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The manuscript was put into production on March 28,1969 These are the terse notes for a graduate seminar
this volume was published on June 15, 1969
which I conducted at Harvard during the Fall of 1963,

By and large my audience was acquainted with the
standard material in bundlé theory and algebraic topology
and I therefore set out directly to develop the theory of
characteristic classes in both the standard cohomology

theory and K-theory.

Since 1963 great strides have begen made in the study
of K(X), notably by Adams in a series of papers in Topology.
Several more modern accounts of the subject are available,
In particular the notes of Atiyah, '"Notes on K-theory'' not
only start meore elementarily, but also carry the reader

further in many respects. On the other hand, those notes

W, A. BENJAMIN, INC.
New York, New York 10016

deal only with K-theory and not with the characteristic

w1l



wviii

classes in the standard cohomology.

The main novelty of these lectures is really the
systematic use of induced representation theory and the
resulting formulae for the KO-theory of sphere bu;*:dles.
Also my point of view toward the J-invariant, 8(E) is
slightly different from that of Adams. I frankly like my
groups Hl( Z+; KO{X)) and there is some indication that

the recent work of Bullivan will bring them into their own.

Reprints of several papers have been appended to
the notes. The first of these is a proof of the periodicity
for KU, due to Atiyah and myself, which is, in some ways,
more elementary than our final version of this work in
""On the periodicity theorem for complex vector bundles™

(1964), Acta Mathematica, vol. 112, pp. 229-247.

The second paper, on Clifford medules, deals with

the Spincr groups from scratch and relates them to K-theory.

Finally, we have appended my original proof of the

periodicity theorem based on Morse theory.

The research of this work was supported by

National Science Foundation Grants GP-1217 and 6585.

Harvard 1969
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LECTURES ON K(X)

§1. Introduction. Two vector bundles E and F
over a finite CW-complex X are called J-equivalent if
their sphere bundles B{E) and B(F) are of the same fiber-
homotopy type. If they become J-equivalent after a suitable
nu;nber of trivial bundles is added to both of them, they are
called stably J-invariant, and the stable J-equivalence

classes of bundles over X is denoted by J{(X)

The primary aim of these notes is to discuss a
J-invariant of vector bundles 8(E), which is computable
once the group of stable bundles over X, - that is- K(X)
is known. The invariant B(E) is clearly suggested by the
recent work of Atiyah-Hirzebruch [4}, [5] and especially
F. Adams {1]. In fact 8{E) bears the same relation to the

Adams operations as the Whitney class 2 known J-invariant




2 Raoul Bott

bears to the Steenrod operation. Further Adams’ beautiful
sclutions of the vector-field problem may be interpreted as
the explicit computation of the order of B(E) where E is

the line-bundle over real Projective space.

The guiding principle of these notes ia then to
construct the analogue of the theory of characteristic classes
in the K-theory and as this analogue is much simpler in the
KU-theory, (complex stable bundles} this case is taken up
first, in Sections I to 8. TFor the KO-theory I had to be
considerably less elementary, in the sense that T used
some explicit results from representation-theory, especially

of the Spinor groups.

The contents of the notes may be summarized as
fellows: Sections 2 to 4 are devoted to the standard material
on Chern classes etc, of complex vector-bundles. I have
here essentially specialized Grothendieck's account in the

Seminar Bourbaki, to the topological case,

In Section 5, K(X) is defined and its first properties
are derived, again following Grothendieck's point of view,
especially in the definition of the exterior powers. These,
in turn lead to an easy definition of the Adams operations.
Ialso very briefly recount the cochomological properties of

K(X) in this section. Here as well as in Section 6 the

Liectures on K(X)

appropriate reference is Atiyah-Hirzebruch [5] .

Section 6 introduces the periodicity theorern for the
KU-theory and deduces the first consequences from it. In
Section 7 the KU-analogue of the Thom isomorphism between
the cohomology of the base-space and the compact reduced
cohomology of the total-space of a vector-bundle is defined.
Section 8 then employs this Thom isomorphism fo construct
and in some sense compute the obstruction, 8(E), to a fiber
homotepy trivialization of 2 sphere-bundle derived from a
complex vector-bundle E . In Section 8, this 0 is used
to obtain the resulis of Kervaire-Milnor on the classical

J-homomorphism.

Section 9 discusses the complex representative ring
of a Lie group, RU(G) and relates it to the representative
ring of one of its maximal tori. I here state some of the
classical results of representation th.eory, and go into
considerable detail for the groups U(n}), SU(n), SO(n) and
Spin(n} . In Section 10 the real representative ring is
compared to the complex one, especially for the Spinor-
groups. Section 1l gives some basic isomorphism in the
theory of fiber-bundles, and induced representations which
lead to a different interpretation of some of the results on

the KU-theory. In Section 12 the periodicity for KO is
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stated and used to identify the generators of KO(88 ) as
=)

bundles induced by certain Spin-representations.

Section 13 finally brings the KO analogue of the
invariant 8 and derives some of its Properties, Section 14

reinterprets the results of 13 in terms of the Thom-iso-

moerphism in the KO-theory, while Section 15 goes on to give

the Gysin-sequence for the KO-theory.

When XKOUX) has no torsion, the invariant HE) ie
équivalent to a J-invariant {((E) € KO(X) ® B/KO(X) . The
definition of Q and the proof of this equivalence is carried
out in Section 16, while in Section 17 we show that the
Ccharacter of QG(E) is essentially the o genus of E as

defined by Hirzebruch.

Section 18 deals with the Projective space bundle
#ssociated to a vector bundle. In Section 19 we sketch two
methods f i

Or computing KO(Pn) where P, is the real
pProjective space, and then compute J{P }. We alsc sketch
n
the way in which the i i
e isomorphism KO{PH} ~ J(Pn) implies
the solution of the vector-field problem on spheres

Section

20 is a technical appendix on the difference element,

5 Lectures on K(X)

§2, DNotation and some preliminaries. We write

% for the category of finite CW-complexes and % for the
category of finite CW-complexes with base points, and will
in general follow the notation of {5]. If E is a vector
bundle over X € ¥ {the dimension of the fibers may vary,
on the components of X) we write I{E) for the unit disc
bundle of E {relative to some Riemann structure) and
denote ite boundary by B(E) . The pair (ID{E), B(E)) as
well as the quotient space ID(E}/B(E} will be denoted by

XE . In the latter interpretation, XE will be thought of

as an element of ii, B(E) playing the role of the base point.
When dim E = 0, it is convenient to set XE = X Up where
p is a disjoint peint playing the role of base point. We
also have occasion to use the object IP(E) whose points
are the l-dimensional subs’iaaces of the {ibers Ex . x € X .
Thus IP(E) ——> X is a fibering over each component of

X , the fibers being {n - 1)dim projective spaces .

n = dim E_ -

The constructions we have just described make
sense both, for real and for complex vector bundles and
have certain pretty clear functorial properties, e.g., if
f:¥Y 2 X is 2 rmap one has induced maps of IP{f_lE} into
P{E} . In addition the following '‘tautologous" bundles are

cancnically defined over IP(E):
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SE - the sub line-bundle, whose fiber over .Ex € IP(E)

consists of the points of the line L, cE_

QE ~the guotient bundle, whose fiber over Ex € 1IP(E)

1

consists of the vector space Ex/ﬂx .

If 7 :1P(E} =~ X denotes the projection, then we

clearly have the exact seguence:

(2.1) 0 —> S —> 7 E—>Q —>0

It is for many purposes useful to study the space xF as a
quotient of IP{(E + 1) . {1 denotes the trivial bundle relative
to the field over which IP{E} is constructed, endowed with
the canonical section x = (x,1).) This identification proceeds

via the following map
N: DE) —PE + 1)

. s 2
defined by: n(e ) = line generated by {ex -{L - [ex{ }1:(}
in {E+1)_- {Here iex[ denotes the Riemann length of e

and L is the value of the canonical section of 1 at x .)

Clearly M is a homeomorphism of ID(E) - 5(E) onto
IP(E + 1) - IP(E), and maps B(E)} onto IP(E) by the Hopf

fibering. Thus P(E + 1)/IXE) = x® under m

Note also that for e & D(E) ~ 8(E), the projection

7 Lectures on K{X)

E, > (B + 1) /nle,)

ic an isomorphism, and further that under this projection

e maps into a positive multiple of the coset of L.
X

The first observation implies that the map 7 induces

an isomorphism:

(2.2) wl-lE mﬂ“lt:)( over DI(E) - 5(E)

E+1)

where w, denoctes the projection M E)~X. Now the injection

D(E) - E may be interpreted as a section of Tr{LE which

is non-vanishing on IDD(E} - X . We call this the tautologous

section of ‘l!'-lE . On the other hand the section 1"  of

1
1 S
7 {E + 1) projects onto a/section of QE ; the second remark
may now be interpreted as asserting that the isomorphism

(2.2} takes this section into a positive multiple of the fau-

tologous section in ﬂ{l(E) .

§3. The Chern classes and allied functions on

bundles. Throughout this section we will only consider

complex vector bundlies. We recall that the complex line

bundles over X € ¥ are classified by their first obstruct-
. . . 2 . ;
ions which are contained in H (X;Z). If L is a line-

bundle, this obstruction for L is denoted by c (L} . One
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has ¢ (L. ® L") = ' *
1( ) cl(L) + Cl(L ), CI(L } = - cl(L} . {*denotes _

the dual operation.) Recall also that if E is a vector
bundle over a point (i.e., a Complex vector space} then
- E 2 )
x CL(SE) generates H (IP(E)), and hence the powers
1, %, - Xn‘l n = dj i
s » B = dim K, give a free additive basis for

HYP(E)} . Fi "=
{ ( )} Finally x =0, More generally the following

holds:

PROJ?TIBSITION 3.0, Let B - X, be a vector bundle,

,*“- e
Then as an H (X;Z)-module, I—I""{]P(E}} is freely generated

by 1, ... .n-t o .
by 1%, 1 ¥ > n=dim E , where X € HZ(IP(E)) is

equal to Cl(sz) .

Proof: As the restrictions of leE s =0, (g -1)
to a given fiber 1Px(E} of I{E) over X form a base for
I—I"’(lPxE), the fiber is totally non-homologous to zero and
the proposition is a standard consequence of the Leray

spectral sequence. Q.E.D.

COROCLLARY I. There exist unique classes

2i
ci(E) CH"(X;Z), i=o0, . dim E = n , colE) = I, such

that the equation

(3-1) ng‘kck(s) = 0
=

bolds in HY(IP(E)) .

9 Lectures on K{X)

We call this relation the defining

equation of IP(E) .

This is clear. The ci(E) are called the Chern

classes of E, and one defines c(E} by:

c(B) = T c.(E)

1

Thus c{E) is an element of 1+ H(X) the multiplicative
group of elements in H*(X) which start with 1€ I—IO(X) .
The functerial properties of E = IP(E) now easily

yield the foliowing:

COROLLARY 2r If ¥ —£> X is 2 map, then

c(E) = c{f_}'E} for any bundle E over X .

PROPOSITION 3.2. If E 1is the direct sum of line

bundies: E =L, +:--+ L . Then c{E} = nc{Li) . Thas,

the defining equation of IP(E) is given by

H(XE + cl{Li)) = 0,

— -n—_lE - QE - 0. Tensor-
% 1

ing by Sp we obtain 0 -1-(r E)@SL - Qp 857 =0

Proof: Consider 0 - SE
Thus (‘rr_lE) ® S;: = E‘T Li ®S; has a nonvanishing section

s . Let s be the projection of s on Li ®S§ ., and let

U, <X be the closed set on which sj = 0. Then
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r{l] u. = o If we continue this process: Set En+1 = QEn ,
r over P{E ), n=1,-, dimE=m, we finally obtain 2

as 8 is nonvanishing . Now it follows from obstruction space E’(Em) over X, with the property that when lifted
to P(E_), E splits into a direct sum of line bundles, and
I

theory that C].(Li e SE) can be p!ﬂled bhack to HZ{X; X - u)
We

i ) . * . -
Hence H¥(X) is imbedded in H’{IP(Em)} by the projection.

denote IP(E_) by IF(E) . By the naturality of the Chern
j94)

class, and Proposition 3.2, c(E) will therefore split into

Zn ) .
can be pulled bag&:ﬂto H™ (X, U{X - ui}} . However this 1inear factors:

group is 0, as U{X - U.i}= X . Now c(B) = TMe(L.) in H*{IF(E)} -

An easy consequence of this fact and {3.2) is now the

I n
i1 ®s¥*y =

| o(L, ®5.) 'iil {C(Li) + xE} ;
general Whitney formula

Hence the defining equation of IP(E} is as given in the

proposition. But this equation defines c(E) uniquely and /c(E + F} = c(E) - o(F)

s8¢ implies the special Whitney formula
16t F{x)} be a formal power series in %

More generally.

n with coefficients in A . Then F can be extended to an

{I (L) = c(E)
additive funciion from bundles on X to H(X; A by

The splitting principle: We have already seen that setting:
when lifted to PME . .
{E) the bundle E splits off a line bundle 1. FL) = F{CX(L)} £, a line bundle.
S - Further H (X) is imbedded by ©* into H'{®(E}}.
2. FE} = EF{CI(Li)}, where L, are the

components of &

Set E| = Qp over IP{E} and consider P(El) over IP(E}.
lifted to IF(E) .

Wh E i i i 1
en is lifted to ]P(El) it splits off 2 line bundles and

it is still true that HW“(X) is imbedded in H*(E 1 by the
! (Note, the F(E} can be expressed in terms of the c.l(E),
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by expressing F(xl) ot F(xm), m=dim E interms of
the elementary symmetric functions in the X and then

replacing these by the ci(E).)

The Whitney formula now shows that F(E + £')
= F(E)+ F(E'), i.e., that F is additive. Similarly we

may extend F to a multiplicative function from bundles to
H*(X; A -
Cne defines:
F(E) = HF{CI(Li)} ,

where E = % L. on FE)

Examples of this construction are:

1. If F(x) = 1+ x, then the multiplicative
extension of F is c¢(E).
2 I Flx) = X_x , then the multiplicative

l-e extension of F is called the
"Todd class of E", and is
denoted by T(E) .

[F8)
=
o
—
%
S
n
o
X

then the additive extension
of F is called the character

of E, and is denoted by ch{E).

In these examples A= Z in the first case, and A=0 in

the other two .

PROPOSITION: I E and E' are bundies over X,

then

ch(E @E') = on(E) - ch(E")

13 Lectures on K(X)

Proof: By the splitting principle we may assume
! —
that E=L L., E'= L L; whence E®E'= Z L, ®L..

Therefore

1
| Cl{L1®L])
ch(E ®E'") e

J

p¥
() ()

cl{Li)+ Cl(]“'!')

= ch{E) - ch(E") 0.E.D.
34, The Thom isomorphism in H¥X; ZZ) . Consider
E R
the sequence P(E)-Z>1P(E + 1) Bo xE wrere B is

E L w(E + 1)/P(E) of

induced by the identification 7 : X
Section 2. We assume X comnecied in the following,

however the exteprsion to the general case is chvious.

PROPOSITION 4.l. In cchomology with integer

coefficients wea have the exact sequence

6 <—u1 {P(E)} e HP(E + 1)} B ¥ xE) < 0

Further im B = ideal generated by U in H*(1IP{E + 1))

where

. ck(E} n=dimE

*
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Proocf: 1 * =
ro Clearly o X{EH) Xg . Hence by Propa-
sition 3.1 &" is onto.. This proves the exactness of the
sequence in question. Now let g = E{;l a.x(i“E”) be an
i

element of the kernel of ¢ . Then in H*{IP(E)} we have
n i '
}30 a; X = 0 . But the defining equation of P(E) is

n
no_ -1
a0 z ey {BY g
— 1
Thus we have 0 = a; - ancn-—i(E)’ i=0,---, & -1, and so

i
p St BV K (g T2, 0 U

{o
1§
w1

Thus the kernel of & is a free module of rank one over

HY(X) with generator U . Thus U generates the image

of 8% over H¥*(X)}. It remains to show that X(E‘l)U =0,
T
The defining equation for IP(E + 1) is
nt+l-k
Z x ck{E +1) =0
But by *"Whitney" ¢ (E + 1) =
¥ k( ) ck(E) whence an(E +1)=0,

Therefore the defining equation of IP(E + 1) is Precisely

X(EH}- U =0. Q.E.D,

We now define the Thom isomorphism

15 Lectures on K(X)

i, 1 H (X) —> H(XT)

by the formula 8 °i,a=2a- U, in H{PE)}. By

Proposition (4.1) 1, is a bijection.

$5. The functor K{X) . We consider the additive
functions from bundles over X into abelian groups, i.e&.,
functions E - F(E) with values in g, so that F(E + E")
= F(E) + F(E') . There is then a minimal universal object
K(X) -which solves the universal problem posed here, i.e.,
K(X) is an abelizn group with 2 natural additive function,
¥, from bundles to K{X) such that if F is any additive

s
function as above, then F induces a unigue homomeorphism

F,: KX)—> ¢

with the property: F(E)} = F*{‘}J(E}} .

Indeed one may take for K(X) the free group
generated by the bundles over X modnlo the subgroup
generated by the following relations; whenever 02 E -+ E!
~ E'" -0 is an exact sequence of bundles over X, and [E|,

[E'], [E"] are respective generators in the free group, then

[B'] - ([E]+ [E"]
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precisely y(E). We will, for the most part, omit the

symbol ¥y, and write E for both a bundle and its class in

K(X) unless the confusion caused by this convention become

unmanageable. The elements of K(X) are sometimes called

virtual bundles,

Elementary properties of K(X)

5.1, K(X) is a contravariant functor from % to
the catagory.of Abelian groups. (If f: Y ~X, isa map,
and E a bundle over X, then thE is a bundle over Vv .
As this operation is additive it induces a homomorphism

]
K(Y) - K(X) which is denoted by £ .)

5.2. There exists an (infinite) CW complex, K

which represents the funector K, i.e., there is a natural

isomorphism between K(X) and =[x ; K] denotes homotopy

classes of maps of X into K . Further K may be
endowed with an H-structure which induc 2s the additive

structure on K(X) . (This proposition follows readily from

the following facts:

a. The functor gn : X7 n plane bundles over X
is representable.

b. gn(x) &__E:mi(x) for n >> dim X .

¢, If B isa bundle over X, then there exists a

bundie E! over ¥ so that E + g+
to a trivial bundle. )

is isomorphic |

17 Lectures on K(X)

5.3. Let X €, with base point p, . One defines
KX} as the kernel of the natural projection: Z ~ K(PX)
<— K{¥X} , which we denote by dim. Thus K(X) corresponds
to the virtual bundlies of dim 0. K(X) is thus an ideal in
K{X) . 1t is also a direct summand as the homormorphism

induced by projection X - Py splits the exact sequence:

0 <— K(py) < K(X) <— R(¥) <— 0 .

The trivial zerc-dimensional bundle corresponds to
a point in 2 sultable component of K . If we consider this
point the base point of K . then for objects in 9, K(X) is
represented by\w.Tr[X, K] where now =X, K] denotes

hornotopy classes of basepoint preserving maps.
7

In a sense K : 3 ~> g, is the more basic functor.
indeed, if A ——> X is a pair in ¥ (or ¥} one defines

the relative groups

KX, A) = B(X,A) as R(X/A)

where X/A is considered as aun element of ¥ with base-
point A . If A is vacuous X/A is defined as the space
X+ =X union a disjoint point Py which plays the role of

basepoint. Thus

K(X) = R(xH)
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and K on ¥ is seen to be the composition of the functor

X%t anda B,

5.4. As XK is representable one now has an exact

sequence:

2 A
(5.4.1)  R(A)s— R(X) <1~ K(X, A) for (X, A}a pair in &
and more generally if we define

I'E:i(x,A) “by R(X/A #E('i}) , i<0

(El denotes the i-sphere with basepoint, # deunotes the

product in ), then the Puppe exact sequence which extends

{5.4.1) holds:

F:i(A) <—1~“ii(x)<— Ki(x, A) <6—Ki_1(A) G n

We write K* for the graded functor f{i, i< 0. This

functor shares many properties with the functor H¥ —.

more or less by definition: they are exactness, and excision.

R* differs at this point from H* in that it is not defined
. % .
for all integers, and that K of the O-sphere S0 in ¥

not trivially computable.

5.5. The graded ring structure on K*X) . The

e . . .
functor K* has various elementary properties which are

the consequence of the definition of K(X) as a solution of

19 Lectures on K(X)

a universal problem, rather than of the representability.
The first of these is the ring structure induced on K'(X)

by the tensor product of bundies.

If E and E' are bundles over X and Y € ¥
respectively then E ® E' is a bundle over X x Y . This

operation is seen to define a natural transformation
K{X) @ K(Y) — K(X x Y)

which we still refer to as the {exterior) tensor product and

denote by @ .

When ¥\= Y , the diagonal map 4&: X + X X X,

defines a ring structure on K(X)} by :

I

ac vz AT (0 ®v) u € K(X), » CK¥) .

This is the interior tensor product and is usually written
with a dot. Clearly this operation converts K(X) iutc a
commutative ring. To extend this operationto K on ¥,

one needs the foliowing fact:

PROPOSITION 5.1. Let X, YE€¥, andlet X xY

be their Cartesian product, and consider the sequence:

0—>Xvy toxxyvydesx ¢y—>0

where X Vv Y = PX Y UX X pY . Then the seguence
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our product. Now (X =1 sy #570) ~ (x #y sz UH)y 4y
_ L o
0 <KX v ¥)«—K(X x Y)<- K'(X #¥)<—0, i<0

the homotopy commutativity of the product in U . Hence

: our product extends to a pairing,
is exact.

u

o] ~ 31+ ] .
® Rlilyy — BT Hx $7).
Proof: Let m : X xY ~X, 7, : X XY > Y and K (x) ( )

71X XY S py X Py be the natural projections. We have This is the extended {exterior) tensor product. By the

diagonal counstruction one now deduces a graded ring

RKEXVY)~RX)® o e
( ) (X) @ R(Y) structure on E¥(X) and this product turns out to be

and commutative, i.e.:

KXV Y} ~K(X)®R(Y)® K(py X Py)

b ov= (-1)P9% .y u € BP(x), v e BYy).
Now define o : K{(X v Y) = K(X x Y) by:
' z | Remazks: 1). If X € %, one defines K"(X) by

ola+B+y) = ma+mBrny, o€RX), '
B e R(Y),

¥ € Klpy X py).

B¥(xt) and if (X, A) is a pairin ¥ (or %) sz(X, A} is
defined as K*(X/A) . 2) Observe that K*(X, A} is a

graded K*(X) module, as the diagonal map X = X/A $x”

[t is then clear that 1" - o = identity. Now the Puppe exact factors through X /A in the obvious manmner. 3) The

D-sphere S0 acts as a unit in ¥:X #SO = X . Hence

0

sequence yields the result,

It is easy to see that if u € K(X) and v € B(Y) then R*X) is in a natural way a graded K (S°) module . In

b=u®v€R(X x Y) is in the kernel of i- . Hence there fact K*(p) — as we may call ﬁ*(SO) acts on all the functors

is a unique element (again written) u ® v € B(X #Y) which ®H(X), BHxX), K (X, A} stc. in a natural way and commutes

]
maps inte b under §, This is the extension of the tensor with the naturzsl transformations linking them. For a more

product to K on U, detailed exposition of the material covered in this section

We have Ki(x) = RB(x % z‘i), ﬁj(Y) ~R(Y 8 E“j) ) consalt [5] .

Hence Kl(X)®Kj(X) is pairedto R(X 43! #v ﬁE‘J) by
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The operations A’ on K(X) .

If V is a module (over €, or R)and Vi=v®...8V
(n factors) then the permutation group En acts on V° in
the obvious manner. Let QC v? be the subspace generated
)c

by the elements g - w - (wl}gw, wEVE, o E@n , (V= +1,

-1, according to the parity ¢ . The quotient space vt /Q
is denoted by }Ln(V) and is called the nth exterior power of
V. We set )\D{V} = base field. The )' are clearly co-

varient functors from the category of modules to the

category of modules.

They further safisfy the identity:

(5.4) ANV + W) = Z A(V) @ 2i(w)

itj=n
We can now extend the )\~ as operations on vector bundles
in the obvious way. If E is a bundle cver X, VE will
be the bundle over X whose fiber at x € X is )LlEX .

Further the identity (5. 4) will still be valid in the broader

context, and one may use it to define naturzl transformation :

)Li: K({X) - K(X} in the following manner.

Consider K(X)[jt]]. the formal power series in t

with coefficients in K{X)}, and let 1+ K{(X){[t]] be the
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multiplicative group of elements in K(X)[[t]] which start

with 1. If E is a bundle, define
A(E) €1+ R(R[:]]
by
o
A(E) = ) YO'E)
1]

Now {5.4) implies that
A (E) * A(E') = A (B + EY)

Hence, E -’)t(E) ls an additive function from bundles to

1+ R(X)[[t]] . Hence by the universal property of K(X),

there is é’\unique operation
A E(X) =1+ BEQILH]
which “"agrees' with At as defined on bundles:
ANE) = 3, (E)

The component of )Lt(E) whose coefficient is t° is now

defined to be Ai(E) .

1+ tL

Examples. if L is a line bundle.

A (L) =

)\Mt(-L): =1+ tL+ tZL2+ ..

L
1-tL,

Note that in general ) (x), x € K{X), a € Z, is not a well
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defined element of K{X)}. However if x = ¥(E) then %(E)
is a polynomial in t, and Xa(x) is well defined, by sub-
stituting a for t. In fact in thatcase a may be taken
to be an element of K(X) and of course )La{x-l- y) = }La(x) . A_a{y}.

x = Y(E), v = y(E'), a € K(X) .

The Adams Operaticus

We have just seen that the A’ define operations in

K(X) subject to the relation

x, y € K(X}

At ) = AL - AdY)

t

We now define operations z‘bi KXY KRX), i=L .. in

terms of the ki which will be additive:

pilx b y) = 9,0%) + 8y

To do this, set gbt(x} = tl‘bl(x) + zzz'bz(x) + o X € K{X) and

define z{at by the formula:
(5.5)  §_x) = -t + /A AN 00 = ~Er)A ()

Because ).,t{x) =1+t )Ll(x) + -+ the R.H.S5. is a well

defined element of K(X)[{t]] and so determines P, -

L.et us now compute zb_t(x + y) . This equals:
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-tag(z+y) Azt y) = A GIA () F A ONIPALG) - A )}

Thus the wi are additive as asserted, and these are the
operations Adams introduced receuntly. They are in many
ways more tractable than the )Li » principally because they
will be seen to be ring homomorphisms of K{X}J . If one
solves for the P, in (5.5) explicitly one obtains the
following formulae, which may serve if one wishes as a

definition of the l‘bi :

g -2 =0

Pt 2 e = o

by A g a7 = 0

B PR P Aosoend =0

Note; 1. The expression tAL/;\t can be written td/dt log Apr
Now as )‘t behaves multiplicatively, log )'t will behave
additively and hence its derivative also. This point of view
makes the definition of zbt quite plausible. The operation
Q}t is to be preferred to just log }\t beczuse the latter has
meaning only over rationals, due to the rational numbers

which occur in the expansion of leg{l + x) .
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2. The formulae are precisely the ones linking the
elementary symmetric functions with the power sums,
{Newton's formula), and the precise analogues of the z},}i in
the framewcrk of characteristic classes was used quite

frequently.

3. The following formula is one of the main reasons

why the 3. are so useful:

PROPOSITION: Let L be a line-bundle. Then

» k
P (1) = L
Prooi: ML) =1+tL therefore ¢ _ = -tL
e t ! -7 T +tL
. k
whence p L o= s ; Q.E.D.

§6. The ring K*(p). The properties of K* and
B* which we have reviewed in the last section are direct
consequences either of the representability of these functors
or of the fact that the functorial operations of linear algebra
extend in a natural way to vector-bundles. These properties

are shared by the '"real’ and the ''complex' K .

In this section we discuss the implications of the

periodicity theorem on the complex K-theory.

We write simply £ for the virtual bundles (s}“; - 1)

over IP(E), dim E =2 . Thus £ is an element K(SZ)=K_Z(1)
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PERIODICITY THEOREM L. K*p)~ Z[€]. This

theorem will be assumed. For a proof see [6] .

COROLLARY 1. Let §,: K{X) - k' "%(X) denote

the operation of § € K™(p) on K¥X). Then £. is a

bijection.

Proof: §x may be thought of a natural transforma-
tion of one cohornology theory into another which induces an
isomorphism on points. Hence &£x is bijective in % by

general nonsense.

COROLLARY 2. £, also induces bijections B}{X)

- ®872(x%), x €% and KX, A) S KX, A), for (X, A) a

:,'_)airin gl or 9.

Same proof.

One may now define KX) = KO(X} + K_I(K) . Using
€x ., K(X) is made into a graded ring (over ZZ) in the
obvious manner. §;}(u + v), isin KO(X) when u, v € Kvl(X}.
Similarly we convert our other comstructions to operations
on K, K etc. Interms of this functor the periodicity

theorem then states that:

R(X) ® K(S') ~ (X #51), X €%, S' thei-sphere ind,

where on the left we mean the graded tensor product.



Raoul Bott 28

Similarly one obtains

K(X) ® K(S) ~ K(X x S}, X €Y, S’ the i-sphere in 4.

Now, as ﬁ'{(Si} = Z for i>0, we seethat KK and K
satisfy all the axioms of Eilenberg, Steenrod, for a co-
homology and reduced cohomology theory, provided we
assume these axioms are asserted for a graded theory

indexed by the group of order 2 .

First consequences.

THEOREM 6.1l. Let & generate ﬁ(szn), and let

£ =
u_ generate HZn(SZn) then (ch(-,n), un} +1

Proof: For E (i.e., the case n = 1) this propositicn
is clear. Now w:5, X*--xS5, 8§, #-”ﬁsazszn maps
g onto E®... @&, andif ch{€) = x where x generates

Hz(sz)’ then c¢i{E ®---®E}=x®--- 8x whichis #* ofa

generator of Hzn(Szn) . Q.E.D.

COROLLARY 1. Aclass u € HZn(X’ Z) is

spherical only if for all § € K(X), (ch(€),u} is an integer.

Clear.

We may extend ch to a homomorphism ch 1 K(X)

-~ H*(X) by setting ch on ]K_l(X) equal to the composition
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1y -1
Z(2'w) s it s mxy L

COROLLARY 2. ch: K(X)~H¥*X) is a ring

homormorphism.

Proof: This is clear on K(X}. For u€ Kvl(}{) .
v € K{X) it is also sasy. If v € Kdl(){), then u- v in
K{X) is the class %;1 u - v . Hence it has only to be shown
that ch §,. = Ei ch- where Ei‘: is the suspension in co-

homology. But this is clear because ch is multiplicative

and ch & generates HZ{SZ} .

§.?. The Thom homomorphism for K(X). Let

E - X be acomplex vector bundle, and consider the

seguences:

(7.1) K(IP(E)) < o K{P(E + 1)}4_1[3_’:_M(XE)

N s

—

The following is an analogue of Proposition 3.1.

THEQOREM 7.1, a} ]K{IP(E)} is a free module

over K(X) with generator, 1, 5, -, Eg-l, n = dim E,
% % #
where S.. = SE—I € K {IP(B)}. Further A _ - T E¥ =0
—— -SE
whence we have a defining relation of the form:
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s sl cE e e+ CUE) = 0

: o . ‘
where the CYE) are elements of K (X) expressible in

terms of the N'E* . In pasticular G(E)= A_[(E™).

b) The sequence (7.1) has & =0 and 8™ imbeds

1 e
E) onto the ideal generated by U= A ¢ ™ ET in
{E+1)

K(X

K{P(E + 1)} .

The proof is broken up into several stages:

! L
LEMMA 1. The element ;\'wSE e E" in

KP(E)} is 0.

Proof: We have the seguence of bundles cver E .

1
O*SE-"HE-‘QE—'O

If we dualize we ¢biain:

0 4~—-—SE < B <——Q§;4-—-— 0

Apply *c to obtain:
oy, o [
{1+ tSE) k‘tQE = AT E
set t= -SE . Then the first factor vanishes. C.E.D

LEMMA 2. The theorem is true where X a

point p .
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Proof: Assume the theorem for dim E <n, and
comsider the sequence (7.1) with dim E = n. In this

E

situation X =S5, . Hence (7.1) goes over into

0 <— E{O{P(E)} <& ]KD{]P(E + 1)}<ﬁ—!~ Z G——O,IK-](]P(E +)= 0.

Now, U=a_g - w'E¥ maps onto 0 under ! by

{E+1)
Lermma 1. Hence U= ﬁLk * §, where A € Z and g, 1S
our generator of K(S, ). We next show that \ is +1 by

applying the character to both sides. To see this we will

prove the more general formula:

PROPOSITION 7.1. Let U be as defined in

Theorem (7.1) . Then
s -1
chU = i, - T HE)

where i, denotes the Thom isomorphism of Section 2 and

T the Todd class also defined in that section.

Procf: By the splitting principle we may assume
= * # -
that E = Z E,, whence E" = ZE. Let 4 = cl(Ei) .

Then:

U = 0{(-8;,, " E

)

+1

L +
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whence

chU = I{1 - e_(x+£i))

R - e“(x+ﬂi)) . Ti(x + e) -
TM{x + Ei}

(Here x = x(E-i-l)) .

On the other hand i.(1) = T{x + ﬁi) and {i,l) - x =0,

o
Es

Hence N

(-4
£,

1

chU = 11 1,1 = i$’.{‘_l(E). Q.E.D.

Now then, in our case E is the trivial bundle.
Hence T(E}=1. It follows that ch U generates
1
HZ(IP(E + 3} :ich U= (XE+1)n . However ch(ﬁ"ﬁn) also

equals (KEH)n . This proves Lemma 2 .

The theorem in general now follows from the
functorial nature of the constructions we are performing in

Z stages.

Stage 1. Take X € ¥, E trivial over X . To establish
the theorem in this ¢case one has to extend the Kunneth
theorem from (7.1) to K{X x IP(E)} = K(X) ® K{IP(E)},

which is easily done by induction on the dim of E .

n
Stage 2. Take a finite covering {Ui}i-l on X so

that E[Ui is trivial. Assume the theorem for E over
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£y = Union ¥, , and prove it for X, , by the Meyer
l<i<k
Vietoris sequence.

Remarks. In my lectures I outlined a different proof
for this theorem. Essentially I started with different state-
ment of the periodicity theorem, namely with the assertion

that when p is a point, then 2 generator of K(S goes

Zn)

(under the B! of 7.1) over into U = Ag . B¥ . That
{E+1)

is, I described an explicit trivialization of U on P(E)

and thus a bundle on XE, which I asserted to he the

generator of R(5, ). One may of course work backwards

from this assumption to the pericdicity theorern as stated

here. The present analysis works because, 3s we now see,

a posteriori, it does not matter how one trivializes U on

IP{E); the result will always generate R(Szn) . { The
difference of two elements in K(X/A) obtzined by trivializ-
ing a bundle E on A CX, is in the image of & K'I(A)

~ K(X/A) and in this case K W{A)=0.)

BEFINITION 7.1. Let E —- X be a complex vector

bundle over X . Define

by the relation

u € K(X}
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where

E

1
B:WPE+1)— X", and U= )"-S(E-H.}“ Er

This additive homomerphism will be referred tb as the

"Thom homomorphism! .

THEQREM 7.2. The Thom homomorphism

i, @ K(X) > ;ﬁ(xE)

e

1
is a bijection. Further if i’ ]K(XE) - K{X) is induced by

the inclusion X —~ XE , themn :

(7.2) iiu = (}L‘IE*) ca .

We also have:

(7.3) chi,u = i:kT_l(E) - chu ,

where T denotes the Todd class of Section 3 .

Except for the last two formulas, this theorem is a

clear consequence of Theorem 7.1, The last {ormaula

follows from Proposition 7.1. To see {7.2) we ocbserve

that by the remarks in Section l, i=8° 0 where 0 is the

map X ~ IP{E + 1) induced by the trivial section of 1 . Now

i
it is clear that o (S Hence

E+l) = L-
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H

1 t ] e as
fiu=0fiu =0 g #E )y =2 ,EY u. Q.E.D.

£+l 1

Note: If we compare this with i"i,u = ¢_(E)u in the
H* case, we see that A-1(E*) plays the role of the an-th
Chern ¢lass of the n-dimensional bundle E . By the way,
i, could equally well have been defined so that i il=2_(E)

however the present definition coincides with the usual

sign conventions which come from algebraic geometry.

COQROLLARY 1. (The splitting principle}. Let IF(E}

F
be defined as in Section 2, w: F(E)~ X . Then ® imbeds

]
K(X) in K{F(E)}; further % E splits into a sum of line

oy 1 3
bundies w E = L, . Hence 5 VE = LL, ® - ®L, the

ith elementary function in the Li - Thus the remarks

concerning the extensgion of functors from line bundles to

H*(X) apply equally well to the extension of functors from

iine bundles to K(X) .

COROLLARY 2. The Adams operations ;bk are

ring homomorphisms: K(X) ~ K(X) .

We have already seen that if L is a line bundle,

then:

P (L) = L~
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Hence if E=Z 1L, E = ZL} are direct sums of line
1

bundies, then

1 ! _ 4 ok
P (E®E) = Y (L, @L) = (L) (L)

(B(L)YSHLY) = ¥ (B Oy (B') -

By the splitting principle this special case now implies the

general one. Q.E.D.

The natural question arises of how i,. commautes
with the operations )\ and §, . We will answer this
question for the ¥, -which being additive and ring-homo -
morphisms - are much easier to handle. .With this end in
view we introduce the multiplicative functions Bk, from

bundles to K(X)}, defined by :

wk-1

(1.4) 8 (L) =1+ L¥4 «eet L, if 1. is a line bundle

(7.5) 8 (E+F) = B.(B) - Bk(F)

By the splitting principle, Gk(E) is uniquely determined by

these two conditions.

PROPOSITION 7.2. The function E, = Sk(E) has

in addition to 7.4, aud 7.5, the following properties:

(7.6) dim 8 (E) = Hm B
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(7.7) Bi‘.s(E) = z_thiS(E) ’ Gt{E} {cocycle condition).

Proof: B (L)=L+{E + 1)+ -+ (E+ %, when
=L -1. Hence dim GK(L} =k . As Sk is multiplicative
we obtain (7. 6) . Finally, (7.7} is again trivial for line
bundles:

s .Lt_l Lt

| L -} L -1 ’

is preserved under multiplication, and hence holds in

general.

Note that 6,(E) = A(E).

THEOREM 7.3. Let i, : K(X) = B(XT) be the

Thom isornorphism. Then

(7- $) Ibki'. u = 11. ek(E)‘ﬁk(u)

(7.8) Lu-d,v o= i x (BF - u- v

u, v € K(X)

Proof: (7,.8) is a consequence of the fact that

= A,_le.‘.y'( L gE*H . Hence U2 = )\__IE* - 0. Now

am s . 2 * t
B (l,'u s i vi=UTur v= U )L_lE vy whence B7i, )x_lE*uv

* ’]_V‘ Q-E-D.
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For (7.9} we argue as follows: as P, isa ring homomorph- the first two formulae. Now the last follows from the

. . . i ,  whi fu
ism it is sufficient to show that ibk i1 =i, ek(E} . relations between X and @, ., which whenever the multi

plication is trivial reduce to:
We may, as usual, assume that E = % L; - Then

1 * k kk = (_1)1{—1!!}
3151=U=?(1'SL1)' S = Spy

k "

Hence

kk)

L* 8.  Applications: The obstruction to coreducibility.
L

n{i-s

1

¥, U

[

If B =X is a {complex} bundle over a connected

UMl + SI,.’}.(Jr R sk'lLfk'l) .
2 1

1 X €%¥ then E is called coreducible if the sequence

On the other hand over P(E + 1) we have

L wE_ LEE
Py~ ¥ X /ey

SET =020 -8 E¥ =0 s e
splits: i.e., if there exists amap {: X7 - py so that

which implies that S5U = U . Hence £.j = identity.

E is called S-coreducible if (E + m + 1} is co-

L ... # (k-1)
gka U 1§(1+ it +I.i }
reducible for some u . The first positive integer n for

1]

1
U - w’Bk(E) . Q.E.D.
which nE is S-coreducible is called the J-order of E .

Note: This proof is the precise analogue of the
A P ’ Pr & {This integer is the order of the J-class of E under the

. . TS, P
roof for the formula of Proposition 7.1: ch{i, 1) =i T ().
P ® : 5T (®) : . generalized J-homomorphism J: K(X) ~ J(X) . {See [13.)

€ @ .
COROLLARY 3. If § K(S?.n) then: THEOREM 8.1, Let E be a complex vector bundle

g? =0, p8 =1, kake = (0 Nys

' £ + +
Proof; Interpret 8271 as XE with X a point, W&lement ut €K (X} sothat forall k€ Z

dimE=n. Then X ,E =0, and 8,(E) = k" . This yields
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_ LdimE x o, %
(8.1) Gk(E) =k zibku u .
Proof: Assume that XE is coreduciblte. Then we
have a map: f: XE - Pf}‘:{ such that { = j = identity.

Consider the commutative diagram:

R(p) «—— R(xF)
e, fAN

! h

K(pyg) <t K(X)

and define u € K(X) by

1 r 1
Then j'i,.u = i.! 1 whence dim u=1. Further as ¢ki11

dim E |

ot
=k 1,1 by (7.7), it follows from (7.9) that

;| kdim E a

H

i\ 8, (E) * (a) = gy i) = g (e D) =

dimE e
imi | Now it is easy to see

Thus Gk(E) . zbk(u) = k u .

that the elements of K{X), X € ¥ which are invertible are
precisely the elements with dim 1., Clearly i,bk maps
Hence cur condition may

these elements into themselves.

be written in the form:
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dim E dimu=1.

Bk(E) = k * u/ﬁf’k{u) :

Finally if u” = 1/u, we obtain:

dimE

8. (E) = k - Ppute

For the stable theory the "obstruction! to

S-coreducibility may be put in this form:

DEFINITION 8.1. Let z" denote the multiplicative
+

monoid of the positive integers. A function {: Z —K(X)
will be called a cocycle if:

{8.1) fes) = PH(s) - £(t) s,t€z"
(8.2) gime(s) = o™ where m(f)e z' .

Clearly the cocycles form 2 monoid under pointwise
multiplication. We call two cocycles £, g equivalent if

there exist n, m € Z+ such that
.{.
s €% -

- These equivalence classes form a monoid under multiplica«

- tion, and we call these the stable cocycles.
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boundary. The group of stable cocycles modulo stable co-

PROPOSITION 8.1. The stable cocycles form an

boundaries is denoted by

Abelian group.

~ mi(z" ; k(x)
Proof: Let R{X) = m be the ideal of elements of

; finite category, it ‘ _
dim 0 . From the fact that X has finite category, There is now a natural homomorphism

follows that K(X) is nilpotent:

@: K(x) - HY(z"; K(X))
B(X) = mom® se..om® = 0

defined as follows: If E is a bundle over X then t - St(E]

Now let £ be a cocycle. Thus defines a cocycle, and we define ©(E} to be its class in

#s) = ™+ als), a(s) € K

H1(2+; K(X)). (As 8(E +nl)= " - Gt(E), we see that

i
Let fl(s) = s - a{s) . This will again be a cocycle. Hence €E) depends only on the stable class of E .)

2

o One‘\ has E{E + F) = aE) + QF) by (7. 5). H ©
(s} * fI(S) = s +a{s)2 . ence

is additive, and therefore extends to a unique homomorph-
We now replace { by the cocycle £+ f1 and periorm the ism

L+
same operation. After a finite number of steps one obtains @: K(X) -~ H(Z ; K(X)) .

a cocycle g{s) so that .
The image of K(X} under € will be denoted by &X) .
o}
i(s) + gls) = s° .
THEOREM 8.2. The kernel of J: K(X) = J(X} is

Hence the stable cocycle represented by g determnines an

contained in the kernel of @: K(X) -~ €X} . In other words

inverse to the one represented by f. Q. E.D.- | @ factors through J, and so induces a surjection

DEFINITION 8.2. A stable cocycle which is

g, : J(X) ~ &(X)

represented by a function of the form: t = r‘btu"c,/u* , where -

e

u¥ is an invertible element of K(¥X) is called a stable co- Thus €X) furnishes  lower bound for I(X) .




Raoul Bott 44

Proof: S-coreducibility of a bundle E means that
for some n, E + 1 - 1l be coreducible. Qur necessary
coudition for this is then that there exist an integer n and

an invertible uo¥ in K(X) so that

_ ,dimE | %o
Bk{E-l-n-l) = k by w Ju

e €.,
dim E

K Bk(E) = k z}}ku:F/u* .

That is, the stable cocycle represented by k — BR(E)

should be 0 in €EX). Q.E.D.

Example: The classical J-homomorphism

)

J: K(Szn) - J(Szn} e m > n .

Tt Zn(sm

We recall that K(Szn) = Z, and Hu= k"u for

u € f{’(SZH) . Let £ be a generator of this group, and as a

first step to determining the group H1(2+; K(Szn)), consider

the form which a stable cocycle must take. As there is no
torsion, we may extend to the rationals and write every

cocycle in the form:

fe) = PG +alt)-g), alt)eé@, Laltl€ zZ

The cocycle condition then yields:

fts) = (£s)7(1 + alts)E) = P H(s) - £(t)

%1+ alenTe)1 + a(t)g)®

45 Lectures on K(X)

so that, a{ts) = a{s)t" + a(t) .

;

On the other hand =a(ts)

a{st) whence:

or

It follows that f is completely determined by ¢, and a(Z,

{or indeed any a(k) would do with k > 1.)

a(2)

e P (s™ - 1) .
(27 -1)

a(s) =
We set A(f) = a(2)/(2" - 1) . Thus f is determined by the
pair {o, A(f)} . and clearly equivalent cocycles differ only
in their ¢-component. Thus the stable class of f is
determined by the rational number A[(f) . This number is

not arbitrary. We have to have : 7

- a(s) €7, (large o)
or:
A5 Lt - ez

for all s € Z_Jr, g large .

Now the greatest common factor of s°{s™ -

1)
(¢ large} is a well defined integer p(n) . Hence the stable
cocycles may be identified with the integral multiples of
i/p(n) in @ . Now, A{f) will represent 0 in e{sZn) if

- and only if there exists integers p, A so that

a(t)g) = tY(1 - N1 - atg) "t
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ive., if and only if : _ Thus the problem reduces to computing A, £ . Recall now

n
a(t) = At -1 (Corollary 3 of Theorem 7.3} that $5 = k"8 , whence

ar

A2 = (R laPhe ) 21. Thus AE=1-(Z, (-f07)

AR - (P - D=t -1D e A{f) is an integer. - 2. or ‘»On(t) _ E(-t)kkn_l . This implies .
Thus: HA{Z®; K(S, )=z . '
us: » \P2n o{n) to (t) = o (1) .

[

Betermination of &Szn) . Set qn(u.) = (eu) - Then the above goes over into

di it is clear that we only need to _
From the preceding iti e : ¥ q;(u) = qnﬂ(u) and lim cpn(t) = qn(o) .
choose a representative cocycle for ©(5) a generator of t=1

f{{SZ ) say f, and then deterrine the value A(f), which ° Now gq =
n

» Whence

we denote by A(§) . This amounts to choosing a bundle

n

R -1
.. 0) = - 1) ! X coeffi n=ly )
E with E - dim E - 1= ¢ and determining 8,(E) = 1, ,(E) W0 = {n - 1) 2 xcostficient of o™ in 9

Now We nextiobserve that:
dimFE
ME) = a8 - 1+ nFmE
@ *+1/2 = 1/2 tanh (u/2)
Write At(g) =] - (pn(t) where cpn(t) is a power series in

. nd that 1/2 tanh u/2 = 5 2(&-U2k _ DB, /(211 Hu e
t{j . Because

here By are the Bernoulli #'s . Hence qzn__l{O) =0,

i ists, i t) will have to exist, = (220 .y, ]
t—l’lﬁ lt(E) exists t—l'?l "on( ) _Zn(o} (2 1) an/ZIl » Whence finally
whence ' -
8,(E) = 2°f - nn; @ () - &} . A(€) = B, /2n .
t-+ :

’hus we obtain:
Now comparing this to A(f) we see that

AlZ) = lime (/28 -1 . G5n) ~ Z40,
g=g] O
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where d{n) is the denominator of an/?in . one carries out this determination in the present case one

Remarks 1. This lower bound was first obtained b obtains the same lower bound cn m .

Milnor and Kervaire by rather geometric unethods. One 2. The lower bound which we described can be

obtains the same bound if one applies the character improved by a factor of 2 with the aid of the real K-theory,

criterion (Thecrem 6.1). The argument would be as folio ‘{ve., the K-theory obtained by starting with real vector-

follows: Suppose that X™F is coreducible, m € Z, E-ding] bundles. This theory will be denoted by KO , and it is the

E generating K(S, ). Nowas a CW complex XmE “purpose of the next sections to prove the KO-analogues of

Zn

Ly

= SZm U ez(m;n) - Hence coreducibility = the theorems we have developed for K . In particalar we

- seek an i, : KO(X) = KO(XF) when E is any real
X" =5, Vvs . )
em 2(min) vector bundle. Unfortunately such an i, does not exist in

(Splitting off the top cell is called coreducibility, and, as ‘general, and I know of no way to extend the elementary

‘arguments of the preceeding section to define i, even

we gsee, over the spheres the two conditions are equivalent

i .. when it does exist. We will therefore have to switch our
Considar now the bundle i, 1€ K(XmE) . We have

the implication: the coreducibility of X™F point of viéw a little and discuss the Lis~group phenomena
: : reduacibility ¢

which underly the construction of i, .

= top cocycles of me spherical .

=chi, lis integral on this cycle {Theorem 6.1) §9. The representative ring of a group. In the

= id.(T“}'E)m is integral on this cycle by (7. 3) i i '
¥ . following G will denote a compact Lie group. By a

= {7 4&)l™ is int 1 on th
egral on the top cycle of S, . G-module we mean a vector space W {over the field R or

€} together with an action of G as a group of continuous

Now we know by {Theorem 6.1) that ch{E) = dim E + u
2 o automorphisms of W . Two such modules are called

where u, generates I n(s

).
2n isomorphic if there is a isomorphism between them which

However it is clear from the earlier discussion that commutes with the G action.

. -1
ch(E} determines T “(E) in a purely algebraic way. If
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One denotes by RU(G) the free group generated by locally this action corresponds to the right translations of

the irreducible isomorphy classes of complex Gemodules G on U X G . Suppose now that E is such a G-bundle

and by RO(G) the corresponding group over the real over X, and that ¥ is a space on which G acts on the

pumbers. We write simply R(G) when either of these will left. Then we have the mixing diagram:

do and use the symbols KU(X), KO(X), K(X) corresponding-

ly. There are several additional structures on R{G} . The- E ExF F

tensor product of modules induces 2 comrmutative ring

(9.1 "
structure on R(G) and the exterior powers NW of a
G-module extend  to operations A R(G) = R{G) by the G

incipl d i ~theory. This beco lear -
same principle used in the K-theory 1s becomes ciear where T is obtained by identifying eg X g lf with e x f

if ses the alt ate definition of R{G) as the =i
Hoome uee exmate aemmH (@) e in ExF . Thus E x F ~ X is a locally trivial fibering

obtained from the category of G-modules via the K-constr G

with ¥ as iiber.
ion, i.e., as the solution of a universal problem. These

Now in the case when F is a G-module E X F  is
G

two definitions coincide because every G-module is a )
a vector bundle over X, which we denocte by ofE,F) or

direct sum of irreducible G-medules in view of the

compactness of G c{E{F) or F(E). The linear extension of this function

defines the functor o .
The rings R{G) are useful because the ''mixing
processt defines a functor The following are quite obvious properties of «©:
9.2 F fixed E, i - —
- H}'(X . G) % R(G) K(X) :( ) or' ixe the homomorphism &y R{G} ~ K(X)
a f—homomorphism of the two rings.

from principal G-bundles over X - H}‘(X ; G)-cross R(G),
to K{X). To see this recall that a (principal} G-bundle E 9.3) The following diagram is commutative:

over X is & space on which G acts on the right so that
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RU {0} = Z[x x ]

Thus in this case RU is the ring of finite Laurent series
in x .

1 (4}
H (Y’ﬁ) x E_{.(H) K(Y) More generally let T = U(l}x -+ xU{l) be a torus,
and let fi: T-+U(1), i=1, -+, k, be the various project-
Here i: H - G is a homomorphism of groups, ,
i 1 \ ions. Then x; = £x € RU(T) and
i, : H{X; H) ~ HA{X;G) the induced homomorphism, i"RG) .

-1 B
- R(H) the restriction homomorphism, f:X- Y, amap, RU(T) = Z[xi, e ] izl k.

- I
ang f 1 and { the induced homomorphisms of £ in
1 These facts are guite elementary. The following two
H{¥; H and K(Y) respectively. _
- - theorems are not.

In the next section certain elements of R{G) will
THEOREM I: Let T = U{i}x +-. x U(1}, k factors,

have to be singled out when G is one of the classical grouy
be a maximal torus of G . Let W = W{G, T) be the group

For this purpose we review some of the basic facts concern / . . . .
of automorphisms of T induced by inner automorphisms

ing R(G) . All of these are essentially due to E. Cartan. W
of G. Then W acts on RU{T) and we let RU{T} denote

the ring of invariants under this action. We also denote the

PROPOSITION 9.1. Ewery irreducible complex

restriction homomorphism from RU{G) to RU{T) by ch,

U{1l) module is one dimensional. Hence RU{U{l)}E group-

ring of Hom {U(1), C*} . :
o8 = { In this notation ch induces a bijection of RU(G)

W
Here, of course, U(l) denotes the circle group of onte RU(T)" :

ch : RU(G) ERU(T)W

complex numbers of norm 1.

COROLLARY. Let x denote the € module of U(l THEOREM II . if G is compact connected and

given by the inclusion (1) ~C" . Then simply connected, then RU(G) is a polynomial ring.
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in view of Theorem I one may describe the element (9.6) Liet p_ be the standard representation of U, on

@ . Then ﬂpnzx +°--+xn, and hence

of RUIG) in RU(T) once W{G,T) is known. In the 1

focllowing section we make certain standard,.choices for T 2 n n -1
g RU(U ) = Z{p , Xp,, - A py eyt 1 -

in G and describe the action of W{G) on a standard basi

for RU(T) . Remarks:

1. The implications (9.4} = (9. 5) = (9. 6) are quite

THE UNITARY GROUP Un’ and SUn . straightforward,

i . . i
We intgrpret U_ = as the n X n matrices with 2. The )'p, areirreducible because ch X Py

consists of "one orbit" of the action of W .
complex coefficients which satisfy the identity:

2 -1
(9.7) RUSU_} = zlp . Xp - A ]

. n .
with A =1. Here denctes the restriction
Py Pn

SUn is the subgroup with determinant 1. of the standard representation to SUn .

The diagonal rmatrices in Un form a maximal torus THE GROUBDS SOn
;

T(Un) - Let x; be the characteron T:x : T~ , whic )
This group is a subgroup of U, on which

i
assigns to t € T(Un) its ith diagonal entry. We also let x

stand for the element in RU{T(Un)} determined by the T{U A=A, det A=1 A€ Un -

structure defined on @ via: t- z = Xi(t) vz, z €@ tET(U " Thus SOn consists of the real n X n matrices subject to

Thus t
A«A =1, detA=1 .

RU{T(Un)} = Z[xi,xgi] =L, n.
We now have to treat these groups separately depending on

We have further:
the parity of n .

(9.4) W(U,_) acts as the permutation group of the x, in Case 1. The odd orthogonal groups, SO(2k+1). We

RU{T(Un i} may imbed SO(2) x +++x80(2) (k factors) in SO{2k + 1) as

(9.8 Ry Un) = (under 'c_:h) the finite invariant Laurent the k diagonal boxes:

serlies in X, ««+, ¥ .
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50(2)

SQ(2)

(3.1}
SO(2)

followed by & 1. This will be our standard maximal torus:

T{SO We now choose isomorphisms y, 3 80(2) =~ €

2k+1) '
and let y. € RU{T{50{2k + 1)}) be the corresponding classes.
I

T = T{spin(a)} as w—lT{SO(n)} .
T = T{SO(n)} .

Lectures on K{X)

We now have, setting

3
The homomorphism #° U{T} = RU(T) extends to

a bijection of RU(T)[u]/(uz =y - yk] onto RU(T),
(i.e., RU(T) is a quadratic extension over RU(T))
Further this isomorphism is compatible with the

action of the W of the twn groups on the respective

rings.

Thus It is customary to write y{/ N , yi/z for the
-1 _

-8 RU(T{SO(2k + 1)}) = Zly,:y, ] i=h k- element u . With this understood, we define + € RU{Spin(Zn
(9 7] 3 p
Further and A, ., € RU{Spin(Zn + 1)} by:

(9.9) wi{so(2k + 1)} acts as the group generated by E ]
' T
permutations of the ¥; and transformations ¥; ﬂy ch ﬁ;n -5 Yll . ynn, e = 1 vz, T ‘. - l/zn
o !
¢ =+1. _,
i B € € n .
Case 2. The even orthogonal groups. We incliude Eﬁ‘lzn = X oo v € =4 1/2, Hel = -1/2
SO{2k) ian SO(2k + 1) as the matrices with last ) ]
n
i = 2 1 . - 1 e} _ _ a
dingonal entry 1. Then T{SO(2K)} = T{SO(2k + )} T Y 11161 e
(9.10) W{SO(Zk)} acts as the group generated by permufa-

tions of the vy, and transformations y,

€ =1, e

THE SPIN-GROUPS

The double covering of SO(n) is denoted by Spin{n)

Let = : Spin{n) » SC(n} be the projection and choose

¢ groups,

. +
into .ﬁz

. These are the so-called spin-representations of the Spin-

Under restriction it is clear that aznﬂ goes over

restrict to A

- . + -
n+ AZn while azn and &Zn 2me1

From (9.9), {9.10} and (9.11) one concludes that:

RU{Spin{2n + 1)}

=

T
Zlp. oo 07, 8y, 0]
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n-

1+ -
{9.13) RUfSpin (2n)} = Zlp, «+-. X" Tpr by, 45 ]

1

I . R
where now p denotes m ofthe p, ., and P, restrlcted:_

to 8O{2n + 1) and S0O(2n) respectively.

Exercise: Let Z,C Spin{n} x U(l) be the subgroup
generated by € x(-1) where ¢ generates the Kernel of
n : Spin{n) = SO{u)}~- This group is in the center of Spin(n)
x U(l) and the quotient Spin(n) x U(1}/Z, is denoted by
Spinc(n} . Give a description of RU{SpinC(n)} . Also show
that there exists a homomorphism @ : U(n) 7 Spin®(2n)

which makes the following diagram commutative:

Spinc(Zn}
@ kil
U{n) ——>50(2n)

where i is the usual imbedding.

810, The RO of a compact Lie-group. If V isa

real G-module V@ @ is in an obvious way a complex
R .
G-meodule. This operation defines a )Ll—ring hemomorphis

€* : RO(G) » RU(G) .
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Conversely we may pass from a complex {G-module to the
underlying real G-module, thus obtaining an additive

homomorphism

€, RU(G) = RO(G} .

These two operations are linked by the standard identity

13 £

{10.1) €.°€ W = 2W; € e, V=V+ VT |

-

From the fact that R(G) is a free module it now follows
that:

(10.2) Both ¢ : RO(G) = RU(G) and e, : RU(G) ~ RO(G)

are injective.
We atready know a considerable amount about RU(G) . It
s
is therefore natural to cousider RO(G) as imbedded in
RU{G) via ¢* and this will be our point of view, We next

describe a criterion for an element x of RU(G) to be

contained in RO(G) < RU(G) .

CRITERION: The class of a complex G-module W

is contained in RO(G) if and only if W admits a non -~

degenerate G-invariant quadratic form ¥ .

Proof:"Let ¥V be a real G-module. Because G is

compact we may integrate a positive definite form over G

2 2n AlEFodn 0 T ok o fann o e + . -
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9’ . Vv-R, Ths complexification of ?’ then is a form with WJr UL~ W

the same properties on €V .

given, by the ¢-structure of W is a bijection of G-modules
Conversely assume that W 1is a complex G-module

_ : and so exhibits W as ¢ W . Q. E.D.
with nondegenerate quadratic form g . Ghoese an invariant -

. ne &
positive definite hermitian form on W and denote the inner COROLLARY 10.1. If W =¢ V., then W 2w .

product it defines by (u, v). COROLLARY 1G.2. Let W be an irreducible

Consider the R-linear map T: W ~ W, defined by: complex G-module with W = W . Then W = ¢V, where

V is a (necessarily irreducible) G-module over IR, if and

(Tx,y) = Yy o . 2 . , .
only if A W does not contain the trivial representation.
Clearly we have:
_ Proof: By Schur's lemma W* ® W contains the
(10. 3) Tyx = ATx, AEC, xEW. —_
trivial G-module precisely once. Now, as W™ =2W , we
(10. 4) T is nonsingular, and commutes with the actionw have:

of G . JWEOW W RW e s*w” e AZW

Preoperly speaking, T 18 thus defined on ¢ W . Now the

2 W "
fx, v} = (x,y) + {5, y) defines a positive definite where S$7(W) denotes the second symmetric product of W™
formula ix, vy = (s, ¥y t XV efine

We see then that the trivial G-module occurs either in SZW:::

inner product on ¢,W anditis easily seen that T 18 seli-

2 :
orin A W . In the former case W will have a (necessarily
adjoint with respect to it.

nondegenerats) guadratic form. In the latter case it will

Let W+ —¢.W be the subspace spanned by the .
B not.

Q.E.D.
eigenvectors of T corresponding to the positive eigenvalues

Similarly, define W . Then these spaces axe real Thus if one knows the expansion of )\ZW in terms
G-meodules and span € ,W by (10.4) . On the other haud b ‘of the irreducible G-modules one may decide the question

+ - -
{10, 3) we see that W . /-1 =W . Hence the natural ma of whether W is in E*RO(G) ]
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COROLLARY 10.3. Let A denote the set of x
A if n is
isomorphism classes of irreducible G-modules {W} for (10. 5) i)$ Zn »e even
10, 5 (f! = _
which W*# W, andlet B denote the complementary set. AE if 1 is odd
e n .
Let A’l/Z denote a "fundamental domain” for the action of
. . . 2 . , i=zn-1
¥ in A, i.e., of every pair w, w>, let Al/Z contain 2 hs i
N A éZn = Z Apzn i={n+2)mod 4
precisely one member. Let B’ denote those modules in =0
B, for which lZW does not contain the trivial representa-
AL AL i=n-1
- + .
i = B - L£i + - )
tion, and set B B - R . Then an additive bace for (10. 6) azn . ﬁzn " Z l110211 i = (n+1) mod 4
e*RO(G) is given by: i=0
4+ + i=n-1
W+ W¥|weA W([w € 2W|WEBT} . 2 - _ i
{ |wea tuiwlwes} ufew] i 8% o83, = ) Apy tAlp, ., i=(n)mod4.
i=0 -

The”proof should be clear.

: 2 .

An example: RO{Spin(n)} cRU{Spin{n)} . In the.last formula, S denote the symmetric square,
and A_np dre the two pieces into which )" its:

. +M2n P ic Py, splits:

To study this inclusion we will use the notation of -
Thus if we set

Section 9 and aiso abbreviate RU{Spin(n)} to RU(n) .

hud
-1 s
Similarly  RG(n) denotes RO{Spin (n)} . Recall then that: I}-.I (L+ tYi}(l + ay, ) = Z Aijtluj s
n-t . then
— 1 (- = " -
RU(2n) = Z[) LT s A pZn'ﬁZn ! &Zn] *

n
&}}.)"-}- pzn = E Aij H i even .

Now p, and hence )Llpzn are clearly in RO{2n) . Hence. itj=n

the only guestion which remains is when the spin represents
These formulae are relatively straightforward

1}0

tions &%n are in RO(2n) .
ombinatorial identities in Zfy., y.
i’ i

To apply our criterion we need the following facts:
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Al i . .
PROPOSITION 10.1. The elements A5 APoy o In particular then, combining {10.7) with (10. 8), we

have:

i<na-lare represented by irreducible Spin{2n)-modules.

0- = = -1 0, 1 N
This resuit is nontrivial - for instance one has to (10.9) RO{n} = RU(n) for n= -1 mod 8
. . hi t
construct the spin—representatmns. We will assume this CROPOSITION 10.2. Let (' RO(8a 4+ 1) ~RO(5w)
statement. [See [107}. —

be induced by the inclusion Spin(8n} — Spin{8n + 1). Then

Applying these formulae to our criterion we conclude:’

(10.10) ' is an njection
+ +
AT = +4) .
(10. 7) hg € RO(8n), Ag.4 € RO(8n )

(10.11) RO(8n) is freely genexated by 1_and égn over ROBn+l})..

then that . . .
We turn next to the odd case. Recall From this last observation we conclude immediately that:

+ -
ch(ay ) = chllbpy ¥ 82

PROPOSITION 10.3. There are unigue siements

ﬂ{pZnH) = Eﬁ(pzn + 1) A, B, Gk, I"k € RO(8n + 1) which satisfy the equations:

s ! + ! + +
. (&°) = (U A)A +¢° B 4 =4
. . 6, to chtain:. : &n
Hence one may again use the formulae 10. 5, 10.6, to obtal (10.12) ) | | |
n-l &bk& ) = (L ek)& + ¢ I'k .
z2 - i i =n+3 or nt2 mod4
e z A Pl LoE
i=1 Further one has:
én
2 6, =A=a, 5 B= -y X Mpg -
z = 1 - j = n+1 mod 4 2 &n+1’ 8n+l
5 ¢ bomer T Z N logyyy~t) BEmeor o
i
eng = 0 {02, L G0/}
and thereby conclude that: L ) Yi ¥

1y if a =0, 3{mod 4}.
(10. 8) b, ., CRO(2n+1) only

We conciude by tabulating our results concerning the

real spin representations in terms of the complex ones:
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RO(n)|Real Spin Represeuntations a, -their dimension gO{Sn]
] 8, 1 z,
2 st + a3 2 z

2 2 2
3 2ﬂ3 4 C
+
4 24 e 2&4 4 Z
5 2:‘.‘;5 8 <
6 INET 8 O
& b
7 &7 8 O
+ -
8 ﬁ\8, i a 8 z

This table is pericdic in the sense that a 8~ léa
ey I
and that the pattern is preserved in the first and last column.
Note that comparison with the last column gives us the

empirical fact that

1 i KOs )=0
1/2 if K‘é(sn) £0 .

an /anJr i

This strange relation between the integers {ai} - the so-
called Radon-Hurwitz numbers and KO(S_} was noticed by
Shapiro and myself last year., It essentially expresses the
fact that the generators of KO(SH) are given by induced

representations {8] .

67 Lectures on K{X)

§11. Induced representations. Let i: H - G be the

inclusion of a closed subgroup of G . Thus G acts on G/H
on the left, and we may, by the mixing censtruction,
interpret G/H as a functor from G-bundles over X to
spaces over X on which a certain H-buyndle is singled out.
For example, if G = U(n), H = U{n - 1} x U(l} this construct-
ion will specialize to cur earlier PP - functor E - P(E) .

For this reascon we will, in general, denote this construction
by IP. Precisely: If E is a G-bundle over X, IP(E) is

defined by

PE)=EXx G/H .
G

In other words IP{E) is the associated bundle to E with

fiber G/H .

The following three theorems are standard in the
theory of fiber bundles. As they express different ways of

iooking at the same thing I propose to call them tautologies.

TAUT. 1. Consider the guotient space E/H . There

is a natural isomorphism E/H = P(E} as spaces over X .

Preoof: Clearly E = E x G . Dividing koth sides by

G
H we obtain E/H=(E X G),,=E x G/H.
c H g

Q. E.D.

"ﬁﬁ"%‘“ﬁs“

2
A

s

T ey
A S
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Thus we have the following diagram:

E P »E/H= P(E)

where each map is a fibering, and p exhibits E as an

H-bundle over IP{E). This bundle is denoted by £ .

TAUT. 2. In the situation envisaged above thersisa

canonical isomorphism:

In words we have: The G-extension of E is
isomorphic to the inverse image of E under o . Or again

G_lE admits a canonical reduction to the H-bundle E .

Proof: By the definition of O‘*ZE one has the '""exac

sequence’';

- w!
0—>¢ IEHEXE/H;'::E X

where 7 : E xE/H-E>X and ¢' projects the other way
Now define f: E XG—~E X E by f(e,g}={eg,e). Then f

induces a map {: E X,; G- E X E/H which may be lifted
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to ¢ 'E . Using local triviality one easily constructs an

Q.E.D.

inverse.

Note: In the context of our '"old" IP(E} this
proposition corresponds to the fact that when lifted to P{E)},

E became the direct sum of SE and QE .

TAUT. 3. The G-bundle E can be reduced to an

H-buandle if and only if IP(E)-2—> X admits a section.

Proof: Let s : X » IP(E) be a section. Then, by

i 1

Taut.l, 5 g E = Shl(ﬁ XHG} . Thus, as ges=1, we

obtain E = (Sﬁlf:} x..G and Sﬂl.'EA: is an H-reduction of E.

H

Conversely, assume that E = F x_ G where F is an

H

H-bundle over X . Then we have IP(E) =F XH

= F X, G /H. and the identity coset of G/H in each fiber

G x,G/H

yields a section of P{E) over X . Q.E.D.

We next relate this situzation with the functors
discussed in Section Y. Fixing E, G and H, we have the

following three homomorphisms canonically defined:

oe @ R(H) —> K{P(E)}

O

1
H

i": R{H)—> R(G) .

: R{G) — K{X)
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Apart from the obvious functorial relations between these Remarks: When X = p is a point. IP(E) is just

there are two identities connecting them: The first we will G/H over p . Inthis case the permanence is equivalent to

call the permanence law: the statement that if W is a G-module, then G XHW - G/H

is the trivial bundle over G/H . In this case
PERMANENCE. Let x € R(H), y € R{G) and denot ' /

the projection 1P(E) =X by o . Then

ayp : R(H) = K(G/H)

t T
ag(x - iy) = O‘E[X) : O"O‘IE(Y} . may be considered as a localized form of the induced

b

. - representation i, @ R{H) = R{G) defined for finite groups.
There is a more palatable form for this identity, We may

- ' Indeed, in our terminclogy, i,U, where U is an H-module
consider R(H) as an R(G) module via 1" , and also : N

an be defined as the G-module of sections of G X .U~ G/H.
consider K{]P(E)} as an R{G) module via A o . With een - H /

. ) {When G 1is finite this space is finite-dimeusional.) In this
this agreed the premanence states simply that

H
context i,(x - 1’ y) =i, (x} - y is still valid, however i,

Op - R{H} - K{IP{E)} is only an additive homomorphism.

e
The second identity involving & describes the

‘behavior of this homomozrphism under the action of the

is an R(G)}-homomorphism.

Proof: Using a somewhat sloppy notation the steps

. -1
i . h =
are as follows: Assurne that V is an H-module and that W normalizer of H in G. Thus let N(H) {g € Gletg = H}

is & G module. Our problem is to identify the following and define NH) as N{H)/H .

two bundles over IP(E): Each u € N{H) acts on H by sending h *n hn !

1 and so induces an action of N{H) on R(¥H)}, which factors
A=g (E xGW)®(E )&-IV)’ B=EXH(V®W) .
through N(H), because two modules which differ by an

Now A = {{U_IE) x W (B x;V) by naturality. Hence by inner automorphism are isomorphic. In short R(H) is

Taut. 2, A={E e xGw}®(E XgV) . But E %G x, W

(VO®W)=B.Q.E.Di

canonically a N(H)-module.

= E %,W whence A=(E XHW)G!(E L
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Next let E be a G-bupndie. Then if n € N(H) the
right translation of E by n, e 2 e - n preserves the H
cosets of E and hence induces a map of P(E) - IP(E),
which again only depends on the H coset of n in N(H) .
Thus N(H) acts on IP{E) and hence on K{IP(E)} . With

this agreed we have the plausible:

EQUIVARIANCE. The induced representation

ag: R(H) - K{P(E)}

comrmutes with the action of N(H) on these two rings.

Proof: Let V be an H-module, and let n € N(H) .

Now define V' as the H-module with the same underlying

. « -1 ;
vector-space but the new action h#*v =nhn ~ - v . This

module then represents the action of n on V € R(H) . Also

let f: E ~E be the right translation £ 2 e - n. Then our

problem is to construct an isomorphism of the bundles

Ex, e

H and f“l - (E %, V) . In other words we have to

H

find an isomorphism ) , which makes the following sequend

exact

B XV it P(E) x (E X V)T 1P(E)

Define $ : E XV = E x (E X V) by dle,viz=(e, e n xXv)

Then 5 is easily seen to induce the desired ¥ . Q.E.D
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§ 12. The periodicity theorem for KO . We let

%
KO denote the cohomological extension of the functor KO.

Thus

. o
with KO~ = KO and this functor shares all the general

properties of KU .

The starting peoint of its more special properties in

the following periodicity thecrem:

PERIODICITY THEQREM II. The tensor product

of bundles induces 2 bijection:

(12, 1) . kO*(x) @ ko(s®) —Z 5 ko(x xsB) .

This is the Kunneth formulation. The correspaonding

relative theorem may be stated as follows:

-8
Let 75 € KO "(p) be a generator . Then multiplica-
tion with 7 induces an isomorphism of KONX) with

ko' (%) .

The ring KO (p) is also known: It is generated by

1 and elements un € KOnl(p), 1=1, 4, &8 which are subject
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periodicity theorem as stated in [6] asserts that U/0O

3 2
Zﬂlzo:nlzo"nI};é‘QS : = ot i
={ B, . Hence the fibering above gives rise to an exact

The pertinent references here are ([6], [7h. sequence:

One may compare KO and KU by means of the (12.2) --- Kﬁbi'l(x} . KOi_I(X) —E—tlﬁji_l{x) KﬂéiH(X)
complexification of bundles : ¢™ : KO(X) - KU(X) , and then
from which ; i

disregarding of the complex structure: €, : KU(X) = KO{X}, one immediately concludes that

and just as in Secticn 10 these two operations are related by: (12.3 £
) KO(Sg, ) & Ku(s, ) -

by: . *

€ o etru = 2u

For our purposes we will require the following

€ e €,u Tutu¥ fg

description of the generators of KU(S, ) and KO(S, )
8n 8nf -

just as in RO and RU .
;‘ THEOREM Iil. Let H_ = Spin (2n), G = i
Hence we see that KO*(X) o= {KUW(X)}% mod 2 _— el ( ): be) Spln(Zn-t-l)
= +
so that Gn/Hn Syn - Let 47 €RU(H_} be oue of the

primary material, if the superscript ZZ denotes the

Spin represen:tations and let y = {!ﬁ(&;) be the induced

fixed elements under the conjugation automorphism of i
element in KU(S, ). Then 1 and y_ form a base for

KU(s, ) .

KU (X) .

A slightly more detailed look at the periodicity

theorem yields a more detailed relation between fhese two ; Exooft Let w and m be fixed and set
G=Spin(2{m +n + 1) . Al -
{ }) g0 lat Wm n —G/I—I . We

functors. Indeed if By and B, denote the classifying + (rotn)

- o~ g . may arra 3 : - -
spaces of KU and KO, the map € is realized by a y arrange the various inclusions involved here so that

fibering #_b.e following diagram is commutative:

u/o - Bro “ By

with U/O = limit U /O as fiber. On the other hand the
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1
We first propose to compute { Ym+n . By the
natarality of the inducing procedure this amounts to

understanding

r
£ :RUH_ )= RU(E_x H ) =RU(H_)® RU(H ) .

(m +0) @ > G Now, from ocur discussion in Section L0 it is apparent that
' - i -
£ (&::n—i-n - am+n) = (‘ﬁ:—n - ﬂn) @ (&:; - &n) .
Thus there is an induced map
. ) _ . .
. Hence if £ is the bundle induced by (A7 - A } over S
£: SZm X sZn Wm-i—n m m m

Szm . and we set §m+n equal to the bundle induced over

is fi ' - s + - .
Now Wm+n is fibered by SZ(m+n} spheres over 2(min) Wm+n by &m+n _ am+n’ we obtain
. i :
— W represents the fiber. It
and Gm+n/Hm+n min P . .
follows that there exists a map g : SZm % S2n - Gm+n/Hm+n f mtn §m ® gn ,
which makes the following diagram hometopy commutative: whence ' i .
g §m+n - gm §1’1 E
Z =
xS, —FB _sq L
SZm 2n m+n’ Tm+n Z(m‘f'n) because i §m+n = g min Cn the other hand using the
permanence law and the fact that d::n + Az-n is in the image
1
£ of KU{G_ )} we have:
In
wm+n
I = T
S Z(ym dim ym] .

Furthermore it is not difficult to see¢ that g has degree 2. Hence if we assume our theorem for m and 1, gm and

Next, let Y € KU(W__ ) be the buadle induced 5, aretwice the generators of KTJ(SZH) and KU(S

Zm)

! .
* i = as respectively,
by 4 € RU(Hm+n) - Then clearly i"Y _ ¥

e
m+ +n

defined in the theorem.
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!g E @€  proves the In this case IP(E) is therefore a sphere bundle aver
Now the formula g = o

mtn m

A died X . Precisely: Let p€£ RO{Spin(Sn + l)} be the standard
same assertion for f';rm_n because of the periodicity

ion. i tor bundle, V,
theorem for KU and the fact that g has degree 2 . O.E.D. representation. Then QE(p) is a vector bundle, V, over

X, ang its unit sphere-bundle may be identified with P(E):
Remark. If one is familiar with theory of character-

istic clasges it is not difficult to compute the character of B(E) = 5(V) .
y_ directly and so prove Theorem 3. See [11] .
n

. E g EEI'l Ietna.}:ks, thEre 18 amn H-b]]nd]e E: dEflnEj
COE{OLLARE ]-o KO(SS ) 15 genlera-ted bz 1, aI]d

over IP(E). Welet y € KO{IP(E)} be the induced bundle:
the bundle induced by the real spin representation

- +
R RO{Spin(Sn)} . ¥y = C!E(A )

Proof: Clear in view of 12.3, Theorem II1 and 10. 6. where 47 is one of the real Spin representations in RC(H).

We now have the fellowing extension of the periodicity
COROLLARY 2. I y denotes the bundle induced

thecorem:
by A" in KO(S&n)’ then the 8n'th compounent of chy

8m THEOREM A. In the situation envisaged above,
generates H (SSH) .

KO*{B(V)} is a free module over KO™X)} with generators

Proof: By Corollary 1 of Theoxem 6.1, the character 1 and y .

e HZn(S )
of a generator of KU(SZn) always generate o)

Proof: When X = peint, this theorem reduces to
Hence Corollary 1 and (12. 3) prove the assertion.

Corollary 1 of Theorem Il . Hence by the Kunneth formula

§ bundl Consider the following (12.1), the theorem is true when E is 2 trivial G-bundle.
§13. Sphere-bundles. onsider

- But the Meyer Vietoris argument, together with the co-
situation:

G

Spin(8n + 1) homological property of KO™ proves the general case.

H Spin(8n)

E = a principal G-bundle over X .




Raoul Bott 80 31 Lectures on K(X)

CORCLIARY 1. There exist unique elements in The proof is clear. We note that we have here the

KO(X) which make the following formulae valid in KO{S(V)} énd part of the cocycle condition of Section 8. The first

part still has no analogue, as we do not kuow how to "compute"

A(E) - v + B(E)

et
3

the invariauts GS(E) - The following theorem solves this

{13.1) problem:

H

‘1ka ek{E) -yt Fk(E)

. . THEQOREM B. i
This is ¢lear. One thus has four invariants of E in KO(X) Consider the elements A, B, ek“ rk

in RO{Spin(8n + 1)} defined in Proposition 10.5. Then the
COROLLARY Z. Suppose that E and E' are — =

invariants of (13 1) are gi_ven bY:
two Spin{8n + 1) bundles over X . Then IP(E} and P(EY) -

A(E)

are of the same fiber-homotopy t{ype only if:

%(A); B(E} = o

apl8) . T (E)

i

8, ()

!
2
E)

Xt

(13.2) 8, (B} = 6,(E") + §,u/u u € KO(X), dim u=

n
Proof: This is a clear consequence of the permanence

Proof: Let f: IP(E) - IP(E') be a fiber homotopy law. For instance:

e

1 . " :
equivalence., Then { : KO*(IP(EY) ~ KO"‘{]P(E)} is a KO*( |

QE(&+)2 = aE(a+ - itAL i!B)

<
1

1
isomorphism. Hence f'y' =ay+ b, with dim a2 = 1. Thus’
1
Lo _ . . B
S £y =g by + b = (5,2) B (E)y + b ¢ T (E). On

other hand fllbky’ = f"{ek(E’)y‘ + Fk(E‘)} = a Bk(E‘)y + Gk{E'

U(A) -y + a(B) . Q. E.D.

: _ . 9n
+ T (E) . Q.E.D. COROLLARY 4. dim g (E) = k™" |
. - nin, (k-1)/2 (k-1
COROLILARY 3. The invariants Gk(E) have the Proof: ch Gk - nl (y / LR yl( )/2) k>2
property: whence dim ch g, = k4n - Q. E.D.
= COROLLARY 5. :
(]'3‘ 3) {lbkes(E)}ek(E) = GSR(E) S(V) has the same fiber homotoloy
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€ invariant can only be defined for it if V is of the

6, (E) = k4ni,bkll/u dim u = 1, u € KO(X) . form p(E) for some principal Spin(8n + 1) bundle. On the
k

other hand if p(El} = p(E,) as vector bundles, then IP(El)
Here we now have a complete analogue of the f(?rmula (8.1}, - lP(EZJ whence B(El) _ E(EZ) . Thus 6 does depend only
developed for the KU-theory. There we obtained this on V , provided V is of the form @{E) . Vector bundles
criterion for the coreducibility of a Thom-complex, here it of this type are said to have a Spin reduction, and V has a

e ~hundie. However,
arises from the J-triviality of a sphere-bun spin~reduction if and only if wl(V}, WZ(V) =0 as is well-

these atre closely related: known.,

N

L ¥~ is coreduci
If E is a real vector bundle then In short, 8(V) may be thought of as the second
s type.
= B(E + 1) has trivial fiber homotopy type obstruction to trivialization of the fiber-homotopy type of

We may now precisely miric the construction of 5(V), wi{V) + WZ(V) denote the first two Whitney classes of

1 ot
(8.2), and so define the group: g{(Z"; KO(X)) - v .

Further the function k= GR(E) defines a cocycle and If we let K Spin(X) = subgroup of KO(X} on which

hence a class B(E) € HL(Z’LJr; KO{X)) . Hence Corollary X w, and w4 =0, then it is easily seen that B extends toa

implies that: homomorphism

L ; . . o pylpet
PROPOSITION 13.1. The element 8(e) € H(Z;K00 6 : K Spin(X) - H (X", KO(X}) .

is an invariant of the stable fibexr homotopy type of IP(E)

We return now to the computation of the Sk(E) .
= B(V) -

PROPOSITION 13.2. Let A(E). -+-, T (E) be the

Note: Our 6 in the complex case was defined

invariants of E described by (13.1). Also let V = p(E).

directly on the vector wundle. The construction of the

Then in KO(X) these invariants are given by universal

present 8 depends on the principal G-bundle E and not’

lynomials in the 'V, and an auxiliary element, A{V),

only on its associated vector -bundle V . Thus if we star

: ere 4(V) satisfies the equation:
with a real {(8n+ 1) dimensional bundle V, over X, the (V) quation
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while in general GR(E) may be computed by the following

2 ¥ -
(13.4) : 2a(VY" = nV) . algorithm:

Let L = Z{zi; z;l], i=1 ++«., 4n be the ring of

K

. _— . . ) i .
Proof: We set A(V) = QE(&) where A is the spin finite Lauzrent series. Define elements ¥, ), N, in L by:

represeutation in RO{Spin(8n + 1)} . Then, as we know that

o0
i 4n
i . A ii _ > >
RO{Spin[Sn + 1}} = %[)Llp;&], i< 4n it follows that the Z Y. (4 III (l . tzi)(l . tzi }
; Q
clements A, B, 8, I of this ring can be expressed as - l
' i ' w = I (2, + 2]
polynomiais in‘the Alp and A . Applying aE we obtain th | ( : { }

first part of the proposition.

le = n{zgkﬂl) 4 e 4+ Zl-(k-l)} .
To obtain the identity {13.4) recall that

. i . .
Write % = Pk(‘y , @) where Pk is a polynomial. Then

cha = 11y

4n
2 -1/2
}'/ +y./)
- 1 1 S

B {E) = PV (V) .

whence Proof: This should be clear in view of our results
(cha)” = I (yl + 2ty ) on KO{Spin{8n + 1)} . We have really just disguised the
- 1

isomorphism ch, and replaced y; by Zf to make the
4n . ] .
-1
= II {1+ Yi}(l ty, ) computations directly in L .
1

This algorithm is clearly quite difficult to carry out
12 )

_ _ = O.E.Ix

= ¢ch }‘1(p 1) ( AP in general. However if additional information about V is

We give now some explicit examples: at hand the computations are much easier. For us the

PROPOSITION 13.3. following example is of special importance.

A(E) = 8,(E) = a(V) PROPOSITION 13.4. Let V = 8nL + 1 where L is
Zn :
3i-1 a line-bundle. Then w,(V}) = w,(V} =0 and we have:
B(E) = Z AoHv -1 ! 2 T
i=1
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4n
4n+ k (L -1 k even

(o

k

{13.5) Bk(v)z \
k odd .

Proof: Let £ be the principal Z;_,-bundle of L,

and let 1 be the one-dimensional representation in RO(Z ),

so that L = &rg(n) ., So then Vv = g{(Sn + l)'n} . Put differ-

ently, let Z, = SO(8n) be defined by sending the generator
of Z, into minus the identity, and let f: Z, ~ SO(8un + 1)
be this homomorphism followed by the inclusion. TLet £.£
be the extension of € to SO{8n + 1). Then V = f*g(p)

where p is the standard representation of SO(8n + 1) .

Now, because we are in dim(8n + 1}, f can be lifted to

Spin{8&n + 1):

. Spin(8n + 1)
/
)
i
O{8n + 1)

T
and our problem is to compute f° : RO Spin(Sn + 1} ~RO(Z

Indeed we have: E'k{E) (f 8 ) . Onu the othe

o g8 ) =
hand one sees gquite easily that, in terms of the notation

ot —

. : to-1 .
introduced in Section %, 'y = { = €™ while
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F\{( . y4n}1/2}= €*l. Hence, under ?1,
\H4n Y k-1)/2, L Y;{(k—l)/z}

the element

goes over into
k-l}é’cn

{1‘}'”‘1"’ e N . Thus
4
el (5+S'r|) " k=25
f'Sk = .
(FF1+ sm)™ k=2s+1]1 ,

_ 2
Let 0 =7M-1. Then 0°=-g. Hence the identity

(A + BeY™ = { A%

A - 2p)™ }G

holds. It follows that

(Zs)4n + iZ_sﬂ . K

2 = 25
hl}c k

f (2s + ).)4 {(Zs + 1

it

2s + 1.
Now applying O‘g we obtain 13, 5,

Exerci L N i
ises. 1. Let Bt(V}, where V is a complex

b d. enot t 6 on i -

Un le, d n |5 he ; Of SECtl ThuS 9 158
h I..l -']. + oo + L f ¥ ll]le (B3] IE
C aIaCteflzed by. 6 ( ; + L o] b d =]

C ] . g
d 9V + V) = 8(v) - 85(vry .

bat 6.{¢,V} is well-defined. Prove the formula:




B
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G*Btce*v) = BEEV) .

2. Using the invariant 6, of the KO-theory and in
particular formaula (13.4) refine our earlier estimates on
J : fO(Sén} ~ J(8,,)} by a factor of 2 .

3. Prove the analogue of Theorem A, B etc. when

. .
E is'a Spin°{2n + 1) bundle, H = Spin (2n), and KO is

replaced by KU .

§14. The Thom isomorphism. We adhere to the

notation of the last section but assume that in addition
E = j.E' where E' is a principal Spin(8n)-bundle --- that
The corresponding

is to say E' is an H-reduction of E .

section of IP(E) is denoted by S . We thus have the split

exact sequence of spaces:

(14.1) b > X ‘;‘"‘"“_:» P(E) ——1~—>1P(E}/S(X) — 0 .

In terms of the associated vector-bundles over X one has:
- = =W +1,
W= pg (B') = aglpgp) V= Pgy ) (E) sothat ¥

and hence {14,1) goes over into

r . W
4,_._
{14.2) 0 —» X =5 B(W + 1) 24— X" —>0.
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i.e., IP(E}/sX may be identified with XW _

Because (14. 2) splits K'6$(XW) rmay be identified
with its image under j[ and hence with the kernel of s"
in the KO(X)-module KO™(IP(E)). With this understood,
let z € Kré(}{w) be the element y -~ szy where y is the

bundle of the previous section. Then we have:

oW
THEOREM C'. KOX") is freely generated by =z

over KO¥(X}. Further,

2 = 7B - aT®m}- .

and

epkz = k(E) - oz .
N,
hY

where Sk;E RO{Spin(Sn + 1)} is given by Theorem B . ‘.

The proof is trivial, one just computes in KO*(IP{E))
whose ring and zbk—structure are given by Theorems A and B.

. . W
Let i: XX be the imbedding given by s, the

antipodal section s, followed by j. We associate the

additive homomorphism x - -z . x, x ¢ KO{X) with i and

denote it by il + With this termineology Theorem ! may
be stated as follows:

THEOREM C" . Let W be a 8n-dimencional

vector-bundle which admits a reduction to Spinf8n) . Then
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the homomorphism

1
Thus a’y = -y + A(E) . Hence E!(y’ - Sly) = sial(y - sl'y}
I

=8 (-y +A(E) - s7y) = 87(F) - a¥(F) . This formula now

E4 o W
i, : KO (X) - KO™(X )
vields the relation in question directly.
is a bijection, and satisfies the formulae:

Exercise. Follow -up Exercise 3 of Section 13 in

H

(i, )(i,v) = ;& (W) a-v

the present context.

ibk lE u = ly. ek(w) ‘ llbku‘

§15. The Gysin sequence. We now assume that W

'

i, u a_ (W) u .

t

£}

is an n-dimensional vector-bundle over X > and let B(W)

s 0 denote the associated sphere-bundle.
(Here we have abbreviated A (F) - A (F) to é_}l(W), :

THEOREM 15.1. If W admits a reduction to

and Gk(E) to Gk(W), where F is the principal Spin(&n}

bundle associated to W and E is its Spin(8ntl}-extension,

Only the last statement needs verification. For this purpos

e

c p~m+ti P =
consider the action of N(H)/H (see Section il) in our case. KO {x) KO {S{W)} T

This group is Z, aund acts on RO(H} by exchanging a* KOP(X) — Kop-m(X) pPEZ

and & and it acts on B(V) as the antipodal map. Let us -

where now KOP g defined for al} integers by the period-

1
write a: S{V) - 5{V) for this map . Clearly a° is a
(V) =5(v) P Y icity: KOP ™% w koP |

RO™X) aufomorphism of KO*{S(V)} - Hence by the equi-

variance property (see Section 11) we have: Proof: Let D(W) denote the unit disc-bundle of

W as in Section 1 . Then as we saw there, one has the

I t T
a' - a'a;\(ﬁ-r} - {}_‘"(&-) -
¥ B E ‘exact sequence of spaces:

On the other hand by the permanence law, £
B(W) —> D(w)—E 5 W

ag(a7) = - C"“E(E‘+) + A(B) .

which gives rise to the exact sequence:
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_oEePxVy - .

KoP Wy - kOP{E W)} - ROP(x) <

e W, .. . it
We will therefore be done once KOP(X Y is identified with

roP XY .

Choose an integer K 2 0, sothat m+ k= 8n .

Then W+ k-1 isan &y -dimensional bundle which admits

2 reduction to Spin{ 8n). Hence the Thom isomorphism:

" ROP(X) KeP WHE" by

is well defined. On the other hand

LWk D) sk W

whence 3 ok W
goPx Wy o RoP™x")

Composing these two isomorphisms one obtains the

isomorphism:
= +k
gPx"y - kOFTHX)
which goes over into

ROPxVy ~ KOPTT(X)

by applying the periodicity law n-times.

Note that when dim W = 8n, we have already

. . . P
determined the homomorphism $: &: KO

x) - KOP T X
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is multiplication by A_l{W) = A+{W) - A (W}, as follows
from Theorem C'". It seems a reasonable conjecture that

$ is always given by multiplication with &{1) € KO™(X) .

$16. The rational J-invariant derived from &V) .

In Section 13 we defined the cocycle k = 6, (V) for an
{8n + 1) dimensional bundle with a Spin~reduction, and
showed that the J-type of V was trivial only if there exisis

a u€ KO(X), dim u=1 such that;

(16.1) L 8V) = k¥ u/u for all k€ z7 .
PROPOSITION 16.1. The equation {16.1) can always

be solved for u in ROX)®@.

In KO(X) (16.1) can of course have no solution as
examples": show. This proposition depends vitally upen the
nilpotence of KO(X) i.e., upon the finiteness of X . To
see the implications of this assumption consider the general
situation of Section 1. Thus E - X is a G-bundle and
O R{G) " K{X} the corresponding homomorphism. Also
let IcR{G) be the ideal of elements of dimension 0 . Then
0z(I) c KO(X} . Hence under our finiteness assumption e
annihilates a high encugh power of I . It follows that e
extends uniguely to the I-adic completion R{(G) of R(G).

other words, if X a; is an infinite series of elements
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in R(G) with
o T]]. = l - xl .
a. €1, lim B, = 0
t i=co

Now ch extends to a homomorphism

then OCE(E ai) is a well defined element in K(X) .

) RO = L,
Consider now the cocycle k = 8, wheze

which identifies RO with the form
al power seri i
Bk € RO‘{SPin[Sn + 1)} are the elements defined by 10.13, S e

'r]i which are invariant under permutations and the opera-
i.e., by: ' :
tions 1 -1, - ————— i -1
; Y (corresponding to X, # %) . Hence

4n
ch 8 = § {ng_l}/z ok V{il"k)/z}

the element { determined by

We will construct an element Qe Rb{Spin[Sn + 1)} @ M (16. 3)

4n
h§ =T Ni
~ = 1 {JE"Wi log(l'”i>}

A

A

with the property that:

is a well determined element of Rb

(16. 2) dim R=1, 8 - K /0, el k€ z* .
We have 3§, - y. = k
. =y, whence =] - k
If such an element can be found, Proposition 16.1 k 1 i Qbknl 1-{1 - ni) .
Thereigre
will clearly have been proved, one simply sets u = er(ﬂ),
where E is the principal Spin(8n + 1} bundle of V. ch ¢ a t-{1-mn, )
W @ =

n _T)kfz— ke log(i-n,)}

To describe elements in RO of G= Spian(8n + 1), and

we start with the imbedding 4n 4n (1 ~ "‘I-)_k/2 -{1-n )k/Z

§_§¢kWQ= k H i - i
= h
1 (- 11i)»l/z - 1‘1,)1/2 < ek

ch -1
rofso(en + 1)} —— > Zly,y; ] i=1---.4n

described in Section 10. For convenience we abbreviate

Bef Lot . .
the LHS to RO and the R.H. 5. to L. In L the ideal ore completing our discussion of the element

§§ we bring another application of the fact that % extends
to RO(G) . .

which corresponds to T} = RO(T) is generated by the

-1

element (x, - 1) and (x; - 1) . We set
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THEOREM 16.1. Let MP — KO(X) ® © be the sub-

space on which e[)k acts by multiplication with kP . Then,

Ko(X)®e @ = M
p=0

is a direct sum decomposition.

Proof: It will be sufficient to decompose every
bundle W into its components in M4P . Letthen W be
given, and let E be the principal $O(2n} bundle associated
to 2W . (Note that 2W always has a reduction to 80 .)
Thus 2W = p(E) = aip(p) where p€ RO{50(2n)} is the

standard representation.

Now in E{O{SD(Zn)} ® 0 we have, in our earlier

notation, the following obvious identity:

oy {elog{l—ni)+ o log(L-mil}

|—'L‘xf”]ﬁ

Hence if we define pp € RAO{SO(ZH)} DM by

n
orp,= . (s - )+ o)

Then
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Hence in KO{X) ® ® we have

) egle)

w o= L
z Ly

giving the desired decomposition of W . Of course we see

also that Mp =0 if p is odd.

To continue with our class . Note first that an

element €} may be defined in each of the rings RO {so(zn)}

by the formula:

4n .
_ i
‘E}_l“—l} 7= togll - my) ==+, m .

i

Hence for any SO(2u)-bundle E we obtain a well determin~

ed element HE) €1+ KO(X) ® @ . Further it is clear that

QE+ E) = QE) - QEY .

Hence @ extends to & homomorphism
$: KOX) -1+ KOxX)on .

{Note. If W is an 5O(n) bundle, define W) as JACW),)

THEOREM 16.2. Let W and W' be two vector-

bundles over X « Then W and W' are stably J-equivalent
only if
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DW)=Q(WD) - U, UEKOX), dimU-=1

Thus W) €1+ KO(X) ® /1 + KO(X) is a stable

J-invariant of W .

Proof: Assume first that dim W = dim W' = (8n+1)
and that they admit spin-reductions. Then W and W
are of the same stable J-type only if there exists 2 U €1

+ KO(X) so that

1:% 8, (W') + fb, U7UT in-KO(X) @ @.

W) =

This implies ¥, QW)/QW) = b law') - U/(W) U
and hence by Theorem 16.1, that (W) =Q(W"}- U.

This settles this special case. In general, suppose
W and W' are J-eguivalent without necessarily having a
Spin ~reduction. Choose W' so that W + wt is a trivial
bundle of dimension (8n + 1). Then W'+ W' will be |
J-equivalent to the trivial bundle and hence have a Spin-
reduction. So then KHW') - Q(Wi) €1 + KO{X) which

implies (W)= W' mod 1 + KO(X) . Q.E.D.

§17. The ¥ class. In the last sections we have

found the analogues in the KO-theory of the € which we

had constructed in the complex case by elementary
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considerations., It is now natural to try and find an analogue
for the Todd class which was encountered there. The

purpose of this section is to discuss this question.

We continue to use the notation of Section 13. We

also recall that ch : KO(X) ~ H¥(X ; @) is defined as the

A
Ed

composition KO(X) ——> KU(X) B> 5™ (x; @), and

ch O(X) © H(X; ©)

as the image of this homomorphism.

THECREM Af. Consider the sphere bundle B(V)

- X of Section 13, and let Y = ch8n(y) be the 3n-th

component of the character of y . Then H (B(V) Q) is a

free module over H*(X; ®) with 1 and ¥ as generators.

!
{

Proof: When X is a point, Corollary 2 of

Theorem 3, Section 10 proves this assertion. Hence it is

true always by the usual Meyer-Vietoris argument.

COROLLARY L. There exist elements unique in

H*(X; ©) which make the following equations valid in

HY(B(V); @):

¥4 = aE)Y + B(E)

chy = UE)Y + &E) .
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COROLLARY 2 Let E and E!' bhe two

Spin (8n + 1)-bundles over X . Then their associated

sphere-bundles IP(E) and IP(E') are of the same fiber

homotopy type only if

wE) - fEN}F €cn ox) .

Proof: Assume f: IP(E)}~ IP(E'} is a fiber -
1t
homotopy equivalence. Then f'y =ay+ b where a,

b € KO(X), dim a =1, by Theorem A .

Hence ch“-iixyt\.: chia) WE)Y + K, K € 1 (X; @) .
On the other hand £ chy' = (E') - €Y' + K, , K, €H (X; Q).
Now when E is a point it follows from Corollary 2 of
Theorem IIl ,Section 12, that %(E) =1 . Hence the constant

term of YU(E)=1. In other words:

WE) =1+ WE) WE)E FY(X; @ .

Also, because dim a = 1, we have:.

cha=l+cha cha€H{X0) .

Hence

.y 1or s
£4¢' = chy £y =¥+ Ky, Ky EH(X0) .

Now if we compare coefficients of Y , we obtain

ch (2) - ¥E) = A& . Q. E.D.

" wh X
ere K, €H(X: @) . On the other hand $y ch = ch P 25
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Thus the invariant corresponding to 8 in H*(X;CD)
is the element U(E) € HYX; @©)/ch O(X) . In view of the
results of the preceding section it is not surprising that

UE) should be related to the invariant §3 of the preceding

secflion:

THEOREM. Let V = pn(E) be the vector bundle

associated tc E by the regular representation, Then

ch Q{V) = A(E) .

Proof: We will first show that the coboundary of
UE) is the cocyele:

8, (E)

k —
ch Fir .

k

P . 2n .
recxs?ly let ¥ operate on H™ (X;@) by multiplication by

n .. .
k" . With this understood we have:

PROPOSITION 17.2. Let Hk(E) be the cocycle of

E . Then
(17.1) ch 8, (E) = L ¢ JUE}/UE)

Proof: We have by = Gk(E)y + Fk(E) - Hence

chy y =ch Ek(E) - chy+ch Fk(E) = ¢h Sk(E) WUE) - ¥ + K,

- follows directly from the splitting principle for KU. Hence
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chidpy = Yy oby = ¥ JUE)Y}+ 3§, B(E)

- AET - ¥ g B(E)

Comparing coefficients of Y we obtain:

ch 0, (E) = K UE)/UE) Q.E.D.

To return to the proof of the theorem: Combining
(16.2) and {17.1) we see that A(E)/ch (E) is invariant unde
Y - AS both these expressions start with one, we may

conclude that YU(E) = ch Q(E) -

One may express ﬂ(EJ in terms of Ch(V), (V = ,O(En

or, as is usually done in terms of the Pontryagin classes
p. of V. (Recall that pi(V) = (-1) CZi(e*V) where c; is
1

the ith Chern-class of V.) Indeed, we know that if the

Chern-class c(€*V) is represented formally by (1 + szl -y

then ch{V) is represented by
4n
1+ Z [’y e7Yi}
1

and hence ch{fi(V)} by

i 4 in hiy./2
4n Vi - E'Yi/Z ) I'F sin (yl/ ) .
1 Y3 1 (v.72]

1
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In other words if the last formal power series is expressed

in terms of the elementary symmetric functions of the

Z

¥i» Pyt Pgp o and these are then replaced by the

Pontryagin classes of V we obtain U(E) .

This recipe is thus the analogue of Proposition i3, 3.
In their work [4, 5], Ativah and Hirzebruch use the class
?l_l{E) = ch le{V) and denote it by (V). Their derivation
of the algorithm relating the Pontryagin ¢lass of V to ﬁl(V)
is quite different from ours. They were led to the stady of
%(V) through their investigation of the cohomology of G/U
where U is a subgroup of maximal rankin G [Il]. Ina
sense, their computation is the proper analogue in the
H¥(X:; @) theory of our derivation of a recipe for GR{E} .

Exercise. Let X -—f—»—&' ¥ be a smooth inclusion of

compact oriented differentiable manifolds. Let N be the
normal bundie of X in Y, andlet j: Y~ XN ba the
natural projection. Assume now that N has a Spin-

reduction, so that we have the Thom isomorphism:
@ : KO{X) ~ KoXx™)

n = dim N .

COune defines the "Umkehrungs" homomorphism f, in the

~ KO-theory by:
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Thus f,: KO(X) = KO(Y) .

H
Prove the formula f,(uf v) = (f,u) - v, andthe
Riemann-Roch formula: .
ehff, uf = £, {8 - chu} u € KO(X) .

This formula may also be written in the form

{ch £, (u)} ﬂlﬂ_ll__[ty) = f${ch(u) . ﬂlwl(tx)} , u€ Ko, '.

’cx,ty the respective tangent bundles of X and Y . Using
this expression, an umbedding of X © sbo (high n) and the
periodicity theorem define- f, for any map X =Y for
which f;' ty’ -t admits a Spin-reduction and show that the
above formula persists. This is the differentiable Riemann

Roch theorem of [4].

Carry out the analogue for the KU theory also

using the Spinc(n} bundles,

§18. Real projective bundles. Consider the exact

sequence

e
{18.1}) Spin(n} - Spin{n) =~ Z,

where Spin(n) is the normalizer of Spin(n) in Spin(n+1

The nontrivial :Z,Z-module then pulls back to an element

105 Lectures on K{X)
n € RU{Spir@} .

-
PROPOSITION 18.1. Let @ : Spin{n) -~ Spin(n + 1);

n > 3 be the inclusion, and let 2%, 4" be the Spin repre-

sentations of Spin{n+ 1) . (We set at =4 if n+ 1 is

odd.) Then

(18.2) (f:s:E AT)®T = oA .

Proof: The sequence (18.1) is obtained by covering

the corresponding sequence

(18. 3) 50(n) - scf(?a) LIS z,

which exhibits 56(‘;1) as O(n), by the way. To obtain a
splitting of {18.1) we proceed as follows., (iven n + i
integers {si} = ¢ let d(€) be the diagonal matrix in Oln+1)
with ith entry (-1)¥1 ., Then ng;i) > 380{n + 1) is the

subgroup which commutes with the element 4(l,---,1; -1)

Let
a = 4a(l, -+, -1, -1, -1, 1) € SO(n + 1) .

This element is clearly in SO/(:::) - Further w 2 generates
Z, . Hence a splits (18.3). Let a be a lifting of a to
Spi;(-;{) . Then we assert that a° = identity in Sp{;(‘:‘l) .
Indeed the shor-t;.est closed l-parameter group in SO(n + 1)

containing a as its midpoint represents the trivial element
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!

s 4 F . . to. .
of w {SO(n + l)} and hence lifts to a closed curve in Spirf(}l}. '8 then a acts by +1 x identity and & A~ is described
1

Q.E.D.

-
on V by changing the action of Spin(n) only at a, namely

S "-T\) dule, V, is specified by the by letting 2 act as -1. But this action is precisely the one
Thus a Spin(n) module, '

H
. L
iven by ¢'A” @n ., C.E.D.
action of Spin(n) on V and the action of the element a g ¥

I
" Suppose next that n + 1 is odd. Then o', A=aT=p
on .

can be described in this manner.

B t -
Suppose now that (n + 1) is even. Then A and & Let V be a representa

are distinct elements of RU which both restrict to the tion space for 4, € RU Spin{n} , and define an action of

Spi V+V tt
irreducible module A& of RU{Spin(n)}. ¥urther, the pin{n} on by setting

. + .
restriction of A  to the group generated by a can be g(el, 82) _ (gel; aga lez) ¢ € Spin(n)
computed: a(eZ’ e,) = (32’ el) )
We choose the "obvicus' maximal torus T < Spin(n+L_

T This is true because the automorphism induced by a on
containing a and write ¥y for the characters ou as

L
: Spin(n}) exchanges 4, with 4 . Now then a'A ® ilt
before. Then for a proper choice of the numbering and pin(n) g + _ e n w

—

be given by the same representation on Spin{n} however
orientations of the y; we have: \

a will now send (ei’ e,) into —(ez, el) . The problem is
therefore to show that these two actions are equivalent,
and this will be demonstrated, once we coustruct an

element ¢ in the center of Spin{n) with the property that

. + - -
It follows that ch A'(a) = dim " - + 1, ch 47(a) =

. +
= dim & - (-1) or more precisely the restrictions of A

) where € generates the kernel of Spin{n) ~ SO(n). Indeed,
and & to the subgroup generated by a are respectively

- in each spin representation ¢ acts by -1, so that the
dim 47 X trivial representation and dim & X the repre-

inner avtomorphism by ¢ would take the first action into
sentation 7. Thus if V is a representation space for
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N 4 THEOREM 18.1. Let E be a principal Spin{n+l)
the SecOna One.

g W
. o bundle over X. Let Spin{ny¥*Spin(n + 1) be the inclusion
Let ¢ =d{-1,--+, -L 1). This element is in the

_p and consider the projective space bundle P(E) over X
center of SO{n). We set ¢ equal to a lifting of ¢ . Then

agsociated to this subgroup. Then if At ¢ RO{Spiu(nH}}

-

if 2m = n we have:

are the Spin representations and 7 € KO{X) is the sub-

bundle over IP{E) (see Section 1), the following relation

m-1

(c - a)?

1§
m

holds in KO{IP(E}}:

fact that the shortest closed l-para- _
as follows from the.’ (18, 4) a+(EJ o= a(5) |
meter subgroup of SO{n + 1) containing ¢, respectively

ca represents m times respectively (m - 1) times the Proof: All that is needed is to identify NE) with

generator of wl{SO(n + 1)} . Hence the sub-bundle 7 over IP{E) and then te apply the

> permanence law.
ca-¢ca = ¢ € .,

or eguivalently COROLLARY: Consider P_ = real projective

space of (n - 1) dimensions, and let N & KO(PH) be the

sub-bundle. Then if a, = dim ﬂ: where 6; is the real

COROLLARY 1. The formula (18.2) holds in spin representation of Spin(n), we have

RD{SPiE{?’l‘)} when the AT, A” are interpreted as the real

H
W
—

. an o
spin representations of RO{Spin(n + n}.

or

1
o

a (1-7)
3 n
This is clear from the results of Section 10 becauseg

. 343 i dle.
n is the complexification of a real bun Proof: Just let X be a point in the previous
If we apply the permanence law to these relations theosrem.

we obtain the following theorem.
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REMARKS. 1. The same result of course helds in one is the following procedure of Milnor. By the spectral

KU(PH} : one has 1-N®C) - dimc &; = 0 where we now

let &7 be the complex spin representation.

sequence for KU(X}, see [5], it is clear that K"T'.'I(Pn) has

order b_ aund that KU-I(Pn} = Z if n is even and is 0

2. We have carried out the proof of Proposition 18.1 . otherwise. To prove that Khﬁ(Pn) is in fact cyclic one

ouly for n > 3. When Spin{n) is properly defined for n=2 uses the universal coefficient theorem which gives rise to

P as the double covering 0of SO(2) everything is still valid in an exact sequence;

that case also.

- . .
0 — Tor (KU’ (X)iZ,) - KUl (X5 2,) - KUNX) @ Z, ~ 0

2‘—

§19. Somé examples. In view of the last proposition

where KU™(X;Z,) is defined as KU*(X #P;), P, being

of Section 18 the following is not quite surprising.
g the Moore-space for the group Zz . Now there is a

. P 3
THEOREM 19.1. Let P_ denote the real projective spectral sequence covering to KU'(X; Z,) with E, term

Fx- e T . .
space of dimension n - 1. Then HX; KU (p; XZ))’ and KU (p,EZZ) is seen to be Z, in

every dimension. Finally it turns out that already the

(19.1) IE'U(Pn) - zbn first differeatial operator, d3 = E‘»qISq2 + SqZSql » kills the
B spectral sequence yielding KAfJ(X;ZZ) = Z, . Thus KU(p )
(19. 2) KO(P‘:‘LJ = Za . i n
7 a 18 cyclic. That § is 2 generator then follows by induction.

To get at KO(P ) Mil
where a and b are the dimensious of the Spin representa & ( n) 1inor now uses the sequence (12. 2)

: relating K d .
tions in RO{Spin(n}} and RU{Spin(n)} respectively, Further: ¢ KU and KO

KO(P_) is generated by § =1 - M and K’EJ(PH) by(i-m)@c One may arrange this sequence in the following
where 7 is the sub-bundie over P_. Thus, as 112 =1, manner,

we have §2 = 28 .

This theorem has several proofs, none of which are

really quite satisfactory. In a way the most straightforwari
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Another approach is te systematically use the Spin

representations to build bundles on the spaces P /P, and
then to use & double-induction. This was the point of view
used by A. Shaprio and myself in [8]. The gist of the

argument is as follows: Let M, < RO{Spin(k)} be the
g k

additive subgroup generated by the Spin-representations in

RO{Spin(k)}. Thus M, = Z for k¥ 4n, and M, =Z+Z

for k = 4n . We further have natural restriction homo -

morphisma: Mk - Mk—r .

Now, let 7 be the sub-bundle over Pn . and consid

consider Pkc: Pr . Then on Pka’k * T is isomorphic to a
trivial bundle by the corollary to Theorem 18.1, In fact
every spin representation cn RO{Spin(k)} is seen to define
a definite trivialization of a, N on Pk and thus a bundle on

Pn/Pk - This construction then extends to a homomorphism

M, = KO(P_/P, )

and our result, which we proved by a double induction and

a product formula yields the theorem:

THEOREM 19.2. The sequence

- ™ i
i
f
)
/\ !
A
ra

,,’ anMkﬁKan/Pk)_’ 0

where the first homomorphism is the restriction, is exact.
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The same result holds over the complex numbers if Mo is The following gives the crucial result in the Adams

defined as the subgroup generated by the complex Spin solution of the vector-field-problem.

representations in RU{Spin(n)} . THEOREM 19.3. KO(P_)= j(p_ )
n hal *

The details of either of these proofs are a little too

long to be given here. Adams' account of these computa- Proof: We have to show that if b . 7 is J~eqguivalent
tions can be found in "Vector fields on spheres’, Ann. of to zero, then b is a multiple of a,- For n=1,..., 9,

Math. (2) 75 (1962), 603-632. the Whitney class gives the correct result. Indesd for

Noteworthy coroliaries are: b N tobe J-trivial w(m)® has to equal 1. Further

CORCLLARY 19.1. Consider the sequence because w(f) =1+ x where x generates Hl(P ) we may
n

N . ~ check explicitly that the lowest power of b whi i
.. KO{PH) ) KO(PH+1) _ Ko(sn) . : r ich will snlve
the equation {1+ x)” =1 is precisely a_ .
n

Then the generator of K'E)(Sn) is mapped onto a_ - g EK"(‘XI;H

Consider the case n > 9 next. As J(P ) is a
n

i

1, 2 (8) is injected into Ko(Pnﬂ).

In particalar K’E)(Sn), n

quotient of J(Pn+m) a possible value of b will have to be

~ & multiple of 8, say 8m . N 8 i i
COROLLARY 19.2. The operation of b, on KO{PI_) ¥ oW 8m? admits a Spin-re-

duction, so that the cocyele Sk(Sm 1) is well defined. In

and hence on Kﬁé(sn), n=1, 2 {8) is given by:
fact we have ai ready computed this cocycle in Section 13

_. zbZk.i.l identity and found that

4m
4m k
'.’DZR k Tz (1 -mn) k even
Proof: Recall that 1 is the sub-bundle of P . K B { Z } t-m k odd .

Hence, in particular, a line buadle. Thus AN =1+ t1,
t Now by Corocllary 2 of Theorem B in Section 13 we obtain as

- n = -
whence Ym = T %0 thaty, ..n="n and a,b2k‘l’1 = 1. Now

E=1-1M generates K’E'}(Pn) . Q.E.D

a necessary condition for the J-triviality of 8m 7 that
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as follows:

4
6, (8 M) = KV, u/a
THEOREM: Let On X denote the space of ortho-

normal k-frames in En. and let On - O bz the
—_— n i —

where u is an invertible element of KO(Pn) . But for k

3

,k ,1

projection. Then this fibering has a section, if and only if

odd, we have seen that z{:k acts as the identity on KO(Pn)

n is a multiple of the Hurwitz-Rado
so that the condition reduces to P n number a

K-

4 One considers the fibering:
Wk {_.k_z“l_} g =*m k odd .

—_—— Kl
4m L On_i, k-1 On, x T On, L
Hence we must have —— = mod a, for odd k.

Now a little number theory shows that this condition implies Also let Pnc C)r1 be the projective space imbedded in (:)n

that 4m is divisible by an/Z, i.e., that 8m is divisible by a assigning to a l-space, e, in E,_ the reflection in

by a_ . However this is also the condition for stable the corresponding orthogonal hyperplane. The sequence
1

J-triviality, which reads as follows: above then gives rise to 2 sequence

4mts !
K® Bk{Sm m = k &ku/u for some s. Pn—l/Pn—k — Pn/Pn—k —_— Pn/Pn

-1

4m
. -1 _ . -
Hence for odd k one still has ———— %0 mod a -RQ-ED. and one checks that in the stable range T has a section if

and only if w' has a section. Now P /P as
n’ " q

- k - P (n_k)ﬂ
COROLLARY 19.3. KOS )=J(S ), n =12 mod8 - k

is easily checked., Hence if ]&3‘1({‘111{)?'i = 5,_, has a section s

~ —~ th _ : * - - + 11
Proof: We have 0 = KO{Sn) - Ko(an) ~ (P e S5-duzl of this map will determine a map Sm Pk(“” n },

n+1)

whence J{Sn) £0. Q.E.D. n+n' = m, which yields 2 coreduction of Pg(n‘i‘Hn‘l) —

or,
quite equivalently, a J-trivialization of un . (One here

Let me conclude by sketching the path, a la James i

4 & P ! uses the duality theorem [3] which asserts that if X isa

Atiyah, from this theorem to the vector-field problem on . ) i k

_ma,mfold with nermal bundle N in some imbedding of

the spheres. The theorem of Adamns 1], [2] may be stated
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(E+N)

XcE ., and if E is any bundle over X, then X 2, and finally that

represents the dual of XE in the Spanier-Whitehead sense,
=
The pertinent references here are [3)],[12], [13] . — ¥ Y/X = X/A

exhibits X/A as a quotient of an exact sequence which

§20. The difference element. Although I have

splits. Thus we may identify K(X/A) with the kernel of

avoided the Vdifference" construction of bundles in these !

notes, it is such a useful device that a short discussion of ion

it seerns advisable. The situation is as follows: A )
i vis : With this understood one defines dQ(E’ F) € B(X/4)

. 1
fL,et £ and F be bundles over X, and let ¥ be an as the class of E Uﬁ F-vF in K{Y). This element is

1
.

isomorphism of their restriction to a subcompiex ACX . in the kernel of s, as SIZ{E Uﬁ’ F)=F and s F=F
2 - 0

Thue To simplify the notation we consider K(Y) as a module
over K(X) -—— i.e., suppress the ©° — so that dg(E F)

=R LbF -F in R(Y/A) cK(Y).

¢:ElAa-Fla .

We wish to construct an element d(E, F) € K(¥, A) which .
The following proposition is 3 ifi

is the analogue of the difference cocycie. For this purpose P easily verified by an
explicit check:
let ¥ = Xl UA X, be the space obtained from the disjoint

union of two copies of X, say X, and X,, by gluing them PROPOSITION 20.1. The construction E U

SJF

has the following properties:

together along AC Xi . We now construct a bundle E  F’
"~

over ¥ in the plausible manner: We take E over Xl’ F

over X, and glue them together via # over A . (z0.1) EUE = E
I
Note that we have a natural projection Y LIS, ' (20. 2)
. EUF = EUFR

-9( g

given by the identity on each factor, also that we have two .

3 .
inclusions X ———> Y onto the two facters X, C Y, 1 (20. 3 .
: -3) EUF+ E'UF = (E+E) U, (F+F)

¥

8, in K(Y) and this will be done in the subsequent discuss-
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(20.4) (E U F)(E' UTF') +E - E' g JF - 7' E a principal G-bundle over X ; P = IP(E) = E/H ; and
4 g 7 finally M ——>X the mapping cylinder of [P . We then have
(20.5) FE U NF=A(EUFR) . the diagram

A g ,

Recalling that K(X) is defined by homotopy classes of maps K(IP) <—— K(M) <

|

R(H) < R(G) e R(G, H)

R(M/12)

of ¥ into K, we see further that:

(20.6) E UF depends ouly on the homotopy class of # .

1
. where R{G,H) denotes the kernel of i° and the vertical
An immediate application of this formula is: |
homomorphisms are O and ©° e O respectively. Now
(20.7) EUF+F U E=E+F .
g gt

by the use of the difference construction we may complete

this diagram with a compatible X' - homomorphism

Indeed the LLHS is given by E + ng.ﬁg_l Ft+ E
while the RHS is given by E+ F U E +F . However
1+1
¥+ 9’-}' can be deformed through isomorphisms into 1+ (-]

d: R(G, H) - B(M/1P)}, at least for the KU-theory. Indeed
et A and B be two complex G-modules. Then by the

1 1
permanence formula ® ° &g A and w B, when restricted
whence by (19.2), the relation (19.7) follows. As another

1
to 1P, become canonically isomorphic to 8,(i"A) and

s : . L . i :
application we cite the formula: G:E(l B} respectively. Suppose now that i"A=i"B and

2 that @ is an H-isomorphism of these two H-modules. Then
(20. 8) dle, FNE - F) = d(E, F) 1 1?

dg{A, B) = dg(w' ° QEA, H'QEB) is a well defined element of
which may be derived similarily. R(M/1P) . Now if we are working with complex modules it

With the aid of the difference construction one may is easily seen that the set of possible H-isomorphisms

1 i
get at the Thom-complex of a bundle directly. In fact f:iA-i B is comnected. (The group of H-autormorphisms

consider the following general situation envisaged in of an H-module is just a product of full linear groups. QED)

Section 11: H—L1—>G, the inclusion of a closed subgroup;
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is in thi to de d 1 G-ext i -
Hence dQ(A’ B} is in this case seen pend only extension of E', and set D¢ = ET/Hf, P = E/H . Imn

v
on A and B. In fact dﬁ(A’ B} = dg(A', B'Y if A-B =A-B this situation we therafore have the commutative diagram:
in RU{G) . This follows from: A+ B' = A' + B, as

G-modules, =d{A + B, A"+ B)=0=d(A,B)+ d(B",A") =0 RU(G') «—— RU(G)

= d{A, B) = 4(47, B). 0O.E.D.

(Here we have suppressed the § because it is RU(H') «——— RU(H)

unique. )

Construct d o as to complete the following commutative
Every element x € R{G, H) may be written in the

diagram:
form A - B where A and B are G-modules which have
isomorphic restrictions to R{H), and one defines d(x) as

(A, B). KU(P') < KU(P) <—— ZU(P/1p')

Over the real numbers the construction of a canonical; '
: aﬁl e aE] ®05é d
d : RO(G, H) = KQ({M/IP) is not so clear. In this case the

group of H-automorphisms of an H-module may have R(H') R(G') ® .
— R{H)«——R(G, G;H, H)<— 0

several components and it is not quite clear to me that the R(G)

consequent cheoices may be constructed compatibly. How-
ever in simple cases --- such as G = Spin{2n), H=Spin2n-}

there is no difficulty in the real case either.

Exercise 1. Obtain the formulae of Theorem

Section 14, directly by using the difference construction.

Exercise 2. Let f:{G', H'}- (G,H) be a homo-
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APPENDIX 1

ON THE PERIODICITY THEOREM
FOR COMPLEX VECTOR BUNDLES

By

M. Ativah and R. Bott

§ 1. Introduction. The periodicity theorem for the
infinite unitary group [2], is most usefully expressed by

the Kunneth formula:

(i.1) R(X x8%) = K(X) ® K(s%)

where K(X) denoctes the group of virtual complex vector
bundles over X . In this formula X is a finite complex,

and SZ denotes the Gauss sphere.

This note is devoted to a direct proof of (1.1} using

only the quite elementary properties of the funcior K.

Our proof arose out of a proposgition which we needad
in the study of well posed boundary conditions for elliptic
operators, and its basic principle is that the polynomial

approxirmation which leads fo the determination of K{Sz)
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can be modified so as to determine K(X x SZ} over K(X).

32. Preliminaries. We assume familiarity with

the elementary theory of vector bundles and the definition
and elementary properties of the functor K(X} on the
category, ¥, of finite CW-complexes, see for example [I].

In particular, we will need the following "clutching'

construction of vector bundles on the unioun of two spaces.

Let X = X, UXZ , with A = Xl Hl XZ ; where the
X.. X and A areall objects of ¥ . Assume also that
Ei are vector bundles over Xi’ and that ¢ : E1|A - EZ!A
is an isomorphism of the bundles Ei restricted to A .
These data then define a bundle El U‘p EZ on X which is
obtained by gluing E;, and E, together via @ on A .

Elementary properties of this construction are the following:

(2.1} If E is abundle over X and E, = E|X. ,
i i
then the identity defines an isomorphism 1A : ElIA ~E, [A,

and

(2.2) If B E, - E; are isomorphisms on X,
then

_El UEZaE UI EZ with ¢ :BZ °¢oﬁl .

© Yo
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1 -
(2.3) If {Ei’ @) and (E_l,tp') are two 'clutching

data' on the Xi then:

, . : ®E:
E, UE,®E]| U E} =(z,0E8) U (& 2)

Lo ¢

|
'UE) = E,®EL) .
{E1 U E2)®(E1UEZ}—(E1®EI) % ] { 2 2)
@ p' © S
These properties arée immediate consequences of the
definitions and the notion of isomorphism of bundles. From
the fact that homotopic maps induce isomorphic bundles, it
follows further that:
homotopy class
(2.4) E,UE, depends only on the homotopy
of the isomorphism @ : B A = E, {4 .

if E and F are bundles over ¥ and ¥, then
E @ F — their exterior preduct — is a bundle over X X Y .

This is the operation which induces the homomorphism
2 2
L K{X) ®K{s )= K{X x87)

which is to be shown to be an isomorphism. This is of

course the basic tensor~product, in the sense that the

linterior! tensor product of two bundles E and F on the

same space, thatis, B ®F , is defined by: B ®F =ATERFH

with A: X = X x X the diagonal inclusion.
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§3. Bundles over X X s®. Let s° be thought of

as the compactification of the complex numbers € and let
D denote the disc }zi <1, while D" shall stand for the

opposite disc |z > 1.

Weset X, =X xD' and X, =X xD ; A=X xS
where $=D' ND" is the unit circle. The natural
projections of these spaces on X are denoted by ™, T,
and w, respactively, while the map X - A sending X

into (X,1} will be denoted by s .

PROPOSITION 3.1. Let E be a bundle over

X X S‘2 and let F = s'E be the bundle on X induced by the

map 5 from E . Then there is an automorphism f

f: w;F - Tr'J'AF unique up to homotopy, such that

{3,2) Exqg* P UrF and
1% "2

{3.3) £{X x1 is homotopic to the identity.

Proof: We consider s as a map of X into X

1°
Then s ° ™, Xl - Xl iz a homotopy equivalence. Hence
the natural isomorphism E|X x lmwzFlX X1, may be
extended to an isomorphism £ EIXI = ﬂhfF . Further,

any two such extensions differ by an automorphism & of
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w?F which is the identity on nf}? X %} and therefore homo-
topic to the identity on all of X, . Thus the homotopy
class of fl is well determined. Similarly one defines an
isomorphism fz : E]Xz 2= v?F and now the profmsition
follows by taking f=f, © fl_l . The clutching function f
satisfying (3.2} and {3.3) is called a normalized clutching

function for E .

We next describe an especially simple ¢lass of
clutching data for X XSE' . Suppose then that ¥ is a
bundle over X, and consider an automorphism ¢ of 17::3‘.
Clearly such a ¢ amounis to & function which in a continu-
ous fashion assigns to each pair {x,2), x € X, z€ S, an

auntomorphism:

wx,z2) 1 F_—~F_ .

X .S

Now given a sequence 2. 1€ Z of endomorphisms cf F
(i.e., continuous sections of the bundle Hom(F, F))

consider the expression:

For each x €X and z€ ¢, f(x,z)=EIil<N ai(x)zi is

then an endomorphism of F_ . Hence if f(x,z} is an
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isomorphism for each x, and =z € 3, then f defines an
automorphism - also denoted by £ - of ‘!TZF , and therefore
& bundle w’l‘kF U -rrzF on X x 8% .
f
For obvious reasons we call an expression of the

type (3. 3) 2 Laurent series of endomorphisms over F, and

call such a Laurent series proper if f(x, z) is nonsingular
for = €5 . If no negative powers of z occur in f, then

f is called a polynomial. Finally, if { is a proper Laurent

series over F then the bundle -rrfF U ng on X X S2 ,
f

will be denoted by: (F, f, F'), and will be said to have been

obtained from F by a Laurent construction.

As an example consider the finite proper Laurent-
series f(z) = 2™ " x (Identity). This "universal! series

applies to zll bundles F over X . In particular if X is

143

a point, and ¥ is the trivial bundle, then (F,z ,F) is

2
a bundle on § which we denote by H'. For n=1 one

obtains the "hyperplane' bundle H and it is clear by (2. 3)

k

that S ® ° = y°T®

. More generally it follows from
{2.3) that for any bundle E over X, the bundle E & H"

-1l

on X XS° is described by (B, 2 7, E).

Our first step towards a proof of (1.1) is the

following propesition:
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PRCPOSITION 3.4. Let E bhe a bundle over

XXSZ , and let s : X=X >(S2 Le the constant map

% = (x,1). Then E is obtained from the bundle F = s E

by & l.aurent construction.

Procf: By Proposition 3.1 there is a clutching
function f for ¥, sothat E = Tr;F U n‘ng . Consider
£
. . . k .
now the Fourier series of f: E_makz , where a, is the
section of Hom(F, F)} defined by the integral:

i

a.k(x) = W.“ z-kf(x, z)dz/z .
S

k

i _ \ n
3% s oand f o= {(i/n+ 1} Z, S - Thus f

We set Sk =Z
is the n'th partial Cesaro-sum of the Fourier series, and
80 by an easy extension of Fejer’s theorem, I Iis seen

to counverge to f uniformly in 2z, and in X - the latter

- . . 2
because f 1ls uniformly continucus on X X5 |

It follows that for n large enough £ will be
arbitrarily close te f and hence, in particular, proper.
Finally because close maps are homotopic, it follows that

E = (F’fn:;‘"F) for n large enough, Q.E.D.

Cur next aim is to classify the Laurent bundles over

2
¥ X5 . Because every Laurent series is of the form

-1 . . . N
z p where p is a polynomial, the essential complications
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of the T.aurent constructicon already cccur in the polynomials.
Using an operation analogous to the one which transforms
an n'th order differential equations into a number of first

order ones, we first present a linearization procedure.

Consider a polynomial p{z) = E?:O a,z, , of degree
< n, over F . One then defines L'(p) as the linear
polynomial over LYF)=F®.--®@F (n+1, copies) given

by:

L(p)z) - g -+ £
(3.5) n

o
= 20 af, -afy+f, ~afy + £y, 00, -2 HE L.

i=

In matrix-notion, L'(p) F® - *®F - F & ---@F

\ -

n+l ol
is therefore described by the matrix

r . 7
ao, a1 a,
-z, I,0 Q
(3.5) LMp) = A -z, 1 !
0 0
-z, 1
- J

PROPOSITION 3.7. Let p be a proper polynomial

of degree < n over F . Then L™(p) is a proper linear

polynomial on Ln(F), and
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(3.8)  (F,p,F) + (L HF), L LB YY) = (L(F), L2 (p), LY F).

Proof: Let p: L{F)= LYF) be given by
B(z){Eg =+ . £} = {p(2)iy, £, -+« £, } . Then the LHS of (3. 8)
is clearly isomorphic to (L (F), P» Ln(F)) . Hence we
will be done once it can be shown that P and L%(p) can

be deformed into each other through proper polynemials,

For this ﬁurpose define L?{p) by the formula:

o+l n n-1
p-t (p—ao}, ta, . t a,, ta
-tz, 1,
n
L (p) =
~tz, i, a
0 -tz 1 -
and observe the identity:
£ gn-l .t 1
Ps Py Pgs vt BB, s
I, - -tz, 1,
n
Lt(p) - I, -tz, 1,
1 1

- v i-r
Pz} = Zy a2 .

135 Lectures on K{(X)

It is then clear that if p is proper then L?(p) will
be proper for all t, so that this family furnishes a canonical

homotopy irom p at t =0, to an) at t=1, Q.E.D.
¥

From (3.6) some easy homotopies of proper linear

pelynomials lead one to:

LEMMA 3.9. Let p be a proper polynomial of

degree <m on F . Also write L™F.p, F) for

{L™F), L), L"(#F)} . Then,

n+l
(

{3.10) L7 HF.p, F) = LY¥,p, F)+ (F, LLF)

(3.12) LYYF, 2p, F) = LYF, 0, F) + (F, 2, F)

For example the family of matrices

proves {3.10} ,

As explicit instances of these identities we have:

2
L1 2% =L 2,1) + (1,2,1) by (3.11), whence by (3.8),
z
(L2"1)+ 2(L L1y =(l, 21+ (LD +{l,z21). Thas
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(3.12) H “+2= 2H " +1 .

We note that this is the basic relation of the hyper-

plane bundle.

PROPCOSITION 3.13. Let p be a proper lineax

polyaemial en F . Then F decomposes into a direct sum:

F=F, @F_, suchthat on Xsz,

(3.14) (F,p, F) = {F+, z, F+) +{F_, 1, F )

The bundles F+ and F_ are called the + and - bundles

of p on F.

The decomposition of F which we need here is

giveu by the following theorem in linear algebra.

LEMMA., Let a2 and b be endomorphisms of a

vector space V, and let T be a closed curve in the com

complex plane for which p(z)=az+b:z €T, is non-

singular. Then the following holds:

The operators P =5 1. ‘[‘ p(z)-}'dp[z)
T F

(3.15)

1 -1
and Q=5 | dp(z)p(z)
1
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are projection operators which satisfy the identity

(3.16) p{A) + P = Qp(A) for all NE€C.

: For ) outside I', p{A) maps PV onto QV isomorphically
3.17)
For Ainside T, p(}}) maps (1-P)V onto {19V isomorphically

This lemma clearly applies to each fiber of our
situation, with [ the unit circle, and so defines two
continuous projection operators P and Q on F . In

terms of these define:

(3.18) pt(z} = Qfaz + th)P + (1 - Q) taz + bi(l - P).

It then follows directly from (3.15) and (3. 16) that PZ(Z)
= p(z) ; while {3.17) implies that, in additicn, p, is proper
for each t. Hence (3.18) deforms p into the clutching

function

(3.19) Pg = zRaP+(1-Qb(l-P) .

Thus:

(3.20) (F, p, F) =~ (PF, za, QF) + {(1 - P)F,b,{1 - Q)F) .
Now, define F, as PF, and F_ as (1 - P)F. Then

applying the isomorphism a™t. QF = PF and b_I:(l -~ QF

= (1 - P)F in the second factors of these clutching formulae,
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vields the desired isomorphism;

o . .
ver F on X, Liet fn be the Cesarp means of itg Fourier

{3.21) (F,p, F} =~ (F+,z, F+} +{F_,LF ) ' .
Series, ang put P, =z fn + Then for p large enough, p
n

We finally combine (3. 9) with {3,2]) in a straight- 18 a polynomia} clutching function (of degree < n) over F.

forward way to obtain the following: Consider now the element yn(f) n K(X)® K(sz) defined

by:
PROPOSITION 3.22. Let P be a proper poly-

4 Zn -
n . 2 12 =Jr n-1 n
nomial over ¥ of degree <n, and let [, (¥ . P E‘)+ be the ( ) n(f) [ - {F, P> F)] @ (h -h )+[F] ® hn, h = [H]

+ bundles of L%yp) on L*{F). Then:
where [E] denotes the element of K{X) determined by the

Ln+l(F, B, F)+ = Ln(F, Ps F)+ . bundle E .,
(3. 23) We assart first of all th, =
Ln+1(F} N F}- _ LH(F, N F)— . at Vn(f) "‘"n—t-l(f) for large
enough n . jindeed if n is large enough, the linear Segment
while Joinj
Ln-ﬁl(F’ - F)+ _ L“(F, N F)+ e JOining Ppy to 2z P, Provides a homotopy of polynoria]
clutching functions of degree < 2(n 4+ 1}. g
. » by the
.20 " o = €lce, by
LYAF, zp. F)_ = L%F,p, F)_ .

. n
continuoys dependance of L+ (F, p, F) on p, we have:

an+2 2n+2
L F, , o n+
§ 4. The proof of K(X x SZ) =K(X)® K(SZ) . The N Py F) L, H(F, Zp,, F)
LIE PTOOL o1

proposition of the last section may be assembled to construct = 1,20+l

v (Fyzp , F) by (3.23)

a homomorphism 5
= n
5 5 =L (Fp Ry p by (3. 24),
(4.1} - v:E(X x8%) - K(x) ® (5% Thus

- Zn -
' ‘ . Vol = L%+ p ® {p" _ 20 hy [F] ® 1,+]
Which will turn oyt to be an mverse to 4 and so estahlish

). LT Y g g

= 11 {frioa
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Hence for large n, v {f} is independent of n and
so depends only on f. We write it as p(f). Now if g is
a clutching function over F sufficiently closeto f and =n
is sufficiently large, then the linear segment joining {_-to
g, provides a proper polynomial homotopy and shows that
vf) = v{g) . Thus p{f) is a locally constaunt function of f
and so depends only on the homotopy class of f. Hence if
E is any bundle over X XSZ and f is a normalized
clutehing function for E as given in {3.2), then we can
define

Y(E) = ()

and KE) will depend only on the isomorphism class of E.
Since v(E)} is clearly additive for direct sums, V induces

a homomorphism v : K{X x SZ} ~KR{X)® K(SZ) .

This is the desired inverse to ¥ . Indeed the

isomeorphisms

-1

E ={F,f,F)=(F, £ ) = (F,pn, e,z

show by (3. 8) and (3.14) that up is the identity on K{X x 52):

By (3.8) we have
[(F.p,.F)] = {LZH(F,pn, F)] - zn[F] ®1

and by (3.14) we have, after eliminating L%H(F, P F)
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Zn n
[(L™F, p . F)] = [Lf (F,p_, F)] @m™ 1)+ (2ns plFle1.

$O that adding these two expressions one obtains (E] =uv[E]

Finally the composition y - g is quite directly
seen to be the identity on elements of the form [F] ®[H]

or [F]®[1]. Further, taking X tc be a point, we sce

from the identity Hv =1 that every K-class over 82 is

representable in the form a[H] + b[l1] . Hence vy is

also 1.
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CLIFFORD MODULES

M. F. ATivay, R. BorT and A. SHAPIRO &

{Received 23 September 1963)

INTRODUCTION

Trs PaPER developed in part from an earlier version by the last two authors. ¥t is presented
here, in its revised form, by the first two authors in memory of their friend and collaborator
ARNQLD SHAPIRO.

The purpose of the paper is to undertake a detailed investigation of the role of Clifford
algebras and spinors in the KO-theory of real vector bundles. On the one hand the use of
Clifford algebras throws considerable light on the periodicity theorens for the stable ortho-
gonzal group, On the other hand the use of spinors seems essential in some of the finer points
of the KO-theory which centre round the Thom isomorphism. As far as possible we have
endeavoured to make his paper self-contained, assuming only a knowledge of the basic
facts of K- and KO-theory, such as can be found in [31 In particylar we develop the theory
of Clifford algebras from scratch. The paper is divided into three parts.

Part 1 is entirely algebraic and is the study of Ciifford algebras. This contains nothing
essentially new, though we formulate the results in a novel way. Moreover the treatment
giver in §§ 1-3 differs shghtly from the standard approach: our Clifford group {Definition
(3.1)) is defined via a “twisted” adjoint representation. This twisting, whick is a natural
consequence of our emphasis on the grading, leads, we believe, to a simplification of the
algebra. On the group level our definitions give sise in a natural way to 2 groupt Pin(k)
which double covers Ok} and whose connected component Spin(k) double covers SO,
This group is very conveaient for the topological considerations of §§ 13 and 14, In §4 we
determine the structure of the Clifford algebras and express the results in Table 1. The
basic zlgebraic periodicity (8 in the real case, 2 in the complex case) appears at this stage.
In § 5 we study Clifford modules, i.e. representations of the Clifford algebras. We introduce
certain groups A,, defined in terms of Grothendieck groups of Clifford modules, and tabu-
late the results in Table 2. In § 6, using tensor products, weturn 4, = ¥,., A, into a graded
ring and determine its structure. These groups 4, are an algebraic counterpart of the
homotopy groups of the stable orthogonal group, as will be shown in Part {F1

Part 11, which is independent of Part L, is concerned essentiglly with the “difference
bundie’ construction iz K-theory. We give a new and mox: complete treatment of this topic
+ This jake is due to J-P. Berre.
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(see [4] and [7] for earlier versions} which includes a Grothendieck-type ‘deﬁnition of dthe
relative groups K(X, ¥} (Propasition (9.1)) and & product formula for difference bundles
(Propositions (10.3) and (10.4)). -

In Part 1H we combine the algebra of Part I with the topology of Part 11, We define in
§ 11 a busic homomorphism o

wp: Ay KO(X) )
v

where £is a principal Spin(k)-bundle over X, V= P % g R, and X i the Thom con;pllex
of ¥. One of cur main results is a product formuia for , (Proposition {11.3}). Applying
this in the case when X is a point gives rise to a ring homomorphism

o1 Ay Z’ KO ¥(point).
kE0

tising the periodicity theorem for the stable orthogon?a! g_roap, as mﬁ;?dhmhiﬁi:s\:;;;?
verify that e is an isomorphism {Theorem {] I..S)). It is this theorgm Wi ch $ oS the Sig
nificance of Clifford algebras in K-theory and it strongly s’uggests. that one s onm ook for 2
proof of the periodicity theorem using Clifford aigebras, .Smce this pa;?jer :Jats ’1\_&:80 :em g o
on these lines has in fact been found by R. Woc':-d'!: It is 1o be hoped tha .
can be given a more natural and less computational prf)of. .

Using ap for general X gives us the Thom isomorphism {1 heoren‘t {12.3)) m{alvelry Srz
cise form. Moreover the product formula for oy asserts that the‘ funda?en ;hc ;s -
multiplicative—just as in ordinary cohomology theory. .Deyeloplng s.tuc , ae t:e .t
merphism with 2l the good properties was one of our main aims. The reatmen pave

jven is, we claim, more elementary, as well as more complete, than earlier versions w
ignvo]ved heavy use of characteristic classes, _

In [7}another approach to the Thom isomorphis'm ?'s gi.ven which has certau; acl‘:;;antatg:ml
ver that given here. On the other hand the multiplicative property of the fundamenta
¢ does riot come out of the method in (7). To be able to use the advantages of both
iaei;c»do:it ils therefore necessary to ideatify the fundamental classes given in the fwao cases.

i i ne in §§ 13 and 14,
. :i::;ly in §§ 15 we discuss some other geornetrical interpretations of Clifford meodnies.
These throw considerable light on the vector-field problem for spheres. .

Although the main interest in this paper lies in the KO-theory, mr.JSt of what we do applle;
equaily well in the complex case. It is one of tl'.Le features of the Clifferd medule approac
that the real and complex cases can be treated siznultaneously.

PART I
§1. Notation

Let & be a commutative field and let O be a quadratic form on the kF-module £, Yet

TE)=S2TE=k®EBERE®D ... be the tensor algebra over E, and let Q) be the
= i=n - . -

“two-sided ideal generated by the elements x@ x — O(x)'1 in T{£). The gquotient algebra

¥ See ako the proof given in: J. MiLnor: Morse Theory, dme. Math, Sud. 51, {1963).
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T(EMIO) is called the Clifford algebra of @ and is denoted by C(2). We also define
iy: E— C(0) to be the canonical map given by the composition £E—» NE)- (). Then
the following propositions relative to () are not difficalt to verify:

(L1} ip: B~ C(Q) is an injection.

{1.2) Let ¢: E— 4 be a linear map of £ into a k-algebra with unit 4 . such that for a])
X€k, the identity ¢(x)? = Q(x)1 is valid. Then there exisis a unique homomorphism
@ : C(Q)— B, such that $-ip=p. (We refer to & as the “extension’ of §.)

(1.3) C(Q) is the universal aigebra with respect to maps of the type described in (1.2},

(14) Let FPT(E) =3, ., T'E be the filtered structure in F(£). This fitering induces a

filtering in C(E), whose associated graded algebra is isomorphic 1o the exterior algebra

AE, on E. Thus dim,C(Q) =2%"%, and if {e} (i=1, - M} is @ base for in(E), then 1
together with the products i, €y e €y, I << L < iy, fOorm a base for O

(1.3} Let C%(0) be the image of 2458 T*(E)in C(Q) and set CHQ) equal to the image

of 35 T**1(E} in C(Q). Then this decomposition defines €(Q) as a Z,-graded algebra.
That is:

@ c@= 3 coy

(b Ifx;e (e, Y;€CHQ), then
Xy, €C0),  k=10+jmod?2

Fhat the graded structure of (@) should not be disregarded s maybe best brought out
by the following:

PrOPOSITION (1.6). Suppose that £ = E®E; is an orthogonal decomposition of E

relative 10 Q, and let Q. denore the restriction of Q to E. Then there is on isomorphism
e (v}l C(Ql}'% (23]

&f the graded tensor-product of T(Qy) and C(O,) with ().

Recall first, that the graded tensor product of two graded algebras A = Ym0 A%
B=y 20158 is by definition the algebra whose underlying vector space is Y apmo1AT® B,
with multiplication defined by:

(«u® X (y,— @ o) = (— 1)““)’; & xp, x;8 C‘-(Q)a Y€ Cj(Q)-
This graded tensor product is denoted by A ® B; and is again a graded algebra:
LOBF=YA4®F (1= K2y,
Froof of the proposition. Define y: E-» KRN S C(Q,) by the formula, Wlie) =
k

e @1 +1@e,, where ¢ and ¢; are the orthogonal prajections of ¢ on £, and E;. Then

Y@ =(e; ® 1+ 1®e)? = {Q,(e,) + C:e)} 1@ 1) = Q)1 ® 1),

Hence y extends :» an aigebra homomorphism y : COY > C(Q.}@ C(Q,), by (1.2). Checking
the behavior of i on basis elemnents now shows that i is a bijection. Note that the graded
structure entered through the formula @@1+1®e =@ + [ @ el which is valid
as g; € CHO,)
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The algebra £(@Q) also inherits a canonical antiantomorphism from the tensor algebra

T(E). Namely if x = x; @ x; ... @ %, & TXE); then the map x— x*, given by

3R B.. O%2%0.. Ox @
clearly defines an antiastomorphism of T{E), which preserves K@) because
{x®x - xy-1Y = x@x — Q{x)-1. Hence this operation induces a well defined anti-
automorphism on () which we also denote by x — x* and refer to as the transpose. The
transpose is the identity map on iy(E) < ((Q).

The following two operations on C{Q) will also be useful:

Deepamion (1.7). The canonical automorphism of C{0QY is defined as the ‘extension’ of
the map & E - C(0), given by afx) = —iy(x). (It is clear that {ex)}? = Q)1 and so x is
weli-defined by (1.1)}. We denote this automorphism by .

Deenation (1.8). Let x — X be defined by the formula x — o{x?). This ‘bar aperation” is
thent an antiautomorphism of C(Q).

Note. (1} The identity o(x®) = {«(x)}* holds as both are antiautomorphisms which
extend the map £ C(Q) given by X —fa(x);

{2) The grading on C({) may be defined in terms of &: CYQ) = {xe C(DM|a(x) =
(—1)x},i=0, 1.

82. The algebras ¢,

We are interested in the algebras C{0Q,), where 2, is a negative definite form on k-space
over the real pumbers. Quite specificafly, we let R* denote the space of k-tuples of resl
pumbers, and define Ou(x;, ..., %)= — Y. %% Then we define €, as the algebra C(Q,)
and identify R* with [, R*c C, and R withR'1 < C,. Fork =0, C, = R.

Proros1TioN (2.1}, The algebra C, s isomorphic to € (the complex mpnbers) considered
as an algebra over R. Further

C=COCR...0C, (kfactors)

Clearly C, is generated by 1 and e,, where 1 denotes the real number I in R!, Hence
€= —1. The formuiz C, = C,@ ... ® C, now follows from repeated application of
Proposition (1.6).

We will denote the k-tuple, (0, ..., 1, ..., 0} with I in the ith position by ¢, The g,
i<k then form a base of R* = €.

CoroLLary (2.2). The e, i=1, ..k, generate C, pwidtiplicatively and sarisfy the
relaiions
2.3) g =1, ae, + ee =1, i,
€, may be identified with the unjversal algebra generated over R by a unit, 1, and the symbols
e, i=1, ..., k, subject to the relations (2.3).

§3. The grougs, I, Pin(k), and Spin (k)
Let ¢ denote the multiplicative group of invertible elements in C,.
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Derovimion (3.1). The Clifford group T, is the subgroup of those elements xeCF for
which yeR* implies a(xyyx teR:,

1t is clear enough that T is a subgroup of C,, because x is an automorphism. We also
write c{)R"x™! < R* for the condition defining I',, As « and the transpose map R' inte
itself, it is then also evident that we have:

ProrosITION (3.2). The maps x — wfx), x— X presevve T, and respectively induce an
qutomorphism and an antiouterorphism of T,. Hence x - % i3 alsg an antiguiomorphism
of T

The group I, comes to us with 2 ready-made homomerphism p : T, -» Aut(R¥). By
definition p(x), for xe T, is the linear map R* -» R* given by p(x)y y = chvx b, We refer
0 p as the twisted adjoint representation of T', on R¥, This representation £ turns out to be
nearly frithfoi.

PROPOSITION (3.3). The kernel of p: T\~ Aut(RY) is precisely R*, the multipiicative
group of nonzero multiples of 1& C,.

Proof. Seppase xeRei(p). This implies

(3.4) e}y = yx for all y e R,
Write x = x° + x', x*e . Then (3.4) becomes

(3.5) Py = px®

(3.6) xly = —yxl,

Let ey, ..., ¢, be our orthonormal base for R¥, and write x° = g% + e,b" in terms of this basis.
Here 2° € Cf does not involve e, and #' e C! does not involve €. By setting y = &, in(3.5)
we get @° + eb" = g0t + edbler ! = 4y — ¢,b', Hence b =90. That is, the expansion
of x* does not involve €. Applying the same argument with the other basis elements we see
that x° does not involve any of them. Hence x%isa multiple of 1. Next we write x! in the
same form:x' = g' + ¢, b%and set y — ¢,. Wethenobtaing! + 2,5% = —{e,aler* + EB% 71}
=a' —eb°. We again conclude that x* doeg not javolve the ¢ Heace x' is 2 muitiple
of 1. On the other hand x' & C} whence x' =0. This proves that x = xpeRand as xis
invertible x & R*, Q.ED.

Cousider now the function ¥: G, — ¢, defined by
(. N{x)=x'X.

If x & B, then N(x) = x(—x) = ~x? = ~ Ou(x). Thus N{x) is the square of the length
in R* relative to the positive definite form — O
Prorosrrion (3.8). If x & T, then M(x) € R*.

Froof. We show thai N(x) i$ in the kerpel of £ Let then x e T, whence for every
v e R* we have )
w(x)px " =
Applying the transpose we obtain: (as ¥* = v
)7 ye(x) = a(x)px?
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whence ya(x)x = x'a(x)y. This implies that «{x")x is in the kernel of p, and hence in R*
by (3.3). 1t foliows that x'a(x) € R*, whence N(x") & R¥. However x— x" is an antiauto-
morphism of I, by (3.2). Hence M(T) < R*.

PROPOSITION (3.9). N : T, = R* &5 a homomorphism, Moreover N(ax) = N(x).

Proof. N(xy)= xy 7% = x NOWE = Nx)' N, N{a(x)} = e(xdx’ = aN(x) = N(x).

PropostTIoN (3.10). p(I'y) is contained in the group of isometries of R,

Proof. Using (3.9) and the fact that R* — {0} = T, we have

N(o(x)y) = NGxp x™%) = NGON@ING™) = NG). oD

Teeorem (3.11). Let Pin(k) be the kernel of N: T, =+ R*, k2 1, and let Ok} denote
the group of isometries of BY. Then p|Pin(k) is a surjection of Pin(k) onte O(k) with kernel
Z., generated by —1 e ¥,. We thus have the exact sequence

1=+ Z, - Pin{k) & O(k) = 1.

Progf. We show first that p is onto, For this purpose consider g, € R*. We have
N(e) = —eey = -+ 1, and
—g it i=1

€ if b 1.
Fhus ¢; € Pin(k}, 2nd ple;) is the reflection in the hyperplane perpendicular to ¢,. Applying
the same argument to any orthonormal base {e;} in RY, we see that the unit sphere
fre RANG) = 1)

is in Pin{k) whenee all the orthogonal reflections in hyperplanes of R* are in p{Pin(k)}.
But these are well krown to generate (k). Thus p maps Pin(k) onto O(k). Consider next
the kernel of this map, which clearly consists of the intersection Ker p [} {N(x) = 1}. Thus
the kernel of p|Pin{k) consists of the multiples 1-1, with N{A1} = I. Thus A% = +1 which
mplies A = 1.

DErNITION (3.12). For k 2> 1 Iet Spin(k) be the subgroup of PindE) which mups onto
SO(ky under p.

The groups Pin(k) and Spin(k) are double coverings of O(K) and SO(k) respectively.
As such they inherit the Lie-structure of the latter groups. One may aiso show that these
groups are closed subgroups of C} and get at their Lie structure in this way.

ProOPOSITION (3.13), Let Pi(k) = Pin(k) (\ CL.  Then Pin(k) = W= PIn(RY, . and
Spinfk) = Pin(k)’.

Proof. Let x e Pin(&). Then p(x) is equal to the composition of a certain number of
reflections in hyperplanes: p{x} = R, - ... « R,. We may choose clements x, & R, such that
plx) = R, Hence, by (3.11), x = txx; ... x, and is therefore either in Cf or in Cj.
Finally x is in Spink) if and only if the number » in the above decomposition of p(x) is
even, i.e. if and ealy if x e Pin(k)°.

ProOpOSITION (3.14). When k 2 2, the vestriction of p to Spinlk) is the nontrivial double
covering of SO(k).

ole e b =
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Proof: It is.. sufficient to show that +1, —1, the kernel of p{Spin(k), can be connected
by an arc in Spin(k). Such an arc is given by:
Al t—rcos t+sin free, 0,
COROLLARY (3,15}, Whenk = 2, Spin{k} is commected and, when k > 3, simply-connected.

This is clear [rom the fact that SO(k) is connected f z =
ey ) or k 2 2, and that 1, {SO(k)} =2Z,

We note finally that Spin(l) = Z,, while Pin(l) = Z,.

All the preceding discussion can be extended to the complex case. We define «, f on
G @pClhy. ,

xR =@z
x@=x®z
and we take the bar operation and N to be defined in terms of a, ¢ as before.

DEFONTION (3.16). T% is the subgroup of invertible elements x f
€ ¢ -
Y& R¥ implies alxlyx~! e R%, < BuC Sor which
Propositions (3.2)-(3.10) go through with R* replaced by C* and {3.1F) becomes:

THEOREM (3.17). Ler Pin(k) be the kernel F N T = C¥ &k 2 1, then we have an exact

Seguence

{3.18) L+ T(1) - Pin(k) — OCk) — 1
where U(1) is the subgroup consisting of elements 1 @ z & C, ®,C with fzf = 1.
CoroLLaRrY (3.19). We kase o natural isomoarphism
Piu(k) = 5, U(1) - Pin“(k),
where Z, acts on Pin(k) and 1(1) as f+ i},
Frogf. The inclusions Pinfk} = €, 1) = C induce an inclusion
Pin{k) 5, U(1) » C, @4 €,
and it follows from the definitions that this factors throngh a homomorphism :
¥ 2 Pingk) x5, U(5) - Pin(k).
Now we have an obvious exact sequence
£3.20} 0 — Uity - Pinfk) x,, U1} — Pin(k),, 1

and  induces a homomorphism of {3.20) into (3.18). The 5-
oo s (3.18) e S-lemma and (3.11} now com-

We define Spin‘(k) as the inverse image of SO in the homomorphism
Pin (k) — O(k).
Then from (3.19% we have
Spin“(k} 2 Spin(k) x 7, U(1).
The groups Spin(%) are particularly relevant to an understanding of the relationship
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gs we proceed {0 explain. The natural bomormor-

between spinors and complex structore,

ph j 1 Utk) - S002K)
easily verifies. However the homomo!
1 Uk SOk x V(D)

rphism
does not lift to Spin(2k), as one

defned® KT) = j(@y % det T "
2\
dues lift to Spin(2k) This foliows at once from elementary topologic
aes .

the fact that

neiderations and

det + UKy — UL
induces an isomorphism of fundamental groups-

icitly the lifted map
Exphicitly T i)

g Utk) be expressed, relative 10 an orthonormal base fis <o f

is given as follows. Let ;’".
of CF, by the diagonal matrix

exp it
exp iz
axp it
Let ey, -y g5 bE e corresponding base of B*, 50 tl‘za.t
ezj-1=5; ez; = i
Then L Eﬂ)
=11 (oos ¢,f2 +sin IJI2-egj_lez,-) % &xp\ g
=t

. C.
. Teternination of the algebras C ‘ .

) In the fellowing we will write R, C, and H respectively f?; ;ilih??i’u?ili x e

uartn nion number-felds, I F is any one of these Gelds, F() wi

guarter .

i jti e
algebra over F. The foliowing are well known identities among thes

F(n) 2 R(n) @n F. R(n) @xR(m) = R(nm)
C@C=CaC
@.0) H19:C = gg)}
. ‘ : H niversal
To compuie the aigebras ¢, one nOw proic:eds(?s f;:llowi.) lsﬁ;jfé t::}tt]:fe :;laﬁons
i bols & {i=1,---
- erated by a unit apd the sym t = ‘ Pt
2‘?§gibf1%eje} +ee=0,i%# j. Thus C; may be identified with C( QJ
j on {4.2). There exist isomorphisms:
C®p €22 Cirz

3 C,®gC2 & Cuear
150

ProposIts

CLIFFORD MODULES

Proof. Denote by R* the space spanned by the ¢} in C\.
Congider the linear map W : R*¥? o €, ® €} defined by
n_ a2 ®ee; 2gisk
Me‘}_{l@e,f 1<ig2,
Then it is easily seen that ¢ satisfies the universal property (i.1) for f and bence extends to
an afgebra homomorphism v : G, —» C, @ C;. As the map takes basis elements into basis
elements and the spaces in question have equal dimeasion, it follows that ¥ is a bijection.
If we now replace the dashed symbols by the nndashed ones and apply the same argument
we obtain the second ispmorphism,

Now it is ¢lear that

C;=C, Ci=R®R

Hence (4.1} and repeated application of (4.3) yields the foliowing table:

TaBLE 1
k o 'y Cr @€ = ¢ @rC
: ¢ RoR CHe
P gt <@ €2 @ Q)
1| Hd Oy @
AR I HOGHD | O o oM
7 | & HE )
7 R{8) & R(8} C8) @) @ C®)

Note that (4.2} implies Cy & CL Gl 2 G® €30 g = €, ® Cy; Turther C =~ R(16),
whence if €, = F(m) then, £, .4 5 F{16m). Thus both columns are in a quite definite sense
of period 8. If we move up cight steps, the field is left unaltered, while the dimension is
multiplied by 16. Note also the considerably simpler behavior of the complexifications of
these algebras, which of course can be interpreted as the Clifford algebra of (), over the
complex-numbers. Over the complex field, the period is 2.

§'5- Clifford modules

We will now describe the set of R~ and C- modules for the algebras €, We write
M(C) for the froe abelian group generated by the irreducible Z,-graded C~modules, and
M(CJ} for the corresponding group generated by the (ungraded) Co-modules. The cor-
responding ohjects for the complex algebras &, @y C are denoted by M(C)) and N(CH).

PropOSITION (5.1). Let R: M M® be the functor which assigns to a graded Cy-modile
M=M"® M the Cl-module M®. Then R induces isomorphisms

(5.2) M(C) = NED,
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Proof. If M®is a Cf-module, fet
S(MO) = C ® o M°,
The left action of €, on €, then defines S(M®) as 2 graded Cy-module. We now assert that
S s Rand R, S are naturally isomorphic to the identity. In the first case the isomorphism is
induced by the ‘module-map’ C, & M° - M, while in the second case themap #° —» 1 & M°
induces the isomorphism,
We of course also have the corresponding formula:
{5.3) M(Cy) = NYC).

ProrostvIon (5.4). Let ¢t R¥ - &, be defined by #le) =ewey,. i=1,... k Then
¢ extends to yield an isomorphism C, = Cp..,.

Proof. ¢(e)® = egpe 0.8,,, = —1. Hence d extends. Asiimaps distinct basis elements
onto distinct basis elerments the extension is an isomorphism.

In view of these two propositions and Table 1, we may now write down the group
M(C,) etc, explicitly. This is done in Table 2, where we also tabulate the following
quantities: )

Let i:C,—C,,, be the inciusion which extends the inclusion R+ B*T' et
¥ M(C.. ) - M(C) be the induced homomorphism, and set 4, = cokernel of i*. Simi-
larly define Af as MCH/E{M(C, . )} and finally define of2f] a5 the R[Cl<diimension of
M when M is an irreducible graded module for C,[C, ®5 C].

TasLe 2
k Ce M{Cx) A 3 ey ) MG = i
! w1 Z Za 2 LEE Z 1
1 | By s oy z ° 14 z 2 |2
2 H2) 20z | z | 41292 | 2 |2
s He g o | s Z o | s
6 R(8) z 0181 z8z | Z 44
7 | ROy R® z z |51l 25% 2 | s
8 R(16) ZHZ | Z |8 Z@Z | Z |8

Myas= M, A=A, o, = 164,
ML= M Afia= AL afyy = 24,

Most of the ¢ntries in Table 2 follow directly from Table 1, because the algebras F{n)
are simple and hence have only one class of irreducible modules, the one given by the
aciion of F(r) on the n-tuples of elements in F. The only entries which stifl need clarification
are therefore A, and A5, .

Before explaining these entries observe that if M = M@ MY, then M* = M O MO
t.e. the module obtained from M by merely interchanging labels, is again a graded module.
This operation therefore induces an involution on M{(C,) and M (C,) which we again
denote by ¥,
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PropPOsITION (5.5). e

t X and
ot ey o nd p be the classes of the two distiner irveduciple graded

{5.6)
COROLLARY (5.1 4, >z

Indeed if - Eénerate.
z § M{(Cint)), then 2% = i
: ¥F=za
module for Cine1- Hence as (¥2)x = %) we gep t;zt? ?ie oo one
Z = X 4
To prove (5.5) we require the folio ’
be left to the reader.

L
BMMA (3.8). Let ye R, p g and denote p

duced by . 1 : - Y AV) the inner quto, ; .
M), S s ::(,V) W pwyTl We ol write A(3) for the ind MOrphism of C,
w- Suniiarly A°(p} denotes the res Induced automorphismy

( Lricti
) wico, hote on of A(y) 1o 7, as well gg the induced autom

¥ _
xt=y, vr=x

wing lemma which {s Quite st

(5.9) Ay x = x*
«‘i‘;(y)-R(x) = R(x", xeM(C)
A¥e)d(w) = Hla(w)}.

Cl?.) & the functor intr oduced earlier, and ¢ . ¢

& 8 the canonical aﬂ!ﬂmarphfm gf C}‘. Rt T B Ck’

It now follows from these |

S¢ Isomorphisms, that *

of @ on the uagraded modules of Can—y. Now the ntre o onds to
¥ = €18y o eq,y. Purther wl = 41, ety 2
which make up Cypp

fore clearly interch

Here R : MG N

duced in (5.9), while e map v

; the action
=3 18 spanned by i and

anges the two irre
Finally, the i

¥, ‘ evaluation 4%, = Z proceeds in a1l entirely analoge fashi
Actually in the complex case tj o

ere |
shall now describe, Give C* p

a relation with i
. the standard 4 Then the el ores which we

eimitian metric, Thep the complex Grassmanp

f}l Af:'z LA Aufiu

C*. For each ve
Iet 4, de
the exterior product % denore

form zn orthonormal hasiy of Al
endomorphism of A(C*) given by

i ith respect to the metric. 'We now define a pairj
c* @ nA(Ck) - A(Ck)

One verifies that 2w = d,(w) — 5,0m).

(@, = 8,1 = —fzii*w
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into & complex modtle for the Chfford alpebra Cop (ydentifying

so that (5.10) makes ACT Moreover A(CY) has a natural Zo-

C* with R* as nsuzl) le. info a module for Co @p -
grading AT s
Al - E Azr-ivl
of the two
tivle with (5.10). A dimenston count then shows that A(CY) ;1::‘ be ong
l ) ) . —
?rc;:eadl::acib!e Z,-graded modules for Cap & €. Now if u = v we see
(du - Ju)(du - 5:1}(1) = _iﬂv“z(l)
i _ i} module, and so we get
Hence A{CH) is & (—1)-moGLle, ‘
provostion (5.1 A(CY) is & graded Cz @n C.module defining the class
(- DM e 4k t
‘ T PO 4 . . a - 0
ng the explicit formula for 13 UE)—~ Spin(2k) given £3 it is easy

1EA%C).

RBemark, Usi ula £
verify the commutativity of the followm% diagram
U(k) —— Spin(2k}
" i 7
End{C*) 2 End(A(C)

i it i hism
Here A 15 the functorial nomomorphism, # i the inclusion and ¢ 13 the homomerp
ere Al !
induced by the action of Cne @, C on ACH defined above

g6, The maltiplicative properties of the Clifford modules _ e e teasor
. if M and N are graded G and C, modules, respectively, then gra

2 ition
oduct M@ N is in a natural way 2 graded module over G®Crr By definitio
produd

- - ¢
(M®M°—M°®N°@M1®N" and (MBN)' = M@N @M @ N, the action ©
% e ing given by:
C®C‘i0nM®Nbemgg1ven / im0
(Sk N e yr{m@n) = (—1)%(x-m) & (v, yﬁeC}, meM (]f al - ;{tensmn
' We also have the isomorphism Py Cher ™ C, & C; defined by the Ll

of the map o®! 1igk

¢k,i(ei)={]_®£k+i Ecigk+l

Th tion (M, M) MG Ne G (M & N) is easily seen 10 give rise to 4 pairing
e opera M, y

M(Co @z M(CH—~ M(Cesp) sonote
i =35 eno
3 thus induces a Z-graded ring Stuctixe on the direct sum My = Yo M(G). We
itl;is product by (. ) > Ut 1t is clearty associative.

ProeosiTion (6.2). The Jolfowing formulge are oalid for e M(C), ve M(Cp)

6.3 ()t =uv*
¢ p-i if kf s even
(6.4) wv= {(u-u)* if ki is odd.
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(6.5) I i%: M(C) — M(C,_)) Is the restriction homomorphism, as defined in §5, ther

e ito = i*(u-5) k2l
The formulae (6.3} and (6.5) follow inunediately from ihe definitions,
Proaf of (6.4). We have the diagram:

. &C i g,

T Pk

/

GG,

where T is the isomorphism x @y — (— 1Py ® x, x e Cf, ye C& Now the compesifion
$ip o T o Prrt Crar— Cparls an automerphism ¢ of G, which clearly is the Hnear ex-
tension of the map which permutes the first & elements of the basis {g;} with the last 7
elements
€ 4t igigk
&k k<ighk41
Thus e is the composition of inner automorphisms by elements in R* — {0}. It follows
therefore from {5.9) that the effect of o on M{C,) is equal to the effect of the operation {*)
applied k7 times, If we combine this with the fact that T4V & M) = M & N, whence

AN @ M) 6”0 gy (M@ N),

we obiain the desired formula.

ole) =

Corotraxy (6.6). Let 1e MUCy) be the class of an irreducible module of Cy. Then
mudtiplication by A induces an isomorphism: M{C) = M(CMB).

Proof. This follows from our table of the ¢, in all cases except when & = 4n. In that
case let x, y be the penerators corresponding to the two irreducible graded modules of .

Then we know that x* = y. Now A-x e M{C, . ;) is the class of one of the irreducible graded

modules of Gy by a dimension count. Hence by (6.4) 1y = A{x*) == (Ax)* corresponds to
the other generator.

COROLLARY (6.7, The hmage of i*: M, — M, is an ideal, and hence the quotient ring
Ay =38 Ay inherits a ring structure from My,

This follows from (6.5). The element 1 ahove projects into a class—again called i—
in Ag, and we clearly have:

PrO®POSITION {6.8) Multiplicatior by L induces an isomorphism A, & 4,5, & 2 0.

The complete ring-strocture of 4, is given by:

TueoREM (6.9). A. i the anticommutative graded ring generated by a wnit 1 € A4,
and by elements £ € A,, e Ay, A€ Ag with relations: 26 =0, £ = 0, p* = 44

Froof. As A; =2 Zy, it is clear that 26 = 0. From the fact that a,=1, and a,=2, we
conclude that ¢2 generates 4,. There remains the computation of 4. To settie this case we
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introduce 2 notion which will be of use later in any case, Let k =4n, and let @ = ¢, ... ea-
Then as we have already remarked, the centre of C2 is generated by [ and @, whence, as
@?® = +1, the projection of €% on jts two ideals is given by (1 F w)f2. It follows that if A
is an irreducible graded C-module, then o acts on M° as the scalar ¢ = £1. In generat we
calt 2 praded module for C, an e-module, {¢ = + 1) if @ acts as £ on A°. Now because
e, = —te;, it follows immediately that if M is an e-module, then M™* is 3 (—¢)-module,
i.e., w acts as —e on MY, and finally, that if A7 is an e-module and M" an "-module for
C, then &7 & M is an ge'-module for Cuy.

With this understood, let x be the class of an irreducible Cy-module M in 4, Then
Misoftypes. Hence M@ Mis of type ¢ = + 1 in Cp. Now if A € 4, is chosen as the class
of the irreducible ( + 1}-module W of Cg it follows that M @ M 2 41 by a dimension count,
and so finally that 2 = 43,

The corresponding propositiens for the complex modules are clearly aise valid. Thus
we may define M% and A%, and now already the gencrator &° corresponding 10 an irreducible
C, ®pC-module yields periodicity, In fact the following is checked readily.

TuroREM (5.10). The ring AS Is isomoerphic to the polynomial ring E[p).

We consider again the element @ = ¢, ... g, € C. For k= 2! we have w? = (—1).
Hence if M is an irreducible complex graded Cp-module then o acts on A4° as the complex
scalar ¢ = +i. We call a complex graded C-module an smodule if o acts as £ on M°,
Let pf & MY(C,,) denote the generator given by an irreducibie #-module, Then uf = (4"
where uf = g

Comparing our conventions in the real and complex cases we see that if M is a real
e-module for C,, then Af @z C 1s 2 complex {—1)" e-module for .. Mow we choose e Ay
o be the class of an irreducible {— 1)-module. Then in the homomorphism A4, — 4% given
by complexification p—»2(u)®. From (6.9 and (6.10) we then deduce

6.11) A= (u)?

under complexification.

FART I
§7. Sequences of bundles

In this and succeeding sections we shall show how one can give a Grothendieck-type
definition for the relative groups X(X, ¥). This will apply equally to real or complex vector
bundles and we witl just refer to vector bundles. For simplicity we shall work in the cate-
gory of finite CH -complexes (and pairs of complexes).

For ¥« X we shall consider the set ¥.{X, ¥) of sequences
E=(@— E -~y B, —ts = E, -2 By — ()

where the £; are vector bundies on X, the o, are homomorphisms defined on Y and the
sequence is exact on Y. An isomorphism £-» E' in €, will mean a diagram
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— et Ey  ——

n

— B,
in which the vertical arrows are isomorphisms on X and the squares commute oa Y.
An elfementary sequence in &, is one in which
E, =E;_, a; =1 for some §
E; =0 forjsi,i—1.
The direct sum E @ F of two sequences is defined in the obvious way, We consider now the
following eguivalence refation:
DeFINITION (7.1). E ~ Fesrthere exist elementary sequences P, &% e €, so that
E®@P' @. . @PxFO2'D..0 0%

In other words this is the equivalence relation generated by isomorphism and addition of ele-
mentary sequences. The set of equivalence classes will be denoted by LLX, ¥). The operation
@ induces on L, an abelian seini-group structure. Y ¥ =5 we write L{X) = I, (X, 2.

If £e €, then we can consider the sequence in &, ; obtaired from E by just defining
E, .y =0. In this way we get inclusions

@3 —>*{€2—> __,-b@fﬂ—b
and we put ¥ =¥, = lim¥,. These indvce homomorphisms

LiysLy= .. 5L,
and it is clear that
L=L =lmL,
—

is obtained from % by an equivalence relation as above applied now fo sequences of finite
but unbounded length.

Levis (7.2). Let E, F be vector bundles on X and 1 E—F a monomerphisnt on Y.
Then i dim F> ditm E+ dim X, f can be extended to o monomorphism on X and any two
such extensions are homotopic rel. ¥,

FProof. Consider the fibre bundle Mon{Z, F) on X whose fibre at x ¢ X is the space of
all mopomorphisms K, — F,. This fibre i3 homeomorphic to GL{)/GL{n — m) where
n=dimF, m =dim E, and 50 it is {m ~m — I)-connected. Hence cross-sections ¢an be
extended and are all homotopic if

) dim X <n—m—1=dimF—dimE 1.
But a cross-section of Mon(E, F) is just a global monomorphism E — F,
Lemma (7.3). L{X, ¥) = Lo {X, ¥) is on isomorphism for n 2 1.
Frogf. Let @’,,4.1 denote the subset of €., consisting of sequences F such that
dim E, > dim E,, , + dim X. W
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If = 1 then given any Ee @,,, we can add an elementary sequence to it so that it will

satisfy (2). Hence €, ~» L, is surjective. Now let Ee @ .11, then by (7.2) o, can he
extended to 2 monomorphism o7, on the whole of X, Put E; = Coker 6,4,, let P denote
the elementary sequence with P, ., = P, == E 4, and let

E={(0—0E28E, — 2 E, _,— .. s E—0),

where p!, is defined by the commutative diagram on ¥:

E——— F;

Nl
N

=1
A splitting of the exact sequence on X
0“*En+l"£§;L"*EnH’E;"*D
thea defines an isomorphism in %, 4,
PR E=E.
If a*, i5 another extension of g, leading to a sequence £, then by (7.2) £ & £ and
this iscmorphism can be taken to gxtend the given one on ¥, ie, the diagram

E:;_““—+En—l

p £
"
EL——"——E, _;

commutes on ¥. Hence E' & E*in ¥, and so we have a well-defined map £+ £’ from the

isomorphism classes in ..y to the isomorphism classes in €,. Moreover, if

0={0—Qpry— 0, —0), R={0—=R,—R;—0) (i< n)

are elementary sequences, then ~

(E®OY=E, (E@RYzL @R

Hence the class of E' in L, depends only on the class of Ein L,,,. Since &,,, ~1,,, is
surjective it follows that £ — E’ induces a map L, 4, = L,. From its construction it is im-
mediate that its composition in either direction with L, —L,,, is the identity, and this
completes the proof.

From (7.3} we deduce, by induction on #, and then passing t¢ the limit:
Propostrion (7.4). The homomorphisms L{X, ¥) = L{X, ¥} are isomorphisms for

i €n< oo,
158

CLIFTORD MODULES

88, Eader characteristics

DestnITION (8.1).4dn Euler characteristic for €, is a natural komomorphism(i.c. anaiwral
transformation af functors)

2 LAX, V) - KX, T)
whick for ¥'= (33 is given by
xE)= _Z,D(— 1YE,

Remark. It is clear that, if Y=g, E » T(—1YE gives a well-defined map
LX) = K(X).

Lemta (82Y. Let y be an Ewler characteristic for €, then

¥ 1L (XY~ K(X)

is an isomorphism.

Proof. y i3 an epimorphism by definition of K(X). Suppose 3(F)=0, then
E, @ F 52 Ey ® Fior some F(in fact Fran be taken trivial). Hence if

P:0SF—F—0

is the elementary sequence défined by F, £@ P is isomorphic to the elementary sequence
defined by £, @ F. Hence E~0in %,{X} and s¢ E=0in L,(¥}). To conclude we need the
following elementary lerama:

Liyava (3.3). Let A be a semi-group with an identity element 1, B a group, ¢ 1 A— B
an epimorphism with ¢ ~*(1) = 1. Thern ¢ fs an isomorphism,

FProof. It is sufficient to prove that A is a group, i.e., has inverses. Yet g€ 4, then
from the hypotheses there exists 2’ € A so that

dla’)y = Ppla)™1,
Hence

Pla-a’y=Hla)ydla)=1,
and 8¢ a¢’ = I as required.
Leian (8.4). Let y be gn Euler characteristic for €., and let ¥ be a poins, Then
14X, V)= KX, ¥)
is an isomorphisn.
Progf. Consider the diagram
0 Li(X, Y} -2 L (X) 25 L (V)

0— KX, ¥} — K(X) — K(¥).
By (8.2) and (8.3) and the exactness of the bottom line it will be sufficient to show the
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exactness of the top fine. Now fx = 0 obviously and so we have 1o show

&3] a”H0) =0;

@@y if HE) =0 then Eelima.
We consider (i) first. Since ¥ is a point, and y: L{Y} = K(Y), f(E) =0 is equivalent {0

dim E,|Y = dim Eq|Y.
But then we can certainly find an isomorphism
G1E|Y —+ Ey|Y,
showing that Ee Im(x). Finally we consider (i). Thus let
E = (¢ —> E; —= Eqg—0)
be an clement of €,(X, ¥} and suppose %(£) =0 in 1,(X). Then y£) = 0 in £1X), and
hence, if we suppose dim E; > dim X (as we may), there is an isomorphism
z:E,— E,

ou the whole of ¥, Then ot™' € Aut(E,|¥). Since Y is a point this automorphism is

homotopic to the identityt and hence can be extended to an element p e Aut(Eg). Then
pt 2 Ey ~» Ey is an isomorphism extending ¢. This shows that E represents 0in L;(X, ¥) as

reqeired.
LEvxa (8.5). Let  be an Fuler characteristic for €y, then y is an equivalence of funciorg
L,-K
Proof, Consider, for any pair (X, ), the commutative diagram
L (X]Y, YY)~ K(X[Y, ¥[Y)

# ¥

Ly(X, ¥) et K(X, Y).
Since ¥ is an isomorphism (by definition) and y on the top line_ is an isomorphism by
(8.4) it wili be sufficient (by {8.3)) to prove that ¢ is an epimorphism. Now any element
&of L,( X, Y)can be represented by a sequence
) E = (0~ E, ~2 Ey——0)
where E, is a product bundle. But then we can define a ‘collapsed bundiﬁ:’ E] = E o over
XY and a cotlapsed sequence E e €, (X/Y, ¥/ ¥) defining an element &' e L, (X/ ¥, Y/Y),
Then & = ¢{£') and 50 $ is an epimorphism,
Levua (8.6). Let y, ' be two Euler characteristics for %y, Then y = P
Proof. Let T = y'y~* (which is well-defined by (8.5)). This is a natural autc_}mo_rphism
of K(X, Y) which i5 the identity when ¥ = (. Replacing X by X/ Y and considering the
exact sequence for {X{Y, Y/Y) we deduce that T'= 1, e, that ¥’ = 3.

7 This argument peeds modification in the real case since GL(n, R) is not connested: we replace Ey by
E@landa, 7bye L@ {1k
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From (8.6) and (7.4) we deduce

Lenwa (8.7). There is a bijective correspondence (v, —— 3,) berween Euler character-
istics for €, and %, such that the diagrom

Ly—~————
Il{

conimutes.

These lermas show that there i at most one Euler characteristic. In the next section
we shall prove that it exists by giving a direct construction.

£9.  The difference bundle
Givena pair (X, V) define X, = X x {i}/=0, 1, 4 = X, u, X, {obtained by identifying
y x {0} and y % {1} for all y & ¥). Then we have retractions
Tt A A
50 that we get split exact sequenues:

LS

0— K(4, X)) £ K(4) £5 K(X) —— 0
£
Also, if we regard the index { € Z,, the natural map X — X, gives an inclusion
&2 (X, D=4, Xeey),

which induces an isomorphism

¢F KA, Xip o)~ KX, ¥).

Now let £e® (X, ¥),
E=(0—-E SE,—-0),

and censtruct the vector bundle £ on A4 by putting E; on X; and identifying on Y by .
it is clear that the isomorphism class of £ depends only on the isomorphism elass of E in
B (X, ¥). Let F;=af(E). Then F|X,= F, and so F — F, & Ker j*. We define an element
&Eye K(X, Y} by

PI@) T dE) = F—F,.
It 15 clear that 4 is additive:

AE ® Ey = d(E) + d(E".
Alzo if £is elementary Fgx F, 5o that 4(£Y = 0. Hence J induces a homomorphism

d:LiX, ¥)- K(X, Y)
which is clearly natural. Moreover if ¥ =@, d= Xo+ X, F=E, x {0} + E, x {1}
{disoint sum}, F; = £; % {0} + E; x {{} and s0
HEY=E,—E,.
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Thus 4 is an Euler Characteristic in the sense of §8. The existence of this 4 together with
the lemmas of §8 lead to the fellowing proposition:

PROPOSITION ($.1). For any integer r with 1 € n < co there exists a unigue natural homo-
morphism
w3, YY) KX, )
which, for Y = (&, is given by
XE) = ‘Za (—1YE;
Moreover ¥ is an isomorphism.

The unigue y given by (9.1} will be referred to as the Ewler characteristic. From (8.6)
we see that we may effectively identify the y for different ».

Two clements £, Fe € (X, ¥) are cailed homotopic if they are isomorphic to the
restrictions to X x {0} and X x {1} of an element in € X x I, ¥ = I}

ProvosiTionN (3.2). Homolopic elements in € (X, Y) define the same elements in
Lix, ¥).

Proof. This follows ai once from (9.1) and the hometopy invariance of K(X, ¥).

Proposition (9.1} shows that we could take L (X, ¥) (for any 1 = 1) as & definfrion of
K(X, ¥) This weuld be a Grothendieck-type definition,

We shalt now give a method for copstructing the inverse of j: L (X, ¥Y) = L{X, 1),
¥ E€%,(X, Y}, then by introducing metrics we can define the adjoint sequence E* with
maps o} 1 E,_, — E, Consider the sequence

F=(0—F, 5 Fa—0)
where Fo = @ E;, Fi=®E;y,,; and
i i

ey, €3, €5, 00 } = (0124, 67 €, + 0325, 65 €3 + T, .. ).
Since, on ¥, we have the decomposition
Epre= 0314 {E2i5 ) ® 63 Ear))

it follows that Fe€,(X, ¥). If Ee %, thean E = F. Since éwo choices of metric in £ are
hometopic it follows by (9.2) that ¥ will be a representative for j~ {(Z).

§10. Products

In this section we shall consider complexes of vector bundles, ie., sequences
0— E, -y p, Ot cen ey B e
in which o,_,6; =0 for all i.
Lemma (10.1). Let E,, ..., E, be vecior bundles on X,
O B, B, et s —— By s O
& complex on Y. Then the 6, can be extended so that this becomes a complex an X.
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Proof. By induction on the cells of X — Y it is sufficient to copsider the case when X

is obtained from Y by attaching one cell. Thus et
X=¥u,é
where f: $¥~% — ¥ is the attaching map. If B* denotes the unit ball in R¥, with boundary
S*7*, then X is the quotient of ¥ + B* by anidentification map # induced by /. The bundle
#*E; is then the disjoint sum of EJ¥ and a trivial bundle B* % V¥, The homomorphism
¢, E;—~E_, on Y lifis to give a homomorphism 7,: 8¥' x ¥, = 8**x V,_,, ie a
map 5% - Hom(V,, ¥|-,). Extend each 1, to B* by defining
7(1) = Julios) ueB"

This induces an extension of the &, to X preserving the relations ¢,_, a; = 0, as required.

We now introduce the set 2,(X, ¥) of complexes of length 7 on X acyelic (i.e. exact) on
Y. Two such complexes are homotopic if they are isomorphic to the restrictions to X x {0}
and X x {1} of ap element in @,(X x £, ¥ x I}. By restricting the homomorphisms to ¥
we get 2 natural map

X, Y- (X, T

LemMa (10.2). ®: &, — €, induced o bijective map of howmotopy clusses.

Frogf. Applying (10.1) we see that & itself is surjective. Next, applying {10.1) to the
pair

(XxLXx{DuX={ilu¥xD
we see that
O£} homoetopic to ${F)= E homotopic to F

which completes the proof,

¥ EeGfX. Y), FEFLX, Y) then E@F i a complex on X x X’ acyclic on
X ¥u¥x X sothat
E@Fed, , X xX' X xY u¥x X
This product is additive and compatible with homotopiss. Hence it induces a bilinear pro-

duct on the homotopy classes. From (10.2) and (9.2) it follows that it induces a patural
product

L, NOLIX, Yo XX, X=xY UuY =X
Proposirion {10.3). The tensor product of complexes induces a natural product
LiX, L X Y=L (X=X, XxTuYxX)
and
Hab) = y(a)x(®) n
where y is the Fuler characteristic.

Frogf. The formula (1) is certainly true when ¥ = ¥ = 4. Onthe other hand thera is 2
unique natural extension of the product K(X)@ K(X)— K(X x ¥} to the relative case
(ef. [3]}. Hence, by (9.1}, formala (1) is also true in the general case.

Remark. This result is essentially due to Douvady (Séminaire Bourbaki (1961) No. 223).
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ProrosiTion (10.4). Let
E={—EFE, ‘—"""EO"’—*O)ng(X- ¥)
E = (0— E} = Ey — e (X', ¥)
and choose metrics in all the bundles. Let
F={0—F 3 F——0e@ (X » X, XxYT u¥xX)
be defined by
FI=E,®E ®FQF
Fo=E @ E,@E, ® E;
I®me, o®l
= (a*@ 1, —1®g’*j
where g%, 6'* denote the adjointy of o, o', Then
#HFy = #EY x(E).

Proof. By {10.3) 3(EY-2(E) = y(E® E*). Now the construction of §9 for the inverse
of j,: Ey = Lo turns E@ £ into F and so y(£@ E) = z(F).

PART I}
§1t.  Clifford bundies

1In this section and the next we shall consider the Thom complex of a vector bundle.
If ¥ is a (real) Euclidean vestor bundle over X {i.e. the Hbres have a positive definite inner
product) we denote by XY the one-point compactification of ¥ and refer to it as the Thom
complex of ¥. It inherits a natural structure of CW-complex (with base point) from that of
X. An alternative description which is also useful is the following, Let B(¥), V) denote
the unit ball and unit sphere bundles of ¥, then X* may be identified with B/)/S(F). A
technical point which arises here is that (B(¥), S{¥3)} is not cbviously a CH-pair. However
the follewing rematks show that there iz no real loss of gemerality in assuming that
(B(V), S(¥)) is & CW-pair.
1. 3f X is a differentiable manifold then {B(1), S(¥)} is a2 manifold with boundary
and hence trianguiabie,
2, Every vector bundle over a finite complex is induced by a map of 1the base space
into a differentiable manifold {namely a Grassmannian),
There are of course more satisfactory ways of dealing with this point but 2 lengthy dis-
cussion would be out of place in this context.

With our assuraption therefore we have the isomorphism
E(X") = K(B(V), S(VY)
where K denotes K modulo the base point.

Since each fibre ¥, of V is a vector space with a positive definite quadretic form Q,,
we can form the Clifford bumdie C(V) of ¥, This will be 2 bundiec of algebras whose fibre at
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x 15 the Chfford algebra C(— Q). Contained in (V) are bundles of groups, Fin(¥) and
Spin{F). All these bundles are associated to the principal O(k)-bundle of ¥ by the natural
action of 0(%) on C,, Pin(k), Spin(k).

By a graded Clifford module of ¥ we shall mean a Z,-praded vector bundle F {zeal
or complex) over ¥ which is a graded (¥ )-module. In other words £ = E* ® E! and we
have vector bundie homomorphisms

V@gE'— B, V®@gE'—E°
{dencted simply by v ® e — v(e)) such that
o(ue)) = — inliZe )

For notational convenience we shall consider real modules onfy. The complex case is
entirely paralle].

Let £ = E° @ E' be a graded C(V)-module. Then E®is a Spin{V')-module and by integration
over the fibres of Spin(¥) we can give E? 3 metric invariant under Spin(¥). This can then
be extended to a metric on E invariant under Pin{ ") and such that £° and £’ are orthogonal

complements. If now < ¥, and v+ 0 then /o] & Pind,}. Hence we deduce, for all
veV,and ee E |

hrel = o] - et
This, together with (1), implies that the adjoint of
v EY = E! is —v: B} S ES
Let = : B(F) — X be the projection map and let
GLEY: m*EY — n*E°
be given by multiplication by —vp, ie.
o(E),(¢) = —ve.
Then
0 7" EV S8, g% E0 {2)
is an element of &, (B{)}, S(¥)) and hence defines an element ¥, (£) of KO(B(¥), S(¥Y), or
equivalently an element of K"ﬁ(X ). If the C(¥)module structure of E extends to a
&V @ I)-module structure (i denoting the trivial line-bundlé) then the isomorphism o(£)
extends from S(V) to S*(Ve 1) the ‘upper hemisphere’ of S(¥@ 1), Since the pairs

(B(¥), S(¥)) and (S™(V & 1), S(¥)) are charly equivalent it follows that ¥, (E) will, in this
case, be z¢ro.

Following §5, which is the special case X = peint, we now define #¢ V) as the Grothen-

dieck group of graded C(¥)-modules, and we let A(V) denote the cokernel of the npatural
homomorphism

MV @ 1) — M),
Then the construction described above pives rise to a homemorphism
2 1 A(YY — KOO,

This homomorphism is of fundamental importance iu the theory, and our next step is to
discuss its multiplicative properties.
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Let I, ¥ be Euclidean vector bundles over X, ¥ respectively.
Then we have a natural homeomoerphism

X xR ¥V X Yre™
which induces & homomerphism (or ‘cup-product’)
KoYy @ KO(Y¥y — KD(X = YVOP),
IF ac KD(X"), b e KD{Y™) the image of 2 ® b will simply be written as b,
Propostrion (E1.1). The following diagram commutes
AN @AWY L AV W)

¥ @l Xv@w

Kb(x") @ KO(Y"y — KO(X x YVOW)
where p is induced by the graded tensor product of Clifford modules. Thus
tvonlE ®F) = xrl Byl F).
Proof. Let E, F be graded C(V} and (% )-modules and let them both be given in-
variant metrics as above. Applying Proposition (10.2) it follows that
AE) w(FYeKOCB(V) x BIW), B(V) % S(W} v $(V) x B(W))
1s equal to (G} where
Ged {B(V} x B(W), B(V) = S(W) U S(V) x B{(W)
is defined by
G=1E'RF @E ®F%
Go=mME°QF'@E' @F"
and t: G, — (4 15 given by

- (tesn ao
~oE)@ 1, 1® o(F}

{since o(EY* = —a{F}, o(F)* = —o(F)). Thus, 2t a point e@ we V'@ W, 1 is given by the

matrix
n l@-—»w,—v@l'_ﬁ_ 1 0{I®w,v®1 )
v T L@ 1@ —w )“ 0 —1}lv@l. —1®w
where #, w denote module mulktipiication by ¢, w. Hence
=(y _Yeen )

On the other hand let BV @ W) denote the ball of radius 2 and let
S(VeW)=B(VeW)-BVew),

so that the inclusions
BV @W),3VaeW)—-BVaw,SVaew
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j = B(V} x BUW), BV} x S(W) u S(V) x BIW) — B'(V @ W), S'(V ® W)
are both homoetopy equivalences. Tet
He@ (B (V@ W), S(V@w)
be defined by o(£ & F). Then i*(H) defines the element ¥, gw(Z & F), while (3) shows that
J¥(H)and G define the same element of KO(B(V) x B(W), B{VF) x S(WYuU S(F) x B{WY).
Hence we have

AAEY 3wl F) = tyaw(E® F)

as required,

Suppose now that Pis a principal Spin(k)-bundle aver X, ¥ = P x g, . R the associ-
ated vector bundle. If M iz a graded Cy-module then E =P x spin o M Wil bea graded C(¥)-
meodule. In this way we obtain a2 homomorphism of groups

ﬁp L A(V}
Similarly in the complex case we obtain
B : Af— AW

Proposstion (11.2). Ler P, P’ be Spin(k), Spin () bundles over X, X' and let
V= PXspag RS Ve P x spininy B Let P” be the Spin(k + D-bundie over X x X' induced
Jrom P x P’ by the standard homomorphism

Spin (k) x Spin {I) — Spin(k + D).
Then if auc A, be 4,, we have

Be-(ab) = pp(@)Be{t).
A simitar formula holds for 5.

The verification of this result is straightforward and is left to the reader.
Let op 1 Ay ~ KO(XY) be defined by 2p = 1pfp.

Then from Propositions (11,1} and (§1.2) we deduce
Prorosirion (11.3), With the notation of (11.2) we have

“p(ab) = ap(a)tp (),

and & simifar formula for of.

¥ we apply all the preceding discussion to the case when X is a point (aad P denotes
the trivial Spinfk)-bundle) we get maps

@t Ap—r KO(SY)
o AS— RS

Propasition (11.3) then yields the following corotlary, as a special case:

in the real case
in the complex case,

Corotrary (i1.4). The maps
214, — Y KO¥point)
LEY
& 1Ay — kz K~ ¥poiat)
are ring homomorphisms. -
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Now the rings 4, and A were explicitly determined in §6 (Theorems (6.9) and (6. ()3
On the other hand the additive structure of B, = ¥, KO~ (point) and 85 = ¥, K ~*(point)
was determined in [5], while their multiplicative structure was {essentially) given in [6].
These results may be summarized as foliows:

(1} Bi is the polynomial ring generated by an element x & £y corresponding 1o the
reduced Hopf bundle on Py(C) = §2;
(i) B, contains a poiynomial ring Zfy] with y € By, and y — x* under the complexi-
fication map B, — BS;
(i) Asa module over Z{], B, is freely generated by elements 1, g, b,z where ae B,
be By, z& By, subject to the relations 29 =10, 26 = (.
If we use Stiefel-Whitney classes then a simple calculation shows that
wyla®) # 0
where we regard o & K{$%), Thus we must have a* = b.
Consider now the ring homomorphism
@ AL — Bi.
It is immediaie from the definition of « that 2 (¢} gives the reduced Hopf bundle on S*,
Hence from {6.10) we deduce that «° is an isomorphism.
Consider next the ring homomorphism
a: Ay — B,
Because of the commutative diagram

the results on «° together with (6.11) and (i) above imply that
a{l) =71,
Similarly using (6.9) and (iii) above we get
oy = z.
It remains to consider (£} and ofé2). But as in the compilex case it is immediate that o)

is the reduced Hopf bundle on P (R) = S'. Since 4 is the unique non-zere element of B,
we must therefore have

«E) = a.
Using (6.9) and (i1}, (iti} above it follows that « is an isomorphism. Thus we have established:
Taeomes (11.5), The maps

a1 Ay~ T KO poinb)
nd ¥x0

o AL — ¥ K™¥pomt)
are ring ivomorphisms, e
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As remarked in the introduction this theorem shows clearly the intimate relation
between Clifford algebras and the periodicity theorems, It is to be hoped that a less com-
putational proof of (11.5) will eventually be found and that the theorem will then appear as
the foundation stone of K-theory.

We shall conclude this section by taking up again the relation between Clifford and
Grassmann algebras mentioned in §3. Let ¥ be a2 complex vector buadle over X, AV} its
Grassmann bundle, i.¢. the bundle whose fibre at x € X is the Grassmann algebra A{V,).
Let 7. ¥— X be the projection and consider the complex

Ay iAW) 2N AT —
where 4 is given by the exterior product:
dwy=vaAaw velV,, weA{V).
This is acyclic outside the zero-section and hence defines an element
Ay e R(XY)
On zhe_’other hand, if we give V' a Hermitian metric, and nse the homomorphism
{1 Uk — Spin(2k) k= dim,V
we obtain a_principal Spin“(2k)-bundle P over X, and hence a homomorphism
a5 A% — KX,
The re!ation;between a5 and y(Ay) is then given hy:
ProrosTioN (11.6). x(Ay) = e&({(%)).
Proof. Applying the construction at the end of 8§ For the inverse of
Ferly— Ly
to the complex A, we obtain a sequence
E={0—E S E,—0)
where
Egmn" AYDa"A 2@ .,
E =A@ ntA e .

v, =d_ 46,
{n fact we could equally well have faken
gy=4d,— 6,
in §5. In view of (5.10), (5.11} and the final remark of 55 this shows that
Ay = 25 (159

as required,
Remark. The multiplicative property of Grassmana algebras:
AV @ W)= A @ AW)
can be used directly to establish & product formula for ¥(A,). This corresponds of course
to {11.3),
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§12. The Thom isomorphism

We begin with some brief remarks on the Thom isomorphism for general cohomology
theories.

Let F be a generalized cohomology theory with products. Thus F¥(X) =Y Fi(X)isa
sraded anti-commutative ring with identity and F*(X, ¥} is a graded F*(X)-module.
Moreover the product must be compatible with the coboundary in the sense that

S(ab) = 8@y b +{—1)addb
where & = deg & and a, b belong to suitable F-groups.

In F"(S") we have z canonical element ¢” which corresponds to the identity element
1 = o® e Fopoint) = F°(5%) under suspension. F¥(S") is then 2 free module over
F#{point) generated by 5"

Suppose now that ¥ is a real vector bundie of dimension n over X. We choose a metri¢
in ¥ and introduce the pair (B(¥), S5(¥)) {or the Thom complex X"). For each point P& X
we coasider the inclusion

ip: P XV
and the induced homomorphism
it FX") = Feh).
Suppose now that ¥V is oriented, then for each P € X we have a well-defined suspension 1so-
morphism
8p 1 FPY— Fr(PY).
We et o} = Sp(1). We shall say that ¥'is Forieniable if there exists an elerrent py, € XYy
such that, for all Pe X,
15ty = 0.
A definite choice of such a yp will be called an F-orientation of ¥, Then we have the fol-
lowing general Thom isomerphism theorem:

Tueorem (12.1). Let ¥ be an Fuoriented bundle over X with ovientation class py. Then
FA(X%) is a free F*(Xymodude with generator py.

Proof. Multiplication by py defines a homomorphism of the Fspectral sequence of X
jnto the Fuspectral sequence of XV which is an jsomorphism on £; {the Thom isomorphism
for cohomology) and hence on £,,. Hence

a — iyl
gives an isomorphism F*(X) »F*(X7) as stated.t

Applying {12.1) to the special theories X, KO we obtaintf:

TaEores {12.2), Let ¥ be an oriented racl vector bundle of dimensior r over X. Then

() i n=0mod 2 and there is an elewent py € K(XY) whose restriction to K{P?) for

each P € X is the generator, then KX XY) is a free K*¥(X ynodule generated by 1,

T One can also use the Mayer-Victoris sequence instead of the spectral sequence,
1 Weuse K*, KO* to denote the sum of K2, K07 over the period {2, or 8) in distinction with X% which is
the surm over zll integers.
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(i) ¥ n=0mod8 and there is an element py € KO(X") whose restriction to each
KOPY) for each Pe X is the generator, then KOY(XY) is a free KOH(X)-module
generated by pp.

Remark., Since K° (point) & KO°(point) & Z these groups are generated by the identity

element of the ring. This element and its suspensions are what we mean by the generator.

Suppose now that ¥ has a Spin-structure, i.e., that we are given a principat Spin{r)-
bundle # and an isomorphism

VEPxgumR'
Then from §t1 we have a homemorphism
wpt Aa— KO(X").
Similarly if ¥ has a Spin“-structure, i.e. we are given a principal Spin‘{m)-bundle P and an
ispmorphism
V2P XgpinemR”
then we get a homomorphism
wh o AL KXY
In the real case assume # = 84 and in the complex case n = 2%, and put
By = ap[lkj
p = af((#)-
Then by the naturality of w;, o% and Theorem (11.1) we see that py., uf define X0 and X
orientations of ¥ and henee {12.2) gives:

TreoreM (12.3). () Let P be o Spin(8k)-bundle V=P x g1 0 R¥*. Then B (xVise
Jree KON X y-module generated by py; (i} Let P be a Spin(2k)-bundle, V= P x gy ca R
Then E*(X*) is a free K¥( X ymodule generated by g.

Remark. Yt Is easy to see, by considering the first differentials in the spectral sequence,
that the existence of a Spin (Spin°)-structure is necessary for KO{X)-orientability. Theorem
{12.3) shows that these conditions are also sufficient.

{12.3) together with {F1.3) shows that, for Spin bundles, we have & Thom jsemorphism
for KO and K with all the good formal properties. It is then easy to show that for Spin-
manifolds one can define a functorial homomorphism

fit KO¥(¥) - KO%(X) fiY—x,
and similarly for Spin®-manifolds in K-theory. This improves the results of [2].

for maps

§13. The spbere

The purpose of these next sections is to identify the generator of K’E?{X ") {for & V with
Spinor structure and dim = 0 mod 8) given in §12 with that given in [7]. Essentially we have
to study the sphere as a homogengous space of the spinor group. This actually leads to
simpler formulaz (Proposition (13.2)) for the characteristic map of the tangent bundle
than one gets from using the orthogenal groop.
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We recalf first the existence of an isomorphism ¢ : C,— €2, (Proposition (5.2)) and
we note that, on C2, ¢ coincides with the standard inchusion C, - Cyy (. We introduce
the following notation: K= Spintk+1), H = d(Pin(R)) = H® + H'. H® = ¢(Spinlk))
(where + here denotes disjoint sums of the two componeats).

S = ynit sph&[B in RitE
S+x§n{xk+120}, S—=S"ﬁ{xk+1S0}
SFlm 8 A ST,

We consider S as the orbit space of ¢,,, for the group K operating on R**! by the

representation p. Thus K/H® = $* and we have the principal A°-bundle

K =+ K[H"
Let K, =#n"(8.), K_ =#"%(5_). We shall give explicit trivializations of X, and K_,
and the identification will then give the ‘characteristic map’ of the sphere.

We parametrize S, by use of ‘polar co-ordinates’:

{(x, ) =Cost.6..y +Sint.x XESy 5, 05t <2
Nowdefineamap . : S, x H* = K, by
Box, t, BY = (—Cos 1/2 + Sin 1f2.x ¢, . RO,
Since
“pl{(—Cos 42 + Sin /2. xe,4 1 )H)ex 11
= {—Cos 2 + Siv £f2.xe, e+ {—Cos 1f2 + Sin 42 xer, )7 *
== { —Cos 12 + 8in 42 xe e s s
=Cost.g,q +Sint.x=01),
it foilows that 8. is an A% bundie isomorphisn.
Similarly we parametrize §_ by
(x, )= —Cosf.e ey +Sine.x X€S. ., O af2,
Note that for points of $,_; the two parametrizations agree (putting 7 = 7/2). Now define
amap f-:S. x H' <+ K_ by
B_{x, £, i) ={Cos {2 + Sin /2. xe, . DA"
Since
p((Cos 12 4 Sin 12 xe,, Y ey sy
= (Cos 1/2 + Sin 1/2.x%4 )(— € J(Cos /2 + Sin 1/2.xe,, )"}
= —(Cos ¢2 + 8in 4f2.%8,4 Y&y 1 = —Cos f.epq, + Sinf.x,
it follows that B_ is an HO-bundle jsomorphism.
Putting ¢ = #/2 above we pet
B.x, wf2, %) = (—Cos n/4 + Sin n/4. xe,. k"
B.(x, 72, k') = (Cos nf4 + Sin nf4.xe, , b,
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These are the same point of £y n K_ if
bt = —{Cos nfd - Sin /4. xe,, JR°
= X, PO
Thus we have a commutative diagram
]

Sy X H B K K

S xHI-—2 g ~K_

where
80x, B%) = (x, xe,.0 JO). 4y
Lesida (83.1). IF we regard H® as (leff) operating on both factors of S, x H" and
S_ x HY, then B, and p.. are comparible with left operation.
Proof (D) B.g(x, t, 1) = B.(g(x), 1, gk°)
== {—Cos 1f2 + Sin /2. gxg ™ *e, . Jgh®
=gf.{x, 1, %
where g€ H® and g(x) = p,..,(9).x = gxg™".
(i) B.glx,t, k') = B_(Cos 2 + Sin t/2.gxg™ e, Jah?
=gf_(x. 1, hY).
Since ¢(x) = xe,,, for x € R* formula (1) above can be rewritten
3(x, g3 = {x, xg) xe&R*, geSpinlk).
Summarizing our results therefore we get:
PrROPOSITION {13.2). The principal Spinfk}-bundle Spin(k + 1) — $* is fsomorphic to the
bundle obiained from the two bundles
S, x P’k — 5,
S. xPin'(k)— 5_
by the identification
(x, g} o+ (X, xg) for xe 81, g ePin’(L).
Moreover this isomorphism iy compatible with left multiplication by Spin(k).
Here Pin(k) = Spin(k) and Pin'(%) are the two components of Pin(k).

§1d, Spinor bundies
Let P° be a principal Spin(k)-bundle over X and put
P = P X goingey Pin'(K), Q= F°x spintey SPiR(k + 1)
T* = P %t qinpyS* = T u T_, where
T =P XgpuagySar T = P® XS
e Ty — X,  w_:T_— X the projections.
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Consider now the fwo commutative diagrams
: o
PO X gpino(Sa x PIRO()) —E—s P°

T, zs » X

where 2(p, 5, g} = pg, pe P, s€8 ., gePin'(k), i=0, 1.
These allow us to identify the two Spin(k) bundles occurring in the first column v.lrith
7% (P%) and x*(P7) respectively. Now because of the left compatibility in (13.2) we im-
mediately get
Provosition {14.1). The principal Spin(k)-bundle Q@ — T* is isomorphic to the bundle
obtained from the two bundles
% (PO} —s T, w2 (P —— T_
by the identification
(7, 5 @) —{p, 5, 59}
for se S5, g & Spin(k) and pe P°.
Now suppose that M = M°@ M' is a graded Cy-module. Then we have a natural
isomorphism
M* 2 Pial{k) X soimnM®-
Hence
p? xspin[kaMD = P? x Spin{k)Pinx(k) xSpin{k)Mo
2 PYx Sl,i,,(kJMri.
From (14.1) and this isomotphism we obtain:
PROPOSITION (14.2). The vector bundle Q g, M° over T* is isomorphic fo the bundie
obtained from the twe bundles
=¥ (P° xSpin{k)MD) — T,
by the identification
(o5, m}<—s(p, 5, 8m)  for  peP" sa$* ™, meM.
Note. Here we have identificd #5(P%) with P° x Sy, and z5{P? X 5,0M%) with
T3P} X pnu M ete.
et us consider now the construction of §11 which assigned to any graded C-module
A and any Spin(k)-bundle P an element apo( M) & KO(B(V), S(V)} where ¥ = P x Spin(k}R“'
This construction depended on the ‘difference bundle’ of §9. In our present case the spaces
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A, Xo, X, of §9 can be effectively replaced by 7%, 7, 7~ and we see from (14.2) (and the
fact that s* = —1 for s §,.;) that the bundle F of §9 i isormorphic to the bundle
Q X gpinm™ . Now from the split exact sequence of the pair (7%, T_) and the isomorphisms
KO(T*, T_) = KO(T,, T*"") = KOB(¥), S(V))
we obtain a patural projection
KO(TY) — KO{B(V), S(V)).
Then what we have shown may be stated as follows:

Teeores {14.3). Let P° be a principal Spin{k)-bundle, M a graded € -module,
o= P® x spingySpinfk + 1), Ve PO x Spin(k)er 7F= 0/Spin(k), E°=0Ox Spin[R)Ma,
p KO{TY > KO(BVY), S(¥) the nauwal projection, then

tpe{ M) = pE®).

If k=0mod$ and M is an irreducible (+I)»-module ther p{E°) is the element of
KO(B(V), S(})) used in [7] as the fundamental class. Thus (14.3) implies that this class
coincides with cur class ¢, For some purposes, such as the behaviour under our definition
of py is more canvenient. For others, such as computing the effect of representations, the
definition in [7] is better. (14.3) ¢nables us to switch irom one to the other,

The proof of (14.3) carries over without chanpe fo the complex case, Spin being
replaced by Spin° throughout.

§15, Geomeiric inferpretation of Clifiord modules

Consider the data of 311. Thus ¥ is a vector-bundle over X, C{}} the corresponding
Clifford bundle, and £ a graded real Clifford medule for ¥. The construction of ;- m that
section then depended op a particular geometric inferpretation of the pairing
{15.1} V@E!'—E°
induced by the C(¥)-structure on £. More precisely we passed from (15.1) to the family of
maps
(15.2) S(V)x EL > EY  xeX,
which describe a definite isomorphism along S(¥), of £%and E! lifted to B(), and so by the
difference construction a definite element x,(E) ¢ KO(B(V), S(V)).

There are two other geometric interpretations of {15.2) which we wilt discuss here
briefly. The first one leads to a rather uniform description of the bundles on stunted pro-
jective spaces, while the second one explains the relation between Clifford modulss and
the vector field problem.

A. The generalized y,.

Lzt ¥ be a Euclidean {real) vector bundle over X, S{¥) its unit sphere bundle. The
group Z, then acts on S(}) by the antipodal map, and we denote the projective bundle
S(¥)Z, by P(¥). The projection P(¥y— X will be denoted by #, and &(¥') shall stand for
the line bundle induced over P(¥) by the nontrivial representation of Z, on R*:

§V) = S(V) xR
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Consider now the data at the beginning of this section, in particular the inducad family
of maps:
S(V,) % Et— ES xeX,
We can clearly divide by Z, on the left due to the bilinearity of the inducing map. Thus we
obtain maps
(15.3) S(V) » g EL — ES xeX,
which may be interpreted directly as an explicit isomorphism
#V, B} 1 AV @ n*(E") - 2"(E%). .

We now let W < ¥V be a sub-bundle, and consider a graded C{#/)-module £, The bundles
EFY® =*E' and 7%E® then become explicitly isomorphic along P(¥) < P{)) by means of
G, E), and so determine a well-defined difference element »(¥, W)IE € KO(B(V), P(W)).

The linear extension of this construction now leads te a homomorphisin,

{15.4) 2V, W M(W) — KO(B(V), P(W)),
and an analogous homomorphism

15V, W) ME(W) — K(P(V), PIW))
in the complex case. (15.4) is the desired generalization of the z, in §11. Before jnstifying
this assertion, we remark that (¥, W) clearly vanishes on those ({#)-modules which are
restrictions of C{F)-maodules. Hence if we set A(V, ) equal to the cokernel of the restric-
tion map M} M(3#), then x(¥, W) induces a homomorphism
(15.5) AV, W) = KO(P(Y), PUV)).

To see that the operation (¥, ¥) indeed generalizes ocur earlier ¥, one may proceed as
follows: Let ¥ = W@ 1, and let £ B{(#)—= P(V) be the fibre map which sends we W,
into the line spanned by {w, (I —Iw§®) in P(¥). Thus f induces an jsomorphism of
B YS  with PV ) PI). Now one just checks that the following diagram is communtative:

M) EEL L KOUP(Y), POW))
(556) i o
MW —25 s KO(B(W), S(W)).

It would be possible to extend a considerable portion of our work on ¥, to (W, ¥),
but this does not seem justified by any application at present. However we wish to draw
attention o the fotlowing property of x(V, ¥).

Proecsimion (13.7). Let X be a point. Thenr the sequence
(15.8) M(V) s M(W) 2255 KO(P(VIPOF)) — 0
is exact, A similar result holds in the complex case.

In other words, over a point, the relation A(V, W) % KO{P(V)PIW)) holds. As we
gave a complete survey of the groups M, and their inclusions in §5, this proposition gives
the desired uniform description of the X {and K) of a stunted real prajective space. For
example, taking dim V = K, dim ¥ == 1, we obtain

KO(Pesi) & KO,y PO 2 2,
where 4, s the ktli. Radon-Hurwitz numaber.
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We know of no really satisfactory proof of propesition (15.7), primarily because we
know of no pood algebraic description of the higher K0 of these spaces. On the other

hand it is easy to show that ACF, W) — KO{P(V), P(W)) is onte. For this purpose consider
the diagram associated with a triple of vector-spaces We Ve V¥

0 0
+

159 KO(P(V), P(W)) — KO(P(V), P(W)) — KO(P(V), P(V")

Qe a(V, W) « AW — AW V)

whose horizontal rows are exact; the upper one by the exact sequence of a triple, the lower
one by the definition of the 4-groups, We know, by (15.6), that x(¥, W) is a bijection if
dim ¥ — dim W < 1. Hence, arguing by induction on dim ¥ - dim W we may assure that
the vertical homomorphisms of (15.9) are also exact. But then the middle homomorphism
must be onto, proving the assertion for the next higher value of dim W — dim v,

The proof of proposition (15.7) may now be completed either by obtaining & lower
bound for the groups in question from the speciral sequence of KO-theory, or by a detailed
analysis of the sequence (15.9), which unfortunately involves several special cases. In view
of the fact that a computation of KO(P(k)/P() is now atready in the literature [1] we will
not pursue this argument further here,

B. Relation with the vector-field problem

We again consider the pairing

V x E® — E*
of §11, but now focus our attention on the induced maps:
(15.10) Vo %, MEN - E xeX,

Note that this is only relevant if E is a real moduie,

The geometric interpretation of (15.10) is clear: if 7 : P(E%) — X is the projective
bundle of £° over X, and ¢ is the canonical line bundie over P(E"), then (15.10) deseribes a
definite injection:

{15.1D) w(V, E): 2*V @ & — n*Eb,

It is possible to give (35.11) a more peometric setting if S{V) admiis a section, 5, One
may then use w(V, E)to ‘trivialize® a certain part of the ‘tangent bundle aloag the fibres’ of
P(E®), Recali first that this bundie, which we will denote by FE®), is described in the fol-
lowing manner. The bundle & = &(E®) is canonically embedded in =¥ E®), whence THEYE
is well defined, Then we have
(15.12) THLE®) = (W ENH B &,

With this understood, let 1 be the quotient of ¥ by the line bundle determined by s:

IR B (G |
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and let 5, : E® - E* be the isomorphism induced by muliplication by s(x) in E9. Itis then
quite easy to check that the homomorphism sy t.(F, B} m*V & ¢ - n*E° induces an
injection

4V ® & - n*EYE
Tensoring this homomorphism with £, we obtain the desired injection:
(15.13) (s, V. E): eV’ — THE").

Let us now again restrict the whole situation to a point. Thenif dim V = &, dim E®=m,
17 will be a trivial bundle of dimension &k — 1, and THE Y will be the tangent-bundle of pro-
jective (m -— 1)-space P,y

Applying the results of §5 we conclude that the following proposition is valid:

ProposTioN (15.14). Let m = Aa, where a, Is the kth, Radon-Hurwitz number. Then
the tangent bundle of P, (and hence of §,._1) contains a (fk — 1)-dimensional triviad bundle.

The work of Adams [1], gives the converse of this proposition: if the tangent bundle
of §,,_, contains a trivial {r — 1)-bundle, thenm = Aa,.

We remark in closing that on the other hand the gencralized vector-field question Is
still open. This guestion is: et & be the line bundie over P, then what is the maximum
dimension of a trivial bundle in g, m 3 n. Thus the vector field problem solves this ques-
tion for 7 = n. The generat solution would, by virtue of the work of M. Hirsch, give the
most economical immersions of P, in Euclidean space.
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1. Introduction

Throughout this paper M shall dencte a compact conneeied Riemann
manifold of ciass C~. Let v = (P, @; k) be the triple consisting of two
points F and Q on M together with a homotopy class h of eurves joining
Pto Q. We will refer to such triples as base points on M.

Corresponding to v=(P,Q; k) we define M~ to be the set of all geodesics
of mintmal length which join P to € and are contained in &.

There is an obvious map of the suspension of M into A cne merely
assigns to the pair (s, £), se M™ £e{0, 1], the point or s which divides s
in the ratio £ to 1 — £. (For fixed small £ > {, this map is 1 to 1 on M>
and serves to define a topology on M*.) The induced homomorphism
of m{M*) into x, (M) will be denoted hy v, .

Let s be an arbitrary geodesic on M from P to @. The index of s,
denoted by A\(s}, is the properly counted sum of the eonjugate points of
P in the interior of s. We write {v| for the fivst positive integer which
oceurs as the index of some geodesic from P to @ inthe elass i, In
terms of these notions our principal resuilt is the following theorem.

THEOREM 1. Let M be a symmetric space. Then for any base point
v on M, M is again o symmetric space. Further, v, 18 onto in positive
dimensions less than [v] and is one to one in positive dimensions less
than [vi— 1. Thus:

M
(1.1) ml M) = 7o (M) O<k<]v]~1.
As an example, let M be the n-sphere, # = 2, and let v=(P, Q) consist

of two antipodes. (Beeause S* is simply connected the class k is unique.)
Then M- is the (n — 1)-sphere, and v, 7 (S$**) — 7,.,(S") coincides with
the usual suspension homomorphism. The integers which oceur as indexes
of geodesics joining P to @, are seen to form the set O, 2{n—1), 4{n—1),
ete., Hence |v] = 2(n ~ 1), and (1.1) yields the Freudenthal suspension
theorem. If v = (P, @) with @ not the antipode of P, then M* is a single
point, while {v| is seen to be (= — 1). In that case (1.1) merely implies
that 7,(S") = 0 for 0 << E g n — 2,

At first glance the evaluation of |v]| may seem a formidable task.

* The anthor holds an A. P, Sloan Fellowship.
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However on a symmetric space (see section §) every pair of points (P, Q}
is contained in a maximal flat peodesic torus T, and every index A\(s)
already oceurs az the index of a geodesic joining Pto @ on 7. Further,
for such a geodesic, \(s) is equal to the number of times s crosses the
*‘gingular” subtori of T. The disposition of these singular tori iz well
known. The computation of | v is therefore a routine matter.

Theorem I yields new results in the following manner: In view of the
fact that with M the space 8 is again symmetric, one may repeat the
procedure of passing from M to M>. To facilitate the use of this iteration
we will agree to call a sequence of gymmetric spaces + - - M, — M, — M- - -
a v-sequence if at each step M,=M!,, for some appropriate base point
v in M,... For example, the sequence ---5%— S™' §#*2... i3 a
v-gequencs,

TaroreM II. The following are three v-sequences with the value of | v
mdicaied ot each step.

(12)  UEn)Um) x Uy~ Ugzny
(1.3)  0@EmIom) x 0@ ~25 UEeno@er
P2a4-1

24 Sp@n)/U2n) 233 Sp(2n)
(1.4)  Sp(2ny/Sp(n) » Sp(n) 23 Uan)Sp(2n)

222 508U (4n) 222 S0(8n)
Here we hove used the standard notations and inclusions.

Notice that jvi tends o o= with = at each step of these sequences. On
the other hand it is well known that for each of the symmetrie gpaces
involved, =, becomes independent of # » k. (We will indicate these
stable values of . by dropping the sabscript » and using bold face type.
For example, #,(3/0) = n {Un)}/O(n)} for n > k.) Finally, recall that
in this nofation 7 {U) = 7. (U/Ux U}, {0} = 7, {0/0x 0} and 7 (Sp)=
T (Sp/Spx8p)(k =0, 1, «++), because in each instance the space on
_the right hand side represents the univergal hase space of the group in
gquestion. Combining these three observations with Theorem I, we
obtain the following corcllary to Theorem II.

CoROLLARY. The stable homotopy of the classical groups is periodic:
T{U} = 7, oU)

{1.5} T Q) = 7. Sp)
ﬂk(Sp} = 7":&-1-4(0)
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The groaps 7,(U) are 0, Z for k = 0, 1. Henee 0, Z is the period of
7(U). In the case of Sp, one has the groups 0, 0, WL Z ferk=1901,23
respectively. For O these first four groups are Z,2.G,Z. Hence the
peried of 7, (0) is Z.,2,0,%,0,0,0, Z. Applying (1.3) and (1.4) one
also obtains the stable homotopy of the other symmetrie spaces. Thus:;

(1.6) z8p/U) = 7. (Sp) k=0,1,2-
‘_’(U"JO} = Ty {SpJ from 0, 1. 2- .
while
1.7 7O/} = =, {0) 0L 2
‘TJ‘(U;SP) = :&'-!-'.'(0} ko= 0,1, 8-

(In the third formula we have replaced SO/U by 0/U to obtain the correct
vahie of 7))

The formulas (1.5) to (1.7} were already announced in [4}. The unitary
groups were discnssed by a different method in (8], where the unstable
group 7., {U(n)} was also evaluated as ZinlZ.

The proof of Theorem I is summarized in this fashion: Let v = (P, §; k)
be a base point, and let £, be the space of path from P to @ or A in
the class 4. We then construct 2 CW-model for £, M which is of the form
K = M Ue,Ue, ete., where the ¢; are cells of dimension greater than or
equal to { 1.

The existence of such a X follows readily from the Morse theory. For
instance the deformations given in Seifert-Threlfall (10, pp. 34, 285] and
can be interpreted us follows: Suppose that a smooth function f defined
on a compact manifold N has g single nondegenerate critical point p, of
index % in the range a 5750, a < fip)<b. Let N* respectively N* be
the sets < ¢ and f 5 bon N. The assertion is, that then N* iz obtained
irom N" by attaching a k-cell, ¢, to N« In symbols, N* = Neyje,. (This
{:g;lt} of view is also emphasized in notes by Pitcher [9], and R. Thom

To prove our theorem this interpretation of the Morse theory is first
extended In two ways:

(A) The loopspace problem is reduced to the manifald problem,
{B} The notion of nordegeneracy is extended.
Thereafter it is shown that on 2 symmetric space Lhe critical sets in the
loopspuce ure nondegenerate for every choice of a base poinl.
The step (4) Is already essentially contained in Morse |8}; while the
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notion of a nondegenerate eritical manifold (step B} was intreduced in
(2].

The final step follows easily from the results of 1§|.

It is elear from this rough plan of the proof that considerable reviewing
of more or less known material will be necessary to make the account
intelligible. Because the theory of a nondegenerate funetion on & smooth
manifold is by rnow well known, while some mystery still seems to hang
over Morse's extension of this theory to loop spaces, we will review step
(A) in greater detail than the other two steps,

2. Review of the Morse theory. A reduction thecrem

Let g = (P, @) be any two poinis of M. The space of paths from P 1o
@ on M is denoted by .M and is defined ag follows:

Dernurion 2.1, The poinis of Q.M are the piecewise differentiable
maps ¢ [0,1]—» M which are parametrized proportionally to arc length,
take O inio P, and map 1 onto Q. The distance between two points ¢ and
¢ wn {3, M 13 given by:

oufe, ¢7) = maX,epy o{elt), W) + e} ~ J(N)]
where © s the metric on M, and J dencies the length function on . M.

The advantage of this definition of Q.M is that J{¢), the length of ¢, is
a continuous function of £, M. On the other hand €1, M is not complete.

If ¢ is a real number, the subset of 02,8 on which J < «, is denoted by
000, and is referred to as a half space of Q.M. Buch a half space is
ealled regular if Q48 contains no geedesic of length a.

Let F be a continuous real valued function on a compact manifold N.
The set {x e N; F(x)<a} will be denoted by FoN, or just N® if the fune-
tion is understood, and is algo called a half-space for ¥ on N. The half-
space is called regular if F is of clags C~ in some neighborhood of F“N,
and if F' has no critical points at the level a. {In other words dF(x)=0if
Flz) = a.)

The aim of this section is to show that every regular half space of
.M, is of the same homotopy type as a regular half-space of a
manifold.

It turns out that if one steers a middle course between Morse and
Seifert and Threlfall such a ‘“model’’ for QoM is easily constructed. We
have just defined QM according to Seifert and Threlfall; for the rest

t The zpplications given in [2] are false, as was pointed cut to me by A 5. Schwartz
[L1}. & distressingly simple example shows that the assertion {2, p. 253) 10 the effect

that V.. is a manifold is wrong. This mistake invalidates the computations for the
circular connectivities of the n-sphere.
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we follow, in spirit af least, Morse’s account of thirty years ago.
Let' 7 M*~» B, be the function from the n' cartesian product of M
with itself, which assigns to () = (z,, -- -y 2,) the number:

rp_u(;c} = Pz(Pr 9-;1) 4 pg{ﬁ?n ﬁ:} + " {32(3‘?,:, Q) .
were p(z, i} denotes the distance between = and y on M, as before,
R‘EDUCTION THEOREM . Let ¢ be a positive number. Then there exists
ar vnieger w such that QUM is of the same homotopy tyve as the half
space 9. M" of ¢, on M*, where b = a*fn + 1. Thus,
2.1 Q80 = b M

The statement (2.1} is new, although guite implicit in Morse’s aceount.
I-f'.e, of course, did not have a definition of €2, M on which the length fune-
tion was continucus. A slightly surprising technical phenomenon is that
the function ¢, alone suffices to define 2 model for QfM. In Morse's
original account, he essentially shows that 0pM is of the same homotopy
type as the subset of M™ characterized by oz, v.,) < 5 E:Z",o(m, Tyse)
% a. (Herez,=F; z,,, = Q), "

PrOOF oF (2.1). There exists & number # > 0 such that two points of
M with distance less than p have a unique shortest geodesic Joining
f:hem. This shortest geodesic then varies smoothly with the end points
In partieular oz, ) is a C~ function of z and ¥ a8 long as oz, %) < ﬁr
Suppose now that = is chosen so large that: , .

(2.4) VR FILT .

Under this condition on » we define maps o QM > oM and B: pLl®
—+%).;‘,M which constitute a homotopy equivalence. (For convenience we
write ¢ for ¢, and denote @2 M* by M2 in the sequel,)

DEFINITION oF &, Let ce DEM. Then a(c)e M* is to be the point:
(E(C) = {C(t,}, C(t:,), Tty c(tn)} ; ts —_ 1':,-"?% —+ 1;

Qlearly «is & continuous function from QLM to M. Next, plac) =
2 a0 e(t), e(t,)}. Each term of this sum is Z{a/m +17 because ¢ is
parametrized proportionately to arc-length. Hernce Plac)lan+1)=p
The map « therefore take values in M e B '

DEFINITION OF 3. If 2 = (%), ++-, 1) is & point of ML = @*M", then each

gf the numbers,_ {o(P, :1:1),_ @, B) -« 0l @)} is less than a/\'n+1,
ence less than §. The unique geodesics jomming consecutive points of the
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array P, &, «++, 2y, @ 8Y€ therefore well defined and combine to vield a
curve, ¢, in M. By the Cauchy inequality the length of ¢ does not
exceed a. The correspondence x — ¢ defines the map 2.

LEMMA 2.1. There exists a homotopy D,.0<t <1 of QM on itself
such that D, is the identity, and Dy, = Bo‘a. _

The needr:d deformation is given explicitly in [10, p. 51} 01:1e' c_leforrils
the segment of ¢ between ; and t,.,, into the geodesic chord joining e(f.)
£0 ¢(t4,). The intermediate curves are geodesic segments from ¢(&)
eft, 4 ) followed by the original curve from ¢, + & to £4:

LemMa 2.2. There exists ¢ homotopy A};O <tgl, of Mion itself,
A, ig the identity, and, A, = & o 5. '

31&5-’;;1;: a}imgtopy is to be found in Morse [8, p. 217]. Ifze M{;,. ﬁ{x’) is ?
polygonal curve joining Pto Q. Let ¢ [0,1]— M the paramezifat;;gntge
fA{z) which iz proportional to arc length. Let0 < a,, <+--, an___T,h o
pre-images under ¢ of the points 2 = {z, ", :z:,,} on ﬁ{x?, e {a,
then correspond to the parameter values of the original vertices on ;:?(9:1}.
The composition a o 3 takes » into {elt)s eftd,- ot )] w.here“t;_tz{n-[-l’.}
Hence if @,=t;, then the aoS{z)=%, and what Es needed is & ‘‘universa .
homotopy which takes the points &, into the le!]:tS t,. The natural way ©
constructing this homotepy is to digpateh a, on its way to i, a,tla.t linear
speed proportional to the distance to be traversed. In formulas, le

a; =0
al=afl — )+ 78, tstsht=1 -0
ahe =1

The homotpy A, assigns to 2 the point {e(al)} Whexe. ¢ = B{w). Clearly the
a. vary continuously with z for & & MY, sothat A, ’13 a proper l?omotopy.
I‘E remains to be checked that A, keeps M% invariant. For this purpose
it iz suffictent to prove that Pax) S el 027 < 1. e
Let J{z) be the length of B(z), and set &, = Jixy{a; — @2, u

STeR s, = Jw), while 3 gt gp(z). We also write {z7} for the co-
il i ¥ =l
ordinates A%, Then:

o, 8.} S 8ot — 7) + T )r+1),

because Sz} is parametrized proportionally to arc length. IHence:
Ae) € T8 - 1) A TR

After expanding, the right hand side Is seen to equal
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@) — 2r(ple) — {S(@)n + 13) + (9} — {(JH@)n + 1})

By the Cauchy inequality @(z) — JHz)in + 1 = 0. Hence in the range
0= 7 = 1, »(Az) = @(x). This completes the proof of the lemma, and
hence of (2.1).

The statement {2.1) has a refinement which will be formulated next.
Its purpose is to relate certain geometric properties of the geodesics in
020 with the eritical points of ¢ on M4, Recall first the notion of the
wndex of @ eritrcal point. If pis a critical point of the smooth function
e on the manifold N, the Hessian of ¢, denoted by H,p, iz the bilinear
symmetric function on the tangent space N, of N at », which in terms
of loeal coordinates is defined by H,w(8/0x.,8/0x,) = 0'pfdx,0%s. The
index of p as a critical point of ¢ is by definition the dimension of a
maximal subspace of N, on which the Hessian is negative definite. This
integer iz denoted by A(p). Finally we briefly review the notion of a
conjugate point on a geodesic. For details the reader is referred to [8]
and [6].

If s(ex, £) is & smooth family of geodesies, depending on & parameter «,
then the vector field @s(a, £)/Pa),., along s(0, t) is called a J-field along
g == 8(0, t}. The totality of such vector fields along s, forms a vector space
J. over the real numbers. If the length of s is less than p, every Vin J;
is uniquely determined by its values atl the end-points of 2. In general, if
P and @ are two points of 5, @ is called a conjugate point of P (along )
of multiplicity & if the subspace of J,, consisting of the fields which
vanish at both P and @, is of dimension precisely k.

REDUCTION THBOREM If. The homolopy equivalence «: (1eM — ML
congtructed wn the proof of (2.1) has the following properties:

(2.2) Under « the geodesics of Q:M are mapped one to one onto the
critical points of @ on ML,

(2.3) If s 45 @ geodesics of 25M and p i s fémage wnder «, then:

The dimension of the nullspace of Hp equals the multiplicity of @ as
a congugate point of Palong s.

The index A {p) 1s equal to the number (counted with multinlicitics)
of conjugate points of P in the interior of s.

Except for a minor technicality, (2.2) and (2.3) are the content of
Morse's index theorem. See {8, p. 91]. The technicality in question is
the following one. Let 4+ be the function AP, z) + (&, %) + ++ +
Pz, Q). This function is smooth provided that no two consecutive co-
ordinates coincide. Thus, except in a trivial case, the function 4 is
smooth near the point p of (2.8), and, as will be shown in a moment, p is
also a critical point of . If in {2.3) we replace \(») by r.(p) we obtain
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the statement of Morse. Note however that (2.2} with « replaced by +
is not true. Indeed, the critical sets of + are cells obtained by sliding
the vertices along a given geodesic.

To prove our theorem it is therefore suffieient to establish (2.2) and the
equality of (@) with A (p).

PrRoOOF OF (2.2). If s i3 2 geodesic segment of QM then 5o w(s) =s.
Henee o imbeds this set of curves in M:, and it remazins to identify
the eritieal points of 7 on this set. Let x¢ M®, let X be a tangent vector
to M™ at », and consider the derivative X of ¢ in the direction X. The
point % is critical if and only if Xoo = 0 for all X in the tangent space
at . Suppose that = has the coordinates (%,, ++, 2,) and that X has the
corresponding components (X, - -+, X,) in the natural product structure
of the tangent space to M™ at 2. Let s, denote the geodesic segment
from w, t¢ ©.+,, where we now set &, = P, ©,., = @, and let §}, respectively
£% be the unit tangent vector of s; at z.., and z,. By the well known
first variation formula:

K+ P80 o) = 24| {80 Xow) — 88D

where <, > denotes the inner prodact of the Riemannian struecture, and
} &, | denates the length of s, one obtains the expression:

Xp =210 818 — Isia 180X >

The components X; of X are independent. Hence Xy = 0 for all X if
and only if 8l =80 sl =lss, ;=1 ---,4—1. In other words z
is 2 critical point if and only if 3{z) is a geodesic, and a o 8(x) = z. This
completes the proof of (2.2).

Proor oF (2.3) Let A be the tangent space % By varving the vertices
of p along s, we single cut a subspace A% of A on which H,» is clearly
positive definite, Ii therefore suffices to study the restriction of H,p to
a suitable complement of 4% in A. Suech 5 complement is furnished by
the elements X = {X,} in 4 with sach X, perpendicular to s. Let this
complermnent be denoted by 4% and suppose X, Ye A% For each seg-
ment s, chooge J-fields U and V.. so that at the end points 8, U, coineides
with X;_, and X, while V, coincides with ¥,_, and ¥.. We write this
condition in the form Uf=X,,; Ul = X,, ete. Because |s;} < g, the U,
¥, are uniquely determined by X and ¥. Now by the second variation
formula,

Hp(X, ¥} = kAU — AU, V)

where AU, denotes the covariant derivative of U/, along s, and % is equal
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to (2/n+1) x length of 8{z). For the function +» we obtain similiarly the
expresgion

H?‘#(X: Y) = E(ﬁU: —_ AU,'“, V;)

Thus on A* these two Hessians differ only by a positive factor. On the
complementary subspace H,y» vanishes, Hence ALp) = N(p) as was to
be shown.

REMARX. These formulas immediately prove the first part of {2.8).
Indeed, 2 vector X is in the null space of H,» if and only if the J-fields
U; along s, fit together to form a global J-field along & which vanishes at
both Pand @. In this manner Morse obtains the formula for the null
space of H,p. Concerning the index formuls, let me just remark that
Morse obtains it by deforming Q along s into P, and observing that the
index form H does not change during this deformation execept when @
passes through conjugate points of P. At such points the index is
shown to decrease by precisely the multiplicity of the con jugate point,

The two reduction theorems complete cur original program of assigning
to every regular haif space of Q¢M a regular half space of a compact
manifold which is of the same homotopy type. {The fact that regularity
15 preserved under o follows from (2.2)). We will eall the set M2 con-
strueted in this section a model for Q¢M. If v = (P, Q: k) is & base point,
2. M denotes the component of & in Q.M and the image of =M under o
will be called a model for Q¢M. It is clear that the reduction theorem
holds equally well in this new setting.

3. Review of the Morse Theory. The nondegenerate case

The elassification of critical pointg according to index and nullity has
Fopological implications which are usually expressed by the Morse
inequalities. Actually however this “‘homelogy formulation™ iz proved
by homotopy arguments. It is better therefore to state these implications
in the language of CW-complexes {18]. In this manner homology con-
sequences are easily accessible while the homotopy implications are not
lost. (See [9] and [12].)

DEFmNITION 3.1. (See |21.) Let V be o smooth connected submanifold
of the regular half space N* = SN, Such a manifold is ecalled o
nondegenerate critical manifold of f on N° if:

(3.1) Each point of V is a eritical point of f.

3(3.2) For any pe V, the nullspace of H,f is the tangent space of V.
at p.
An immediate consequence of (3.2) is that A (p) is 2 constant on V.
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This integer is the index of V, and is writien »,(V). If V reduces to a
point, H,f is non-singular by the condition (3.2). The present notion
therefore generslizes the classical definition of a nondegenerate critical
point.

Let V be a nondegenerate critical manifold of fon N. We define the
negotive bundle, &, over V in the following manner,

Let a Riemannian structure be defined on N. At each point pe V the
form H,f then uniquely determines a linear self-adjoint transformation
T, on the tangent space of N at p, by the formula,

(3.2) STX, V> = H (X, Y) X, YeN,.

These transformations combine to define a linear endomorphism, 7, of
the tangent space to N along V. By condition (3.2) the kernel of 7 is
precisely the tangent space to V. Thus 1 is an automorphism of the
narmal bundle of V' in N.

Now let £, be the subbundle of this normal bundle which is spanned
by the negative eigendirections of 7. Thus the fiber of £, at pe V is
spanned by the normal vectors to Vat p, for which 7,-Y =AY, x» < 0.
The fiber of £, therefore has dimension A (V). If », (V)=0, we set &, equal
to V. The bundle &, is indeperdent of the Riemannian structure used.

Finally, reeall the notion of attaching a vector bundle £, to a space YV
to form the space ¥ U £.

In general if e A-+7 i8 2 map of a subset Ac X one forms the space
Y U. X by identfying o ¢ A € X with a{e)eY in the disjoint union Y with
X.

This attaching construction has the following elementary properties:

(3.4) The homotopy type of ¥ {J, X depends only on the homoicpy
type of a.

(3.5) If(X,, 4)is 2 deformation retract of (X, 4) and if a,=w |4,
then ¥ U, X, is of the same homotopy type as YU .X.

When X is an n-cell ¢,, and A is the bounding sphere of ¢,, Y i, e, 18
referred to as ¥ with the cell ¢, attached. If £1is an orthogonal #-plane
bundle, we form the space ¥ UE, by taking, in the above procedure, X
equal to the set D; of vectors of length = 1 and setting A equal to
S; = 8D In this case we speak of ¥ with £ attached, and if & is not
explicitly in evidence just use the notation ¥ U1 & If £is a Q-dimensional
vector-bindle ¥ U £ stands for the disjoint union of Y with the base-
space of &,

With this notstion and terminology understood, the principal result of
the nondegenerate Morse theory can be stated zs follows:
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THEOREM 111, Suppose that N* C N° are two regular half-spaces of
the function § on the compuact manifold N.

(3.6) If f hasg no eriticel point in the range ¢ < f < b then N¢ iz o
deformation retraet of N°.

(3.7y If f has o single nondegenerate critical manifold Vin the range
a5 f 5 b, then N* 13 of the same homotopy type as N* with the negative
bundie of f along V attached :

NP = N¢ J &,
where £, s the negative bundle of f along V.
Immediate consequences in homotopy, [18], are:

COROLLARY 1. Under the assumptions of (3.7):

{3.8) N =NeiJe t) e e,
where the cells ¢, 1 =1, ---, 3, have dimension 2 (V). In particular,
(3.9) AN, N9y =0 for0 = v <NMV).

Using execision and Poincaré duality {3.2) implies:
CoroLLARY 2. Under the assumptions of (3.7)

(3.10) HAN®, N G) = Hi¢y; G} =HMV; G} A= AV

Here the subscript ¢ denotes compact cohomelogy, and by G’ we mean the
tensor of the coeffictents GG by the orientation sheaf of B,

REMARKS. In [2] we derived (3.10) with G specialized to Z, In this
paper we will need only (3.9) but it seemed to me that (3.7) summarizes
the sitnation better than any of the other versions. Remark that (3.10)
implies (3.9} if N* is assumed to be simply comneeted. On the other hand
{2.3) yields (3.9} without this froublesome hypothesis.

The restriction that V be the only critical set of f in the range from
¢ to b is not essential. If all the critical sets are nondegenerate, they are
necessarily finite in number, so that i we denote them by V' i =1--.58
then Theorem III is easily modified to yield the formula

Nem= N U g U - Uéy,.

If N¥is triangnlated, the attaching map of cell ¢, can be deformed
imto the (dim ¢, — 1)-skeleton of N°, In this way N* becomss a CW-
complex.

The case when V is a poini, p, is completely treated in [10]. The
present extension is best summarized by saying that what is done for a
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neighborhood of » in [10] can equally well be done in 2 normal neigh-
horheod of Vin the present case. On each fiber of such a2 neighborhood
one encounters the nondegenerate critical point problem.

PrOOF OF 8.6. Let N? be endowed with a Riemann sirgeture and
denote the gradient of f corresponding to this strueture by vf. If
pe N* — N°, I, shall denote the integral curve of —wvf through pin its
natural parameter. Because df #0 on this set L, is well defined. Further
because N? — N* is compact, | UF! > & > 0 on this set. Hence each L,
intersects F-'(e) at some point, say A(p), and the function 1 — k(p)
defines f-(a) as a retract of N* — N*. By assigning to p the point h.(p)
on L, which divides the segment from p to 2(p) in the ratic 1: 11, f'(a)
is seen to be a deformation retract N* — N*, Hence (3.6) is true.

NoTe. The eritical values of f form z closed set, Hence N*"isagaina
regular half-space of f when ¢ > 0 is small enough. Using this additional
space it is easily seen that under the conditions of (3.6} N® and N® are in
fact homeomerphic.

PrOOF OF 8.7. We may assume that /{1 )=0, and that f has no eriti-
cal points in the range [(—g, 0); (0, &}]. Tt is also sufficient to prove
that under these conditions Nt = N~ U &, for some 0 < & < &,

We have already defined £=¢, as the negative bundle of f along V.
Let £* be the negative bundle of funetion — f along V. Then, c¢learly,
the normal bundie n of Vin N iz the divect sum £* with £.

We let m: % — & be the natural projection. The length of a veetor
X g nis denoted by | X| and the function X — | X |* is denoted by ¢.

Let pr v~~N be the exponential map. Thiz map is a homeomorphism in
the vieinity of V included in » as the zero erogs-section. Thus o induced
a Riemann structure (,) on this vicinity. The function fop will he
donoted by £..

The condition that V is a nondegnerate critical manif.1d of f clearly
implies that the function f,. restricted to any fiber of » has & non-
degenerate eritical point. More precisely the following is true:

(8.12) The function f,., restricted to any fiber of £*,[£], hasa non-
degenerate minimum [maximum] at 0.

An easy computation new vields the following conseguence:

(8.18) The function (df,, d®), restricted to any fiber of £*[£] has a
non-degenerate minimum [maximomj at 0.

The geometric interpretation of this remark is in turn :

(3.14) Tf £ >0 is small enough the sef f, £ 4 on a fiber of £* i star-
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shaped with respect to 0, and therefore linearly contractible,

(3.18) If g > 0 is small enough, the gradient of —f, points out of the
set (X} = #, at points with @(X) = p, on any fiber of &,
Now, let X be the subset defined by:

(3.16) X=X epifdX)SsvonlX) 24 .

Then we can as 4 consequence of (3.14) and (3.15), find positive numbers
¢ and p with the following properties:

{a) We have g < &,

(b} The map gisa homeomorphism on X[

{¢) 1 A: C X! is the subset of X en which o n{X) = g, then the
pair (X2 N £7, AL N ) is a deformation vetract of (Xi, 4. )

(d) The gradient of —f Doinis out of the set o(X:) at the points of
AL ]

Assume in the sequel that ¢, ¢z have been chosen in the above manner.
Also let ¥:= N—= p(X). From (b) we conclude that N'= YiU. X
with attaching map a = @1 Al From (¢} it follows that Ne= ¥i U &
(Clearly the pair (DI, S) is equivalent to the pair (XN E AL NE))
Finally, from (d) we conclude that at the boundary points of Y; the
gradient — ¥y points inward. Further there are no points with Vf = 0
on this set in the range — ¢ < f, in view of {a). Hence N-t ig a defor-
mation retract of ¥: by the argument used in the proof of (8.6). Thus
N iz of the same homotopy type as N7¢ 1J £ as was 0 be shown.

REMARKS ON (3.8). This result follows from (3.7). One triangulates V
and uses the preimages of these cells under the map Dy — Vas the cells
2.

{ The following is a different argument which proves (3.8) under the
weaker hypothesis that (3.7) holds if Visa point. Let ¢ be a function on
¥ which has only nondegenerate critical points en V. Extend g toa func-
tion ¢ on a normal neighberhood, B, of V in N by making § constan{
along the fibers, F, of B. Finally smooth § out to O inside a slightly
bigger normal neighborhood. There results a C= function § on M. Novi
consider the function f = f + &, with ¢ > 0. For ¢ sufficiently small f
will have only nondegenerate critical points in the range @ < f < b, and
these will be precisely the critical points of g on V. Note that this part
of the argument holds without the nondegeneracy hypothesis. All that is
needed is that V be an isolated critical manifold. However, under such a
general condition nothing can be said @ priors about the indexes of the
critical points of f. Under the nondegeneracy condition, H,f and H.g
have complementary nuilspaces at all critical points of f. Hence the
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indexes add, and are therefore ?tmf(V)_. .
We elose this section with the following easy corcilary of Theorem 1,

corregponding to the case A{V)y=0,1e. when &£-=V.

ConoLLARY 3. Let fbea smooth fumtféfm on th‘e compact mantfold ﬂ:
Assume that the eritical sel of f @Onmsts‘ entirely of ﬁw@dege;w?iit Z
eritical manifolds. Let M, be the set on wh:wh f takes (m'zjts ;1 sol -
minimum, and let } £ 1 denote the smallest index of the cm.tw?, p:mh.
of Fon M- M, Then M iz obtained from My by succ‘fasswlrzly attae
ing cells of dimension 7o less then | F1. Thus: M = M, e u - Ues

dime; = { fl.

4. The suspension theorem

Le v be a base point on M The space {3, M is called nondegenerate if
) “’ ) . .,
the set of geodesics in .M is the unlon of nondegenerate crlf:cal
manifolds. Precisely, this condition should be formulated as foll_ows. .dMi
is nondegenerate if, given any regular half-space. Q“M . fmth z.no ef
M, then the critical set of ¢ on ML is the (necessarily) disjoint union o
' .
ondegenerate critical manifolds. . N
" Corfbining the reduction Theorem {11 the following proposition becomes
evident:

QusPENSION THEQOREM. Let £3,M be nondegenerate. Let e = G (M) be
the collection of eritical mand Folds in $2,M. - _ _

ft,t:t) ) be we‘{l ordered, V={V,, Vi, «++ 1, commta,bly with the :pm:m;,l
order defined on V by the length of the geodesics, and let &, =& be
the negative bundle of V,. Then Q.M has the same homotopy (roups as

the CW-complew:
(£.1) K=EU&U&Y- -

We oall this the suspension theorem because (1.1} follo?vs from it trivially.
Indeed, if 1v]| > 1, then only one of the critical manifolds V, can have
index 0, because Q.M is connected, (whence K is connected) and attagh—
ing a vector bundle of fiber dimension >>1 does not ?hange the number
of components. Hence in this case ¥, has index 0 while all other ¥, have
index = |vi. It follows that M* = V,. Thus golng over to the corollary
of Theorem 11, K is of the form:

(4.2) K= M UeUealU:"

Let 11 M* — 2, M be the inclusion and let ¢ denote the suspension ‘(in
nomotopy) from O,M to M. Then 0, @ i, TM) — Zoa{ M) agrees with

dime, = [v1.
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the definition of v, given in the introduction. Hence by (4.2) we obtain
the corollary:

CoROLLARY {4.1). Under the hypothesis of the suspension theorem,

(4.8) v wm (M)~ 7. (M)

18 an 18omoTrphism onto.

O< r<ivi—1

For completeness, we state an immediate cohomology conseguence
of (4.1):

CoroLLaRY (4.2). Under the hypothesis of the suspension theorem,
H*(Q,M; G) admits o spectral sequence K, which converges to a graded
group of H¥O, M. G) and whose E, term is given by:

(4.4) E, = Y HNE; G)
where £, ranges over the negative bundles &.; V  Cl7. (The subseript ¢
denoies cohomology with compact supporis.)

By Poincare duality one has further that (in the notation of (8.10)):

4.5) : Hi(Ey; &) = HNV; G, A=MV).

REMARKS, Recall that nondegerate 0, M exist for every manifold M
of the type we are considering. In fact nearly every base point, v gives
rise to an . A in which the geodesics are nondegenerate erifical points.
In that case (£.8) is quite uninteresting, however (4.4) is still useful; in
particular, E, will then be free if G is taken as the integers. For
instance, if M is a compact proup, E,=F, is was shown in [3], while
for compact symmetric spaces, in general, F, = E. at least mod 2. [8].

5. The proof of Theorem [

Theorem I follows from the suaspension theorem of the Jast section
onece it is proved that:

(5.1) If M is a symmetric space then (1, M is nondegenerate ¥or every
base point v on M.

(5.2) With M, M*is again a symmetric space for every base point v
or M.

Recall that the manifold M is called symmetrie if the following condi-
tion is satisfied:

(6.8} For every P € M, there exists an isometry L, of M which keeps
P fized and reverses the geodesics through P.

From the second condition it follows that I2=-identity for every Pc M.
Anrnother equivalent definition can be given in terms of the group of
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isometries of M, This group, which is known to be a compact Lie-group,
will be denoted by ¢ in the sequel. Using the fact that any two points
of M ean be joined by & geodesic one easily derives the following conse-
quences of (5.3).

(5.4) The e-component &' of G acts transitively on M.

(5.5) If K.e @G is the stability of Pe M, then K, is pointwise fixed
under the automorphism A, k- IkI5 of G.

(5.8) The e-component K. coincides with the e-compenent of the fixed
point set of 4, in G.

The converse of (5.6) vields the alternate definition of symmetrie
spaces:

(5.7} If G is a compact group, and A is an invelution of &, then in an
invariant Riemarnian structure, the coset space /K is called a symmetrie
space if K’ coincides with the e-component of the fixed point group of
A.

In the sequel we assume M is a symmetric space with X, the stability
group of Pe M. The e-components of groups will be denoted by a dash,
e.g., K.

The action of K, on M was discussed in [6), and was shown to be
variationally complete.

As a consequence the following ig true: (see [6, chapter 1I].)

PROPOSITION B.1. Let s be a nonbrivial geodesic on M starting af P.
Let 3} be any point of s, and set Kp, respectively K., equal fo the sub-
group of Kb which keeps Q, respectively s, pointwise fived. Then the
multiplicity of @ as a congugate point of Pis equal to dim K.,/ K..

The statement (5.1) is an immediate corollary of this proposition.
Indeed, let v = (P, @; i) and let the set of geodesics in 2,3 be denoted by
S, M. Cleaxly K}, acts on S,M, the orbit of & € S,M, being homeomor-
phic to KL,/K}. In any model, M4, for Q2M these orbits are certainly
imbedded as smooth submanifolds. Now we see by Proposition 5.1 and
(2.8) that the nullity of any point on such an orbif is equal to the dimen-
sion of the orbit. This is precisely the second condition for nondegener-
acy. (see (3.2)).

There remains the statement (5.2). To prove it, we show that each
orbit of Kp, on M” is a symmetric space. Let then V be the orbit of
s ¢ M*, We may assume that s does not degenerate, for then 3™ reduces
to a point. Thus V' = K% /K, and we have io preduce an involution 4
of Kp, whose fixed point sef containg K] as e-component. Because 8ig a
minimal geodesic in the ©,M, no conjugate point of P ocears In the
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interior of 5. In partienlar, the midpoint B of s is nol conjugate to P
along s. Hence K = K,. by Proposition 5.1.

Now I,FP =@, and I,Q@ = P. Hence if k ¢ K, then LkI;'cC K.,
Thus A4: Kpy - Ky, defined by A(k) = I,kI;' is an involution of K,,. On
the other hand, the e-component of the fixed point set of A is precisely

pw- This proves (5.2) and completes the proof of Theorem 1.

For fuiure reference we close this section with the following theorem,
which is a straightforward generalization of Theorem 1 of [6].

THEOREM IV. Lef v be any base point on the symmetric space M. Then
the spectral sequence, (4.2), atiached to 2,0 by the decomposition (4.1),
s trivial over the (nfegers mod 2. Thus:

(5.8) HHQ,M; 2) = 3 HeEvs Z)

In the group case (5.8) holds with integer coefficients.

MNOTE ON THE PROOF. The spectral sequence (4.2) is derived from the
filtering of K = £, U & U«++, by the subcomplexes K, = £, U --- U E..
Let o S_gz -~ K,_, be the attaching map of £, The problem is to show that
« induces a trivial homomorphism in homology. Let se V; and consider
the K cyele T, ag defined in [6]. This is a manifold fibered over V witha
section ¢: V' —1'. One has a map of I’ — K, which transforms &, into
the normal bundle of o(V) in I Thus ¥ = I¥ U & corresponds to
K, =K, U & andinI" the attaching map a, is always homologically
trivial mod 2 (because §; is the normal bundle of a section). If the fiber
of £ over Vis orientable @, will also be trivial over the integers.

The simpiest application of Theorem 1V is obiained by considering (5.8)
in dimension 0. Because O, M is always connected for any base point v
on M, (5.8} implies that B is counected. This fact will also be apparent
in the explicit computations of sections 7 and 8 which evaluate the inte-
gers | v | of Theorem 17,

Before procesding to the proof of this theorem we have to review the
basic eonjugacy theorems for symmetric spaces which make the explicit
computations possible. This is done in the next section.

Ve UM .

6. The roots of a symmetric space

In this section & is to be a compact connected Lie group, in a left and
right invarisnt metric, which an involution 4. The full fixed point sef
under 4 is denoted by K, while the e~component of X is written K’ (Note
that & thus plays the role of K, in section 5.)

Let g be the Lie algebra of G, and let
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p=f+m
be the decornposition of g into the fixed point set of 4, (this is I, the Lie
algebraz of K) and its corthogonal complement. Let bw be a maximal
abelian subalgebra of m, and let h - b be a Cartan subalgebra of g.

Let %: G-+ G be defined by: 5(g) = g- A(¢~"}. Then w(gk} =%(g) so that
¥ is constant along the left cosets of K and in this manner defines a map
Yot GIK — G. We also let M be the image of m under the exponential
map. Thus M = ew. Then it is known [1], [7], that », is a homeomor-
phism of G/K onto M. Further the natural action of XK on /K now
translates into the adjoint action of K on & restricted to M. In the sequel
we will therefore always think of the symmetric space G/K as the
subset M C G.

Let T be the image of bm under the exponential map. This is a torus
in M which is geodesically imbedded. Any forus of this form is calied a
maximal torus of M, and its dimension iz the rank of M.

We write WG, K) or W{M) for the group of automorphisms of Ty
which are induced by inner automorphisms of K'. The following are basie
properties of maximal tori: (see [1}, [6], [T])

{6.1) If T and 1" are iwo maximal tori of M, then there existsa ke K’
so that T = k1'%,

(6.2) If X isasubset of T and ke X has the property kXt 'C T,
then there exists an e¢lement ¢ of W(5, K} so that o(x) = kak™?, for all
we X

(6.3} Every point of M lies on a maximal torus of 3.

We also have:

{6.4) The geodesics of M through e coincide with the one-parameter
groups of & which le in M.

{6.5) If # & m, then the index of the geodesic segment:

Z() = e 0=t = 1.
in M is computed as follws:

Let () = {8}, i =1, «+-, m, be a system of positive roots of G an
h. Also if a is any real number, let jla }l denote the number 0 if a = ¢,
otherwise let [ a |} be the greatest integer < |al. With this understood,
the index in question iz given by:

(6.6) ME) = D" o)l

REMARKS.
(1} The formula (6.6) is to be found in |6}, except for a factor 2 in the
definition of the exponential map. This discrepancy is explained by the
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fact that the Inverse of 7,.:G/K — M, is not given by the projection
M -~» G/K induced by the natural map x:G — G/K. Rather, one has
% (P)=m(1 p) where for pe M, V' 7 is any point of M with (v "p)* = p.
That this factor 2 could be done away with by considering A7 rather than
G/K was pointed out to me by A. Borel,

{2) We can find distinet non-trivial forms {@}, i =1, ... m’, on b
such that each ¢ € X(G) restricts to some = 9, on hu. Such a system of
forms is cailed 2 root system for ¥, and is denoted by Z(M). For each
¢ & E(M) let n, be the number of forms in (G} which restrict to + won
bin. These integers are the muitiplicities of the root forms of 3. In terms
of them, {6.6) is expressed by:

(6.7) ME) = o, fh ot I & (M)

This formula has the following geometrie interpretation: Consider the
set of planes on'which one of the root-forms ¢ £ 2(G/K) has an integral
value, Then M%) counts how many of these planes the line-segment
tw, 0 = f £ 1, crosses, each crossing being counted by the appropriate
multiplicity.

Finally, we recall the following facts:

(6.8) Let A\, be the lattice of those » € bw, for which the segment
Ht) = e, 0 £ 1= 1, represents a closed curve which is homotopic to zero
in M. Then A\, is generated by elements ,, ¢ ¢ (M), characterized by:

lj; is perpendicular to the plane ¢ = 0, and 9(6,) = 2 .

{6.9) The representation of W{M) on hy is generated by the reflections
in the planes ¢ = § for ¢ e S(}).

These propositions enable us o surve ¥ the possible indexes of elements
in 8,M entirely in terms of the roots of & on h. Indeed, hy (6.3) no
generality is lost if we assume that the base-point » — (P, Q; k) is
of the form P =¢; @ € Tw. According to (5.1) the set S, M will consist
of the ellection <V, M of nondegenerate critical manifolds. 1f ¢ isa geodesic
of Ve SV M, then V consists precisely of the set of geodesics ksk™!
where k is in the subgroup of K’ keeping Q fixed. Hence, by (6.1), (6.2)
and {6.4), each V contains geodesics which lie on T, and join e to Q.
Further two such geodesics lie in the same 77 precisely if they are conjugate
under WI(G, K).

We will adhere to the convention that if © € Lu, then 3 represents the
geodesic €, 0 £ £ <1, in M. Because the geodesics on T'mean be lifted

into b in the obvious fashion, our earlier conclusions ean be summarized
as follows:
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PROPOSITION B.1. Let w, € [u be any point with & ¢ Q.M. Then if
x € &, -+ A, there 15 @ unigue eritical manifold V, < S, M which contains
#. This manifold is homeomorphic te K'(K,, where K, is the cenlrglizer
of @in K'.

The fumetion © — V, maps x, + A, onto the set CULM, and if V, = V,,
®, Y, € 2, + Ay, then & and y are conjugate under the action of W(G, K)
o G

COROLLARY. The set of indexes M), 5 € S, M, consists of the iniegers
ME), computed aceording to (8.7) as x ranges over the potnis of x, + A,.

In the next sections this proposition is applied to compute the values of
{v| given in Theorem II, case by case.

7. Computations when M is a group

If the compact connected group & is to be considered as a symmeiric
space, M, we must, to follow cur general procedure, consider M as the
subset {g, 9, ¢ € G, In G x &, Then M = &, while by corresponds to
the anti-diagonal in 2 »x A Thus in this case } (M) is a positive root
system for GG each root being counted with multiplicity 2. The group X
then corresponds to (7 acting on M by the adjoint action.

In each case to be considered, we will choose orthogonal eccordinates in
O, and so identify hw with B?, the space of I-tuples of real numbers with
the usual inner produet (%, ¢)=3_ a;-v,, where a,, ¥, are the coordinates
of & and ¥ respectively). The form which assigns to x € E'its a™ co-
ordinate will always be denoted by w,. The exponential map then gives
rise t0 a map R’ — M, which will be dencted by p. We will define this
map in each case, and then give the root-system of M as it is expressed
by the forms w,.

(7.1} The unitary groups, M — U{2n). Let d, be the diagonal 2n x 2x
matrix with o' entry 27— 1, and all other entries 0. Then p: B* — U(2x)
is given hy:

2(x) = exp {3 w.(¥) d.} v e B,
and the root-forms of M = Ui2x) are:
(M) wp — @, lga< 8o

It, follows that W{AM) is permutation group of the coordinates in B*, and
that A, is gemerated by {1, —1,0,0, --+,0} and its transforms under
W(AM).

Let v, & E* be the element;
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@, =1{0,0,---,0; 1,1, ---, 1} {(n entries 0, » entries 1)

and let » = {P, @; k) be the unique base point eontaining the curve 7,
(Note that then P = @ = Iidentity). Thus K., (in the sense of section 5}
iz equalto U(Zn)and K, = U(n) x U(n}, whence V,, = U@n}/Un}x U(n).

The points of », 4+ A, are of the form: & = {a,, +++, 6y} witha, e Z
Sha.=mn Let b <b,--- < b, be the different integers which ceeur
among the {e;}, and assume that b, oceurs n, times. Then according to
{6.7):

MB) =23, natplts — b, — 1)

We conclude:

(1) e ew + A, with M%) =0 then z is conjugate to 2, under
WA,

(2) The next lowest value of vonz, + A, is2(r + 1). Up to conjuga-
tion by elements.of W{A) this value is taken on only at the points:

0,-++,0; 0,1, % ---, 1,2 and {—1,0,0, -0, ;1 1, ... 1},

Hence:
(7.2} Imihiscase, M = V. = U(Zn)fUin) x Uin), while|v| = 2(n 4 1).

COROLLARY. The gequence (1.2) is a v-seguence.
(1.3} The orthogongl growps, M = SO{(2nr}, Let O, be the %n x 2n

matrix with only eéntry the diagonal box 271 —1 _g é) at the k* level,

Now @: B* — 80(2n) is given by: p(@) = exp {3 @.(x)0.}, and we have:
MYy & oo, lga< 3<n.

Further W(M)is generated by the pernitations @, — g, and @,—> — W,
« < #; and A, is generated by the element {1, —1,0,---,0} asa WMD)
module,

Let @, = {12, 1{2, -+., 12}, and let v he the base point determined by
%,. Then V, = 50(2n)/Uin). By, (6.7) weseethat M@ =0, v ina, + A -
implies & conjugate to «, under W{M), while | v | is given by 2(n — 1). In
fact the index of {+£1/2, 1y2, 12, +--, 3/2} is precisely 2(n — 1). Thus,

(7.4) In this case 8" = SO@n)/U(n), while lv} = 2n — 1),

(7.5} The symplectic groups, M = Sp(n). Let U(n) < Spin) be a
standard inclusion, and let o: B — Sp(n) be defined by the map RB* - Un)
as in {7.1), (with = replaced by 2n) followed by the inciusion. Then:

M) vy £ @y 2w, l1Zfa< g0
W(M}: Al signed permutaions.
At Generated by {1, —1,0,--+,0} asa W{M)-module.
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Again, we choose 2, = {1/2, -+, 1{2}. Then V, = Sp(n)/Ux) as is
easily seen. As before V, = M-. However now A{({}/2,1/2, ..., 3(2}) =
2(n + 1), and this is the value of | v}, Thus:

(7.8) In this case, M~ = Spln)Uln) with {v] = 2(n + 1).

&, The remaining computations. Proof of Theorem Il

(8.1) The space M = S0n)/U(2r). Let @ be the field of quaternions
&l 4+ @t 20 f 4 2k 2, € B, where the 1,4, 7, kb are the usual
gquaternion units. We define the following endomorphisms of R*: F, the
identity; F, is to take the o™ coprdinate into minus the (v 4+ 2n)'" coordi-
nate, while it takes the (@ -+ 2r)™ coordinate into the o one (1 = v 5 2n).
The endomorphism E, is to be represented by the matrix

O+ o0+ 0y = Opar = -0 = O}

where O, is as defined in (7.3). The assignment 1 - E_ i— K, 5 — £,
defines z representation of @ on R*. Because 1, 4 generate a field isomor-
phic to the complex numbers, we see thai the elements of 30{dn)
which commute with E, form a subgroup U(2n)< 80{4%). The elements of
this subgroup which commute with F, in turn define Spln) < U2n).
Hence if we set G = S0(4n), and let 4 he the inner automorphism by
E,, then A"is the identity and the fixed pomt set, K, of 4 is Ufn). Thus
G{K = M is a gymmetric space.

Let K™ - 30(4n) be defined as in (7.3) with n replaced by 2n, Then
™ eorresponds to the Cartan algebra, b, of section (8), and we have to
determine the inclusion L = b. it is not hard to see that this inclusion
corresponds fo a map B* — K™ given by

(o mee, ) {3y, om e, ai, —~a, e, )

Restricting the forms of (7.3) to this subspace, we obtain the following set
of forms for E(M): wp 1+ my; (L 5 a0 < 3 5 a) 20, (1 32w Farther
the multiplicity of wy + 01,; (it =% 2) is 4, while that of 2e, is 1. Schema-
tieally we denoie this set of forms by:

MY mg oo, 2w, s d<dn

4 i

{Thus the integer below the form denotes its multiplicity. This notation

will be used throughout the sequel.) W{(M) and A (M) are therefore the
same as in {7.3)

Choose ©, == {1/2, .-, 1/2}, and let v be the determined by 5,. Note
that £,(8) = exp (71 —1 t E)). Tt follows that in this case K, = Ui2n),
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while K, = Sp(n). Thus V., = U2n){Sp(n). Just as previously, V., is
actually M, while | v | is the index of {1/2, ---, 1/2, 312}, and thus given
by dn — 2. We conclude:

(8.2) In this case M- = U(2n){Spn) with }v| = dn — 2,

(8.3) The space M = U(4n)/Sp(2n). Let F, be the mairix deseribed in
the last section. Then it is well known that the subgroup of U{4n) whose
elements satisty the identity U‘E\U = E,, form the linear symplectic
group Sp(2n)  U4dn). Let A be the automorphism of 1(2n) which takes
U into E, U E;*. (Here the bar denotes complex conjugation.) Then A4°
is the identity, and because U’ = U, the subgroup of U(2n) fixed under
A is precisely Sp(n). Let E*™ — R% be the map;

{8'4) (xb Tttty x'.‘ﬂ} —* (fb‘l, e, x._.n, ﬂ:h e, 3}3“) -

Then this map followed by the map R - U{4n) deseribed in (7.1) describes
g in this case. Restricting the forms of U{4n) according to {8.4) we obtain
the following array for Z(M):

B e - o, l2a<pg £ n.
4

Hence W(M) and A, are as described in (7.1). Accordingly choose
%= {0,-++,0,1, ..., 1}, just as in €7.1), and let v be determined by Z,.
This is then a closed curve in M. Thus X 2 is represented by Sp(2n). The
centralizer of &, in U(4n) is clearly U(2n) x U{2n). Hence the centralizer
in Sp(Zr) is precisely Sp(n) x Sp{n). Thus Ve, is homeomorphic to
Sp(2n)/Sp(n) x Sp(n). Just as in (7.1) we see that M’ = V., However
v]is now given by 4(n + 1), because each root has weight 4 instead of
2. To summarize:

(8.5) In this case M* = Sp{(2n)/Spln) x Sp(n) while | v | = 4(n + 1).

If we combine (7.4) with (8.2) and {B.5) we obtain the

COROLLARY. The sequence (1.4} i3 a v-sequence.

(8.6) The space M = Sp(n){U(n). We will now interpret Sp{2n) as the
group of # x » nonsingular matrixes with entries from ¢ which keep the
symplectic product invariant, We aleo write i[ 41 for the diagonal matrix
¢ x ldentity [§ x Identity]l. Consider the subgroup of Sp{n) which
commutes with j. Because the elements of ¢ which commute with7eQ
form a field isomorphic to C, this subgroup will be isomorphic to U{2n),
Hence if 4 denoctes the inner automorphism with 4, then the fixed-point
set of 4 is U{n). By a similar argument, the subgroup commuting with
both 4 and j is the group O(x) T{n).

Let p: B — Sp(n) be defined as in (7.1), exeept that ' =T is to be
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replaced by ¢ € @, and 2n is to be repiaced by #. Then Aplx) = p{—=).
Further the image of © is 2 maximal torus of Sp{n) as is seen from {7.8).
This is therefore a case when By = b. If foliows that the root system,
Z(81), identical with 3(Sp(n)), except that each root hag multiplity 1. Thas

EM): wy; o, 2w,
1 1
We chose #, ag in (7.5}, and v corresponding

endpoint of 7, it minus the identity, whence Kypo=Uln). The centralizer

of », must commute with 4. Henee K, = O@). Thus V., = U@)O(n).
Using the results of (7.5) it follows that:

(8.7) In this case M- = Um)/Om) with { v | =

(8.8} Thespace M = U(2n){0(2n). Ttis clear that here the automorphism

in question is the complex conjugation. We let 01 B* - U(2n) be defined

precisely as in (7.1). We then see that this is again where by = B. Thus
E(M ): Mg — w,

1

We choose x, just as in (7.1}, whence V;=r

ing the answer in (1.1} by 2, we finally o
Thus:

(8.9) In this case J1~
Now combining (7.6)

lgsa<pggn.

Iy. If follows that the

(= + 1),

1§a<8§2ﬂ.

= O2n)fO(n) x G(n). By divid-
btain for { v | the integer (n + 1).

= O@n)/0(n) x On), arnd |v] =

(n + 1),
with (8.7) and (8.9) we obtain the

» to summarize the computations of the
In terms of the suspension th

symbol X = ¥V g, ..
from Y by attaching
have shown that:

last two sections
eorem of section 4. In this summary, the
+ will be interpreted to mean that X is obtaj

ned
eells of dimension £ k. With this understood

we

O0.U2n) = U@n){U(n) x Uin) U e,

(8.10) 2.8021) = SO@Y () U o, ... '
Q,Sp(ﬂ) = Sp(’n]}U{ﬂ) U Eppgn = »
Further,
(8.11) Q2.8p(m)/Un) = Um)/O(my Cnzy m e
‘ 2, U2n)/0(2n) = O@2m)/Om) x O U e,,, -
and
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2,50(dn)/U2n) = U2n)/Sp(n) U eu-p -

(812) Q,U{én];'Sp(zﬂ) = Sp(zn)J{Sp{n) ® Sp(ﬂ) U Bimes*rr
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