

S. Bolognesi

University of Pisa

"eNlarge horizons" Madrid 3/6/15

Plan of the talk (part 1)

• Models of holographic baryons

Plan of the talk (part 1)

- Introduction to the models of holographic baryons
- Two main issues
 - 1) <u>Core properties</u>
 - 2) Large distance properties

based on work with **P. Sutcliffe** arXiv:1309.1396

Some geometry to begin with...

We consider the following 5D Lorentzian metric

$$ds^{2} = H(z) \, dx_{\mu} dx^{\mu} + \frac{1}{H(z)} dz^{2}$$

with
$$H=\left(1+rac{z^2}{L^2}
ight)^p$$
 $p\in (rac{1}{2},1]$ Conformal boundary

p=2/3 for the Sakai–Sugimoto model

$$S = -\frac{N_c \lambda}{216\pi^3} \int \sqrt{-g} \frac{1}{2} \operatorname{tr} \left(\mathcal{F}_{\Gamma \Delta} \mathcal{F}^{\Gamma \Delta} \right) d^4 x \, dz + \frac{N_c}{24\pi^2} \int (\omega_5(\mathcal{A}) \, d^4 x \, dz) \, dz$$
Yang-Mills
Chern-Simons

$$\mathcal{A}_{\Gamma} = A_{\Gamma} + \frac{1}{2}\widehat{A}_{\Gamma}$$

 $U(2) = SU(2) \times U(1)$

 $\mathcal{S} = -\frac{N_c}{216\pi^3} \int \sqrt{-g} \frac{1}{2} \operatorname{tr} \left(\mathcal{F}_{\Gamma\Delta} \mathcal{F}^{\Gamma\Delta} \right) \, d^4x \, dz + \underbrace{N_c}{24\pi^2} \int \omega_5(\mathcal{A}) \, d^4x \, dz$ Colors

 $\mathcal{S} = -\frac{N(\lambda)}{216\pi^3} \int \sqrt{-g} \frac{1}{2} \operatorname{tr} \left(\mathcal{F}_{\Gamma\Delta} \mathcal{F}^{\Gamma\Delta} \right) \, d^4x \, dz + \frac{N_c}{24\pi^2} \int \omega_5(\mathcal{A}) \, d^4x \, dz$ 't Hooft coupling

$$\mathcal{S} = -\frac{N_c \lambda}{216\pi^3} \int \sqrt{-g} \, \frac{1}{2} \mathrm{tr} \left(\mathcal{F}_{\Gamma \Delta} \mathcal{F}^{\Gamma \Delta} \right) \, d^4 x \, dz + \frac{N_c}{24\pi^2} \int \, \omega_5(\mathcal{A}) \, d^4 x \, dz$$

Static configuration

$$A_0 = 0, \qquad A_I = A_I(x_J), \qquad \widehat{A}_0 = \widehat{A}_0(x_J), \qquad \widehat{A}_I = 0$$

$$S = -\frac{N_c \lambda}{216\pi^3} \int \sqrt{-g} \frac{1}{2} \operatorname{tr} \left(\mathcal{F}_{\Gamma \Delta} \mathcal{F}^{\Gamma \Delta} \right) d^4 x \, dz + \frac{N_c}{24\pi^2} \int \omega_5(\mathcal{A}) \, d^4 x \, dz$$

Static configuration
$$A_0 = 0, \qquad A_I = A_I(x_J), \qquad \widehat{A}_0 = \widehat{A}_0(x_J), \qquad \widehat{A}_I = 0$$
$$\int \widehat{A}_0 \operatorname{tr} \left(F_{IJ} F_{KL} \right) \varepsilon_{IJKL} \, d^4 x \, dz$$

Instanton charge is an electric field source

Global symmetries

Chiral symmetry breaking

Instantons are holographic baryons

What stabilizes the instanton

Electric field

What stabilizes the instanton

GRAVITY

What stabilizes the instanton

Squashed

Self-Dual Approximation

Flow to the BPS solution

1311.2685 with P.Sutcliffe and 1407.3140 with W.Zakrzewski

1311.2685 with P.Sutcliffe and 1407.3140 with W.Zakrzewski

Flow to the BPS solution

Curvature and Chern-Simons

1311.2685 with P.Sutcliffe and 1407.3140 with W.Zakrzewski

Full numerical result

Full numerical result

Full non-línear problem

Medium distance

Línear and flat space-tíme

Large distance

Curvature effects MUST be considered

Form factors puzzle

Form factors puzzle

- [6] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, "Baryons from instantons in holographic QCD," Prog. Theor. Phys. 117 (2007) 1157 [hep-th/0701280 [HEP-TH]].
- [7] K. Hashimoto, T. Sakai and S. Sugimoto, "Holographic Baryons: Static Properties and Form Factors from Gauge/String Duality," Prog. Theor. Phys. 120 (2008) 1093 [arXiv:0806.3122 [hep-th]].
- [8] D. K. Hong, M. Rho, H. -U. Yee and P. Yi, "Nucleon form-factors and hidden symmetry in holographic QCD," Phys. Rev. D 77 (2008) 014030 [arXiv:0710.4615 [hep-ph]].
- [9] K. -Y. Kim and I. Zahed, JHEP **0809** (2008) 007 [arXiv:0807.0033 [hep-th]].
- [10] A. Pomarol and A. Wulzer, "Baryon Physics in Holographic QCD," Nucl. Phys. B 809 (2009) 347 [arXiv:0807.0316 [hep-ph]].
- [11] G. Panico and A. Wulzer, "Nucleon Form Factors from 5D Skyrmions," Nucl. Phys. A 825 (2009) 91 [arXiv:0811.2211 [hep-ph]].
- [12] A. Cherman, T. D. Cohen and M. Nielsen, "Model Independent Tests of Skyrmions and Their Holographic Cousins," Phys. Rev. Lett. 103 (2009) 022001 [arXiv:0903.2662 [hep-ph]].
- [13] A. Cherman and T. Ishii, "Long-distance properties of baryons in the Sakai-Sugimoto model," Phys. Rev. D 86 (2012) 045011 [arXiv:1109.4665 [hep-th]].
- [14] P. Colangelo, J. J. Sanz-Cillero and F. Zuo, "Large-distance properties of holographic baryons," arXiv:1306.6460 [hep-ph].

How to compute a soliton tail

BPST instanton in 't Hooft gauge

$$A_I = \frac{1}{2} \sigma_{IJ} \partial_J \log\left(1 + \frac{\mu^2}{\rho^2}\right)$$

How to compute a soliton tail

BPST instanton in 't Hooft gauge

$$A_I = \frac{1}{2} \sigma_{IJ} \partial_J \log \left(1 + \frac{\mu^2}{\rho^2} \right)$$

At large distance form the core fields are small and equations "linearize"

$$A_{I}^{(1)} = -\sigma_{IJ} \frac{x_{J} \,\mu^{2}}{\rho^{4}} = \frac{\mu^{2}}{2} \sigma_{IJ} \partial_{J} \frac{1}{\rho^{2}}$$

Separation of variables

Separation of variables

Laplace-Fourier expansion

Eigenmodes in curved space

Eigenmodes expansion in curved space

The effect of a conformal boundary

The conformal boundary, and the boundary condition, cause the discretization of the spectrum

Goldstone boson

The massless mode

The "remnants" at large distance (at linear level)

$$A_{z}^{(1)} \propto \frac{1}{\lambda} \frac{\sigma_{i} \hat{x}_{i}}{r^{2}} \psi_{0}'(z) + \mathcal{O}\left(\frac{e^{-k_{2}r}}{r}\right)$$
$$A_{i}^{(1)} = \mathcal{O}\left(\frac{e^{-k_{1}r}}{r}\right)$$
$$\hat{A}_{0}^{(1)} = \mathcal{O}\left(\frac{e^{-k_{1}r}}{r}\right)$$

The "remnants" at large distance (at linear level)

Non-linear contamination

$$A_z^{(1)} \propto \frac{1}{\lambda} \frac{\sigma_i \hat{x}_i}{r^2} \psi_0'(z)$$

Pion tail

Non-linear contamination

Non-linear contamination

The emergence of a new BIG scale

Noncommutativity of large 't Hooft coupling and large distance limits!

Noncommutativity of large 't Hooft coupling and large distance limits!

Numerical result for baryon charge

Numerical result for baryon charge

Conclusion (part 1)

- We provided analytical and numerical understanding for various approximations used in holographic QCD
- All of them are correct, but only is applied to their region of validity

Conclusion (part 1)

- We provided analytical and numerical understanding for various approximations used in holographic QCD
- All of them are correct, but only is applied to their region of validity
- Exponential vs. algebraic decay puzzle is solved by the existence of a <u>new large scale</u>. This explains <u>non-commutativity</u> of large 't Hooft and large radius limits.

Plan of the talk (part 2)

• Introduction to magnetic bags

• Instanton bags

• High density holographic QCD

based on arXiv:1406.0205

$$E = \int_{\mathcal{M}} d^3x \sqrt{g} \operatorname{tr} \left(\frac{1}{2} F_{ij} F^{ij} + D_i \Phi D^i \Phi \right)$$

$$E = \int_{\mathcal{M}} d^3x \sqrt{g} \operatorname{tr} \left(\frac{1}{2}F_{ij}F^{ij} + D_i \Phi D^i \Phi\right)$$

$$E = \int_{\mathcal{M}} d^3x \sqrt{g} \frac{1}{2} \operatorname{tr} (F_{ij} - \sqrt{g} \epsilon_{ijk} D^k \Phi)^2 + \int_{\partial \mathcal{M}} \operatorname{tr} (F_{ij} \Phi)$$

=0
Bogomolny Equation
Boundary term

Boundary conditions:

Scalar field
$$|\Phi| = \sqrt{2} \operatorname{tr} \Phi^2 = v$$
 on $\partial \mathcal{M}$
Gauge field $n = \frac{1}{4\pi v} \int_{\partial \mathcal{M}} \operatorname{tr}(F_{ij}\Phi)$ $n \in \mathbb{Z}$

Boundary conditions:

Scalar field $|\Phi| = \sqrt{2 \operatorname{tr} \Phi^2} = v$ on $\partial \mathcal{M}$

Gauge field

$$\underbrace{n}_{\bigwedge} = \frac{1}{4\pi v} \int_{\partial \mathcal{M}} \operatorname{tr}(F_{ij}\Phi) \qquad n \in \mathbb{Z}$$

Higgs vev

Magnetic charge

$\Sigma = \partial \mathcal{D} \qquad \qquad \mathcal{M} = \mathcal{D} \cup \bar{\mathcal{D}}$

 $E = \int_{\bar{\mathcal{D}}} d^3x \sqrt{g} \left(\frac{1}{4} f_{ij} f^{ij} + \frac{1}{2} \partial_i \phi \partial^i \phi \right)$

 \mathcal{D}

 $E = \int_{\bar{\mathcal{D}}} d^3x \sqrt{g} \left(\frac{1}{4} f_{ij} f^{ij} + \frac{1}{2} \partial_i \phi \partial^i \phi \right)$

 $\phi \simeq |\Phi|$ and $f_{ij} \simeq \frac{\operatorname{tr}(F_{ij}\Phi)}{2|\Phi|}$

Boundary conditions:

$$\phi|_{\Sigma} = 0$$
 $\phi|_{\partial\mathcal{M}} = v$
 $\frac{1}{2\pi} \int_{\partial\Sigma} f_{ij} = n$

Boundary conditions:

$$\phi|_{\Sigma} = 0 \qquad \phi|_{\partial\mathcal{M}} = v$$

 $\frac{1}{2\pi} \int_{\partial\Sigma} f_{ij} = n$

$$E = \int_{\mathcal{M}} d^3x \sqrt{g} \, \frac{1}{4} \big(f_{ij} \mp \sqrt{g} \epsilon_{ijk} \partial^k \phi \big)^2 \pm \int_{\partial \mathcal{M}} f_{ij} \phi$$

For any shape, the size of the bag is fixed

The magnetic bag limit

For any magnetic bag, there are multi monopole

solutions which converge to it in the limit

$$n, v \to \infty$$
 keeping $\frac{n}{v} = const$

↑ Monopole radius ~1/v

Higgs field zero

Radius bag ~n/v
Heuristic explanation

Radius bag ~n/v

Nahm Equation for monopoles

$$\frac{dT^i}{d\sigma} = -\frac{i}{2}\varepsilon_{ijk}[T^j, T^k]$$

Triplet of n x n matrices on a line

One-to-one correspondence with n monopole solution of Bogomoln'y equation

u(∞)-Nahm and magnetic bags

Nahm equations are "fuzzy sphere" versions of the following commutative limit:

Monopole Wall

R. Ward

Lattice of monopoles periodic in two direction

Monopole Wall

R. Ward

Lattice of monopoles periodic in two direction

From instantons to monopoles

$$S_{YM5} = -\int dt d^4x \frac{1}{4g^2} F^a_{\mu\nu} F^{\mu\nu a}$$

Kaluza-Klein compactification
$$R_3 \text{ radius}$$
$$S_{YMH4} = -\int dt dx_1 dx_2 dx_4 \frac{\pi R_3}{2g^2} \left(F^a_{\mu\nu} F^{\mu\nu a} + D\phi^a D\phi^a\right)$$

"Large" gauge transformation

$$e^{-ix_3 t_{\rm su}(2)/R_3}$$
 $x_3 \simeq x_3 + 2\pi R_3$

"Large" gauge transformation

$$e^{-ix_3 t_{\rm su(2)}/R_3}$$
 $x_3 \simeq x_3 + 2\pi R_3$

$$A_3 \longrightarrow A_3 - \frac{t_{\mathrm{su}(2)}}{R_3}$$

 A_3 lives in the T-dual circle

"Large" gauge transformation

$$e^{-ix_3 t_{\rm su(2)}/R_3}$$
 $x_3 \simeq x_3 + 2\pi R_3$

$$A_3 \longrightarrow A_3 - \frac{t_{\mathrm{su}(2)}}{R_3}$$

 A_3 lives in the T-dual circle

Monopole and KK monopole

Large gauge transformation

Global transformation

 $(1/2, 1/2) \longrightarrow (-1/2, -1/2) \longrightarrow (-1/2, 1/2)$

Monopole

KK monopole

(Inst. Charge, Mag. Charge)

Instanton constituents

Lifting the Monopole Wall to 4+1

Lifting the monopole wall is easy, we just keep everything constant in the extra direction

KK monopole wall

A KK monopole wall can be constructed starting from the monopole wall with two transformations

Monopole wall and KK monopole wall

Joining them together we obtain an instanton capacitor, or instanton bag

String webs

After a series of T and S dualities...

What we know so far...

- We were able to solve numerically the 4D problem only for one instanton
- When solitons start to populate the holographic direction they are no longer diluted!!!
- Instanton bag is good for these situations

Instanton Bag embedded in SS

d is determined by energy minimization

String Embedding

Results from moduli stabilization

Chiral Symmetry Restoration

Effective separation between the two sides due to a magnetic trapping effect

Conclusion (part 2)

• First prototype of instanton bag constructed;

 This provides candidate for the state of HQCD at high density and explains chiral symmetry restoration.

Hyperbolic monopoles

Bogomolny equation

 $D\Phi = *F$

Hyperbolic space

$$ds^{2}(\mathbb{H}^{3}) = \frac{4(dX_{1}^{2} + dX_{2}^{2} + dX_{3}^{2})}{(1 - R^{2})^{2}}$$

Plan of the talk (part III)

- Relation between instantons and Hyperbolic monopoles (Atiyah)
- Magnetic bags in hyperbolic space and Nahm equation from ADHM
- Examples of multi-monopole solutions from JNR

Based on arXiv:1404.1846 with A. Cockburn and P. Sutcliffe on arXiv:1504.01477 with D. Harland and P. S.

Conformalities and invariant instantons

Ball and Poincare

From ADHM to u(∞)-Nahm

Hyperbolic monopoles \longleftrightarrow Braam-Austin equation \downarrow \downarrow \downarrow Magnetic bags in $\mathbb{H}^3 \iff u(\infty)$ -Nahm in \mathbb{H}^3

JNR ansatz provides a large class of accessible solutions

Hyperbolic monopoles from JNR instantons

Explicit solution

Higgs field

$$|\Phi|^{2} = \frac{r^{2}}{4\psi^{2}} \left(\left(\frac{\partial\psi}{\partial x_{1}} \right)^{2} + \left(\frac{\partial\psi}{\partial x_{2}} \right)^{2} + \left(\frac{\psi}{r} + \frac{\partial\psi}{\partial r} \right)^{2} \right)$$

Energy density

$$\mathcal{E} = \frac{1}{\sqrt{g}} \partial_i \left(\sqrt{g} g^{ij} \partial_j |\Phi|^2 \right)$$

Two limitations

1) The Higgs vev is fixed by $v\,=\,1/2\,$, and so $\,I\,=\,N\,$

2) We can access only a subset of the full moduli

 $\dim(\mathbb{M}_N^{\text{JNR}}) = 3N + 2 < 4N - 1 = \dim(\mathbb{M}_N)$

D2 three monopole

D4 five-monopole family

Tetrahedral seven monopole

Large N axial symmetric monopole

Large N spherical JNR-type monopole

Conclusion

- We considered solitons in holographic dual of large N theory
- Another large N (with N magnetic flux now) is useful for some physically interesting situations (e.g. finite density of QCD)
- Large N limit of monopoles still to be completely understood; large N limit of instanton just at the beginning...