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1 Preface

Introductory Comments

Gravitational plane waves have been discussed in the context of four-dimensional general

relativity for a long time (see e.g. [1], and [2, 3] for somewhat more recent accounts). It

has also long been recognised [4, 5] that gravitational wave metrics provide potentially

exact and exactly solvable string theory backgrounds, and this led to a certain amount

of activity in this field in the early 1990s. For a review see e.g. [6].

This in itself, of course, does not explain why I should lecture about this subject in 2004.

However, you may have noticed that numerous papers have appeared on the preprint

archives in the last couple of years which deal with various aspects of plane waves in

string theory. In fact, the discovery of the maximally supersymmetric BFHP [7] plane

wave solution of IIB string theory, and the recognition that string theory in this RR

background is also exactly solvable [8, 9], have led to renewed interest in this subject,

in particular with the realisation that the BFHP solution arises [10, 11] as the Penrose-

Gueven limit [12, 13, 14] of AdS5×S5, and that this gives rise to a novel explicit form of

the AdS/CFT correspondence [11], the remarkable BMN gauge theory / string theory

correspondence. Since then, 500+ papers have appeared on these subjects, mainly in

connection with the BMN correspondence, but also dealing with other aspects of plane

waves and Penrose limits.

The bad news is that I will not be talking about any of these exciting developments.

In particular, supersymmetry and supergravity, string theory and the AdS/CFT corre-

spondence, will make no appearance in the following, even though they are of course

the main reasons for the interest in this subject.

Having said this, you may wonder what, then, I will be talking about. Much of the recent

literature on plane waves focusses on “advanced” properties of certain very special plane

wave metrics (and then things very quickly become quite complicated). Here, rather

than focussing on specific examples or very special classes of plane waves, in an attempt

to keep things elementary while nevertheless being able to say something of substance,

I will instead tell you about some basic properties of plane waves and Penrose limits in

general.

So the good news is that the first part of these lectures, sections 2 to 4, and parts of

section 5, will be quite elementary and, provided that you have had some introductory

course on general relativity, essentially self-contained. They provide an introduction to

plane waves and Penrose Limits. I hope that this will serve the purpose of filling a
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gap that, I believe, exists between what one usually learns in a general relativity course

and what would be good to know when reading about (or working on) more recent

developments in this field.

The final part of these notes, parts of section 5 and all of section 6, deals more specifically

with a subject I have been working on more recently, namely geometric and general

relativity aspects of Penrose Limits, specifically the plane waves one obtains as the

Penrose limits of metrics with (black hole or cosmological) singularities. The main

results there are a covariant characterisation of the Penrose Limit (in terms of null

geodesic deviation) and the discovery of a universal behaviour of Penrose Limits near

space-time singularities.

Instead of giving you a detailed summary of these lecture notes here, I refer you to the

table of contents.

Further Reading

Due to the huge number of papers that have appeared on this subject in recent years,

and since these notes are not meant to be a comprehensive review of the activities in this

field but rather an introduction to the subject, I have not even attempted to provide

complete references and have cited essentially only those articles that I have actually

used in preparing these notes. The best way to track down further references is to look

at the citations of, and references in, an article of interest.

Fortunately the BMN gauge theory aspects of the plane wave and Penrose limit story

are reviewed in some detail in [15] to which I refer you for ample references to that part

of the literature.

However, even within the limited context of geometric and general relativity aspects of

plane waves and Penrose limits these notes are incomplete in that no mention is made of

global properties of plane wave (or more general pp-wave) metrics. This is an interesting

subject, not just in itself, but also for a better understanding of issues like “holography”

in plane wave backgrounds. Given a bit more time, it would have been natural to include

at least some apsects of these issues in these lectures. But as it is, I am pretty certain

that I will already have run out of time by the time we discuss the Penrose limit of

the Schwarzschild metric or some other elementary subject. Therefore I will just refer

you to the articles [16]-[21] for more information. Some aspects of plane waves are also

treated in the mathematical literature on Lorentzian Differential Geometry, see e.g. the
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2nd edition of [22].
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2 Plane Waves I: Metrics, Geodesics and Curvature

2.1 Plane Waves in Rosen Coordinates: Heuristics

Usually gravitational plane wave solutions of general relativity are discussed in the

context of the linearised theory. There one makes the ansatz that the metric takes the

form

gµν = ηµν + hµν (2.1)

where hµν is treated as a small perturbation of the Minkowski background metric. To

linear order in hµν the Einstein equations (necessarily) reduce to a wave equation. One

finds that gravitational waves are transversally polarised. For example, a wave travelling

in the (t, z)-direction distorts the metric only in the transverse directions, and a typical

solution of the linearised Einstein equations is

ds2 = −dt2 + dz2 + (δij + hij(z − t))dyidyj . (2.2)

Note that in terms of light-cone coordinates U = z− t, V = (z+ t)/2 this can be written

as

ds2 = 2dUdV + (δij + hij(U))dyidyj . (2.3)

We will now simply define a plane wave metric in general relativity to be a metric of

the above form, dropping the assumption that hij be “small”,

ds̄2 = 2dUdV + ḡij(U)dyidyj . (2.4)

We will say that this is a plane wave metric in Rosen coordinates. This is not the coor-

dinate system in which plane waves are usually discussed, among other reasons because

typically in Rosen coordinates the metric exhibits spurious coordinate singularities.1

We will establish the relation to the more common and much more useful Brinkmann

coordinates in sections 2.8 and 2.9.

Plane wave metrics are characterised by a single matrix-valued function of U , but two

metrics with quite different ḡij may well be isometric. For example,

ds̄2 = 2dUdV + U2d~y2 (2.5)

is isometric to the flat Minkowski metric whose natural presentation in Rosen coordi-

nates is simply the Minkowski metric in light-cone coordinates,

ds̄2 = 2dUdV + d~y2 . (2.6)

1This led to the mistaken belief in the past that there are no non-singular plane wave solutions of

the non-linear Einstein equations.
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This is not too difficult to see, and we will establish this as a consequence of a more

general result in section 2.8 (but if you want to try this now, try scaling ~y by U and do

something to V . . . ).

That (2.5) is indeed flat should in any case not be too surprising. It is the “null”

counterpart of the “spacelike” fact that ds2 = dr2 + r2dΩ2, with dΩ2 the unit line

element on the sphere, is just the flat Euclidean metric in polar coordinates, and the

“timelike” statement that

ds2 = −dt2 + t2dΩ̃2 , (2.7)

with dΩ̃2 the unit line element on the hyperboloid, is just (a wedge of) the flat Minkowski

metric. In cosmology this is known as the Milne Universe.2

It is somewhat less obvious, but still true, that for example the two metrics

ds̄2 = 2dUdV + sinh2 Ud~y2

ds̄2 = 2dUdV + e2Ud~y2 (2.8)

are also isometric.

2.2 From pp-waves to plane waves in Brinkmann coordinates

In the remainder of this section we will study gravitational plane waves in a more

systematic way. One of the characteristic features of the above plane wave metrics is

the existence of a nowhere vanishing covariantly constant null vector field, namely ∂V .

We thus begin by deriving the general metric (line element) for a space-time admitting

such a covariantly constant null vector field.

Thus, let Z be a parallel (i.e. covariantly constant) null vector of the (d+2)-dimensional

Lorentzian metric gµν , ∇µZν = 0. This condition is equivalent to the pair of conditions

∇µZν +∇νZµ = 0 (2.9)

∇µZν −∇νZµ = 0 . (2.10)

The first of these says that Z is a Killing vector field, and the second that Z is also

a gradient vector field. If Z is nowhere zero, without loss of generality we can assume

that

Z = ∂v (2.11)

2It is easy to check that this is indeed a (rather trivial) solution of the Friedmann equations (5.66)

of Friedmann-Robertson-Walker (FRW) cosmology with k = −1, a(t) = t and ρ = P = 0.
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for some coordinate v since this simply means that we are using a parameter along

the integral curves of Z as our coordinate v. In terms of components this means that

Zµ = δµ
v , or

Zµ = gµv . (2.12)

The fact that Z is null means that

Zv = gvv = 0 . (2.13)

The Killing equation now implies that all the components of the metric are v-independent,

∂vgµν = 0 . (2.14)

The second condition (2.10) is identical to

∇µZν −∇νZµ = 0 ⇔ ∂µZν − ∂νZµ = 0 , (2.15)

which implies that locally we can find a function u = u(xµ) such that

Zµ = gvµ = ∂µu . (2.16)

There are no further constraints, and thus the general form of a metric admitting a

parallel null vector is, changing from the xµ-coordinates to {u, v, xa}, a = 1, . . . , d,

ds2 = gµνdxµdxν

= 2dudv + guu(u, xc)du2 + 2gau(u, xc)dxadu + gab(u, xc)dxadxb

≡ 2dudv + K(u, xc)du2 + 2Aa(u, xc)dxadu + gab(u, xc)dxadxb . (2.17)

Note that if we had considered a metric with a covariantly constant timelike or spacelike

vector, then we would have obtained the above metric with an additional term of the

form ∓dv2. In that case, the cross-term 2dudv could have been eliminated by shifting

v → v′ = v ∓ u, and the metric would have factorised into ∓dv′2 plus a v′-independent

metric. Such a factorisation does in general not occur for a covariantly constant null

vector, which makes metrics with such a vector potentially more interesting than their

timelike or spacelike counterparts.

There are still residual coordinate transformations which leave the above form of the

metric invariant. For example, both K and Aa can be eliminated in favour of gab. We

will not pursue this here, as we are primarily interested in a special class of metrics

which are characterised by the fact that gab = δab,

ds2 = 2dudv + K(u, xb)du2 + 2Aa(u, xb)dxadu + d~x2 . (2.18)

Such metrics are called plane-fronted waves with parallel rays, or pp-waves for short.

“plane-fronted” refers to the fact that the wave fronts u = const. are planar (flat),
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and “parallel rays” refers to the existence of a parallel null vector. Once again, there

are residual coordinate transformations which leave this form of the metric invariant.

Among them are shifts of v, v → v + Λ(u, xa), under which the coefficients K and Aa

transform as

K → K + 1
2∂uΛ

Aa → Aa + ∂aΛ . (2.19)

Note in particular the “gauge transformation” of the (Kaluza-Klein) gauge field Aa,

here associated with the null isometry generated by Z = ∂v.

Plane waves are a very special kind of pp-waves. By definition, a plane wave metric is

a pp-wave with Aa = 0 and K(u, xa) quadratic in the xa (zero’th and first order terms

in xa can be eliminated by a coordinate transformation),

ds̄2 = 2dudv + Aab(u)xaxbdu2 + d~x2 . (2.20)

We will say that this is the metric of a plane wave in Brinkmann coordinates. The

relation between the expressions for a plane wave in Brinkmann coordinates and Rosen

coordinates will be explained in section 2.8. From now on barred quantities will refer

to plane wave metrics.3

There are various ways of motivating this specialisation, most of them not particularly

relevant for our purposes. Certainly these plane wave metrics are not (and were never

meant to be) phenomenologically realistic models of gravitational plane waves, but

rather a useful theoretical play-ground. The reason for this is that in the far-field

gravitational waves are so weak that the linearised Einstein equations and their solutions

are adequate to describe the physics, whereas the near-field strong gravitational effects

responsible for the production of gravitational waves, for which the linearised equations

are indeed insufficient, correspond to much more complicated solutions of the Einstein

equations (describing e.g. two very massive stars orbiting around their common center

of mass).

We are primarily interested in plane waves because they arise as particular limits of any

space-time (Penrose limits - see sections 4 and 5) and, looking further ahead, because

the string mode equations can be reduced to linear differential equations in that case.

It is occasionally useful to work in a frame basis

EA = EA
µ (x)dxµ (2.21)

rather than a coordinate basis. If in such a basis the metric takes the form

ds2 = gµνdxµdxν = 2E+E− + δabE
aEb , (2.22)

3But I cannot guarantee that I have done this consistently throughout these notes.
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we will call EA = (E+, E−, Ea) a pseudo-orthonormal frame for the metric gµν . In

particular, for a plane wave metric in Brinkmann coordinates one can evidently choose

Ē+ = du

Ē− = dv + 1
2Aab(u)xaxbdu

Ēa = dxa . (2.23)

We will see another natural choice in section 2.3.

In any case, in Brinkmann coordinates a plane wave metric is characterised by a single

symmetric matrix-valued function Aab(u). Generically there is very little redundancy in

the description of plane waves in Brinkmann coordinates, i.e. there are very few residual

coordinate transformations that leave the form of the metric invariant, and the metric

is specified almost uniquely by Aab(u). In particular, as we will see below, a plane wave

metric is flat if and only if Aab(u) = 0 identically. Contrast this with the non-uniqueness

of the flat metric in Rosen coordinates. This uniqueness of the Brinkmann coordinates

is one of the features that makes them convenient to work with in concrete applications.

2.3 Geodesics, Light-Cone Gauge and Harmonic Oscillators

We now take a look at geodesics of a plane wave metric in Brinkmann coordinates,

ds̄2 = 2dudv + Aab(u)xaxbdu2 + d~x2 , (2.24)

i.e. the solutions xµ(τ) to the geodesic equations

ẍµ(τ) + Γ̄µ
νλ(x(τ))ẋν(τ)ẋλ(τ) = 0 , (2.25)

where an overdot denotes a derivative with respect to the affine parameter τ .

Rather than determining the geodesic equations by first calculating all the non-zero

Christoffel symbols, we make use of the fact that the geodesic equations can be obtained

more efficiently, and in a way that allows us to directly make use of the symmetries of

the problem, as the Euler-Lagrange equations of the Lagrangian

L = 1
2 ḡµν ẋµẋν

= u̇v̇ + 1
2Aab(u)xaxbu̇2 + 1

2 ~̇x
2

, (2.26)

supplemented by the constraint

2L = ǫ , (2.27)

where ǫ = 0 (ǫ = −1) for massless (massive) particles.
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Since nothing depends on v, the light-cone momentum

pv =
∂L
∂v̇

= u̇ (2.28)

is conserved. For pv = 0 the particle obviously does not feel the curvature and the

geodesics are straight lines. When pv 6= 0, we choose the light-cone gauge

u = pvτ . (2.29)

Then the geodesic equations for the transverse coordinates are the Euler-Lagrange equa-

tions

ẍa(τ) = Aab(pvτ)xb(τ)p2
v (2.30)

These are the equation of motion of a non-relativistic harmonic oscillator,

ẍa(τ) = −ω2
ab(τ)xb(τ) (2.31)

with (possibly time-dependent) frequency matrix

ω2
ab(τ) = −p2

vAab(pvτ) , (2.32)

The constraint

pv v̇(τ) + 1
2Aab(pvτ)xa(τ)xb(τ)p2

v + 1
2 ẋa(τ)ẋa(τ) = 0 (2.33)

for null geodesics (the case ǫ 6= 0 can be dealt with in the same way) implies, and

thus provides a first integral for, the v-equation of motion. Multiplying the oscillator

equation by xa and inserting this into the constraint, one finds that this can be further

integrated to

pvv(τ) = −1
2xa(τ)ẋa(τ) + pvv0 . (2.34)

Note that a particular solution of the null geodesic equation is the purely “longitudinal”

null geodesic

xµ(τ) = (u = pvτ, v = v0, x
a = 0) . (2.35)

Along this null geodesic, all the Christoffel symbols of the metric (in Brinkmann coor-

dinates) are zero. Hence Brinkmann coordinates can be regarded as a special case of

Fermi coordinates (defined in general by the vanishing of the Christoffel symbols along

a given, not necessarily geodesic, curve).4

By definition the light-cone Hamiltonian is

Hlc = −pu , (2.36)

4Fermi coordinates for timelike geodesics are discussed e.g. in [28, 29].
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where pu is the momentum conjugate to u in the gauge u = pvτ . With the above

normalisation of the Lagrangian one has

pu = ḡuµẋµ = v̇ + Aab(pvτ)xaxbpv

= −p−1
v Hho(τ) , (2.37)

where Hho(τ) is the (possibly time-dependent) harmonic oscillator Hamiltonian

Hho(τ) = 1
2(ẋaẋa − p2

vAab(pvτ)xaxb) . (2.38)

Thus for the light-cone Hamiltonian one has

Hlc = 1
pv

Hho . (2.39)

In summary, we note that in the light-cone gauge the equation of motion for a relativistic

particle becomes that of a non-relativistic harmonic oscillator. This harmonic oscillator

equation appears in various different contexts when discussing plane waves, and will

therefore also reappear several times later on in these notes.

Given any particular solution xµ(τ) to the geodesic equations, one can construct a paral-

lel propagated pseudo-orthonormal frame along that geodesic, i.e. a pseudo-orthonormal

frame ĒA (2.22) for all xµ(τ) which has the property that it is parallel (covariantly con-

stant) along that geodesic,

ẋµ∇µĒA
ν = 0 . (2.40)

For a null geodesic, one can choose one leg of the dual coframe, say Ē+, to be tangent

to the null geodesic,

Ē+ = ẋµ∂µ , (2.41)

since

ẋν∇νĒ
µ
+ = ẋν∇νẋ

µ = 0 (2.42)

is just the geodesic equation. This extends to a parallel coframe ĒA = Eµ
A∂µ as

Ē+ = pv∂u + v̇∂v + ẋa∂a

Ē− = p−1
v ∂v

Ēa = ∂a − p−1
v ẋa∂v . (2.43)

The dual frame ĒA is

Ē+ = p−1
v du

Ē− = −(v̇ + p−1
v ẋ2)du + pvdv + ẋadxa

Ēa = dxa − p−1
v ẋadu . (2.44)

This coincides with the frame (2.23) for the longitudinal geodesic (2.35) and pv = 1.

The dual statement to (2.41) is that Ē− can be written in terms of momenta as

Ē− = pudu + pvdv + padxa = pµdxµ . (2.45)
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2.4 String Mode Equations for Plane Waves

The Polyakov action for a string moving in the curved background described by the

metric gµν is

SP (X,h) =
1

2π

∫ √
hd2z hαβgµν(X)∂αXµ∂βXν , (2.46)

where Xµ(τ, σ) are the embedding coordinates of the string worldsheet with metric

hαβ into the target space with metric gµν , and the two worldsheet coordinates zα are

(z1 = τ, z2 = σ). The dynamical variables are hαβ and Xµ.

In the so-called “conformal gauge”

√
hhαβ = ηαβ (2.47)

the equations of motion for the embedding coordinates Xµ(τ, σ) are

(∂2
τ − ∂2

σ)Xµ + Γµ
νλ(X)(∂τ Xν∂τX

λ − ∂σXν∂σXλ) = 0 , (2.48)

These equations need to be supplemented by the equations of motion for the two-

dimensional worldsheet metric, i.e. by the condition that the two-dimensional energy-

momentum tensor be zero,

Tαβ =
δSp

δhαβ
= 0 . (2.49)

Since the action is conformally invariant, i.e. invariant under the local rescalings

hαβ(x)→ e2φ(x)hαβ(x) (2.50)

of the worldsheet metric, this energy-momentum tensor is automatically traceless,

Tα
α ≡ hαβTαβ = 0 (2.51)

and thus there are only two independent conditions, namely

gµν(X)(∂τ Xµ∂τX
ν + ∂σXµ∂σXν) = 0 , (2.52)

(the Hamiltonian constraint) and

gµν(X)∂τ Xµ∂σXν = 0 (2.53)

(the σ-reparametrisation constraint).

In general, these three equations are highly non-linear coupled differential equations for

the embedding fields X(σ, τ), and thus this is usually not the optimal starting point for

a discussion of quantisation of strings beyond a perturbative expansion.
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For plane wave metrics, however, with embedding coordinates Xµ = (U, V,Xa), these

equations simplify quite dramatically. In particular, the string mode equations for

U(σ, τ) read

(∂2
τ − ∂2

σ)U(σ, τ) = 0 , (2.54)

and, as in the particle case, one can choose the light-cone gauge5

U(σ, τ) = pvτ . (2.55)

The transverse string mode equations are then the linear equations

(∂2
τ − ∂2

σ)Xa(σ, τ) = p2
vAab(pvτ)Xb(σ, τ) (2.56)

In particular, if one expands X(τ, σ) in Fourier modes,

Xa(τ, σ) =
∑

n

Xa
n(τ)e inσ , (2.57)

then one obtains decoupled harmonic oscillator equations for the individual modes which

generalise (2.30), namely

Ẍa
n = (p2

vAab(pvτ)− n2δab)X
b
n (2.58)

Finally, the mode equation for V (σ, τ) is more complicated but, as in the particle case,

can be substituted by the constraints which can be written as

pv∂σV = −∂τX
a∂σXa

pv∂τV = −∂σXa∂σXa + 1
2ηαβ∂α(Xa∂βXa) . (2.59)

The first constraint can be integrated to

pvV = −
∫ σ

∂τX
a∂σXa + V0(τ) (2.60)

and this solves the second constraint (and the string mode equation) provided that

V0(τ) ∼ v(τ),

pvV (σ, τ) = pvv(τ) −
∫ σ

∂τX
a∂σXa (2.61)

One can thus quite explicitly expand all the modes in terms of a complete set of solutions

to the classical equations of motion and then take these mode expansions as a starting

point for the canonical quantisation of strings in the light-cone gauge.

5One susually prefers to write this as U = 2α′pvτ , α′ the string tension, but for present purposes it

is good enough to set α′ = 1/2.
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2.5 Curvature of Plane Waves

It is easy to see that there is essentially only one non-vanishing component of the

Riemann curvature tensor of a plane wave metric, namely

R̄uaub = −Aab . (2.62)

In particular, therefore, because of the null (or chiral) structure of the metric, there is

only one non-trivial component of the Ricci tensor,

R̄uu = −δabAab ≡ −Tr A , (2.63)

the Ricci scalar is zero,

R̄ = 0 , (2.64)

and the only non-zero component of the Einstein tensor (A.13) is

Ḡuu = R̄uu . (2.65)

Thus, as claimed above, the metric is flat iff Aab = 0. Moreover, we see that in

Brinkmann coordinates the vacuum Einstein equations reduce to a simple algebraic

condition on Aab (regardless of its u-dependence), namely that it be traceless.

A simple example of a vacuum plane wave metric in four dimensions is

ds̄2 = 2dudv + (x2 − y2)du2 + dx2 + dy2 , (2.66)

or, more generally,

ds̄2 = 2dudv + [A(u)(x2 − y2) + 2B(u)xy]du2 + dx2 + dy2 (2.67)

for arbitrary fuctions A(u) and B(u). This reflects the two polarisation states or de-

grees of freedom of a four-dimensional graviton. Evidently, this generalises to arbitrary

dimensions: the number of degrees of freedom of the traceless matrix Aab(u) correspond

precisely to those of a transverse traceless symmetric tensor (a.k.a. a graviton).

The Weyl tensor is the traceless part of the Riemann tensor,

C̄uaub = −(Aab −
1

d
δab Tr A) . (2.68)

Thus the Weyl tensor vanishes (and, for d > 1, the plane wave metric is conformally

flat) iff Aab is pure trace,

Aab(u) = A(u)δab . (2.69)

For d = 1, every plane wave is conformally flat, as is most readily seen in Rosen

coordinates.
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When the Ricci tensor is non-zero (Aab has non-vanishing trace), then plane waves solve

the Einstein equations with null matter or null fluxes, i.e. with an energy-momentum

tensor T̄µν whose only non-vanishing component is T̄uu,

T̄µν = ρ(u)δµuδνu . (2.70)

Examples are e.g. null Maxwell fields a(u) with field strength

F = du ∧ a′(u) (2.71)

or their higher-rank generalisations (which appear in supergavity). Physical matter

(with positive energy density) corresponds to R̄uu > 0 or Tr A < 0.

2.6 Curvature Invariants of Plane Waves (are zero)

It is pretty obvious by inspection that all the curvature invariants of a plane wave vanish

(there is simply no way to soak up the u-indices). Here is another argument, due to

Schmidt [23], which provides a different perspective on this result and does not require

one to actually calculate the curvature tensor.

The argument proceeds in three steps:

1. First of all, one shows that a non-trivial (elementary) curvature invariant cannot

be invariant under constant rescalings of the metric.

2. Then one establishes that if there is a coordinate transformation (motion) which

induces a non-trivial constant rescaling of the metric (a homothety), as a conse-

quence of the first result all elementary curvature invariants vanish at the fixed

points of this motion.

3. Finally, to apply this to plane waves, one shows that for any point x in a plane

wave space-time there exists a homothety with fixed-point x.

A general curvature invariant (a scalar constructed from the metric and the Riemann

tensor and its covariant derivatives) is a function of the elementary curvature invariants

which are obtained by multiplying together products of covariant derivatives

∇µ1 . . .∇µpR
µ
νλρ

with an appropriate number of factors of the inverse metric to construct a scalar. Now

consider the behaviour of any such elementary invariant under constant rescalings of

the metric. Since the Christoffel symbols are invariant under such a scaling, so is the
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Riemann tensor with index structure Rµ
νλρ and the Ricci tensor, as well as all their

covariant derivatives. But since factors of the inverse metric are required to construct a

scalar, it follows that non-trivial elementary curvature invariants transform non-trivially

under constant rescalings of the metric. This establishes (1).

It now follows that if there is a homothety of a metric which is not an isometry, then

all curvature invariants have to vanish at the fixed points of this coordinate transfor-

mation. The reason for this is that, on the one hand, as it is a scalar under coordinate

transformations, the curvature invariant should be invariant (as the name implies). On

the other hand, since this coordinate transformation induces a constant scaling of the

metric, the curvature invariant cannot be invariant under this transformation unless it

is zero. This establishes (2).

Thus, to establish the vanishing of the curvature invariants for plane waves, we have to

show that for every point x there exists a non-trivial homothety of the plane wave space-

time with fixed point x. This is easy to establish. For example, in Rosen coordinates

there is an obvious translation symmetry in V and yk, so without loss of generality we

can assume that x is the point (U, 0, 0). Now consider the scaling

(U, V, yk)→ (U, λ2V, λyk) . (2.72)

It is evident that (U, 0, 0) is a fixed pont of this transformation and that under this

rescaling the metric transforms as

ds2 → λ2ds2 . (2.73)

This establishes that all curvature invariants of a plane wave metric are identically zero

at the points (U, 0, 0) and hence, because of translation invariance, everywhere.

2.7 Singularities of Plane Waves (nevertheless exist)

Usually, an unambiguous way to ascertain that an apparent singularity of a metric is

a true curvature singularity rather than just a singularity in the choice of coordinates

is to exhibit a curvature invariant that is singular at that point. For example, for the

Schwarzschild metric (4.37) one has

RµνρσRµνρσ ∼ m2

r6
, (2.74)

which shows that the singularity at r = 0 is a true singularity.

Now for plane waves all curvature invariants are zero. Does this mean that plane waves

are non-singular? Or, if not, how does one detect the presence of a curvature singularity?
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One way of doing this is to study the tidal forces acting on extended objects or families

of freely falling particles. Indeed, in a certain sense the main effect of curvature (or

gravity) is that initially parallel trajectories of freely falling non-interacting particles

(dust, pebbles,. . . ) do not remain parallel, i.e. that gravity has the tendency to focus

(or defocus) matter. This statement find its mathematically precise formulation in the

geodesic deviation equation (A.15),

D2

Dτ2
δxµ = Rµ

νλρẋ
ν ẋλδxρ . (2.75)

Here δxµ is the seperation vector between nearby geodesics. We can apply this equation

to some family of geodesics of plane waves discussed in section 2.3. We will choose δxµ

to connect points on nearby geodesics with the same value of τ = u. Thus δu = 0, and

the geodesic deviation equation for the transverse seperations δxa reduces to

d2

du2
δxa = −R̄a

ubuδxb = Aabδx
b . (2.76)

This is (once again!) the harmonic oscillator equation. We could have also obtained this

directly by varying the harmonic oscillator (geodesic) equation for xa, using δu = 0. We

see that for negative eigenvalues of Aab (physical matter) this tidal force is attractive,

leading to a focussing of the geodesics. For vacuum plane waves, on the other hand,

the tidal force is attractive in some directions and repulsive in the other (reflecting the

quadrupole nature of gravitational waves).

What is of interest to us here is the fact that the above equation shows that Aab itself

contains direct physical information. In particular, these tidal forces become infinite

where Aab(u) diverges. This is a true physical effect and hence the plane wave space-

time is genuinely singular at such points.

Let us assume that such a singularity occurs at u = u0. Since u = pvτ is an affine

parameter along the geodesic, this shows that any geodesic starting off at a finite value

u1 of u will reach the singularity in the finite “time” u0 − u1. Thus the space-time is

geodesically incomplete and ends at u = u0.

Since, on the other hand, the plane wave metric is clearly smooth for non-singular

Aab(u), we can thus summarise this discussion by the statement that a plane wave is

singular if and only if Aab(u) is singular somewhere.

2.8 From Rosen to Brinkmann coordinates (and back)

I still owe you an explanation of what the heuristic considerations of section 2.1 have

to do with the rest of this section. To that end I will now describe the relation between
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the plane wave metric in Brinkmann coordinates,

ds̄2 = 2dudv + Aab(u)xaxbdu2 + d~x2 , (2.77)

and in Rosen coordinates,

ds̄2 = 2dUdV + ḡij(U)dyidyj . (2.78)

It is clear that, in order to transform the non-flat transverse metric in Rosen coordinates

to the flat transverse metric in Brinkmann coordinates, one should change variables as

xa = Ēa
iy

i , (2.79)

where Ēa
i is a vielbein for ḡij in the sense that

ḡij = Ēa
iĒ

b
jδab . (2.80)

Denoting the inverse vielbein by Ēi
a, one has

ḡijdyidyj = (dxa − ˙̄Ea
iĒ

i
cx

cdU)(dxb − ˙̄Eb
jĒ

j
dx

ddU)δab . (2.81)

This generates the flat transverse metric as well as dU2-term quadratic in the xa, as

desired, but there are also unwanted dUdxa cross-terms. Provided that Ē satisfies the

symmetry condition
˙̄EaiĒ

i
b = ˙̄EbiĒ

i
a (2.82)

(such an Ē can always be found and is unique up to U -independent orthogonal trans-

formations [14]), these terms can be cancelled by a shift in V ,

V → V − 1
2

˙̄EaiĒ
i
bx

axb . (2.83)

Apart from eliminating the dUdxa-terms, this shift will also have the effect of gener-

ating other dU2-terms. Thanks to the symmetry condition, the term quadratic in first

derivatives of Ē cancels that arising from ḡijdyidyj, and only a second-derivative part

remains. The upshot of this is that after the change of variables

U = u

V = v + 1
2

˙̄EaiĒ
i
bx

axb

yi = Ēi
ax

a , (2.84)

the metric (2.78) takes the Brinkmann form (2.77), with

Aab = ¨̄EaiĒ
i
b . (2.85)
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This can also be written as the harmonic oscillator equation

¨̄Eai = AabĒbi (2.86)

we had already encountered in the context of the geodesic equation.

Note that from this point of view the Rosen coordinates are labelled by d out of 2d

linearly independent solutions of the oscillator equation, and the symmetry condition

can now be read as the constraint that the Wronskian among these solutions be zero.

Thus, given the metric in Brinkmann coordinates, one can construct the metric in Rosen

coordinates by solving the oscillator equation, choosing a maximally commuting set of

solutions to construct Ēai, and then determining ḡij algebraically from the Ēai.

In practice, once one knows that Rosen and Brinkmann coordinates are indeed just

two distinct ways of describing the same class of metrics, one does not need to perform

explicitly the coordinate transformation mapping one to the other. All one is interested

in is the above relation between ḡij(U) and Aab(u), which essentially says that Aab is

the curvature of ḡij ,

Aab = −Ēi
aĒ

j
bR̄UiUj . (2.87)

The equations simplify somewhat when the metric ḡij(u) is diagonal,

ḡij(u) = ēi(u)2δij . (2.88)

In that case one can choose Ēa
i = ēiδ

a
i . The symmetry condition is automatically

satisfied because a diagonal matrix is symmetric, and one finds that Aab is also diagonal,

Aab = (¨̄ea/ēa)δab . (2.89)

Conversely, therefore, given a diaognal plane wave in Brinkmann coordinates, to obtain

the metric in Rosen coordinates one needs to solve the harmonic oscillator equations

¨̄ei(u) = Aii(u)ēi(u) . (2.90)

Thus the Rosen metric determined by ḡij(U) is flat iff ēi(u) = aiU+bi for some constants

ai, bi. In particular, we recover the fact that the metric (2.5),

ds̄2 = 2dUdV + U2d~y2 (2.91)

is flat. We see that the non-uniqueness of the metric in Rosen coordinates is due to

the integration ‘constants’ arising when trying to integrate a curvature tensor to a

corresponding metric.
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As another example, consider the four-dimensional vacuum plane wave (2.66). Evi-

dently, one way of writing this metric in Rosen coordinates is

ds̄2 = 2dUdV + sinh2 UdX2 + sin2 UdY 2 , (2.92)

and more generally any plane wave with constant Aab can be chosen to be of this

trigonometric form in Rosen coordinates.

2.9 More on Rosen Coordinates

Collecting the results of the previous sections, we can now gain a better understanding

of the geometric significance (and shortcomings) of Rosen coordinates for plane waves.

First of all we observe that the metric

ds̄2 = 2dUdV + ḡij(U)dyidyj (2.93)

defines a preferred family (congruence) of null geodesics, namely the integral curves of

the null vector field ∂U , i.e. the curves

(U(τ), V (τ), yk(τ)) = (τ, V, yk) (2.94)

with affine parameter τ = U and parametrised by the constant values of the coordinates

(V, yk). In particular, the “origin” V = yk = 0 of this congruence is the longitudinal

null geodesic (2.35) with v0 = 0 in Brinkmann coordinates.

In the region of validity of this coordinate system, there is a unique null geodesic of

this congruence passing through any point, and one can therefore label (coordinatise)

these points by specifying the geodesic (V, yk) and the affine parameter U along that

geodesic, i.e. by Rosen coordinates. As such, Rosen coordinates for plane wave metrics

are a special case of adapted coordinates or Penrose coordinates for general metrics which

we will discuss in detail in section 4.

We can now also understand the reasons for the failure of Rosen coordinates: they cease

to be well-defined (and give rise to spurious coordinate singularities) e.g. when geodesics

in the family (congruence) of null geodesics interesect: in that case there is no longer

a unique value of the coordinates (U, V, yk) that one can associate to that intersection

point. This failure can either be inevitable (if the geodesic V = yk = 0, say, contains

conjugate points - see [40] for a definition and discussion of this important concept), or

can simply be due to a bad choice of family of geodesics.

To illustrate this point, consider simply R
2 with its standard metric ds2 = dx2 + dy2.

An example of a “good” congruence of geodesics is the straight lines parallel to the
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x-axis. The corresponding “Rosen” coordinates (“Rosen” in quotes because we are not

talking about null geodesics) are simply the globally well-defined Cartesian coordinates,

x playing the role of the affine parameter U and y that of the transverse coordinates yk

labelling the geodesics. An example of a “bad” family of godesics is the straight lines

through the origin. The corresponding “Rosen” coordinates are essentially just polar

coordinates. Away from the origin there is again a unique geodesic passing through any

point but, as is well known, this coordinate system breaks down at the origin.

With this in mind, we can now reconsider the “bad” Rosen coordinates

ds̄2 = 2dUdV + U2d~y2 (2.95)

for flat space. As we have seen above, in Brinkmann coordinates the metric is manifestly

flat,

ds̄2 = 2dudv + d~x2 . (2.96)

Using the coordinate transformation (2.84) from Rosen to Brinkmann coordinates, we

see that the geodesic lines yk = ck, V = c of the congruence defined by the metric (2.95)

correspond to the lines xk = cku in Brinkmann (Minkowski) coordinates. But these are

precisely the straight lines through the origin. This explains the coordinate singularity

at U = 0 and further strengthens the analogy with polar coordinates mentioned at the

end of section 2.1.

More generally, we see from (2.84) that the relation between the Brinkmann coordinates

xa and the Rosen coordinates yk,

xa = Ēa
k(U)yk , (2.97)

and hence the expression for the geodesic lines yk = ck, becomes degenerate when Ēa
k be-

comes degenerate, i.e. precisely when ḡij becomes degenerate. Brinkmann coordinates,

provide a global coordinate chart for plane wave metrics.

The (almost) inevitablity of (coordinate) singularities in Rosen coordinates can be seen

from the following argument, taken from [41]. Namely, it follows from the oscillator

equation (2.86) that the determinant

E = det(Ēa
k) (2.98)

satisfies

Ë/E = Tr A +
(

(Tr M)2 − Tr(M2)
)

≤ Tr A = −R̄uu , (2.99)

where use has been made of the expression R̄uu = −Tr A (2.63) for the Ricci tensor,

and where Mab is the symmetric matrix (2.82)

Mab = ˙̄EaiĒ
i
b . (2.100)
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In particular, therefore, if R̄uu > 0, then E(u) is strictly concave downwards but positive

at a non-degenerate point, so that necessarily e(u0) = 0 for some finite value of u0, and

the Rosen coordinate system breaks down there. By (2.70), R̄uu > 0 is equivalent to

positivity of the lightcone energy density, a very reasonable requirement on the matter

content, for plane waves equivalent e.g. to the weak energy condition [40].

2.10 Exercises for Section 2

1. Plane Waves in Rosen and Brinkmann Coordinates

(a) Find the coordinate transformation that maps (2.5) to the manifestly flat

metric (2.6).

(b) Show that pp-wave metrics with wave profiles at most quadratic in the trans-

verse coordinates xa,

ds2 = 2dudv + (Aab(u)xaxb + Ba(u)xa + C(u))du2 + d~x2 , (2.101)

can be reduced to the standard plane wave form (2.20) by a coordinate trans-

formation.

(c) Verify the coordinate transformation (2.84) from Rosen to Brinkmann coor-

dinates.

(d) Calculate the non-vanishing components of the Riemann curvature tensor of

a plane wave in Rosen coordinates (2.78) and Brinkmann coordinates (2.77).

2. Bosonic String Theory: the Polyakov and Nambu-Goto Actions

(a) Calculate the world-sheet energy momentum tensor (2.49) of the Polyakov

string action (2.46), verify that it is traceless and that its vanishing is equiv-

alent to the constraints (2.52,2.53).

(b) Use the hαβ equations of motion Tαβ = 0 to eliminate hαβ from the Polyakov

action, and show that then the Polyakov action becomes the (Dirac-)Nambu-

Goto action

SP (X,h)→ SNG(X) =
1

π

∫

d2z
√

|det gµν(X)∂αXµ∂βXν | . (2.102)

(c) What is the geometrical significance of the Nambu-Goto action and its ex-

trema?
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3 Plane Waves II: Symmetries

3.1 The Heisenberg Isometry Algebra of a Generic Plane Wave

We now study the isometries of a generic plane wave metric. In Brinkmann coordinates,

because of the explicit dependence of the metric on u and the transverse coordinates,

only one isometry is manifest, namely that generated by the parallel null vector Z = ∂v.

In Rosen coordinates, the metric depends neither on V nor on the transverse coordinates

yk, and one sees that in addition to Z = ∂V there are at least d more Killing vectors,

namely the ∂yk . Together these form an Abelian translation algebra acting transitively

on the null hypersurfaces of constant U .

However, this is not the whole story. Indeed, one particularly interesting and peculiar

feature of plane wave space-times is the fact that they generically possess a solvable

(rather than semi-simple) isometry algebra, namely a Heisenberg algebra, only part of

which we have already seen above.

All Killing vectors V can be found in a systematic way by solving the Killing equations

LV gµν = ∇µVν +∇νVµ = 0 . (3.1)

I will not do this here but simply present the results of this analysis in Brinkmann

coordinates.6 The upshot is that a generic (2 + d)-dimensional plane wave metric has a

(2d + 1)-dimensional isometry algebra generated by the Killing vector Z = ∂v and the

2d Killing vectors

X(f(K)) ≡ X(K) = f(K)a∂a − ḟ(K)ax
a∂v . (3.2)

Here the f(K)a, K = 1, . . . , 2d are the 2d linearly independent solutions of the harmonic

oscillator equation (again!)

f̈a(u) = Aab(u)fb(u) . (3.3)

These Killing vectors satisfy the algebra

[X(J),X(K)] = W (f(J), f(K))Z (3.4)

[X(J), Z] = 0 . (3.5)

Here W (f(J), f(K)), the Wronskian of the two solutions, is defined by

W (f(J), f(K)) =
∑

a

(ḟ(J)af(K)a − ḟ(K)af(J)a) . (3.6)

6For a detailed analysis see e.g. [26].
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It is constant (independent of u) as a consequence of the harmonic oscillator equation.

Thus W (f(J), f(K)) is a constant, non-degenerate, even-dimensional antisymmetric ma-

trix.7 Hence it can be put into standard (Darboux) form. Explicitly, a convenient choice

of basis for the solutions f(J) is obtained by splitting the f(J) into two sets of solutions

{f(J)} → {p(a), q(a)} (3.7)

characterised by the initial conditions

p(a)b(u0) = δab ṗ(a)b(u0) = 0

q(a)b(u0) = 0 q̇(a)b(u0) = δab . (3.8)

Since the Wronskian of these functions is independent of u, it can be determined by

evaluating it at u = u0. Then one can immediately read off that

W (q(a), q(b)) = W (p(a), p(b)) = 0

W (q(a), p(b)) = δab . (3.9)

Therefore the corresponding Killing vectors

Q(a) = X(q(a)) , P(a) = X(p(a)) (3.10)

and Z satisfy the canonically normalised Heisenberg algebra

[Q(a), Z] = [P(a), Z] = 0

[Q(a), Q(b)] = [P(a), P(b)] = 0

[Q(a), P(b)] = δabZ . (3.11)

3.2 Symmetric Plane Waves

Generically, a plane wave metric has just this Heisenberg algebra of isometries. It acts

transitively on the null hyperplanes u = const., with a simply transitive Abelian sub-

algebra. However, for special choices of Aab(u), there may of course be more Killing

vectors. These could arise from internal symmetries of Aab, giving more Killing vec-

tors in the transverse directions. For example, the conformally flat plane waves (2.69)

have an additional SO(d) symmetry (and conversely SO(d)-invariance implies conformal

flatness).

Of more interest to us is the fact that for particular Aab(u) there may be Killing vectors

with a ∂u-component. The existence of such a Killing vector renders the plane wave

7Non-degeneracy is implied by the linear independence of the solutions f(J).
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homogeneous (away form the fixed points of this extra Killing vector). The obvious

examples are plane waves with a u-independent profile Aab,

ds2 = 2dudv + Aabx
axbdu2 + d~x2 , (3.12)

which have the extra Killing vector X = ∂u. Since Aab is u-independent, it can be

diagonalised by a u-independent orthogonal transformation acting on the xa. Moreover,

the overall scale of Aab can be changed, Aab → µ2Aab, by the coordinate transformation

(boost)

(u, v, xa)→ (µu, µ−1v, xa) . (3.13)

Thus these metrics are classified by the eigenvalues of Aab up to an overall scale and

permutations of the eigenvalues.

Since Aab is constant, the Riemann curvature tensor is covariantly constant,

∇̄µR̄λνρσ = 0⇔ ∂uAab = 0 . (3.14)

Thus a plane wave with constant wave profile Aab is locally symmetric.

The existence of the additional Killing vector X = ∂u extends the Heisenberg algebra

to the harmonic oscillator algebra, with X playing the role of the number operator or

harmonic oscillator Hamiltonian. Indeed, X and Z = ∂v obviously commute, and the

commutator of X with one of the Killing vectors X(f) is

[X,X(f)] = X(ḟ) . (3.15)

Note that this is consistent, i.e. the right-hand-side is again a Killing vector, because

when Aab is constant and f satisfies the harmonic oscillator equation then so does its

u-derivative ḟ . In terms of the basis (3.10), we have

[X,Q(a)] = P(a)

[X,P(a)] = AabQ(b) , (3.16)

which is the harmonic oscillator algebra.

We can now see that such a locally symmetric plane wave is indeed also symmetric

in the group theory sense. Namely, it can be realised as a coset (homogeneous) space

G/H, with G the group corresponding to the extended Heisenberg algebra and H the

abelian subgroup generated by, say, the Pa. At the Lie algebra level, these satisfy the

conditions

g = h⊕ m

[h, m] ⊂ m

[m, m] ⊂ h (3.17)
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for the coset to be symmetric. As such Lorentzian symmetric spaces, they were discussed

in the mathematics literature by Cahen and Wallach more than 30 years ago [30] (for

a nice exposition see [31]). Thus plane waves with constant Aab are sometimes called

Cahen-Wallach spaces. I will refer to them as symmetric plane waves.

Another way of understanding the relation between X = ∂u and the harmonic oscillator

Hamiltonian is to look at the conserved charge associated with X for particles moving

along geodesics. Given any Killing vector X, the quantity

QX = Xµẋµ (3.18)

is constant along the trajectory of the geodesic xµ(τ). For X = ∂u one finds

QX = pu = guµẋµ (3.19)

which we had already identified (up to a constant for non-null geodesics) as minus the

harmonic oscillator Hamiltonian in section 2.3. This is indeed a conserved charge iff the

Hamiltonian is time-independent i.e. iff Aab is constant.

We thus see that the dynamics of particles (and strings) in a symmetric plane wave

background is intimately related to the geometry of the background itself.

3.3 Singular Scale-Invariant Homogeneous Plane Waves

Given that plane waves with constant Aab are not only homogeneous but actually sym-

metric, it is natural to ask if there are plane waves with u-dependent Aab which are

still homogeneous (but not symmetric). One simple example is a plane wave with the

non-trivial profile

Aab(u) = u−2Bab (3.20)

for some constant matrix Bab = Aab(1). Without loss of generality one can then assume

that Bab and Aab are diagonal, with eigenvalues the oscillator frequency squares −ω2
a,

Aab = −ω2
aδabu

−2 . (3.21)

The plane wave metric

ds̄2 = 2dudv + Babx
axb du2

u2
+ d~x2 (3.22)

is invariant under the boost/scaling (3.13), corresponding to the extra Killing vector

X = u∂u − v∂v . (3.23)
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Note that in this case the Killing vector Z = ∂v is no longer a central element of the

isometry algebra, since it has a non-trivial commutator with X,

[X,Z] = Z . (3.24)

Moreover, one finds that the commutator of X with a Heisenberg algebra Killing vector

X(f), fa a solution to the harmonic oscillator equation, is the Heisenberg algebra Killing

vector

[X,X(f)] = X(uḟ) , (3.25)

corresponding to the solution uḟa = u∂ufa of the harmonic oscillator equation.

Plane Waves with precisely this kind of profile and scale invariance have been found to

occur universally as the Penrose Limits of space-time singularities [27, 25], see sections

5 and 6 of these notes. One important consequence of this scale invariance is that now

the light-cone momentum pv drops out of the transverse geodesic equation (2.30) as well

as the transverse string mode equation (2.56). For more information on these metrics

see [32] and [26].

3.4 A Peculiar Conformal Equivalence

Here is a peculiar observation, whose significance for (string theory in) plane waves in

general, and the above scale-invariant homogeneous plane waves in particular, escapes

me at the moment, but which I record here anyway.

Namely, consider a pp-wave metric of the form

ds′2 = 2du′dv′ + K ′(u′, x′a)du′2 + d~x′2 (3.26)

and perform the coordinate transformation [1]

u′ = −1/u , v′ = v + ~x2/2u , x′ = x/u (3.27)

(somewhat reminiscent of the transformation (2.84) form Rosen to Brinkmann coordi-

nates). Then one finds that

ds′2 = u−2ds2 (3.28)

where ds2 is another pp-wave metric of the same type,

ds2 = 2dudv + K(u, xa)du2 + d~x2 , (3.29)

but now with wave profile

K(u, x) = u−2K ′(u′(u), x′(u, x)) . (3.30)
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Applying this to plane waves,

K ′(u′, x′) = A′

ab(u
′)x′ax′b , (3.31)

one finds

K(u, x) = u−4A′

ab(−1/u)xaxb ≡ Aab(u)xaxb . (3.32)

In particular, therefore, symmetric plane waves are conformally related to plane waves

with profile ∼ u−4 and, more remarkably, the scale-invariant plane waves are the unique

plane waves which are conformally related to themselves under this transformation,

A′

ab(u) = Aab(u) ⇔ A′

ab(u) ∼ u−2 . (3.33)

For more information on conformal symmetries of pp-wave space-times, see [33] and

references therein, and [34] for some other (not obviously related) observations regarding

conformal transformations and plane waves.

3.5 Yet More Homogeneous Plane Waves

So far we have found two classes of homogeneous plane waves, the symmetric plane

waves with constant wave profile and the scale-invariant plane waves with wave profile

∼ u−2. Are there other examples of homogeneous plane waves?

This question has been analysed in [26], and the answer is that, yes, there are two

families of homogeneous plane waves, one generalising the symmetric (Cahen-Wallach)

plane waves (3.12), the other the singular homogeneous plane waves (3.22).8 The metrics

in both families are parametrised by a constant symmetric matrix Cab and a constant

antisymmetric matrix fab.

Metrics in the first family have the profile

Aab(u) = (eufCe−uf )ab . (3.34)

These reduce to symmetric plane waves for fab = 0. Note that in this case a time-

derivative of Aab(u) can be undone by a rotation of the coordinates by fab, and thus

such metrics have the extra Killing vector

X = ∂u + fabx
b∂a . (3.35)

Clearly all of these homogeneous plane waves are completely non-singular and geodesi-

cally complete, and they will be solutions to the vacuum Einstein equations iff Cab is

traceless.

8This generalises the known classical result in D = d + 2 = 4 [1, 2].
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An example of a vacuum solution is the anti–Mach9 metric of Ozsvath and Schücking

[35], with

f =

(

0 1

−1 0

)

, C =

(

1 0

0 −1

)

, (3.36)

leading to

A(u) =

(

cos 2u − sin 2u

− sin 2u − cos 2u

)

. (3.37)

The structure of these metrics becomes more transparent in stationary coordinates,

obtained by the rotation

xa → (e−uf )abx
b , (3.38)

in which the metric becomes manifestly independent of u,

ds̄2 = 2dudv + kabx
axbdu2 + 2fabx

adxbdu + d~x2 , (3.39)

with

kab = Cab − f2
ab . (3.40)

Notice that this class of metrics, the smooth homogeneous plane waves, can also be

regarded as the special case of the general pp-wave metric (2.18) with K and A inde-

pendent of u and quadratic and linear in the xa respectively.

In these coordinates, the additional Killing vector is just X = ∂u, and the correspond-

ing conserved charge is the light-cone Hamiltonian which is now that of an harmonic

oscillator coupled to the constant magnetic field fab. For a detailed analysis of string

theory in such backgrounds see [36].

Finally metrics in the second family have the profile

Aab(u) = u−2(e (log u)fCe−(log u)f )ab . (3.41)

They have null singularities at u = 0 and generalise the metrics (3.22). Mutatis mutandis

the same comments about isometries and “stationary” coordinates apply to this family

of metrics (which has not yet been fully analysed in the string theory context).

3.6 Exercises for Section 3

1. Isometries of Plane Waves

(a) Verify that (3.2) are Killing vectors of a plane wave metric in Brinkmann

coordinates.

9It is (vaguely) anti-Machian in the sense that there is inertia without (distant) matter.
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(b) In Rosen coordinates, the (d + 1) translational isometries in the V and yk

directions, generated by the Killing vectors Z = ∂V and Q(k) = ∂yk are

manifest. Show that the “missing” d Killing vectors are given by

P(k) = yk∂V −
∫ u

du′ ḡkm(u′)∂ym (3.42)

and verify that together they generate the Heisenberg algebra (3.11).

2. Scale-Invariant Plane Waves

(a) Show that the conserved charge QX associated to the extra Killing vector

(3.23) of a scale-invariant plane wave can be written as

QX = upu − vpv = −τHho(τ) + 1
2xaẋa , (3.43)

and verify explicitly that this is indeed a conserved quantity for an harmonic

oscillator with time-dependent frequencies ∼ 1/τ2

(b) Verify that the commutator (Lie bracket) of the extra Killing vector X with a

Heisenberg algebra Killing vector X(f) is again a Heisenberg algebra Killing

vector. In particular, determine [X,Q(a)] and [X,P(a)].

(c) Verify the statements of section 3.4.
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4 Penrose Limits I: via Adapted Coordinates

4.1 Summary of the Construction

The Penrose limit [12] associates to every space-time metric gµν or line element ds2 =

gµνdxµdxν and choice of null geodesic γ in that space-time a (limiting) plane wave

metric. The first step is to rewrite the metric in coordinates adapted to γ, Penrose

coordinates, as

ds2
γ = 2dUdV + a(U, V, Y k)dV 2 + 2bi(U, V, Y k)dV dY i + gij(U, V, Y k)dY idY j (4.1)

This corresponds to an embedding of γ into a twist-free congruence of null geodesics,

given by V and Y k constant, with U playing the role of the affine parameter and γ(U)

coinciding with the geodesic at V = Y k = 0.

The next step is to perform the change of coordinates (λ ∈ R)

(U, V, Y k) = (u, λ2ṽ, λyk) . (4.2)

The Penrose limit metric ḡµν is then defined by

ds̄2 = lim
λ→0

λ−2ds2
γ,λ = 2dudṽ + ḡij(U)dyidyj , (4.3)

where ds2
γ,λ is the metric ds2

γ in the coordinates (u, v̄, yi) and ḡij(U) = gij(U, 0, 0). This

is the metric of a plane wave in Rosen coordinates. Pragmatically speaking, once one

has written the metric in adapted coordinates the Penrose limit metric is obtained by

setting the components a and bi of the metric to zero and restricting gij to the null

geodesic γ.

As we already know, a coordinate transformation (u, ṽ, yk) → (u, v, xa) then puts the

metric into the standard Brinkmann form

ds̄2 = 2dudv + Aab(u)xaxbdu2 + d~x2 . (4.4)

Here

Aab(u) = −R̄aubu(u) = −R̄iuju(u)Ēi
a(u)Ēj

b (u) , (4.5)

with R̄aubu(u) the only non-vanishing component of the Riemann curvature tensor of

ḡµν . Ēi
a is an orthonormal coframe for the transverse metric ḡij , satisfying the symmetry

condition (2.82),
˙̄EaiĒ

i
b = ˙̄EbiĒ

i
a . (4.6)

While this is, in a nutshell, the construction of the Penrose limit metric, several things

remain to be understood/clarified, and we will address them in the subsequent sections.
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In particular, the above sequence of coordinate transformations manages to hide quite

effectively the relation between the original data (gµν , γ) and the wave profile Aab(u)

characterising the final result, and thus the geometrical significance of the Penrose limit.

Among the issues we will deal with are

• the construction of adapted coordinates (sections 4.2 and 4.3 and Apendix B);

• the physical picture behind the scaling involved in the Penrose limit (section 4.4)

• general properties of the Penrose limit (sections 4.5, 4.6, and section 5);

• the geometrical interpretation (and generally covariant significance) of the Penrose

limit (section 5);

• the (universal) behaviour of Penrose limits near space-time singularities (section

6).

4.2 Adapted Coordinates for Null Geodesics

Consider metrics of the form

ds2 = 2dUdV + a(U, V, Y k)dV 2 + 2bi(U, V, Y k)dY idV + gij(U, V, Y k)dY idY j , (4.7)

where, as indicated, the components a, bi, gij of the metric can depend on all the coor-

dinates (U, V, Y k). This class of metrics is characterised by the fact that gUV = 1 and

gUU = gUi = 0. Since these are D = d + 2 coordinate conditions, this suggests that

generically any metric can locally be written in this way - we will establish this below.

A special case of this are Rosen coordinates for plane wave metrics - cf. the discussion

in section 2.9.

The most obvious feature of the above metric is that with respect to it the vector field

∂U is null, and it is easy to see that it is also a geodesic vector field, with U playing the

role of an affine parameter along the null geodesic integral curves of ∂U . Indeed, ∂U is

geodesic if

∇∂U
∂U = 0⇔ ΓµUU = 0 . (4.8)

Since gUU = 0, this reduces to the statement that gµU be U -indpeendent, which is

obviously the case.

Thus the above metric defines a special kind of null geodesic congruence: in the region of

validity of the above coordinate system there is a unique null geodesic passing through

any point, and we can therefore parametrise (coordinatise) the points by the value of

the affine parameter U on that geodesic and the transverse coordinates (V, Y i) labelling
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the geodesics.10 For the experts: the “special” refers to the fact that this congruence is

twist-free.

Now, given any particular null geodesic xµ(τ) of a space-time with metric gµν , we will

say that (U, V, Y i) are “Penrose coordinates” or “adapted coordinates”, if the metric

in these coordinates takes the above form, with xµ(τ) corresponding to the geodesic

V = Y i = 0 with U = τ . It follows from the above that finding such a coordinate

system is tantamount to embedding the original null geodesic into a twist-free null

geodesic congruence.

4.3 Adapted Coordinates and Hamilton-Jacobi Theory

I will now show that such a coordinate system always exists. This construction makes

use (in a mild way) of the Hamilton-Jacobi (HJ) formalism, which I will assume you

are familiar with. The suggestion that the HJ formalism provides a way of constructing

adapted coordinates appeared first in [24] where however no general proof was given. We

will see below that this is a useful constructive (albeit somewhat roundabout) approach

to determining the Penrose limits of a space-time, and thus it is worthwhile to spell this

out explicitly. The argument here is taken from [25].

The essence of the HJ method can be summarised by the observation that the momenta

pµ = gµν
dxν

dτ
(4.9)

associated with the above null congruence (U̇ = 1, V̇ = Ẏ k = 0) are

p
V

= 1 , p
U

= p
Y k

= 0 , (4.10)

so that, in arbitrary coordinates xµ, one has

pµ = ∂µV . (4.11)

Thus, since the geodesic congruence is null, gµν∂µV ∂νV = 0, one can identify

V (xµ) = S(xµ) . (4.12)

with the solution of the Hamilton-Jacobi equation

gµν∂µS∂νS = 0 . (4.13)

10The determinant of this metric is equal to the determinant of gij . As we have seen in section 2.9 in

the case of adapted (Rosen) coordinates for plane waves, degeneracy of gij(U) signals the appearance of

intersecting geodesics and hence the breakdown of a coordinate system based on the geodesic congruence.
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corresponding to the null congruence (4.10),

ẋµ = gµν∂νS . (4.14)

Conversely, any solution S of the equations (4.13,4.14) gives rise to a (twist-free) null

geodesic congruence,

ẋρ∇ρẋ
µ = gρσgµν∇ρ∂νS∂σS =

1

2
gµν∂ν(gρσ∂ρS∂σS) = 0 , (4.15)

and V = S is the corresponding null adapted coordinate.

It thus only remains to understand how to construct the transverse coordinates Y k. In

practice, and in sufficiently simple examples, once V = S has been found (this is the key

step), one can construct the Y k from the parameters labelling the geodesic congruence.

The general (and slightly more involved) construction is of interest in its own right,

not only because it can be applied to more complicated examples but also because it

provides some geometric insight. It is described in Appendix B.

4.4 The Penrose Limit

The physical interpretation of the Penrose limit is described by Penrose as follows [12]:

We envisage a succession of observers travelling in the space-time M whose

world lines approach the null geodesic γ more and more closely; so we pic-

ture these observers as travelling with greater and greater speeds, approaching

that of light. As their speeds increase they must correspondingly recalibrate

their clocks to run faster and faster (assuming that all space-time measure-

ments are referred to clock measurements in the standard way), so that in

the limit the clocks measure the affine parameter x0 along γ. (Without clock

recalibration a degenerate space-time metric would result.) In the limit the

observers measure the space-time to have the plane wave structure Wγ.

In other words, the Penrose limit can be understood as a boost accompanied by a com-

mensurate uniform rescaling of the coordinates in such a way that the affine parameter

along the null geodesic remains invariant.

To implement this procedure in practice, we consider a Lorentzian space-time with a

metric gµν , choose some null geodesic γ, and locally write the metric in an adapted

coordinate system (4.7),

xµ → (U, V, Y k) , (4.16)
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where it takes the form

ds2
γ = 2dUdV + a(U, V, Y k)dV 2 + 2bi(U, V, Y k)dY idV + gij(U, V, Y k)dY idY j . (4.17)

Now we perform the boost

(U, V, Y k)→ (λ−1U, λV, Y k) . (4.18)

Trying to take the infinite boost limit λ → 0 without recalibrating one’s coordinates

(clocks and measuring rods) evidently results in a singular metric. To offset this, we

uniformly rescale the coordinates as

(U, V, Y k)→ (λU, λV, λY k) (4.19)

The net effect is thus the asymmetric scaling11

(U, V, Y k)→ (U, λ2V, λY k) (4.20)

of the coordinates, leaving the affine parameter U = u invariant. We will write this as

(U, V, Y k) = (u, λ2ṽ, λyk) , (4.21)

and thus obtain a one-parameter family of (isometric) metrics

ds2
γ → ds2

γ,λ , (4.22)

where ds2
γ,λ is the metric ds2

γ in the coordinates (u, v̄, yi),

ds2
γ,λ = 2λ2dudṽ+λ4a(u, λ2ṽ, λyk)dṽ2+2λ3bi(u, λ2ṽ, λyk)dyidṽ+λ2gij(u, λ2ṽ, λyk)dyidyj .

(4.23)

We accompany this by an overall rescaling of the metric,

ds2
γ,λ → λ−2ds2

γ,λ , (4.24)

leading to

λ−2ds2
γ,λ = 2dudṽ+λ2a(u, λ2ṽ, λyk)dṽ2+2λbi(u, λ2ṽ, λyk)dyidṽ+gij(u, λ2ṽ, λyk)dyidyj .

(4.25)

Now taking the combined infinite boost and large volume limit λ → 0 results in a

well-defined and non-degenerate metric ḡµν ,

Penrose Limit: ds̄2 = lim
λ→0

λ−2ds2
γ,λ (4.26)

= 2dudv̄ + ḡij(u)dyidyj , (4.27)

11Note incidentally that this is like the scaling (2.72) that we used to establish the vanishing of

curvature invariants for plane waves.
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where ḡij(u) = gij(u, 0, 0) is the restriction of gij to the null geodesic γ. This is the

metric of a plane wave in Rosen coordinates which we can, in the usual way (2.84), now

transform to Brinkmann coordinates.

At this point you may have the impression that the entire procedure of going from the

original data (gµν , γ) to the Penrose limit plane wave metric ḡµν , summarised again in

the diagram (5.1) at the beginning of section 5, is rather round-about and confusing. I

agree. We will improve on this situation in section 5.

Here are some more remarks on this procedure:

• Note that the absence of gUi-terms from the metric in an adapted coordinate

system is crucial for this limit to exist (such a term would scale as λ−1).

• We also learn that, whatever the nature of the transverse coordinates Y k may

have been before taking the limit (e.g. angular coordinates), because of the large

volume limit after taking the Penrose limit the yk have infinite range.

• Moreover, any points that were at a finite distance of the null geodesic before the

Penrose limit have been pushed off to infinity and in the Penrose limit only an

infinitesimal neighbourhood of the null geodesic survives.

• The requirement of restricting oneself to a small segment of a null geodesic arose

from the desire to work in adapted coordinates (which generically only exist lo-

cally). One may thus get the impression that the plane wave limit space-time sees

only an infinitesimal neighbourhood of a small segment of the geodesic (blown-up

to cover all of space-time). However, this is misleading. Upon transforming to

Brinkmann coordinates one recovers the entire original null geodesic, with the

affine parameter U running from −∞ to +∞ unless the geodesic runs into a sin-

gularity of Aab(u), i.e. a curvature singularity (section 2.7). Look at the example

of the Schwarzschild metric below for a concrete illustration of these facts.

• A better picture of the Penrose limit is thus that of an infinitesimal neighbourhood

of the entire null geodesic, blown-up to cover all of space-time.

All of this will become more transparent in terms of the covariant interpretation of the

Penrose limit to be discussed in section 5. Moreover, singularities and Penrose Limits

are the subject of section 6. For the time being, however, we will use the above definition

to study some basic properties and examples of Penrose Limits.
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4.5 Covariance of the Penrose Limit

We have seen above that the Penrose limit construction associates to any choice of

Lorentzian metric and (a segment of) a null geodesic a plane wave metric. Let us now

inquire to what extent this plane wave metric depends on the choice of null geodesic.

A null geodesic γ is characterised (at least for small values of the affine parameter) by

specifying the initial position γ(0) and the initial velocity γ̇(0). In fact, the Penrose

limit is only susceptible to the initial direction of the geodesic. Indeed, if γ1 and γ2

are two null geodesics starting at the same point but with collinear velocities; that is,

γ̇1(0) = cγ̇2(0) for some nonzero constant c, then the geodesics are related by a rescaling

of the affine parameter. The resulting Penrose limits are related by a rescaling of u,

which can be reabsorbed in a reciprocal rescaling of the conjugate coordinate v. In other

words, the Penrose limit depends on the actual curve traced by the geodesic and not on

how it is parametrised. We conclude that the Penrose limit depends only on the data

(γ(0), [γ̇(0)]), where γ(0) is a point in M and [γ̇(0)] is a point on the (future-pointing,

say) celestial sphere at γ(0).12

A fundamental property of the Penrose limit is that if two null geodesics are related by

an isometry, their Penrose limits are themselves isometric. We shall refer to this as the

covariance property of the Penrose limit. This property is very useful for classifying the

possible Penrose limits in space-times with a large isometry group: the more isometries

there are, the less distinct Penrose limits there are.

The covariance property holds because the isometry in question is by assumption λ-

independent and will therefore continue to exist when λ = 0. By contrast, if two

metrics gλ and hλ are related by a λ-dependent isometry, then their Penrose limits need

not be isometric because the isometry between them could become singular in the limit.

4.6 Some elementary hereditary properties of Penrose limits

We have seen above that the Penrose limit of any metric is a plane wave. In particular,

as such, it has a Heisenberg algebra of isometries regardless of whether the original

metric had any symmetries or not (with a similar statement about supersymmetries in

the supergravity context). Therefore the existence of this Heisenberg algebra does not

reflect any properties of the original metric. However, it is also of interest to investigate

what properties of the original metric are preserved by the limiting procedure and thus

continue to be a property of the resulting plane wave metric one finds in the Penrose

limit.

12This is the projectivisation of the nonzero future-pointing null vectors in Tγ(0)M , M the space-time

manifold.
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The appropriate framework for addressing these questions has been introduced by

Geroch in 1969 [37]. In this somewhat more general context one considers a (one-

parameter) family of space-times (Mλ, gλ) for λ > 0 and tries to make sense and study

the properties of the limit space-time as λ→ 0.

Geroch calls a property of space-times hereditary if, whenever a family of space-times

have that property, all the limits of this family also have this property. In the more

restricted context of Penrose limits, it is convenient to slightly modify this definition.

We will call a property of a space-time hereditary if, whenever a space-time has this

property, all its Penrose limits also have this property.

Thus to check if a certain property of a space-time is hereditary, we first have to check if it

is preserved under the coordinate transformation (4.20) and the accompanying scaling of

the metric. Since we are only interested in generally covariant (coordinate independent)

properties of a space-time or metric, this amounts to checking if the property of interest

is invariant under a finite scaling of the metric before investigating what happens as

λ→ 0.

Certain space-time properties are rather obviously hereditary, for example those that

can be expressed in terms of tensorial equations for the Riemann tensor. Indeed, one of

the most elementary and basic hereditary properties of any family of space-times is the

following [37]: If there is some tensor field constructed from the Riemann tensor and its

derivatives which vanishes for all λ > 0, then it also vanishes for λ = 0. For example:

• the Penrose limit of a Ricci-flat metric is Ricci-flat;

• the Penrose limit of a conformally flat metric (vanishing Weyl tensor) is confor-

mally flat; in particular, therefore, according to (2.69), it is characterised by the

spherically symmetric wave profile Aab(u) = δabA(u);

• the Penrose limit of a locally symmetric metric (vanishing covariant derivative of

the Riemann tensor) is locally symmetric.

However, the Penrose limit of an Einstein metric with fixed non-zero cosmological con-

stant or scalar curvature is not of the same type, as the Ricci scalar, unlike the Ricci

tensor, is not scale-invariant. In other words,

Rµν(g) = Λgµν (4.28)

is only invariant under a simultaneous scaling of the metric g and Λ,

Rµν(λ−2g) = Rµν(g) = (λ2Λ)(λ−2gµν) . (4.29)

Therefore we see that
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• the Penrose limit of an Einstein metric is Ricci-flat

The same kind of reasoning establishes that

• all the scalar currvature invariants of a Penrose limit metric are zero,

a result that we had already established in section 2.6 (as a general property of plane

wave metrics) but that we have now rederived without making use of the knowledge

that the Penrose limit results in such a plane wave metric.

There are also more subtle hereditary properties of Penrose limits (or families of space-

times in general). For example, when it comes to isometries, one could imagine that

in the (Penrose) limit of family of space-times, all possessing a certain number n of

Killing vectors, one finds less linearly independent Killing vectors simply because some

Killing vectors which happen to be linearly independent for all λ > 0 cease to be linearly

independent at λ = 0. This is at least what a direct approach to the problem would

suggest as being possible.

However, a very elegant and powerful argument due to Geroch [37] establishes that

the number of linearly independent Killing vectors can never decrease in the limit.

This argument has the additional virtue of being readily applicable to Killing spinors

and supersymmetries. As a consequence one can also establish that the number of

supersymmetries preserved by a supergravity configuration can never decrease in the

Penrose limit.

While the argument is not difficult, it does require some elementary differential geometry

and topology. If I attempted to explain these things here, we would probably never get

to see some nice examples of Penrose limits. So instead I will just refer you to [14] for

the details of the arguments.

Another subtle hereditary property is related to homogeneity. What I have said above

about isometries may suggest to you that Penrose Limits of homogeneous space-times

(i.e. space-times with a transitive isometry group) are themselves homogeneous. How-

ever, this does not follow - for an explicit counterexample see [24]. Roughly speaking

what can happen is that a Killing vector which is a sum of a translational and a rota-

tional Killing vector, the translational part being responsible for homogeneity, becomes

purely rotational in the Penrose Limit. For a detailed analysis of the various subtle

mathematical aspects of this issue, and sufficient conditions for a Penrose Limit metric

to be homogeneous, see [38].
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4.7 Example I: The Penrose Limit of AdS × S space-times

The Penrose Limit of (A)dS (is flat)

We are now ready to determine our first Penrose limits, namely those of AdS or dS

space-times. We will see that any Penrose limit of either of these two space-times is

flat. In fact, this case is so simple that no explicit calculation is required. The only

things that we need are the elementary hereditary properties of Penrose limits we have

already discussed.

Indeed, we had seen above that the Penrose limit of any Einstein manifold is Ricci-flat

and that the Penrose limit of a conformally flat space-time (vanishing Weyl tensor) is

necessarily conformally flat.

Now maximally symmetric space-times (AdS, dS) are both Einstein and conformally

flat. Hence their Penrose limits have vanishing Ricci and Weyl tensors. This implies

that the Riemann curvature tensor is zero and hence that the Penrose limit is isometric

to Minkowski space-time.

The Penrose Limit of AdS × S (is more interesting)

We now come to a “historically” (we are talking about less than 3 years ago . . . ) more

interesting example, namely space-times of the form AdS × S. In this case, a small

calculation will be required, but let us first see what we can anticipate about the result

on general grounds:

1. First of all, because of the covariance property of the Penrose limit, and the large

number of isometries of AdS×S, there can be at most two distinct Penrose limits

of AdS×S, corresponding to geodesics which either have or do not have a non-zero

component along the sphere.

2. If the geodesic moves entirely in the AdS part of AdS ×S, then the Penrose limit

is the Penrose limit of AdS times a large volume limit on S, and hence flat.

3. We are thus interested in null geodesics with non-zero angular momentum along

the S direction. There is one more property of AdS × S that we have not made

use of yet, namely that it is (locally) symmetric, i.e. has a covariantly constant

Riemann tensor. This is a hereditary property and hence it must be the case that

in the Penrose limit

∂uAab = 0 . (4.30)
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Hence the Penrose limit of AdS × S will be a plane wave with constant Aab, i.e.

a symmetric plane wave as discussed in section 3.2.

To find out which one, we now actually need to do a small calculation. We thus consider

AdSp+2 × Sd−p with curvature radii RA and RS respectively. A convenient choice of

coordinate system (which will turn out to be automatically adapted) is cosmological

coordinates for AdS and standard spherical coordinates for S. The metric thus takes

the form

ds2 = R2
A(−dt2 + sin2 tdΩ̃2

p+1) + R2
S(dθ2 + sin2 θdΩ2

d−p−1) . (4.31)

Here dΩ2 and dΩ̃2 denote the standard line elements on the unit sphere or hyperboloid

respectively. Since the metric is flat in the (t, θ) plane, we can simply consider a null

geodesic in that plane and introduce null coordinates

U = (RSθ −RAt)/
√

2 , V = (RSθ + RAt)/
√

2 , (4.32)

in terms of which the metric reads

ds2
γ = 2dUdV + R2

A sin2((U − V )/
√

2RA)dΩ̃2
p+1 + R2

S sin2((U + V )/
√

2RS)dΩ2
d−p−1 .

(4.33)

This is an adapted coordinate system. Taking the Penrose limit amounts to dropping

the explicit dependence on V and taking the large volume (flat) limit on the transverse

sphere and hyperboloid. In that limit the prefactors R2
A and R2

S can be absorbed into

the transverse coordinates, and we thus find the result

ds̄2 = 2dUdV + sin2(U/
√

2RA)d~y2
p+1 + sin2(U/

√
2RS)d~y2

d−p−1 . (4.34)

This is, as expected, the metric of a symmetric plane wave in Rosen coordinates. In

Brinkmann coordinates, the metric is then described by the constant and diagonal

matrix

Aab = −1

2
diag(R−2

A , . . . , R−2
A

︸ ︷︷ ︸

p+1

, R−2
S , . . . , R−2

S
︸ ︷︷ ︸

d−p−1

) . (4.35)

Here the overall scale is irrelevant and thus the plane wave metric essentially depends

only on the ratio RA/RS of the curvature radii. We thus see that we can obtain any

(indecomposable) symmetric plane wave metric with Aab having at most two (negative)

eigenvalues as the Penrose limit of a product AdSm × Sn by appropriate choices of m,

n and the ratio of radii of curvature of the two factors.

In particular, the Penrose limit of the (maximally supersymmetric) Freund-Rubin AdS5×
S5 solution of type IIB supergravity, which has RA = RS , is [10] the remarkably simple

(maximally supersymmetric [7])) plane wave solution of IIB supergravity with metric

ds̄2 = 2dudv − ~x2du2 + d~x2 . (4.36)
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More generally, other symmetric plane wave metrics with multiple eigenvalues of any

sign can be obtained as the Penrose limit of products involving one (and only one)

(A)dS factor and multiple spheres and hyperbolic spaces of appropriate dimensions and

radii of curvature.

I should mention here that frequently, following [11] and the earlier string theory litera-

ture, the Penrose limit of AdS×S (and related) space-times is performed in a somewhat

different way in which one directly ends up in Brinkmann coordinates or some mixture

of Rosen and Brinkmann coordinates. This procedure works well in simple examples,

but I do not have anything to say about this procedure in general apart from the remark

that what this essentially amounts to is a truncation of a Riemann normal coordinate

expansion in the directions transverse to the null geodesic. See also [39] for some related

comments.

4.8 Example II: The Penrose Limit of the Schwarzschild metric

Lest you think that taking Penrose limits is always that easy, we now consider the

Penrose limit of the Schwarzschild metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2) (4.37)

where

f(r) = 1− 2m

r
. (4.38)

This will illustrate many of the features of Penrose limits we have discussed in general

terms above. We will rederive the results of this section in much more generality in

section 5 using a different method.

Usually when discussing geodesics in the Schwarzschild geometry, e.g. in the context

of solar system tests of general relativity, one argues that rotational invariance and

angular momentum conservation imply that one can choose the motion to take place

in the equatorial plane θ = π/2. For present purposes this is not a good choice as we

would like to extend the geodesic to a family of geodesics parametrised by the transverse

coordinates (constants of integration), while the curves θ = const. are not geodesics on

S2 for θ 6= π/2. However, the curves φ = const. are (they are great circles) and hence

we will choose the motion to take place in the polar rather than equatorial plane.

With φ̇ = 0, the Lagrangian

L = 1
2(−f(r)ṫ2 + f(r)−1ṙ2 + r2θ̇2) (4.39)

implies the (first integrals of the) equations of motion

θ̇ = Lr−2
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ṫ = f(r)−1E . (4.40)

E and L are the conserved energy and angular momentum respectively. For null

geodesics, we supplement this by the condition L = 0, which becomes

ṙ2 = E2 − L2f(r)r−2 ≡ E2 − 2Veff (r) . (4.41)

Here Veff (r) is the usual effective potential, with respect to which r(τ) satisfies the

Newtonian equation of motion

r̈ = −V ′

eff (r) . (4.42)

We now construct the Hamilton-Jacobi function S(xµ) by solving the conditions

pµ = ∂µS , gµνpµpν = 0 . (4.43)

Plugging the ansatz

S = −Et + Lθ + ρ(r) (4.44)

into the null constraint, we find a differential equation for ρ(r), namely

ρ′2 = f(r)−2E2 − L2f(r)−1r−2 = f(r)−2ṙ2 . (4.45)

This is solved by

ρ(r) =

∫

f(r)−1ṙdr =

∫

f(r)−1ṙ2dτ . (4.46)

We now choose U to be the affine parameter τ , introduce V = S(xµ) as a new coordinate,

and change variables to an adapted coordinate system (U, V, θ̃, φ̃) in the following way:

dφ = dφ̃

dθ = θ̇(U)dU + dθ̃

= Lr(U)−2dU + dθ̃

dr = ṙ(U)dU or r = r(U)

dt = −E−1dV + E−1Ldθ + E−1dρ(r(U))

= −E−1dV + E−1L2r(U)−2dU + E−1Ldθ̃ + (Ef(r(U))−1 − E−1L2r(U)−2)dU

= −E−1dV + E−1Ldθ̃ + Ef(r(U))−1dU . (4.47)

Note as a consistency check that the last term is indeed ṫ(U), as required. Plugging this

into the metric, one finds that dU only appears in the combination 2dUdV , so that this

really is an adapted coordinate system,

ds2
γ = 2dUdV + E−2r(U)2ṙ(U)2dθ̃2 + r(U)2 sin2(θ̃ + L

∫

r(U)−2)dφ̃2

+ (other pieces involving dV ) . (4.48)
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To take the Penrose limit, we drop the other dV pieces and the explicit dependence

on coordinates other than U . Here this just concerns θ̃ which appears explicitly in the

argument of the sine. Thus we find that the Penrose limit of the Schwarzschild metric

for L 6= 0 is

ds̄2 = 2dUdV + E−2r(U)2ṙ(U)2dθ̃2 + r(U)2 sin2(L

∫

r(U)−2)dφ̃2 . (4.49)

For L = 0 we have to be a bit more careful because we don’t want to zoom in on the

geodesic passing through θ̃ = 0 (where there is a coordinate singularity). In that case,

we replace θ̃ → θ0 + θ̃ with θ0 6= 0, and obtain the metric

ds̄2 = 2dUdV + E−2r(U)2ṙ(U)2dθ̃2 + r(U)2 sin2 θ0dφ̃2 . (4.50)

For now let us assume that L 6= 0 - we will come back to the case L = 0 at the end. At

this stage the expression for the metric is not particularly enlightning, but at least we

see that it is diagonal in Rosen coordinates, and hence it is straightforward to transform

it to Brinkmann coordinates. Using (2.89), we see that we need to calculate (we already

set U = u)

A11(u) = (r(u)ṙ(u))−1 d2

du2
(r(u)ṙ(u)) (4.51)

A22(u) = (r(u) sin L

∫

r(u)−2)−1 d2

du2
(r(u) sin L

∫

r(u)−2) . (4.52)

Using (4.41) and (4.42) repeatedly to eliminate ṙ and r̈, one finds that

A11(u) = −3r(u)−1V ′

eff (r(u)) − V ′′

eff (r(u)) (4.53)

A22(u) = −r(u)−1V ′

eff (r(u))− L2r(u)−4 . (4.54)

Now here is a crucial check on the calculation. We started off with a solution of the

vacuum Einstein equations. Hence also the plane wave metric we find in the Penrose

limit should be Ricci-flat. But as we know, this means that Aab should be traceless. If

we use the explicit expression for Veff (r),

Veff (r) = −mL2

r3
+

L2

2r2
, (4.55)

we find that indeed

A11(u) = −A22(u) =
3mL2

r(u)5
. (4.56)

Another way of saying (and seeing) this is to note that, written in terms of f(r) rather

than Veff (r), the condition Tr A = 0 is

TrA = 0⇔ (f(r)− 1)′′ = 2r−2(f(r)− 1) . (4.57)
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This is just the Einstein equation for a metric of the form (4.37), which is solved by

(4.38).

Thus the Penrose limit of the Schwarzschild metric in Brinkmann coordinates is

ds̄2 = 2dudv +
3mL2

r(u)5
(x2

1 − x2
2)du2 + dx2

1 + dx2
2 . (4.58)

Notice that we have been able to get this far without ever having to solve explicitly the

geodesic equation for r(u).

We can now also analyse the issue of singularities in this metric, i.e. the question to which

extent the plane wave limit metric “remembers” the singularity of the Schwarzschild

metric. Well, this is clear from the expression for the metric: there will be a singularity

if and only if r(u0) = 0 for some u0, i.e. there will be a singularity precisely when the

original geodesic runs into the singularity. Here we see very clearly that the Penrose

limit space-time sees the entire null geodesic, not just some small segment of it.

From the standard analysis of the Schwarzschild metric, one knows that the effective

potential has one critical point at r = 3m, corresponding to an unstable circular photon

orbit. The value of Veff (r) at r = 3m is

Veff (r = 3m) =
L2

54m2
. (4.59)

Thus for sufficiently large angular momentum,

L2 > 27m2E2 , (4.60)

light rays will be deflected by the black hole. They will never reach the singularity

and therefore for this range of parameters the Penrose limit metric is smooth. For

L2 < 27m2E2, on the other hand, photons are captured by the black hole, will eventually

reach the singularity, and the Penrose limit is singular. See Figure 1 for an illustration

of this.

Let us take a closer look at the u-dependence of the metric near r(u) = 0 (so we are in

the range L2 < 27m2E2). For small values of r, the dominant term in the differential

equation (4.41) for r is (unless L = 0)

ṙ =
√

2mLr−3/2 . (4.61)

This implies that

r(u)5 = (25mL2/2)u2 . (4.62)

Thus L2 (and m) drop out of the equation for Aab and the universal behaviour of the

metric as r → 0 is
3mL2

r(u)5
=

6

25
u−2 . (4.63)
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rr=2m r=3m

V    (r)eff

Figure 1: Effective potential for a massless particle. Displayed is the location of the

unstable circular orbit at r = 3m. A photon with an energy E2 < L2/27m2 will be

deflected (lower arrow), photons with E2 > L2/27m2 will be captured by the black hole.

This 1/u2-behaviour of the metric in Brinkmann coordinates appears to be a remarkably

“attractive” behaviour for the Penrose limits of singular metrics. We will come back to

this in sections 5 and 6 where we will rederive these results and their generalisations to

d > 2 in a different way.

Finally, let us consider the case L = 0. At first there seems to be a puzzle because the

above form (4.58) of the metric suggests that the metric for L = 0 is flat rather than

singular even though photons moving along radial null geodesics clearly run into the

singularity. Before trying to understand this, let us first make sure that (4.58) is also

valid for L = 0. For that we go back to the expression (4.50) for the L = 0 metric in

Rosen coordinates. Since for L = 0 the equation of motion for r(u) is simply

ṙ2 = E2 , (4.64)

we see that more explicitly (4.50) can be written as

ds̄2 = 2dUdV + E2U2(dθ̃2 + sin2 θ0dφ̃2) . (4.65)

This is obviously just one way of writing the flat metric in Rosen coordinates, and we

can therefore conclude that (4.58) is also valid for L = 0. So what happened to the

singularity? The point is that in the original space-time the geodesic r(U) = −EU (say)
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only exists for U < 0 and simply ends at U = 0. In that sense there is a singularity,

even though it seems to disappear after one transforms to Brinkmann coordinates and

extends the range of U to U > 0.

4.9 Exercises for Section 4

1. Hereditary Properties of Penrose Limits

(a) Let gµν be a D-dimensional space-time metric with N linearly independent

Killing vectors. Give a lower bound on the number of linearly independent

Killing vectors of any Penrose limit of this metric.

(b) Is “geodesic completeness” a hereditary property of Penrose Limits? What

about “geodesic incompleteness”?

(c) Come up with some other examples of hereditary or non-hereditary properties

of Penrose Limits.

2. Penrose Limits of FRW Metrics

Here is a short-cut to adapted coordinates and the Penrose Limit for FRW metrics.

For simplicity consider the spatially flat case where

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2
d) (4.66)

and a(t) ∼ th (for the relation between h and the equation of state parameter w

see (5.70) and note that n = d + 1 is the number of spatial dimensions).

(a) Argue that there is a unique Penrose limit, and that it is characterised by a

wave profile of the form Aab(u) = δabA(u).

(b) By going to “conformal time” η, dη = dt/a(t), show that the Penrose limit

metric in Rosen coordinates is characterised by

ḡij(U) ∼ δijU
h/h+1 . (4.67)

(c) Show that this implies that in Brinkmann coordinates one has

Aab(u) = −δab
h

(1 + h)2
u−2 . (4.68)

3. Penrose Limits and and the Einstein-Matter Equations of Motion

(a) Consider the Einstein-Hilbert action minimally coupled to a scalar field φ (in

units in which some suitable multiple of the D-dimensional Newton constant

is equal to 1)

S(gµν , φ) =

∫

dDx
√

g(R − 1
2gµν∂µφ∂νφ) . (4.69)
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Show that this action transforms homogeneously under the scaling gµν →
λ−2gµν , φ→ φ of the fields,

S(λ−2gµν , φ) = λαS(gµν , φ) . (4.70)

What is α?

(b) Argue that this implies that the Penrose Limit takes solutions to the equa-

tions of motion to solutions to the equations of motion.

(c) What happens if one replaces R→ eβφR?

(d) What happens if one adds a potential for the scalar fields?

(e) What happens (or: what does one need to do) in the case of Einstein-Maxwell

theory?

4. Beyond the Penrose Limit

Starting from (4.25), work out the O(λ) and O(λ2) corrections to the Penrose

Limit plane wave metric.
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5 Penrose Limits II: The Covariant Description

Even though we have been able to get quite far with the definition of the Penrose Limit

of the previous section, there are some things that are quite unsatisfactory about it.

In particular, the sequence of coordinate transformations involved in the definition is

rather round-about and makes the entire procedure look rather non-covariant.

In particular, while in principle taking the Penrose limit amounts to assigning the wave

profile Aab(u) to the intitial data (gµν , γ), after having gone through the sequence of

scalings and coordinate transformations required by the standard procedure,

(ds2, γ)
(4.16)−→ ds2

γ (4.17)
(4.22)−→ ds2

γ,λ (4.23)

⇓??? ↓(4.24)

Aab(u)
(2.84)←− ds̄2 (4.27)

(4.26)←− λ−2ds2
γ,λ (4.25)

(5.1)

one has pretty much lost track of what sort of information about the original space-time

the Penrose limit plane wave metric actually contains.

This flow-diagram certainly begs the question if there is not a more direct (and geo-

metrically appealing) route from (ds2, γ) to Aab(u). The argument on the covariance of

the Penrose Limit shows that there is indeed something covariant lurking behind that

definition, but the precise nature of the Penrose limit and the extent to which it en-

codes generally covariant properties of the original space-time have remained somewhat

unclear and elusive so far.

We will now improve on this situation by deducing a completely covariant character-

isation and definition of the Penrose limit wave profile matrix Aab(u) which does not

require taking any limit and which shows that Aab(u) directly encodes diffeomorphism

invariant information about the original space-time metric. We will also see that this

is information about tidal forces (i.e. the size and growth of curvature) along the null

geodesic in question.

5.1 Curvature and Penrose Limits

We first establish the relation between the wave profile Aab(u) of the Penrose limit

metric and certain components of the curvature tensor of the original metric.

We consider the components Ri
UjU of the curvature tensor of the metric (4.1) which

enter into the geodesic deviation equation (A.15) of the corresponding null geodesic

congruence. The first observation is that

Ri
UjU = −(∂UΓi

jU + Γi
kUΓk

jU ) (5.2)
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does not depend on the coefficients a and bi of the metric and only involves U -derivatives

of gij . It follows that these components of the curvature tensor are related to those of

the Penrose limit metric by

R̄i
UjU = Ri

UjU |γ (5.3)

Next we introduce a pseudo-orthonormal frame EA
µ , A = (+,−, a) for the metric (4.1),

ds2 = 2E+E− + δabE
aEb , (5.4)

which is parallel along the null geodesic congruence, ∇UEA
µ = 0. We choose E+ = ∂U

to be tangent to the geodesics. Then it is not difficult to see that Ea has the form

Ea = Ei
a∂i + EU

a ∂U , (5.5)

where Ea
i is a vielbein for gij(U, V, Y K) satisfying

ĖaiE
i
b = ĖbiE

i
a . (5.6)

This condition is independent of a, bi and only involves U -derivatives of Ea
i . We can

thus conclude that the vielbeins Ēa
i of the Penrose limit metric satisfying the symmetry

condition (4.6) can be obtained from the parallel-propagated (5.6) vielbeins of the full

metric by restriction to the null geodesic γ,

Ēa
i = Ea

i |γ . (5.7)

In particular, this provides a geometric interpretation of the, so far somewhat myste-

rious, symmetry condition (2.82) that arose in the coordinate transformation between

Rosen and Brinkmann coordinates.

Combining (4.5) with (5.3) and (5.7), and using (5.5) we thus obtain the key result that

the frequency matrix (wave profile) Aab(u) of the Penrose limit metric is

Aab(u) = −(Ri+j+Ei
aE

j
b )|γ . (5.8)

As a consequence, even though we had to appeal to Penrose adapted coordinates (4.1)

to implement the standard definition (4.27) of the Penrose limit, we now arrive at a fully

covariant characterisation and definition of the Penrose limit. While this is implied by

what we have already said, it may be worth reiterating it:

Given a null geodesic γ, one constructs a pseudo-orthonormal parallel propagated coframe

(E+, E−, Ea) with E+ = ∂u tangent to the null geodesic and E− characterised by

g(E−, E−) = 0 and g(E+, E−) = 1. Then the Penrose limit is the plane wave metric

characterised by the wave profile

Aab(u) = −Ra+b+|γ , (5.9)

which is determined uniquely up to u-independent orthogonal transformations.
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5.2 Penrose Limits and Geodesic Deviation

The above shows that the Penrose limit contains generally covariant information about

the original metric. We now clarify precisely what this information is. Namely, we will

see that Aab(u) can be characterised as the transverse null geodesic deviation matrix

[40, Section 4.2] of the original metric,

d2

du2
Za = Aab(u)Zb , (5.10)

with Z the transverse geodesic deviation vector. This implies that geodesic deviation

along the selected null geodesic in the original space-time is identical to null geodesic

deviation in the corresponding Penrose limit plane wave metric (2.76) and shows that it

is precisely this information about the original metric which the Penrose limit encodes.

The equivalence of (5.10) and the characterisation (5.9) of Aab(u) obtained in [27] is

a standard result in the theory of null congruences. This is not only a geometrically

transparent but frequently also a calculationally efficient way of determining the wave

profile Aab(u) in practice, and for this reason I will explain this procedure in some detail

in Appendix C.

Here I will give a more elementary and heuristic argument based on the general geodesic

deviation equation (A.15) for a family or congruence of geodesics,

D2

Dτ2
δxµ = Rµ

νλρẋ
ν ẋλδxρ , (5.11)

If one had a timelike geodesic congruence, then one would not really be interested in the

component of the deviation (or connecting) vector in the timelike direction, i.e. along

the timelike geodesic itself. It is therefore then natural to consider deviation vectors

which are spacelike and orthogonal to the congruence, gµν ẋµδxν = 0.

In the case of null congruences it is not enough to say “orthogonal to the congruence”

as this, due to the peculiarities of Lorentzian geometry, still allows components tangent

to the null congruence. Thus in this case the relevant components of the geodesic

deviation equation involve geodesic deviation vectors with d = D − 2 components that

are orthogonal both to the null geodesic and to the complementary null direction.

A further simplification arises if one refers the deviation vectors to a parallel orthonor-

mal basis, as in (5.4) above. In such a basis, covariant derivatives reduce to ordinary

derivatives, and thus the geodesic deviation equation takes the harmonic oscillator form

d2

du2
Za = Ea

νEµ
b Rν

λρµẋλẋρZb = −Ra
+b+Zb . (5.12)

This establishes the equivalence of (5.9) and (5.10).
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In terms of the data defining a geodesic congruence, the relevant components of the

Riemann curvature tensor entering into the above equation can be calculated as

Aa
b =

d

du
Ba

b + Ba
cB

c
b . (5.13)

where

Bab = Eν
aEµ

b∇µpν , pν = gνλẋλ , (5.14)

In particular (and this will be useful in later calculations), the trace of B is

tr B ≡ Ba
a =

1√−g
∂µ(
√−gẋµ) , (5.15)

explaining the ubiquity of logarithmic derivatives in the examples to be discussed below.

5.3 Penrose Limits, Geodesic Congruences and Hamilton-Jacobi Equa-

tions

Using the geodesic deviation approach to calculate Penrose limits, as outlined above,

is obviously a geometrically transparent and appealing way of interpreting the Penrose

Limit and determining Aab(u). It is somewhat less economical (economical in the sense

of introducing the least amount of additional structure) than the characterisation (5.9)

of Aab(u) in terms of the Riemann tensor, which only requires a parallel frame along

the original null geodesic and not an entire geodesic congruence. However, it may

nevertheless be a calculationally more efficient approach if one is in a situation where one

has a natural candidate geodesic congruence (so that one does not have to construct one

first). In this case, the calculation of Aab(u) via geodesic deviation provides a shortcut

to the calculation of the relevant components of the Riemann tensor.

Both these covariant characterisations of the Penrose Limit are certainly more elegant

than the standard systematic aproach to determining Penrose Limits [12, 13, 14] which

not only relies on the existence of some special (twist-free) null geodesic congruence, but

also requires other auxiliary constructs like Penrose coordinates (i.e. coordinates adapted

to the congruence) and the coordinate transformation from Rosen to Brinkmann coor-

dinates. Nevertheless, this is still frequently a useful way of performing calculations, in

particular when combined with the systematic Hamilton-Jacobi approach to construct-

ing adapted coordinates discussed above.

In practice, therefore, the geodesic deviation approach is useful if there is a natural

geodesic congruence. Such a null geodesic congruence can be easily constructed when-

ever one has a solution to the Hamilton-Jacobi equation

gµν∂µS∂νS = 0 (5.16)
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for null geodesics. Indeed, as we have already seen above, setting

ẋµ = gµν∂νS , (5.17)

one obviously has

ẋρ∇ρẋ
µ = gρσgµν∇ρ∂νS∂σS =

1

2
gµν∂ν(gρσ∂ρS∂σS) = 0 , (5.18)

so that this defines a null geodesic congruence.

In particular, whenever the Hamilton-Jacobi equation can be separated the null geodesic

equations become first order and the natural null geodesic congruence is parameterised

by the integration constants of these first order equations.

For a geodesic congruence defined by a solution to the Hamilton-Jacobi equation, the

equation for Bab (C.8), is

Bab = Eµ
a Eν

b∇µ∂νS (5.19)

and the equation for the trace of B, (5.15), is

Ba
a = ∇µ∂µS . (5.20)

Therefore Bab is the covariant Hessian of the HJ function S evaluated in a parallel

frame and its trace is the Laplacian of the Hamilton-Jacobi function with respect to the

space-time metric. Since Bab is manifestly a symmetric matrix in this case (away from

singularities of the HJ function) the corresponding null geodesic congruence is twist

free.

5.4 The Penrose Limits of a Static Spherically Symmetric Metric

To illustrate the geodesic deviation approach to Penrose limits, we now show how to

quickly determine all the Penrose limits of a static spherically symmetric metric. We

start with the metric in Schwarzschild-like coordinates (the extension to isotropic coordi-

nates, brane-like metrics with extended world volumes, or null metrics is straightforward

and is mentioned in Appendix D),

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2
d

dΩ2
d = dθ2 + sin2 θdΩ2

d−1 . (5.21)

Taking the Penrose limit entails first choosing a null geodesic. Because of the rotational

symmetry in the transverse direction, without loss of generality we can choose the null
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geodesic to lie in the (t, r, θ)-plane. The symmetries reduce the geodesic equations to

the first integrals

ṫ = E/f(r)

θ̇ = L/r2

ṙ2 = E2/f(r)g(r)− L2/g(r)r2 , (5.22)

where E and L are the conserved energy and angular momentum respectively. This

defines a natural geodesic congruence, corresponding to the Hamilton-Jacobi function

S = −Et + Lθ + R(r) (5.23)

with

(
d

dr
R)2 = gf−1E2 − r−2gL2 (5.24)

and allows us to calculate Bab.

We first construct the parallel frame. We have

E+ = ṙ∂r + ṫ∂t + θ̇∂θ , E+|γ = ∂u , (5.25)

and we will not need to be more specific about E−. The transverse components are

Ea = (E1, Eâ), with â = 2, . . . , d referring to the transverse (d− 1)-sphere. Since there

is no evolution in these directions, the Eâ are the obvious orthonormal frame components

Eâ =
1

r sin θ
eâ (5.26)

with eâ an orthonormal coframe for dΩ2
d−1. The transverse SO(d)-symmetry implies

B1â = A1â = 0

Bâb̂(u) = B(u)δâb̂

Aâb̂(u) = A(u)δâb̂ . (5.27)

Moreover, because of (5.15) we have

B11(u) = ∇µẋµ(u)− (d− 1) tr B(u) (5.28)

so that we only have to calculate B22(u) = B(u), for which one finds (with, say, e2 = ∂φ)

B22 = Γφ
φrṙ + Γφ

φθθ̇ = ∂u log(r(u) sin θ(u)) , (5.29)

or

Bâb̂(u) = δâb̂∂u log(r(u) sin θ(u)) . (5.30)
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Since

tr B = ∂u log

(

ṙrd sind−1 θ
√

f(r)g(r)

)

(5.31)

one finds

B11(u) = ∂u log

(

r(u)ṙ(u)
√

f(r(u))g(r(u))

)

. (5.32)

Now, in general, for Bab(u) of the logarithmic derivative form

Bab(u) = δab∂u log Ka(u) (5.33)

one has

Aab(u) = δabKa(u)−1∂2
uKa(u) (5.34)

and therefore

A11 = (rṙ
√

fg)−1∂2
u(rṙ

√

fg)

Aâb̂ = δâb̂(r sin θ)−1∂2
u(r sin θ) . (5.35)

In particular, for the transverse components one has the universal result

Aâb̂(u) = δâb̂(
r̈(u)

r(u)
− L2

r(u)4
) . (5.36)

Even though no knowledge of the components E− and E1 was required to determine the

transverse null geodesic deviation matrix Aab(u), it is occasionally useful to know them

explicitly anyway. They can be chosen to lie in the (r, t, θ)-hyperplane. It is convenient

to expand them in the basis (∂t, ∂θ, ∂u) as

E1,− = Et
1,−∂t + Eθ

1,−∂θ + Eu
1,−∂u . (5.37)

All but one of these coefficients are determined by the algebraic constraints

g(E+, E1) = g(E−, E1) = g(E−, E−) = 0 g(E+, E−) = g(E1, E1) = 1 . (5.38)

The remaining coefficient is then determined by the condition that ∇uE1,− = 0.

With the notation

∆(r) = (E2r2 − L2f(r))1/2

Ω(r) =

∫
r

∆(r)
(5.39)

one finds the following result for E1,

Et
1 =

L

∆

Eθ
1 =

E

∆

Eτ
1 =

E

L

(

Ω− r2

∆

)

(5.40)
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and for E−,

Et
−

= −EΩ

∆

Eθ
−

=
1

L
− E2Ω

L∆

Eτ
−

= −1

2

E2

L2

(

Ω− r2

∆

)2

+
r2f

2∆2
. (5.41)

These expressions simplify somewhat for Schwarzschild like metrics with f(r)g(r) = 1.

In particular, since then ṙ2 = ∆2/r2, one has Ω(r(u)) = u.

5.5 Schwarzschild Plane Waves and their Scale-Invariant Near-Singularity

Limits

As a concrete example we will now reconsider the Penrose limits of the D = (d + 2)-

dimensional Schwarzschild metric, D ≥ 4, already discussed in section 4.8 in terms of

adapted coordinates. Thus the metric is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d (5.42)

where13

f(r) = 1− 2m

rd−1
. (5.43)

In this case we have (cf. (4.41,4.42))

ṙ2 = E2 − L2f(r)r−2 ≡ E2 − 2Veff (r) , (5.44)

and

r̈ = −V ′

eff (r) . (5.45)

It now follows straightforwardly that

A22(u) = . . . = Add(u) =
r̈(u)

r(u)
− L2

r(u)4

= −(d + 1)mL2

r(u)d+3
, (5.46)

where r(u) is the solution to the geodesic (effective potential) equation (5.44). Moreover,

since the Schwarzschild metric is a vacuum solution, this is a vacuum plane wave with

Tr A(u) = δabAab(u) = 0, so that

A11(u) =
(d + 1)(d− 1)mL2

r(u)d+3
. (5.47)

There are a number of facts that can be readily deduced from this result:

13Note that m is not the ADM mass for d 6= 2.
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• First of all, we see that the Penrose limit of the Schwarzschild metric is flat for

radial null geodesics, L = 0. We could have anticipated this on general grounds

because in this case the setting is SO(d + 1)-invariant, implying Aab(u) ∼ δab,

which is incompatible with TrA = 0 unless Aab(u) = 0. This should, however,

not be interpreted as saying that the radial Penrose limit of the Schwarzschild

metric is Minkowski space. Rather, the space-time “ends” at the value of u at

which r(u) = 0, say at u = 0. Perhaps the best way of thinking of this metric is

as a time-dependent orbifold of the kind studied recently in the context of string

cosmology (see e.g. [43] and references therein).

• We also learn that the Penrose limit is a symmetric plane wave (u-independent

wave profile) if r(u) = r∗ is a null geodesic at constant r. Setting r̈ = ṙ = 0, one

finds that

rd−1
∗

= (d + 1)m (5.48)

(the familiar r = 3m photon orbit for D = 4), with the constraint

r2
∗

=
d− 1

d + 1

L2

E2
(5.49)

on the ratio L/E. Precisely because they lead to symmetric plane waves, with a

well-understood string theory quantisation, such constant r Penrose limits have

attracted some interest in the literature.

• Moreover we see that the resulting plane wave metric for L 6= 0 is singular iff the

original null geodesic runs into the singularity, which will happen for sufficiently

small values of L/E.

We will now take a closer look at the u-dependence of the wave profile near the singu-

larity r(u) = 0. We thus consider sufficiently small values of L/E in order to avoid the

angular momentum barrier.

For small values of r, the dominant term in the differential equation (5.44) for r is

(unless L = 0, a case we already dealt with above)

ṙ =
√

2mLr−(d+1)/2 . (5.50)

This implies that

r(u)d+3 =
mL2(d + 3)2

2
u2 . (5.51)

Thus the behaviour of the Penrose limit of the Schwarzschild metric as r→ 0 is

A11(u) = −ω′2
SS(d)u−2 (5.52)
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and

A22(u) = . . . = Add(u) = −ω2
SS(d)u−2, (5.53)

with frequencies

ω′2
SS(d) = −2(d2 − 1)

(d + 3)2
. (5.54)

and

ω2
SS(d) =

2(d + 1)

(d + 3)2
. (5.55)

We note the following:

• First of all, in this limit one finds a singular scale-invariant homogeneous plane

wave of the type (3.21) discussed in section 3.3. This behaviour has been found

before in a variety of stringy and cosmological contexts [14, 44, 45]. As we will see

later, this scale invariance of the near-singularity Penrose limit can be attributed

to the power-law scaling behaviour of the near-singularity metrics.

• Moreover, the dependence on L and m has dropped out. The metric thus exhibits

a universal behaviour near the singularity which depends only on the space-time

dimension D = d+2, but neither on the mass of the black hole nor on the angular

momentum of the null geodesic used to approach the singularity. For example, for

D = 4 one has

ω2
SS(d = 2) =

6

25
. (5.56)

• The frequencies are bounded by

ω′2
SS(d) < 0 < ω2

SS(d) <
1

4
. (5.57)

• Finally, we note that the above result is also valid for (A)dS black holes since the

presence of a cosmological constant is irrelevant close to the singularity.

5.6 FRW Plane Waves and their Scale-Invariant Near-Singularity Limits

As another example we consider the Penrose limit of the D = (n+1)-dimensional FRW

metric

ds2 = −dt2 + a(t)2(dr2 + fk(r)
2dΩ2

n−1) , (5.58)

where fk(r) = r, sin r, sinh r for k = 0,+1,−1 respectively. Some aspects of this example

were already the subject of Exercise 2 in section 4.9. Here we will give a more complete

discussion.
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Since the spatial slices are maximally symmetric, up to isometries there is a unique null

geodesic and hence a unique Penrose limit. So without loss of generality we shall consider

null geodesics which have vanishing angular momentum on the transverse sphere.

Then, with a suitable scaling of the affine parameter, the null geodesic equations can

be written as
d

du
t(u) = ±a(t(u))−1 ,

d

du
r(u) = a(t(u))−2 (5.59)

(and in what follows, we choose the upper sign in the first equation). Thus

E+ = ∂u = a−1∂t + a−2∂r , (5.60)

and this can be extended to a parallel pseudo-orthonormal frame by

E− =
1

2
(−a∂t + ∂r)

Ea = (afk)
−1êa , (5.61)

where êa is an orthonormal frame for dΩ2
d, d = n− 1.

The transverse rotational symmetry implies that Bab(u) = B(u)δab and Aab(u) =

A(u)δab. Therefore, to determine B(u) it suffices to compute the trace of Bab(u),

tr B = ∂u log

(

an−1fn−1
k

)

, (5.62)

implying

B(u) = ∂u log(afk) . (5.63)

Using d2

dr2 fk = −kfk, one finds

Aab(u) = δabA(u) = δab

(
ä(u)

a(u)
− k

a(u)4

)

. (5.64)

This is the precise analogue of the expression (5.36) obtained in the static spherically

symmetric case, the spatial curvature k now playing the role of the angular momentum

L2.

This can now be rewritten in a variety of ways to obtain insight into the properties of

this FRW plane wave. For example, writing this in terms of t-derivatives (in order to

make use of the Friedmann equations), we find

A(u(t)) =
1

a(t)2
(
a′′(t)

a(t)
− k + a′(t)2

a(t)2
) . (5.65)

where a(t) is determined by the Einstein (Friedmann) equations, u(t) by du = a(t)dt,

and a′ = d
dta. The Friedmann equations

a′(t)2 + k

a(t)2
=

16πG

n(n− 1)
ρ(t)

a′′(t)

a(t)
= − 8πG

n(n− 1)
[(n− 2)ρ(t) + nP (t)] , (5.66)
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imply
a′(t)2 + k

a(t)2
− a′′(t)

a(t)
=

8πG

(n− 1)
[ρ(t) + P (t)] , (5.67)

so that one finds that the wave profile of the FRW plane wave can be written compactly

as

A(u) = − 8πG

n− 1

ρ(u) + P (u)

a(u)2
. (5.68)

One immediate consequence is that the Penrose limit is flat if and only if ρ + P = 0,

corresponding to having as the only matter content a cosmological constant. This is

in agreement with the result [14] that every Penrose limit of a maximally symmetric

space-time is flat.

We will now study the behaviour of A(u) near a singularity, and to be specific we choose

the usual equation of state

P (t) = wρ(t) . (5.69)

We consider w > −1 (w = −1 would correspond to the case ρ + P = 0 already dealt

with above) and introduce the positive parameter

h(n,w) =
2

n(1 + w)
(5.70)

and the positive constant (constant by the continuity equation for ρ)

Ch =
16πG

n(n− 1)
ρ(t)a(t)2/h , (5.71)

in terms of which the Friedmann equations read

a′(t)2 = Cha(t)(2h−2)/h − k (5.72)

a′′(t) = h−1
h Cha(t)(h−2)/h . (5.73)

Thus the universe is decelerating for 0 < h < 1 and accelerating for h > 1, the critical

case h = 1 corresponding to wc = −1 + 2/n (the familiar dark energy threshold wc =

−1/3 for n = 3).

We first consider the case k = 0. In that case one has

a(t) ∼ th , (5.74)

and therefore

a(u) ∼ uh/h+1 . (5.75)

It then follows immediately from (5.64) that, more explicitly, the u-dependence of A(u)

is14

A(u) = −ω2
FRW (h, k = 0)u−2 , (5.76)

14This generalises the result reported in [14].
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where

ω2
FRW (h, k = 0) =

h

(1 + h)2
. (5.77)

We see that the Penrose limit of a spatially flat FRW universe with equation of state

P = wρ is exactly a singular homogeneous plane wave of the type (3.21).

The frequency square ω2
FRW (h, k = 0) has the following properties:

• Since

ω2
FRW (h, k = 0) = ω2

FRW (1/h, k = 0) , (5.78)

for every accelerating (inflating) solution of the k = 0 Friedmann equations there

is precisely one decelerating solution with the same Penrose limit. The self-dual

point h = 1 corresponds to the linear time-evolution a(t) ∼ t.

• The frequency squares are again bounded by

ω2
FRW (h, k = 0) ≤ 1

4
, (5.79)

with equality attained for h = 1.

• Curiously, the frequencies obtained in the Penrose limit of the Schwarzschild met-

ric (in all but one of the directions) are precisely those of a dust-filled FRW

universe, P = w = 0, of the same dimension n = d + 1,

ω2
SS(d) = ω2

FRW (h, k = 0) , (5.80)

e.g. 6/25 for n = 3.

It is clear that for k = 0, when only the first term in (5.64) is present, this homogeneous

u−2-behaviour is a consequence of the exact power-law behaviour of a(t) and hence a(u).

Let us now consider what happens for k 6= 0, when there is a competition between the

two terms in (5.64) as one approaches the singularity.

One might like to argue that, even for k 6= 0, one finds the same behaviour provided that

the matter term dominates over the curvature term in the Friedmann equation (5.72)

as a→ 0. This happens for 0 < h < 1, and this argument is correct as one can also see

that in this range the first term in (5.64), proportional to u−2, indeed dominates over

the second (curvature) term which (cf. (5.75)) is proportional to u−4h/(h+1). Thus for

0 < h < 1 the near-singularity limit of the FRW plane wave is a homogeneous plane

wave with k-independent frequencies (5.77),

0 < h < 1 : ω2
FRW (h, k) = ω2

FRW (h, k = 0) =
h

(1 + h)2
. (5.81)
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Now let us look at what happens as one passes from a decelerating to a critical (h = 1)

and then accelerating (h > 1) universe. First of all, for h = 1, both terms on the right

hand side of the Friedmann equation (5.72) contribute equally (they are constant),

and correspondingly both terms in (5.64) are proportional to u−2. Thus one finds a

homogeneous plane wave, but with a curvature-induced shift of the frequency,

h = 1 : ω2
FRW (h = 1, k) = ω2

FRW (h = 1, k = 0) + kc2 =
1

4
+ kc2 (5.82)

for some constant c. In particular, in the spatially closed case k = +1 (this requires

Ch > 1), one now finds frequency squares that are larger than 1/4. This is a borderline

behaviour in the sense that, as can easily be seen from (5.72), the initial singularity for

k = +1 ceases to exist for h > 1.

It thus remains to discuss the case k = −1 and h > 1. Given the previous discussion,

one might be tempted to think that now the second term in (5.64) will dominate over

the first, leading to a non-homogeneous and more singular u−4h/(h+1)-behaviour. This

is, however, not the case, as (5.75) now represents the leading behaviour at large a(u).

At small a(u), the leading behaviour is, exactly as for h = 1, determined by the constant

curvature term in (5.72). Thus even in this case one finds a singular homogeneous plane

wave, with frequency

h > 1 : ω2
FRW (h, k = −1) =

1

4
− c2 (5.83)

once again bounded from above by 1/4.

5.7 Exercises for Section 5

1. Curvature and Parallel Frames in Adapted Coordinates

(a) Verify that (5.2) has the properties claimed in the subsequent paragrpah.

(b) Verify (5.5) and (5.6).

2. Covariance and Hereditary Properties of the Penrose Limit revisited

Analyse the covariance and hereditary properties of Penrose Limits, discussed in

sections 4.5 and 4.6, from the present covariant point of view. Which properties

are now more manifest? Which still require a seperate proof?
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6 The Universality of Penrose Limits of Power-Law Type Singu-

larities

In the previous section we have presented some evidence for a remarkable

Conjecture: Penrose limits of physically reasonable space-time singularities

are singular homogeneous plane waves with wave profile Aab(u) ∼ u−2.

In this section we will show how to prove this conjecture for a very large class of physical

singularities of spherically symmetric type. We will in the process also see some examples

of “extreme” stress-energy tensors that give rise to a different behaviour.

6.1 Szekeres-Iyer Metrics

The scale-invariance of the Penrose limit (geodesic deviation) that we have found in the

above examples appears to reflect a power-law scaling behaviour of the metric near the

singularity. Thus to assess the generality of this kind of result, one needs to enquire

about the generality of space-time singularities exhibiting such a power-law behaviour.

In [46] (see also [47]), in the context of investigations of the Cosmic Censorship Hypoth-

esis, Szekeres and Iyer studied a large class of four-dimensional spherically symmetric

metrics they dubbed “metrics with power-law type singularities”. Such metrics en-

compass practically all explicitly known singular spherically symmetric solutions of the

Einstein equations, in particular all the FRW metrics, Lemâıtre-Tolman-Bondi dust

solutions, cosmological singularities of the Lifshitz-Khalatnikov type, as well as other

types of metrics with null singularities. On the other hand, this class of metrics does

prominently not include the BKL metrics [48] describing the chaotic oscillatory approach

to a spacelike singularity.

In “double-null form”, these metrics (in d + 2 dimensions) take the form

ds2 = −eA(U, V )dUdV + eB(U, V )dΩ2
d , (6.1)

where A(U, V ) and B(U, V ) have expansions

A(U, V ) = p ln x(U, V ) + regular terms

B(U, V ) = q ln x(U, V ) + regular terms (6.2)

near the singularity surface x(U, V ) = 0.

Generically, the residual coordinate transformations U → U ′(U), V → V ′(V ) preserving

the form of the metric (6.1) can be used to make x(U, V ) linear in U and V ,

x(U, V ) = kU + lV , k, l = ±1, 0 , (6.3)
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with η = kl = 1, 0,−1 corresponding to spacelike, null and timelike singularities re-

spectively. This choice of gauge essentially fixes the coordinates uniquely, and thus the

“critical exponents” p and q contain diffeomorphism invariant information.

The Schwarzschild metric, for example, has

Schwarzschild : p =
1− d

d
q =

2

d
, (6.4)

as is readily seen by expanding the metric near the singularity and going to tortoise

coordinates.

Likewise, decelerating cosmological FRW metrics,

a(t) ∼ th 0 < h < 1 , (6.5)

where

h =
2

(d + 1)(1 + w)
, (6.6)

with w the equation of state parameter, P = wρ, have

FRW : p = q =
2h

1− h
, (6.7)

as can be seen by going to what is known as “conformal time” in cosmology.

We will focus on the behaviour of these geometries near the singularity at x = 0, where

the metric is

ds2 = −xpdUdV + xqdΩ2
d . (6.8)

For generic situations this leading behaviour is sufficient to discuss the physics near the

singularity. In certain special cases, for particular values of p, q or for null singulari-

ties, this leading behaviour cancels in certain components of the Einstein tensor and

the subleading terms in the above metric become important for a full analysis of the

singularities [46, 47]. The analysis then becomes more subtle and we will not discuss

these cases here. In the following we will consider exclusively the metric (6.8) which,

for η 6= 0 and generic values of p and q, captures the dominant behaviour of the physics

near the singularity.

As shown in detail in [49], typical supergravity solitons (interesecting branes etc.) have

singularities of power-law type where instead of one transverse space characterised by

one Kasner exponent q one has a near-singularity metric with multiple transverse spaces

of the form

ds2 = −xpdUdV +
∑

i

xq(i)ds2
(i) . (6.9)
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Even though here we will specifically only consider spherically symmetric metrics, much

of what we do in the following can be extended to such more general metrics with

singularities of power-law type.

Returning to the spherically symmetric case, for η 6= 0 we define y = kU − lV and

choose k = ηl = 1. Then the metric takes the form

ds2 = ηxpdy2 − ηxpdx2 + xqdΩ2
d . (6.10)

With the further definition r = xq/2 (for q 6= 0), this has the standard form of a

spherically symmetric metric. We will come back to this below in order to be able to

make direct use of the analysis of section 5.4.

For η = 0, on the other hand, we could choose x = U , y = −V , so that the metric is

ds2 = xpdxdy + xqdΩ2
d , (6.11)

which has the form of the spherically symmetric null metrics analysed in Appendix D.

We will focus on η 6= 0 in the following.

6.2 Null Geodesics of Szekeres-Iyer Metrics

In terms of the conserved momenta P and L associated with y and, say, the colatitude

θ of the d-sphere,

dΩ2
d = dθ2 + sin2 θdΩ2

d−1 , (6.12)

in particular

xq θ̇ = L , (6.13)

the null geodesic condition is equivalent to

ẋ2 = P 2x−2p + ηL2x−p−q , (6.14)

To understand the null geodesics near x = 0, we begin by extracting as much information

as possible from this equation, recalling that due to the expansion around x = 0 we can

only trust the leading behaviour of this equation as x→ 0.

Unless p = q, one of the two terms on the right-hand-side of (6.14) will dominate as

x→ 0, and thus the generic behaviour of a null geodesic near x = 0 is identical to that

of a geodesic with either L = 0 or P = 0. In the former case, one finds

Behaviour 1: x(u) ∼ u1/(p+1) (6.15)

unless p = −1 when x(u) ∼ exp u. We are only interested in those geodesics which

run into the singularity at x = 0 at finite u. This happens only for p > −1. In the
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latter case, corresponding to null geodesics which asymptotically, as x→ 0, behave like

geodesics with P = 0, we evidently need η = +1 (a spacelike singularity), which leads

to

Behaviour 2: x(u) ∼ u2/(p+q+2) (6.16)

unless p + q = −2 which again leads to an exponential behaviour. These null geodesics

run into the singularity at finite u for p + q > −2.

For η = +1, the situation regarding null geodesics that reach the singularity at finite u

is summarised in the following table.

Conditions on (P,L) Constraints on (p, q) Behaviour

P 6= 0, L = 0 p > −1 1

P = 0, L 6= 0 p + q > −2 2

P 6= 0, L 6= 0 p > q, p > −1 1

P 6= 0, L 6= 0 p < q, p + q > −2 2

P 6= 0, L 6= 0 p = q > −1 1 = 2

(6.17)

For η = −1, the situation is largely analogous, the main difference being that now the

second term in (6.14) acts as an angular momentum barrier preventing e.g. geodesics

with L 6= 0 for q > p from reaching the singularity at x = 0. These cases are indicated

by a ‘−’ in the table below. For the same reason, for p = q one finds the constraint

|P | > |L|.

Conditions on (P,L) Constraints on (p, q) Behaviour

P 6= 0, L = 0 p > −1 1

P = 0, L 6= 0 −
P 6= 0, L 6= 0 p > q, p > −1 1

P 6= 0, L 6= 0 p < q −
|P | > |L| p = q > −1 1 = 2

(6.18)

6.3 Penrose Limits of Power-Law Type Singularities

We will now determine the Penrose limits of the Szekeres-Iyer metrics along the null

geodesics reaching the singularity x = 0 at finite u.

For η 6= 0 we notice that the metric is simply a special case of a spherically symmetric

metric and thus can be treated using the analysis of section 5.4. Indeed, when q 6= 0 we

can change variables to

t = y , r = xq/2 , (6.19)

67



in terms of which the metric (6.10) takes the form

ds2 = ηxpdy2 − ηxpdx2 + xqdΩ2 (6.20)

= ηr2p/qdt2 − 4η

q2
r2(p−q+2)/qdr2 + r2dΩ2 . (6.21)

Here the notation of t and r is adapted to the case of η = −1 where the singularity

is timelike and t is time. We will continue to use this notation even for spacelike

singularities where t is actually spacelike.

The case q = 0 is special, but actually corresponds to what is known as a shell crossing

singularity [46] which is usually not considered to be a true singularity as the transverse

sphere is of constant radius xq = 1. Such singularities arise for instance for certain

collisions of spherical dust shells. From here on we will only discuss q 6= 0.

Referring to section 5.4 where such a spherically symmetric metric was treated, we can

identify

f(r) = −ηr2p/q (6.22)

g(r) = −4η

q2
r2(p−q+2)/q. (6.23)

We can now appeal to (5.32, 5.30) to deduce that

Bab = δab∂u log(Ka(u)) (6.24)

with

K1(u) = ṙ(u)r(u)2(p+1)/q

K2(u) = r(u) sin(θ(u)) (6.25)

It follows from the analysis of the previous section that the only possibility of interest

for r(u) = x(u)q/2 is the power-law behaviour

r(u) = ua , (6.26)

with

Behaviour 1: p > −1 a = q/2(p + 1) (6.27)

Behaviour 2: p + q > −2 a = q/(p + q + 2) . (6.28)

Clearly, then, K1(u) is also a simple power of u. Specifically one has (since we are

interested in the logarithmic derivatives of K1(u), proportionality factors are irrelevant)

Behaviour 1: K1(u) ∼ r(u)

Behaviour 2: K1(u) ∼ r(u)p/q . (6.29)
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Thus the corresponding component of Aab(u) is

Behaviour 1: A11(u) =
K̈1(u)

K1(u)
= a(a− 1)u−2

Behaviour 2: A11(u) =
K̈1(u)

K1(u)
= pa/q(pa/q − 1)u−2 . (6.30)

and the Penrose limit behaves as a singular homogeneous plane wave in this direction.

Since b(b− 1) has a minimum −1/4 at b = 1/2, this leads to the bound

ω2
1 ≤

1

4
. (6.31)

This is the same range that we found empirically for both the Schwarzschild and FRW

plane waves near the singularity.

The behaviour of A22 is more subtle due to the dependence of K2(u) on sin θ(u). The

general behaviour is as in (5.36), namely

A22(u) =
r̈(u)

r(u)
− L2

r(u)4
. (6.32)

With the power-law behaviour r(u) = ua, the first term is always proportional to u−2.

This term is dominant as u→ 0 when a < 1/2, while it is the second term that dominates

for a > 1/2 (and leads to a strongly singular plane wave with profile ∼ u−4a). In the

special case a = 1/2, both terms are proportional to u−2. Thus one has, for L 6= 0,

r(u) = ua a < 1
2 : A22(u)→ −ω2

2u
−2 , ω2

2 = a(1− a) <
1

4
(6.33)

a = 1
2 : A22(u)→ −ω2

2u
−2 , ω2

2 =
1

4
+ c2L2 ≥ 1

4
(6.34)

a > 1
2 : A22(u)→ −L2u−4a . (6.35)

Here, as in the discussion of the FRW plane wave (5.82), c in the second line is some

constant which arises because the second term in (6.32) depends on the overall scale of

r(u) whereas the first one obviously does not.

When p ≥ q and η 6= 0, a = q/2(p + 1) and thus always a < 1/2. On the other hand,

when p < q and η = 1 we see that a = q/(p+ q +2) can take on any value, with a = 1/2

along the line q = p + 2 and a > 1/2 for q > p + 2. When p < q and η = −1 we cannot

reach the singularity along a geodesic with L 6= 0.

When L = 0, only the first term in (6.32) is present, and one thus finds (6.33) for

all values of a. Since L = 0 implies Behaviour 1, this means a = q/2(p + 1). Along

the special line q = 2(p + 1) one has a = 1 and one finds the “flat” Penrose limit

A11(u) = A22(u) = 0. In particular, this happens for radial null geodesics in the
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Figure 2: The Penrose Limit Phase Diagram in the p−q plane for (a) spacelike (η = +1)

and (b) timelike (η = −1) singularities. Singular HPWs arise in the light-shaded regions

whereas in the dark-shaded region there are Penrose limits leading to strongly singular

(and non-homogeneous) plane waves. (a) The diagram is bounded on the left by the

lines p = −1 and p + q = −2. The dashed line a = 1/2 ⇔ q = p + 2 separates the

two regions, and only along that line one finds singular HPWs with ω2
2 > 1/4. (b) For

η = −1, one finds singular HPWs with ω2
2 ≤ 1/4 for all (p, q) with p > −1, ω2

2 = 1/4

arising only along the dashed line a = 1/2 for zero angular momentum, L = 0.
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Schwarzschild metric (p = (1 − d)/d and q = 2/d), as already noticed in sections 4.8

and 5.5.

These results are summarised in Figure (2a) for η = 1 and in Figure (2b) for η = −1.

6.4 The Role of the Dominant Energy Condition

We thus see that while we frequently obtain a singular HPW with ω2
a ≤ 1/4 in the

Penrose limit, other possibilities do arise. For timelike singularities, the situation is

clear:

Penrose Limits of timelike spherically symmetric singularities of power-law

type are singular HPWs with frequency squares bounded from above by 1/4.

We will now show that for spacelike singularities a different behaviour can occur only

when the strict Dominant Energy Condition (DEC) is violated, in particular, that the

strongly singular region (the dark-shaded region in Figure (2a)) is excluded by the

requirement that the DEC be satisfied but not saturated.

We begin by recalling the definition of the Dominant Energy Condition on the stress-

energy tensor T µ
ν (or Einstein tensor Gµ

ν) [40]: for every timelike vector vµ, Tµνvµvν ≥ 0,

and T µ
νv

ν is a non-spacelike vector. This may be interpreted as saying that for any

observer the local energy density is non-negative and the energy flux causal.

Next we recall that a stress-energy tensor is said to be of type I [40] if T µ
ν has one timelike

and three (more generally, d + 1) spacelike eigenvectors. The corresponding eigenvalues

are −ρ (ρ the energy density) and the principal pressures Pα, α = 1, . . . , d + 1. For a

stress-energy tensor of type I, the DEC is equivalent to

ρ ≥ |Pα| . (6.36)

We say that the strict DEC is satisfied if these are strict inequalities and we will see

that the “extremal” matter content (or equation of state) for which at least one of the

inequalities is saturated will play a special role in the following.

The Einstein tensor of the metric (6.10) is diagonal (Appendix E),

Gx
x = −1

2d(d− 1)x−q − 1
8ηdq((d − 1)q + 2p)x−(p+2)

Gy
y = −1

2d(d− 1)x−q + 1
8ηdq(2p + 4− (d + 1)q)x−(p+2)

Gi
j = −1

2(d− 1)(d − 2)δi
jx

−q + 1
8η(4p − 4q + 4qd− d(d− 1)q2)δi

jx
−(p+2) (6.37)

and hence clearly of type I. For spacelike singularities, η = +1, we have energy density

ρ = −Gx
x, radial pressure Pr = Gy

y and transverse pressures Pi = Gi
i, while for η = −1

the roles of Gx
x and Gy

y are interchanged.
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Since for q > p + 2 the first term in Gx
x and Gy

y dominates over the second term as

x→ 0, it is obvious that for q > p + 2 the relation between ρ and Pr becomes extremal

as x→ 0,

Gx
x −Gy

y → 0 ⇔ ρ + Pr → 0 . (6.38)

Put differently, q ≤ p + 2 is a necessary condition for the strict DEC to hold. Since

strongly singular plane waves (the dark-shaded region in Figure (2a)) arise only for

q > p + 2, we have thus established that

Penrose Limits of spacelike spherically symmetric singularities of power-law

type satisfying the strict Dominant Energy Condition are singular HPWs.

Since frequency squares exceeding 1/4 can only occur along the line q = p + 2 itself, we

can also conclude that

the resulting frequency squares ω2
a are bounded from above by 1/4 unless

one is on the border to an extremal equation of state.

A more detailed analysis of the DEC (as performed for d = 2 in [46]), shows that the

actual region in which the strict DEC is satisfied (taking into account also the conditions

involving the transverse pressures Pi), is more constrained. For spacelike singularities,

this is the (infinite) region bounded by the lines

q = 2/d, q = p + 2, q = 2(p + 1) , (6.39)

displayed as the highlighted region A of Figure (3a) (drawn here for d = 2). A look at

this figure confirms the results we have obtained above.

For timelike singularities, the region where the strong DEC is satisfied is considerably

smaller - it is a finite subset of the strip bounded by the lines q = 0 and q = 2/d,

indicated (for d = 2) as the highlighted region B of Figure (3b). While of no conse-

quence for the present discussion, the fact that in region B the pressures Pr and Pi

cannot simultaneously be positive plays an important role in the discussion of Cosmic

Censorship in [46].

The fact that the Penrose limits of timelike singularities always behave as u−2, while in

the spacelike case strongly singular Penrose limits can arise (even though only for metrics

violating the strict DEC), might give the impression that timelike (naked) singularities

are in some sense better behaved than spacelike (censored) singularities. This should

rather be viewed as an indication that massless particles are inadequate for probing the

geometry of timelike singularities since, for large regions in the (p, q)-parameter space,

the angular momentum barrier prevents non-radial null geodesics from reaching (and
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Figure 3: The Penrose Limit + DEC Phase Diagram in the p− q plane for (a) spacelike

(η = +1) and (b) timelike (η = −1) singularities. In the highlighted regions A and B the

DEC is satisfied (but not saturated). (a) the strongly singular (and non-homogeneous)

plane waves of the dark-shaded region with extremal equation of state are excluded,

and singular HPWs with ω2
2 ≥ 1/4 arise only along the boundary q = p + 2 to the

extremal equation of state. (b) the Penrose limits are singular HPWs with ω2
2 ≤ 1/4,

with ω2
2 = 1/4 only along the dashed line q = p + 1.
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hence probing) the singularity. From this point of view, it is much more significant that

for spacelike singularities massless particle probes with arbitrary angular momentum all

detect homogeneous singular plane waves provided that the strict DEC is satisfied.

We have thus seen that space-time singularities exhibit a remarkably universal homo-

geneous u−2-behaviour in the Penrose Limit. We have established this in complete

generality for timelike singularities of power-law type and have also shown that for

spacelike singularities of power-law type, for which more singular Penrose limits are

possible, this u−2-behaviour is implied by demanding the strict DEC.

As mentioned in section 6.1, in the case of null singularities of power-law type (η = 0),

studied in [47], some of the leading components of the Einstein tensor vanish and hence

one (somewhat trivially) ends up with an extremal equation of state. Thus no interesting

constraints arise from imposing the DEC, and using only the leading form (6.11) of the

metric cannot be the basis for a full analysis which is more subtle.

Perhaps the main implications of this result are for the study of string theory in singular

and/or time-dependent backgrounds. In general, because of the simplifications brought

about by the existence of a natural light-cone gauge [5], plane wave (and more general

pp-wave) backgrounds provide an ideal setting for studying such problems. Now, as

we have seen, the Penrose limits of a large class of singularities are always at least

as singular as u−2. Thus “weakly singular” plane waves with profile ∼ u−α, α <

2, while perhaps interesting as toy-models of time-dependent backgrounds in string

theory [50, 51], do not actually arise as Penrose limits of standard cosmological or

other singularities. Moreover, a strongly singular behaviour with α > 2 can only arise

for metrics violating the strict DEC. This singles out the singular HPWs with profile

∼ u−2 as the backgrounds to consider in order to obtain insight into the properties of

string theory near physically reasonable space-time singularities. For further discussions

of these results and possible generalisations see the last section of [25].

6.5 Exercises for Section 6

1. The Szekeres-Iyer exponents

Verify that the exponents p and q for the Schwarzschild and decelerating FRW

metrics are (6.4),

Schwarzschild : p =
1− d

d
q =

2

d
, (6.40)

and (6.7),

FRW : p = q =
2h

1− h
, (6.41)

respectively.
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2. The Reissner-Nordstrøm Metric

Consider the (d + 2)-dimensional spherically symmetric metric with15

f(r) = g(r)−1 = 1− 2m

rd−1
+

Q2

r2(d−1)
. (6.42)

(a) Analyse the effective potential for null geodesics. Which null geodesics can

reach the singularity at r = 0?

(b) Determine the Szekeres-Iyer exponents p and q.

3. The Dominant Energy Condition

Show that for a diagonal energy momentum tensor the DEC,

• Tµνv
µvν ≥ 0, and

• T µ
νvν is non-spacelike

for all timelike vµ, takes the form (6.36).

15Once again the notation is adapted to D = d + 2 = 4 where m and Q are the ADM mass and

electric charge respectively.
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A General Relativity: Notation and Conventions

Metrics and Geodesics

The arena for general relativity is a D = (d + 2)-dimensional space-time equipped with

a symmetric non-degenerate tensor gµν(x) of Lorentzian signature, the metric tensor,

corresponding to the line element

ds2 = gµνdxµdxν . (A.1)

We choose the “mostly plus” convention (−+ . . . +).

The motion of particles is described by the geodesic equation

ẍµ + Γµ
νλẋν ẋλ = 0 . (A.2)

Here the Christoffel symbols Γµ
νλ = gµρΓρνλ are related to the metric by

Γρνλ = 1
2(∂λgρν + ∂νgρλ − ∂ρgνλ) . (A.3)

This geodesic equation extremises proper time τ , dτ2 = −ds2, but can more simply and

efficiently be obtained from the Euler-Lagrange equations of the Lagrangian

L = 1
2gµν ẋµẋν , (A.4)

which is also valid for null geodesics.

Covariant Derivative

The covariant derivative ∇µ generalises the ordinary partial derivative ∂µ and maps

tensors to tensors. It is completely characterised by the properties

∇µgνλ = 0 , [∇µ,∇ν ]f = 0 , (A.5)

wehre f is a function (scalar). On vectors, it acts as

∇µV ν = ∂µV ν + Γµ
νλV λ . (A.6)

The covariant derivative along a curve xµ(τ) is defined as

D

Dτ
= ẋν∇ν , (A.7)
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and the geodesic equation can alternatively be written as

D

Dτ
ẋµ = 0 . (A.8)

Curvature

The Riemann curvature tensor is

Rλ
σµν = ∂µΓλ

σν − ∂νΓ
λ
σµ + Γλ

µρΓ
ρ
νσ − Γλ

νρΓ
ρ
µσ . (A.9)

It satisfies

[∇µ,∇ν ]V
λ = Rλ

σµνV σ . (A.10)

The Ricci tensor and Ricci scalar are

Rµν = Rλ
µλν , R = gµνRµν . (A.11)

These sign conventions are such that the Ricci tensor and Ricci scalar of the unit n-

sphere with its standard Riemannian metric are Rij = (n− 1)gij and R = n(n− 1).

Einstein Equations

The Einstein equations are

Gµν = 8πGTµν (A.12)

where

Gµν = Rµν − 1
2gµνR (A.13)

is the Einstein tensor, satisfying

∇µGµν = 0 , (A.14)

and Tµν is the energy-momentum tensor of the matter system under consideration. The

vacuum Einstein equations are equivalent to the Ricci-flatness condition Rµν = 0.

Geodesic Deviation Equation

The geodesic deviation equation describes the tidal forces acting on extended objects

(or families of geodesics). It reads

D2

Dτ2
δxµ = Rµ

νλρẋ
ν ẋλδxρ , (A.15)
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where δxµ is the seperation vector between nearby geodesics.

Killing Vectors

Continuous symmetries of a metric correspond to infinitesimal motions leaving the met-

ric invariant. Their generators are called Killing vector fields, and they satisfy the

equations

∇µKν +∇νKµ = 0 . (A.16)

Given a Killing vector K, one can always locally introduce coordinates such that K = ∂y

for some coordinate y. Then Kµ = gµy , and the Killing condition says simply that in

such coordinates the components of the metric are y-independent, ∂ygµν = 0.

B The Hamilton-Jacobi Construction of Adapted Coordinates

We had seen in section 4.3 that the natural arena for constructing adapted coordi-

nates is the Hamilton-Jacobi theory of null geodesic congruences, and that the adapted

coordinate V could be identified with the corresponding Hamilton-Jacobi function S.

It remains to construct the transverse coordinates Y k. To that end we will now briefly

review some facts about solutions to the Hamilton-Jacobi equations (see e.g. [52, 53]).

The general solution to the HJ equation (4.13) can be rather involved but there usually

exists a “complete” solution, complete in the sense that it depends on d + 2 integration

constants [52] (d + 2 as in the rest of the paper is the space-time dimension).16 For

a complete solution to the HJ equation with integration constants αµ, the associated

geodesic congruence is xµ = xµ(τ, αµ, xµ
0 ), where xµ

0 are the positions of the geodesics

at τ = 0, xµ
0 = xµ(0, αµ, xµ

0 ). The initial value surface parameterised by the xµ
0 is a

Cauchy surface for the HJ equation and can be represented algebraically by the equation

F (xµ) = 0. For a well-posed initial value problem, we require that the hypersurface

F = 0 has an everywhere timelike normal vector (∂F )2 < 0.

One of the integration constants αµ simply represents a constant shift of S. Furthermore,

the HJ equation is homogeneous of degree two, so if S is a solution, then κS, κ = const 6=
0, is also a solution. This scale invariance of the HJ equation is absorbed in the first

order geodesic equations, (4.14) by a scale transformation of the affine parameter τ .

16It is not always guaranteed that such a complete solution exists, though in all the cases that

we consider here it does. The most general solution to (4.13) is much more complicated and can be

constructed from a complete solution by looking at x-dependent hypersurfaces in the space of integration

constants by the method of envelopes [53].
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Therefore, there are only d non-trivial integration constants which we will denote by

αk, k = 1, . . . , d.

Given a particular null geodesic γ, the integration constants αk can be uniquely fixed.

Indeed let p0
µ = gµν ẋν |τ=0 be the momentum of the geodesic γ at τ = 0. The mass-shell

condition gµνpµpν = 0 is scale invariant and therefore there are d independent momenta.

These can be used to determine the integration constants of the HJ function S via the

equation

p0
µ = ∂µS|τ=0 . (B.1)

Therefore we can use the HJ equation to embed a given null geodesic into a twist free

null geodesic congruence determined by the solution S.

Given a null geodesic γ, the coordinate transformation from the original coordinates xµ

of space-time to the Penrose coordinates can be defined using the HJ function S and

coordinates xµ
0 of the Cauchy hypersurface, as follows:

We first parameterize the null geodesic congruence as described above

xµ = xµ(τ, xν
0) (B.2)

F (xµ
0 ) = 0 . (B.3)

We have suppressed the integration constants αµ because they are specified by the

momentum of the null geodesic γ. Then we set

U = τ

V = S(xµ
0 ) . (B.4)

Note that S(xµ) = S(xµ
0 ) because Ṡ = 0. It remains to determine the coordinates

Y k from these data. For this observe that the level sets of S have null normal vector,

because of (4.13), while the hypersurface F = 0 has a timelike normal vector. Thus we

have

gµν∂µS∂νF < 0 , (B.5)

and the level sets of S intersect transversally the hypersurface F = 0. The coordinates

Y k are found by solving the equations F (xµ
0 ) = 0 and S(xµ

0 ) = V , i.e. Y k are the

coordinates of the transverse intersection of the F = 0 hypersurface with the level sets

of the HJ function S. Using this, we can rewrite the first equation in (B.3) as

xµ = xµ(U, xν
0(V, Y k)) = xµ(U, V, Y k) . (B.6)

This is the transformation which relates a coordinate system on a space-time to the

Penrose coordinates.
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Note that for a generic space-time, there is no natural choice for the hypersurface F = 0,

i.e. for the function F . Instead F should be thought of as a gauge fixing condition which

is chosen at our convenience. The Penrose limit metric does not depend on the choice

of F , different choices simply corresponding to different ways of labelling the geodesics

of the congruence on which the adapted coordinates are based.

For the sake of completeness we will now show explicitly that in these coordinates the

metric indeed takes the form (4.1). First of all, we clearly have

gUU = gµν
∂xµ

∂τ

∂xν

∂τ
= 0 (B.7)

because the geodesics xµ(τ, xν
0) are null. Moreover,

gUV = gµν
∂xµ

∂τ

∂xν

∂V
= gµνgµρ∂ρS

∂xµ

∂V
=

∂xµ

∂V
∂µS =

∂V

∂V
= 1 , (B.8)

and

gUi = gµν
∂xµ

∂τ

∂xν

∂Y i
= gµνgµρ ∂S

∂xρ

∂xν

∂Y i
=

∂V

∂Y i
= 0 . (B.9)

C The Null Geodesic Deviation Equation (following [40])

To establish the relation between (5.9) and (5.10), we embed the null geodesic γ into

some (arbitrary) null geodesic congruence. Via parallel transport one can construct a

parallel pseudo-orthonormal frame EA, A = +,−, a, along the null geodesic congruence,

ds2 = 2E+E− + δabE
aEb , ∇uEA = 0 (C.1)

such that the component E+ of the co-frame EA is

E+ = ẋµ∂µ , E+|γ = ∂u , (C.2)

i.e. the restriction of E+ to every null geodesic is the tangent vector of the null geodesic.

Infinitesimally the congruence is characterised by the connecting vectors Z represent-

ing the separation of corresponding points on neighbouring curves and satisfying the

equation

LE+Z = [E+, Z] = ∇E+Z −∇ZE+ = 0 . (C.3)

In a parallel frame, covariant derivatives along the congruence become partial deriva-

tives,

Eµ
+∇µ(ZAEA) = ∇u(ZAEA) = (∂uZA)EA , (C.4)

and since E+ is null one has

g(E+, E+) = 0⇒ (∇AE+)− = 0 . (C.5)
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Hence (C.3) implies that (d/du)Z− = 0, and we can set Z− = 0 without loss of gener-

ality. Then, using the geodesic equation ∇uE+ = 0, one finds that

∇ZE+ = Zb(∇bE+)aEa + Zb(∇bE+)+E+ (C.6)

and the connecting vector equation (C.3) becomes

d

du
Za = Ba

bZ
b (C.7)

with

Ba
b = (∇bE+)a ≡ Ea

νEµ
b∇µEν

+ , (C.8)

and Z+ determined by the Za via

d

du
Z+ = Zb(∇bE+)+ . (C.9)

Note also that (C.5) implies that the trace of B is

tr B ≡ Ba
a = ∇µEµ

+ =
1√−g

∂µ(
√−gẋµ) . (C.10)

It follows from (C.7) that the transverse components Za satisfy the null geodesic devi-

ation equation
d2

du2
Za = Aab(u)Zb . (C.11)

where

Aa
b =

d

du
Ba

b + Ba
cB

c
b . (C.12)

Note that (C.11) is just a (time-dependent) harmonic oscillator equation with (−Aab(u))

the matrix of frequency squares.

A routine calculation now shows that

Aa
b = Ea

νEµ
b Rν

λρµẋλẋρ = −Ra
+b+ , (C.13)

with R the Riemann curvature tensor of the metric g, establishing the equivalence of

(5.9) and (5.10).

Alternatively, this can be understood in terms of the standard evolution equations for

the expansion, shear and twist of a null geodesic congruence (see e.g. [40, Section 4.2] or

[42, Section 9.2]), which are equal to the trace, trace-free symmetric and anti-symmetric

part of Bab,

Bab = Eν
aEµ

b∇µpν , pν = gνλẋλ , (C.14)

respectively. From this point of view, the symmetry of Aab, i.e. the vanishing of the

antisymmetric part of Ḃ + B2, is equivalent to the evolution equation for the twist,
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and the equivalence of (5.9) and (5.10) is the content of the evolution equation for the

symmetric part of Bab whose trace is the Raychaudhuri equation for null geodesics.

We see from (C.13) that, even though Bab depends on the properties of the null geodesic

congruence, the particular combination of expansion, shear and twist and their deriva-

tives appearing in Aab depends only on the components of the curvature tensor and

the parallel frame along the original null geodesic. In particular, the geodesic deviation

matrix Aab(u) is independent of how the null geodesic γ is embedded into some null

congruence.

D Generalisations of Section 5.4: Brane Metrics, Isotropic Co-

ordinates, Null Singularities

It is straightforward to generalise the analysis of section 5.4 to include longitudinal

worldvolume directions,

f(r)(−dt2)→ f(r)(−dt2 + d~y2) . (D.1)

A parallel frame in the brane worldvolume directions is Ei = f−1/2∂yi , and

Bij = δij∂u log f(r(u))1/2 (D.2)

which in turn leads to

Aij = δijf(r(u))−1/2∂2
u log f(r(u))1/2 . (D.3)

The remaining of the components of A are as in section 5.4.

Likewise, for isotropic coordinates,

ds2 = −f(r)dt2 + h(r)(dr2 + r2dΩ2
d) , (D.4)

a straightforward calculation reveals that

tr B = ∂u log

(

ṙrdf
1
2 h

d+1
2 sind−1(θ)

)

(D.5)

and

B22 = ∂u log(h
1
2 r sin(θ)) . (D.6)

These lead to

B11(u) = ∂u log(rṙhf1/2)

Bâb̂(u) = δâb̂∂u log(rh1/2 sin θ) (D.7)
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with the corresponding second-derivative expressions for Aab(u). Again it is easy to

include longitudinal directions.

Finally, we consider spherically symmetric null metrics of the form

ds2 = 2g(x)dxdy + f(x)dΩ2
2 . (D.8)

The geodesic equations are

ẋ = Pg−1 , ẏ = −L2

P
f−1 , θ̇ = f−1L , (D.9)

where P and L are constants of motion. In this case, one finds

tr B = ∂u log(ẋgf sin(θ)) (D.10)

and

B22 = ∂u log(f
1
2 sin(θ)) . (D.11)

Therefore, we have

K1(u) = Pf(u)1/2

K2(u) = f(u)1/2 sin θ(u) . (D.12)

In particular, in terms of r(x) = f(x)1/2, A22 once again takes the standard form (5.36)

A22(u) =
r̈(u)

r(u)
− L2

r(u)4
. (D.13)

E Curvature of Szekeres-Iyer Metrics

For reference purposes we give here the non-vanishing components of the Ricci and

Einstein tensors of the metric,

ds2 = ηxpdy2 − ηxpdx2 + xqdΩ2
d (E.1)

Indices i, j refer to the metric ĝij of the transverse sphere (or some other transverse

space), with R̂ij and R̂ the corresponding Ricci tensor and Ricci scalar.

Christoffel Symbols

Γx
xx = Γx

yy = Γy
yx =

p

2
x−1

Γx
ij = η

q

2
ĝijx

q−p−1

Γi
jx =

q

2
δi

jx
−1

Γi
jk = Γ̂i

jk . (E.2)
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Ricci Tensor

Rxx = 1
4(2p + 2qd + pqd− q2d)x−2

Ryy = 1
4p(qd− 2)x−2

Rij = R̂ij + 1
4ηq(qd− 2)ĝijx

q−p−2

= (d− 1)ĝij + 1
4ηq(qd− 2)ĝijx

q−p−2 (E.3)

Ricci Scalar

R = R̂x−q − 1
4η(4p + 4qd− d(d + 1)q2)x−(p+2)

= d(d− 1)x−q − 1
4η(4p + 4qd− d(d + 1)q2)x−(p+2) (E.4)

Einstein Tensor

Gx
x = −1

2R̂x−q − 1
8ηdq((d − 1)q + 2p)x−(p+2)

= −1
2d(d− 1)x−q − 1

8ηdq((d − 1)q + 2p)x−(p+2)

Gy
y = −1

2R̂x−q + 1
8ηdq(2p + 4− (d + 1)q)x−(p+2)

= −1
2d(d− 1)x−q + 1

8ηdq(2p + 4− (d + 1)q)x−(p+2)

Gi
j = Ĝi

jx
−q + 1

8η(4p − 4q + 4qd− d(d− 1)q2)δi
jx

−(p+2)

= −1
2(d− 1)(d − 2)δi

jx
−q + 1

8η(4p − 4q + 4qd− d(d− 1)q2)δi
jx

−(p+2) (E.5)

84



References

[1] J. Ehlers, W. Kundt, Exact Solutions of the Gravitational Field Equations, in Gravitation:

An Introduction to Current Research (ed. L. Witten), Wiley, New York (1962) 49-101.

[2] D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact solutions of Einstein’s field equa-

tions, Cambridge University Press, Cambridge (1980).

[3] J. Bicak, Selected solutions of Einstein’s field equations: their role in general relativity and

astrophysics, Lect. Notes Phys. 540 (2000) 1-126, gr-qc/0004016.

[4] D. Amati, C. Klimcik, Strings in a shock wave background and generation of curved geome-

try from flat space string theory, Phys. Lett. B210 (1988) 92; Nonperturbative computation

of the Weyl anomaly for a class of nontrivial backgrounds, Phys. Lett. B219 (1989) 443.

[5] G.T. Horowitz, A.R. Steif, Space-Time Singularities In String Theory, Phys. Rev. Lett. 64

(1990) 260; G.T. Horowitz, A.R. Steif, Strings In Strong Gravitational Fields, Phys. Rev.

D42 (1990) 1950-1959.

[6] A.A. Tseytlin, Exact solutions of closed string theory, Class. Quant. Grav. 12 (1995) 2365-

2410, hep-th/9505052.

[7] M. Blau, J. Figueroa-O’Farrill, C. Hull, G. Papadopoulos, A new maximally supersymmetric

background of IIB superstring theory, JHEP 0201 (2002) 047, hep-th/0110242.

[8] R.R.Metsaev, Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond back-

ground, Nucl. Phys. B625 (2002) 70-96, hep-th/0112044.

[9] R.R. Metsaev, A.A. Tseytlin, Exactly solvable model of superstring in Ramond-Ramond

plane wave background, Phys.Rev. D65 (2002) 126004, hep-th/0202109.

[10] M. Blau, J. Figueroa-O’Farrill, C. Hull, G. Papadopoulos, Penrose limits and maximal

supersymmetry, Class. Quant. Grav. 19 (2002) L87-L95, hep-th/0201081.

[11] D. Berenstein, J. Maldacena, H. Nastase, Strings in flat space and pp waves from N = 4

Super Yang Mills, JHEP 0204 (2002) 013, hep-th/0202021.

[12] R. Penrose, Any space-time has a plane wave as a limit, in Differential geometry and

relativity, Reidel, Dordrecht (1976) pp. 271–275.

[13] R. Gueven, Plane wave limits and T-duality, Phys. Lett. B482 (2000) 255–263,

hep-th/0005061.

[14] M. Blau, J. Figueroa-O’Farrill, G. Papadopoulos, Penrose limits, supergravity and brane

dynamics, Class. Quant. Grav. 19 (2002) 4753, hep-th/0202111.

[15] D. Sadri, M. Sheikh-Jabbari, The plane-wave / super Yang-Mills duality, hep-th/0310119.

[16] D. Marolf, S. Ross, Plane Waves: To infinity and beyond!, Class. Quant. Grav.19 (2002)

6289-6302, hep-th/0208197; A new recipe for causal completions, gr-qc/0303025; Plane

waves and spacelike infinity, hep-th/0303044.

[17] D. Brecher, J. P. Gregory, P. M. Saffin, String theory and the Classical Stability of Plane

Waves, hep-th/0210308.

85



[18] D. Marolf, L. Pando Zayas, On the Singularity Structure and Stability of Plane Waves,

hep-th/0210309.

[19] V. Hubeny, M. Rangamani, No horizons in pp-waves, JHEP 0211 (2002) 021,

hep-th/0210234; Causal structures of pp-waves, hep-th/0211195; Generating asymptoti-

cally plane wave spacetimes, hep-th/0211206; Horizons and Plane Waves: a Review, Mod.

Phys. Lett. A18 (2003) 2699, hep-th/0311053.

[20] J.T. Liu, L. Pando Zayas, D. Vaman, On Horizons and Plane Waves, hep-th/0301187.

[21] J. Senovilla, On the existence of horizons in space-times with vanishing curvature invari-

ants, JHEP 0311 (2003) 046, hep-th/0311172

[22] J. Beem, P. Ehrlich, K. Easley, Global Lorentzian Geometry (2nd edition), Monographs

and Textbooks in Pure and Applied Mathematics, 202 (Marcel Dekker, Inc., New York,

1996).

[23] H.-J. Schmidt, Why do all the curvature invariants of a gravitational wave vanish?,

G. Sardanashvily (Ed.) New frontiers in gravitation, Hadronic Press (1996) 337-344,

gr-qc/9404037; H.-J. Schmidt, Lectures on Mathematical Cosmology, gr-qc/0407095.

[24] C. Patricot, Kaigorodov spaces and their Penrose limits, Class. Quant. Grav. 20 (2003)

2087-2102, hep-th/0302073.

[25] M. Blau, M. Borunda, M. O’Loughlin, G. Papadopoulos, The universality of Penrose limits

near space-time singularities, JHEP 0407 (2004) 068, hep-th/0403252

[26] M. Blau, M. O’Loughlin, Homogeneous Plane Waves, Nucl. Phys. B654 (2003) 135-176,

hep-th/0212135.

[27] M. Blau, M. Borunda, M. O’Loughlin, G. Papadopoulos, Penrose Limits and Spacetime

Singularities, Class. Quant. Grav. 21 (2004) L43–L49, hep-th/0312029.

[28] F. Manasse, C. Misner, Fermi normal coordinates and some basic concepts in differential

geometry, J. Math. Phys. 4 (1963) 735–745.

[29] E. Poisson, A Relativist’s Toolkit, Cambridge University Press (2004); The Mo-

tion of Point Particles in Curved Spacetime, Living Rev. Relativity 7 (2004) 6,

http://www.livingreviews.org/lrr-2004-6.

[30] M. Cahen, N. Wallach, Lorentzian symmetric spaces, Bull. Am. Math. Soc. 76 (1970) 585–

591.

[31] J. Figueroa-O’Farrill, G. Papadopoulos, Homogeneous fluxes, branes and a maximally su-

persymmetric solution of M theory, JHEP 0108 (2001) 036, hep-th/0105308.

[32] G. Papadopoulos, J.G. Russo and A.A. Tseytlin, Solvable model of strings in a time-

dependent plane-wave background, Class. Quant. Grav. 20 (2003) 969, hep-th/0211289.

[33] A. Keane, B. Tupper, Conformal symmetry classes for pp-wave spacetimes, Class. Quant.

Grav. 21 (2004) 2037-2064.

[34] G. Gibbons, C. Patricot, Newton-Hooke space-times, Hpp-waves and the cosmological con-

stant, Class. Quant. Grav. 20 (2003) 5225, hep-th/0308200.

86



[35] I. Ozsvath, E. Schücking, An anti-Mach metric, in Recent Developments in General Rela-

tivity, Pergamon Press (1962), 339-350.

[36] M. Blau, M. O’Loughlin, G. Papadopoulos, A. Tseytlin, Solvable Models of Strings in

Homogeneous Plane Wave Backgrounds, Nucl. Phys. B673 (2003) 57-97, hep-th/0304198.

[37] R. Geroch, Limits of spacetimes, Commun. Math. Phys. 13 (1969) 180–193.

[38] S. Philip, Penrose limits of homogeneous spaces, math.DG/0405506.

[39] V. Hubeny, M. Rangamani, E. Verlinde, Penrose Limits and Non-local theories, JHEP 0210

(2002) 020, hep-th/0205258.

[40] S. Hawking, G. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press

(1973).

[41] G. Gibbons, Quantized Fields Propagating in Plane-Wave Spacetimes, Commun. Math.

Phys. 45 (1975) 191-202.

[42] R. Wald, General Relativity, University of Chicago Press, Chicago (1984).

[43] L. Cornalba, M. Costa, Time-dependent Orbifolds and String Cosmology, Fortsch.Phys. 52

(2004) 145-199, hep-th/0310099.

[44] H. Fuji, K. Ito, Y. Sekino, Penrose Limit and String Theories on Various Brane Back-

grounds, JHEP 0211 (2002) 005, hep-th/0209004

[45] K. Kunze, T-Duality and Penrose limits of spatially homogeneous and inhomogeneous cos-

mologies, Phys. Rev. D68 (2003) 063517, gr-qc/0303038.

[46] P. Szekeres, V. Iyer, Spherically Symmetric Singularities and Strong Cosmic Censorship,

Phys. Rev. D 47 (1993) 4362-4371.
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