in such a way that the extensionto other real polarizatons (with simply connected leaves) should be self-evident.Let us introduce the (determinant) line bundleDet(Q) := �n ((T �Q)c) (6.16)whose sections are complex valued volume forms on Q. As we assumed Q to beorientable (and oriented) we can form the square root Det1=2(Q), e.g. by choos-ing real and positive transition functions for Det(Q) and using their positivesquare roots to de�ne Det1=2(Q). Via the projection � : T �Q! Q we can pullthese line bundles back to T �Q where we denote them by��(Det(Q)) =: KD��(Det1=2(Q)) =: �D = (KD)1=2 (6.17)It should be kept in mind that, as bundles over T �Q, their spaces of sections arenow C1(T �Q)-modules (i.e. sections can be multiplied by functions on T �Q).Thus sections of KD are not necessarily pull-backs of volume forms on Q. Wewould now like to replace the prequantum line bundle L by LD = L 
 �D. Inorder to de�ne P -polarized sections we need the notion of a covariant derivativeof sections of �D along P . We de�ne the covariant derivative of a section � ofKD along P by D(X)� = i(X)d� : (6.18)This (partial) connection is at,([D(X);D(Y )]�D([X;Y ])� = 0 (6.19)(because d� can have at most one `vertical' direction) and � is the pull-backof an n-form on Q i� it is covariantly constant along P . (6.18) gives rise to acovariant derivative on sections � of �D via the obvious de�nitionD(X)�2 = 2�D(X)� or D(X)�1=2 = 12��1=2D(X)� : (6.20)For vector �elds preserving the vertical polarization one can also de�ne theLie derivative of sections of KD via the usual formula L(:) = di(:) + i(:)d fordi�erential forms. Obviously, L(X)� = D(X)� if X 2 P . L(:) extends to �Din the same way as D(:) in (6.20).Sections of LD are of the form s� where s is a section of L and � a section of�D and we call s� a P wave function ifD(X)(s�) � (D(X)s)� + sD(X)� = 0 8X 2 P : (6.21)As the product of two sections of �D is a section of KD and the scalar producton the �bers, < s1�1; s2�2 >:=< s1; s2 > ��1�2 ; (6.22)38



is parallel along P by (6.21), we can identify it with an n-form on Q. We havethus arrived at our goal of de�ning a natural scalar product on the space ofpolarized sections, namely<< s1�1; s2�2 >>:= ZQ < s1; s2 > ��1�2 : (6.23)The quantum Hilbert space HP is now de�ned to be the L2-completion of thespace of smooth P wave functions with resepct to this scalar product.The construction of quantum operators acting on HP now proceeds exactlyas in section 6.1. For a polarization preserving function f we saw that theprequantum operator P(f) was well de�ned on the space P (L) of P -polarizedsections of L. It thus remains to de�ne its action on sections of �P . Keepingin mind that P(f) is nothing but the generator of the canonical ow of Xfon sections of L (4.16) and that its generator on di�erential forms is the Liederivative, we set Q(f)(s�) = (P(f)s)� � i�hsL(Xf )� ; (6.24)In particular, if we �x a volume element � on Q then P wave functions are ofthe form s0 (q)�1=2 with scalar productZQ � 1 2�and the required modi�cation to (6.8) is(Q(f) )(q) = �f0(q)� 12 i�h div�(fk)(q)� (q)� i�hfk � @@qk � (q) : (6.25)Here the divergence of a vector �eld Y on Q with respect to � is the functionon Q de�ned by div�(Y )� := L(Y )� = di(Y )� : (6.26)This correction term can be regarded as arising from a particular symmetric`operator ordering' of the classical expression fkpk, an issue which, as such, isnot present in GQ. It vanishes, e.g., when � = pgdnq and Y is a Killing vectorof the metric gkl.The construction of operators corresponding to observables not preserving thevertical polarization proceeds via BKS kernels whose naive construction I indi-cated in section 6.1. Matters are complicated by the fact that one has to takeinto account the variation in �Dt . In order to keep track of relative phase factorsin the corresponding Hilbert spaces one eventually has to modify the de�nitionof �D in such a way that it does not depend on the orientation of M=D. Theresulting quantization is half-form or metaplectic quantization. Virtually thesame correction term as above appears as the metaplectic correction to a po-larization preserving operator in other polarizations. In that form it will turnout to be responsible for the ground state energy of the harmonic oscillator (seethe discussion in sections 6.3 and 6.4).39



6.3 K�ahler Quantization and Metaplectic CorrectionWe now deal with the simpler case of a positive K�ahler polarization. We thusconsider a K�ahler manifold (M;!; J), a prequantum line bundle (L;D), andchoose P = T (0;1)M (see section 5.3) to be the polarization spanned by the �ieigenspaces of J . Locally, P is spanned by the vector �elds (@=@�zk) where thezk are holomorphic coordinates on M . The space of holomorphic (P -polarized)sections of (L;D) can be shown to be a closed subspace of the prequantumHilbert space H. It is thus a Hilbert space in its own right which we take to bethe quantum Hilbert space HP of the system.To obtain a more explicit description of HP it is useful to work with localconnection potentials adapted to P . We noted in section 5.3 that a convenientchoice is �K = �i@K where K is the K�ahler potential. Let us see how thisworks in the case of a K�ahler vector space. According to (5.21), K is given byK = �klzk�zl ;so that �K = �i�kl�zldzk : (6.27)To account for this change from � to �K , we have to change the local trivializingsection. Tracing through the formulae of section 4 one �nds that s0 is to bereplaced by sK = exp �� 14�h(�klqkql + �klpkpl � 2ipkqk)� s0 : (6.28)Polarized sections of the (trivial) prequantum line bundle are thus of the forms(z; �z) = sK(z; �z) (z) (6.29)where  (z) is a holomorphic function on Cn. It follows from < s0; s0 >= 1 and(6.28) that the Hermitian structure in this trivialization is given by< sK ; sK > (z; �z) = exp(�jzj2=�h) = exp(�K=�h) : (6.30)From this we can also read o� that with respect to the canonical symplecticpotential and the section s0 polarized wave functions are of the form�(z; �z) =  (z) exp ��jzj2=2�h� ;as could of course also have been deduced directly from solvingD(@=@�zk)(s0�) =0 in this trivialization. Either way HP can be identi�ed with the space of holo-morphic functions on Cn with scalar product<<  1;  2 >>= ZCn dnp dnq  1(z) 2(z) exp(�K=�h) : (6.31)It is clear from this expression that the Hilbert space would have been empty ifwe had chosen a non-positive K�ahler polarization (with K corresponding to an40



inde�nite quadratic form) because there would not have been any normalizableholomorphic functions.As we already noted above, this holomorphic representation withQ(zk) (z) = zk (z) ; Q(�zk) = �h @@zk (z) ; (6.32)is unitarily equivalent to the Schr�odinger representation. It is also known asthe oscillator representation, with Q(zk) and Q(�zk) interpreted as creation andannihilation operators respectively. As one has a direct particle (occupationnumber) interpretation in this representation, it is the conventional startingpoint in canonical quantum �eld theory.This representation is particularly convenient for quantizing the harmonic os-cillator as its Hamiltonian (we take n = 1 for notational convenience)H(q; p) = 12(p2 + q2) = z�z (6.33)preserves the holomorphic polarization, c.f. (6.9). Acting on holomorphic func-tions, the corresponding (pre-) quantum operator is(Q(H) )(z) = �hz @@z (z) : (6.34)which spells doom because its eigenfunctions are the monomials zn with eigen-values n�h. It is, of course, well known from quantum mechanics that this isincorrect and that the spectrum should be shifted by the ground state energy12�h. In the standard treatment this term arises from symmetrizingH = z�z ! 12(z�z + �zz)before substituting the operators (6.32) for z and �z so that one obtains thequantum operator bH = �h(z @@z + 12) : (6.35)This shows that, in spite of the fact that everything has run so smoothly sofar in the case of positive K�ahler polarizations, the necessity arises to modifythe quantization procedure for K�ahler manifolds as well. Interestingly, it turnsout that the half-form quantization scheme which solves a number of problemsarising in the context of real polarizations also takes care of the present short-coming. Namely, one of the consequences of the metaplectic correction is thatit gives rise to an additional term in the expression for the quantum operator ofa polarization preserving observable (similar to the one encountered in (6.25)).A recipe for constructing the corresponding quantum operator will be givenbelow. For the harmonic oscillator the e�ect of this will be precisely to replace(6.34) by (6.35). This is quite remarkable because a priori it is not at all clearwhat half-forms have to do with operator ordering.A general rule of thumb for including the metaplectic correction to the operatorcorresponding to a polarization preserving obervable is the following (see [14]).Let the polarization P be spanned by the n complex vector �elds Xk, k =41



1; : : : ; n. If f preserves the polarization P , there is a matrix a(f) � (akl(f)) offunctions on M satisfying [Xf ;Xk] = a lk(f)Xl : (6.36)In terms of this matrix, the half-form corrected quantum operator isQ(f) = P(f)� 12 i�h tr(a(f)) : (6.37)In the case of the harmonic oscillator, P is spanned by @@�z and the Hamiltonianvector �eld is XH = i(z @@z � �z @@�z ) :Thus, [XH ; @@�z ] = i @@�z ;leading to the correct(ed) expressionQ(H) = �h(z @@z + 12) (6.38)and the energy spectrumspec(Q(H)) = f(n+ 12)�h; n � 0g : (6.39)In the general case of a K�ahler manifold (M;!; J) everything works as above. Inparticular, expressions like (6.27) and (6.29) are still valid locally and allow oneto represent polarized sections locally by holomorphic functions on M . Certaininteresting and new features arise whenM is compact so that the only globallyde�ned holomorphic functions on M are the constants. To explain these, I willmake use of some algebraic geometry (see e.g. [18]).First of all, we can use local non-vanishing polarized sections of L as trivializingsections. Then the transition functions will be holomorphic and hence give Lthe structure of a holomorphic Hermitian line bundle over M . The space ofholomorphic sections of L can be identi�ed with the zero'th sheaf cohomologygroup H0(M;L) of M with values in the sheaf L of germs of holomorphic sec-tions of L. By general theorems, this is �nite dimensional so that the quantumHilbert space will be �nite dimensional as well,dimHP = dimH0(M;L) <1 : (6.40)It is for this reason that compact symplectic manifolds are usually used tointroduce internal degrees of freedom. For instance, if one quantizes T �Rn�Musing the vertical polarization in the �rst and the holomorphic representationin the second factor, the resulting Hilbert space is a tensor product of L2(Q)with the �nite dimensional Hilbert space HP (M). If M is e.g. a coadjoint orbitof a group G such that HP (M) carries an irreducible representation of G, thenthe resulting tensor product wave functions are usually interpreted as wavefunctions taking values in this representation or carrying a representation of G.I will illustrate this in the case of the two-sphere whose prequantization we haddiscussed in Example 2 of section 4.2. Recall that we introduced two coordinate42



patches U� with local complex coordinates z� and that the transition functionsfor the line bundle Lk were given by (z+)k = (z�)�k. Furthermore, for k = 1the K�ahler potential, symplectic form and adapted symplectic potential wereK� = �h log(1 + jz�j2) ;! = �i�h d�z�dz�(1 + jz�j2)2 ;�K� = �i�h �z�dz�1 + jz�j2(see (4.26,4.27,5.22)). To determine the global holomorphic sections of Lk inthis trivialization, we have to check which local holomorphic functions on U�can be patched together via the transition functions. This is easy. A basis forholomorphic functions on U+ is given by the monomials (z+)l and on U� by(z�)m for l and m non-negative integers. We thus have to �nd the solutions tothe equation (z+)l = (z+)k(z�)m :This gives l = k �mwhich has non-negative integer solutions for l � k and m � k. Thus thedimension of the space of holomorphic sections is k+1, precisely the dimensionof the spin k=2 representation of SU(2). As the patch U+ covers everythingbut one point on S2 we can de�ne the scalar product by integration over U+alone. As in (6.30) the Hermitian structure on the �bers of Lk gives an extracontribution to the measure of the form (we now call z+ simply z)exp(�kK=�h) = (1 + jzj2)�k (6.41)so that overall the scalar product (with the standard normalization) is<<  1;  2 >>= 12� Z i 1(z) 2(z)dz^d�z(1 + jzj2)k+2 (6.42)(the additional power of two coming from the symplectic form).There are two other things worth noting about (6.40). On the one hand, if theK�ahler polarization is not positive, then dimH0(M;L) = 0 and the Hilbertspace is empty (as in the non-compact case). On the other hand, if L is`su�ciently positive' then the dimension of HP can be computed from theRiemann-Roch theorem. More precisely, the RR theorem expresses the Eulercharacteristic �(M;L) :=Xi (�1)i dimHi(M;L) (6.43)in terms of characteristic classes,�(M;L) = ZM ch(L)T (M) : (6.44)Here ch(L) is the Chern character of L and can be represented by exp(!=2��h)while T (M) is the Todd class of M whose precise form will not interest us. If43



one replaces L by Lk (and hence ! by k!) for some positive integer k, thenfor some su�ciently large value of k the higher cohomology groups in (6.43)will vanish and the right hand side of (6.44) calculates directly the dimensionof HP . In particular, T (M) does not contribute for k !1 and one �nds (see(2.6)) dimH0(M;Lk)! kn(2��h)nn! ZM !n = ( k2��h)nVol!(M) : (6.45)The limit k !1 can be interpreted as the semi-classical limit �h! 0 and onethus recovers the folklore wisdom that in the semi-classical limit the numberof quantum states is equal to the number of cells in phase space (measured inunits of �h). Equation (6.45) has been used recently by Witten to calculate thesymplectic volume of certain moduli spaces of at connections from quantum�eld theory [19].6.4 Real Polarizations and Bohr-Sommerfeld VarietiesIn this �nal section we will, following [14], take a brief look at the compli-cations which can arise when the leaves of a real polarization are not simplyconnected. In that case, there can be global integrability conditions to the equa-tion (5.1) de�ning polarized states. These lead to the necessity of permittingdistributional wave `functions' whose support is restricted to lower dimensionalsubvarieties of M .Let P = Dc be a real polarization and (L;D) a prequantization of (M;!).We denote by � a leaf (integral manifold) of D and, more speci�cally, by �mthe leaf passing through m 2 M . The operator D, restricted to covariantdi�erentiation along P , induces a at connection D� on Lj�. If � is not simplyconnected, then it is possible for D� to have non-trivial holonomy along thenon-contractible loops in �. On the other hand, the condition (5.1) impliesthat  � is a covariantly constant section of L�. It is thus invariant underparallel transport and, in particular, cannot pick up a phase from the non-trivial holonomy of D�. Therefore either  � = 0 or the holonomy group of D�is trivial (i.e. D� is the trivial at connection). Call S �M the union of pointsin M such that D�m is trivial. S is known as the Bohr - Sommerfeld varietyand S =M if all the �m are simply connected. From the above it follows thatpolarized sections of (L;D) vanish in the complement of S, 2 P (L)) supp( ) � S : (6.46)Instead of working with such distributional wave functions, it is possible towork with so-called cohomological wave functions (i.e. one trades singularitiesfor cohomology as is familiar from algebraic geometry), see [14].The relation with the usual Bohr - Sommerfeld quantization conditions is thatm 2 S , exp(i=�h) I � = 1 (6.47)for all loops  in �m, where � is a local symplectic potential. In terms of localcanonical coordinates (qk; pl) one can write � as pkdqk and thus (6.47) becomes44



the quantization conditionI pkdqk = 2��hn ; n 2 Z : (6.48)Taking into account the contribution exp(�2�id) to the holonomy from theat connection on the bundle of half-forms (d de�ned up to an integer), oneobtains the modi�ed Bohr - Sommerfeld conditionsI pkdqk = 2��h(n + d) : (6.49)As the above discussion was rather abstract, let us now take a look at two simpleexamples where these distributional wave functions and the corresponding Bohr- Sommerfeld conditions arise quite naturally (and turn out to be important).The �rst of these is the cylinder, whose prequantization and quantization inthe vertical polarization we have already dealt with in Example 1 of section4.2. Here we shall look at the same model in the momentum representation[17]. This is the representation de�ned by the horizontal polarization spannedby @=@'. Consequently, polarized sections have to satisfyD�( @@') = 0(recall equation (4.23)) or@@' ('; p) = i�h(p� �h�) ('; p) : (6.50)Polarized sections are thus of the form ('; p) = exp( i�h(p� �h�)')�(p) (6.51)where �(p) is some function of the momentum. The �rst thing to note is thatthis is not what one would naively have expected the momentum representationto look like. The phase factor appears because of the choice of symplecticpotential, � = pd'. If we had been able to choose �'dp as a symplecticpotential (adapted to the horizontal polarization), polarized states would havebeen of the expected form �(p). However, this potential is not globally de�ned,and the fact that we are dealing with quantum mechnics on the circle and noton the real line is reected in the peculiar form of the wave functions. It is thiswhich guarantees that the vacuum angle � is equally visible in the momentumrepresentation although the space of momenta itself is topologically trivial.Now we have to remember that the prequantum Hilbert space is the space ofL2-functions on the cylinder so that, in particular,  has to be periodic in '.From (6.51) it follows that this is only possible if the support of �(p) is restrictedto those p which satisfy p = (n+ �)�hfor some integer n. This is nothing but the Bohr - Sommerfeld condition (6.48)and obviously leads inevitably to distributional wave functions with support on45



S � Z. Along the way we have also recovered the discrete and shifted spectrum(4.25) of the momentum operator (diagonal in this representation).As a second example let us take a brief look at the one-dimensional harmonicoscillator in the real energy representation. This corresponds to the polarizationde�ned by the Hamiltonian vector �eld XH of the Hamiltonian H. In polarcoordinates (r; ') on the plane we haveH(r; ') = 12r2 ;! = rdr^d' = d(Hd') ;XH = @@' : (6.52)To avoid having to deal with singular polarizations, we remove the origin fromthe plane and thus the phase space is R2nf0g with the above symplectic form.Polarized wave functions are of the formD(XH) = 0)  (r; ') = exp( i2�hr2)�(r) ; (6.53)so that single valuedness of  imposes the (Bohr - Sommerfeld) condition12r2 = n�h :Unfortunately, this is only almost correct as it leads to the same wrong energyspectrum we initally found in the previous section. As is also apparent from theform of the wave function, topologically this example is the same as the cylinderwe discussed above, so that we could obtain the correct spectrum by �ne-tuningthe value of the vacuum angle to � = 12 . However, this is rather ad hoc. A moresatisfactory way of obtaining the result is to take into account the contributionfrom the bundle of half-forms. In the previous section, this changed the formof the energy operator. Here, it gives rise to the modi�ed Bohr - Sommerfeldcondition (6.49). The at connection on the bundle of half-forms is non-trivial,with d = 12 . This leads to the same shift in the spectrum as the choice � = 12and to the correct result (6.39).References[1] P.A.M. Dirac, The Principles of Quantum Mechanics (Fourth Edition), ClarendonPress, Oxford, 1958.[2] J.-M. Souriau, Quanti�cation G�eom�etrique, Commun. Math. Phys. 1 (1966) 374;Structure des Syst�emes Dynamiques, Dunod, Paris, 1970.[3] B. Kostant, Quantization and Unitary Representations, in Lecture Notes in Math-ematics Vol. 170, Springer, Berlin, 1970.[4] C.J. Isham, Topological and Global Aspects of Quantum Theory, in Relativity,Groups and Topology II, North Holland, Amsterdam, 1984.[5] S. Axelrod, S. della Pietra and E. Witten, Geometric Quantization of Chern-Simons Gauge Theory, J. Di�. Geom. 33 (1991) 787.[6] M.J. Gotay, Constraints, Reduction, and Quantization, J. Math. Phys. 27 (1986)2051. 46



[7] A. Ashtekar and M. Stillerman,Geometric Quantization and Constrained Systems,J. Math. Phys. 27 (1986) 1319.[8] M. Blau, Constraints and Polarizations, Phys. Lett. B205 (1988) 525; On theGeometric Quantization of Constrained Systems, Class. Quantum Grav. 5 (1988)1033.[9] A.A. Kirilov, Elelements of the Theory of Representations, Springer, Berlin, 1976.[10] R. Abraham and J.E. Marsden, Foundations of Mechanics (Second Edition), Ben-jamin, Reading MA, 1978.[11] V.I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer, New York,1978.[12] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Uni-versity Press, Cambridge, 1984.[13] N.M.J. Woodhouse, Geometric Quantization (Second Edition), Clarendon Press,Oxford, 1992.[14] J. Sniatycki, Geometric Quantization and Quantum Mechanics, Springer, NewYork, 1980.[15] N.E. Hurt, Geometric Quantization in Action, Reidel, Dordrecht, 1982.[16] R. Bott and L.W. Tu, Di�erential Forms in Algebraic Topology, Springer, NewYork, 1986.[17] M. Blau, What happens to the Vacuum Angle in the Momentum Representation?,Mod. Phys. Lett. A4 (1989) 927; On the Representation Independence of Topolog-ical E�ects in Quantum Field Theory, Int. J. Mod. Phys. A17 (1989) 4627.[18] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, New York,1966.[19] E. Witten, Quantum Gauge Theories in Two Dimensions, Commun. Math. Phys.141 (1991) 153.

47


