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Constructive vs nonconstructive

Nonconstructive proof: an existence proof-by-contraction of this schematic
form:

Suppose that the desired object x does not exist.
Derive a contradiction.

Claim that £ must exist after all.

This proves that it is impossible for x not to exist; but it does not tell us how
to find/compute/construct x.

“[Nonconstructive existence proofs| inform the world that a treasure
exists without disclosing its location.” Hermann Weyl



Constructive proof of the existence of an object x: a proof that embodies an
algorithm for the construction/computation of the desired object .



Constructive proof of the existence of an object x: a proof that embodies an
algorithm for the construction/computation of the desired object .

Note: Not all proofs-by-contradiction are nonconstructive. it is perfectly con-
structive to prove P false by assuming that P is true and deriving a contra-
diction. This process just captures the constructive meaning of negation.



A nonconstructive proof:

There exists a digit that appears infinitely often in the decimal expansion of

the number .

Note first that the decimal expansion of 7 is nonterminating and

nonrecurring, since 7 is irrational.

Suppose that each of the digits 0,1, 2, ..., 9 occurs only finitely many

times in the decimal expansion of .

Then there exists a positive integer N such that eachof 0,1,2,...,9
appears at most [N times in the decimal expansion of .

So that decimal expansion cannot have more than 10N places, which
contradicts the “Note first ..." above.



Although the decimal expansion of m has been computed to billions of places,
the foregoing proof does not tell us (and nobody knows) which of the dig-
its 0,1,2,...,9 appears infinitely often in the nonterminating, nonrecurring
expansion.

All we know is that it is impossible that each of the ten digits appears only a
finite number of times.



For another nonconstructive proof, consider the statement:

b

There exist irrational numbers a, b such that a” is rational.

Either \@\/_ Is rational or it is irrational.

In the first case, take a = b = /2.

In the second case, take a = <ﬁ\/§> and b = /2.



Why is this proof nonconstructive?

) . 2 i
1) It does not tell us which of the two alternatives for \@\/_ (rational or
irrational) actually holds.

2) It therefore does not tell us which of the two choices for a and b actually
produces irrational numbers with the desired property.

A constructive proof would produce, unambiguously, two irrational numbers a

b

and b and show us that a’ is rational.



Why is this proof nonconstructive?

) . 2 i
1) It does not tell us which of the two alternatives for \@\/_ (rational or
irrational) actually holds.

2) It therefore does not tell us which of the two choices for a and b actually
produces irrational numbers with the desired property.

A constructive proof would produce, unambiguously, two irrational numbers a

b

and b and show us that a’ is rational.

b

Explicit example of irrational numbers a, b such that a” is rational:

a=+?2, b=log,9, a’=3.



In fact, ﬁ\/i is transcendental, by the (classical) Gelfand-Schneider theorem:

a® is transcendental if (i) a is algebraic, (ii) a # 0,1 and (iii) b is

both algebraic and irrational.



If we want to prove something constructively, then we must not use the law

of excluded middle,

LEM: For any proposition P, either P is true or else P is false.

Allowing the use of LEM is tantamount to allowing nonconstructive existence

proofs.



Historical note: Existence proofs-by-contradiction go back at least as far as
Gauss (Fundamental Theorem of Algebra, 1799).

They became dominant after Hilbert's proof of his “basis theorem” (1888).

“Das ist nicht Mathematik. Das ist Theologie.” Paul Gordan



The constructive vs nonconstructive controversy goes back at least to Kro-
necker’'s attacks on Cantor's set theory (1877-).

It was strengthened by Brouwer's campaign, from 1907 onwards, to convert all
mathematicians to the exclusive use of constructive methods, and culminated
in the Grundlagenstreit between Brouwer and Hilbert in the 1920s.

“Taking the principle of excluded middle from the mathematician
would be the same, say, as proscribing the telescope to the astronomer
or to the boxer the use of his fists.” David Hilbert (1928)



What is constructive mathematics?

Three ways to approach computability in mathematics:
1) Use classical computability theory.

The logic allows “decisions” that cannot be made by any real computer, so we
need a clearly specified type of algorithm.

This is the approach of recursive analysis and Weihrauch's TTE theory.



What is constructive mathematics?

Three ways to approach computability in mathematics:
1) Use classical computability theory.

The logic allows “decisions” that cannot be made by any real computer, so we
need a clearly specified type of algorithm.

This is the approach of recursive analysis and Weihrauch’'s TTE theory.

2) Use classical proof mining (Kohlenbach).

This requires a heavy logical analysis in order to extract (admittedly often
good) constructive estimates from classical proofs. Moreover, it is not clear
that this technique would work with deep, highly nonconstructive, results of
e.g. operator algebra theory.



3) Use intuitionistic logic (Brouwer, Markov, Bishop, Martin-L&f, ...).

This

automatically takes care of the problem of noncomputational “decisions”, and

enables us to work, with any mathematical objects, in the familiar style of the
analyst, algebraist, geometer, ...



Bishop-style constructive mathematics (BISH) is just

mathematics with intuitionistic logicI

and some appropriate foundation such as

— the constructive set theory of Myhill, Aczel, and Rathjen, or

— Martin-Lof type theory.



Using intuitionistic logic, we can

— clarify distinctions of meaning obscured by classical logic, and

— allow results to have a wider range of interpretations (including recursive
ones) than their counterparts proved with classical logic.



Using intuitionistic logic, we can

— clarify distinctions of meaning obscured by classical logic, and

— allow results to have a wider range of interpretations (including recursive
ones) than their counterparts proved with classical logic.

“Intuitionistic logic is richer than classical logic, since the former
makes distinctions that the latter fails to make.”

J.L. Bell & M. Machover



e do not restrict to a class of “constructive/computable objects”;

e use intuitionistic logic to deal with the normal objects of mathematics.



Ishihara's classification:

> a constructive theory of real numbers: the usual R studied with intuition-
istic logic.
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Ishihara's classification:

> a constructive theory of real numbers: the usual R studied with intuition-
istic logic.

> a theory of constructive real numbers: the recursive reals studied with

classical logic.

> a constructive theory of constructive real numbers: the recursive reals

studied with intuitionistic logic.

BISH deals with the first of these.



The BHK interpretation

Modern intuitionistic logic is based on the BHK-interpretation™ of the connec-
tives

V (or), A (and), — (implies), — (not)
and quantifiers

3 (there exists), V (for all/each).

*Brouwer-Heyting-Kolmogorov



The BHK interpretation

Modern intuitionistic logic is based on the BHK-interpretation™ of the connec-
tives

V (or), A (and), — (implies), — (not)
and quantifiers

3 (there exists), V (for all/each).

Note that it is provability, rather than an a priori notion of truth, that is
fundamental to the constructive approach.

*Brouwer-Heyting-Kolmogorov
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» PV (Q : either we have a proof of P or else we have a proof of ().

» P A Q : we have both a proof of P and a proof of Q).

» P — () : by means of an algorithm we can convert any proof of P into
a proof of Q).

» —P : assuming P, we can derive a contradiction (such as 0 = 1); equiv-
alently, we can prove (P — (0 =1)).



» d:P(x) : we have (i) an algorithm which computes a certain object x, and
(ii) an algorithm which, using the information supplied by the application
of algorithm (i), demonstrates that P(x) holds.
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of algorithm (i), demonstrates that P(x) holds.

» V,.caP(x) : we have an algorithm which, applied to an object = and a
proof that x € A, demonstrates that P(x) holds.



» d:P(x) : we have (i) an algorithm which computes a certain object x, and
(ii) an algorithm which, using the information supplied by the application
of algorithm (i), demonstrates that P(x) holds.

» V,.caP(x) : we have an algorithm which, applied to an object = and a
proof that x € A, demonstrates that P(x) holds.

Note that in the interpretation of the statement V. 4 P(x), the proof of P(x)
will normally use both the data describing the object x and the information

supplied by a proof that x belongs to the set A.



Consider the statement:

LPO For each binary sequence a = (an),,>; either an = 0 for all n, or
else there exists NV such that ap = 1.

This is trivially true under classical logic.

What is its BHK interpretation?

We have an algorithm which, applied to any binary sequence a, either
produces a proof that a, = 0 for each n, or else computes N such
that any = 1.

Claim: Such an algorithm is unlikely to be found.

Note: If the conclusion of LPO holds for all increasing binary sequences, then
LPO holds.



The Goldbach conjecture (GC, 1742):

Every even integer > 2 is a sum of two primes.

Status still unknown.



The Goldbach conjecture (GC, 1742):

Every even integer > 2 is a sum of two primes.

Status still unknown.

Define a binary sequence a as follows.

If 2n + 2 is a sum of two primes, set a, = 0.

If there exists k£ < n such that 2k+ 2 is not a sum of two primes, set an, = 1.



Suppose we have an algorithm as in the BHK interpretation of LPO. Applied
to this binary sequence, this algorithm

either proves that a,, = 0 for all n (i.e., proves GC)

or else computes N such that ap = 1 (i.e., gives a counterexample to GC).



The use of GC here is purely illustrative: we could have used any of a multitude
of unsolved problems of a certain type (Riemann hypothesis, ...).

Conclusion: the existence of an algorithm as in the BHK interpretation of LPO
is highly doubtful.

Moreover, LPQO is provably false in certain models of constructive mathematics
(but it is not provably false in Bishop-style constructive mathematics).

We therefore stay clear of LPO as a working constructive principle.



Consequence: we also must avoid using any proposition that constructively
implies LPO.

In particular, we must avoid using the full law of excluded middle.
This has a serious impact on even elementary analysis.

Consider the classically trivial proposition:

VierR (z =0V z #0),

where

r# 0 pen (Jo| >277).



Suppose we have a constructive proof—that is, an algorithm which, applied to

any real number x either proves that x = 0 or else computes a positive integer
N such that |z| > 27V,

Given an increasing binary sequence a, apply this algorithm to the real number

oo
T = Z 27 "an = 0-ajapaz... (infinite binary expansion).
n=1

If £ = 0, then a,, = 0 for all n.



Suppose we have a constructive proof—that is, an algorithm which, applied to

any real number x either proves that x = 0 or else computes a positive integer
N such that |z| > 27V,

Given an increasing binary sequence a, apply this algorithm to the real number

©. @)
T = Z 27 "ay = 0-ajazaz... (infinite binary expansion).

n=1
If £ = 0, then a,, = 0 for all n.

If there exists N such that |z| > 27V, then ayy = 1 : for if apy = 0, then
T = Z%O:N—H 2 gy < 2N 3 contradiction.



Thus the proposition

Veer (z =0V x #0)

implies LPO and is therefore essentially nonconstructive!



Here is another essentially nonconstructive principle that is trivially true under
classical logic.

LLPO For each binary sequence a with at most one term equal to 1, either
an = 0 for all even n, or else ap, = 0 for all odd n.

BHK-interpretation:

We have an algorithm which, applied to any binary sequence a and
the data that a,, = 1 for at most one n, either proves that all even-

indexed terms of the sequence are 0, or else proves that all odd-
indexed terms are O.



Again, it is extremely unlikely that such an algorithm could be produced.

Moreover, LLPO, like LPQ, is provably false in certain models of constructive
mathematics (but it is not provably false in BISH).

We therefore avoid using LLPO as a working constructive principle.

Note that LLPO is a consequence of LPO; but LPO cannot be derived from
LLPO.



Consider the classically trivial proposition: For each real number x, either x > 0
or x < 0.

Suppose we have a constructive proof: that is, an algorithm which, applied to
any given real number x, either decides that x > 0 or else decides that x < 0.

Given a binary sequence a with at most one term equal to 1, apply this algo-
rithm

oo
r = Z(—l)n+12_nan
n=1

_ %1 a2 a3 a4
2 4+8 16+ '

If x > 0, then a,, = 0 for all even n; if x < 0, then a, = 0 for all odd n.



Conclusion: The statement

VeeR (z =0V z <0)

implies LLPO and is therefore essentially nonconstructive.



The following elementary classical statements also turn out to be nonconstruc-
tive.

> Each real number x is either rational or irrational (that is, x # r for each
rational number r). To see this, consider

@)

xzzl__a”,

I
n—1 n.:

where a is any increasing binary sequence. This is equivalent to LPO.

> Each real number x has a binary expansion. Note that the standard
interval-halving argument for “constructing” binary expansions does not
work, since we cannot necessarily decide, for a given number x between
0 and 1, whether x > 1/2 or x < 1/2. In fact, the existence of binary
expansions is equivalent to LLPO.



> The intermediate value theorem, which is equivalent to LLPO.

> For all x,y € R, if xty = 0, then either x = 0 or y = 0. This is
equivalent to LLPO. The constructive failure of this proposition clearly
has implications for the theory of integral domains.



Note: classically valid statements like “each real number is either rational or
irrational” that imply omniscience principles are not false in constructive math-
ematics. They cannot be, since BISH is consistent with classical mathematics

(CLASS):

Every theorem in BISH is also a theorem of CLASS. I

In fact, we can regard CLASS as BISH + LEM.



Another way of looking at CLASS: it is a model/extension of BISH.

Brouwer’s intuitionistic mathematics (INT) and the recursive constructive
mathematics (RUSS) of the Markov School both use intuitionistic logic, and
both are models/extensions of BISH:

Every theorem in BISH s also a theorem of INT and of RUSS. I



Another way of looking at CLASS: it is a model/extension of BISH.

Brouwer’s intuitionistic mathematics (INT) and the recursive constructive
mathematics (RUSS) of the Markov School both use intuitionistic logic, and
both are models/extensions of BISH:

Every theorem in BISH s also a theorem of INT and of RUSS. I

Andrej Bauer (Ljubljana) has shown that BISH can be interpreted within
Weihrauch's Type 2 Effectivity framework for computable analysis.



We use these models of BISH to obtain independence results.

Since

INT/CLASS + Every continuous function f : [0,1] — R is uni-
formly continuous

and

RUSS F There exists a continuous, real-valued function on [0, 1] that
Is not uniformly continuous,

we see that each of the propositions following “F" is neither provable nor
disprovable in BISH. In other words, each of them is independent of BISH.



In place of the essentially nonconstructive propositions

Veer (2 =0V #0),
Veer (z =20V <0),

we have these constructively valid propositions:

1) If a < b, then for each real number z, either a < x or z < b.



In place of the essentially nonconstructive propositions

Veer (2 =0V #0),
Veer (z =20V <0),

we have these constructively valid propositions:

1) If a < b, then for each real number z, either a < x or z < b.

2) If (x > 0) is impossible, then x < 0.



Note, though, that the statement

If (z > 0) is impossible, then z < 0

implies (actually, is equivalent to) another constructively dubious principle,
Markov's principle:

MP: If a is a binary sequence and it is impossible that a,, = 0 for
all n, then there exists IV such that apr = 1.



The real line

Starting with the set N of natural numbers, we can build the sets Z (of
integers) and Q (of rationals) by elementary algebraic means.

By a real number we mean a subset x of Q x Q such that

> for all (q,q) inx, q <d¢;

> for all (q,q’) and (r,7’) in x, the closed intervals [q, ¢] and [r,r'] in Q
intersect in points of Q;

> for each positive rational € there exists (g, q’) in x such that ¢/ — ¢ < e.



The last of these properties ensures that the set x is inhabited—that is, we

can construct elements of x.

Any rational number g gives rise to a canonical real number

q=1{(g,9)}

with which the original rational ¢ is identified.



Two real numbers x and y are

e equal, written x =y, if for all (q,q') € x and all (r,7’) € y, the intervals
(q,q'] and [r,7'] in Q have a rational point in common;

e unequal (or distinct), written x # y, if there exist (¢, ¢') € x and (r,7’) €
y such that the intervals [q, ¢'] and [r,7'] in Q are disjoint.

Taken with the equality and inequality we have defined above, the collection
of real numbers forms a set: the real line R.



Let x,y be real numbers. We say that

> x >y, and that y < x, if there exist (q,q') € x and (r,r’) € y such
that ' < g;

> x >y, and that y < x, if for all (¢,q¢') € x and all (r,7’) € y we have
g >r.

We pass over the (complicated) definitions of the algebraic operations on real
numbers.



The set R is uncountable: if (an),~1 is a sequence of real numbers, then
there exists x € [0, 1] such that x # ay, for each n.

The set R is complete: every Cauchy sequence of real numbers converges to
a limit in R. (The proof requires the principle of dependent choice.)

What about the order-completeness of R?



Let S be a subset of R.

An upper bound of /for S is a real number b such that x < b for each x € S.
We say that b is the supremum, sup S, of S if (i) it is an upper bound for S
and (ii) for each x < b there exists s € S such that x < s.
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We say that S is upper order located if for all rational numbers a, b with a < b,
either x < b for all x € S or else there exists x € S such that x > a.



Let S be a subset of R.

An upper bound of /for S is a real number b such that x < b for each x € S.
We say that b is the supremum, sup S, of S if (i) it is an upper bound for S
and (ii) for each x < b there exists s € S such that x < s.

We say that S is upper order located if for all rational numbers a, b with a < b,
either x < b for all x € S or else there exists x € S such that x > a.

The constructive least-upper-bound principle:

Let S be an inhabited set of real numbers that is bounded above.
Then sup S exists if and only if S is upper order located.

Analogous definitions and results hold for the infimum, inf S, of S.



The upper order locatedness cannot be dropped from the hypotheses of the
constructive least-upper-bound principle.

Consider any statement P. The set
S={0}u{xeR:z=1A(PV-P)}

is inhabited by O and bounded above by 1. Suppose that o = sup S exists.

Then 0 < 1. If 0 < 1, then = (P V —P), which is absurd. Hence ¢ = 1 and
there exists s € S with s > 1/2. It follows that

sc{xeR:z=1A(PV-P)},
so PV —P.



The upper order locatedness cannot be dropped from the hypotheses of the
constructive least-upper-bound principle.

Consider any statement P. The set
S={0}u{xeR:z=1A(PV-P)}

is inhabited by O and bounded above by 1. Suppose that o = sup S exists.
Then 0 < 1. If 0 < 1, then = (P V —P), which is absurd. Hence ¢ = 1 and
there exists s € S with s > 1/2. It follows that

sc{xeR:z=1A(PV-P)},
so PV —P.

From now on, we drop boldface notation for real numbers.
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Normed linear spaces

We'll skip over the theory of metric spaces.

Let X be a linear space over the field K (either R or C). An inequality
relation # on X is said to be compatible with the linear structure on X if, for
all z,y € X and t € K,

r#y & v—y#£0,
r+y#0 = x#0Vy#O0,
tr #0 = t#0Ax #0.

Then
rF£Yy=>Viex(@+z#y+2).

From now on, “linear space” means “linear space with a compatible inequality” .



A seminorm on a linear space X is mapping x ~~ ||z||of X into the nonnegative
real line RY* such that for all z,y in X and all ¢ in K,

 [[z]| >0= =z #0,

o [[tz|| = |t| ||x[|, and

o [[z+yll <=l + llyll-

Then (X, || ||)—or just X itself—is a seminormed (linear) space over K. If
the inequality satisfies

z # 0 < [z| >0,

then || || is called a norm on X.



Let X be a normed space. Then the mapping (z,y) ~> |[[x — y|| of X x X
into R is provides the associated metric p on X.

The unit ball of X is the closed ball with centre 0 and radius 1,

BX :EX(O,].) :E(O,l) = {CC c X : ||:13|| < 1},

relative to that metric. This ball, like any open or closed ball in a normed

space, is located.

We pass over most of the standard examples, notions, and elementary proper-
ties familiar from the classical theory of normed spaces.



A mapping u between vector spaces X, Y is linear if

u(x +y) = u(x) +u(y) and u(tx) = tu(x)
whenever z,y € X and t € K.

If X =Y, then w is called an operator on X.

If Y = K, then w is called a linear functional on X.



A linear mapping u : X — Y between normed spaces is continuous on X

if and only if it is bounded, in the sense that there exists ¢ > 0 such that
|lu(x)|| < c||z|| for each z € X.

This is not enough to ensure that u is normed/normable, in the sense that

|u]| = sup {[|u(z)]] : z € X, ||z|| < 1}
exists.

There is a criterion for the normability of nonzero bounded linear functionals.



Proposition: A nonzero linear functional w on a normed space X is normed
if and only if

keru={z € X : u(z) =0}

Is located in X.

Basic idea of the proof: for each z € X,

u(z)
lull

p(x, keru) =

provided either p(x, ker u) or [|ul| exists.



The classically redundant notion of normability plays a key role in the Riesz
representation theorem:

Theorem: A bounded linear functional w on a Hilbert space is normed if and

only if there exists a unique vector a € H such that u(x) = (x,a) for each
x € H.

Proving “only if’ is the harder part, in which the classical argument goes
through if ||u]| > 0.



For the general case, we use a little trick.

We consider the direct sum H & K, a Hilbert space with the inner product

((2,0),(2,¢)) = (w,2") +¢¢,
on which we define a nonzero bounded linear functional v by
v(z,¢) = u(z) + ¢

A little work shows that v is normed. By the first part of the proof, there exists
a € X such that

v(z,¢) = {(z,¢),(a,1))
for each (z,{) € H ® K. Then u(x) = (x,a) for each x € H.



For any not-necessarily-bounded operator 1" on H, we define the adjoint T™,
if it exists, by the equation

(Tz,y) =(z, T"y) (x,y € H), (1)
in which case we refer to 1" as jointed.

Classically, the Riesz representation theorem enables us to prove the existence
of T'* for any bounded operator T" on H.



For any not-necessarily-bounded operator 1" on H, we define the adjoint T™,
if it exists, by the equation

(Tz,y) = (x, T"y) (z,y € H), (2)

in which case we refer to 1" as jointed.

Classically, the Riesz representation theorem enables us to prove the existence
of T'* for any bounded operator T" on H.

Constructively, the universal existence of adjoints for bounded operators on 5
implies LPO.



Can we characterise those bounded operators for which the adjoint exists?



Can we characterise those bounded operators for which the adjoint exists?
Yes, by the following result of Ishihara and Richman.

Proposition. A bounded operator I' on a Hilbert space H is jointed if and
only if it maps the unit ball of H to a located set—that is, if and only if

p(z, T(B)) = inf{p(x,Ty) : [ly]| <1}

exists for each x € H.



Best approximation theory

Let X be a linear space.

Vectors €1, ...,en in X are linearly independent if for all scalars A1,...,An
n n
such that Y |A;| > 0 we have > A;e; # 0.

We say that X is finite-dimensional if either X = {0} or else it contains finitely
many linearly independent vectors eq, ..., en such that for each x € X there
exist scalars A1, ..., Ap for which z = 371" ; Ase;.

In the first case, X is O-dimensional.
In the second, X is n-dimensional and {ei,...,en} is a basis of X. The

coordinates u;(x) = A; are uniquely determined by xz, and the coordinate
functionals u; : X — K are linear mappings.



Inducting on the dimension, we can prove, in turn, that

(i) the coordinate functionals on a finite-dimensional normed space are bounded,
and

(ii) every linear mapping of a finite-dimensional normed space into a normed
space is bounded and normed.



Inducting on the dimension, we can prove, in turn, that

(i) the coordinate functionals on a finite-dimensional normed space are bounded,
and

(ii) every linear mapping of a finite-dimensional normed space into a normed
space is bounded and normed.

We also have this familiar

Proposition: A normed space is finite-dimensional if and only if its closed unit
ball is compact.



A subspace Y of a metric space (X, p) is called proximinal if each element
of X has a best approximation in Y: that is, if for each a € X there exists

b € Y such that p(a,b) < p(a,y) for all y € Y. In that case, Y is located
in X :

p(z,Y) =inf{p(z,y) :y €Y}

exists for each ¢ € X.

Classical fundamental theorem of approximation theory: a finite-dimensional
subspace V' of a real normed space X is proximinal.



A subspace Y of a metric space (X, p) is called proximinal if each element
of X has a best approximation in Y: that is, if for each a € X there exists

b € Y such that p(a,b) < p(a,y) for all y € Y. In that case, Y is located
in X :

p(z,Y) =inf{p(z,y) :y €Y}

exists for each ¢ € X.

Classical fundamental theorem of approximation theory: a finite-dimensional
subspace V' of a real normed space X is proximinal.

The constructive content of the classical proof of this result is simply that
the finite-dimensional subspace V' is located in X. The existence of a best
approximation in the case of general X and V implies LLPO.

For a constructive counterpart to the theorem, we introduce new notions.



We say that a has at most one best approximation in Y if for all distinct points
v,y in Y, there exists z € Y such that

max {p(a, ), p(a,y)} > pla, 2).

We call Y quasiproximinal if each point of X with at most one best approxi-
mation in Y actually has a (perforce unique) best approximation in Y.

Proximinal implies quasiproximinal.



We say that a has at most one best approximation in Y if for all distinct points
v,y in Y, there exists z € Y such that

max {p(a, ), p(a,y)} > pla, 2).

We call Y quasiproximinal if each point of X with at most one best approxi-
mation in Y actually has a (perforce unique) best approximation in Y.

Proximinal implies quasiproximinal.

The converse cannot be proved in BISH but can be proved using LEM:

Suppose that a € X has no best approximation in a quasiproximinal
subspace Y of X. Then (classically!) a has at most one best approx-
imation in Y'; so, by quasiproximinality, a has a best approximation
in Y, which is a contradiction.



The next lemma is crucial for the proof of our approximation theorem. In it,

Re={Xe: A€ R}.

Lemma: Let x,e be elements of a real normed space X with e # 0, and let
d > 0. Suppose that

max {||z — te]|,

x —t/eH} > d

whenever t,t' are distinct real numbers. Then there exists T € R such that if
|z — Te|| > d, then p(x,Re) > d.



The next lemma is crucial for the proof of our approximation theorem. In it,

Re={)e: A€ R}.

Lemma: Let x,e be elements of a real normed space X with e # 0, and let
d > 0. Suppose that

max{||a: — tel|, [|x — t/eH} > d

whenever t,t’ are distinct real numbers. Then there exists T € R such that if
|z — Te|| > d, then p(x,Re) > 0.

Constructive fundamental theorem of approximation theory: Every
finite-dimensional subspace of a real normed space is quasiproximinal.

Proved by induction on the dimension n of the subspace. The case n = 0 is
trivial; the case n = 1 follows easily from the lemma. The lemma is also used
in the induction step.



Our fundamental theorem can be used to give an algorithmic proof of the ex-

istence of best Chebyshev approximations—i.e. in the case X = C'[0, 1], and

the finite-dimensional space is generated by the monomials 1, x, 2, ... "
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Our fundamental theorem can be used to give an algorithmic proof of the ex-
istence of best Chebyshev approximations—i.e. in the case X = C'[0, 1], and

the finite-dimensional space is generated by the monomials 1, x, 2, ... "

What about the well-known Remes algorithm for computing best Chebyshev
approximations?

The classical proof of its convergence has an essentially nonconstructive step
and therefore does not provide rates of convergence!

A constructive version of the Remes algorithm, with a fully constructive proof
of convergence, was given by dsb in 1978.



The scope of constructive mathematics

Analysis

Complex analysis, including the Picard theorems and the Riemann mapping
theorem.

Abstract integration and measure theory.
Haar measure on locally compact groups.
Spectral theory for normal operators.
Banach algebras.

Operator algebras: characterisation of ultraweakly continuous linear function-
als; double commutant theorem for commutative von Neumann algebras.



Algebra

Constructive counterparts of large tracts of classical algebraic theories, includ-
ing Galois theory and the Hilbert basis theorem (!).

Topology

Formal (pointfree) topology (Sambin, 2013).

Apartness and uniform spaces (Bridges and Vit3, 2011).

dsb lecture at University of Ni§, Serbia, 18 January 2013.



