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PREFACE 

These are the terse notes for a graduate seminar 

which I conducted at Harvard during the Fall of 1963. 

By and large rny audience was acquainted with the 

standard Dlaterial in bundJ.e the01"Y and algebraic tapology 

and I therefore set out directly to develop the theory of 

characteristic classes in both the standard cohomology 

theory and K-thcory. 

Since 1963 great strides have been nl_ade in the study 

of K(X), notably by Adan"1s in aseries of papers in Topology. 

Several niore rllodern accounts of the subject are available. 

In particular the notes of Atiyah, IINotes on K-theoryl! not 

on1y start rr::ore elementarily, but also carry the reader 

further in rnany l-espects. On the other hand, those nates 

deal only with K-theary and not Virith the characteristic 

Vl1 
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classes in the standard cohomology. 

The main novelty of these lectures is really the 

systematic use of induced representation theory and the 

resulting formulae for the KO-theory of sphere bundles. 

Also my point of view toward the J -invariant, e(E) is 

slightly different from that of Adams. I frankly like my 

Hl(Z+; KO(X)) and there is some indication that groups 

the recent work of 5.uJ.livan will bring them into their own. 

Reprints of several papers have been appended to 

the notes. The first of these is a proof of the periodicity 

for KU, due to Atiyah and mys elf, which is, in some ways, 

more elernentary than our final version of this work in 

lJOn the periodicity theorem for complex vector bundles lt 

(1964). Acta Mathematica, vol. 112, pp. 229-247. 

The second paper, on Clifford niodules, deals with 

the Spinor groups fronl scratch and relates them to K-theory. 

Finally, we have appended my original proof of the 

periodicity theorem based on Morse theory. 

The research of this work was supported by 

National Science Foundation Grants GP-lZl? and 6585. 
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LECTURE5 ON K(X) 

§l. Introduction. Two vector bundles E and F 

over a finite CW -complex X are called J -equivalent if 

their sphere bundles 5(E) and 5(F) are of the same fiber-

homotopy type. lf they become J -equivalent after a suitable 

nurnber of tTivial bundles is added to both of them, they are 

called stably J -invariant, and the stable J -equivalence 

classes of bundles Qver X 1S denoted by J(X) . 

The primary aim of these Dates is to discuss a. 

J -invariant of vector bundles 9(E), which is computable 

onee the group of stable bundles over X, - that is - K(X) 

is known. The invariant 6(E) is clearly suggested by the 

reeent work of Atiyah-Hirzebrueh [4], [5] and espeeially 

F. Adams [1]. In fact 8(E) bears the same relation to the 

Adams operations as the Whitney class, a known J -invariant 
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bears to the Steenrod operation. Further Adams! beautiful 

solutions of the vector-field problem may be interpreted as 

the explicit cornputation of the order of 8(E) where E 1S 

the line-bundle Over real projective space_ 

The guiding principle of these Dates 1S then to 

construct the analogue of the theory of characteristic classes 

in the K-theory and as this analogue is much simpler in the 

KU-theory, (cornp-lex stable bundles) this case is taken up 

first, in SeebaDs 1 to 8. For the KO-theory I had to be 

considerably less elernentary, in the sense that I used 

some explicit results from representation-theory" especially 

of the Spinor groups 6 

The contents of the notes may be summarized as 

follows: Seetions 2 to 4 are devoted to the standard material 

on ehern classes etc. ofcomp1ex vector-bundles. I have 

here essentially specialized Grothendieck!s account in the 

Seminar Bourbaki, to the topological case. 

In Section 5, K(X) is defined and Üs first properties 

are derived, again following Grothendieck! s point of view , 

especially in the definition of the exterior powers. These, 

in turn lead to an easy definition of the Adams operations. 

I also very briefly recount the cohomological preperties of 

K(X) in this section. Here as weil as in Seetion 6 the 

Lectures on K(X) 3 

appropriate reference is Atiyah-Hirzebruch [5] .. 

Secban 6 introduces the periodicity theorem for the 

KU-theory and deduces the first consequences from. iL In 

Sechon 7 the KU -ana1ogue of the Thom isomorphism between 

the cohomo1ogy of the base-space and the compact reduced 

cohomo1ogy of the tota1-space of a vector-bundle is defined. 

Sechon 8 then employs this Thom isomorphism to construct 

and in SOme sense compute the obstruction, e(E), to a fiber 

homotopy trivialization of a sphere-bund1e derived from a 

comp1ex vector-bundle E. In Sechon 8, this e is used 

to obtain the results of Kervaire-Milnor on the c1assical 

J -homomorphism. 

Section 9 discusses the complex representative ring 

of a Lie group, RU(G) and re1ates it to the representative 

ring of one of its maximal tori. I here state some of the 

classica1 results of representation theory, a;';'Ci go into 

considerable detail for the groups U(n), SU(n), SO(n) and 

Spin(n). In Seetion 10 the real representative ring is 

compared to the complex one, especially for the Spinor

groups. Seetion II gives some basic isomorphism in the 

theory of fiber-bund1es, and induced representations which 

lead to a different interpretation of SOme of the results on 

the KU -theory. In Sectien 12 the periodicity for KO is 
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stated and used to identify the generators of KO(S ) 
Sn 

bundles induced by certain Spin-representations. 

Section 13 finally brings the KO analogue of the 

invariant e 

as 

and derives 50me of its properties" Secben 14 

reinterprets the results of 13 in terms of the Th . 
Offi-lSQ-

morphism in the KO-theory, while Section 5 
1 goes on to give 

the Gysin-sequence for the KO-theory. 

When KO\X) has no torsion, the invariant e(E) is 

equivalent to a J -invariant Q(E) E KO(X) 00l/KO(X). The 

definition cf G and the proof cf th· . I 
15 equlva enee is carried 

Out in Seetion 16, while in Section 17 we show that the 

character of Q(E) is essentially the !U genus of E as 

defined by Hirzebruch" 

Section 18 deals 'th h 
Wl t e projective space bundle 

associated to a vector bundle. I S 
n eeben 19 we sketch two 

methods for computing KO(P ) where P 
n TI is the real 

projective space, and then compute J(P) W 1 
n e a So sketch 

the way in which the isomorphism KO(P ) _ J(p ). . 
n - n nnphes 

the solution of the vector-field problem 
on spheres. Section 

20 . . 
15 a technlcal appendix on the difference element. 

5 Lectures on K(X) 

§2. Notation and SOIne preliminaries. We write 

m for thc category of finite CW -complexes and ~ for the 

category of finite C-VV -complexes with base points, and will 

in general follow the notation of [5]. If E is a vector 

bundle aver X E m (the dimension cf the fibers may vary, 

on the components of X) we write IC(E) for the unit disc 

bundle of E (relative to sorne Riemann structure) and 

denote its boundary by lO(E). The pair (lD(E), lO(E)) as 

well as the quotient space lD(E)/13(E) will be denoted by 

XE. In the latter interpretation, XE will be thought cf 

as an eiern.ent of ill, E(E) playing the role of the bas e point. 

When dirn E :::: 0, it is convenient to set XE = X U P where 

P is a disjoint point playing the role cf base point. "Ve 

also have occasion to use the object 1P(E) whose points 

are the I-dimensional subs:paces of the übers E , x E X 
x 

Thus lP(E) ~ X is a fibering over each cornponent of 

x , the fibers being (n - 1) dirn projective spaces .. 

n ;;: dirn Ex 

The constructions We have just described rnake 

sense both, for real and for comp1ex vector bunclles ancl 

have certain pretty clear functoria1 properties, e. g., if 

f: Y -> X is a map one has induced maps of lP(f-
1
E) into 

JP(E). In addition the following i\tautologous!\ bundles are 

canonically defined over lP(E): 
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SE - the sub line-bundle, whose fiber over 

consists cf the points cf the line f. c E 
x x 

P. E lP(E) 
x 

QE -the quotient bundle, whose fiber over P.x E lP(E) 

consists cf the vector space E /2. . x x 

If 1T: lP(E) ~ X denotes the projection, then we 

clearly have the exact sequence: 

(2. 1) 
-1 

0---> SE ---> 1T E ---> QE ---> 0 . 

E 
It is for many purposes useful to study the space X as a 

quotient cf JP(E + 1). (1 denotes the trivial bundle relative 

to the field oveT which 1P(E) is constructed, endowed with 

the canonical sectien x -> (x, 1).) This identification proceeds 

via the following map 

11 lD(E) ---> lP(E + 1) 

defined by: 11(e ) = line generated by {e - {l - [e [2} 1 } x x x x 

in (E + l)x . (Here [ex [ denotes the Riemann length cf e 
x 

and 1 is the value cf the canonical section cf 1 at x.) 
x 

Clearly 11 is a homeomorphism of lD(E) - S(E) onto 

lP(E + 1) - lP(E) and maps S(E) onto lP(E) by the Hopf 

fibering. Thus lP(E + l)/lP(E) = XE under 11 . 

Note also that for e E lD(E) - S(E), the projection 
x 

7 Lectures on K(X) 

E -:> (E + 1) /11(e ) x x x 

is an isornorphism, and furtheT that under this projection 

e maps into a positive multiple of the coset cf 1 
x x 

The first observation implies that the map TI induces 

an isomorphism: 

(2. 2) over lD(E) - S(E) 

where TI'1 denotes the projection ID(E)--+X. Now the injection 

lD(E) ~ E may be interpreted as a section of 
-1 

""1 E which 

is non-vanishing on lD(E) - X. We call this the tauto1ogous 

-1 
section of TI'1 E. On the other hand the section HIli of 

TI'" -1(E + 1) projects onto ~/ section of O~--; the second remark 

may now be interpreted as asserting that the isomorphism 

(2.2) takes this section into a positive multiple of the tau

tologous section in ..,.;l(E) . 

§3. The ehern c1asses and allied functions on 

bundles. Throughout this section we will only consider 

complex vector bundles. We recall that the complex line 

bundles over X E ~ are classified by their first obstruct-

ions which are contained in 
2 

H (X;Z). If L is a line-

bundle, this obstruction for L is denoted by cl (L). One 



Raoul Bott 8 

the dual operation.) Recall also that if E is a vector 

bundle Over a point (i. e., a complex vector space) then 

x 0 cl(S~) generates H
2
(lP(E)), and hence the powers 

n-l . 
1, x, .. " x ,TI:::; dIrn E, give a free additive basis for 

Finally x U = 0 . More gene rally the fOllowing 

holds: 

PROPOSITION 3.1. 
Let E ...... X, be a vector bundle. 

Then as an H':'(X;Z)-module, H"{lP(E)} is freely- generated 

n-l. 2. 
by 1, xE' " " xE ' n 0 d,m E , where xE E H (lP(E)) ~ 
equal to cl(S~) . 

Proof: As the restrietions of x~, i = 0, . " , (n _ 1) 

to a given fiber lP (E) of lP(E) over X form a base for x 

H"(lP E), the fiber is totally non-homologous to Zero and x 

the proposition is a standard consequence cf the Leray 

Spectral sequence. Q.E.D. 

COROLLARY 1. There exist unique classes 
2i 

Ci(E) E H (X; Z), i 0 0, "', dim E 0 n, cO(E) 0 1, 

that the equation 

( 3. 1) 

such 

9 Lecture s on K(X) 

, ) We call th,' s relation the defining holds in H"'(lP(E) . 

equation of lP(E). 

This is clear. The c.(E) are called the Chern 
I 

classes of E, and One defines c(E) by: 

c(E) o L c.(E) 
1 

Thus c(E) is an element of 

group of elements in H':'(X) 

1 + H(X) the multiplicative 

o 
which start with 1 E H (X) . 

The functorial properties of E ~ lP(E) now easily 

yield the following: 

\... If Y --L X is a map, then COROLLARY ~. 

over X. 

PROPOSITION 3.2. If E is the direct sum of line 

b dl . E 0 L + ... + L . Then c(E) 0 n c(L
i
) . UD es. 1. TI Thus, 

the defining equation of lP(E) is given by 

:::; O. 

Proof: -1 Q ~ 0 Consider 0 -I SE -+ 1T E -> E Tensor-

ing by S~ we obtain 0 ~ 1 ~ (,,-lE) <8>S~ ~ QE <8>S~ ~ ° . 
( -1 ) '" S':, = :rn L <8> S" has a nonvanishing sechon Thus 1T E "" E 1 i E 

Let s. be the projection cf s on Li ® S~, and let s . 1 

X b e the closed set on which Si = 0 . u. C 
1 

Then 
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n 

nlt 
1 

= 
1 

as s is nonvanishing. Now't f 11 f 1 0 ows rom obstruction 

theory that cl(L. 0 S") can b 11 d b ' 2 1 E e pu e ack to H (X; X - lt.). 
I 

Hence 

n p cl(Li 0 S~;l 

can be pulled ba~~ to H
2n

(X, U{X - lt.}) 
1 

group is 0, as U{X - \.L.} = X 
1 

n n 

Now 

However this 

rr c(L. 0 S':') = rr 
I 1 E I 

{c(L.) + x } 
1 E 

Henee the defining equation of lP(E) i5 as given in the 

proposition. But this equation def1·nes ( e E) uniquely and 

so implies the special Whitney formula 

n 
rr e(L.) 
I 1 

c(E) . 

The splitting principle: We have already seen that 

when lifted to !P(E) the bundle E splits off a Ene bundle 

SE' Further H"(X) is imbedded by rr" into H"{lP(E)}. 

Set EI = OE over lP(E) and eonsider lP(E) lover lP(E) 

When E is lifted to lP(E
I
) it spEts off 2 line bundles and 

it is still true that H"(X) . . b d . 1S 1m e ded m H'''{E
I
)) by the 

11 Leetures on K(X) 

projection. If we continue this process: Set E n +1 ;:: QEn ' 

over lP(E ) , n = I, .. " dirn E = m , we finally obtain a 
n 

spaee lP(E ) over X, with the property that when lifted 
m 

to lP(E ), E splits into a direet surrr of line bundles, and 
m 

H*(X) is irrrbedded in H':'{lP(E )} by the projection. We 
rrr 

denote lP(E ) by lF(E). Ey the naturality of the ehern 
rrr 

class, and Proposition 3.2, e(E) will therefore split into 

linear factors: 

e(E) = rr e(L.) m d:'{lF(E)} 
1 

An easy consequence cf this fact and (3.2) is ncW the 

general Whitney fO'F-lTIula 

e(E + F) = e(E)· c(F) . 
/ 

More gene rally, let F(x) be a formal power series in x 

with coefficient5. in A. Then F can be extended to an 

additive funetion frorrr bundles on X to H"(X; N by 

setting: 

1. F(L) = F{cl(L)} L a line bundle. 

2. F(E) = L Fh(L;l}' where L. are the 
1 

c omponents of E 

lifted to lF(E) 

(Note, the F(E) ean be expressed in terrrrs of the e.(E), 1 
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by expressing F(xl ) + . " + F(x
m

), m ~ dirn E in terms of 

the elementary symmetrie funetions in the x. , and then 

replaeing these by the e.(E).) 
1 

1 

The Whitney formula now shows that F(E + E') 

~ F(E) + F(E'), i. e., that F is additive. Similarly we 

may extend F to a multiplicative function from bundles to 

H"(X; N . 

One defines: 

where E ~ '" L lF(E) ... on 
1 

Examples of this construction are: 

1. 

2. 

3. 

If F(x) ~ I + x 

If 

If 

x F(x) ~ 
1- e x 

F(x) 
x 

~ e 

then the multiplicative 
extension of F is e(E) 

then the multiplieative 
extension of F is called the 
IITedd class of Eil, and is 
denoted by T(E) 

then the additive extension 
of F is ealled the eharacter 
of E, and is denoted by eh(E). 

In these examples A::;: 2: in the first case, and A::;: m in 

the ether two . 

PROPOSITION: If E and E' are bundles over X, 

then 

eh(E®E') ~ eh(E) . eh(E') . 

13 Leetures on K(X) 

Proof: By the splitting prine.iple we may assume 

that E ~ L L E' ~ L L~ whenee E ® E' ~ L L. ® L .. 
i' 1 1 J 

Therefore 

eh(E®E') 

~ eh(E)· eh(E') Q.E.D. 

§4. The Thom isomorphism in H':'(X; ZZ) . Consider 

the sequenee lP(E) ~ lP(E + I) -L XE where ß is 

indueed by the identifieation 11: XE - lP(E + 1)/lP(E) of 
~.-

Seetion 2. We assume X ,conneeted in the following, 

however the exte:rision to the general case is obvious. 

PROPOSITION 4.1. In eohomology with integer 

eoefficients weO have the exact sequence 

Further im ß':' ~ ideal generated by U in H'''(lP(E + I)) 

where 
n 

U ~ ') 
k~l 

n::;: dirn E , 

and x(E+l) • U ~ o . 
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Proof: Hence by Propo-

sition 3.1 oi:' is ento. This proves the exactness of the 

n ( sequence in question. Now let g = 1:
0 

a
i 
x(E+l) be an 

element of the kerne1 of (i:' Then in H"{lP(E)} We have 

1:~ a i x~ = O. But the defining equation of lP(E) is 

Thus we have 0 = a. - a c .(E), i = 
1 n U-l 0, .. " n -1, and so 

n 

g = L an cn_i(E) X(E+l) = a 
n ·U 

Thus the kernel cf o/~ is a free module of rank OUe Over 

H'\X) with generator U. Thus U gene rates the image 

of ß':' Over H"(X). It remains to show that x(E+l) U = 0 

The defining equation for lP(E + 1) is 

But by "Whitney" ck(E + 1) = ck(E) whence Cn+l(E + 1) = O. 

Therefore the defining equation of lP(E + 1) is precisely 

X(E+l) . U = 0 . Q.E.D. 

We now deHne the Thom isomor his 

15 Lectures on K(X) 

by the formula ß':' 0 i" a = a' U, in H"{lP(E)}. By 

Proposition (4. 1) l;:~ is a bijection. 

§5. The functor K(X). We consider the additive 

functions from bun les over d X into abelian groups, i. e., 

functions E ~ F(E) with values in g, so that F(E + E') 

= F(E) + F(E'). There is then a minimal universal object 

K(X) - which solves the universal problem posed here, i. e., 

K(X) is an abella-n group with a natural additive function, 

y, from bundles to K(X) such that if F is any additive 

funebon as abov!~, then F induces a unique homomorphism 

with the property: F(E) = F,:,{y(E)} . 

Indeed one may take for K(X) the free group 

generated by the bundles oveT X modulo the subgroup 

generated by the following relations; whenever 0 ....... E ....... EI 

-+ EIl ..... 0 is an exact sequence of bundles over X > and [E], 

[EI], (Eil] are respective generators in the free group, then 

[E'] - ([E] + [E"]) 
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precisely Y(E). We will, for the most part, omit the 

symbol y, and write E for both a bundle and its class 1n 

K(X) unless the confusion caused by this convention becomes 

unmanageable. The elements of K(X) are ~ometimes called 

virtual bundles. 

Elementary properties of K(X) 

5.1. K(X) is a contravariant functor from ~ to 

the catagorY_~Q~ Abelian groups. (lf f Y X . 
: - , 1S a map, 

and E a bundle Over X, then f-lE is a bundle over y 

As this operation is additive it induces a homomorphism 

K(Y) - K(X) which is denoted by t'.) 

5.2. There exists an (infinite) CW complex, ~ 

which represents the functor K, h 1. e., t ere is a natural 

isomorphism between K(X) and rr[X;~] denotes homotopy 

classes of maps of X into K. Further ~ may be 

endowed with an H- structure which induces the additive 

structure On K(X). (This proposition follows readily from 

the following facts: 

a. The functor ~n X --> n plane bundles over X 

is representable. 

b. ~ (X) '" E (X) -n =n+l for n» dim X . 

c. 
If E is a bundle Over X, then there exists a 
bundle E.L over X so that E E.L 
t t · + is isomorphie o a Tl vial bundle. ) 

17 Lectures on K(X) 

5.3. Let X E ~, with base point PX' One defines 

R(X) as the kernel of the natural projection: Z, '" K(PX) 

<- K(X) , which we denote by dim. Thus R(X) corresponds 

to the virtual bundles of dim O. K(X) is thus an ideal in 

K(X). It is also a direct summand as the homomorphism 

induced by projection X --> Px splits the exact sequenee: 

o <- K(pX) <- K(X) <- K(X) <=--- 0 . 

The trivial zero-dimensional bundle corresponds to 

a point in a suitable component of ~. If we consider this 

point the base point of K , then for objects in m, K(X) is 

represented by~'rr[X, K] where now ,,[X, K] denotes 

homotopy classE;!s of basepoint preserving maps. 

In a sense R.: m ~> g , is the mOre basic functor. 

lndeed, if A ~ X is a pair in 1.\ (or m) one defines 

the relative groups 

K(X, A) ~ K(X, A) as K(X/ A) 

where X/A is considered as an element of m with base-

point A. If A is vacuous X/A is defined as the space 

x+ :::: X union a disjoint point PX which plays the role of 

basepoint. Thus 
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and K on m is seen to be the composition of the functor 

X'- x+ and R. 

5.4. As K is representable oue now has an exact 

sequence: 

, , 
(5.4.1) R(A) <~ R(X) J:.- R(x, A) for (X, A) a pair in ~ 

and more generally if we deHne 

i< 0 

i 
(1; denotes the i-sphere with basepoint) :if denotes the 

product in ill), then the Puppe exact sequence which extends 

(5.4.1) holds: 

We write K):~ for the graded functor -i K, i< 0 . This 

functor shares many properties with the functor H~~-

more or less by definition: they are exactness, and exeision. 

K~~ differs at this point from H':~ in that it is not defined 

for all integers, and that K':~ cf the O-sphere SO in [{ is 

not trivially computable. 

5.5. The graded ring structure on R"'(X). The 

functor K':~ has various elementary properties which are 

the consequence of the definition of K(X) as a solution of 

19 Lectures on K(X) 

a universal problem, rather than cf the representability. 

The first of these is the ring structure induced on K"'(X) 

by the tensor product of bundles. 

If E and EI are bundles over X and Y E %{ 

respectively then E ® EI is a bundle over X X Y. This 

operation is seen to deHne a natural transformation 

K(X) 0 K(Y) -> K(X X Y) 

which we still refer to as the (exterior) tensor product and 

denote by 0. 

When <l0 Y , the diagonal map 6: X ~ X X X, 

defines a ring structure on K(X) by: 

u· v 0 6*(u 0 v) u E K(X), v E K(X) . 

This is the interior tensor product and is usually written 

with a dot. Clearly this operation converts K(X) into a 

commutative ring. To extend this operation to K On ~, 

one needs the following fact: 

PROPOSITION 5.1. Let X, Y E m, and let X X Y 

be their Cartesian product, and consider the sequence: 

0-> X V Y 2....;,. X X y...l....,.x ~y -> 0 

where X V Y 0 PX X Y U X x PY' Then the seguence 
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is exact. 

Proof: Let 1T 1 : X x Y - X, 1T 2 : X x Y - Y and 

if : X X Y --+ Px X Py be the natural projections. We have 

and 

R(x V Y) "" R(X) ® R(Y) 

K(X V Y) "" R(X) ® R(Y) ® K(p x p ) 
X Y 

Now define a: K(X V Y) - K(X x Y) by: 

a(Oi + ß + y) 
, , , 

= 1TiO!+1fzß+1r"Y, 

, 

Oi E R(X), 

ß E R(Y), 

Y E K(PX x Py). 

It is then clear that i" . a = identity. Now the Puppe exact 

sequence yields the result. 

It is easy to see that if u E R(X) and v E R(Y) then 

b ~ u ® v E R(x x Y) is in the kernel of i~ . Beuce there 

is a unique element (again written) u ® v E R(x # Y) which 
, 

maps irrto b under J .. This is the extension cf the tensor 

product to K on ili 

We have Ri(X) ~ R(x # -E- i ), Rj(y) "" R(Y # -E- j ) 

Hence R'(X) ® Rj(X) is paired to R(x # -E- i # Y # -E- j ) by 
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the homotopy cornmutativity of the product in m. Beuce 

Dur product extends to a pairing, 

This is the extended (exterior) tensor product. By the 

diagonal construction oue now deduces a graded ring 

structure on K;~(X) and this product turns out to be 

commutative, i. e. : 

u • v = • u 

Rema,ks: 1). If XE 11, one defines K"(X) by 

R"(X+) and if (X, A) is a pair in 11 (or m) K''(X, A) is 

defined as R"(x/ A). 2) Observe that K':'(X, A) is a 

graded K':'(X) module, as the diagonal map X - XjA #X+ 

factors through X/A in the obvious manner. 3) The 

0' ° O-sphere S acts as a unH in m: X # s = X. Hence 

", ° R"(X) is in a natural way a graded R"'(s ) module. In 

fact K"(p) - as we may call R':'(sO) acts on all the functors 

K"'(X), R"(X), K"(X, A) etc. in a natural way and commutes 

with the natural transformations linking them. For a more 

detailed exposition of the material covered in this section 

consult [5] . 
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The operations "i on K(X). 

If V is amodule (over (C, or lR)andVn=v® ... ®V 

(n factors) then the permutation group <5 acts on V
U 

in 
n 

the obvious manner. 
n 

Let Q c V be the subspace generated 

by the elements a· w - (-lfw, w E V
n 

, a ElSn , (-lf= + 1, 

-1, according to the parity a. The quotient space V
U 
/0 

'h7. 
is denoted by " (V) and is called the C'oth exterior power of 

V. We set ,.a(V) = base Held. The A' are clearly co-

varient functors from the category of modules to the 

category cf modules. 

They further satisfy the identity: 

(5.4) I 
i+ j=n 

i We can now extend the A as operations on vector bundles 

in the obvious way. lf E is a bundle Dver X, AlE will 

be the bundle over X whose fiber at x E X is AlE 
x 

Further the identity (5.4) will still be valid in the broader 

context, and oue rnay use it to define natural transformations 

,,': K(X) ~ K(X) in the following manner. 

Consider K(X)([t]], the formal power series in t 

with coefficients in K(X), and let 1 + R(x)[[t]) be the 
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multiplicative group of elements in K(X)[[t]] which start 

with 1. If E is a bundle, deHne 

by 

"t(E) E 1 + R(x)[[t]] 

00 

"t(E) = I tiy("iE ) 

o 
Now (5.4) irnplies that 

Hence, E -> -\(E) 1S an additive function from bundles to 

1 + R(x)[[t]]. Hence by the universal property of K(X), 

there is a\'unique operation 

\ : K(X) ~ 1 + R(x)[[t]] 

which Ilagreesl1 with At as defined on bundles: 

The component of At(E) whose coefficient is t
i 

is now 

defined to be "i(E) 

Examples. \ (L) = 1 + tL if L is a !ine bundle. 

" (-L) ~ -t 
122 

-- = 1 + tL + t L + I-tL 

Note that in general "a(x), xE K(X), a E Li' , is not a well 
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defined element of 

is a polynomial in 

K(X). However if x ~ y(E) then >"JE) 

t, and A (x) is weil defined, by sub-
a 

stituting a for t In fact in that case a may be taken 

to be an element of K(X) and of course \[x+ y) ~ Aa(X)' AJy). 

x ~ 'Y(E), y ~ 'Y(E'), a E K(X) . 

The Adams Operations 

We have just seen that the Ai define operations in 
'~--'., 

K(X) subject to the relation 

x, y E K(X) • 

We now define operations >p. : K(X) ~ K(X) i ~ 1, '" in 
1 

terms of the Ai which will be additive: 

x E K(X) and 

define >Pt by the formula: 

(5.5) 

1 Because At(X) ~ 1 + tA (x) + ..• the R. H. S. is a weil 

defined element of K(X)[[t]] and so determines >Pt' 

Let us now compute >P _t(x + y). This equals: 
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-tA~(X + y)/At(X + y) ~ -t{A~(X)\(Y) + \(X)A~(Y)/\(x). Ab)} 

~ >p_t(x) + >p_t(y) . 

Thus the l/J. are additive as asserted, and these are the 
1 

operations Adams introduced recently. They are in many 

ways more tractable than the A. i , principally because they 

will be seen to be ring homomorphisms of K(X}. If one 

solves for the >p. in (5.5) explicitly one obtains the 
1 

following formulae, which may serve if one wishes as a 

definition of the >p. : 
1 

>P2 - >PI . 

>P3 - >PZ' 
1 

A + >PI 

>PI - A
l 

A
l + 2A 

2 

A2 _ 3A 3 

+ . .. + iA 1 

~ 0 

~ 0 

~ 0 

o 

Note: 1. The expression tA~/\ can be written td/dt log At' 

Nowas At behaves multiplicatively, log ~\ will behave 

additively and hence üs derivative also. This point of view 

makes the definition of IPt guite plausible. The operation 

Wt is to be preferred to just log At because the latter has 

meaning only over rationals, due to the rational numbers 

which oeeur in the expansion of log(l + x) . 
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2. The formulae are precisely the ones linking the 

elementary symmetrie functions with the power sums, 

(Newton! 5 forrnula), and the precise analogues cf the !Pi in 

the framework of characteristic classes was used quite 

freguently. 

3. The following formula 1S oue of the main reasons 

why the ~. are so useful: 
1 

PROPOSITION: Let L be a line-bundle. Then 

Praof: .p = -t 
-tL 

1 + tL 

whence 

i>.t(L) = 1 + tL, therefore 

l/lt L = LtkL
k 

, Q.E.D. 

§ 6. The ring K':'(p) The properties cf K~:~ and 

R::: which we have reviewed in the last sechen are direct 

consequences either cf the representability of these functors, 

or cf the fact that the functorial operations cf linear algebra 

extend in a natural way to vector-bundles. These properties 

are shared by the !l reaPI and the l' c o m plex l1 K. 

In this sectien we discuss the implications of the 

periodicity theorem on the complex K-theory. 

We write simply ; for the virtual bundles (5':' 
E 

over IP(E), dirn E = Z. Thus S is an element K(SZ) = 
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PERIODICITY THEOREM I. K"(p) :: Z(>;] This 

theorem will be assumed. For a proof see (6] . 

COROLLARY 1. Let S,,: Ki(X) ~ K
i
-

2
(X) denote 

the operation of S E K"(p) on K':'(X). Then S" is a 

bijection. 

Proof: ; ;:: may be thought of a natural transforrna-

tion of one cohomology theory into another which induces an 

isomorphism on points. Bence ;1,: is bijective in m. by 

general nonsense. 

COROLLARY 

= Ki-Z(X), X E m and 

pair in m. or m.. 

Same proof. 

2. S~:: also induces bijections Ri(X) 

. i Z 
K'(X, A) - K - (X, A), for (X, A) a 

One may now define JK(X) = KO(X) + K-1(X) Using 

S,:, lK(X) is made into a graded ring (over ZZ) in the 

obvious manner. S~l(u' v), is in KO(X) when u, v E K-1(X). 

Similarly we convert our other constructions to operations 

on JK, JK etc. In terms of this functor the periodicity 

theorem then states that: 

XE m, Si the i-sphere in %1, 

where on the left we mean the graded tensor producL 
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Similarly one obtains 

lK(X) 0 lK(5
i
) "" lK(X X 51) , X E m, Si the i-sphere in %t. 

Now, as lR(5
i
) = 'iK. for i? 0, we see that lK and lk 

satisfy all the axioms of Eilenberg, Steenrod, for a co-

homology and reduced cohomology theory, provided we 

assume these axiorns are asserted for a graded theory 

indexed by the group of order 2 . 

First consequences . 

THEOREM 6.1. Let S generate R(S2)' and let 
-- n n 

u
n 

generate H
2n

(5 2n) then (eh(Sn)' u
n

) = + I 

Proof: For S (i. e., the case TI = 1) this proposition 

is clear. Now lf: 52 X," X 52 ~ 52 # ... #52 = 5
2n 

maps 

S onto S 0 ... 0 S, and if eh(S) = x where x generates 
n 
2 

H (52), then eh(S 0 ... 0 S) = x 0 ... 0 x whieh is lf" of a 

generator of H Zn(5
Zn

) . O. E-. D. 

COROLLARY I. A class u E HZn(X, 2'1:) is 

spherieal only if for all S E K(X), (eh(S), u) is an integer. 

Clear. 

We may extend eh to a homomorphism eh: lK(X) 

on lK-I(X) equal to the eomposition 
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COROLLAR Y Z. eh lK(X) ~ H':'(X) is a ring 

homomorphism. 

Proof: This is clear on K(X) . -I For u E K (X) 

v E K(X) it is also easy. 
-I 

lf v E K (X), then U' v in 

( ) (::" -1 . 
lK X is the class ~':' u v Bence it has only to be shown 

that eh S -'_ = E~,_ eh where 2:~ is the suspension in co-
'" ',' ',' 

homology. But this is clear because eh is multiplicative 

and eh S gene rates H
Z

(5
Z
). 

§ 7. The Thom homomorphism for lK(X). Let 

E -+ X be a complex vector bundle, and consider the 

sequence s : 

(7. I) lK(lP(E)) <~ lK{lP(E + 

" ö 

The following is an analogue of Proposition 3. L 

THEOREM 7.1. a) lK{lP(E)} is a free module 

n-I 
over lK(X) with generator, I, SE' "', SE ' n = dim E, 

1 _,_ 

Further A_
5 

• lf' E"
E 

whence we have a defining relation of the form: 

= 0 

! 
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,n ,n-l 
"E+"E 

30 

where the ei(E) are elements of lKO(X) expr,:;ssible in 

terms of the "iE ". In particular entE) ~ "_l(E") . 

b) The sequence (7.1) has 6 ~ ° and ß':' imbeds 

lK(XE ) onto the ideal generated by U ~ 

lK{lP(E + I)} . 

The proof is broken up into several stages: 

LEMMA 1 

lKO {lP(E)} io. ° . 
~ -'The element "S . 1T E ',' 

- E 
in 

Proof: We have the sequence of bundles over E . 

If we dualize we obtain: 

Apply \ to obtain: 

(1 + tS~) 

set t =- -SE' Then the first factor vanishes. Q.E.D. 

LEMMA Z. The theorem i6 true where X a 

point p. 
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Proof: Assume the theorem for dirn E 2. n, and 

consider the sequence (7.1) with dirn E ~ n. In this 

, , XE S situatIon =- Zn Hence (7.1) goes over into 

Now, U =- A . 1r~ E# maps onto 0 under a~ 
-S(EH) , 

Lemma 1. Hence U ~ ß"" . S where" E 'lZ and 
n 

by 

~ is 
"n 

our generator of K(SZn)' We next show that " is +1 by 

applying the character to both sides. Tc see this we will 

prove the more general formula: 

PROPOSITION 7.1. Let U be as defined in 

Theorem (7.1). Then 

where I::: denotes the ThoIn isomorphism cf Seetion 2 and 

T the Todd class also defined in that section. 

that 

Then: 

Proof: 

E ~ :E E, 
1 

By the splitting principle we may assume 

whence E* ~ :E E" • 
1 

Let ~, ~ c
1
(E,) . 

1 1 
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Hence 

On the other hand 

eh U 
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II (I _ e -(xHi )) 

II (x + n 
1 

32 

'll (X + n 
1 

i,,( I) = lI(x + L) and (i".l)· x = O. 
1 -,' 

Now then, in our case E is the trivial bundle. 

Henee T(E) = I. It follows that eh U generates 
, 

However eh(ß' S ) also 
n 

equals (XE+1)TI. This proves Lemma 2. 

The theorem in general now follows from the 

functorial nature of the constructions we are performing in 

Z stages. 

Stage i. Take X E m, E trivialover X . Tc establish 

the theorem in this case oue has to extend the Kunneth 

theorem from (7. I) to lK{X X lP(E)} = lK(X) ® lK{lP(E)} , 

which i5 easily done by induction on the dirn of E 

n 
Stage 2. Take a finite covering {ls )i=:1 on X so 

that E ju. is trivial. Assume the theorem for E over 
1 
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Xk = Union U" and prove it for X
k

+l by the Meyer 
l<i<k 1 

Vietoris sequence. 

Remarks. In my lectures I outlined a different praof 

for this theorem. Essentially 1 started with different state-

ment of the periodicity theorem, namely with the assertion 

that when p is a point, then a generator of K(SZn) goes 

(under the ß! of 7.1) over into U = A S • E". That 
- (E+l) 

is, I described an explicit trivialization of U on 1P(E) 

and thus a bundle on XE, which lasserted to be the 

generator of K(SZn) One may of course work backwards 

from this assumption to the periodicity theorem as stated 

here. The present analysis works because, as we now see, 

aposteriori, it does not matter how one trivializes U on 

IP(E); the result will always generate K(SZn)' (The 

difference of two elements in K(XjA) obtained by trivializ

ing a bundle E on Ac X, is in the image of 5: K-I(A) 

- K(X/A) and in this ease K-1(A) = 0 ,) 

DEFINITION 7.1. Let E - X be a eomplex veetor 

bundle over X. Define 

by the relation 

, , 
ß' i, u 'Ir·u· U u E K(X) 
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where 
, 

ß and U = A_S(E+l),,'E'" 

This additive homomorphism will be referred tb as the 

!1Thorn homomorphism!1 . 

THEOREM 7.2. The Thom homomorphism 

'~ 

is a bijection. Further if i ~ lK(X
E

) ~ lK(X) is induced by 

the inclusion X --;> XE , then: 

(7.2) 

We also have: 

(7.3) 

where T denotes the Todd class of Seetion 3 

Except for the last two formulas, this theorem is a 

clear consequence of Theorem 7.1. The last formula 

follows from Proposition 7.1. To see (7.2) we observe 

that by the remarks in Seetion 1, i = ß 0 a where a is the 

map X ~ IP(E + I) induced by the trivial section of I . Now 
, 

it is clear that a' (SE+I) = I. Hence 
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I I ,', ..), 

= (J' (A ". E"')u = A_IE···. u. Q.E.D. 
-SE+l 

.e 

Note: If we compare this with i"'i",u = cn(E)u in the 

H'" case, we see that A_I(E") plays the role of the n-th 

ehern elass of the n-dimensional bundle E. By the way, 
, 

i~ could equally well have been defined so that i' i~ 1 = A_lE1 

however the present definition eoineides with the usual 

sign eonventions which come from algebraie geometry. 

COROLLAR Y l. (The splitting principle). Let IF(E) 
, 

be defined as in Section 2, ,,: IF(E) ~ X. Then ,,' imbeds 
, 

lK(X) in lK{IF(E)}; further ,,' E splits into a sum of line 
., 

bundles ,,' E = LL .• 
1 

, . 
Hence "A'E = L L 0··· 0 L. the --- I 1--

ith elernentary funetion in the L.. Thus the rernarks 
1 

coneerning the extension cf funetors from Ene bundles to 

H"(X) apply equally well to the extension of functors from 

!ine bundles to lK(X). 

COROLLAR Y 2. The Adam.s operations >P
k 

are 

ring homomorphisms: K(X) ~ K(X) . 

We have already seen that if L is a line bundle, 

then: 
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'f E "L EI = "LI. are direct sums of line Hene e 1 =..,. , .., 
1 J 

bundles, then 

= l/Jk(L L 09 L') = L (Lf 09 (L')k 
1 J 1 J 

= (L(L/) O9(11:L;h = l/J k(E) O9l/Jk(E') 

By the splitting principle this special case now implies the 

general oue. Q.E.D. 

The natural question aris es cf how i t commutes 

with the operations Ai and tPk' We will answer this 

question for the IPk -which being additive and ring-homo -

morphisrns - are much easier to handle. With this end in 

view we introduce the multiplicative functions Bk' from. 

bundles to K(X) , defined by : 

(7.4) 

(7. 5) 

S (L) = I + L':' + ••• + L,:'k-I 
k 

if L is a line bundle 

By the splitting prineiple, Sk(E) is uniquely deterrnined by 

these two conditions. 

PROPOSITION 7.2. The funetion E k - Sk(E) has 

in addition to 7.4, and 7.5, the following properties: 

(7. 6) 
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(7.7) S (E) = wtS (E) . St(E) ts . s (e oe ycle e ondition) . 

Proof: Sk(L) = L + (S + I) + 

S = L - I. Henee dirn Sk(L) = k . 

..• + 

As 

k-I 
(S + I) ,when 

Bk is multiplicative 

we obtain (7.6) Finally, (7.7) is again trivial for line 

bundles: 

L t _ I 

L - I 
= 

L ts _ I 

L - I 

is preserved under multiplication, and hence holds in 

general. 

THEOREM 7.3. Let i, 

Thom isomorphism. Then 

(7. 8) 

(7.9) u, v E K(X) . 

Proof: (7.8) is a eonsequenee of the fact that 

"n 2 ':' U = "_IE + •.. + SE+l Henee U = "_IE . U. Now 

ß~(' .) U 2 " l~ U • 1~ V = U • V ::: U A_1E uv whence 

Q.E.D. 

w 
" 
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For (7.9) we argue as follows: as 1/!k is a ring hOrnOITlOrph

isrn it is suffieient to show that 1/!k i~ 1 = i~ eklE) . 

We rnay, as usual, assume that E = S Li Then 

ß~i! 1= U = n(1 - S<'), 
1 

Hence 

= U n (I + SL':' + .•. + Sk-I L~'k-I) . 
i 1 

On the other hand over lP(E + I) we have 

A (E':' + I) = 0 '" (I - S)A E"' = 0 
-S -S 

which implies that SU:::: U. Hence 

Q.E.D. 

Note: 

proof for the 

This proof is the precise analogue of the 

forrnula of Proposition 7. I: eh(i, I) = i".T-I(E). . ',-

COROLLARY 3. ~ SE K(S2n) then: 

Proof: Interpret 52 as XE with X a point, 
--- n 

~ TI 
dirn E = n. Then A ,E'" = 0 , and e,)E) = k . This yields 
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the first two formulae. Now the last follows from the 

relations between ~ and I.Pk' which whenever the rnulti-

plication is trivial reduce to: 

8. Applications: The obstruction to coreducibility. 

If E - X is a (cornplex) bundle over a connected 

X E ~ then E is called coreducible if the sequence 

splits: i.~., if there exists a map f XE -+ P~ so that 

f . j = identity. 

E is ealled S-eoredueible if (E + m' I) is eo-

reducible for sorne u. The first positive integer TI for 

which nE is S-coreducible is called the J -order cf E . 

(This integer is the order of the J -class of E under the 

generalized J -hornornorphisrn J: K(X) - J(X) • (See [13].) 

THEOREM 8.1. Let E be a eornplex veetor bundle 

over X E 1& where we now assume that X is connected. 

Then E is coreducible only if there exists an invertible 

element u" E K+(X) so that for all k E z+ 
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(8. 1) 

Froof: Assume that XE is coreducibre. Then we 

have a map: f: XE ~ p~ such that f 0 j = identity. 

Consider the commutative diagram: 

R(p~) < R(xE ) 

'>---'-, 1\ 

ri~ 1, 

K(PX) < 
dirn 

K(X) 

and define u E K(X) by 

, , 
Then j" 1, u :::: i, 1 whence dirn u = 1 . Further as lPki!l 

= k dim E • i' 1 by (7.7), it follows from (7.9) that 
! 

= . k dimE 
1, u 

Thus Sk(E). >Pk(u) = k dim 
E • u. Now it is easy to see 

that the elements of K(X), X E ~ which are invertible are 

precisely the elements with dirn 1 0 Clearly IP
k 

maps 

these elements irrto themselves. Bence our condition may 

be written in the form: 
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dirn u = 1. 

Finally if u~:~ = l/u , we obtain: 

Q.E.D. 

For the stable theory the Itobstruction ll to 

S-coreducibility may be put in this form: 

DEFINITION 8.1. Let 2f::+ denote the multiplicative 

monoid of the positive integers. A function f: 2f:: + ~ K(X) 

will be called a cocycle if: 

( 8. 1) f(ts) = >ptf(s). f(t) 

(8.2) dimf(s) = sn(f) where 

+ s,tE2f:: 

+ n(f) E 2f:: • 

Cle~rly the cocycles form a monoid under pointwise 

multiplication. We call two cocycles f, g equivalent if 

+ there exist n. mEZ. such that 

n m 
s f(s) = s g(s) + 

s E 2f:: 

These equivalence classes form a monoid under multiplica-

tion7 and we call these the stable cocycles. 
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PROPOSITION 8.1. The stable cocycles form an 

Abelian group. 

Proof: Let ß.(X) = m be the ideal of elements of 

dirn O. From the fact that X has finite category, it 

follows that K(X) is nilpotent: 

K(X) 
2 n 

;::: m:) m :::>"':Jm = o . 

Now let f be a cocycle. Thus 

f(s) = sn + a(s), a(s) E K 

n 
= s a(s) . This will again be a cocycle. Beuce 

2n ()2 f( s) . \ (s) = s + a s 

We now replace f by the cocycle f· f l and perform the 

same operation. After a finite number of steps oue obtains 

a cocycle g(s) so that 

f(s) . g(s) 
n 

= s 

Hence the stable cocycle represented by g determines an 

inverse to the oue represented by f. Q.E.D. 

DEFINITION 8.2. A stable cocycle which is 

represented by a function of the form: t -* IPtU~:~/u~~, where 

u;::; is an invertible element of K(X) is called a stable co-
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boundary. The group cf stable cocycles modulo stable co-

boundaries is denoted by 

There is now a natural homomorphism 

I + 0: K(X) 4 H (~ ; K(X)) 

defined as follows: If E is a bundle over X then t 4 6t (E) 

defines a cocycle, and we define 0(E) to be its class in 

HI(2l'+; K(X)). (As 6
t
(E + nl) = t n . 6

t
(E), we see that 

C5\E) depends only on the stable class of E .) 

One has e:E + F) = e:E) + C5\F) by (7.5). Hence 0 
" 

is additive, and therefore extends to a unique homornorph-

ism 
I + 0: K(X) 4 H (~ ; K(X)) . 

The image of K(X) under 0 will be denoted by e:X). 

THEOREM 8.2. The kernel of J: K(X) 4 J(X) is 

contained in the kernel of 0: K(X) 4 e:X). In other words 

e factors through J, and so induces a surjection 

El" J(X) - e(X) . 

Thus e:X) furnishes a lower bound for J(X). 
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Proof: S-coreducibility of a bundle E rneans that 

for SOale n. E + n . 1 be coreducible. Our necessary 

condition for this is then that there exist an ir,tteger n and 

an invertible u~~ in K(X) so that 

i. e .. 

= k dim E ,I. u" /u':' • 
"'k 

That is, the stable cocycle represented by 

should be 0 in e(X). Q.E.D. 

Exarnple: The classical J -homomorphisrn 

J K(S2) - J(S2 ) C 1T +2 (S ), m» n . n n rnnrn 

We reeall that K(S2n) '" Z, and >Pku = knu for 

u E R(S2n). Let g be a generator of this group, and as a 

first step to determining the group Hl(Z+; K(S2n))' eonsider 
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so that, a(ts) = a(s)tU + a(t). Ou the other haud a(ts) 

= a(st) wheuee: 

a(s)t
U 

+ art) = a(t)su + ars) 

or 

a(s)(tU
_ 1) = a(t)(su - 1) 

It follows that f is eompletely determiued by a, and a(2), 

(or indeed any a(k) would do with k > 1 .) 

a( s) = 
a(2) 

We set A{f) = a(2)/(2
n 

- 1). Thus f is determined by the 

pair {a, A{f)} , and clearly equivalent eoeycles differ only 

in their a-cornponent. Thus the stable class of f is 

determined' by the rational number A(f). This number is 

not arbitrary. We have to have: sa. ars) E Z, (large a) 

the form which a stable cocycle must take. As there is no ar: 

torsion, we may extend to the rationals and write every 

cocycle in the form: 

f(t) = ta(l + art) . g), 

The cocycle condition then yields: 

f(ts) = (ts)a(l + a(ts)g) = >ptf(s) • f(t) 

= sa(l + a(s)tae;)(l + a(t)s)ta , 

for all s E Z+, a large 

Now the greatest common factor of sIT(sn - 1) 

(a large) is a well defined integer p(n). Henee the stable 

cocycles may be identified with the integral multiples of 

l/p(n) in <Il. Now, A(f) will represent 0 in e(S2n) if 

and on1y if there exists integers V, A. so that 
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i. e., if and only if : 

a(t) = >.(tn - 1) 

or 

AU) . (t
n 

- 1) = >..(t
n 

- 1) '" AU) is an integer. 

Determination of e(S2n) . 

From the preceding it is clear that we only need to 

choose a representative cocycle for 6(S) a generator of 

K(S2n) say f, and then determine the value AU), whieh 

we del10te by A(S). This amounts to ehoosing a bundle 

E with E - dim E . 1 = sand determining 8
2

(E) = A+l(E). 

Now 

)dimE >.. (E) = >.. (S) . (1 + t 
t t 

Write VS) = 1 - cpn(t) where cpn(t) is apower series in 

[{[tl] 

whence 

Because 

exis ts, lim cP (t) 
t ..... +l n 

will have to exist, 

82(E) = 20" {I - lim cP (t) . s} 
t-+l n 

Now eomparing this to AU) we see that 

A(e;) = lim cP (t)/2
n 

- 1 . 
t""'+ 1 n 
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Thus the problem reduces to computing At S:. Recall now 

(Corollary 3 of Theorem 7.3) that \Ilks = kne; , whenee 

Ake; = (_1)k-l(kn-1)e;, k ~ 1. Thus '-tS = 1 - (Lt>l (_t)kkn - 1) 

k n-l 
Or cp (t) = L( -tl k . This implies n 

tcp' (t) = cp 'l(t) . n nT 

Set q (u) = cp (eu) 
n n Then the above goes over into 

Now 
u -e 

and 

whence 

q (0) = (n - 1) 
n 

We next':observe that: 

lim cp (t) 
t-l n 

= q (0) • 
n 

x coefficient of n-l . 
u In 

ql + 1/2 = 1/2 tanh (u/2) 

where B 2k are the Bernoulli #'s. Henee q2n_l(0) = 0, 

QZn(O) = (22n - 1) . B 2n/2n, whenee finally 

Thus we obtain: 
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where d(n) is the denominator of B
2n

/2n . 

R emarks 1. This lower beuud was first obtained 

Milnor and Kervaire by rather geometrie ..methods. Oue 

obtains the same bouud if Olle applies the character 

c riterion (Theorem 6.1). The argument would be as IO!I()W' 

follows: Suppose that X
mE 

is coreducible
l 

m E ~, 

E gene rating K(S2n) C mE Now as a W complex X 

= S2m U e 2{;;+n)' Henee eoreducibility => 

S V S 
2m 2(m+n) 

(Splitting off the top eell is ealled eoredueibility, and, as 

we see, over the spheres the two conditions are 

Consider now the bundle i~ 1 E K(X ffiE ) 

the implication: the coreducibility of X mE 

We have 

:::::;> top cocycles of X illE spherical . 

=> eh i~ 1 is integral on this eycle (Theorem 6.1) 

=> i,:JT-IE)m is integral on this eycle by (7.3) 

=> {T-l(E)}m. . 15 Integral on the top cycle of S 
2n 

Now we know by (Theorem 6.1) that ehrE) = 

where u gene rates H 2n(S ) 

dirn E + u 
n 

n 2n 

However it is clear from the earlier discussion that 

ehrE) determines T-\E) in a purely algebraie way. If 
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one carries out this determination in the present case oue 

obtains the same lower bouud on m 

2. The lower bouud which we described can be 

improved by a factor of 2 with the aid of the real K-theory, 
. 

i. e., the K-theory obtained by starting with real vector-

1 
bundles. This theory will be denoted by KO, and it is the 

purpose of the next seetions to prove the KO-analogues of 

the theorems we have developed for K In particular we 

- - E seek an i~ : KO(X) ~ KO(X ) when E is any real 

vector bundle. Unfortunately such an i
1 

does not exist in 

general, and I know of uo way to extend the elementary 

arguments of the preeeeding seetion to define i , even 

when it does exist. We will therefore have to switch our 

point of view a little aud diseuss the Lie-group phenomena 

which underly the eonstruetion of i l 

§9. The representative ring of a group. In the 

following G will denote a eompaet Lie group. By a 

G-module we mean a veetor spaee W (over the field IR or 

c) together with an action of G as a group of eontinuous 

automorphisms of W. Two such modules are called 

isomorphie if there is a isomorphism between them whieh 

commutes with the G actiono 
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One denotes by RU(G) the free group generated by 

the irreducible isomorphy classes cf complex G_modules 

and by RO(G) the corresponding group over the real 

nurnbers. We write simply R(G) when either cf these will 

do and use the symbols KU(X), KO(X), K(X) c 

ly. There are several additional structures on R(G). The 

tensor product of modules induces a commutative ring 

structure on R(G-)- and the exterior powers )...iW of a 

G-module ext end to operations Ai: R(G) ~ R(G) by the 

same principle used in the K-theory. This bee ornes c lear 

if one uS es the alternate definition cf R( G) as the ring 

obtained from the category cf G-rnodules via the 

ion, i. e., as the solution of a universal problem. These 

two definitions coincide because every G-module is a 

direct surn of irreducible G-modules in vie w cf the 

compactness of G . 

The rings R(G) are uS'eful because the llrn.ixing 

process tf defines a functor 

1 a : H (X ; 9) X R( G) ----'> K(X) 

1 
from principal G-bundles over X - H (X ; 9)-cross R(G), 

to K(X). To see this recall that a (principal) G-bundle E 

over X is aspace on which G acts on the right so that 
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locally this action corresponds to the right translations of 

G on U X G. Suppose now that E is such a G-bundle 

over X, and that F is aspace on which G acts on the 

left. Then we have the mixing diagram: 

(9. 1) 

where T 

in E xF 

E < 

"I X< a 

E X F ---"> F 

T 

'I 
E 

'I 
'----"> P xF 

G 

-1 
is obtained by identifying eg X g f with e x f 

Thus E X F -+ X is a locally trivial fibering 
G 

with F as fiber. 

is Now in the caSe when F is aG-module E x F 

a vector bund{~ over X, which we denote by arE, i?) Or 

~(F) or F(E) The linear extension of this function 

defines the functor ~ 

The following are quite obvious properties of O!.: 

(9.2) For fixed E, the homomorphism aE : R(G) ~ K(X) 

a ;!- -homomorphism cf the two rings. 

(9.3) The following diagram is commutative: 
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Hl(X;Q) x ~(G) Ci > K(X) I °f-
l .~ Ir' l~:~ Xl 

H\Y;Ii) X ~(H) 
Ci 

> K(Y) 

Here i: H - G is a homomorphisrn of groups, 
, 

1 1 
H (X; Ii) - H~X;Q) the indueed homomorphism, i· g(G) 

-> ~(H) the restrietion homomorphism, f: X ...... Y , a map, 

-1 ' and fand f" the induced homomorphisms cf f in 

Hl(X;!!l and K(Y) respeetively. 

In the next section certain elements of R(G) will 

have to be singled out when G is one of the classical 

For this purpose we review same of the basic facts coneern· 

ing R(G). All of these are essentially due to E. Cartan. 

PROPOSITION 9.1. Every irredueible eomplex 

U(l) module is one dimensional. Henee RU {U(l)} "" 

ring of Horn {U(l), C*} . 

Here, cf course, U(l) denotes the circle group of 

complex numbers cf norm 1 . 

COROLLARY. Let x denote the <r module of 

given by the inclusion U(l) -> C~~. Then 
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Thus in this case RU is the ring cf finite Laurent series 

in x 

More generally let T = u(l) x ... x U(l) be a torus, 

and let f.: T - U(l), i = 1, ... , k, 
1 

be the various project-

ions. 
, 

Then x.=f:xERU(T) and 
1 1 

1 :;:;: 1, .. " k . 

These facts are quite elementary. The following two 

theorems are not. 

THEOREM I: Let T = U(l)x ... x U(l), k faetors, 

oe a maximal torus of G. Let W = W(G, T) be the group 

/ 
cf automorphisms 'of T induced by inner automorphisms 

of G . 
W 

Then W aets on RU(T) and we let RU(T) denote 

the ring of invariants under this action. We also denote the 

restrietion homomorphism from RU(G) to RU(T) by eh, 

In this notation eh induces a bijection of RU(G) 

onto RU(T)W: 

eh: RU(G) =0 R U(T)W 

THEOREM II. If G is compact connected and 

simplyeonneeted, then RU(G) is a polynomial ring. 
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In view of Theorem I oue may describe the 

of RU(G) in RU(T) onee W(G, T) is known. In the 

following section we make certain standard~choices for T 

in G and describe the action of W(G) on a standard basis 

for R U(T) . 

THE UNITARY GROUP Un ' and SUn 

We inte.LPret U TI as the TI X TI matrices with 

complex coefficients which satisfy the identity: 

SU 
n 

is the subgroup with determinant 1. 

The diagonal matrices in U form a maximal toruS 
n 

T(U ) . 
n 

Let xi be the character on T : x. : T -+ «(' , 
1 

assigns to tE T(U
n

) its ith diagonal entry. 

stand for the eleITlent in R U{T(U
n

)} deterITlined by the 

strueture defined on <J: via: t· z = x.(t) . z, z E <J:, tE 
1 

Thus 

R U{T(U )} 
n 

= 1, •. " TI. 

We have further: 

(9.4) 

(9. 5) 

acts as the permutation group of the x. 
1 

R U(U ) '" (under eh) the finite invariant Laurent n -
series in x, '" x 

55 

(9.6) 

(9. 7) 
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Let P
n 

be the standard representation cf U u on 

Then ehp = xl + ... + x 
- n n 

and hence 

Rernarks: 

1. The iITlplieations (9.4) '" (9. 5) '" (9. 6) are quite 

straightforward. 

2. The AiP
n 

are irreducible because eh )..ipn 
consists cf fl one orbit ll cf the action of W . 

with A IIp ::: l. Here p denotes the restrietion 
n n 

of the standard representation to SU n 

THE GROUPS SOn 

This group is a subgroup of U on whieh 
n 

A=A, AEU 
n 

Thus SO consists of the real n X TI rnatrices subject to 
n 

A • At = 1, det A = 1 . 

"ve now have to treat these groups separately depending on 

the parity of n. 

Case l. The odd orthogonal groups, SO(2k+ 1). We 

may iITlbed SO(2) X .•. XSO(2) (k faetors) in SO(2k + 1) as 

the k diagonal boxes: 
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SO(2) 

SO(2) 

SO(2) 

1 

1 Th,' s wl'll be OUT standard maximal toruS: followed by a . 

T(S02k+l)' W,e_now choose isornorphisrns 1'.i: SO(2) - a;" 

and let y. E RU(T{SO(2k + I)}) be the corresponding classes. 
1 

Thus 

(9. 8) i = 1, ... , k • 

Further 

(9.9) 

(9.10) 

W {SO(2k + I)} acts as the group generated by ". 

permutations of the Y i and transformations Y i -J Y i
1

, 

C = + 1. 
1 

Gase 2. The even orthogonal groups. We include 

SO(2k) in SO(2k + 1) as the rnatriees with last 

diagonal entry 1. Then T{SO(2k)} = T{SO(2k + I)} . 

W{SO(2k)} acts as the group generated by rerrnuta-

f t · - 1 tions of the y. and trans orma Ions Yi Yi ' 
1 

"i=+l ni'''i=l. 

THE SPIN-GROUPS 

The double covering of SO(n) is denoted by Spin(n). 

Let ,,: Spin(n) - SO(n) be the projeetion and choose 
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f = T{Spin(n)} as 1T -lT{SO( n)}. We now have, setting 

T = T{SO(n)} • 

(9. ll) The hornomorphism ... : R U(T) - R U(f) extends to 

a bijeetion of RU(T)[ul/(u
2 

= Yl •.. Yk) onto Ru(f), 

(i. e., R u(f) is a quadratie extension over R U(T).) 

Further this isomorphism is compatible with the 

action of the W of the two groups on the respective 

rings. 

. . l~ 1/2 It 15 customary to wrlte Y1 , ... , Yk for the 

element u. With this understood, we define 4n E RU(Spin(2n)) 

and "2n+l E R U{Spin(2n + I)} by: 

+ "I " n 
2; n 

:1:. 1/2, n 1/2
n 

eh "2n = Yl Yn , ". = " . = 
1 1 1 

"I " n 
eh "~n 2; n 

:1:. 1/2, n ". _1/2n = Yl Yn ' ". = = 
1 1 1 

"I "n n 
eh "zn+! = 2; Yl Yn 

, <. = :1:. 1/2, U<. = :1:. 1/ 2n • 1 
1 1 

These are the so-called spin-representations of the Spin-

groups. Under restrietion it i5 clear that Ll
Zn

+
1 

goes over 

+ - + 
into "2n + "2n while 112n and "Zn restriet to "2n-l • 

From (9.9), (9.10) and (9.11) one eoncludes that: 

(9.12) R U{Spin(2n + I)} "" ;Z[p, •.. , A n p , "Zn+ll 
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(9. 13) { } [ 
n-I + 

RU Spin (Zn) = &:: p, ••. , A p; "Zn' ilZnl 

• where now p denotes TT' of the P2n+l and PZn restricted 

to SO(Zn + 1) and SO(Zn) respectively. 

Exercise: Let &::2 C Spin(n) X u(l) be the subgroup 

generated by " X (-1) where " generates the Kernel of 

" : Spin(n) - SO(ri}-., This group is in the center of Spin(n) 

X U(I) and the quotient Spin(n) x U(l)/&::Z is denoted by 
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Conversely we ITlay pass from a cornplex G-rnodule to the 

underlying real G-module, thus obtaining an additive 

homomorphism 

",:, RU(G)-RO(G) • 

These two operations are linked by the standard identity 

(10.1) ",,0 ,,':'W = ZW; 
o:~ " 0" o. V = V + V':, 

From the fact that R(G) is a free module it now follows 

Spinc(n). Give a description of R U{Spinc(n)}. Also show that: 

that there exists a homomorphism 'P : U(n) - Spin c(2n) (10. Z) 
;~ 

Both " : RO(G) ~ RU(G) and ",:,: RU(G) - RO(G) 

which makes the following diagram commutative: are injective. 

/TOI 
U(n) -~i-»SO(2n) 

We al ready know a considerable amount about RU(G). It 

/ 

is therefore natural to consider RO(G) as imbedded in 

RU(G) via ,," and this will be our point of view. We next 

describe a criterion for an element x of RU(G) to be 

contained in RO(G) C RU(G) • 

where i is the usual imbedding. 
CRITERION: The class of a complex G-module W 

§IO. The RO of a compact Lie-group. If V is a 
is contained in RO(G) if and only if W admits a non -

real G-rnodule V ® er is in an obvious way a complex 
degenerate G-invariant quadratic form rj . 

IR . 
G-module. This operation defines aAl-ring 

Proof: "Let V be areal G-rnodule. Because G is 

,,':' RO(G)-RU(G). 
compact we may integrate a positive definite form over G 
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rj: V ~ IR. The complexification of rj then is a forrn with 

the same properties on f.-!":V. 

Conversely assume that W is a compl~x G-rn.odule 

d . f ri Choose an invariant with nondegenerate qua ratlc orm. 'f' 0 

positive definite herrnitian form on W and denote the inner 

product it dehnes by (u, v). 

Consider the IR -linear rnap T W -+ W, defined by: 

(Tx, y) = ~(x, y) 

Clearly we have: 

(10.3) TAx = 1.Tx AE<I:, xEW. 

(10.4) I and co.,...,..." ........... utes with the action T is nonsingu ar, uHU 

of G • 

Properly speaking, T i5 thus defined on E" "!.:W. Now the 

{ } ( ) + ( ) defines a positive definite forITlula x, Y = x, Y x, y 

inner product on € ~::W and it is easily seen that T is self-

adjoint with respect to it. 

Let W+ CE ,:,W be the subspace spanned by the 

eigenvectors of T corresponding to the positive eigen 

Similarly, define W Then these spaces are real 

G-ITlodules and span E ,.W by (10.4) On the other hand by 

(10.3) we see that W+. n = W-. Hence the natural 
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given, by the CC-structure of W i5 a bijection of G-modules 

':' + 
and so exhibits W as E W • Q.E.D. 

COROLLARY 10.1. 

COROLLAR Y 10.2. Let W be an irreducible 

complex G-module with W~: ~ W Then W:::: f. ~:V, where 

V is a (necessarily irreducible) G-module over 1R > if and 

only if 
2 

A W does not contain the trivial representation. 

Proof: By Schur! s lemma W)',: ® W contains the 

trivial G-module precisely once. Now, as W~!: == W , we 

have: 

where 
2 . 

S (W) denotes the second sYITlITletrlc product of W':'. 

We see then that the trivial G-module occurs either in S2W;;;~ 

or in A 2W 0 In the former case W will have a (necessarily 

nondegenerate) quadratic form. In the latter case it will 

n~. Q.E.D. 

Thus if one knows the expansion of A 2 W in terms 

of the irreducible G-modules one may decide the question 

of whether W is in E"RO(G) . 
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COROLLARY 10.3. Let A denote the set of 

isornorphism. classes cf irreducible G-rnodules {W} for 

which W'" cf W, and let B denote the complementary set. 

Let A
1
/

2 
denote a !Ifundamental dOITlainJ! for the action cf 

:{~ 0 A, i. e., cf every pair w, w-!,,~, let A
1
/ 2 contain 

precisely oue mernber. Let B+ denote those modules in 

B , for which A 2W does not contain the trivial representa

hon, and set B ,--= B - B+. Then an additive base for 

The proof should be clear. 

An exarnple: RO{Spin(n)} eR U{Spin(n)} • 

Tc study this inclusion we will use the notation of 

Sechon 9 and also abbreviate R U{Spin(n)} to R U(n) . 

Similarly RO(n) denotes RO{Spin (n)} • R ecall then that: 

1 
Now PZn and hence A P Zn are clearly in RO(Zn). Hence 

the only question which remains i6 when the spin 

+ 
hons 6Zn are in R O( Zn) . 

Tc appIy our criterion we need the following facts: 
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(10.5) 

(10. 6) 
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+ 
62n if n is + 

(6-)'" = 

+ 
A

Z 
6
2n 

6+ 
Zn 6;n 

Z 2: 
S 0 6 

Zn 

= 

= 

= 

6+ 
Zn if n is 

i=n-l 

I i 
A PZ n i = 

i=O 

i=n-l 

I i 
A PZn 1 = 

i=O 

i=n-l 

I 
i=O 

even 

odd. 

(n+ Z) mod 4 

(n+ 1) mod 4 

i == (n) mod 4 • 

In the last formula, Z 
S denote the symmetrie square, 

n ; 
and A+PZn are the two pieces into which A n pZn splits: 

Thus if we set 

then 

n 
TI (1 + ty.)(l + uy.-l) = 
1 1 1 

i+j=n 

A .. 
1J i even. 

These formulae are relatively straightforward 

combinatorial identities in Z[ -1] 
Vi' Yi 
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+ i 
PROPOSITION 10.1. The elements lIZn ' A P Zn ' 

i< n-i are represented by irreducible Spin(2n) -modules. 

This result is nontrivial - for instance oue has to 

construct the spin-representations . 
We will as s urne this 

statement. [See [10]] . 

(10.7) 

Applying these forrnulae to our criterion we conclude: 

+ 
t,- E RO(Sn) 
Sn 

+ 
lI- 'i RO(Sn + 4) 

Sn+4 

We turn next to the odd case. Recall then that 

ch(p ) = ch(PZ + 1) _ Zn+! - n 

Heuce oue may again use the forrnulae 10.5, 10.6, to obtain: 

n-l 

I i 
A PZn+l 

i = n+ 3 or n+Z mod4 

i=l 

n 

SZ 0 lI
Zn

+! = I Ai(PZn+l-l) i = n or n+l mod 4 

i 

and thereby conclude that: 

(10. S) 6
Zn

+l c RO(Zn + 1) only if n = 0, 3 (mod 4). 
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In particular then, combining (10.7) with (10. S), we 

have: 

(10.9) RO(n) '" R U(n) for n = -1, 0, 1 mod S . 

PROPOSITION 10. Z. Let , : RO( Sn + 1) ~ RO(Sn) 

be induced by the inclusion Spint Sn) ~ Spin (Sn + 1). Then 

(10.10) l.. 15 an injection . 

(10.1l) RO(Sn) is freely generated by 1 and lI~n over RC(Sn+l) .. 

From this last observation we conclude immediately that: 

PROPOSITION 10.3. There are unique elements 

A, B, e
k

, r
k 

E RO( Sn + 1) which satisfy the equations: 

, + ' 
= (L'A)lI +L'B, 

(1O.1Z) 

Further oue has: 

Zn 
'\ Zi -1 ( 

B = - L A PSn+l - 1) 
i=l 

= ~n{/k_l)/Z + ... + y~(k-l)/2} 
1 " 

We conclude by tabulating our results concerning the 

real spin representations in terms of the complex ones: 
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RO(n) Real Spin Representations a
h 

-their dimension KO(Sn) 

1 6
1 

1 2 2 

Z + -6 2 + 6 2 
2 2 2 

3 26
3 

4 0 

4 26+
4

, 264 4 2 

5 26
5 

8 0 

6 6+ , 
6 T 

,6
6 

8 0 

7 6 7 
8 0 

8 + -
"8'''8 8 Z 

This table i8 periodic in the sense that a '8:;:: 16a 
llT n 

and that the pattern 1S preserved in the first and last column. 

Note that comparison with the last column gives us the 

ernpirical fact that 

if KO(S ) = 0 
n 

if K6(S ) f 0 
n 

This strange relation between the integers {a.} - the so
l 

called Radon-Hurwitz numbers and IrO(S ) was noticed by 
n 

Shapiro and myself last year. It essentially expresses the 

fact that the generators of KO(Sn) are given by induced 

representations [8] . 
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§ll. Induced representations. Let i: H ~ G be the 

inclusion of a closed subgroup of G. Thus G acts on G/H 

on the left, and we may, by the mixing construction, 

interpret GIB as a functor from G-bundles over X to 

spaces over X on which a certain H-bundle is singled out. 

For example, if G = U(n), H = U(n - 1) X u(l) this construct-

ion will specialize to Dur earlier 1P - functor E -+ 1P(E) . 

For this reason we will, in general, denote this construction 

by lP. Precisely: If E is a G-bundle over X, lP(E) is 

defined by 

lP(E) = E X G/H . 
G 

In other words lP(E) is the associated bundle to E with 

fiber G/H. 

The following three theorems are standard in the 

theory of fiber bundles. As they express different ways of 

looking at the same thing I propose to call them tautologies .. 

TAUT. 1. Consider the quotient space E /H. There 

is a natural isomorphism E/H"" lP(E) as spaces over X. 

Proof: Clearly E = E X G. Dividing both sides by 
G 

H we obtain E/H = (E x G)H = E X G/H • Q. E. D. 
G G 
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Thus we have the following diagram: 

E -~p~-.. ~ E/H = lP(E) 

l· cr 

x 

where each map is a fibering, and p exhibits E as an 

H-bundle over lP(E). This bundle is denoted by E . 

TAUT. 2. In the situation envisaged above thereisa 

canonical isomorphism: 

In words we have: The G-extension of E is 

isomorphie to the inverse image cf E under 0'. Or again, 

G' -lE adrnits a canonical reduction to the H-bundle E 

Prcof: By the definition cf O'''IE Olle has the Ilexact 

sequence J!: 

where 'Ir! : E xE/H -+ E1!.X and a l projects the other way. 

Nowdefine f:ExG-EXE by f(e,g)=(eg,e). Then f 

induces a map f: E x
H 

G - E X E/H which may be lifted 
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-1 
to cr E Usiug loeal triviality oue easily constructs an 

inverse. Q.E.D. 

Note: In the context of Our "old" lP(E) this 

proposition corresponds to the fact that when lifted to lP(E), 

E became the direct sum of SE and QE . 

TAUT. 3. The G-bundle E cau be reduced to an 

H-bundle if and only if lP(E) ~ X admits a section. 

Proof: Let s: X - lP(E) be a section. Then, by 

-I -I _I(A ) 
Taut. I, S 0 cr E = S E XHG Thus, as (J 0 S ::::- I , we 

(
-lA -lA 

obtain E = S E) XHG and S E i5 an H-reduction cf E. 

Conversely, assume that E::::- F XHG where F i5 an 

H-bundle over X. Then we have lP(E) = F XHG XGG/H 

= F XHG/H, and the identity coset of G/H in each fiber 

yields a section of lP(E) over X. Q.E.D. 

We next relate this situation with the functors 

discussed in Section 9. Fixing E, G and H, we have the 

following three hOlTIomorphisms canonically defined: 

R(H) ~ K{lP(E)} 

R(G) ~ K(X) 

• i' R(H) -> R(G) 
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Apart from the obvious functorial relations between these 

there are two identities connecting thern: The first we will 

call the permanence law: 

PERMANENCE. Let xE R(H), y E R(G) ~a~nd~~~ ..• 

the projection lP(E) - X by a. Then 

There is a more palatable form for this identity. We rnay 
, 

consider R(H) as an R(G) module via i· , and also 

consider K{lP(E)} as an R(G) module via a 0 Cl
E

. With 

this agreed the premanence states simply that 

is an R(G)-homomorphisrn. 

Fraof: Using a sornewhat sloppy notation the steps 

are as follows: Assume that V is an H-module and that W 

is a G module. Our problem is to identify the following 

two bundles over lP(E): 

Now A = {ta -IE) X w} ® (E x
H 

V) by naturality. Hence by 

Taut. 2, A = {E "HG xG W} ® (E xH V). But E XHG X
G 

W 

= E \rW whence A = (E XHW) ® (E X H(V ® W) = B . Q. E.D. 
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Remarks: When X = P is a point, lP(E) is just 

G/H over p. In this case the permanence is equivalent to 

the statement that if W is aG-module, then G XHW - G/H 

is the trivial bundle over G/H. In this case 

Clf; : R(H) - K( G/H) 

may be considered as a localized form of the induced 

representation i,:,: R(H) - R(G) defined for finite groups. 

Indeed, in our terrninology, where U is an H-rnodule 

can be defined as the G-rnodule of seetions of G XHU ~ G/H. 

(When G is finite this space is finite-dirnensional.) In this 
, 

context i,:Jx· i· y) = i,,(x) • Y is still valid, however ',:, 

is only an additive hornornorphisrn. 

/ 
The second identity involving alt describes the 

behavior of this hornornorphisrn under the action of the 

normalizer of H in G. Thus let N(H) = {g E GI gHg -lc H} 

and define .JjH) as N(H)/H. 

( 
-1 

Each nE N H) acts on H by sending h - n hn 

and so induces an action of N(H) on R(H), which factors 

through ~(H), because two modules which differ by an 

inner automorphism are isomorphie. In short R(H) is 

canonically a ~(H)-module. 
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Next let E be a G-bundle. Then if nE N(H) the 

right translation of E by n, e -+ e . n preserves the H 

cosets of E and hence induces a map of lP(E) - lP(E), 

which again only depends on the H coset of n" in N(H) 

Thus !::!(H) acts on lP(E) and hence on K{lP(E)}. With 

this agreed we have the plausible: 

EQUIVARIANCE. The induced representation 

C/t: R(H) - K{lP(E)} 

cornmutes with the action of N(H) on these tWD rings. 

Proof: Let V be an H-module, and let n E N(H) . 

Now deHne V
ll 

as the H-module with the same underlying 

vector-space but the new action h ':~ v = nhu -1 . v. This 

module then represents the action of n On V E R(H) • 

let f: E -+ E be the right translation e -> e . n. Then our 

problem is to construct an isomorphism of the bundles 

n -1 
E x

H 
V and f . (E x

H 
V). In other words we have to 

find an isomorphism I/J, which makes the following s 

exact 

W • lP(E) x (E X
H 

V)=::::::'lP(E) • 

- n 
Define 1jJ: E x V - E x (E x V) by He, v) = (e, e· n X v). 

Then l/J is easily seen to induce the desired IP . 
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§ 12. The periodicity theorem for KO. We let 

KO* denote the cohomological extension of the functor KO. 

Thus 

KO* = I 
i< 0 

. h 0 
wlt KO :;:;; KO and this functor shares all the general 

properties of KU. 

The starting point of üs more special properties in 

the following periodicity theorem: 

PERIODICITY THEOREM H. The tensor product 

of bundles induces a bijection: 

(12.1) 

This is the Kunneth formulation. The corresponding 

relative theorem may be stated as follows: 

-s 
Let Ti S E KO (p) be a generator. Then multiplica-

tion with 71 induces an isomorphism of KOi(X) with 

KOi-S(X) 

The ring KO'''(p) is also known: It is generated by 

and elements Ti i E KO-i(p), i = 1, 4, S which are subject 
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3 
Tl

l 
= 0 , 

The pertinent referenees here are ([6], [7]). 
, 

Oue may compare KO and KU by means of the 

eomplexifieation of bundles: /': KO(X) ~ KU(X) , and then 

disregarding of the eomplex strueture: E ~ : KU(X) ~ KO(X), 

and just as in Section 10 these two operations are related by: 

by: 
E' ~~u 

E' ~;~ 0 = Zu 

;'~ 
E 0 E' i,'u = u + u:{~ 

just as in RO and RU. 

Henee we see that KO"(X) '" {KU*(X)}:l'2 mod Z 

primary material, if the superscript ~2 denotes the 

fixed elements under the conjugation automorphism of 

A slightly more detailed look at the periodicity 

theorem yields a more detailed relation between these two 

functor s. lude ed if B U and Bodenote the c las S ifying 

spaces cf KU and KO, the map tri,; is realized by a 

fibering 

with u/o = 

u/o ~ B ~ B 
,0 U 

limit U /0 as fiber. 
n n 

On the othe r hand the 
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periodieity theorem as stated in [6] asserts that u/o 

'" O-lB o Hence the fibering above gives rise to an exact 

sequence: 

from which one immediately concludes that 

(12.3) 

For our purposes we will require the following 

deseription of the generators of KU(S ) Sn and KO(S Sn) 

THEOREMIII. Let 

Let 

Hn = Spin (2n), G
n 

= Spin(2n+l) 

1\+ E RU(B ) be one of the 
n n 

Spin repre sentations and let ( +) Y n = O<t Ll n be the indue ed 

element in KU' (S ) Zn . Then 1 and Yn form a base für 

Proof: Let n and m be fixed and set 

G = Spin (2{m + n + I}) . Also let W = GIB 
m+n (m+n) We 

may arrange the various inclusions involved here so that 

the following diagram is commutative: 



Raoul Bott 76 

H XH [) >G xG 
rn n rn n 

G) CD 
"I "I 

H(rn + n) > G 
G) 

Thus there is an induced map 

Now W 
m+n is fibered by SZ(m+n) -spheres over SZ(rn+n)+l' 

d G /H ~ W represents the fiber. an m+n m+n m+n It 

follows that there exists a map g: S2m x S2n - Gmtn/Hmtn 

which makes the following diagram homotopy commutative: 

G /H - S SZrn x SZn --~---v rn+n rn+n - Z(m+n) 

i 

W "I 
m+n 

Furthermore it is not difficult to see that g has degree 2. 

N ext, let Y rn+n E KU(W rn+n) be the bundle induced 
, 

by I\;;'+n E RU(Hm + n )" Then clearly i" Yrn+n ~ Ym+n as 

defined in the theorem. 
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, 
We first propose to compute r Y m+n By the 

naturality of the inducing procedure this amounts to 

unde rstanding 

, 
r : RU(H + )-RU(H XH ) "'RU(H ) <8> RU(H ) " ron rn TI m TI 

Now, from Dur discussion in Section 10 it is apparent that 

(1\ + - 1\ - ) <8> (1\ + - 1\ - ) 
m n TI n 

Hence if S is the bundle induced by (1\+ - 1\ -) Over S 
m rn m 

and we set S + equal to the bundle induced over mn 
W b ,,+ 

m+n Y rn+n A~+n' we obtain 

, , 
f"S ~ 

Sm <8> Sn m+n 

whence , 
g" Sm+n ~ Sm <8> Sn , 

, 
because i" S + ~ S 

m TI m+n On the other hand using the 

permanence law and the fact that 1:.+ + b. - is in the image 
m m 

of KU(G ) we have: 
m 

~ Z(y - dirn y ) 
m m 

Hence if we aSsume our theorem for m and n, 

respectively. 

Sand 
m 
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, 
Now the forrnula g' ~ = S 0 e proves the "rn+n m "n 

same assertion for ~ because of the periodicity 
m+n 

theorem for KU and the fact that g has degree. 2. O. E. D. 

Remark. If oue 1S familiar with theory cf character-

istic classes it is not difficult to compute the character cf 

Yn directly and so prove Theorem 3. See [lll . 

COROLLARY 1. KO(S8n) is generated by I, and 

the bundle induced by the real spin representation 

LI + E RO{Spin( 8n)} . 

Proof: Clear in view of 12.3, Theorem III and 10.6. 

COROLLARY 2 . .lJ Y denotes the bundle induced 

generate s 

KO(S 8n)' then the 

H 8n(S ) Sn 

8n 1th cornponent cf eh y 

Proof: By C orollary I of Theorem 6. I, the character 

~ Zn 
of KU(S2n) always generate H (S2n) cf a generator 

Hence Corollary 1 and (12.3) prove the assertion. 

§13. Sphere-bundles. Consider the following 

situation: 

G = Spin(8n + I) 

H = Spin(8n) 

E = a principal G-bundle over X . 
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In this case 1P(E) is therefore a sphere bundle over 

X. Precisely: Let pE RO{Spin(8n + I)} be the standard 

representation. Then CiE(p) is a vector bundle, V, over 

X, and its unit sphere-bundle may be identified with lP(E): 

lP(E) "" S(V) . 

By OUT general remarks, there 1S an H-bundle :t defined 

over lP(E). We let y E KO{lP(E)} be the induced bundle: 

where 6.+ is oue cf the real Spin representations in IRc(H). 

We now have the following extension of the periodicity 

theorem: 

THEOREM A. In the situation envisaged above~ 

KO"{I3(V)} is a free module over KO*(X) with generators 

and y. 

Proof: When X = point, this theorem reduces to 

Corollary 1 of Theorem III. Henee by the Kunneth formula 

(12.1), the theorem is true when E is a trivial G-bundle. 

But the Meyer Vietoris argulTIent, together with the eo-

homologie al property of KO;:~ th proves e general ease. 
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COROLLARY 1. There exist unique elements in 

KO(X) whieh make the following formulae valid in KO{S(V)}: 

(13.1) 

2 
Y A(E) . Y + B(E) 

This is clear. Oue thus has four invariants of E in KO(X}. 

COROLLARY 2. Suppose that E and E' are 

two Spin(8n + 1) bundles over X. Then lP(E) and lP(E') 

a Te cf the same übe r - homotopy type onl y if: 

(13.2) u E KO(X), dirn u= . 

Proof: Let f: lP(E) - lP(E') be a fiber homotopy 
, 

equivalenee. Then f' KO':'(lP(E')) - KO*{lP(E)} is a v,.,i'lv· 

isornorphisrn. 
, , 

Hence f" y :;;; ay + b, with dirn a = 1. 

Q.E.D. 

COROLLAR Y 3. The invariants eklE) have the 

property: 

(13.3) 
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The proof is clear. We note that we have here the 

2nd part of the cocycle condition of Section 8. The first 

part still has no analogue, as we do not know how to trcomputell 

the invariants 8 s (E). The following theorem solves this 

problem: 

THEOREM B. Consider the elements A B e r 
, , k' k 

in RO{Spin(8n + I)} defined in Proposition 10.5. Then the 

invariants of (13.1) are given by: 

A(E) = ~(A) , B(E) = O<E(B) 

ek(E) = O<E(ek ) , r k(E) = O<E(B) 

Proof: This is a clear consequence of the permanence 

law. For instance: 

2 = (+)2 +" 
Y O<:tb. =O<:t(b. 'i'A+i'B) 

= ~(A) . Y + ~(B) Q.E.D. 

COROLLARY 4. 

~: eh e
k 

= I\4n (y(k-l)/2 + •.. + y;(k-l)/2) 

whenee dirn eh Ek = k 4n . Q. E. D. 

k> 2 

COROLLAR Y 5. S(V) has the same fiber hornotopy 

type as the trivial sphere bundle only if 
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dim u ~ 1, u E KO(X) . 

1 analogue of the formula (8.1), 
Bere we now have a comp ete . 

developed for the KU -theory. 
There we obtained this 

d 'b'lity cf a Thom-complex, here it 
criterion for the core UCI 1 

arises from the J-triviality cf a sphere-bundle. 

these are closely related: 

However, 

• b dl then XE is C oreduc If E 1S areal vector un e, 

'" 8(E + 1) has trivial fiber homotopy type. 

(8. 2), 

. . th C onstruction cf We may nOW precisely mimle e 

and so define the group, Hl(~+; KO(X)) 

Further the function k ~ eklE) defines 

heuce a class 
Hence Corollary 1 

implies that: 

PROPOSITION 13.1. 
1 ' 

The element e(E) E H (~T 

of the stable fiber homotopy type of lP(E) = 
is an invariant 

~ 8(V) 

Note: Our e in the com.plex case was defined 

directly on the vector bundle. The construction of the 

e depends on the principal G - bundle E and not 
present 

only on its associated vector-bundle V 

with areal (8n + 1) dimensional bundle 

Thus if we 

V, QVeT X, 
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einvariant can only be defined for it if V is of the 

form p(E) for some principal Spint 8n + 1) bundle. On the 

other hand if p(E
l
) '" P(E 2 ) as vector bundles, then lP(E l ) 

Thus e doe s depend onl y 

on V, provided V is of the form ,a(E). Vector bundles 

of this type are said to have a Spin reduction, and V has a 

spin-reduction if and only if wl(V), W 2(V) ~ 0 as is well-

known. 

In short, e(V) may be thought of as the second 

obstruction to trivialization of the fiber-homotopy type of 

S(V), wl(V) + W 2 (V) denote the first two Whitney classes of 

v. 

If we let K Spin (X) ~ subgroup of KO(X) on which 

W
I 

and w Z = 0 , then it is easily seen that e extends to a 

homomorphism 

e K Spin(X) ~ H\X+, KO(X)) . 

We return now to the cOITlputation of the ek(E). 

PROPOSITION 13.2. Let A(E). "', r k(E) be the 

4 invariants of E described by (13.1). Also let V ~ p(E). 

,c,.::;,=.:.:...l::'n:c KO(X) these invariants are given by universal 

>~!.!1~~~~ls~i:.':n~t!.'h:,,!e ),i V , and an auxiliary element, 6(V), 

6(V) satisfies the equation: 
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(13.4) 

Proof: We set b.(V) = O!E(b.) 

representation in RO{Spin(8n + I)} . 

where !::. 1S the spin-

Then, as we know that 

RO{Spin( 8n + I)} = Z[>..ip;b.], i:: 4n it follows that the 

t A B e r of this ring can be express ed as 
elernen s , , k' k 

,i d b.. Applying O!E we obtain the polynomials in 'the A p an 

first part cf the proposition. 

whence 

To obtain the identity (13.4) reeall that 

eh b. 
4n 

= TI 
I 

( 1/2 -1/2) y. + y. 
1 1 

4n 
= TI (y. + 

I 1 

-I) 2 + y. 
1 

4n -I 
= TI (I + y.)(1 + Yi ) 

I 1 

We give now sorne explicit exarnples: 

PROPOSITION 13.3. 

A(E) = S2(E) = b.(V) 

2n 

B(E) = I >..2i-I(V _ I) 

i=1 
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while in general Sk(E) may be eomputed by the following 

algorithm: 

Let L = 47[z.; z~\ i = I, ... , 4n be the ring of 
1 1 

finite Laurent series. Define elements ')Ii , W, il
k 

in 

00 

I 
0 

yiti = 

w = 

(I + t) 
4n 2 -2 
11 (I + tz. )(1 + tz. ) 
I 1 1 

4n -I 
TI (z. + z. ) 
I 1 1 

11 = 11 {z(k-I) + ••• + z~(k-I)} 
k 1 1 

L by: 

Write 7k = Pk(y\ w) where P k is a polynomial. 

Bk(E) = pk(>..iV ; Ö(V)) . 

Then 

Proof: This should be clear in view cf Dur results 
! 

on KO{Sp in(8n + I)}. We have really just disguised the 

2 
isornorphism eh, and replaced Yi by zi to make the 

computations directly in L. 

This algorithm is clearly quite difficult to carry out 

in generaL However if additional information about V is 

at hand the computations are much easier. For us the 

following exarnple is cf special importance. 

PROPOSITION 13.4. Let V = 8nL + I where L is 

a line-bundle. Then Wj(V) = w 2(V) = 0 and we have: 
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k even 

(13.5) 
k odd 

Proof: Let r; be the principal 2: Z -bundle of L, 

and let 11 be the oue-dimensional representation in RO(Zi J 

so that L ~ "'r;(11)., So then V ~ "'r;{( 8n + 1)11} . Put differ-

ently, let 2:
Z 

- SO(8n) be defined by sending the generator 

of 2:
Z 

into minus the identity, and let f: 7L Z - SO(8n + I) 

be this hornomorphism followed by the inclusion. Let f*S 

be the extension of r; to SO( 8n + I). Then 

where p is the standard representation cf SO(8n + I) . 

Now, because we are in dim(8n + I), f can be lifted to 

Spin( 8n + I): 

_ Spin( 8n + I) 

z~ 1 
~O(8n+l) 

-' and our problem is to compute f' : RO Spin( 8n + 1)-

-' Indeed we have: Bk(E) ~ "'I "r;(Bk ) ~ o<~Y' Bk)' On the 

hand oue sees quite easily that, in terms of the notation 

introduc ed in Section 9, while 
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-~J 1/2 
f 1.Wl '" Y4n) } ~ .*1 Hence, under -f!, \ the element 

Bk = 'JP 4
1 

n(y,(k-I)/Z + •.. + y~{(k-I)/Z} 
/ ' 

(lj;/11+ ... 11k - I)4n. Thus 

-, 
rB 

k 

goes Over into 

k = 2s 

k = 2s + I • 

Let (J = 11 - I . 2 Then (J ~ - (J • Hence the identity 

holds. It follows that 

-, 
rB = k 

+ 

Nowapplying "'r; we obtain 13.5. 

(J k = 2s 

k = 2s + I . 

Exercises. l. Let Btc(v), where V is a complex 

bundle, denote the 6
t 

of Sectien 7 

characterized by: e~(Ll ~ I + L + 

d eC ( , c an t V + V ) = e t(V) . e~(v') 

Thus SC is 
t 

t-I 
+ L for line bundle s 

Now suppose that dirn V = 4 4n n, and A V = I. Then 

the real bundle E ".V will have a S . (8 ) . 
',- plD n reduchon, so 

etk ;Y) is well-defined. P h . rove t e formula: 
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2. Using the invariant e, cf the KO-theory and in 

particular formula (13.4) refine OUT earlier estimates on 

3. Prove the analogue cf Theorem A, Bete. when 

Eisa Spinc (2n + 1) bundle, H = Spinc (2n), and KO is 

replaced by KU . 

§14. The Thorn isomorphisrn. We adhere to the 

notation cf the last sectien but assume that in addition 

E = i~:~E! where Er is a principal Spin(8n)-bundle --- that 

is to say E! is an H-reduction cf E. The corresponding 

section of lP(E) is denoted by S. We thus have the split 

exact sequence of spaces: 

(14.1) 
1T 

0--> X < s> lP(E) ~lP(E)/S(X) --> 0 

In terms cf the associated vector-bundles oveT X oue has: 

W = P8n(E') = a
E

(P8n)' V = PSntl(E) so that V = W + 1 , 

and hence (14.1) goes over into 

(14.2) 0--3> X ~ : ) 13 (W + 1) ~ X W 
--> 0 . 
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i. e., lP(E)/sX may be identified with XW 

Because (14.2) splits KO"(X
W

) may be identified 

with its image unde r J d h ' an ence with the kernel of s' 

in the KO(X)-module KO':'(lP(E». With this understood , 

let z E KO(X W) be the element y - s'y where y is the 

bundle of the previous section. Then we have: 

over 

and 

THEOREM C' 

KO"(X). Further, 

KqX
W

) is f reely generated by z 

where 6k .E RO{Spin(8n + l)} is given by Theorem B 

The proot 15 trivial, ODe J'ust ' computes in KO"'(lP(E» 

whose ring and ~-structure are given by Theorems A andB. 

Let i: W 
X ~ X be the imbedding gi ven by S, the 

antipodal sechon s, followed by' W J . e associate the 

additive homomorphism x -+ -z . x, x E KO(X) with i and 

denote it by i, . With this t . 1 ermlno ogy Theorem C' rnay 

be stated as follows: 

THEOREM C" Let W be aSn-dimensional 

~v..:e..:c..:t.:o0..:r--=-:::b~u::n:::d:::,:,l e:'.....'w':'!'h!.i~c.ehc.a~d!:m'2.!:itt::s~a':..2~~~!.i.'~ re uction to Spin( 8n). Then 
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the homomorphism 

i5 a bijection, and satisfies the formulae: 

(i~ u)(i~ v) = i l " _1(W) U' v 

I/J k i~ u = i, ek(W) . I/Jku 

, 
i' i, u = "_I(W) . u 

(Here we have abbreviated "+(F) - ,,-I(F) to "_I(W), 

and Sk(E) to Sk(W), where F is the principal Spin(8n) 

bundle associated to Wand E is its Spin{8n+l)-extension. 

Only the last statement needs verification. For this purpose 

consider the action of N(H)/H (see Section ll) in our case, 

This group is 2Z
Z 

and acts on RO(H) by exchanging ,,+ 

and ,,- and it acts on S(V) as the antipodal map. Let us 
, 

write a: S(V) ~ S(V) for this map. Clearly a' is a 

KO"(X) automorphism of KO':'{S(V)}, Hence by the equi-

variance property (see Section 11) we have: 

On the other hand by the permanence law, 
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, 
Th' ( , us a y = -y+" E) Hence s'(y_ 

, , 
, " 

s'y) = s'a'(y 
, 

s' y) 

= s'(-y + ,,(E) - s'y) = L1-(F) - "+(F). This formula now 

yields the relation in question directly. 

Exercise. Follow -up Exercise 3 cf Section 13 in 

the present context. 

§15. The Gysin sequence. We now assume that W 

is an n-dimensional vector-bundle over X, and let S(W) 

denote the associated sphere-bundle. 

THEOREM 15. l. li W admits a reduction to 

Spin(m), then the following~GYs-i,n sequence is valid: 

p-m+l ~, 
"'- KO . (X) <;- KOP{S(W)} <~ 

KOP(X) <~ KOP-=(x) <-- , pE 2Z 

where now KOP . cl f' 
IS e lued for all integers by the period-

icity: KOp - 8 ~ KOP 

Proof: Let lD(W) denote the unit disc -bundle of 

IN as in Section 1 . Then as we saw there, one has the 

exact sequence of spaces: 

which gives rise to the exact sequence: 
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~OP(XW) is identified with 
We will the refore be done onc e K 

Choose an integer k > 0, so that m + k ~ Sn . 

Then W + k . 1 is an Sn_dim.ensional bundle which admits 

(S) Heuce the Thom isomorphisrn: 
areduction to Spin n. 

i5 weH defined. On the othe r hand 

whence 

h" S oue obtains the 
Composing these two isomorp lsm 

i5 omorphis m: 

which goes over irrto 

by applying the periodicity law n-times. 

Note that when dirn W ::: Sn ~ we have already 

determined the homomorphis m 
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is multiplication by lI_l(W) ~ 6+(W) - lIJW) , as follows 

from Theorem C Il
• It seems a reasonable conjecture that 

4> is always given by multiplication with 4>(1) E KOm(X) . 

§16. The rational J -invariant derived from El:V) 

In Section 13 We defined the cocycle k - ek(V) for an 

(Sn + 1) dimensional bundle with a Spin-reduction, and 

showed that the J -type of V was trivial only if there exists 

auE KO(X), dim u ~ 1 such that: 

(16. 1)\,ek(V) ~ k 4nl/>ku!u 
''-----

+ for all k E Z . 

PROPOSITION 16.1. The equation (16.1) can always 

be solved for u in KO(X) 0 Q2. 

In KO(X) (16.1) can of COurSe have no solution as 

exampled show. This proposition depends vitally upen the 

nilpotence of KO(X) i. e., upon the finiteness of X. To 

see the implications of this assumption consider the general 

situation of Section ll. Thus E - X is a G-bundle and 

~ : R(G) -K(X) the corresponding homomorphism. Also 

let I cR(G) be the ideal of elements of dimension 0. Then 

0);/1) c KO(X). Hence under our finiteness assumption O!E 

annihilates a high enough power of I. It follows that O!E 

extends uniquely to the I-adic cornpletion R(G) of R(G) . 

In other words, if .E a. is an infinite series of elements 
1 



in R(G) with 
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ni 
a. EI 

1 
TI. ::::: co 

1 

then <1
E

(L a) is a well defined elern.ent in K(X) 

Consider now the cocycle k -I 8k where 

94 

6
k 

E RO{Spin(8n + I)} are the elern.ents defined by 10.13, 

i. e., by: 

We will eonstruet an elern.ent 0 E RO{Spin( 8n + I)} 0 <I2 

with the property that: 

(16.2) dirn. 0 = I, 

If such an element cau be found, Proposition 16.1 

will clearly have been proved, Olle simply sets u:::: O!E(G), 

where E is the prineipal Spin( 8n + I) bundle of V. 

To deseribe elern.ents in RO of G= Spin( 8n + I) 

we start with the imbedding 

RO{SO(8n + l)} 
eh 

-=--"> Z[y., y~ll 
1 1 

i :::: 1, ... , 4n 

described in Section 10. For convenience we abbreviate 

the LHS to RO and the R. H. S. to L. In L the ideal 

whieh eorresponds to I(T) - RO(T) is generated by the 

element (x. - 1) and (x~1 - I). We set 
1 1 
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Now eh t d ex en s to a homomorphism 

RO - L 
. 

which identifies RO with the formal power series in the 

1"] i which are 

tions 1 - 71. -I 

1 

invariant under perITlutations and the opera

I 
I _ Tl ,. (eorresponding to x. - x~I). Henee 

1 1 

the element (} determined by 

(16.3) 
4n 

eh 0 = TI { Tl j 1 ( } - I Jr - Tl. og I - Tl i) 
1 

is a well dete;rmined element of RO 

We have ,I'k' y. = yk. h ,J, 0/ 1 1 W ence 'f'k'r1 i :;:;; I - (l - Tl .)k . 
1 

Therefore 

and 

Q.E.D. 

4n {I _ (I _ Tl .)k 
= TI 1 

I (I _ 11.)k/2 

4 4n 
k n TI 

1 

1 

. k· log(1 - Tl
i
)} 

Before completing Our discussion of the element 

" we bring another application of the fact that aE extends 

to RO(G) . 
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THEOREM 16. l. Let M c KO(X) 0 [) be the sub
-- p 

space on which lP
k 

acts by multiplication with kP . Then, 

KO(X) 0 [) 

15 a direct surn decomposition. 

Froof: It will be sufficient to decornpose every 
---

bundle W into it~ components in M 4p ' Let then W be 

given. and let E be the prineipal SO(2n) bundle assoeiated 

to 2W. (Note that 2W always has a reduction to SO .) 

Thus 2W = piE) = C/E(P) where pE RO{SO(2n)} is the 

standard representation. 

Now in RO{SO(2n)} 0 (D we have, in OUT earlier 

notation, the following obvious identity: 

eh p 

Henee if we define p E R"0{SO(2n)} 0 [) by 
P 

Then 

eh p = 
- p 

-,- ~ '{ }P { I}P' L L log (I - 11 i ) + log I -11 . J. 
p I 1 

00 

p = L Pp and 

p=O 

i{! p = k P . P • 
k P P 
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Henee in KO(X) 0 [) we have 

W = I 
2 

giving the desired decornposition cf W . 

also that M
p 

= 0 if P is odd. 

Of COurse we see 

Tc contiDue with OUT class {4. Note first that an 

element 0 may be defined in eaeh of the rings RO {SO(2n)} 

by the formula: 

eh .. 
4n 

= 11 
I 

i = 1, .. " n . 
11 i 

/1 _ 1"]. 10g(1 - 11·) 
1 1 

Henee for any SO(2n)-bundle E we obtain a weil determin

ed element OiE) EI + KO(X) 0 '" . ~ Further it 1S clear that 

OiE + E') = O(E)' OiE') 

Hence (6 extends to a homomorphism 

0: KO(X) ~ I + KO(X) 0 [) 

(Note. If W is an SO(n) bundle, define O(W) as /O(2W).) 

THEOREM 16.2. Let W and W' be two veetor

Then W and W' are stably J -equivalent bundles Over X . 

only if 
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O(W) = O(W') • U, U E KO(X) dirn U = I . 

Thus O(W) E I + Ko(X) 0 <0/1 + KO(X) is a stable 

J -invariant of W . 

Proof: Assurne first that dirn W = dirn W' = (Sn+ I) 

and that they adrnit spin-reductions. Then Wand W! 

are of the same stable J -type only if there exists aUE I 

+ KO(X) so that 

This implies >}Jk O(W)/O(W) = >}Jk {O(W') . U}/O(W)· U 

and henee by Theorem 16.1, that O(W) = O(W') . U. 

This settles this special case. In general, suppose 

Wand W 1 are J -equivalent without necessarily having a 

Spin -reduction. Choose WJ. so that W + WJ. i5 a trivial 

bundle of dimension (Sn + I). 
~ . 

Then W' + W wül be 

J -equivalent to the trivial bundle and hence have a Spin-

reduetion. So then O(W')· O(W.L) EI + KO(X) whieh 

implies O(W) " O(W') mod 1 + Ko(X) . Q.E.D. 

§!7. The!il class. In the last seetions we have 

found the analogues in the KO-theory of the e whieh we 

had eonstrueted in the complex case by elementary 
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considerations. It i5 noW natural to try and find an analogue 

for the Todd class which was encountered there. The 

purpose cf this section is to discuss this question. 

We continue to use the notation cf Section 13. We 

also reeall that co.!:..: KO (X) ~ H~'(X ; (0) is defined as the 

eornposition KO(X) ~ KU(X) ~ H''(X; (0), and 

eh O(X) C H"(X; (0) 

as the image of this homomorphism. 

THEOREM A' . Consider the sphere bundle S(v) 

~ X of Seetion 13, and let Y = ehSn(Y) be the Sn-th 

eomponent of the eharaeter of y. Then H''(S(V); (0) is a 

free module over H*(X; (0) with land Y as generators. 

Proof: When X is a point, C orollary 2 of 

Theorem 3, Section 10 proves this assertion. Hence it is 

true always by the usual Meyer-Vietoris argument. 

COROLLAR Y 1. There exist elements unique in 

H'"(X; (0) whieh make the following equations valid in 

H*(S(V); (0): 

y
2 = a(E)Y + ß(E) 

eh y !il(E)Y + Ill(E) 
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COROLLARY 2. Let E and E' be two 

Spin (Sn + l)-bundles over X. Then their assoeiated 

sphere-bundles lP(E) and lP(E') are of the same fiber 

homotopy type only if 

aI(E) . {al (E'W
I E eh O(X) 

Proof: Assume f: lP(E) ~ lP(E') is a fiber -
, , 

homotopy equivalence. Then f" y = ay + b where a, 

b E KO(X) , dim a = 1, by Theorem A . 

Henee ehL-y~,= eh(a) aI(E)Y + K l , K l E H':'(X; ([)) 

On the other hand f" eh y' = W(E') . ('Y' + K 2 ' K 2 E H':1x;([)). 

Now when E is a point it follows frolTI Corollary 2 of 

Theorem III ,Seetion 12, that aI(E) = 1. Henee the eonstant 

term of aI (E) = 1. In other words: 

aI(E) = 1 + hl(E) m(E) E fl:"(x; ([)) 

Also, because dirn a = 1, we have:, 

eh a = 1 + eh a eha E fl:"(X;([)) 

Henee 

Now if we eOlTIpare coeffieients of Y we obtain 

eh (a)' <ll(E) = aI(E') Q. E.D. 
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Thus the invariant corresponding to 8 in H;\Xj 02) 

is the element aI(E) E H':'(X; ([))/eh O(X). In view of the 

results of the preeeding seetion it is not surprising that 

m(E) should be related to the invariant 0 of the preeeding 

section: 

THEOREM. Let V = Pn(E) be the veetor bundle 

assoeiated to E by the regular representation. Then 

ehO(V) = m(E) . 

Proof: We will first show that the eoboundary cf 

m(E) is the eoeycle: 

k --+ eh 

Preeisrly let I/!k operate on H
2n

(X;([)) by multiplieation by 

k
n

. With this understood we have: 

PROPOSITION 17.2. Let eklE) be the eoeycle of 

E. Then 

(17. 1) 

Proof: We have I/!k Y = ek(E)y + r k(E). Henee 

eh I/!kY = eh eklE) . eh y + eh r k(E) = eh eklE) aI(E) . Y + K
l 

where Kl E H''(X: ([)). On the other hand I/!k eh = eh I/!k as 

follows direetly from the splitting prineiple for KU. Henee 
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eh I/!kY = I/!keh Y = I/!k{m(E)Y} + I/!klB(E) 

= {l/!km(E)}k
4n

. Y + I/!klB(:e;) 

C omparing coeffieients of Y we obtain: 

l02 

Q.E.D. 

To return to the proof of the theorem: Combining 

(16.2) and (l7 .l) we see that m(E)/eh n(E) is invariant under 

I As both these expressions start with oue, we may IPk . 

eonclude that m(E) = eh G(E) . 

One may express m(E) in termS of eh(V), (V = p(E)) 

Or, as is usually done in terms of the Pontryagin elasses 

p. of V. 
1 

the ith Chern-class of V.) Indeed, we know that if the 

Chern-class e(f"V) is represented formally by TI(l + YiXl-

then eh(V) is represented by 
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In other words if the last formal power series is expressed 

in terms of the elementary symmetrie funetions of the 

z 
Y i' Pl"'" P4n' and these are then replaeed by the 

Pontryagin classes of V we obtain m(E) . 

This reeipe is thus the analogue of Proposition 13.3. 

In their work [4, 5J, Atiyah and Hirzebrueh use the class 

m- 1(E) = eh n- 1(V) and denote it by fu(V). Their derivation 

of the algorithm relating the Pontryagin class of V to fu (V) 

is quite different frorr~ ours. They were led to the study of 

m(v) through their investigation of the eohomology of G/U 

where U is a subgroup of maximal rank in G [llJ. In a 

sense, their eomputation is the proper analogue in the 

H"(X; «)) theory of our derivation of a reeipe for eklE) 

Exereise. f Let X ---=--...:;> Y be a smooth inelusion of 

compact oriented differentiable manifolds. Let N be the 

N 
normal bundle of X in y, and let j : Y ~ X be the 

natural projection. Assume now that N has a Spin-

4n reduetion. so that we have the Thom isomorphism: 

1 + I {e Yi + e -Yi} , 

and hene e eh{O( V)} by 

4n 
TI 
1 

1 - Yi e 
y. 

1 

1 

-Y'/2 . e 1 

4n 
= TI 

1 

sin h(y./2) 
1 

(y./z) 
1 

n = dim N . 

Oue defines the f!Umkehrungs\! homomorphism f t in the 

KO-theory by: , 
f u = j"rp(u) 
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Thus f,: KO(X) ~ KO(Y) . 

, 
Prove the formula f, (uf" v) ~ (f, u) . v, and the 

Riemann-Roch formula: 

ch{f~ u} ~ f,:Jm(N)' ch u} u E KO(X) . 

This formula may also be written in the form 

u E KO(X) , 

t , t the respective tangent bundles of X and Y . Using 
x y 

this expression, an imbedding of Xc S8n (high n) and the 

periodicity theorem defin-e-- f~ for any map X ~ Y for 
, 

which f" t - t admits a Spin-reduction and show that the 
y x 

above forrnula persists. This is the differentiable Riemann-

Roch theorem of [4] . 

Carry out the analogue for the KU theoryalso 

using the Spinc(n) bundles. 

§lS. Real projective bundles. Consider the exact 

sequence 

....... 
(18.1) Spin (n) ~ Spin(n) ~ 2 2 

--where Spin(n) is the normalizer of Spin(n) in Spin (n + 

The nontrivial Z,Z -ITlOdule then pulls back to an element 
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11 E RU{Spi~} . 

""'"' PROPOSITION 18.!. Let (>: Spin(n) ~ Spin(n + 1); 

n> 3 be the inclusion, and let b. +, b. be the Spin repre

sentations of Spin(n + 1). (We set /:,+ ~ 6 if n + 1 is 

odd.) Then 

(18. 2) 
, + 

(>. 6-) ® 11 

Proof: The sequence (18.1) is obtained by covering 

the corresponding sequence 

(18. 3) 
/'. 1T 

SO(n) ~ SO(n) ---"-> 2
2 

which exhibits S~) as O(n), by the way. To obtain a 

splitting of (18.1) we proceed as follows. Given n + 1 

integers {<) ~ < let d(E) be the diagonal matrix in O(n+l) 

with ith entry (-l)<i. Then SO(n) <=---;> SO(n + 1) is the 

subgroup which commutes with the element d(I,···, 1; -1). 

Let 

a ~ d(l,···, 1; -1, -1, -1, -1) E SO(n + 1) 

~ 

This element is clearly in SO(n) Further rr ~ generates 

Z2' Hence a splits (18.3). 

/\. 
Spin(n). Then we assert that 

Let a be a lifting of ~ to 

2 /\. 
a ~ identity in Spin(n). 

Indeed the shortest closed I-parameter group in SO(n + 1) 

containing ~ as üs midpoint represents the trivial element 
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of "l{SO(n + I)} and hence lifts to a closed curve in Spin(,1). 

O.E.D. 

........ 
Thus a Spin(n) module, V, is specified by the 

action of Spiu( n) on V and the action of the element a 

on V. 

Suppose now that (n + 1) is even. Then LI + and LI 

are distinct elements of RU which both restriet to the 

irreducible module LI of R U{Spin (n)}. Further , the 

+ restrietion of b. to the group generated by a cau be 

computed: 

We choose the !!obvious!1 maximal torus Tc Spin(ntl) 

containing a and write y. for the characters on T as 
1 

befare. Then for a proper chaice of the numbering and 

orientations of the y. we have: 
1 

while /Yl ···ym(a) = + 1. 

if i = 1, Z 
if 1 /1, Z 

+( ) + -It follows that ch LI a = dim /', . + 1 , ch LI (a) = 

::;: dirn 6. • (-1) Or more precisely the restrietions of 6.+ 

and t:. to the subgroup generated by aare respectively 

dirn b. + X trivial representation and dirn b. X the repre-

sentation Tl. Thus if V i5 a representation space for 
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a! b. + h I 
t en a acts by +1 X identity and a." 11 - is described 

.......... 
On V by changing the action of Spin(n) only at a, name1y 

by letting a act as -1. B t th' t' , 
U lS ac Ion lS precise1y the one 

given by O!~ LI + 09 TI 
O.E.D. 

Suppose next that n + 1 is odd. Then CI.~LI, LI = LI+ = LI

ean be deseribed in this manner. Let V be a representa

/'.. 
tion space for LI + E RU Spin( n) and define an action of 

Spin(n) on V + V by setting 

g(e1, e Z) = (gel' aga -lez) 

a(e l , e Z) = (e
Z

' e
l
) . 

g E Spin(n) 

This is true because the automorphism induced by a on 

Spin(n) exchanges /', + with LI_ • 
, 

N ow then CI.' LI 09 TI will 

be given by the same representation on Spin(n) however 

a will now send (e, e ) into -(e e) 
1 Z Z' 1 . The problem is 

therefore to show that these two actions are equivalent, 

and this will be demonstrated, onee we construct an 

element c in the center of Spin(n) ·th h 
Wl t e property that 

-1 
cac =a'E 

where " gene rates the kernel of Spin(n) ~ SO(n). Indeed, 

in each spin representation E acts by -1, so that the 

automorphism by c would take the first action into 
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the second oue. 

Let !:. = d( -I, .. " -I, I). This element is in the 

center of SO(n). We set c equal to a lifting of c. Then 

if 2m = n we have: 

2 rn-I 
(c . a) = E 

as follows from the fact that the shortest closed I-para

meter subgroup of SO(n + 1) containing ~, respectively 

represents m times respectively (m - 1) times the ca 

generator of "1{SO(n + I)}. Hence 

or equivalently 

2 
ca . ca = c E" 

-I 
c ac 

-I as a =a. Q.E.D. 

COROLLAR Y l. The formula (18. 2) holds in 

{ 
/.'- } + - . t t d the real RO Spin(n) when the /1 ,/1 are in erpre e as 

spin representations of RO{Spin(n + I)} . 

This is clear from the results of Section 10 because 

71 is the complexification cf areal bundle. 

If we apply the permanence law to these relations 

we obtain the following theorem. 
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THEOREM 18. I. Let E be a principal Spin( n +1) 

'" bundle over X. Let Spin(n)<--Spin(n + I) be the inclusion 

and consider the projective space bundle 1P(E) over X 

associated to this subgroup. Then if /1±- E RO{Spin(n+l)} 

are the Spin representations and n E KO(X) 15 the sub-

bundle over lP(E) (see Section I), the following relation 

holds in KO{lP(E)}: 

(18.4) 

Proof: All that is needed is to identify 11(E) with 

the sub-bundle 11 over lP(E) and then to apply the 

permanence law. 

COROLLARY: Consider P = real projective 
n 

space of (n - I) dimensions, and let 11 E KO(P ) be the 
n 

bb I h · . + h + su - und e. T en If a = dIrn tJ. w ere tJ. is the real 
n n n 

spin representation of Spin(n), we have 

Or 

Proof: 

theoremo 

a . I 
n 

a (I - '1) = 0 
n 

Just let X be a point in the previous 
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REMARKS. 1. The same result of course holds in 

KU(P n): one has (1- 11 ® a:) . dime ll~ ~ 0 where we now 

let b + be the complex spin representation. 

Z. We have carried out the proof of PrOposition 18.1 

only for n ~ 3. When Spin(n) is properly defined for n = 2 

as the double covering of SO(Z) everything is still valid in 

that case also. 

§l9. Som"e examples. In view of the last proposition 

of Secbon 18 the following is not quite surprising. 

THEOREM 19.1. Let P 
n 

denote the real projective 

space of dimension n - 1 Then 

(19.1) KU(P ) 
n 

(19. Z) KO(P ) ~ 
n 

:.:: 
a 

n 

where a and bare the dimensions of the Spin re'p"e,senta 
n n 

tions in RO{Spin(n)} and RU{Spin(n)} respectively. Further 

KO(P n) is generated by S ~ 1 - 11 and KO(P n) by (1 -11) ®a; 

where n. is the sub-bundle over P n 

Z 
we have S ~ -Zs . 

Z 
Thus, as " = 1 , 

This theorem has several proofs, none of which are 

really quite satisfactory. In a way the most 
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one is the following procedure of Milnor. By the spectral 

sequence for KU(X), see [5J, it is clear that KU(P ) has 
n 

order band that KU-l(P ) ~ :.:: if n is even and is 0 
n n 

otherwise. To prove that Ku(P n) is in fact cyclic one 

uses the universal coefficient theorem which gives rise to 

an exact sequence: 

where KU':'(X;:'::z) is defined as KU"(X # P
3

), P
3 

being 

the Moore-space for the group ./XZ Now there is a 

spectral sequence covering to KU'\X; .lX
Z

) with E
2 

term 

H"(X; KU"(p; :.::Z)), and KU':'(p;Zl:
Z

) is seen to be :.::Z in 

every dimension. Finally it turns out that already the 

fir st diffe rential operator, 1 Z Z 1 
d 3 ~ Sq Sq + Sq Sq , kills the 

spectral sequence yielding KU(X; :.::Z) = ~Z . 

is cyclic. That S is a generator then follows by induction. 

To get at KO(P n) Milnor now uses the sequence (lZ.2) 

relating KU and KO . 

One may arrange this sequence in the following 

manner, 
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so that sequence shaped as follows is exact: 

-- - - - , , .... , 
"' , ..... ... , 

I 

r~ I , 
I ;c, I 
I 

I 

I 
\ I 
~ 

... ~ .... .. ..... , 
" - - - --

ll2 ll3 Lecture s on K(X) 

Another approach is to systematically use the Spin 

representations to build bundles on the spaces P n/Pk and 

then to use a double -induction. This was the point of view 

used by A. Shaprio and mys elf in [8]. The gist of the 

argument is as follows: Let M
k 

C RO{Spin(k)} be the 

additive subgroup generated by the Spin-representations in 

RO{Spin(k)}. Thus Mk"';:Z: for k I 4n, and M
k 

'" ;:z: + ;:z: 

for k:= 4n. We further have natural restrietion homo-

morphisms: M
k 

-+ M
k

_
r 

. 

Now, let 11 be the sub-bundle Over P > and consid 
n 

consider P k C Pr' Then on Pkak · " is isomorphie to a 

trivial bundle by the corollary to Theorem 18.1. In fact 

every spin representation on RO{Spin(k)} i5 seen to deHne 

adefinite trivialization of akT] on P
k 

and thus a bundle on 

P n/Pk' Thi~ construction then extends to a homomorphism 

and Our result, which we proved by a double induction and 

a product formula yields the theorem: 

THEOREM 19.2. The sequence 

M - M - KQP /p ) - 0 n k n k 

where the first homomorphism is the restrietion, is exacL 
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The same result holds over the complex numbers if Mn 15 

defined as the subgroup generated by the complex Spin 

representations in R U{Spin(n)} . 

The details of either of these proofs are a. little toD 

lang to be given here. Adams! aCCDunt of these computa

tions cau be found in HVector fieids on spheres!!. Ann. of 

Math. (2) 75 (1962), 603-632. 

Noteworthy corollaries are: 

COROLLARY 19.1. Consider the sequence 

o - KO(P ) - KO(P I) - Ko(S ) 
TI n+ n 

Then the generator of KO(Sn) is mapped onto an· S EKC(bti. 

In particular KO(S), n" I, 2 (8) is injected into KO(Pntt. 
n 

COROLLARY 19.2. The operation of >/lk on KO (Pd , 

and hence on KO(S ), n" I, 2 (8) is given by: 
n 

>/l 2kt 1 = identity 

o 

Proof: Recall that 'll is the sub-bundle of P 
n 

Hence, in particular, a !ine bundle. Thus At'll = 1 t tT) , 

whence >/lt'll = 1 _'llt'll ,so that>/l2ktl'll = 'll and >/l 2k'll = I. Now 

S = 1 - 'll generates KO(P n) . Q. E. D. 

115 Lectures on K(X) 

The following gives the crucial result in the Adams 

solution of the vector-field-problem. 

THEOREM 19.3. KO(P) '" J(p ) 
n n 

Praof: We have to show that if b. Tl i5 J -equivalent 

to zero, then b is a multiple of a . For n::::: 1, .. " 9 
n 

the Whitney class gives the correct result. Indeed for 

b . 'll to be J -trivial w('ll)b has to equal Further, 

because w(rp = 1 t x where x gene rates H\P ) we may n 
check explicitl y that the 

the equation (l t x)b = I 

lowest power of b which will solve 

is precisely a 
n 

Consider the caSe n> 9 next. As J(p ) is a 
n 

quotient of J(p ) a possible value of b will have to be ntm 

a multiple of 8, say 8m. Now 8mT) admits a Spin-re

duction, so that the cocycle e
k

(8m T)) is well defined. In 

fact we have 2. 1 ready computed this cocycle in Section 13 

and found that 

k
4m k 4m 

"2 (1 - 'll) k even 
ek (8m 'll) = 

'k
4m 

} k 4m _ { 2 - I (1 - 'll) k odd. 

Now by Corollary 2 of Theorem B in Section 13 We obtain as 

a necessary con4ition for the J -triviality of Sm 11 that 
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where u i8 an invertible element of KO(P ). But for k 
n 

odd, we have seen that I/>k acts as the identity on KO(P n) 

so that the condition reduces to 

k 4m _ { k 4m
2 
- I} S = k 4ITl k odd . 

Hence we must have "0 ITlod a for odd k. 
n 

Now a Httle number theory shows that this condition irnpEes 

that 4ITl is divisible by a /2, i. e., that 8ITl is divisible 
n 

by a . However this is also the condition for stable 
n 

J -triviality, which reads as follows: 

Hence for ocid k oue still has 

for some s. 

- 0 mod a .Q.ED. 
n 

COROLLARY 19.3. KO(S) '" J(S ), n" 1,2 ITlod8. 
n n 

Proof: We have 0 - KO(Sn) - KO(Pn+l) '" (p n+l) 

whence J(S ) t 0 . Q.E.D. 
n 

Let ITle conclude by sketching the path, a la JaITles, 

Atiyah, from this theorem to the vector-field problelTI on 

the spheres. The theoreITl of AdaITls [I], [2] ITlay be stated 
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as follows: 

THEOREM: Let 0 k denote the space of ortho-n, 

normal k-frames in E , and let 0 -t 0 be the 
n n,k n,l 

projection. Then this fibering hag a section, if and only if 

n i8 a multiple cf the Hurwitz-Radon number a k · 

One considers the fibering: 

Also let P cO be the projective space iITlbedded in 0 
n n n 

by a assigning to a l-space, e, in E the reflection in 
n 

the corresponding orthogonal hyperplane. The sequence 

above then gives rise to a sequence 

P /p --> P /p ~ P /p 
n-l n-k n n-k n n-l 

and one checks that in the stable range Tr has a seetion if 

and only if TT' has a section. Now P /p = P (n-k)l1 as 
n n-k k 

is easily checked. Hence if P
k
(n-k)l1 ~ S has a section s, 

n-l 

the S-dual of this map will determine a map S _p'(nf1tn1l) 
ITl k ' 

n + n 1 = m, which yields a coreduction of pLn7l+n
1
l) _ Or, 

quite equivalently, a J -trivialization of nn. (One he re 

uses the duality theoreITl [3] which asserts that if X is a 

manifold with normal bundle N in SOme imbedding of 
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XcE 
n 

and if E is any bundle over X, then X(E+N) 

represents the dual cf XE in the Spanier-Whitehead sense.) 

The pertinent references here are [3], [IZ], [13] . 

§ZO. The difference element. Although I have 

avoided the l1differencel! construction cf bundles in these 

Detes, it is such a useful device that a short discussion of 

it seems advisable. The situation is as follows: 

Let E and F be bundles over X, and let rj be an 

isornorphisrn cf their restrietion to a subcomplex A cX . 

Thus 

We wish to construct an element d(E, F) E K(X, A) which 

is the analogue of the difference cocycle. For this purpose 

let Y = Xl U
A 

X z be the space obtained from the disjoint 

union cf two copies cf X, say Xl and X z ' by gluing them 

together along Ac X
l 

We now C oustruct a bundle 

over Y in the plausible manner: We take E over 

over X z and glue them together via }i over A. 

EU F 
rj 

Xl' F 

Note that we have a natural projection Y ~ X 

given by the identity on each factoT, also that we have two 

Si 
inclusions X --=---» Y ento the two factors X. c y, i:::: 11 

I 
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Z, and finally that 

s_ 
-L> -

X <;- Y ~ Yjx '" XjA 
" i 

exhibits X/A as a quotient of an exact sequence which 

splits. Thus we may identify 'K(XjA) with the kernel of 
, 

52 in K(Y) and this will be done in the subsequent discuss-

ion. 

With this understood one defines drj(E, F) E R(XjA) 
, 

- ,,' F in K(Y). This element is 
, , 

as the clas s of E Urj F 

in the ke rnel of s! as 
Z Fand s2 ,,' F = F 

To simplify the notation we consider 

over K(X) - i. e., suppress the 1T~ 

K(Y) as a module 

- so that drj(E, F) 

= E ~F - F in R(Y JA) C K(Y) . 

The following proposition is easily verified by an 

explic it check: 

PROPOSITION 20.1. The construction E Urj F 

has the following properties: 

(ZO.I) EUE = E 
1 

(20. Z) EU F = EUF 
-rj rj 

EU F+ E' U F' = (E + E') U , (F + F') 
rj rj rj+rj 

(20.3) 
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(20.4) (E U F)(E' U F') = E . E' 
yI yI' 

U F' F' 
yI09 yI' 

(20.5) 

h K(X) l·S defl'ned by hornotopy classes of maps R ecalling t at 

of X iuto ~, we see further that: 

(20.6) 

(20.7) 

E U F depends only on the homotopy class of yI. 

yI 

An immediate application cf this formula 1S: 

EUF+FU E=E+F. 
yI yI-1 

Indeed the LHS is given by E + F U -I F + E 
yI+yI 

while the RHS is given by E + F U E + F 0 However 
1+1 

yI + yI-1 can be deforrned through isomorphisrns into 1+ (-I) 

whence by (19. 2), the relation (19.7) folIows. As another 

application we cite the forrnula: 

(20. 8) d( e, F)(E - F) 

wlrich may be derived similarily. 

With the aid of the difference construction one rnay 

get at the Thorn-cornplex of a bundle directly. In fact 

consider the following general situation envisaged in 

Section 11: H ~ G. the inclusion of a closed subgroup; 
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E a principal G-bundle over X; lP = lP(E) = E/H; and 

finally M ~X the mapping cylinder of lP. We then have 

the diagram 

K(lP) ,,'--- K(M) <-- K(M/lP) 

I i ~ I 
R(H) " R(G) < R(G, H) 

, 
where R(G, H) denotes the kernet of i' and the vertical 

, 
homornorphisrns are O!"t and 1T' 0 a

E 
respectively. Now 

by the use of the difference construction we may complete 

this diagram with a compatible Ai - homomorphism 

d : R( G, H) - K(M/lP), at least for the KU -theory. Indeed 

Jet A and B be two complex G-modules. Then by the 
, , 

permanence formula 1r" 0 (YEA and u" aEB, when restricted 
, 

to JP, become canonically isomorphie to Otf{i' A) and 
, , , 

o<tU' B) respectively. Suppose now that i' A '" i' Band 

that yI is an H-isomorphisrn of these two H-modules. Then 
, , 

d9'(A, B) dyl(1T 0 O<EA,,,' O!EB) is a weil defined element of 

K(M/lP) Now if we are working with eomplex modules it 

is easily seen that the set of possible H-isomorphisms 
, , 

~: i" A -+ iO B is connected. (The group of H-automorphisms 

of an H-modul~ is just a product of full linear groups. Q.E.D.) 
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Hence dp(A, B) is in this case seen to depend only 
, , 

on A and B. In fact dp(A, B) ~ dp(A', B') if A - B ~A-B 

in RU(G). This follows homo A + B' ~ A' + B, as 

G-modules, => d(A + B', A' + B) = 0 => d(A, B) + d(B',A') = 0 

=>d(A,B) = d(A',B'). Q.E.D. 

(Here we have suppressed the f/ because it is 

unique. ) 

Every element xE R(G, H) may be written in the 

form A - B where A and Bare G-modules which have 

isomorphie restrietions to R(H), and oue defines d(x) as 

d(A, B). 

Over the real numbers the construction of a canonical 

d: RO(G, H) - KO(M/lP) is not so clear. In this case the 

group of H-automorphisms of an H-rnodule may have 

several components and it is not quite clear to me that the 

c·onsequent choices may be constructed compatibly. How-

ever in simple cases - - - such as G = Spin(2n), H ~ Spir:(2n-l) 

there is no difficulty in the real case either. 

Exercise 1. Obtain the formulae of Theorem Cl , 

Section 14, directly by using the difference construction. 

Exercise 2. Let f: (G', H') - (G, H) be a homo-
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G-extension of EI, and set 1P I = E'/H', lP = / EH. In 

this situation we therefore have the comrnutati d' ve lagram: 

RU(G') <<----RU(G) 

'i/ 1 
RU(H') <~~RU(H) 

Construct d t so as 0 cornplete the following comrn.utative 

diagram: 

KU(lP') <--

~'1 
KU(lP) <,,-__ 

["aE , 0a E 

KU(lP/lP') 
t.> 

d 

( 
, , 

RH) <--R(G) 0 R(H) "'---R(G, G'·H H')<--
R(G) , , O. 
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APPENDIX I 

ON THE PERIODICITY THEOREM 

FOR COMPLEX VECTOR BUNDLES 

By 

M. Atiyah and R. Bott 
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§ 1. Introduction. The periodicity theorem for the 

infinite unitary group [2], 15 most usefully expressed by 

the Kunneth forrnula: 

where K(X) denotes the group of virtual cornplex vector 

bundles over X. In this formula X is a finite complex, 

and S2 denotes the Gauss sphere. 

This note is devoted to a direct proof of (1. 1) using 

only the quite elernentary properties of the functor K. 

Our proof arOse out of a proposition which we needed 

in the study of well posed boundary conditions for elliptic 

operators, and üs basic principle is that the polynomial 

approximation which leads to the determination of K(SZ) 
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can be modified so as to determine K(X x SZ) over K(X). 

§Z. Preliminaries. We aSsume farniliarity with 

the elementary theory of vector bundles and the definition 

and elementary properties of the functor K(X) on the 

category, !!!, of finite CW -complexes, see for example [1]. 

In particular, we will need the foUowing !1 c l utching !l 

construction of vector bundles on the union of two spaces. 

Let X = Xl U X z ' with A = Xl n X
Z

' where the 

Xi ' X and Aare all objects of ?&. Assume also that 

E. are vector bundles over X and that cp. E I A ~ E IA 
1 i" 1 Z 

is an isomorphism of the bundles E. restricted to A. 
1 

These data then define a bundle E U E on X which is 
1 cp Z 

obtained by gluing EI and E Z together via cp on A. 

Elementary properties of this construction are the following: 

(Z.l) If E is a bundle Over X and E. = E' X. , 
1 1 

then the identity defines an isomorphism lA: Erl A -+ E
Z 

! A, 

and 

(Z. Z) If ß
i 

then 

, 
E. -+ E. are isornorphisrns on X 
11· 1 
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(2.3) If (E., <p) and (E', <p') are two "clutching 
1 1 

datal! on the X. then: 
1 

EI U E 2 $E~ U, 
<p <p 

E' 2 
2«E$E') 

1 1 

(EI U E2)0(E~ U E~ 2< (EI 0 E;) 
<p <p' 

U (E $ E' ) 
<;ß':<p' 2 2 

Thes e properties are immediate consequences cf the 

definitions and the nation cf isomorphism of bundles. From 

the fact that hornotopic maps induce isomorphie bundles. it 

follows further that: 

(2.4) EI U E
2 

depends only on the homotopy class 
<p 

of the isomorphisrn <p: EllA ~ E21A . 

If E and F are bundles over X and Y, then 

E 0 F _ their exterior product - is a bundle Qver X X Y 

This is the operation which induces the homomorphisrn 

which i5 to be shown to be an isomorphism. This is cf 

course the basic tensor-product, in the sense that the 

"interior1J tenSOr product cf two bundles E and F on the 

same space, that is, E 0 F, is defined by: E 0 F = lI"(E 6lll!i, 

with t:.: X .... X X X the diagonal inclusion. 
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§3. Bundles over X X 52 . Let 52 be thought of 

as the compactification cf the complex 

D+ denote the disc I z I < 1, while D-

numbers er:: and let 

shall stand for the 

opposite dise I z I > 1 . 

where 

Wes et Xl = X X D + and X 2 = X X D ; A = X X 5 

5 = D + nD - is the unit circle. The natural 

projections of these spaces on X are d d enote by lT1 , iT2 

and lT A respectively, while the map X ~ Asending X 

into (X, 1) will be denoted by s . 

PROPOSITION 3.1. Let E be a bundle over 

X X S2 c and let F = s'"E be the bundle on X induced by the 

map s from E. Then there is an automorphism f 

f: 11"'" F ~ 11"':' F A A unique up to homotopy, such that 

(3. z) 

(3.3) 

E "" 11"t F U 11"~F 
f 

and 

f! X x 1 is homotopic to the identity. 

Proof: We consider s as a ma f X . P 0 lnto Xl 

Then s 0 TI I : Xl ~ Xl is a homotopy equivalence. Hence 

the natural isomorphism E I X xl", 11" ~ F I X xl, may be 

extended to an isornorphism f : E I X 2! ;~F 1 1 11"1 . Further, 

any two such extensions differ by an <:tutomorphism 0: of 
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1TtF which i5 the identity on 1T ;F! X X 1 and therefore horno-

topic to the identity on all of Xl Thus the hornotopy 

class cf f
l 

is weH deterrnined. Sirnilarly Olle defines an 

isomorphism f
2 

: E IXz ~ 1T~ Fand now the proposition 

-1 
follows by taking f = f 2 0 f

l 
The clutching function f 

satisfying (3.2) and (3.3) is called a norrnalized clutching 

function for E. 

We next d~scribe an especially simple class cf 

clutching data for X x S2 Suppose then that F is a 

bundle over X, and consider an automorphism cp cf 'Ir;' F. 

Clearly such a r.p arnounts to a function which in a continu-

DUS fashion assigns to each pair (x, z), x E X, z ES, an 

autornorphisrn: 

<p(x, z) F ~ F 
x x 

Now given a sequence a
i

, i E 2? of endomorphisms cf F 

(i. e., continuous sections of the bundle Horn(F, F)) 

consider the expression: 

f = 
i 

a. z 
1 

For each x EX and z E a;, f(x, z) = L [i[:::.N ai(x) zi is 

then an endomorphism cf F 
x Hence if f(x, z) is an 
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isomorphisrn for each x, and z E S, then f defines an 

automorphisrn - also 

-~ :{, 
a bundle "I F U "2 F 

f 

denoted by f 

2 
on X X S . 

and therefore 

For obvious reasons we call an expression of the 

type (3.3) a Laurent series of endomorphisms over F, and 

call such a Laurent series proper if f(x, z) is nonsiugular 

for z ES 0 If uo negative powers of Z occur in f, then 

f is called a polynomiaL Finally. if f is a proper Laurent 

series over F then the bundle ";'F U "~F on X X S2 
f 

will be denoted by: (F, f, F), and will be said to have been 

obtained from F by a Laurent construction. 

As an example consider the finite proper Laurent-

series 
-n 

f(z) = Z X (Identity). This I!universall ' series 

applies to all bundles F over X. In particular if X is 

a point, and F is the trivial bundle, then (F, z -n, F) is 

a bundle on 52 which we denote by Hn . For n = 1 one 

obtains the "hyperplane" bundle Hand it is clear by (2.3) 

More generally it follows from 

(2.3) that for any bundle E over X, the bundle E ® H n 

on X X S2 is described by (E, z -n, E) . 

Our first step towards a proof of (1. 1) is the 

following proposition: 



Raoul Bott 132 

PROPOSITION 3.4. Let E be a bundle over 

X X S2 , and let s: X ~ X X S2 be the constant rnap 

x ~ (x, I). Then E is obtained frorn the bundle F = s"E 

bya Laurent construction. 

Proof: By Proposition 3. I there is a clutching 

~,< -'-
function f for F, so that E = 7r

1 
F U 7r ZF. Consider 

f 
now the Fourier series cf f: L~co a

k 
zk, where a k is the 

section of Horn(F, F) defined by the integral: 

S z -k f(x, z) dz/z 

S 

Thus f 
n 

i5 the n1th partial Cesaro-surn cf the Fourier series, and 

so by an easy extension of Fejer's theorem, f i5 seen 
n 

to converge to f uniformly in z, and in X - the latter 

because f is uniformly continuous on X x 52 

It follows that for n large enough f will be 
n 

arbitrarily elose to fand hence, in particular, proper. 

Finally because elose maps are homotopic, it follows that 

E "" (F, fn1F) for n large enough. Q.E.D. 

Our next aim is to classify the Laurent bundles over 

Because every Laurent series is of the form 

-n 
z p where p is a polynomial, the essential complications 
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of the Laurent construction already occur in the polynomials . 

Using an operation analogous to the one which transforlTIs 

a.n nrth order differential equations into a nUlTIber of first 

order ones, we first present a linearization procedure. 

Consider a polynornial p(z) = L~=O a i zi' of degree 

< n, over F. One then defines L n(p) as the linear 

polynornialover L n(F) = F'" ... ", F (n + I, copies) given 

by: 

L n(p)(z). {fO'···' fn} 

(3. 5) 

-zf I+f}' n- n 

In matrix-notion, L n(p): F<3'; ..• ", F ~ F'" ... <3'; F 

rl'+1 n+l 
is therefore described by the matrix 

a o, a
l 

•.. a 
n 

-z, I, 0 0 

(3.5) L n(p) = -z, I 

0 0 

-z, I 

PROPOSITION 3.7. Let p be a proper polynomial 

cf degree :s. n ~ F Then L n(p) is a proper linear 

polynornial on L n(F), and 
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(3. 8) (F, p, F) + (L n-l(F), 1, L n-l(F)) "" (L n(F),L n(p),L n(F)). 

Proof: Let p: L n(F) - L n(F) be givenby 

p(z*O' •.• , fn} = {P(z)fO' f 1, .. " fn}· Then the LHS of (3. 8) 

is clearly isomorphie to (L n(F), p, L n(F)). Henee we 

will be done onee it ean be shown that p and L n(p) ean 

be deforrned into each other through proper polynomialso 

For this purpose define L~(p) by the formula: 

. n+l n n-l p - t (p - a
O
l, t a 1 ' t a

Z ta 
n 

-tz, 1 , 
L~(p) = 

-tz, 1 , 0 

0 
-tz 1 -

and observe the identity: 

p, 
n-l 

t PZ,·· .tPn 1, 

1, -tz, 1, 

1 -tz, 1, 

1 

where p (z) are po1ynomials defined induetive1y by r 

() Ln i- r 
Pr Z :::; i:::r a i Z 0 

1 
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It is then clear that if p is proper then L~(P) will 

be proper for all t, so that this farnily furnishes a canonical 

homotopy from p at t = 0 , to L n(p) at t = 1. Q. E.D. 

Frorn (3.6) Some easy homotopies of proper linear 

polynomials lead one to: 

LEMMA 3.9. Let p be a proper polynornia1 of 

degree < n on F. Also write L m(F, p, F) for 

(3. 10) L n+l(F, p, F) "" L n(F, p, F) + (F, 1, F) 

(3.11) L n+l(F, zp, F) "" L n(F, p, F) + (F, z, F) 

For example the farnily of rnatrices 

a o' ... a a 0 n-l' n' 

-z, 1, 

-z, 1, 

-(1 - t)z, 1 

proves (3.10) . 

As explicit instances of these identities we have: 

Z( Z = 1 ( ( L 1, z , 1) - L (l, z, 1) + 1, z, 1) by 3.11), whenee by (3.8), 

(1, zZ, 1) + Z(1, 1, 1) "" (1, z, 1) + (1, 1, 1) + (1, z, 1). Thus 
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(3.12) 
-2 -1 

H + 2 '" 2H + 1 . 

We note that this is the basic relation of the hyper-

plane bundle. 

PROPOSITION 3.13. Let p be a proper linear 

polynornial on F. Then F decornposes irrto a direct Surn: 

2 
F = F e F , such that on X X S , + -

(3.14) 

The bundles F, and F are called the + and - bundles 
T 

of p on F. 

The decorn.position of F which we need here is 

given by the following theorem in linear algebra. 

LEMMA. Let a and b be endomorphisrns cf a 

vector space V, and let r be a closed curve in the corn 

cOITlplex plane for which p(z) = az + b ; zEr, i5 nOll-

singular. Then the following holds: 

The operators 1 J -1 P = 2~ p(z) dp(z) 
'" r 

(3. 15) 

and Q = ~ f dp(z)p(zr
1 

'TrI . r 
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are projection operators which satisfy the identity 

(3.16) p(>..) . P = Qp(>..) fo r all ;>,. E a: . 

For ;>,. outside r, p(;>,.) maps PV onto QV isomorphically 
(3.17-) - -- -

For ;>,. inside r, p(>.) maps (l-P)V onto (l-Q)V isomorphically. 

This lemma clearly applies to each fiber of Dur 

situation, with r the unit eirele, and so defines two 

continuous projection operators P and Q on F. In 

terms of thes e deHne: 

(3.18) Pt(z) = Q(az + tb)P + (1 - Q)(taz + b)(l _ P) • 

It then follows directly from (3.15) and (3.16) that Pl(z) 

= p(z) ; while (3.17) implies that, in addition, Pt is proper 

for each t. Hence (3.18) deforms p into the clutching 

function 

(3.19) Po = zQ aP + (1 - Q)b (I - P) • 

Thus: 

(3.20) (F, p, F) '" (PF, za, QF) + ((1 - P)F, b, (1 - Q)F) . 

Now, define F + as PF, and F _ as (l - P)F . Then 

applying the isomorphism a -I : QF ~ PF and b -1 :(1 _ Q)F 

~ (I - P)F in the second factors of these clutching formulae, 
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yields the desired isomorphism: 

(3.21) 

We finally combine (3.9) with (3.21) in a straight-

forward way to obtain the following: 

PROPOSITION 3.22. Let p be a proper poly

nomial over F of degree:5. n , and let L n(F, p, F\ be the 

+ bundles of L n(p) on' L n(F). Then: 

n+l( ) 
L n(F, p, F)+ L F,p,F, = 

T 

(3.23) 

L n+l(F, p, F) = L n(F, p, F) +F 

while 

n+l 
L n(F, p, F)+ + F L (F, zp, F)+ = 

(3.24) 
n+l( ) 

L n(F, p, F) L F, zp, F _ = 

2 2 § 4. The proof of K(X X S ) = K(X) 0 K(S ) . 
The 

proposition of the last section rnay be assembled to construct 

a homornorphism 

(4.1) 2 2 
!J : K(X X S ) - K(X) 0 K(S ) 

which will turn out to be an inverse to f.L and so establish 

(1.1). 
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First let f be an arbitrary clutching function f 

Over F on X ~ 

Let in be the C esaro rneans of its Fourier 
series, and put p :;;: zUf Th f 1 

n n . en Or n arge enough, Pu 

is a polynomial clutching function (of deg
ree

:5. 2n) Over F. 

Consider now the element !Jn(f) in K(X) 0 K(S2) defined 
by: 

(4.2) 

where [E] denotes the element of K(X) determined by the 
bundle E . 

We assert first of all that !Jn(i) = !Jn+l(f) for large 

enough n. Indeed if n is large enough, the linear segment 

joining Pn+l to Z· Pn provides a homotopy of polynomial 

clutching functions of degree :5. 2(n + 1). Hence, by the 

continuous dependance of L+n(F, p, F) h 
On p, We ave: 

L Zn+Z( 
+ F, Pn+)' F) "" Zn+Z 

L + (F, zPn' F) 

bY(3.23) 

Thus 

2n 
"" L+ (F, Pn' F) + F 

by (3.24). 

:::; ~ I 1",\ , 
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Heuce for large n, 1/ (f) is independent cf TI and 
n 

so depends only on f. We write it as v(f). Now if g is 

a clutching function over F sufficiently elose to fand n 

is sufficiently large, then the linear segment joining fn ·, to 

g provides a proper polynomial hornotopy and shows that 
n 

Vif) = v(g). Thus v(f) is a locally constant function of f 

and so depends onl y on the homotopy elas s cf f. Heue e if 

E is any bundle over X XS
2 

and f is a normalized 

clutching function for E '"as given in (3.2), then we cau 

deHne 

V(E) = v(f) 

and z.{E) will depend only on the isornorphism. class of E. 

Since v(E) is clearly additive for direct sums, V induces 

2 2 
a hom.ornorphism. v: K(X X 5 ) ~ K(X) ® K(5 ) . 

This is the desired inverse to J.L. Indeed the 

isornorphisms 

E = (F, f, F) = (F, f , F) = (F, p , F) ® (1, z -n, 1) 
n n 

show by (3.8) and (3.14) that /-LV is the identity on K(X X 52): 

By (3.8) we have 

[(F, p , F)] = [L
2n

(F, p , F)] - 2n[F] ® 1 
n n 

and by (3.14) we have, after elim.inating L 2n(F, p , F): 
- n 
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so that adding these two expressions 0 bt· [] [] ne 0 ams E = I.LV E . 

Finally the composition V· fJ is quite directly 

seen to be the identity on elements of the form. [F] ® [H] 

Or [F] ® [1]. Further, taking X to be a point, we see 

from the identity jJ.V:::: 1 that every K-class Over S2 is 

representable in the form a[H] + b[l]. H ence V· J.l is 

also 1. 



[lJ 

[2J 

[3] 
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CLIFFORD MODULES 

M. F. AnYAR, R. Bon and A. SHAPIRO + 
(Received 23 September 1963) 

INTRODUCTION 

Trus PAPER deve10ped in part from an earlier version by the last two authors. It is presented 
here, in its revised form, by the first two authors in memory cf their friend and collaborator 
ARNOLD SHAPIRo. 

The purpose cf the paper is to undertake a detalled investigation cf the role cf Clifford 
algebras and spiners in the KO-theory cf real vector bundles. On the oue hand the use of 
Clifford algebras tbrows considerable light on the periodicity theorem for the stable ortho
gonal group. On the other hand the use of spinors seernS essential in some of the finer points 
of the KO-theory whieh centre roulld the Thom isomorphism. As far as possible we have 
endeavoured to make this paper self-contained. assuming only a knowledge of tbe basic 
facts of K- and KO-theory, such as ean be found in [3J. In particular we develop the theory 
of Clifford algebras [rom scrateh. The paper 1S divided into three parts. 

Part I is entirely algebraic and is the study of Clifford algebras. This contains nothing 
essentially new, though we fonnulate the results in a novel way. Moreover the treatment 
given in §§ 1-3 differs slightly from the standard approach: our Clifford group (Definition 
(3.1») is defined via a 'twisted' adjoint representation. Trus twisting, wrueh 1S a natural 
eonsequence of our emphasis on the grading, leads, we believe, to a simplifieation of the 
algebra. On the group level our definitions give rise in a natural way to a groupt Pin(k) 
whieh double covers O(k) and whose connected component Spin(k) double covers SO(k). 
This group is very convenient for the topological eonsiderations of §§ 13 and 14. In § 4 we 
determine the structure of the Clifford algebras and express the results in Table 1. The 
basic algebraic periodieity (8 in the real case, 2 in the eomplex case) appears at tbis stage. 
In § 5 we study Clifford modules, i.e. representations ofthe Clifford algebras. We introduce 
certain groups A~. defined in terms of GNthendieck groups of Clifford modules, and tabu
late the results in Table 2. In § 6, using tensor products, we turn A* = Lk?>O AI; into a graded 
ring and determine its strueture. These groups Al< are an algebraic counterpart of the 
homotopy groups of the stable orthogonal group, as will be shown in Part III. 

Part II, which is independent of Part I, is concerned essentially with the '"difference 
bundle' construction in K-theory. We give a new and mo>,~ complete treatment of trus topic 

t This joke is due to J-P. Serre. 
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(see [4J and [71 for earlier versions) which includes a Grothendieck-type definition of the 
relative groups K(X, Y) (Proposition (9.1» and a product formula for difference bundles 
(Propositions (10.3) and (10.4». 

In Part 111 we combine the algebra of Part I with the topology ofPart 11. We define in 
§ 11 a basic homomorphism 

'Xp : AI: -)0 KO(X v ) 

where P is a principal Spin(k)-bundle over X, V = P x Sp;n(kjR\ and XV is the Thom complex 
of V. One of our main results is a product formula for ap (Proposition (I 1.3». Applying 

this in the case when Xis a point gives rise to a ring homomorphism 

CI. : A"" ---+ L KO-\point). 
k:;>O 

Using the periodicity theorem for the stable orthogonal group, as refined in [6J, we then 
verify that CI. is an isomorphism (Theorem (11.5». It is this theorem which shows the sig
nificance of Clifford algebras in K-theory and it strongly suggests that one should look for a 

proo/ ofthe periodicity theorem using Clifford aJgebras. Since this paper was written a proof 
on these lines has in fact been found by R. Woodt. It is to be hoped that Theorem (I 1.5) 
can be given a more natural and less computational proof. 

Using ap for general X gives us the Thom isomorphism (Theorem (I2.3» in a very pre
eise torm. Moreover the produet formula for et p asserts that the 'fundament'al dass' is 
multiplicative-just as in ordinary cohomology theory. Developing such a Thom iso

morprusm with all the good properties was one of our main aims. The treatment we have 
given is, we claim, more elementary, as weH as more complete, than earlier versions whieh 

involved heavy use of characteristic classes. 

In [7] another approach to the Thom isomorphism is given whieh has eertain advantages 
over that given here. On the other hand the multiplicative property of the fundamental 
dass does not eome out of the method in [7]. To be able to use the advantages of both 
methods it is therefore necessary to identify the fundamental c1asses given io the two cases. 

This is done in §§ 13 and 14. 

Finally in § 15 we discuss some other geometrical interpretations of Clifford modules. 
These throw considerable light on the vector-field problem for spheres. 

Although the main ioterest in this paper lies in the KO-theory, most ofwhat we do applies 
equaily weIl in the complex case. It is one of the features of the Clifford module approach 
that the real aod eomplex eases cao be treated simultaneously. 

pART I 

§1. Notation 

Let k be a commutative field and let Q be a quadratic form on the k-module E. Let 
T(E) = L~ 0 T'E = k ~ E r:Jj E ® E f!i). be the tensor algebra over E, and let I(Q) be the 

lwo-sided ideal genera ted by the elements x 0 x - Q(x)'1 in T(E). The quotient algebra 

t See also the proof given in: J. MILNOR: Morse Theory, Ann. Math. Stud. SI, (1963). 
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T(E)/I(Q) is called tbe Clifford algebra of 0 and is delloted by C(Q) W I d fi 
i:E_C(Q) .. - .easoene 
Q • to be the canonlCal map glven by the composition E ---+ T(E) -)0 C( Q) Th 

the followmg propositions relative to C(Q) are not difficult to verify: . eo 

(1.1) iQ : E_C(Q) is an injection. 

E
(l.h2) ~et <P,: E - A be a linear map of E into a k-algebra with unit A such that for all 

XE , t e IdelltIty "'(x)' - Q(x)1 is I'd Th h' ' ;P: C( 0) -+ ~ va I - en t ere eXlsts a unique homomorphism 
- B, such that;P lQ = <p. (We refer to ;p as the 'extension' of <p.) 

(1.3) C(Q) is the universal algebra with respect to maps ofthe type deseribed in (1.2). 

fil ~1.4). Let F'lT(E) = Li.:>q T:E be the filtered strueture in T(E). This filtering induces a 
AEtermg m C(E), w~ose assoeIat~d graded algebra is isomorphie to the exterior algebra 

, on E. Thus dIrn .ceQ) ~ 2',mE d'f { } C . 
together w'th th; , an . I ei l = I, .,., n) IS a base for iQ(E), then 1 

1 e pro uets ei, ·e., ... e;,., 11 < i2 < ... < ih form a base for C(Q). 

(1.5) Let CO(Q) be the image of I"w T"(E)' ceQ) I 
ofL<OTzi+1(E)' C(O) . ,,,,,0 .. In and set C (Q)equalto the image 
That ~s: III -' Then thls deeomposltlOn defines ceQ) as a Zz-graded algebra. 

(a) ceQ) ~ I C'(Q); 
''''0.1 

(b) If x, E C'(Q), Y JE CJ(Q), then 

X'Yj E Ck(Q), k := i + j mod 2. 

by th~hf~tIl~:i~~~ded strueture of ceQ) should not be disregarded is maybe best brought out 

PROPOSITION CI 6) Supp Ih tEE E . 
l . '. ose a = 1 EB 2 lS an orthogonal decomposition 0/ E 

re allVe 10 Q, and let Q, denote the restriclion 0/ Q to E. Then {her' . h' ,. e [s an 1somorp Ism 

.p: ceQ) '" ceQI) ® ceQ,) , 
of lhe graded tensor-product OfC(Ql) and ceQz) Wilh ceQ). 

B"", Recall ~r~t, that t~e. graded tensor product of two graded algebras A = ~ _ A" 
. L./Z",o,IB, IS by defimtlOn the algebra whose underlying vector sp . ~ L.,,,-O,l / 

wlth multiplication defined by: ace IS L".P"'O,lA"0B, 

. (u 0 xi)'(Yi <8> v) = (-l/juJ'J 0 XiV, XiE C'(Q), yjeCJ(Q). 

ThIS graded tensor product is denoted by A 0 B' a d . . 
, n IS agam a graded algebra: 

(A®B)'~IA'0BJ U+j",k(2». 

Prooj oj the proposition. Define ljJ: E -+ C(Q ) ~ C(Q) b h 
1 'CI Z Y t e formula ljJ(e) = 

e1 0 I + 1 0ez, where e l and e2 are the orthogonal proje~tions of e on E d E ' 
~ 1 an 2. Then 

.p(e)- ~ (eI 01 + 10 e,)' ~ (Q,(e l ) + Q,(e,)}(10 1) ~ Q(e)(101). 

Hence 1jJextends ;::) an algebrahomomorphism 1jJ : C(Q)-) ( - . 
the behavior of if; on basis elements BOW shows that 1jJ' C ;.1) ~ C( Qz), by (1.2). Checkmg 

structure entered through the formuIa (e 0 I + I ® lS)~ _lJ~ctlOn. Not\that.the.grad~d 
as e

i 
E C 1(Qj). I ez - e1 0 1+ 1 0ez WhlCh JS valid 
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The algebra C(Q) also inherits a cauonical antiautomorphism fram the tensor algebra 
T(E). Namely if x = Xl ® X2 ••. ® XkE Tk(E), then the map x -+ xt, given by 

Xl ® X2 ® ... ® Xk -+ Xk ® ... ® X2 ® Xl 

clearly defines an antiautomorphism of T(E), which preserves l(Q) because 
{X ® X - Q(x) 'Ir = x ® x - Q(x)·1. Hence trus operation induces a weIl defined anti~ 
autamorphism on C(Q) which we also denote by x -). Xl and refer to as the transpose. The 
transpose is the identity map on iQ(E) c: C( Q). 

The following two operations Oll C(Q) will also be useful: 

DEFINITION (1.7). The eanonieal automorphisrn 0/ C(Q) is defined as the <extension' 01 

the map": E ~ C(Q), given by .(x) = -iQ(x). (lt is clear that {.(x)}' = Q(x)I and so a is 
well-defined by (1.1»). We denote this automorphism by a. 

DEFINITION (1.8). Let x -). x be defined by the lorrnula X -). a(xt
). This <bar operation' is 

then an antiautomorphism of C(Q). 

Note. (1) The identity a(xt
) := {a(x)r holds as both are antiautomorphisms which 

extend the map E -+ C(Q) given by x -+ - ia(x); 

(2) The grading on C(Q) may be defined in terms of.: C'(Q) = {xEC(Q)I.(x) = 
(-I)'x), i=O, 1. 

§2. The algebras C k 

We are interested in the algebras C(Qk)' where Qk is a negative definite form OIl k-space 
over the real numbers. Quite specifically, we let Rk denote the space of k~tuples of real 
numbers, and define Qk(X1, ... , xk) = - LX;' Then we define Ck as the algebra C(Qk) 
and identify Rk with iQ"Rk c: Ck and R with R'1 c: Ck • For k = 0, Ck = R. 

PROPOSlTION (2.1). The algebra Cl is isomorphie to C (the eomp/ex numbers) eonsidered 
as an algebra over R. Further 

Ck ~ Cl ® Cl ® ... ® Cl (kfac/01·s). 

Clearly Cl is generated by 1 and el' where 1 denotes the real number 1 in R l. Hence 
ei = -I. The formula Ck ~ Cl ® ... ® Cl now follows from repeated application of 
Proposition (1.6). 

We will denote the k~tuple, (0, .. , 1, ... ,0) with 1 in the ith position by ei' The e j , 

i ~ k then form a base of Rk c: Ck • 

COROLLARY (2.2). The e" i = 1, ... , k, generale Ck multiplicatively and satis/y the 
relations 

(2.3) eJ = -1, eiej + eJej = 0, i "1= j. 

Ck may be identified with the universal algebra generated over R by a uni!, 1, and the symbols 
ei, i = 1, ... , k, subjeä to the relations (2.3). 

§3. The groups, r ,. Pin(k), and Spin (k) 

Let C: denote the multiplicative group of invertible elements in Ck • 
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DEFINITION (3.1). The Clifford group r k is the subgroup 01 those elements xeC: [ar 
whieh y E R k implies a(x)yx- 1 E Rk. 

It is clear enough that r k is a subgroup of Cb because CI. is an automorphism. We also 
write a(x)Rkx- 1 c: Rk for the condition defining r k• As a and the transpose map Rk iuta 
itseIf, it 1S then also evident that we have: 

PROPOSITION (3.2). The maps x -). a(x), x -). Xl preserve r k, and respectively induce an 

automorphism and an antiautomorphism oi r k • Henee x -). x is also an antiautornorphism 
ofr,. 

The group r k comes to us with a ready-made homomorprusm p: r
k 

-+ Aut(R~. By 
definition p(x), for XE r k, is the linear map Rk

.....). Rk given by p(x)·y = a(x)yx- 1• We refer 
to p as the twisted adjoint representation of r k on Rk

• This representation p turns out to be 
nearly faithful. 

PROPOSITION (3.3). The kernel 01 p : r k -+ Aut(Rk
) is precisely R*, the multiplieative 

group 0/ nonzero multiples 0/1 ECk' 

ProG/. Suppose xEKel(p). This implies 

(3.4) .(x)y=yx foraIlYER'. 

Write X = XO + xl, XiEC/... Then (3.4) becomes 

(3.5) 

(3.6) 

xOy = yxO 

x 1y = _yx l • 

Let el , ... , ek be our orthonormal base for R\ and write XO = aO + e 1b1 in terms ofthis basis. 
Here aOECf does not involve el and bl eCf: does not involve el' By setting y = e

1 
in (3.5) 

w' g t 0 + e b1 
- ° -1 + 'b' -, b' H b' O' . t: e a 1 - ela el e l el = ao - er' ence =. That IS, the expansIOn 

of XO does not involve el' Applying the same argument with the other basis elements we see 
that XO does not involve any of them. Hence XO is a mUltiple of 1. Next we write Xl in the 
same form: Xl = a1 + el bOand set)' = el . Wethenobtaina1 + e

l
bO = -{e ale-1+ e2bOe-1) 

1 0' . 1 1 1 1 
= a - e1b. We agaln conclude that Xl does not Illvolve the ei' Hence Xl is a multiple 
of 1. On the other hand Xl E cf: whence Xl = o. Trus proves that X = X o E Rand as xis 
invertible x ER.... Q.E.D. 

Consider now the function N: Ck -+ Ck defined by 

(3.7) N(x) = x·x. 

If x E R
k

, then N(x) = x( -x) = - x 2 = - Qk(X), Thus N(x) is the square of the length 
in Rk relative to the positive definite form - Qk' 

PRoPosmoN (3.8). 1/ XE r k lhen N(x) E R*. 

Proo/. We show that N(x) is in the kernel of p. Let then XE rk> whence for every 
)' E Rk we have 

a(x)yX-' = y', y' = p(x)vER'. 

Applying the transpose we obtain: (as yl = y) 

(XI)-lya(XY = a(x)yx- 1 
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whence YCI:(xl)x = XtCl:(x)y. This implies that o:(xt)x is in the kernel of p, and hence in R* 
by (3.3). It follows that x1o:(x) E R*, whence N(xt

) E R*. However x""'* x' is an antiauto
morprusm of rk> by (3.2). Hence N(rk ) c: R*. 

PROPOSITION (3.9). N: r k -+ R* is a homomorphism. Moreover N(o:x) = N(x). 

Proo! N(xy) ~ xy jix ~ xN(y)'i' ~ N(x)· N(y), N(a(x)) ~ a(x)x' ~ aN(x) ~ N(x). 

PROPOSITION (3.10). p(rk) is contained in the group 0/ isometries ofRk
. 

Proo/. Using (3.9) and the fact that Rk 
- {O} c: r k we have 

N(p(x)·y) ~ N(,(x)y x-') ~ N(a(x))N(y)N(x-') ~ N(y). 
Q.E.D. 

THEOREM (3.11). Let Pin(k) be the kernel 0/ N: r k -+ R*, k ~ 1, and let O(k) denoIe 

the group 0/ isometries 0/ Rk. Then pIPin(k) is a surjection 0/ Pin(k) onto O(k) wirh kernel 

Z2, generated by -1 E r k' We thus have the exact sequence 

1-+ Z2 -+ Pin(k) 4 O(k) -+ l. 

Praa! We show firs't that p is onto. For this purpose consider el E R k
• We have 

N(el ) = -eIe1 = + 1, and 

o.:(e1)eje11 = (-ei 
ei 

if i = 1 
if i"# 1. 

Thus er E Pin(k), and peer) is the refiection in the hyperplane perpendicular to er. Applying 
the same argument to any orthonormal base {e,} in R\ we see that the unit sphere 

{xER'IN(x)~ I} 

is in Pin(k) whence all the orthogonal refleetions in hyperplanes of Rk are in p{Pin(k)}. 

But these are weH known to generate O(k). Thus p maps Pin(k) onto O(k). Consider next 
the kernel of this map, which dearly consists of the interseetion Ker p n {N(x) = I}. Thus 
the kernel of pIPin(k) consists of the multiples ),-1, with NU.!) = 1. Thus].2 = + 1 which 
implies ;. = ± 1. 

DEFINITEON (3.12). For k ~ 1 let Spin(k) be the subgroup 0/ Pin(k) which maps onto 

SO(k) under p. 

The groups Pin(k) and Spin(k) are double coverings of O(K) and SO(k) respectively. 
As such they inherit the Lie-structure of the latter groups: One mayaiso show that these 
groups are dosed subgroups of C: and get at their Lie structure in trus way. 

PROPOSITION (3.13). Let Pin(k)i ~ Pin(k) n ci. Then Pin(k) ~ Vi'O.' Pin(k)i,. and 
Spin(k) ~ Pin(k)o. 

Praof Let XE Pin(k). Then p(x) is equal to the composition of a certain number of 
refleetions in hyperplanes: p(x) = R

1 
0 ... 0 R w We may choose elements Xi ER!>, such that 

P(Xi) = R i· Heuce, by (3.11), x = ±X1X 2 ... xn and is therefore either in cf or in cl. 
Fiually x is in Spin(k) if and onIy if the number n in the above decomposition of p(x) is 
even, i.e. if and only if x E Pin(k)O. 

PROPOSITION (3.14). When k ~ 2, the restriction 0/ p to Spin(k) is the nontrivial double 
covering 0/ SO(k). 
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Proo! It is sufficient to show that + 1, - I, the kernel of pISpin(k), can be conllected 
by an are in Spin(k). Such an arc is given by: 

Iv: t - cos t + sin !'e1e2 0:::;;; !:::;;; rr.. 

COROLLARY (3.15). When k ~ 2, Spin(k) is connected and, when k ~ 3, simply-connecled. 

Trus is dear from the fact that SO(k) is connected for k ~ 2 and that rr. {SO(k)} =2 
ifk~3. ' 1 2: 

We note finally that Spin(l) = Z2' while Pin(l) = 2
4

, 

All the preceding diseussion can be extended to the complex case. We define a, t on 
Ck@JtCby 

a::(x0z)=a(x)0z 

(x0zY=x(@z 

and we take the bar operation and N to be defined in terms of Cl, t as before. 

~EFINITI0N (3.16). r k is the subgroup of invertible elements XE Ck0 RC Jor whiclz 
YER implieso:(x)yx~1ERk. 

Propositions (3.2)-(3.10) go through with R* replaeed by C* and (3.11) becomes: 

THEOREM (3.17). Let PinC(k) be the kernel 0/ N: q -+ C*, k ~ I, then we have an exact 
sequence: 

(3.18) 1 ~ U(I) ~ Pin'(k) ~ O(k) ~ 1 

where U(1) is the subgroup consisting 0/ elements 1 @ZE C
k 

0
R 

C with Izl = 1. 

COROLLARY (3.19). We have a natural isomorphism 

Pin(k) x z, U(1) ~ Pin'(k). 

where 2 2 acts on Pin(k) and U(1) as {± I}. 

Prao! The inclusions Pin(k) eCk' U(1) c C induce an indusion 

Pill(k) x Zl U(1) -+ CI;@JtC, 

and it follows from the definitions that this factors through a homomorphism: 

</t: Pin(k) x z, U(1) ~ Pin'(k). 

Now we have an obvious exact sequence 

(3.20) 0 ~ U(1) ~ Pin(k) x z, U(1) -, Pin(k)/z> ~ 1 

and ljJ induces a homomorphism of (3.20) into (3.18). The 5-1e~ma and (3.11) now com
plete the proof. 

We define SpinC(k) as the inverse image of SO(k) in the homomorphism 

Pin'(k) ~ O(k). 

Then from (3.19) we have 

Spin'(k) '" Spin(k) x z, U(1). 

The groups SpinC(k) are particularly relevant to an understanding of the relationship 
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eed to explain. The natural homomor-
between spinors and complex structure, as we pro

c 

phism j: U(k) ~ SO(2k) . 
. H er the horoomorphism 

. S . (2k) as one easily venfies. owev 
does not lift to pm , 

I : U(k) ~ SO(2k) x U(I) 

defined by I(T) ~ j(T) x det T . . 

does lift to SpinC(2k). 
the fact that 

This follows at onee from elementary topological conslderatlOll
S 

and 

det: U(k) ~ U(I) 

. phism cf fundamental groupS. 
induces an Isomor 

Explicitly the lifted map 
j: U(k) ~ Spin'(2k) 

d lative to an orthollormal base 11' . "'/k 
.' f II Let :r E U(k) be expresse , re 
15 glven as 0 OWS. . 

cf C', by the diagonal matrix 

~
exp it, J exp it z 

exp Hk 

. b f R 2k so that 
be the correspondlOg ase 0 , 

e2k 'f 
e2j-l=!j e2j=Lj 

Then 

§4. Determination of the algebras C k • 1 :D the real complex and 
. 1 't R C and H respectlVe y cr , . 

In the following we wd wn e " fi Id F) will be the full n x n matnx 
fi ld If F is any one of these e s, \,.n 

quarternion number- e s. . n k wo identities among these: 
algebra over F. The followmg are we 00 ,..... R(nm) 

~ 
F(n) '" R(n) 0.F, R(n) 0.R(m) ~ 

C0.C ",C(j)C 
(4.1) H 0.C '" C(2) 

H ®RH ~ R(4). f 11 . Let C' be the universal 
C w proceeds as 0 ows." . 

To compute the algebras "one no I (' _ 1 k) subject to the relatlons 
't aod the symbols ei 1- , ... , 

R-algebra generated by a ~n1 . Th C' may be identified with C( - Qk)' 
(e;)Z = +1; eie) + e~.e; =0, I #J. uS". . 

PROPOSITION (4.2). There exist isomorphzsms. 

(4.3) 

Ck ®a C'2 ~ Gk+ Z 

CI. ®a Cz ~ GHZ' 
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Proof. Denote by R'" the space spanned by tbe ei in q. 
Consider the linear map ljJ : R'k + Z -+ Ck (8) C~ defined by 

.,'( ,) = Je;-z (8) eJA. 
• e, ll0e, 

2~ i~k 

1:::;;; i ~ 2. 

Then it is easily seen that ljJ satisfies the universal property (1.1) for C~ and hence exteods to 
an algebra homomorphism 1}1 : C~+2 -+ Ck (8) C~. As the map takes basis elements ioto basis 
elements and the spaces in question have equal dimension, it follows that 1}1 is a bijection. 
If we now replace the dashed symbols by the undashed ones and apply the same argument 
we obtain the second isomorphism. 

Now it is dcar that 

C; ",R(j)R 
C; '" R(2). 

Hence (4.1) and repeated application of (4.3) yields the following table: 

TABLE 1 

, 
k CI, C'" Ck0R C =C';;0R C 

1 C RGR C(j)C 
2 H R(l) C(2) 
3 HGH C(2) C(2) (j) C(2) 
4 H(2) H(l) C(4) 
5 c(4) H(2) (j) H(2) C(4) (j) C(4) 
6 R(8) H(4) ceS) 
7 R(8) (j) R(8) ceS) C(8) Ei) C(8) 
8 R(l6) R(16) cel6) 

Note that (4.2) impIiesC4 :;:::: Cl; Ck+ 4 ;:: C" (9 C4 ; Ck+8;:: CI; ® Cs; further Cs ~ R(16) 
whence if CI; ~ F(m) then, CI; + 8 :;:::: F(16m). Thus both columns are in a quite definite sense 
of period 8. Ir we move up eight steps, the field is Ieft unaltered, while the dimension is 
multiplied by 16. Note also the considerably simpler behavior of the complexifications of 
these algebras, which of course can be interpreted as the Clifford algebra of Q" over the 
complex-numbers. Over the complex field, thc period is 2. 

§5. Clifford modules 

We will now describe the set of R- and C- modules for the aigebras Ck • We write 
M(C,,) for the free abelian group generated by the irreducible Zzwgraded Ck-modules, and 
N(Cf) for the corresponding group generated by the (ungraded) Cf-modules. The cor~ 
responding objects for the complex algebras CI; ®R C are denotcd by MC(C,,) and NC(cf). 

PROPOSITION (5.1). Let R: M'r'1-Mo be fhefunelor which assigns to a graded Crmodule 
M = ~ E8 MI fhe C'/.-module MO. Then R induces isomorphisms 

(5.2) M( C,) '" N( CD. 
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Proof. If MO is a Cf~module, let ° 
SeMe) = CI.:0 czM . 

d d C -module. We now assert that S(Mo) as a gra e k , • 
The left action of C, on C, then defin~ic to the identity. In the first case the iso,:,or~~~~ 
S Rand R 0 S are naturally Isomor

p
o M h'le in the second case the map M -t 

o I'C 0M ..... ,W I induced by the 'modu e~map k 

induces the isomorphism. 

We of course also have the correspondil1g form~la: 

M'(C,) 8' W(C,). 

(5.3) I.: Co be defined by l/J(ej) = e,ek+l' i= 1" '. k, Then PROPOSITION (5.4), Let l/J : R -+ k +6 
4> extends to yield an isomorphism CI.: =- C

k 
+ l' d As it maps distinct basis elements 

2 _ e,e, = -1. Hence 4> exten s. , 
Proof· l/J(e,) - eiek+l ,kd t sion is an isomorphism. 

onto distinct basis elements the ex en y now write down the group 

In view of these two propositions, anTd Tblab~ l~:e;e m;e also tabulate the following 
. ' Th' 's done m a e , M(Ck ) ete., exphcltly. !S 1 , 

• • , k Rk + 1 let quantlt,es: . . xtends the incluslOn R ~ '.. L 
. C C be the induslon which e d t A _ cokernel of i*. Siml-et " ,~ 'H hism an se , - . f 

i*: M(C
k

+
1) -t M(Ck) be t.he inedueed )~om~~~:~IY define ak(an as the R(q-dimenslOn 0 

larly define Af as :1,fC(CI.:)~~~{~ (~;~i~o~:le for CJ,:[C
k

0
R

q, 
MO when M is an Irreducl e ora 

TABLE 2 

k C, M(Ck) A, a, M"(CJ:) Ai a, 
--- --

1 Cll) Z Z, 1 Z 0 1 
2 H(l) Z Z, 2 Z9Z Z 1 
3 H(l) EB H(l) Z 0 4 Z 0 2 
4 H(2) ZEBZ Z 4 Z9Z Z 2 
5 C(4) Z 0 8 Z 0 4 
6 R(8) Z 0 8 ZEBZ Z 4 

0 8 8 Z Z 0 

I Z 8 
7 R(8) 9 R(S) 

ZSz Z 8 ZeZ 8 R(16) 

a. M U A 8::::;: Ab QI.:+8 16 k • 1.:+8;:; 1VJb k+ - e _ ?a
C c ""Me Ae+~;;:;AL Qk+2--I.:' 

1\111;+2 =. k, k - T b! I beeause the algebras F(n) 
. bl 2 f How directly from a e , 'b the Mos

t of the entries m Ta e 0 f' d 'ble modules the one glven y 
I' ss 0 Irre uel , 'fi . are simple and hence have only one e a, F The only entries whieh still need clan eatiOn . f V(n) on the n-tuples of elements In , actIOn 0 rl 

are therefore A
4n 

and A'2n· 'Moa,. Mi then M* = M1e MO. 
. observe that If M = w, d d le Before explaining these entnes . terchanging labels, is again a grade mo u .. 

. the module obtained from lvfbymerelym. M(C) and MC(Ck) whieh we agam 
l.e. therefore induces an involutIOn on j k Th.is operation 
denote by *. 

152 

CLiFFORD MODULES 

PROPOSITiON (5.5). Ler x and y be the classes of the two distinet irredueible graded modules in M( C4 ,,). Then 

(5.6) 

CoROU.ARY (5.7). A
4n 
~ Z. 

x* = y, Y*=x. 

Indeed if z generates M(C4"+,), then z' ~ z as there is only one irredacible graded 
module for C,"+ ,. Hence as (I*z)' ~ i*(z*) we see that i'z ~ x + y, by a dimension Count. 

To prove (5.5) we regaire the fOllowing lemma which is guite straight-forward and will be left to the reader. 

LEMMA (5.8). Let Y E R" y '" 0 and denote by A(y) the inner automorphism of C, in
duced by y. Thus A(y)·" ~ ywy - '. We also write A(y) for Ihe induced aUlomorphism on 
M( C,). Similarly A°(y) denales Ihe restriclion of A(y) to q, os wel! as the induced Oulomor_ 
phism on N( CE), Then We have 

(5.9) 
XEM(C,) 

A(y)·x ~ x* 
AO(y). R(x) ~ R(x*), 
AO(ek)~(w) ~ ~(.(w)} . 

Here R: M(C,)""N(C~) is thefunetor introduced earlier, and ~: C
k
_, _ C" the map intro

duced in (5.4), while a is Ihe canonical automorphism oj Cl;' 

It now follows from these isomorphisms, that + On M(C,") corresponds to the action 
of. on the ungraded modules of C,"_,. Now the centre of C

4
"_, is spanned by land 

w ~ e,e, ... e,"_,. Further w' ~ + l. Hence the projections of C,._, On the two ideals 
which make up C

4
._, are (l + w)j2 and (I - w)/2. Hence" interchanges these, and there

fore clearly interchanges the two irreducible C
411

_
1 

modules. 

FinaIly, the evaluation Ai" ~ Z proceeds in an entirely analogous fashion. 

Actually in the complex case there is arelation with Grassmann algebras which we 
shall now describe. Give C' the standard Hermitian metric. Then the complex GraSSmann algebra 

, 
A(C') ~ I A'(C') 

j'=O 

inherits a natural metric. In terms of an orthonormal basisJi, ... ,J; of C' the elements 

h. AfizA ... Af.'k i
1
<i

2
< ... <i

k form an orthonormal basis of A(C'). For each v E C' let d. denote the (vector space) 
endomorphism of A(C

k
) given by the exterior product: 

dlw) = v /I. w, 
and let S. denote its adjoint with respect to the metric. We now define a pairing 

(5.10) C' ® .A(C') ~ A(C') 
by 

One verifies that v 0 lV -+ diw) - b,,(w) . 

(d. - SYw ~ -lIvll'w 
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dule for the Clifford algebra CZk (identifying 
so that (5.10) makes Ace") ioto a camPle; m~ ® C Moreover A(Ck-y has a natural Z2-
Ck with R2k as usual) i.e. into a module or 21< R • 

grading A 0 = 2: A Zr 

Al = I,A2r+ 1 

. dimension count then shows that A(C~ must be one of the two 
compatible wlth (5.10). A C Now if u = iv we see that 
irreducible Zz-graded modules for CZk ®R . . 2 1 i:::AO(C'). 

(d, _ o,)(d, - 0,)(1) = -,IlvII (1) 

k' ("Y' module and so we get 
Hence Ace) 15 a -l - '. d C ® C_module defining the dass 

PROPOSITION (5.11). Ace") IS a grade 2k R 
( -1 )'(ß')' E Ai· . . 

. . '1 f i· U(k) -)- SpinC (2k) given in §3 1t 15 easy to 
R k Usina the explIclt fafmu a Of . 

emar . I:> • d" 
"f the commutativity of the followmg lagram yen y _ 

Ulk) -'-> Spin'(2k) 

l' l' 
End(C') ~ End(A(C')) . 

hism i is the inclusion and (J is the homomorph1sm 
A' the functorial homomorp , 

Here IS , . f C ® C on A(Ck) defined above. 
induced by the actlon 0 2k R 

..' .. ",...nes of the Clifford modules 
§6 Tbe multiplicative prol"""'u . I then their graded tensor 

. d C d C modules respectlve y, .. 
If M and N are grade k an I d d ' module over C

k
<8> CI' By defirntlOn 

product M ® N is in a naturall way a gr~ N)e 1 _ MO ® Nl EB MI ® N°, the action of 
M' N)'=M'0N'(j)M'0N and (M0 -
(0 ,.' by' 
C 0C onM(j)Nbemgg1ven . M

'
( '-01) 

k i __ )qi(x'm)@(Y'n), YEC[, mE. q,I-,· . 
(6.1) (x@Y)'(m@n)-( 1 . . -jo C <8> Cl defined by the linear extensIOn 

We also have the isomorphlsm 4>k,l' CHI k 

ofthe map 

le.0 1 l~i~k 
4>k,le)= l(2)e+i k<i~k+l. .. 

k • • to a pamng 
~ N A.* (M<8> N) is easily seen to glve nse 

The operation 01.1, J.V) 1-+ M ® H- 'f'k,l 
M(C,)0z M(C,) ~M(C,+,) 

"'~ M(C) We denote 
" Z- ded ring structure on the direct surn M * = L.o! k • 

d thus mduces a gra . . 
an ( ) . v It is clearly assocJatlve. 
this product by u, v -jo u . M(C) V E M(C ) 

(6 2) The fiollowing lormulae are valid for u E k , I 
PROPOSITION . . 

(6.3) 

(6.4) 

(u- v) "" = U"V"" 

(

V'U 

u·v= (v'u)* 

154 

if kl is even 
if kl is odd. 

\ 
CLIFFORD MODULES 

(6.5) If i* : M(C;; -jo M(Ck - 1) is the restrietion homomorphism, as dejined in §5, then 

u-i*v = i*(u'v) k ~ 1. 

The formulae (6.3) and (6.5) follow immediately from the definitions. 

Proof 0/(6.4). We have tbe diagram: 

"f7-
C,0Ck 

where T is the isomorphism x ® y -jo ( -l)pqy (2) x, X E Cf, Y E q. Now the composition 
4>i:l 0 T 0 4>k,1 : Ck+I-7 eH I is an automorprusm (J of Ck + lo wruch clearly is the linear ex
tension of the map wruch permutes the first k elements of the basis {ei} with the Jast I 
elements 

1 ~ i<k 
k<i~k+l 

Thus (J' is the composition of inner automorphisms by elements in R" - {O}. It follows 
therefore from (5.9) that the effect of (J' on M(CJ is equal to the effect ofthe operation (*) 
applied kl times. If we combine this with the fact that T*(N ® M) ~ M ® N, whence 

1>UN ° AI) '" a* 0 1>7.dM ° N), 
we obtain the desired formula. 

COROLLARY (6.6). Let). E M(Cg ) be the c!ass 01 an irreducible module 01 Cs. Then 
multiplication by A induces an isomorphism: M(Ck ) ~ M(C"+ß)' 

Proof This follows from our table of the a", in aIl cases except when k = 4n. In that 
case let x, y be the generators corresponding to the two irreducible graded modules of Ck • 

Then we know that x* = y. Now ).' XE M(Ck +8 ) is the c1ass ofone ofthe irreducible graded 
modules of Ck + 8 by a dimension count. Hence by (6.4)...l.·y = l(x*) = (1x)* corresponds to 
the other generator. 

COROLLARY (6.7). The image 01 i* : M* -7 M-J.; is an ideal, and hence the quotient ring 
A* =:L6 Ak inherits a ring structurelrom M*. 

This follows from (6.5). The element Ä above projects into a cIass-again called Ä-

in Ag, and we clearly have: 

PROPOSITION (6.8) Multiplication by}, induces an isomorphism A" ~ Ak + 8 , k ~ O. 

The complete ring-structure of A* is given by: 

THEOREM (6.9). A* is the anticommutative graded ring generated by a uni! 1 EAo, 
and by elements ~ E Al' f1 E A 4 ,). E Ag with .... relations: 2e = 0, e = 0, fl2 = 4J.. 

Proof As Al ~ Z2, it is clear that 2~ = O. From the fact that a1=I, and a2=2, we 
concIude that ~i generates A2 • There remains the computation of j.l2. To settle this case we 
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introduce a notion which will be of use later in any case. Let k = 4n, and let 00 = e l ... e4n' 

Then as we have already remarked, thc centre of cg is generated by 1 and 00, whence, as 
(02 = + 1, the projection of CZ on its two ideals is given by (1 + w)/2. It follows that if M 
is an irreducible graded Ck-module, then wacts on MO as the scalar e = ± 1. In general we 
caU a graded module for Ck an e-module, (e = ± 1) if w acts as e on MO. Now because 
e,w = -(Oei' it follows immediately that if M is an e-module, then M* is a (-e)-module, 
i.e., w acts as -e on MI, and finally, that if M is an e-module and M' an e'-module for 
Ck then M® M' is an ee'-module for C2k· 

With this understood, let fl be the class of an irredueible C4 -module M in A 4 . Then 
Mis oftypee. Hence M® Mis oftypee2 = + I in Cg • Now if), E Aa ischosen as the class 
ofthe irreducible (+ l)-module Wof Cs it follows that M 0 M ~ 4W by a dimension count, 
and so finaHy that /12 = 42. 

The corresponding propositions for the complex modules are clearly also valid. Thus 
we may define M~ and A~, and now already the generator f1.c corresponding to an irreducible 
Cz ®RC-module yields periodicity. In fact the fOllowing is checked readily. 

THEOREM (6.10). The ring Ai'is isomorphie to the po/ynomial ring Z[.uC]. 

We consider again the element w = e1 ..• ek ECk' For k = 21 we have w 2 = (-li· 
Hence if M is an irreducible cornplex graded Ck-module then co aets on MO as the complex 
scalar e = ±i/. We caU a eomplex graded Ck-module an e-module if w aets as e on MO. 
Let j.lr E M C

( C21) denote the generator given by an irreducible i/-module. Then J.ir = (p,c/ 
where ,u'l = f1.c. 

Comparing our eonventions in the real and eornplex cases we see that if M is areal 
e-module for C4n then M®R C is a cornplex (-Ir e-module for C4n• Now we choose tl E A 4 

to be the eIass of an irreducible ( - I)-module. Then in the homomorphisrn A* _ A~ given 
by eomplexifieation f1. _ 2(j.lc? From (6.9) and (6.10) we then deduce 

(6.11) 

under cornplexifieation. 

PART II 

§7. Sequences of bundles 

In this and succeeding sections we shan show how one can give a Grothendieek-type 
definition for the relative groups K(X, Y). This will apply equally to real or complex veetor 
bundles and we will just refer to vectof bundles. For sirnplicity we shall work in the eate
gory of finite CW-eornplexes (and pairs of complexes). 

For Y cX we shall consider the set 1fn(X, Y) of sequences 

E= (O~ En~~E1J_l....:~ ... -~ EI ~ Eo--'+O) 

where the Ei are vectOf bundles on X, the (Ji are homornorphisms defined on Yand the 
sequence is exact on Y. An isomorphism E _ E' in 0'n will mean a diagram 
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in wruch the vertieal arrowS are isomorphisms on X and the squares commute on Y. 

An elementary sequence in Ifln is one in which 

Ei =Ei - 1 , 

Ej=O 
(Ti = 1 for some i 

for j #- i, i - 1. 

The direet surn E EB F of two sequenees is defined in the obvious way. We consider now the 
following equivalence relation: 

DEFINITION (7.1). E", F ~there exist e/ementary sequenees pi, Qi E Wn so that 

EEBP' EB ... EBP' ~ FEB Q' EB ... EB Q'. 

In olher words Ihis is the equivalence relation generated by isomorphism and addition 0/ ele
mentary sequenees. The set 0/ equivalence classes will be denoted by Ln(X, Y). The operation 
EB induces on Ln an abelian semi-group struclure. 1/ Y = 0 we write LnCX) = LnCX, 0). 

If E E Ifln then we can consider the sequenee in Ifln +1 obtained from E by just defining 
En + 1 = O. In trus way we get inclusions 

1fl1-1!2-'''-'??n-

and we put q; = 1f '" = 1im «j n' These induce homomorphisms 

L 1 -L2 - ••• -Ln -

and it is eIear that 

L= L", = limLn -
is obtained from «j by an equivalence relation as above applied now to sequences of finite 
but unbounded length. 

LCIYlMA (7.2). Let E, F be veetor bund/es on X and f: E _ F a mOllomorphism Oll Y. 
Then If dirn F> dirn E + dirn X, f ean be extended 10 a monomorphism on X and any two 
such extensions are homotopic rel. Y. 

Praa! Consider the fibre bundle Mon(E, F) on X whose fibre at x E Xis the spaee of 
all monornorphisms Ex -+ Fx• This fibre is homeomorphic to GL(n)jGL(n _ m) where 
n = dirn F, m = dirn E, and so it is (n - m - l)-conneeted. Hence cross-seetlOlls can be 
extended and are all hornotopie if 

dimX '::;;;n-m -1 =dimF-dimE-l. 

But a eross-section -of Mon(E, F) is just aglobaI monomorphism E _ F. 

LEMMA (7.3). LneX, Y) - Ln+1(X, Y) is an isomarphism for n ~ 1. 

Prao! Let 0'n+1 denote the subset of 1fn + 1 consisting of sequences E such !hat 

dirn En > dirn En + 1 + dirn X. 
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If n;?: 1 then given any E E «1,,+1 we can add an elementary sequence to it so that it will 

satisfy (1). Hence i"+1-",L"+1 is surjective. Now let EEi,,+1' then by (7.2) CT,,+1 can be 
extended to a monomorphism CT~+I on the whole of X. Put E~ = eoker CT~+l' let P denote 
the elementary sequence with P,,+l = PlI = E,,+l, and let 

E' =(O-E~~E,,_1 ~En-2- ... ~Eo-O), 

where p~ is defined by the commutative diagram on Y: 

A splitting of the exact sequence on X 

then defines an isomorphism in (&"+1 

If a~+1 is another extension of CT,,+1 leading to a sequence Eil, then by (7.2) E~:;;: E: and 
this isomorphism can be taken to extend the given one on Y, i.e., the diagram 

,., 
E;~r 

E~ --'''-.. '''-~~ E" _ 1 

eommutes on Y. Hence E' ~ Eil in 0'" and so we have a well-defined map Ef-}E' from the 
isomorphism classes in (6'"+1 to the isomorphism classes in ((jll" Moreover, if 

Q = (O-Q"+l - Q,,_O), 

are elementary sequences, then 

(E(!1 Q)' '" E', 

(i ~ n) 

(E (!1 R)' '" E' (!1 R. 

Henee the class of E' in Ln depends only on the dass of Ein L,,+l' Since 0'''+1 -L,,+1 is 
surjeetive it follows that E -'" E' induces a map Ln + 1 -'" Lw From its construction it Is im
mediate that its eomposition in either direction with L" -+ Ln+! is thc identity, and trus 
completes the proof. 

FrOfi (7.3) we deduee, by induction on n, and then passing to the limit: 

PROPOSITION (7.4). The homomorphisms L 1(X, Y) -'" L,,(X, Y) are isomorphisms for 

1 ~ n ~ co. 
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§8. Euler characteristics 

DEFINITION (8.1) An Euler characteristic for «i'" is a natural homomorphism (i.e. a natural 
transformation offunctors) 

x: LJX, Y) ~ K(X, Y) 

which for Y = 0 is given by 

" X(E) ~ I (-l),E,. 
,"'0 

Remark. It is clear that, if Y = 0, E ~ LX -1) iE, gives a well-defined map 
L"(X) ~ K(X). 

LEMMA (82). Let X be an Euler characteristicfor %'1 then 

X :L,(X)~ K(X) 

is an isomorphism. 

Proo! X is an epimorphism by definition of K(X). Suppose x(E) = 0, then 
EI EB F ~ Eo (tl Ffor some F(in fact Fcan be taken trivial). Hence jf 

P:O-F-F-O 

is the elementary sequenee defined by F, E (tl P is isomorphie to the elementary sequenee 
defined by E1 e F. Henee E "'"' 0 in «fl(X) and so E = 0 in L1(X). To conelude we need the 
following elementary lemma: 

LEMMA (8.3). Let A be a semi-group with an identity element 1, B a group, <P : A -'" B 
an epimorphism with ~-1(1) = 1. Then<p is an isomorphism. 

Proo! It is suffieient to prove that A is a group, i.e., has inverses. Let a E A, then 
from the hypotheses there exists a' E A so that 

4>(a') ~ 4>(a)-l. 
Henee 

4>(a·a') ~ 4>(a)·4>(a') ~ 1, 

and so aa' = 1 as required. 

LEM:M:A (8.4). Let X be an Euler characteristic for 0'1> and let Y be a point. Then 

X: L , (X, Y) ~ K(X, Y) 

is an isomorphism. 

Proo/. Consider the diagram 

O~L1(X(~Lr~Lr 

o ~ K(X, Y) - K(X) ~ K(Y). 

By (8.2) and (8.3) and the exactness of the bottom line it will be sufficient to show the 

159 



M. F. ATlYAH, R. Bon and A. SHAPIRO 

exactness of the top line. Now ßcr.. = 0 obviously and so we have to show 

(i) 

(ü) if 

"-'(0) ~ 0; 

ß(E) ~ 0 

We consider (ii) first. Since 

then EElm CL. 

Y is a point, and z: LI(Y);:: K(Y), ß(E) = 0 is equivalent to 

dirn E,[Y ~ dirn E,[Y. 

But then we can certainly find an isomorphism 

er:EI!Y-EoIY, 

showing that E E Im(a). Finally we consider (i). Thus let 

E=(O-El~Eo-O) 

be an element of ,",,(X, Y) and suppose aCE) ~ 0 in L,(X). Then X"(E) ~ 0 in K(X), and 
hence, if we suppose dirn Ei > dirn X (as we may), there is an isomorphism 

r:EI-Eo 

on the whole of X. Then (rr;-I E Aut(Eol Y). Since Y i5 a point this automorphism is 

homotopic to the identityt and hence can be extended to an element pE Aut(Eo)· Then 
pr: : EI --I- Eo is an isomorphism extending er. This shows that E represents 0 in LI (X, Y) as 

required. 

LEMMA (8.5). Let X be an Euler charactel'isticJor 0'1. then X is an equivalence oI Junctors 

LI -). K. 
Proo! Consider, for any pair (X, Y), the commutative diagram 

L,(XIY'",Y!y)...3~ K(XI}YIY) 

L,(K, y) --'-~ K(X, Y). 

Since ljJ is an isomorphism (by definition) and X on the top line is an isomorphism by 
(8.4) it will be sufficient (by (8.3» to prove that cp is an epimorphism. Now any element 

(of LI(X, Y) can be represented by a sequence 

E = (0--> E, -"-~ Eo~-O) 

where E is a product bundle. But then we can define a 'coUapsed bundle' E{ = Elle; over 
XIY an~ a coHapsed sequence E' E 111(XI Y, YI Y) defining an element ~'E LI(XIY, YjY). 

Then ~ = cp(~') and so cp is an epimorprusm. 

LEMMA (8.6). Let X, / be two Euler characteristicsJor 111, Then X = X'· 

Proo! Let T = X'X- 1 (which is well~defined by (8.5». Trus is a natural automorphism 
of K(X, Y) which is the identity when Y = 0. Replacing X by XI Y and considering the 
exact sequence for (XIY, YIY) we deduce that T= 1, i.e., that x' = z· 

t This argument needs modification in the real casc since GL(II, R} is not connected: we replace Ei by 
Ei81 and<r, ... bYIY@1, ... 8(-I). 
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From (8.6) and (7.4) we deducc 

LEMMA (8.7). There is a bijective correspondence (Xl 0(---1- XII) between Euler characleJ'
istics Jor ((j 1 and ce 11 such that the diagram 

commutes. 

These lemmas show that there is at most one Euler characteristic. In the next section 
we shall prove that it exists by giving a direct construction. 

§9. The difference bundle 

Given a pair (X, Y) define Xi = X x {i}i = 0, 1, A = Xo Vy Xl (obtained by identifying 
y x {O} and y x {I} for all Y E Y). Then we have retractions 

ni:A~Xi 

so that we get split exact sequences: 

0_ K(A, Xi) ~ K(A) ~ K(X,) __ 0 ,., 
Also, if we regard the index i E Z2, the natural map X -J. Xi gives an indusion 

40,: (X, Y)~(A, X'+l), 
which induces an isomorphism 

4oi: K(A, X'+l) ~ K(X, Y). 
Now let E E ,",,(X, Y), 

E = (0 ....... E 1 ~ Eo ~ 0), 

and construct the vector bundle Fon A by putting Ei on Xi and identifying on Y by '7. 

It is dear that the isomorphism dass of F depends only on the isomorphism dass of E in 
111(X, Y). Let Fi = rei(E;). Then FIX,;:: Fi and so F - Fi E Kerjr We define an element 
d(E) E K(X, Y) by 

It is dear that dis additive: 

d(E (jj E') ~ d(E) + d(E'). 

Also if E is elementary F;:::: F1 so that d(E) = O. Hence d induces a homomorphism 

d: L,(X, Y) ~ K(X, Y) 

wruch is clearly natural. Moreover if Y = 0, A = Xo + Xl' F= Eo x {O} + EI x {I} 
(disjoint sum), Fi = Ei X {O} + Ei x {I} and so 

d(E) ~ E, - E, . 
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Thus dis an Euler Charaeteristie in the sense of §8. The existenee of this d together with 
the lemmas of §8 lead to the following proposition: 

PRoposmON (9.1). For any integer n with 1 .::;; n .::;; co there exists a unique natural homo
morphism 

x; L"(X, Y) ~ K(X, Y) 
which,for Y = 0, is given by 

" X(E) ~ L: (-I),E,. 
i"'O 

Moreover X is an isomorphism. 

The unique X given by (9.1) will be referred to as the Euler characteristic. From (8.6) 
we see that we may effectively identify the X for different n. 

Two elements E, FE reflex, Y) are ealled homotopic if they are isomorphie to the 
restrietions to X x {O} and X x {1} of an element in (e,,(X x I, Y x f). 

PROPOSlTION (9.2). Homotopic elements in rtf,,(X, Y) dejine the same elements in 
L"(X, Y). 

Proo! This follows at onee from (9.1) and the homotopy invarianee of K(X, Y). 

Proposition (9.1) shows that we could take LnCX, Y) (for any n ~ 1) as adefinition of 
K(X, Y). This would be a Grothendieek-type definition. 

We shall now give a method for construeting the inverse of j: L I (X, Y) -+ L,,(X, Y). 
If E e (e,,(X, Y), then by introdueing roetrics we ean define the adjoint sequence E* with 
maps u;: E;-l -+ Ei' Consider the sequenee 

F = (0 --+ F 1 ~ F 0 --+ 0) 

where Fo = EB EZi , F1 = EB Eu + 1 and , 
T(e!, e3, es, ... ) = (ule l , (I{ ez + (l3e3, (I! e3 + (lse s, .. ). 

Since, on Y, we have the deeoroposition 

Eu = (lZi+ l(Ez;+l) Ef> Ui;(EZi~ 1) 

it follows that Fe '(fI(X, Y). If E e '1J1 then E = F. Sioce two choiees of metric in E are 
homotopie it follows by (9.2) that F will be a representative for j-l(E). 

§10. Products 

In this seetion we shall consider eomplexes of vectpr bundles, i.e., sequenees 

O-E,,~En_I ~ ... --~ Eo-O 

in which Ui-1(li = 0 for all i. 

LEMMA (10.1). Let Eo • ... , E" be vector bundles on X, 

O-E,,~E"_l~ ... _Eo_O 

a complex Oll Y. Then the Uj can be extended so that this becomes a complex on X. 
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Proo! By induction on the cells of X - Y jt Is sufficient to consider the case when X 
is obtained from Y by attaehing one cello Thus let 

X=Yujek 

where!: Sk- 1 -+ Yis the attaching map. If Bk denotes the unit ball in Rk
, with boundary 

Sk-I, then Xis the quotient of Y + Bk by an identification map n induced by! The bundle 
n* Ei is then the disjoint sum of EA Y and a trivial bundle Bk x Vi' The homomorphism 
u,:E,-+E'_lon Ylifts to give a homomorphism 'r,:Sk-I x V/-+Sk

-
1 

X Vi_I, i.e. a 
map Sk-I-+ Hom(Vi , Vi-I)' Extend each "Ci to Bk by defining 

This ioduces an extension of the (I. to X preserving the relations (1/-1 Ui = 0, as required. 

We now introduce the set q),,(X, Y) of eoroplexes oflength n on X acyclic (i.e. exact) 00 

Y. Two such complexes are homotopic if they are isomorphie to the restrietions to X x {O} 
and X x {I} of an element in §Jn(X x I, Y x 1). By restricting the homomorphisms to Y 
we get a natural roap 

<!>; ""(X, Y) ~ 0'/X, l'). 

LEMMA (10.2). cD: 9" --1- f{!" induced a bijective map of homotopy classes. 

Proof. Applying (10.1) we see that <l> itself is surjective. Next, applying (IO.l) to the 
pair 

(X x I, X x {O} u X x {I} u Y x I) 
we see that 

cI>(E) homotopic to (Jl(F)=> E homotopic to F 

whieh completes the proof. 

If E E q),,(X, Y), FE q)m(X', Y') then E<2> F is a complex on X x X' acyclie on 
X x Y' U Yx X' so that 

E0FEQ;"+m(X X X',X X Y'u Yx X'). 

Trus product is additive and eompatible with homotopies. Hence it induces abilinear pro. 
duct on the homotopy classes. From (10.2) and (9.2) it follows that it induees a natural 
product 

and 

L,,(X, Y)®Lm(X', Y')-~L,,+m(X x X', X x Y' U Y X X'). 

PROPOSITION (10.3). The tensor product of complexes induces a natural product 

L,,(X, Y)0Lm(X', Y/)--+L,,+mCX x X',X x Y' U Y X X') 

x(ab) ~ x(a)x(b) (1) 

where X is the Euler characteristic. 

Proo! The formula (1) is certainly true when Y = Y' = 0. On the other hand there is a 
unique natural extension of the product K(X) ® K(X') -+ K(X X X') to the relative case 
(cf. [3]). Henee, by (9.1), formula (1) is a~o true in the general case. 

Remark. This result is essentiaHy due to Douady (Seminaire Bourbaki (1961) No. 223). 
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PROPOSITION (10.4). Let 

E~(O->E,~Eo~O)E§,(X, Y) 

E' ~ (O~E; ~> E; ->O)E§,(X', n 
and ehoose metries in all the bund/es. Let 

F=(0--+F1 ~Fo-0)E91(X x X', X x Y' u Yx X') 

be defined by 
F l = Eo 0 E'l EB E l 0E~ 

Fo = Eo0E~EBE10E~ 

(
1@6" 6@1) 

1:= (i*01, -l@(T'* 

where 6*, G'* denote the adjoints 0/6, (f'. Then 

x(F) ~ X(E)' X(E'). 

Proo! By (10.3) X(E)'X(E') = X(E0 E'). Now the construction of §9 for the inverse 
of j2 : L l ..... L 2 turns E 0 E' into Fand so x(E 0 E') = XeF). 

PART IU 

§I1. Clifford bundles 

In this secHon and the next we shall consider the Thom complex of a vector bundle. 
If V is a (real) Euc1idean vector bundle over X (i.e. the fibres have a positive definite inner 
product) we denote by XV the one-point compactification of V and refer to it as the Thom 
complex of V. It inherits a natural structure of CW-complex (with base point) from that of 
X. An alternative description which is also useful is the following. Let B(V), S(V) denote 
the unit ball and unit sphere bundles of V, then XV may be identified with B(V)/S(V). A 
technical point which arises here is that (B(V), S(V») is not obviously a CW-pair. However 
the following remarks show that there is no real loss of generality in assuming that 
(B(V), S(V» is a CW-pair. 

1. If Xis a differentiable manifold then (B(V), S(V») is a manifold with boundary 
and hence triangulable. 

2. Every vector bundle over a finite complex is induced by a map of the base space 
into a differentiable manifold (namely a Grassmannian). 

There are of course more satisfactory ways of dealing with this point but a lengthy dis
cussion would be out of place in this context. 

With OUf assumption therefore we have the isomorphism 

R(Xv
) "" K(B(V), S(V») 

where K denotes K modulo the base point. 

Since each fibre V .... of V is a vector space with a positive definite quadratic form Qx, 

we can form the Clifford bundle C(V) of V. This will be a bundle of algebras whose fibre at 
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x is the Clifford algebra C( - QJ. Contained in C( V) are bundles of groups, Pin(V) and 
Spin(V). All these bundles are associated to the principal O(k)-bundle of V by the natural 
action of O(k) on C" Pin(k), Spin(k). 

By a graded Clifford module of V we shall mean a Z2-graded vector bundle E (real 
or complex) over X which is a graded C(V)-module. In other words E = EO EB EI and we 
have vector bundle homomorphisms 

V@RE°-;.El, V0 RE 1 -;.Eo 

(denoted simply by v 0 e"'" v(e) such that 

v(v(e») ~ - iivli'e (l) 

For notational convenience we sha11 consider real modules only. The complex case is 
entirely parallel. 

Let E = EO EB EI be a graded C(V)·module. Then EO is a Spin(V)~module and byintegration 
over the fibres of Spio(V) we can give EO a metric invariant under Spin(V). This cau then 
be extended to a metric 00 Einvariant under Pin(V) and such that EO and EI are orthogonal 
complements. If now v E v." and v# 0 then l'/llvli E Pin(V:...). Hence we deduce, for all 
VE V ... and eEE~", 

livell ~ ilvl!' ilel!. 
This, together with (1), implies that the adjoint of 

is -v: E.~ -;. E~. 

Let n; B(V) -)0 X be the projection map und let 

CJ(E) : n* EI ~ ... 71:'" EO 

be given by multiplication by - 1', i.e. 

a(E)Je) ~ -De. 

Then 

(2) 

is an element of g?t(B(V), S(V)) and hence defines an element Xv(E) of KO(B(V), S(V», or 

equivalently an element of KO(X V
). If the C(V)~module structure of E extends to a 

C(V EB l)-module structure (l denoting the trivial line·bundle) then the isomorphism aCE) 
extends from S(V) to S+(V@ 1) the 'upper hemisphere' of S(V@ 1). Since the pairs 
(B(V), S(V)) and (S+(V@I), S(V» are clearly equivalent it follows that Xv(E) will, in this 
case, be zero. 

Following §5, which is the special case X = point, we now define lvi( V) as the Grothen
dieck group of graded C(V)-modules, and we let A(V) denote the cokernel of the natural 
homomorphism 

M(V (jJ I) ~ M(V). 

Then the construction described above gives rise to a homomorphism 

Xv: A(V) -, Ko(XY ). 

This homomorphism is of fundamental importance in the theory, and our next step is to 
discuss its multiplicative properties. 
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Let V, W be Euclidean vector bundles over X, Y respectively. 
Then we have a natural homeomorphism 

XV * yW:;::; X x yVel W 

which induces a homomorphism (or <cup~product') 

fa(XV) <8> fa(yW) ~ fa(X x yVeW). 

If a E KÖ(XV), b E KÖ( yW) the image of a 0 b will simply be written as ab. 

PROPOSITION (11.1). Thefollowing diagram commutes 

A(V) <8> A(W) --"... A(V (j) W) 

l'V0,W ,'ve" 

fa(XV) <8> Ko(yW) ~ fa(X X yvew) 

where tt is induced by the graded tensor product of Clijford modules. Thus 

Xvew(E <8 F) = Xv(Ehw(F). 

Proof. Let E, F be graded C(V)- and C(W)-modules and let them both be given in~ 
variant metries as above. Applying Proposition (10.2) it follows that 

Xv(E)'Xw(F)eKO(B(V) x B(W), B(V) x S(W) u S(V) x B(W») 

is equal to XeG) where 

Ge!2,(B(V) x B(W), B(V) x S(W) u S(V) x B(W)) 
is defined by 

and 1": GI -~ Go is given by 

Gi = n*(EO 0 F i EB EI 0 FO) 

Go = n*(EO 0 FO EB EI 0 F I
) 

(
1<8> .(F), .(E) <8> 1) 

T = -.(E) <8> 1, 1<8> viF) 

(since .(E), = -.(E), .(F)' = -.(F»). Thus, at a point v (j) w e V (j) W, T is given by the 
matrix 

(
1<8>-W,-V01') (1 0)(1 <8> W, v <8> 1 ) 

1""$W= v01, 10 -w = - 0 -1 v0L -10w 

where v, w denote module multiplication by v, w. Hence 

T=(~ _~).(E<8F) 
On the other hand let B'(VEE> W) denote the ball of radius 2 and let 

S'(V (j) W) = B'(V (j) W) - B(V (j) W), 

so that the inc1usions 

i : B(V (j) W), S(V (j) W) ~ B'(V (j) W), S'(V (j) W) 
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j : B(V) x B(W), B(V) x S(W) u S(V) x B(W) -, B'(V (j) W), S'(V (j) W) 

are both homotopy equivalences. Let 

H e!2,{B'(V (j) W), S'(V (j) W») 

be defined by a{E ci$) F). Then i*(H) defines the element XV(l)w(E ® F), while (3) shows that 
j*(H) and G define the same element of KO(B(V) x B(W), B(V) x S(W) u S(V) x B(W)). 
Hence we have 

Xv(E)'Xw(F) = Xv.w(E <8> F) 
as required. 

Suppose now that P is a principal Spin(k)-bundle over X, V = P X Spin (k)Rk the associ
ated vector bundle. If M is a graded Ck-module thenE = P X Spin (k}Mwill be agraded C(V)
module. In this way we obtain a homomorphism of groups 

ßp : A, ~ A(V). 

Similarly in the complex case we obtain 

ß'j.: AZ _ AC(V). 

PROPOSITION (11.2). Let P, P' be Spin (k), Spin (I) bundles ouer X, X' and let 
V = P X Spin (k) R

k
, V' = P' X Spin (I) R/. Let P" be the Spin(k + l)~bundle over X x X' induced 

/rom P x P' by the standard homomorphism 

Spin (k) x Spin (I) ~ Spin(k + I). 
Then if a E Ak , bE AI> we have 

ßp·{ab) = Ma)ßp·(b). 
A similar formula holds for ß~. 

The verification of this result is straightforward and is left to the reader. 

Let Cl.:p: Ak -+KO(XV
) be defined by 'Xp = Xvßp. 

Then from Propositions (11.1) and (11.2) we deduce 

PROPOSITION (11.3). With fhe notation of (I 1.2) j\.:e have 

.",(ab) = "p(a)ap.(b), 
and a similar formulafor apo 

If we apply all the preceding discussion to the case when Xis a point (and P denotes 
the trivial Spin(k)~bundle) we get maps 

0: : Ak - KO(Sk) in the real case 
a

C 
: Af - R(Sk) in the complex case. 

Proposition (I 1.3) then yie1ds the following corollary, as a special case: 

COROLLARY (I 1.4). The maps 

are ring homomorphisms. 

Ci: A* - L KO-k(point) 
k:;'O 
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Now the rings A* and A~ were explicitly determined in §6 (Theorems (6.9) and (6.10). 
On the other hand the additive structure of B* = L KO-k(point) and B~ = L K-k(point) 
was determined in [5], while their multlplicativc structure was (cssentially) given in [6]. 
These results may be summarized as foHows: 

0) B~ is the polynomial ring generated by an element x E Bi corresponding to the 
reduced Hopf bundle on P1(C) = S2; 

(ii) B, contains a polynomial ring Z[y] with Y E B" and y ~ x' under the complexi
fication map B* -l- B~; 

(iii) As a module over Z[y], B* is freely gencrated by elements 1, a, b,:: where a E B
t

, 

bE B 2 , ::: E B4 , sUbject to the relations 20 = 0, 2b = o. 
Ir we use Sticfel-Whitney classes then a simple caiculation shows that 

wJa
z
) '# ° 

where we regard 0
2 

E R(sz). Thus we must have 0 2 = b. 

Consider now the ring homomorphism 

,f: A~ ~~ B~. 

It is immediate from the definition of x: that clUO gives the reduced Hopf bundle on S2. 
Hence from (6.10) we deduce that (J.c is an isomorphism. 

Considcr !lext the ring homomorphism 

rx: A*----+B*. 
Becausc ofthc commutativc diagram 

A*--"'->B* 

1 1 
A~--'"-> B~ 

the results on rf togethcr with (6.11) and (ii) above imply that 

a(i.) ~ y. 
Similarly using (6.9) and (iii) above wc get 

a(~) ~ z. 

!t remains to consider o:(~) and o:(e). But as in thc complex case it i.s immediate that :x(~) 
lS the reduced Hopf bundle on PI(R) = SI. Since 0 is the unique non-zero element of BI 
wc must therefore havc 

a(~)=a. 

Using (6.9) and (ii), (iii) above it follows that 0: is an isomorphism. Thus we have e.stabJished: 
THEOREM (11.5). The maps 

and 

are ring isomorphisms. 

0:: A* ----+ I KO-I.:(point) 
1.:;:.0 

([: A~ ----+ L K-I.:(pomt) 
1.:;,0 
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As remarked in the introduction this theorem shows clearly the intimate relation 
between C!ifford algebras and the periodicity theorems. It is to be hoped that a less com
putational proof of (1 1.5) will eventually be found and that the theorem will then appear as 
the foundation stone of K-theory. 

We shall conclude trus sect~on by taking up again the relation betwecn Clifford and 
Grassmann algebras mentioned in §3. Let V be a complex vector bundle over X, A(V) its 
Grassmann bundle, i.e. the bundle whose fibre at x E Xis the Grassmann algebra A(Vx). 

Let 11: : V -+ X be the projection and consider the complex 

A, : ~ n*(A'(V» -'-, n*(A'H(V»_> 

where dis given by the exterior product: 

dJw) = v 1\ W 

This is acyclic outside the zero-section and hence defines an element 

X(A,)EK(X') 

DE V"' wEA(Vx). 

On th<other hand, if we give Va Hermitian metric, and use the homomorphism 

I: U(k) ~ Spin"(2k) k ~ dime V 

wC:0btain a~principal SpinC(2k)-bundle P over X, and hence a homomorphism 

a~ : A~k - K(XY
). 

The relation )etween a~ and X(Ay) 1S then given by: 

PROPOSITION (11.6). X(A,) ~ "H00'). 
Proof. Applying the construction at the end of §9 for the inverse of 

jk:LI-Lk 

to the complex Av, we obtain a sequence 

where 
E = (0 --)- E 1 ~ Eo --)- 0) 

Eo = n*Ak@n*Ak- Z@ ... 
EI = n*Ak- 1 EB n*Ak- 3 EB ... 
av=dv + ov· 

In fact we cou1d equal!y weIl have taken 

in §5. In view of (5.10), (5.11) and the final remark of §5 trus shows that 

X(Av) ~ "H(Jl')') 
as required. 

Remark. The multiplicative property of Grassmann algebras: 

A(V GJ W) '" A(V) 09 A(W) 

can be used directly to establish a product formula for X(A y ). This corresponds of course 
to (11.3). 
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§12. Tbe Thom isomorphism 

We begin with some brief remarks on the Thom isomorphism for general cohomology 
theories. 

Let F be a generalized cohomology theory with produets. Thus F#(X) = L F(X) is a 
graded anti-commutative ring with identity and P#(X, Y) is a graded F#(X)-module. 
Moreover the product must be compatible with the coboundary in the sense that 

iJ(ab) = iJ(a)'b + (-I)"aiJb 

where 0:: = deg a and a, b belong to suitable F-groups. 

In pn(s") we have a eanonical element cl' which corresponds to the identity element 
1 = (;0 EF°(point) = FD(SO) under suspension. P#(S") is then a free module over 
P#(point) generated by tY'. 

Suppose now that V 1S areal vector bundle of dimension n over X. We choose ametrie 
in Vand introduce the pair (B(V), S(V)) (or the Thom complex Xv). For each point P E X 
we consider the indusion 

and the induced homomorphism 
i; : P(X') ~ p"(P'). 

Suppose now that V is oriented, then for each P E X we have a well-defined suspension iso

morpmsm 
Sp: FO(P) ~ p"(P'). 

We let ap = Sp(1). We shall say that V is F-orientable if there exists an element J1v E pn(xV
) 

such that, for aIl PE X, 
i~(Jiv) = oj.. 

Adefinite choice of such a Jiv will be called an F-orientation of V. Then we have the fol
lowing general Thom isomorprusm theorem: 

THEOREM (12.1). Let V be an F-oriented bundle over X with orientation class f.l.v. Then 
p#(Xv) is aJree F#(X)-module with generator J1.v· 

Proof. Multipiication by f.lv defines a homomorprusm of the F-spectral sequence of X 
into the J:'-spectral sequenee of X Y which is an isomorphism on E2 (the Thorn isomorphism 
for cohomology) and hence on Ew Hence 

a-f.lya 

gives an isomorphism P''«X)->P*(XY
) as stated.t 

Applying (12.1) to the special theories K, KO we obtaintt: 

THEOREM (12.2). Let V be an oriented real vector bundle oj dimension n over X. Then 

(i) if n ;:::;::: 0 mod 2 and there is an element Pv E R(XY
) whose restrietion 10 K(PY) jor 

each P EX is the generator, then K*(XY
) is ajree K*(X)-modulegenerated by I1v; 

tOne can also use the Mayer-Victoris sequence instead of the spectraI sequence. 
tt We use K~, KO* to denote the sum of Kfl, KOfl over the period (2, or 8) in distinction with K* which is 

the sum aver aJl integers. 
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(ii) if n ;:::;::: 0 mod 8 and there is an element f.1.v E KO(X V
) whose restrictioll to each 

Ko(PY ) Jor each PE X is the generator, then KO*(XV) is aJree KO*(X)-module 

generated by f.lv. 

Remark. Since KO (point) ~ KOO(point) ~ Z these groups are generated by the identity 
element of the ring. Trus element and its suspensions are what we rnean by the generator. 

Suppose now that V has a Spin-structure, i.e., that we are given a principal Spin(n)
bundle P and an isomorphism 

v ;.; P X Spin{n)R
n

• 

Then from §ll we have a homomorphism 

"p: A" ~ lO(XY
). 

Similarly if V has a SpinC-structure, i.e. we are given a principal Spin'\n)-bundle P and an 
isomorphism 

then we get a homomorphism 
a;: A~ _ K(XY). 

In the real case assurne n = 8k and in the complex case n = 2k, and put 

J1v = o::p("l,f') 

f.l.~ = etp((J1.cf). 

Then by the naturality of ap , etp and Theorem (11.1) we see that Pv, J1f, define KO and K 
orientations of Vand hence (12.2) gives: 

THEOREM (12.3). (i) Let P be a Spin(8k)-bundle V = P X Spin(8k)R
8k

• Then K'o*(XY ) is a 
free KO*(X)-module generated by Pv; (ii) Let P be a SpinC(2k)-bundle, V = P X SPinc(2k)R2k. 

Then K*(XY ) i5 a free K"'(X)-module generated by f1~. 

Remark. It is easy to see, by considering the first differentials in the spectral sequellce, 
that the existence of a Spin (SpinC)-structure is necessary for KO(K)-orientability. Theorem 
(12.3) shows that these conditions are also sufficient. 

(12.3) together with (I 1.3) shows that, for Spin bundles, we have a Thom isomorphism 
for KO and K with all the good formal properties. It is then easy to show that for Spin
manifolds one can define a functorial homomorphism 

J, : KO*( Y) ~ KO*(X) for maps J:Y~X, 

and similarly for Spinc-manifolds in K-theory. This improves the results of [2}. 

§I3. The sphere 

The purposeofthesenext sections is to identify the generator of KÖ(X V) (for a Vwith 
Spinor structure and dirn =;: 0 mod 8) given in §I2 with that given in [7]. Essentiallywe have 
to study the sphere as a homogeneous space of the spinor group. This actual1y leads to 
simpler formulae (Proposition (13.2) for the characteristic map of the tangent bundle 
than one gets from using the orthogonal group. 
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We recall first the existence of an isomorphism 1> : Ck ...... cg +1 (Proposition (5.2» and 
we note that, on cg, 1> coincides with the standard indusion Cl> ...... CHI. We introduce 
the following notation: K = Spin(k+ 1), H = q,(Pin(k» = HO + H'. HO = q,(Spin(k») 
(where + here denotes dis joint sumS of the two components). 

Sk = unit sphere in RH 1 

S+ = Sk n {XHI ~ O}, S_ = Sk n {Xk+l"';; O} 

Sk-l = S+ rl S-. 

We consider Sk as the orbit space of ek + 1 for the group K operating on RHf by the 
representation p. Thus KjHO = Sk and we have the principal HO-bundle 

K~K/Ho. 

Let K+ = n-I(S+), K_ = n- 1(S_). We shall give explicit trivializations of K+ and K_, 
and the identification will then give the 'characteristic map' of the sphere. 

We parametrize S+ by use of 'polar co-ordinates': 

(x, t) = Cos t.ek + 1 + Sin Lx XESk _ 1 , 

Nowdefineamapß+: S+ x HO ...... K+ by 

ß+(x, t, hOl = (-Cos tl2 + Sin tl2.x e",)ho. 

Since 

p«( -Cos t/2 + Sin tI2.xek+l)hO)ek+ 1 

= (-Cos t/2 + Sin t/2.xek +l)eH1 ( -Cos t/2 + Sin t/2.xek+l)-1 

= (-Cos t/2 + Sin tj2.xek+1)
2ek+ 1 

= Cos t.ek+l + Sin t.x = (x, t), 

it follows that ß+ is an HO-bundle isomorphism. 

Similarly we parametrize S _ by 

(x,t)=-Cost.eH 1 +Sint.x XESk _ 1, O~t",;;n/2. 

Note that for points of 8 k - 1 the two parametrizations agree (putting t = nI2). Now define 
a map ß-: S_ x H1-)-K_ by 

ß_(x, t, h') = (Cos tl2 + Sin tI2.xek+,)h'. 

Since 

p«(Cos tl2 + Sin t/2.xek+l)h1)ek+l 

= (Cos tl2 + Sin t/2 .xek+ 1)( -ek+ l)(COS t/2 + Sin tJ2. xek+ 1)-1 

= -(Cos tl2 + Sin t/2.xek+l)2ek+l = -Cos f.eu1 + Sin t.x, 

it follows that ß- is an HO-bundle isomorphism. 

Putting t = nl2 above we get 

ß+(x, n12, hOl = (-Cos nl4 + Sin nI4.xe,.,)hC 

ß_(x, nf2, h1
) = (Cos n/4 + Sin nj4.xek+l)h1. 
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These are the same point of K+ rl K_ if 

h 1 = -(Cos nj4 - Sin n/4.xek+l)2ho 

= xek+lho. 

Thus we have a commutative diagram 

Sk-l X HO 
,. 

I K+ nK_ 

, l' 
Sk_: x H 1 ,~ 

1 K+rlK_ 
where 

(1) 

LEMMA (13.1). If we regard HO as (lelt) operating on both lactors 01 8+ x HO and 
S_ x Hl, then ß+ and ß- are compatible with lelt operation. 

Proo! (i) ß+g(x, t, hOl = ß+(g(x), t, ghO) 

= (-Cos t/2 + Sin tj2.gxg- 1ek+l)ghO 

= gß+(x, t, hOl 

where gEHO and g(x) = Pk+.l(g).X = gxg- 1
• 

(ii) ß_g(x, t, h') = ß_(Cos tl2 + Sin tI2.gxg-'e,.,)gh' 

= gß_(x, t, h'). 

Since 1>(x) = xek+l for xE Rk formula (1) above can be rewritten 

ilex, g) = (x, xg) XE R', gE Spin(k). 

Summarizing our results therefore we get: 

PROPOSITION (13.2). The principal Spin(k)·bundle Spin(k + I) -)- SI: is isomorphie to the 
bundle obtained Irom the two bundles 

by the identification 

S+ x PinO(k) __ S+ 

S_ x Pin'(k) ~ S_ 

(x, g) _ (x, xg) Jor xeSk - 1 , 9 EPino(k). 

Moreover this isomorphism is compatible wilh lelt multiplication by Spin(k). 

Here PinO(k) = Spin(k) and Pin1(k) are the two components of Pin(k). 

§14. Spinor bundles 

Let pO be a principal Spin(k)Hbundle over X and put 

pI = pO Xspin(k) Pin1(k), Q = pO XSpin(l:) Spin(k + 1) 

T k = po XSPin(kß
k = T+ v T_, where 

T + = pO X sp;n(k)S +, T _ = po X Spin(kjS-

n+ : T+ __ X, n_ : T _ __ X the projections. 
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Consider now the two eommutative diagrams 

~ '''"'''T """ "("») . .. . "j 
T+------~X 

pO X Spin(klS- X Pinl(k)) _~ pI 

T 

whefe i(p, s, g) = pg, pepo, SES±, gePin'(k), i = 0, l. 

These allow us to identify the two Spin(k) bundles oeeurring in the first eolumn with 
n!(Po) and n~(pl) respectively. Now beeause of the left compatibility in (13.2) we im

mediately get 

PROPOSITION (14.1). The p/'illcip~1 Spin(k)-bundle Q ....... T k is isomorphie 10 the bundle 

obtainedfrom the two bundles 

n:(pO)-T+, 

by the identification 

n".(P')-~ L 

(p, 5, g) ,-, (p, S, 5g) 

for se Sk-l, 9 eSpin(k) andpEPo. 

Now suppose that M = MO e M 1 is a graded Ck-module. Then we have a natural 

isomorphism 

Henee 
pi XSpin(k)A,f0 = po X Spin(k)Pin1(k) XSpin{k)Mo 

;;:; po X SPln(k)M-1 
. 

From (14.1) and this isomorphism we obtain: 

PROPOSiTION (14.2). The vector bundle Q X SPin(klMo over T k is isomorphie 10 the bundle 

obtained from the two bundles 

n~(PO XSPin(k)MO)- T+, n:(PO XSpin(k)M
1
)- T_ 

by {he identification 

(p, s, m) ~ (p, s, sm) Jor pepo, seSk -l, mEMo. 

Note. Here we have identified nt (po) with pO x S+, and n!(PO x sp;n(k)MO) with 

nt(Po) x SPin(k)Mo ete. 

Let us consider now the eonstruction of §11 whieh assigned to auy graded Ccmodule 
M and any Spin(k)~bundlepo an element O:po(M) e KO(B(V), S(V») where V = po X Spin(k)R

k
• 

This construction depended on the 'difference bundle' of §9. In our present ease the spaces 
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A, Xc, Xl of §9 ean be effeetively replaced by Tk, T +' T _ and we see from (14.2) (and the 
fact that S2 = -1 for se Sk_l) that the bundle F of §9 Is isomorphie to the bundle 
Q X Spin(kjMo. Now from the split exaet sequenee ofthe pair (T\ T_) and the isomorphisms 

KO(T" L) '" KO(T., T'-') '" KO(B(V), S(V» 

we obtain a natural projeetion 

KO(T') ~ KO(B(V), S(V». 

Then what we have shown may be stated as follows: 

THEOREM (14.3). Let pO be a principal Spin(k)-bundle, M a graded Ck-module. 
Q = po X Spin(k)Spin(k + I), V = po X Spin(k)R\ r = QjSpin(k), EO = Q X Spin(k)MO, 
p: KO(Tk

) ~ KO(B(V»), S(V) the natural projection, then 

"p,(M) ~ p(E'). 

If k == 0 mod 8 and M is an irreducible (+ l)-module then p(Eo) is the element of 
KO(B(V), S(V») used in [7] as the fundamental dass. Thus (14.3) implies that this dass 
coincides with our class jlv. For some purposes, such as the behaviour under our definition 
of flv is more eonvenient. For others, such as eomputing the effeet of representations, the 
definition in [7] is better. (l4.3) enables us to switeh from one to the other. 

Thc proof of (14.3) earries over without change to the eomplex ease, Spin being 
replaeed by Spine throughout. 

§15. Geometrie interpretation of CIifford modules 

Consider the data of §11. Thus V is a vector-bundle over X, C( V) the eorresponding 
Clifford bundle, and E a graded real Clifford module for V. The construetion of Xv in that 
section then depended on a partieular geometrie interpretation of the pairing 

(15.1) V (8) E' ~ EO 

indueed by the C(V)-strueture on E. More precisely we passed from (15.1) to the family of 

maps 

(15.2) S(VJxE;-~E.~ XEX, 

which deseribe adefinite isomorphism along S(V), of E O and E.I lifted to B( V), and so by the 
differenee eonstruetion a definite element Xv(E) e KO(S( V), S( V»). 

There are two other geometrie interpretations of (15.2) whieh we will diseuss here 
briefty. The first one leads to a rather uniform description of the bundles on stunted pro. 
jeetive spaces, while the seeond one explains the relation between Clifford modules and 
the vector field problem. 

A. The generalized Xv. 

Let V be a Euclidean (real) vector bundle over X, S(V) its unit sphere bundle. The 
group Z2 then aets on S(V) by the antipodal map, and we denote the projective bundle 
SC V)/Z2 by P( V). The projeetion P( V) ~ X will be denoted by n, and ~(V) shall staad for 
the line bundle induced over P(V) by the nontrivial representation of Z2 on R I

: 

~(V) ~ 5(1') x z,R I 
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Consider now the data at the beginning cf this secHon, in particular the induced family 
ofmaps: 

XEX. 

We can clearly divide by Z2 on the left due to the bilinearity of the inducing map. Thus we 
obtain maps 

(15.3) S(V<)xz2E~-+E~ XEX, 

which may be interpreted directly as an explicit isomorphism 

"'CV, E) : ~CV) <8> n'CE') ~ n'CEo). 

We nQW let W c V be a sub~bundle, and consideragraded C(W)~moduleE. Thc bundles 
~(V) (8) n*E 1 and n*Eo then become explicitly isomorphie alongP(W) c P(V) by means of 
"'(W, E), and so determine a well-defined difference element xCV, W)E E KO(P(V), P(W». 

Thc linear extension of this construction now leads to a homomorphism, 

(15.4) xCV, W): M(W) ~ KO(PCV), P(W», 

and an analogous homomorphism 

x'(V, W) : .M'CW) ~ KCP(V), P(W» 

in the complex case. (I 5.4) is the desired generalization of the Xw in §ll. Before justifying 
this assertion, we remark that xCV, W) clearly vanishes on those CCW)~modules which are 
restrictions of C{ V)~modules. Hence if we set A( V, W) equal to the cokernel of the restric
tion map M(V) i:. M(W), then xCV, W) induces a homomorphism 

(l5.5) A(V, W) ~ KO(P(V), P(W». 

To see that the operation xCV, W) indeed generalizes our earlier x, one may proeeed as 
fo11o\ .... s: Let v= We 1, and letf: B(W)_P(V) be the fibre map whieh sends WE W;o 

into the lille spanned by (w, (l - ilwl!2») in P(V). Thus f induees an isomorphism of 
B( W)/S(W) withP(V)jP(W). Now one just checks that the followingdiagram is commutative: 

M(W) x(V,»,); KO{P(V), P(W)} 

(l5.6) li f*li 
M(W) -'-"-' -, KO(B(W), S(W». 

It would be possible to extend a considerable portion of our work on Xw to xew, V), 
but this does not seem justified by any application at present. However we wish to draw 
attention to the foUowing property of xCV, W). 

PROPOSITION (15.7). Let X be a point. Then the sequence 

(15.8) ,H(V)..':.... MCW)~KO(P(V)P(W» -,0 

is exact. A similar resulr holds in the comp/ex case. 

In other words, over a point, the relation A(V, W) ~ KO(P(V)jP(W» holds. As we 
gave a complete survey of the groups M k and their inc1usions in §5, this proposition gives 
the desired uniform deseription of the KO (and K) of a stumed real projective spaee. For 
exarnple, ta king dirn V = k, dirn W = I, we obtain 

KÖ(P,,,) '" KO(PH , Po» '" Z"", 

where ak is the ktll. Radon-Hurwitz number. 
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We know of no really satisfaetory proof of proposition (15.7), primarily because we 
know of no good algebraic description of the higher KO i of these spaces. On the other 
hand it is easy to showthat A(V, JV) -> KO(P(V), P(W») is onto. For trus purposeconsider 
the diagrarn associated with a tripIe of vector~spaees W c V' c V 

o 0 

r i 
KO(P(V'), P(W» ~ KO(P(V), P(W» ~ KO(P(V), P(V'» 

r r r 
O~A(V',W) ~ A(V, W) ~ A(V, V') 

(15.9) 

whose horizontal rows are exact; the upper one by the exact sequenee of a tripIe, the lower 
one by the definition of the A-groups. We know, by (15.6), that xCV, W) is a bijection jf 
dirn V - dirn W ~ 1. Hence, arguing by induction on dirn V - dirn Wwe may assume that 
the vertical hornomorphisrns of (15.9) are also exact. But then the middle homomorphism 
must be onto, proving the assertion for the next higher value of dirn W - dirn V. 

The proof of proposition (15.7) may now be completed either by obtaining a lower 
bound for the groups in question from the spectral sequence of KO-theory, or by a detailed 
analysis of the sequenee (15.9), which unfortunately involves several special cases. In view 
of the fact that a cornputation of KO(P(k)jP(f) is now already in the literature [1] we will 
not pursue this argument further here. 

B. Relation with the vector-field problem 

We again consider the pairing 

v x EO -+ EI 

of §ll, but now foeus our attention on the induced maps: 

(15.10) V"xz,S(E~)~E; XEX. 

Note that this is only relevant jf E is a real module. 

The geometrie interpretation of (15.10) is dear: if 11: : P(EO) -+ X is the projeetive 
bundle of EO over X, and ~ is the canonicalline bundle over P(EO), then (15.10) describes a 
definite injeetion: 

(15.11) 

It is possible to give (tU 1) a more geometrie setting if S(V) admits a section, s. One 
may then use w(V, E) to 'trivialize' a certain part of the 'tangent bundle along the fibres' of 
P(EO). Reeali first that this bundle, which we will denote by .9";:(EO), is deseribed in the fo1-
~owing manner. The bundle ~ = ~(Eo) is canonically embedded in n*(EO), whence 1I:*(E0)J~ 
1S weil defined. Then we have 

(15.12) .9F(EO) ~ (n'(EoW) ®~. 

With this understood, let V' be the quotient of V by the line bundle determined by s: 

O-+l~ V -+ V'-+O 
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and let s* : EO ~ EI be the isornorphism induced by rnultiplication by s(x) in E~. It is then 
quite easy to check that thc hornornorphism S;l·W(V, E): n*V<8> e ~ n*Eo induces an 

injection 
n*V' <8> ~ ........ n*E°g,. 

Tensoring this homornorphisrn with e, we obtain the desired injection: 

(15.13) wes, V, E): n*V' ~ $F(EO). 

Let us now again restrict the whole situation to a point. Then if dirn V = k, dirn EO = m, 
V' will be a trivial bundle of dimension k - 1, and 5'}.(EO) will be the tangent-bundle of pro

jective (m - l)-space Pm-I· 

Applying the results of §5 we conclude that the following proposition is valid: 

PROPOSITION (15.14). Let m =}.ak where ak is the kth. Radon-Hurwitz numher. Then 
the tangent bundle 01 P rn-I (and hence 01 Sm-I) contablS a (k - 1 )-dimensional trivial bundle. 

Thc work of Adams [1], gives the converse of this proposition: if thc tangent bundle 

of Sm-l contains a trivial (n - l)-bundle, then m = },an-

We remark in c10sing that on the other hand the generalized vector-field question is 
still open. This question is: let ~ be thc line bundle over P", then what is thc maximum 
dimension of a trivial bundle in m~, m ;;:; 11. Thus the vector field problem solves this ques
tion for ni = n. Thc general solution would, by virtue of thc work of M. Hirsch, give thc 
most econornical immersions of Pn in Euclidean space. 
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1. Introduction 

Throughout this paper M shall denote a compact connected Riemann 
manifold of class C~. Let" = (P, Q; h) be the triple consisting of two 
points P and Q on M together with a homotopy dass h of curves joining 
P to Q. We will refer to such triples as base points on M. 

Corresponding to "= (P, Q; h) we define M' to be the set of all geodesics 
of minimal length which join P to Q and are contained in h. 

There is an obvious map of the suspension of M' into M: one merely 
assigns to the pair (s, t), seM'; te [0,1], the point on s which divides s 
in the ratio t to 1 - t. (For fixed small t > 0, this map is 1 to 1 on M' 
and serves to define a topology on M'.) The induced homomorphism 
of 7rJM') into 11:".,(M) will be denoted by ",. 

Let s be an arbitrary geodesie on M from P to Q. The index oi s, 
denoted by :I.(s) , is the properly counted surn of the conjugate points oi 
P in the interior of s. We write I" I for the first positive integer which 
occurs as the index of sorne geodesie from P to Q in the class h. In 
terms of these notions our principal result is the following theorem. 

THEOREM 1. Let M be asymmetrie spaee. Then for any base point 
lJ on M, M~ is again asymmetrie space. Further, V* is onto in positive 
dimensions less than Il..! ! and is one to one in positive dimensions less 
than I" I - 1. Thus; 

(1.1) O<k<l"l-l. 
As an example, let M be the n-sphere, n ~ 2, and let "=(P, Q) consist 

of two antipodes. (Because Sn is simply connected the class h is unique.) 
Then M' lS the (n - l)-sphere, and "*; 7riSn-,) ~ 11:,,, ,(Sn) coincides with 
the usual suspension homomorphism. The integers which occur as indexes 
of geodesics joining Pto Q, are seen to form the set 0, 2(n-1), 4(n-1), 
etc. Hence I" I = 2(n - 1), and (1.1) yields the Freudenthal suspension 
th~orem. If" = (P, Q) with Q not the antipode of P, then M' is a single 
pomt, whIle I" I lS seen to be (n - 1). In that case (1.1) merely implies 
that 7r.,{Sn) = ° for ° < k ~ n - 2. 

At first glance the evaluation oi I" I may seem a formidable task. 

.:~ The author holds an A. P. Sloan Fellowship. 
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However on asymmetrie space (see seetion 5) every pair of points (P, Q) 
is contained in a maximal flat geodesie torus T, and every index ;Crs) 
already oecurs as the index of a geodesie joining P to Q on T. Further, 
for such a geodesie, ;Crs) is equal to the number of times scrosses the 
'Isingular" suhtori of T. The disposition of these singular tori 18 weIl 
known. The computation of 1 v 1 is therefore a routine matter. 

Theorem I yields new results in the following manner: In view of the 
fact that with M the space M' is again symmetrie, one may repeat the 
procedure of passing from M to M'. To facilitate the use of this iteration 
we will agree to call a sequence of symmetrie spaces ... M1 --'>- M2 ----+ 1113 " • 

a v-sequence if at each step Mt=MT+l for some appropriate base point 
v in M!+l' For example, the sequence .. ·Sn -+ S'l+l -+ Sn+2... 18 a 
v-sequence, 

THEOREM 11. The following are th"ee v-sequences with the val"e of 1 v 1 

,:ndicated at each step. 

(1.2) 

(1.3) 

(1.4) 

211·.;..2 
U(2n)(U(n) x U(n) -'-' • U(2n) 

n+1 
0(2n)!O(n) x O(n) -. U(2n)/0(2n) 

21t-q 4n+2 
-' • Sp(2n)(U(2n) -. Sp(2n) 
4-n--~·1 

Sp(2n)jSp(n) x Sp(n) ~ U(4n){Sp(2n) 
8n-2 8n-') 
-'-. SO(8n )/U (4n) -'-~ SO(8n) 

Here we have used the standard notations and inclusions. 
Notiee that iv 1 tends to = with n at eaeh step of these sequences. On 

the other hand it is weIl known that for each of the symmetrie spaces 
involved, 17:" 'becomes independent of n }> k. (We will indicate these 
stable values of 7r, by dropping the subscript n and using bold face type. 
For example, rrJU/O) = 7r,{U(n)jO(n)} for n »/c.) Finally, reeall that 
in this notation 7r,(U) = "",(UjUx U), 7r,(0) = "+,(OiOxO) and ir,(Sp)= 
7r,.,(Sp/Sp x Sp) (/c = 0, I, ... ), because in each instanee the space on 
the right hand side represents the universal base space of the group in 
question. Combining these three observations with Theorem I, we 
obtain the following corollary to Theorem Ir. 

COROLLARY. The stable homotopy of the elassieal groups is periodic: 

7r,(U) = "",(U) 
(1.5) 7rJO) = 7r, .. (Sp) 

7r,(Sp) = 7rh .(O) k = 0, 1, ... 
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The groups ;r,(U) are 0, Z for k = 0, 1. Hence 0, Z is the period of 
;r ,rU). In the case of Sp, one has the groups 0, 0, 0, Z, for Ic = 0, I, 2,3 
respectIvely. For 0 these first four groups are Z~, Z~ 0, Z. Heuee the 
period of ,,*(0) is Z., Z" 0, Z, 0, 0, 0, Z. Applying (1.3) and (1.4) one 
also obtams the stable homotopy of the other symmetrie spaces. Thus: 

(1.6) 

\vhile 

(1.7) 

",JSp/U) = TC" ,(Sp) 

",,rU/O) = ",. ASp) 

",,(O/U) ,., ::-c .. ,(0) 

;c,(u/sp) = ;;-,.,JO) 

Ic =, 0, 1, 2··· 

Ir,. 0,1,2··· 

k .... O.l,2··. 

k = 0, 1,2··· 

(In the third formula we have replaeed SOjU by 0/U Lo obtain the correct 
value of Ir'J') 

The formulas (1.5) to (1.7) were already announeed in [41. The unitary 
groups were discussed by a different method in 151. wher~ the unstable 
group 7r~,,{U(n)} was also evaluated as Zjn!Z. 

The proof of Theorem I is summarized in this fashion: Let J.o = (P, (,I; h) 
be a base pomt, and let D,M be the spaee of path from P to Q on JV[ in 
the class h.. We then eonstruct a CW-model for fl,M which is of the form 
K = M' U e, U e, ete., where the e, are cells of dimension greater than or 
equal to 1/' I. 

. The existence of such a K follows readily from the Morse theory. For 
mstanee the deformations given in Seifert-Threlfall [10, pp. 34, 35] and 
ean be mterpreted us fallows: Suppose that a smooth function f deflned 
?n a eom?act mamfold N has a single uondegeuerate critical point P. of 
mdex /c m the range a;5J:;2;b, a<f(p)<b. LetN" respectivelyN'be 
the sets f :;2; a and f :;2; b on N. The assertion is, that then N' is obtained 
from N" by attaehing a k-cell, e" to N". In symbols, N' = N" U e,. (This 
pomt of V1ew 1S also emphasized in notes by Pitcher [9J and R Th 
[12].) , . om 

To prove our theorem this interpretation of the Morse theory 1S first 
extended in two ways: 

(A) The loopspace problem is reduced to the manifold problem. 
(B) The notIOn of nondegeneraey is extended. 

Thereafter it Ü~ shown that on a gymmetric space the critieal Ret8 in the 
!()opspa(:~ are Ilondegenerate for every choice of a base point. 

The stell (Al is already essentially contained in Morse 19J; while the 
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notion of a nondegenerate critical manifold (step B) was introduced in 
[2]' . 

The final step follows easily from thc results of [6j. 
I t is clear from this rough plan of the proof that considerable reviewing 

of more cr less known material will be necessary to make the account 
intelligible. Because the theory of a nondegenerate function On a smooth 
manifold is by now well known, while some mystery still seems to hang 
over Morse's extension cf this theory to 100p spaces, we will review step 
(A) in greater detail than the other two steps. 

2. Review of the Morse theory. A reduction theorem 

Let .u = (P, Q) be any two points of M. The space of paths from P to 
Q on M is denoted by ü,M and is defined as follows: 

DEFINITION 2.1. The points of ü,M are the piecewise dijJerentiable 
maps c: [O,l]-->M which are parametrized proportionally to are length, 
take ° into P, and map 1 onto Q. The distanee between two points c and 
c' in ajJ- lyt is given by: 

p,(e, e') = max'e[o.'l ,0 {c(t), c'(t)} + I J(c) - J(c') I 

where ,0 is the metric on M, and J denotes the length function on [l, M. 
The advantage of this definition of [l"M is that J(c), the length of C, is 

a continuous function of ü,M. On the other hand [l,M is not complete. 
If a is areal number, the subset of [l,M on which J;'i; a, is denoted by 

ü~M, and is referred to as a half space of [l,M. Such a half space is 
called regular if ü~M contains no geodesic of length a. 

Let F be a continuous real valued function on a compact manifold N. 
The set {XE N; F(x);'i;a} will be denoted by F"N, or just N" if the func
tion is understood, and is also called a half-space for Fon N. The half
space is called regular if F is of class C~ in some neighborhood of F" N, 
and if F has no critical points at the level a. (In other words dF(x)*O if 
F(x) = a.) 

The aim of this section is to show that every regular half space of 
[l,M, is of the same homotopy type as a regular half-space of a 
manifold. 

It turns out that if one steers amiddIe course between Morse and 
Seifert and Threlfall such a "model" for ü~M is easily constructed. We 
have just defined [l,M according to Seifert and Threlfall; for the rest 

1 The applications given in [2] are false, as was pointed out to me by .Ä.. S. Schwartz 
Lll}. A distressingly simple example shows that the assertion l2, p. 253] to the effect 
that V~,., is a manifold is wrang. This mistake invalidates the computations for the 
circular connectivities of the n-sphere. 
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we follow, in spirit at least, Morse's account of thirty years ago. 
Let (Pli: lVf"-'J.R, be the function from the n ll

• cartesian product of 1\11 
with itself, which assigns to (x) = (x" "', x,,) the number: 

ep,,(x) = ,o'(P, x,) + p'(x" x,) + ... P'(x,,, Q) . 

Were ,o(x! y) denotes the distance between x and y on M, as before. 

REDUCTION THEOREM I. Let a be a positive number. Then there exists 
an integer n such that [l~M is of the same homotopy type as the half 
space <p;;Mn of 'Pa on 1\11", where b = a~Jn + 1. Thus, 

(2.1) 

The statement (2.1) is new, although quite implicit in Morse's account. 
He, of course, did not have a definition of ü,M on which the length func
tion was continuous. A slightly surprising technical phenomenon is that 
th~ .function 'Pn alone suffices to define a model for n~M. In Morse's 
ongmal account, he essentially shows that ü~M is of the same homotopy 

tYpe as the subset of Mn characterized by p(x" XH ,) < 15; E::;',o(.1:, X
i
+,) 

;'i; a. (Here Xo = P; x,,+' = Q). 

PROOF OF (2.1). There exists a number p > 0 such that two points of 
lvI with distance less than p have a unique shortest geodesie joining 
them. This shortest geodesic then varies smoothly with the end points, 
In particular p'(x, y) is a C~ function of X and y as long as p(x, y) < p. 
Suppose now that n is chosen so large that: 

(2.4) 

Under this condition on n we define maps a: n~iVf __ <ptM and {3: <p;~Mn 
-- n~M which constitute a homotopy equivalence. (For convenience we 
write 'P for 'Pu and denote <p~M'; by Mt in the sequel.) 

DEFINITION OF ". Let c e ü~M. Then ,,(cl e Mn is to be the point: 

a(c) = {c(t,), c(t,), "', c(t,,)! ; t, = i/n + 1; 

Clearly "is a continuous function from [l~M to Mn. Next, <p(ac) = 

B;:;',o'{c(t,), c(t, .. )}. Each term of this Sum is ;'i;(a/n+1)' because c is 

parametrized proportionately to arc-Iength. Hence <p(ae);'i;(a'{n+1) = b. 
The map a therefore take values in M~. 

DEFINITION OF ;3. If x = (X" "', x,,) is a point of M.t = <p' Mn, then each 
of the numbers,_ {,o(P, x,), p(x" x,) .•. ,o(""+,, Q)} is less than a/v'n+1, 
hence less than p. The unique geodesics joining consecutive points of the 
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P , X Q are therefore well defined and combine to yield a 
array ,Xl>" , n, I h f d ot 

, C) M By the Cauchy inequality the engt 0 c oes n curve, C, In -l .. )J. • 

exceed a. The correspondence x ~ c defines the map 13. 
. h t D ° < t < 1 of D" M on itself LEMMA 2.1. There ex~sts a oma opy t. = = 11. 

such that D is the identity, and D, = 13 0 a. 
The need~d deformation is given explicitly in [10, p. 51]. One deforms 

t f between t and t· into the geodeSlc chord J01mng c(t,) 
the segmen 0 C i ~+". ) 
t .(t ) The intermediate curves are geodes1c segments from c(t,. 
o C .+J' t 

c(t, + 8) followed by the original curve from t, + e to ",. 

LEMMA 2.2. There exists a homotopy ~"O ;;:;; t ;;:;; 1, of M~ on itself, 

such that ~, is the identity, and, .:)" = a 0 1:3· . 
This homotopy is to be found in Morse [8, p. 217J. If x E Mt.. I:!(~) lS a 

. .. Pt Q Let c' [0 1] ~ M the parametrlZatIOn of 
polygonal curve JOlm~g o. ". < . .. a < 1 be the 
ß(x) which is proportIOnal to are length. Let 0 ~ a" < ,n~' } 
pre,images under C of the points x = {x" "', xn } on !3(x~. The {a, 

d t the parameter values of the original verbces on 13(")· 
then correspon 0 ()} h t -'/ +1 
The composition a o!3 takes x into {c(t,), c(t,),' '.' ,c t n W er~, ,-:,.n '1;' 
H 'f -t. then the ao!3(x)=x, and what lS needed lS a umversa 

h
encet 1 a'h'~h takes the points a, into the points t i • The natural way of 
omo Opy W 1 . t t t I' ear 

constructing this homotopy i8 to dispatch aj, on Its way 0 .. a a m 
speed proportional to the distance to be traversed. In formulas, let 

a~ = 0 

a~ = at{l - r) + T t, , 

a~+1 = 1 

o ~ T ~ 1; i = 1, .. " n 

The homotpy ~,assigns to x the point {c(a;)} where c = f:!(x). Clearly the 
. I 'th for x E M' so that ~. lS a proper homotopy. a, vary contmuous Y Wl x . "'. . ' . . 

It remains to be checked that .:)" keeps jVI~ mvarlant. For th,S purpose 
it is sufficient to prove that <p(~,x) ;;:;; <p(x); 0 ;;:;; r ;;:;; 1. h 

Let J(x) be the length of f:!(x), and set Oi = J(x) (ai - ai.,)· T us 

L:::;" 0i = J(,c), while L:;:;'" o;=<p(x). We also write {x;} for the co

ordinates ~7X. Then: 

o(x' x'") :s; 0.+,(1 - r) + r(J(x)/n+l) , , "' '.J _ .., 

because 13(10) is parametrized proportionally to arc length. Hencel 

After expanding, the right hand side is seen to equal 
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'I'(x) - 2r('p(x) - {J'(x)jn + I}) + r'(q'(x) - {J'(x)jn + 1}) 

By the Cauchy inequality <p(x) - J'(x)/n + 1 ;;; O. Hence in the range 
0;;:;; r ;;:;; 1, <p(~,x) ;;:;; <p(x). This completes the proof of the lemma, and 
hence of (2.1). 

The statement (2.1) has a refinement which will be formulated next. 
Its purpose is to relate certain geometrie properties of the geodesics in 
D~M with the critical points of <p on M~. Recall first the notion of the 
index 01 a critical point. lf p is a critical point of the smooth function 
<p on the manifold N, the Hessian of qJ, denoted by Hp<p, is the bilinear 
symmetrie function on the tangent space Np of N at p, which in terms 
of local coordinates is defined by H p<p(8j8x, 8/8x,) = 8'<p/8x.8x., The 
index of p as a critical point of 'I' is by definition the dimension of a 
maximal subspace of Np on which the Hessian is negative definite. This 
integer is denoted by A.(p). Finally we briefly review the notion of a 
conjugate point on a geodes;c. For details the reader is referred to [8J 
and [6J. 

If s(a, t) is a smooth family of geodesics, depending on a parameter a, 
then the vector field 8s(a, t)/8aJ •. ," along s(O, t) is called a J-field along 
s = s(O, t). The totality of such vector fields along s, forms a vector space 
.1, over the real numbers. lf the length of S is less than p, every V in J, 
is uniquely determined by its values at the end·points of s. In general, if 
P and Q are two points of s, Q is called a conjugate point of P (along s) 
of multiplicity k if the subspace of J" consisting of the fields which 
vanish at both P and Q, is of dimension precisely k. 

REDUCTION THEOREM Ir. The homotopy equivalence a: !!~M ~ M~ 
constructed in the proolof (2.1) has the lollowing properties: 

(2.2) Under a the geodesics of n~M are mapped one to one onto the 
critical points 0/ rp on M~. 

(2.3) If s is a geodesics of n~M and p is üs image under a, then: 
The dimension of the nullspace of Hp<p equals the multiplicity of Q as 

a conjugate point of P along s. 
The index A.(p) is equal to the number (counted with multiplicities) 

of conju.gate points of P in the interior of s. 
Except for a minor technicality, (2.2) and (2.3) are the content of 

Morse's index theorem. See [8, p. 91]. The technicality in question is 
the following one. Let '0/ be the function p(P, x,) + p(x" x,) + ' " + 
,o(x., Q). This function is smooth provided that no two consecntive co
ordinates coincide. Thus, except in a trivial case, the function '1" is 
smooth near the point p of (2.3), and, as will be shown in amoment, pis 
also a criticaJ point of 'fr. lf in (2.3) we replace \.(p) by ~".(P) we obtain 
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the statement of Morse. Note however that (2.2) with 'p replaced by V 
is not true. Indeed, the critical sets of 'I' are cells obtained by sliding 
the vertices along a given geodesic. 

To prove our theorem it is therefore sufficient to establish (2.2) and the 
equality of A.(p) with A'j,(p). 

PROOF OF (2.2). If S is a geodesic segment of n~M then ;30 ais) =s . 
Hence 0: imbeds this set of curves in M~. and it remains to identify 
the critical points of 'I' on this set. Let xe M", let X be a tangent vector 
to Mn at "', and consider the derivative X'I' of 'i' in the direction X. The 
point x is critical if and only if X'i' = 0 for all X in the tangent space 
at x. Suppose that x has the coordinates (x" "', x p ) and that X has the 
corresponding components (X" "', X n ) in the natural product structure 
of the tangent space to Mn at x. Let S, denote the geodesic segment 
from Xi to X.i + 1 , where we now set XO =P, Xn + 1 = Q. and let s;, respectively 
s~, be the unit tangent vector of Si at X i -;.] and Xi' By the weIl known 
first variation formula: 

X· (l(x" x,,,) = 21 s, 1 {(sj, X",> - (s:X,>1 , 
where <, > denotes the inner product of the Riemannian structure, and 
1 s, 1 denotes the length of s, one obtains the expression: 

Xcp = 2E::~"-1 < I Si 1 si - ! 3;+1 I S~+lXi+l > . 
The components X, of X are independent. Hence Xr' = 0 for all X if 
and only if si = s1,,; 1 s, 1 = 1 s", I; 'i = 1, "', n - 1. In other words x 
is a critical point if and only if /3(x) is a geodesic, and "0 ß(x) = x. This 
completes the proof of (2.2). 

PROOF OF (2.3) Let A be the tangent space M;. By varying the vertices 
of p along s, we single out a subspace A' of A on which Hprp is clearly 
positive definite. It therefore suffices to study the restriction of H"rp to 
a suitable complement of A, in A. Such a complement is furnished by 
the elements X = {X,} in A with each X, perpendicular to s. Let this 
complement be denoted by A', and suppose X, Ye A'. For each seg· 
ment ", choose J·fields U, and V;. so that at the end points s" U, coincides 
with X,., and X" while Vi coincides with Yi., and Y ,. We write this 
condition in the form U, =X",; U; = X" etc. Because 1 S, 1 < p, the U

" V, are uniquely determined by X and Y. Now by the second variation 
formula, 

Hprp(X, Y) = k~ <6,Ut - 6,U"" Vi> 

where 6, U, denotes the covariant derivative of Ui along s, and k is equal 
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to (2jn+1) x length of ß(x). For the function 'I' we obtain similiarly the 
expression 

H"v(X, Y) = ~(6,U: - 6,U"" Vt> 

Thus On A' these two Hessians differ only by a positive factor. On the 
complementary subspace H,,'I' vanishes. Hence :\,(p) = A,.(p) as was to 
be shown. 

REMARK. These formulas immediately prove the first part of (2.3). 
Indeed, a vector X is in the null space of H"rp if and only if the J·fields 
U, along s, fit together to form aglobaI J·field along s which vanishes at 
both P and Q. In this manner Morse obtains the formula for the null 
space of H,rp. Concerning the index formula, let me just remark that 
Morse obtains it by deforming Q along sinto P, and observing that the 
index form Hp'Vl' does not change during this deformation except when Q 
passes through conjugate points of P. At such points the index is 
shown to decrease by precisely the multiplicity of the conjugate point. 

The two reduction theorems complete our original program of assigning 
to every regular half space of n~M a regular half space of a compact 
manifold which is of the same homotopy type. (The fact that regularity 
is preserved under a: follows from (2.2». We will call the set Mt con· 
structed in this section a model for n~M. lf" = (P, Q: h) is a base point, 
n~M denotes the component of h in n.M and the image of n~M under" 
will be called a model for n~M. It is clear that the reduction theorem 
holds equally weil in this new setting. 

3. Review of the Morse Theory. The nondegenerate case 

The ~lassification of critical points according to index and nuIlity has 
topologlcal Imphcatlons which are usually expressed by the Morse 
mequahües. Actually however this "homology formulation" is proved 
by homotopy arguments. It is better therefore to state these implications 
m the language of CW·complexes [13]. In this manner homology con. 
sequences are easily accessible while the homotopy implications are not 
lost. (See [9] and [12J.) 

DEFINITION 3.1. (See [2J.) Let V be a smooth connected submanifold 
of the regular half space Na = r N. Such a manifold is called a 
nondegenerate critical manifold of f on Na if; 

(3.1) Each point of V is a critical point of f. 
(3.2) For any PE V, the nullspace of Hpf is the tangent space of V 

at p. 

An immediate consequence of (3.2) is that AAp) is a constant on V. 
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This integer is the index of V, and is written '-AV). If V reduces to a 
point, Hpf is non-singular by the condition (3.2). The present notion 
therefore generalizes the classical definition of a nondegenerate critical 
point. 

Let V be a nondegenerate critical manifold of f on N". We define the 
negative bundle, ~V> over V in the following manner. 

Let a Riemannian structure be defined on N. At each point PE V the 
form Hp! then uniquely determines a linear self-adjoint transformation 
T, on the tangent space of N at p, by the formula, 

(3.3) <TpX, Y) = HJ(X, Y) X, YEN" . 

These transformations combine to define a linear endomorphism, T, of 
the tangent space to N along V. By condition (3.2) the kernel of T is 
precisely the tangent space to V. Thus T is an automorphism of the 
normal bundle of V in N. 

Now let ~v be the subbundle of this normal bundle which is spanned 
by the negative eigendirections of T. Thus the fiber of ~" at PE V is 
spanned by the normal vectors to Vat p, for which T,,' Y = ,-Y, '- < O. 
The fiber of ~v therefore has dimension '-kV). If Af (V)=o, we set ~v equal 
to V. The bundle ~v is independent of the Riemannian structure used. 

Finally, recall the notion of attaching a vector bundle ~, to aspace Y 
to form the space Y U ~. 

In general if a: A~ Y is a map of a subset AcX one forms the space 
YU" Xby identfying a E Ac X with a(a)s Y in the disjoint union Ywith 
X. 

This attaching construction has the following elementary properties: 

(3.4) The homotopy type of Y U" X depends only on the homotopy 
type of a. 

(3.5) If (X" A,) is a deformation retract of (X, A) and if a, =rr I A" 
then Y U., X, is of the same homotopy type as YU "x. 

When X is an n-cell e", and A is the bounding sphere of e", Y U" e" is 
referred to as Y with the cell en attached. If ~ is an orthogonal n-plane 
bundle, we form the space Y U~, by taking, in the above procedure, X 
equal to the set D, of vectors of length;;; 1 and setting A equal to 
S, = 8D,. In this case we speak of Y with ~ attached, and if n: is not 
cxplicitly in evidence just use the notation Y U ~. If ~ is a O-dimensional 
vector-bundle Y U ~ stands for the disjoint union of Y with the base
space of ~. 

With this notation and terminology understood, the principal rcsult of 
the nondegenerate Morse theory can be stated as folIows: 
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THEOREM Jll. Suppose that N" c N" are t11'O ,'egula,. half-spaees of 
the funetion f on the compact manifold N. 

(3.6) If f has no critical point in the mnge a ;;; f;;; b then N" is a 
deformation retract of Nb. 

(3.7) Tf f has a single nondegenerate critical manifold V in the range 
a ;:; f ;:;; b, then N" is oj the same homotopy type as N" with the negati've 
bundle of f along V attached : 

Nb = Na U ~jr 

where ~,. is the negative bundle of f along V. 

Immediate consequences in homotopy, [13], are: 

COROLLARY 1. Unde,' the assumptions vf (3.7): 

(3.8) N" = Na U e, U •.. U e., 

where the cells e" ·i = 1, "', s, have dimension;;;; '-iV). In partic?tZar. 

(3.9) ",(N', N") = 0 for 0 ;:;; " < '-( V) , 

Using excision and Poincare duality (3.2) implies: 

COROLLARY 2. Under the assumptions of (3.7) 

(3.10) H'(N', N"; C) "" H;(~v; C) =H'-'(V; G') 

Here the s?tbscript c denates compact cohomolagy, and by G' we mean the 
tensor of the eoel/leients G by the arientation sheaf of ~,. 

REMARKS. In [2] we derived (3.10) with G specialized to Z,. In this 
paper we will need only (3.9) but it seemed to me that (3.7) summarizes 
the situation better than any of the other versions. Remark that (3,10) 
implies (3.9)if N" is assumed to be simply connected. On the other hand 
(3.8) yields (3.9) without this troublesome hypothesis. 

The restriction that V be the only critical set of f in the range from 
a to b is not essential. If all the critical sets are nondegenerate, they are 
necessarily finite in number, so that if we denote them by V': i = 1" ,s; 
then Theorem IU is easily modified to yield the fOl'mula 

Nb = Na U ;:]'1 u ... U ~rs . 

If Na is triangulated, the attaching map of cell e, can be deformed 
into the (dim c,. - l)-skeleton of N". In this way N' becomes a CW
complex. 

The case when V is a point, p, is completely treated in [10]. The 
present extension is best summarized by saying that what is done for a 
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neighborhood of p in [10] can equally weil be done in anormal neigh
borhood of V in the present case. On each fiber of such a neighborhood 
one encounters the nondegenerate critical point problem. 

PROOF OF 3.6. Let N' be endowed with aRiemann strueture and 
denote the gradient of I eorresponding to this strueture by vi. If 
PE N' - Na, L" shall denote the integral eurve of -vi through p in its 
natural parameter. Beeause dl *' 0 on this set L" is weil defined. Further 
beeause N' N" is eompaet, I vi I > c, > 0 on this set. Henee eaeh L" 
intersects r'(a) at some point, say hip). and the funetion p ~ hip) 
defines I-'(a) as a retraet of N' - N°. By assigning to p the point h,(p) 
on L" whieh divides the segment from p to hip) in the ratio 1: 1-t, I-'(a) 

is seen to be adeformation retraet N' - N°. Henee (3.6) is true. 
NOTE. The eritieal values of I form a closed set. Henee Na-, is again a 

regular half-spaee of I when e > 0 is small enough. Using this additional 
spaee it is easily seen that under the eonditions of (3.6) N' and Na are in 
fact homeomorphie. 

PROOF OF 3.7. We may assume that/(V)=O, and that I has no eriti
eal points in the range [(-co> 0) ; (0, co)]. It is also suffieient to prove 
that under these eonditions N' = N-' U~v for some () < e < e,. 

We have already defined ~=gv as the negative bundle of I along V. 
Let g. be the negative bundle of funetion - I along V. Then, dearly, 
the normal bundle YJ of V in N is the direet sum e with 1'. 

(3.11) 

We let rr: '7 ~ g be the natural projection. The length of a veetor 
XE YJ is denoted by I XI and the funetion X ~ I XI' is denoted by 1'. 

Let ,0: 'fj~ N be the exponential map. This map is a homeomorpbism in 
the vicinity of V included in r; as the zero cross-section. Thus p induced 
aRiemann strueture (.) on this vieinity. The funetion fop will be 
donoted by I,. 

The eondition that V is a nondegnerate eritical manif· ·Id of I clearly 
implies that the function f* restrieted to any fiber of 'fj has a non
degenerate critieal point. More preeisely the following is true: 

(3.12) The function 1*, restricted to any fiber of ~*, [g], hasa non
degenerate minimum [maximum] at O. 

An easy computation now yields the following consequenee: 
(3.13) The function (df*, dep), restrieted to any fiber of g·[~l has a 

non-degenerate minimum [maximum] at O. 
The geometrie interpretation of this remark is in turn : 
(3.14) If 8>0 is small enough the set I,;;; 8 on a fiber of g* is star-
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shaped with respeet to 0, and therefore linearly eontraetible. 
(3.15) If f' > ° is small enough, the gradient of -1* points out of the 

set <p(X) ;;; p, at points with vp(X) = p, on any fiber of ~-. 
Now, let X: be the subset defined by: 

(3.16) X.: = lX E r; If,,(X) ;;; e; VI' 0 rr(X) :;; I'l 
Then we ean as a eonsequenee of (3.14) and (3.15). find positive numbers 
e and 1" with the following properties: 

(a) We have • < ',. 
(b) The map p is a homeomorphism on X':'. 
(e) If A' C X' is the subset of X,; on whteh 9' 0 rr(X) = p, then the 

pair (X': na~_, A,: n 1;) is adeformation retraet of (X~, A';). 
(d) The gradient of -f points out of the set p(X,) at the points of 

p(A~). 
Assume in the sequel that s, f1 have been chosen in the above manner. 

Also let Y: = N - p(X~). From (b) we eonelude that N' = Y,; ~.X;; 
with attaehing map a = ,0 I A';. From (e) it follows that N' = Ya U ~. 
(Clearly the pair (D" S,) is equivalent to the pair (X~ n 1;, A~ ~ 1;).) 
Finally, from (d) we eonelude that at the boundary pomts .of Y a the 
gradient _ Vf points inward. Further there are no pomts w.'th VI = 0 
on this set in the range - e ;;; f, in view of (a). Henee N-' lS a defor
mation retraet of Y! by the argument used in the proof of (3.6). Thus 
N' is of the same homotopy type as N-' U gas was to be shown. 

REMARKS ON (3.8). This result follows from (3.7). One triangulates V 
and uses the preimages of these eells under the map D~ ~ Vas the cells 

~ d h The following is a different argument which proves (3.8) un er t e 
weaker hypothesis that (3.7) holds if V is a point. Let g be a functlOn on 
V whieh has only nondegenerate eritieal points on V. Extend g to a func
tion iJ on anormal neighborhood, B, of V in N by m~killg iJ collstant 
along the fibers, F, of B. Finally smooth fJ out to O. m:,de a sl1ghtly 
bigger normal neighborhood. There results a C" funct10n g on M. No",: 
consider the funetion j = I + eg, with • > O. For e sufficiently small I 
will have only nondegenerate eritieal points in the range a;;; I ;;; b, and 
these will be precisely the critical points of g on V. Note that this part 
of the argument holds without the nondegeneracy hypothesis. All that is 
needed is that V be an isolated eritioal manifold. However, under such a 
general eondition nothing ean be said apriori about the indexes of the 
critical points of I. Under the nondegeneraey eondition, H,I and H,g 
have complementary nullspaces at all eritieal points of f. Henee the 
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indexes add, and are therefore :S,"j(V), 
We close this section with the following easy corollary of Theorem I, 

corresponding to the case '"f( V) = 0, i.e .. when ~,. = V. 

COROLLARY 3. Let f be a smooth funetion on the compact manifold M. 
Assume that the critical set of f consi8ts entirely oj 1wndeoenerate 
critical manifJlds. Let M* be the set on which f takes on its absolute 
minim1<m, and let If I denote the smallest index of the critical points 
of fon M _ M*. Then M is obtained from M* by successively attach· 
ing cells of dimension no less then If I. Thus: M = M, U e, U ... U e,; 

dime;:S Ifl. 

4. The suspension theorem 

Le ~ be a base point on 114. The space n)VI. is called nondegenerate if 
the set of geodesics in ü"l'\.:[ is the union of nondegenerate critical 
manifolds. Precisely, this condition should be formulated as follows: l2)\I 
i8 nondegenerate if. given any regular half-space D~M, with model 
M~~, then the critical set of Cf) on 1\1,f, is the (necessarily) disjoint union of 

nondegenerate critieal manifolds. 
Combining the reduction Theorem I TI the follo\ving proposition beeomes 

evident: 
SUSPENSION THEOREM. Let ü,M bc 'Jlondeyenerate. Let cv = CV(M) be 

the colleetion of critical manifolds in n,M. 
Let CV be weU ordered, CV= {V" V" ... }, compatibly with the partial 

order dejined on V by the lengtl, of the geodesics, and let ~v =~; be I 

the negative bundle of V;. Then ü,M has the same homotopy groups as 

the CW ·com plex: 
K = g, U ~, U i;, U •. , 

(4.1) 

We call this the suspension theorem because (1.1) follows from it trivially. 
lndeed, if I v I > 1, then only one of the critieal manifolds V, can have 
index 0, beeause n,M is eonnected, (whenee K is connected) and attaeh· 
ing a veetor bundle of fiber dimension > 1 does not change the number 
of components. Hence in this case VI has index 0 while an other Vi have 
index :s I v I. It follows that M' = V,. Thus going over to the corollary 

of Theorem Ill, K is of the form: 

K = lvI" U e! U e2 U ... dirn e, :s I v I . 
(4.2) 

Let i ; M' ~ n,lvI be the inclusion and let (J * denote the suspension (in 
homotopy) from n,M to M. Then (J* 0 i*; ",(M') ~ ", .. (M) agrees with 
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the definition of v*- given in the introduction. Hence b 
the corollary: y (4.2) we obtain 

COROLLARY (4.1). Under the hypothesis of the suspension theorem 

(4.3) V,: ",(M') -, ",,",(M) , , O<"<lvl-l 

18 an isomorphism onto. 
s"a e an Imme iate cohomology consequence For completeness, we t t . d 

of (4.1): 

COROLLARY (4.2). Under the hypothesis of the suspension theore 
H"'(D.,M; G) adrnits ast I m, > *' pec 1'0. seq?wnce Er which converges to a graded 
gr01<p o} H (fl,lI1'; G) and whose E, term is given by: . 

(4.4) E, = L:H.*(~;; G) 

where ~, mnges OV81' the negat'ive bundles t.· V C Cfl (Th b . d ~J" ". e su sCr'l,pt c 
enotes c.ahomology with compact supports.) 
By Pmncare duality one has further that (in th t t' e no a wn of (3.10)): 

(4.5) H;(~v; G) = H"'(V' G') , , '" = ),,( V) . 

REMARKS. Recall that nondegerate n M . t f . f th t ' eX1S or every mamfold M 
o. e yp~ we ~re co.nsidering . In fact nearly every base point, l.I gives 

~:~:~t acna;~,M m :-vhlCh the geodesics are nondegenerate critieal points. 
. (4.3) lS qUlte unmterestmg, however (4.4) is still u f I' . 

partlcu]ar, E, will then be free if G . t k . se u , In . t 'f . lS a en as the mtegers Fo 
InS anee, 1 M IS a eompact group E -E . . r , ,- _ lS was shown' [3J h'l 
for compact symmetrie spaces in general E _ E t] In d ' WIe , , ,- _ a east mo 2. [6]. 

5. The proof of Theorem I 

Theorem I follows fro th . onee it is proved that: m e suspenSIOn theorem of the last section 

(5.1) If M is asymmetrie space then fl M' nond 
base point l.I on M. jJ. 28 egenerate for every 

(5.2) With M lW i' . on M. ,s aga2n a symmetnc space tor every base point l.I 

Recall that the manifold M is called s . . tion is satisfied: ymmetrlc lf the following condi· 

(5.3) For every P E M, there exists an isometr L . 
P fixed and ,'everses the geod . th Y p, of M whwh keeps , esws rough P. 

Frofi the second condition it f Il th " 
Another equivalent definition 0 ow: at I;.~'dentity for every PE M. 

can e glven In terms of the group of 
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isometries cf M. This group, which is known to be a compact Lie-group, 
will be denoted by G in the sequel. Using the fact that any two points 
of M ean be joined by a geodesie one easily derives the following eonse
quenees of (5.3). 

(5.4) The e-eomponent G' of G aets transitivelyon M. 
(5.5) If K p e Gis the stability of Pe M, then K,. is pointwise fixed 

under the automorphism A,.: k ~ IpkIp' of G. 
(5.6) The e-eomponent K;. eoineides with the e-eomponent of the fixed 

point set of A,. in G. 
The eonverse of (5.6) yields the alternate definition of symmetrie 

spaces: 
(5.7) If G is a eompaet group, and A is an involution of G, then in an 

invariant Riemannian strueture, the eoset spaee G/K is ealled asymmetrie 
sPaee if K' eoincides with the e-eomponent of the fixed point gronp of 
A. 

In the sequel we assume M is asymmetrie spaee with K p the stability 
group of Pe M. The e-eomponents of groups will be denoted by a dash, 
e.g., K~,. 

The action of K p on M was diseussed in [6], and was shown to be 
variationally eomplete. 

As a eonsequenee the following is true: (see [6, ehapter 11].) 

PROPOSITION 5.1. Let s be a nontrivial geodesic on M starting at P. 
Let Q be any point of s, and set K pQ respectively K.o equal to the sub
group of K~ which keeps Q, respectively s, pointwise fixed. Then the 
multiplicity ofQ as a conjugate point of Pis equal to dimKpQ/K,. 

The statement (5.1) is an immediate corollary of this proposition. 
Indeed, let v = (P, Q; h) and let the set of geodesies in ü,M be denoted by 
S,M. Clearly K;Q aets on S,M, the orbit of s e S,M, being homeomor
phic to K~dK;. In any model, M~, for ü~M these orbits are eertainly 
imbedded as smooth submanifolds. N ow we see by Proposition 5.1 and 
(2.3) that the nullity of any point on such an orbit is equal to the dimen
sion of the orbit .. This i8 precisely the seeond condition for nondegener
aey. (see (3.2». 

There remains the statement (5.2). To prove it, we show that each 
orbit of K pQ on M' is asymmetrie space. Let then V be the orbit of 
seM'. We may assume that s does not degenerate, for then M' reduees 
to a point. Thus V = K~Q/K, and we have to produee an involution A 
of KpQ whose fixed point set contains K; as e-component. Because s is a 
minimal geodesic in the ü,M, no eonjugate point of P oeeurs in the 
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interior of s. In particular, the midpoint R of s is not eonjugate to P 
along s. Henee K; = K;,,, by Proposition 5.1. 

Now I"P = Q, and I"Q = P. Henee if k e K pQ , then I"kI;;' C K pQ . 
Thus A: Kp<i ~ K pQ defined by A(k) = I"kI~' is an involution of K pQ . On 
the other hand, the e-eomponent of the fixed point set of A is preeisely 
K;,,,. This proves (5.2) and eompletes the proof of Theorem 1. 

For future reference we elose this seetlon with the following theorem, 
which is a straightforward generalization of Theorem I of [6/. 

THEOREM IV. Let v be any base point on the symmetrie space M. Then 
the spectral sequence, (4.2), attached to n,M by the decomposition (4.1), 
'i..':i trivial. o'ver the ·;ntegers mod 2. Thus: 

(5.8) H*(D,M; Z,) = L; H;'(~, .. ; Z,) Ve C{l,(M) . 

In the group case (5.8) holds with integer coejlicients. 
NOTE ON THE PROQ<'. The speetral sequenee (4.2) is derived from the 

filtering of K = ~" U ~, U .. " by the subeomplexes K, = ~" U ... u /:,. 
Let a: S" -, K-, be the attaching map of /:,. The problem is to show that 
0: induces a trivial homomorphism in homology. Let SE V. and consider 
the K eycle r, as defined in [6]. This is a manifold fibered over V with a 
seetion u: V -, 1'. One has a map of [' ~ K" whieh transforms /:, into 
the normal bundle of a(V) in l'. Thus l' = I" U~, eorresponds to 
K = K,_, U t and in 1" the attaching map a, is always homologieally 
trivial mod 2 (beeause /:, is the normal bundle of a section). If the fiber 
of [~ over V is orientable a~: will also be trivialover the integers. 

The simplest application of Theorem IV is obtained by eonsidering (5.8) 
in dimension O. Because ü"M 1S always connected for any base point v 
on M, (5.8) implies that Iff' is eonneeted. This fact will also be apparent 
in the explicit computations of sections 7 and 8 which evaluate the inte
gers / " I of Theorem 11. 

Before proceeding to the proof of this theorem we have to review the 
basic conjugacy theorems for symmetrie spaees whieh make the explieit 
computations possible. This is done in the next section. 

6. The roots of asymmetrie space 

In this section G i8 to be a compact connected Lie group, in a left and 
right invariant metrie, whieh an involution A. The full fixed point set 
under A is denoted by K, while the e-component of K is written K'. (Note 
that K thus plays the role of K p in seetion 5.) 

Let R be the Lie algebra of G, and let 
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n=f+m 
be the decomposition of 9 into the fixed point set of A, (this is f, the Lie 
algebra of K) and its orthogonal complement. Let Gm be a maximal 
abelian subalgebra of m, and let 1) ::J 1)m be a Cartan subalgebra of g. 

Let 'l}: G ~ G be defined by: 'lj(g) = g. A(g-'). Then r;(gk) = 'lj(g) so that 
Y/ is constant along the left cosets of K and in this manner defines a map 
rho GjK ~ G. We also let M be the image of m under the exponential 
map. Thus IvI = em• Then it is known [1], [7], that 'l}, is a homeomor
phism of GjK onto M. Further the natural action of K on GjK now 
translates into the adjoint action of K on G restricted to M. In the sequel 
we will therefore always think of the symmetrie space Gi K as the 
subset M c G. 

Let Tm be the image of l)m under the exponential map. This is a torus 
in M which is geodesically imbedded. Any torus of this form is called a 
maximal torus of M, and its dimension is the rank of M. 

We write W(G, K) or W(M) for the group of automorphisms of Tm 
which are induced by inner automorphisms of K'. The following are basic 
properties of maximal tori: (see [1], [6], [7]) 

(6.1) If T and T' are two maximal tori of M, then there exists a k E K' 
so that T = kT'k-'. 

(6.2) If Xisasubset of Tm and kEK has the property kXk-'cTm, 
then there exists an element (J of W(G, K) so that o(x) = kxk-', for all 

" E X. 
(6.3) Every point of M lies on a maximal torus of M. 
We also have: 
(6.4) The geodesics of M through e coincide with the one-parameter 

groups of Gwhich lie in M. 
(6.5) If x E m, then the index of the geodesie segment: 

x(t) = e" 0 ;; t ;; 1. 

in M is computed as follws: 

Let :i(G) = {B.,} , i = 1, . '. ,m, be a system of positive roots of G on 
(). Also if a is any real number, let II all denote the number 0 if a = 0, 
otherwise let II a 11 be the greatest integer< 1 a I. With this understood, 
the index in question i8 given by: 

(6.6) 

REMARKS. 

\-(x) = 2:,'," II e,(x) II 

( 1) The formula (6.6) is to be found in [6], except for a factor 2 in the 
definition of the exponential map. This discrepancy is explained by the 
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fact that the inverse "f ,,*: G!K ~ !VI, is not given by the projection 
M -, G'K induced by the natural map 7=: G ~ GjK. Ratber, one has 
lj;'(p)=7r(! p) where for p E M, v'p is any point of M with (v 'pr = p. 

That this factor 2 could be done away with by considering M rather than 
GjK was pointed out to me by A, Borel, 

( 2) We can find distinct non-trivial forms {(pJ, i = 1, ' .. m', on Gm 
such that each (1 E ~(G) restricts to some '1: (P, on [Jm. Such a system of 
forms is called a root system for NI, and is denoted by ::::(M), For each 
(/' E ~(iVI) let n.; be the number of forms in 2:(G) which restrict to ± ip on 
hin. These integers are the multiplicities of the root forms of 111. In terms 
of them, (6,6) is expressed by: 

(6,7) 'PE ::::(M). 

This formula has the following geometrie interpretation: Consider the 
set of planes on 'which one of the root-forms 'I' s ::::(Gj K) has an integral 
value, Then A(x) counts how many of these planes the line-segment 
tx, 0 ~ t ~ 1, Crosses, each crossing being counted by the appropriate 
multiplicity , 

Finally, we recall the following facts: 
(6,8) Let I, be the lattice of those " E l)m, for which the segment 

.f(t) ::::-: el-', 0 ~ t :~ 1, represents a closed curve which is homotopic to zero 
in M, Then .1,. is generated by elements l)" 'i' E ::::(M), characterized by: 

ll" is perpendicular to the plane 'I' = 0, and <1'(9.) ,~ 2 , 

(6,f) The representation of W(M) on ()m is generated by the reflections 
in the planes (/' ::-:" 0 for (P E ~(l11). 

These pro positions enable us to survey the possible indexes of elements 
in S,M, entirely in terms of the roots of G on (). Indeed, by (6.3) no 
generahty IS lost if we assume that the base-point v = (P, Q; h) is 
of the form P = e; Q E Tm. According to (5.1) the set S,M will consist 
of the cllection eV,M of nondegenerate critical manifolds. If 8 is a geodesic 
of V E cV M, then V consists precisely of the set of geodesics ksk-' 
where k is in the subgroup of K' keeping Q fixed. Hence, by (6.1), (6.2) 
and (6.4), each V contains geodesics which lie on T,,,, and join e to Q. 
Further two such geodesics 1ie in the same V precisely if they are conjugate 
under W(G, K), 

We will adhere to the convention.that if x E l)m, then x represents the 
~eodesl~ e

tz
, 0 ~ ~ ~ 1, in M. Because the geodesics on Tm can be lifted 

mto hlt In the ObVIOUS fashion, our earlier conclusions can be . d 
as follows: summanze 
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PROPOSITION 6.1. Let X·, E 0m be any point with x" E 0,,111. Then if 
x EX., + A* there is a unique critical manifold V", c S..,M which contains 
x. This manifold is homeomorphie to K'jK;r;, wkere K." is the eentralizer 
ofxinK'. 

The junction x -. V* maps X o + A, onto the set CVM, and ij V* = V" 
x, y, E X o + ,\*, then x and y are conjugate under the action oj WeG, K) 
on l}m. 

COROLLARY. The set oj indexes A(s), S E Sj'vl, consists of the integers 
,\(x), computed according to (6.7) as x ranges over the points of Xo + A*. 

In the next sections this proposition is applied to compute the values of 
I v I given in Theorem H, case by case. 

7. Computations when lvI is a group 

If the compact connected group G is to be considered as asymmetrie 
spaee, lvI, we must, to follow our general procedure, consider NI as the 
subset (g, g-'), g E G, in G x G. Then M = G, while [)m corresponds to 
the anti-diagonal in h x h. Thus in this case z=(lVI) is a positive root 
system for G each root being counted with multiplicity 2. The group K 
then corresponds to G acting on M by the adjoint action. 

In each case to be considered, we will choose orthogonal coordinates in 
I)m, and so identify [)m with R', the space of l-tuples of real numbers with 
the usual inner product «x, y)= z= X,'y" where x" y, are the coordinates 
of x and y respectively). The form which assigns to x E R' its a'" co
ordinate will always be denoted by iV •• The exponential map then gives 
rise to a map R' -, M, which will be denoted by p. We will define this 
map in each case, and then give the root-system of M as it is expressed 
by the forms iV •. 

(7.1) The unitary groups, M = U(2n). Let d. be the diagonal2n x 2n 
matrix with ",'" entry 2,,:1/ -1, and aU other entries O. Then p: R'" ~ U(2n) 
is given by: 

p(x) = exp {z= iV.(X) d.} 

and the root-forms of M = U(2n) are: 

k(M): iVß - iV. 1 ~ " < (3 ~ 2n. 

It foUows that WeM) is permutation group of the coordinates in R'", and 
that A* is generated by {I, -1,0:0, ... , O} and its transforms under 
WeM). 

Let X o ER'" be the element: 
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Xo = {O, 0, ... , 0; 1, 1, ... ,I} (n entries 0, n entries 1) 

and let" = (P, Q; h) be the unique base point containing the curve Xo 

(Note that then P = Q = identity). Thus K pQ (in the sense of section 5) 
is equal to U(2n) andKo = U(n) x U(n), whence V"o = U(2n)/U(n) x U(n). 

The points of x" + A* are of the form: x = {al> ••• , a2,J with aer, E Z; 
z= a. = n. Let b, < b, ... < b" be the different integers which occur 
among the {ai}, and assume that bio; occurs n/l; times. Then according to 
(6.7): 

We conclude: 
( 1) If x E X, + !\" with A(x) = 0 then x is conjugate to X o under 

WeM). 
( 2) The next 10west value of A on X o + A" is 2(n + 1). Up to conjuga

tion by elementsof W(M) this value is taken on only at the points: 

{O, .. ·,0: 0, 1, 1, .. ·,1, 2} and {--1, 0, 0, .. ·,0, 1; 1, 1, ... , I} . 

Hence: 
(7.2) Intlnscase, 1''v1' = V, = U(2n)/U(n) x U(n), wh,le I v 1= 2(n + 1). 

COROLLARY. The sequenee (1.2) is a "-sequenee. 
(7.3) The orthogonal grou,ps, M = SO(2n). Let 0, be the 2n x 2n 

matrix with only entry the diagonal box 2rr I ,. -1( _ ~ 6) at the k'" level. 

Now .0: R" -. SO(2n) is given by: ,0(") = exp {z= ",.(x)O.}, and we have: 

1 ~ "< lJ ~ n. 
Further WeM) is generated by thepermutations w. ~ iV" and w.~ - iV" 

tl< /3; and .\, is generated by the element {1, -1, 0, ... , O} as a WeM) 
module. 

Let X o ~ {1/2, 1/2 . ... , 1/2}. and let v be the base point determined by 
5;.,. Then V'o = SO(2n)/U(n). By, (6.7) we see that A(x) = 0, x in X o + A" 
implies x conjugate to X o under WeM), while I v I is given by 2(n - 1). In 
fact the index of {± 1/2, 1/2, 1/2, ... , 3/2} is precisely 2(n - 1). Thus, 

(7.4) In this caSe M' = SO(2n)/U(n), while I v I = 2(1.1 - 1). 
(7.5) The symplectic gr01tps, M = Sp(n). Let U(n) c Sp(n) be a 

standard inclusion, and let p: R" ~ Sp(n) be defined by the map R" ~ U(n) 
as in (7.1), (with n replaced by 2n) foUowed by the inclusion. Then: 

~(1kf): wß ± Wo;; 2cver, , 1 ~ a < ß ~ n. 
WeM): All signed permutaions. 

:\,: Generated by {I, -1,0, ... , O} as a W(M)-module. 
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Again, we ehoose X, = {ljZ, .. " 1jZ]. Then V" = Sp(n)jU(n) as is 
easily seen. As before V" = M'. However now "-( {l/Z, 1jZ, .. " 3jZ) ) 00 

Z(n + 1), and this is the value of 1 ~ I. Thus: 
(7.6) In this case, M' = Sp(n)jU(n) with 1 ~ 1 = 2(n + 1). 

8, The remaining computations. Proof of Theorem n 
(8.1) The space M = SO(4n)jU(Zn). Let Q be the field of quaternions 

x o'l + xl,i + ~c~-j + x3 -k; Xs E R\, where the 1, -i, j, kare the usual 
quaternion units. We define the following endomorphisms of R''': E, the 
identity; E, is to take the It" eoordinate into minus the (0: + 2n)" eoordi
nate, while it takes the (a + 2n)'" eoordinate into the It'" one (1;;;,,;;; 2n). 
The endomorphism E, is to be represented by the matrix 

where O. is as defined in (7.3). The assignment 1 -. E", 'i -. H" J -. H" 
defines a representation of Q on RI". Because 1, i generate a field isomor
phie to the eomplex numbers, we see that the elements of SO(4n) 
whieh eommute with H, form a subgroup U(Zn)cSO(4n). The elements of 
this subgroup whieh eommute with E, in turn define Sp(n) c: U(Zn). 
Henee if we set G = SO(4n), and let A be the inner automorphism by 
E" then A' is the identity and the fixed point set. K, of A is U(n). Thu, 
GjK = M is asymmetrie spaee. 

Let R" -. SO(4n) be defined as in (7.3) with n replaeed by 211. Then 
R" corresponds to the Cartan algebra, ll, of seetion (6), and we have to 
determine the inclusion l)lH C l). It is not hard to see that this inclusion 
corresponds to a map R" --- R~" given by 

(:c)' .• ', x,,) - .• (:t:\, "', :I;,,; -~;i:), '.', ~,-;t:,,). 

Restricting the forfis of (7.3) to this subspace, we obtain the following sel 
of forms for :::(111): Wfl -J (1)",; (1 :;S Ir < t3 & ·n); 2w", (1 ~ Ir s:; n) Further 
the multiplicity of Wß ± (0",; (0: :::t- /j) is 4, whilc that of 2(1)", is 1. Schema
tieally we denote this set of form. by: 

":i(M): (1)(> -+ 0)" 2(0" 1 S (l' < r: < n 

4 1 

(Thus the integer below the form denotes its multiplicity. This notation 
will be used throughout the sequel.) WeM) and A*(M) are therefore the 
same as in (7.3) 

Choose x, 00 {l/Z, "', 1/2], and let v be the determined by 5'0,. Note 
that x,(1) = exp (,,1/=-"[ t B,). Tt follows that in this case K,." .. U(2n), 
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while K" = Sp(n). Thus V" = U(2n)jSp(n). Just as previously, V,. is 
actually M', while 1 v 1 is the index of {lj2, "', 1j2, 3jZ} , and thus gi~en 
by 4n - 2. We eonelude: 

(8.Z) In this case M' = U(Zn)jSp(n) with 1 v 1 = 4n - Z. 
(8.3) The space M = U(4n)jSp(Zn). Let E, be the matrix described in 

the last section. Then it is well known that the subgroup of U(4n) whose 
elements satisfy the identity U' E, U = Eu form the linear sympleetic 
group Sp(Zn) c U(4n). Let A be the automorphism of U(Zn) whieh takes 

U into E, U E;'. (Here the bar denotes eomplex eonjugation.) Then A' 
is the identity, and because U' = U-', the subgroup of U(2n) fixed under 
A is preeisely Sp(n). Let R'" ~ H'" be the map: 

(8.4) 

Then this map followed by the map R'" ~ U(4n) deseribed in (7.1) deserihes 
p in this ease. Restricting the forms of U(4n) aeeording to (8.4) we obtain 
the following array for k(M): 

k(M): w, - w. 

4 

l;;i;a<ß;;i;Zn. 

Henee WeM) and A* are as described in (7.1). Aeeordingly choose 
X, = {O, "', 0, 1, "', 1], just as in (7.1), and let v be determined by X,. 
This is then a elosed eurve in M. Thus K pQ is represented by Sp(2n). The 
eentralizer of x, in U( 4n) is elearly U(2n) x U(Zn). Henee the centralizer 
in Sp(Zn) is preeisely Sp(n) x Sp(n). Thus V" is homeomorphic to 
Sp(Zn)jSp(n) x Sp(n). Just as in (7.1) we see that M' = V,. However 
! v 1 is now given by 4(n + 1), beeause each root has weight 4 instead of 
2. To summarize: 

(8.5) In this case M' = Sp(Zn)jSp(n) x Sp(n) while 1 v 1 = 4(n + 1). 
If we combine (7.4) with (8.Z) and (8.5) we obtain the 

COROLLARY. The sequence (1.4) is a v-sequence. 

(8.6) The space M = Sp(n)jU(n). We will now interpret Sp(Zn) as the 
group of n x n nonsingular matrixes with entries from Q whieh keep the 
sympleetic produet invariant. We also write i[j] for the diagonal matrix 
~ x Identity lJ' x IdentityJ. Consider the subgroup of Sp(n) whieh 
eommutes with j. Beeause the elements of Q which eommute with J' e Q 
form a field IsomorphlC to C, this subgroup will be isomorphie to U(2n). 
Hence lf Adenotes the mner automorphism with j, then the fixed-point 
set of AIs U(n). By a similar argument, the subgroup commuting with 
both " and j is the group O(n) c U(n), 

Let p: R" ~ Sp(n) be defined as in (7.1), exeept that v' -1 is to be 
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replaced by i E Q, and 2n is to be replaced by n. Then Ap(x) = p( -X). 
Further the image of p is a maximal torus of SpIn) as is seen from (7.5). 
This is therefore a ease when [)n< = f). If follows that the root system, 
:i:(M), identieal with :i:(Sp(n», except that eaeh root has multiplity 1. Thus 

:i:(M): wß ± Wo 2wa 1;:;; a < ß;:;; n. 
1 1 

We chose x~ as in (7.5), and ).; correspondingly. If follows that the 
endpoint of x~ is minus the identity, whenee K pQ = U(n). The eentralizer 
of x, must eommute with j. Hence K", = O(n). Thus V", = U(n)jO(n). 
Using the results of (7.5) it follows that: 

(8.7) In this case M' = U(n)jO(n) with [ v [ = (n + 1). 

(8.8) The space M = U(2n)jO(2n). It is clear that here the automorphism 
in question is the eomplex conjugation. We let p: R'a --> U(2n) be defined 
preeisely as in (7.1). We then see that this is again where [)n< = I). Thus 

:i:(M): w, - Wo 1;:;; a < ß;:;; 2n. 
1 

We ehoose x, just as in (7.1), whenee V", = O(2n)jO(n) x O(n). By divid
ing the answer in (7.1) by 2, we finally obtain for [ v [the integer (n + 1). 
Thus: 

(8.9) In this case M~ = O(2n)jO(n) x O(n), and [ v [ = (n + 1). 
Now combining (7.6) with (8.7) and (8.9) we obtain the 

COROLLARY. The sequence (1.3) is a ).;-sequence. 

This then completes the proof of Theorem II. It might be useful for 
later referenee, to summarize the eomputations of the last two seetions 
in terms of the suspension theorem of seetion 4. In this summary, the 
symbol X = Y U e, ... will be interpreted to mean that X is obtained 
from Y by attaehing eells of dimension;'; k. With this understood we 
have shown that: 

(8.10) 

Further, 

(8.11) 

and 

Q,U(2n) ~ U(2n)jU(n) x U(n) U e, • ., '" 

Q~SO(2n) ~ SO(2n)jU(n) U e,,,., .. . 

Q~Sp(n) ~ Sp(n)jU(n) U e,,,,, ... . 

Q~Sp(n)jU(n) ~ U(n)jO(n) U en", '" 
Q~U(2n)jO(2n) ~ O(2n)jO(n) x O(n) U e

a
+, '" 
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(8.12) 
Q,SO(4n)jU(2n) ~ U(2n)jSp(n) U e",., •.• 

Q~U(4n)jSp(2n) ~ Sp(2n)jSp(n) x SpIn) U e",", ... 
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