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Abstract

Some lattice stuff for the current EIDMA course.

1 Intro

For many applications one needs dense arrangements of balls in Euclidean
space. Parameters to be optimized are e.g. packing density, covering density,
kissing number (the number of balls that touch a given ball). Just as in
coding theory, where the best codes sometimes are nonlinear but most of
the theory concerns the linear case, here the best arrangements sometimes
are non-lattice, but most of the theory concerns lattice arrangements.

2 Lattices

Lattice

A lattice Λ is a discrete additive subgroup of Rn. Equivalently, it is a finitely
generated free Z-module with positive definite symmetric bilinear form.

Basis

Assume that our lattice Λ has dimension n, i.e., spans Rn. Let {a1, ..., an}
be a Z-basis of Λ. Let A be the matrix with the vectors ai as rows. If we
choose a different Z-basis {b1, ..., bn}, so that bi =

∑
sijaj , and B is the

matrix with the vectors bi as rows, then B = SA, with S = (sij). Since S
is integral and invertible, it has determinant ±1. It follows that |detA| is
uniquely determined by Λ, independent of the choice of basis.
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Volume

Rn/Λ is an n-dimensional torus, compact with finite volume. Its volume is
the volume of the fundamental domain, which equals |detA|.

If Λ′ is a sublattice of Λ, then vol(Rn/Λ′) = vol(Rn/Λ).|Λ/Λ′|.

Gram matrix

Let G be the matrix (ai, aj) of inner products of basis vectors for a given
basis. Then G = AA>, so vol(Rn/Λ) =

√
detG.

Dual lattice

The dual Λ∗ of a lattice Λ is the lattice of vectors having integral inner
products with all vectors in Λ: Λ∗ = {x ∈ Rn|(x, r) ∈ Z for all r ∈ Λ}.

It has a basis {a∗1, ..., a∗n} defined by (a∗i , aj) = δij .
Now A∗A> = I, so A∗ = (A−1)> and Λ∗ has Gram matrix G∗ = G−1.
It follows that vol(Rn/Λ∗) = 1/vol(Rn/Λ).
We have Λ∗∗ = Λ.

Integral lattice

The lattice Λ is called integral when the inner products of lattice vectors are
all integral.

For an integral lattice Λ one has Λ ⊆ Λ∗.
The lattice Λ is called even when (x, x) is an even integer for each x ∈ Λ.

An even lattice is integral. An integral lattice that is not even is called odd.

Discriminant

The determinant, or discriminant, disc Λ of a lattice Λ is defined by disc Λ =
detG. When Λ is integral, we have disc Λ = |Λ∗/Λ|.

A lattice is called self-dual or unimodular when Λ = Λ∗, i.e., when it is
integral with discriminant 1. An even unimodular lattice is called Type II,
the remaining unimodular lattices are called Type I.

If there is an even unimodular lattice in Rn, then n is divisible by 8.
(This follows by studying the associated theta series and modular forms.
See also below under Leech lattice.)
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3 Examples

3.1 Zn
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Unimodular, type I.
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Basis {r, s}. Gram matrix G =
(

2 −1
−1 2

)
, so that detG = 3. A fundamental

region for A2 is the parallelogram on 0, r, s. A fundamental region for A∗2 is
the parallelogram on 0, p, q. Note that the area of the former (

√
3) is thrice

that of the latter (1/
√

3).

The representation of this lattice in R2 has nonintegral coordinates. It
is easier to work in R3, on the hyperplane

∑
xi = 0, and choose r =

e1 − e2 = (1,−1, 0), s = e2 − e3 = (0, 1,−1). Then A2 consists of the
points (x1, x2, x3) with xi ∈ Z and

∑
xi = 0. The dual lattice A∗2 consists

of the points (x1, x2, x3) with x1 ≡ x2 ≡ x3 (mod 1) and
∑
xi = 0 (so that

3x1 ∈ Z). It contains for example p = 1
3(2r + s) = (2

3 ,−
1
3 ,−

1
3).

4 Constructions

Let ρ : Zn → 2n be coordinatewise reduction mod 2. Given a binary linear
code C, the lattice ρ−1(C) is integral, since it is contained in Zn, but never
unimodular, unless it is all of Zn, a boring situation.

It turns out to be more useful to look at 1√
2
ρ−1(C). This is an inte-

gral lattice when inner products of code words are even, that is, when C
is self-orthogonal. If dimC = k then vol(Rn/ρ−1(C)) = 2n−k and hence

vol(Rn/ 1√
2
ρ−1(C)) = 2

1
2
n−k. In particular, 1√

2
ρ−1(C) will be unimodular

when C is self-dual, and even when C is ”doubly even”.
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Example

Let C be the [8,4,4] extended Hamming code. Then 1√
2
ρ−1(C) is a unimod-

ular 8-dimensional lattice known as E8.
The code C has weight enumerator 1+14X4 +X8 (that is, has one word

of weight 0, 14 words of weight 4, and one word of weight 8). It follows
that the roots (vectors r with (r, r) = 2) in this incarnation of E8 are the 16
vectors ± 1√

2
(2, 0, 0, 0, 0, 0, 0, 0) (with 2 in any position), and the 16.14 = 224

vectors 1√
2
(±1,±1,±1,±1, 0, 0, 0, 0) with ±1 in the nonzero positions of a

weight 4 vector. Thus, there are 240 roots.

5 Root lattices

A root lattice is an integral lattice generated by roots (vectors r with (r, r) =
2). The set of roots in a root lattice is a (reduced) root system Φ, i.e., satisfies

(i) If r ∈ Φ and λr ∈ Φ, then λ = ±1.

(ii) Φ is closed under the reflection wr that sends s to s−2 (r,s)
(r,r)r for each

r ∈ Φ.
(iii) 2 (r,s)

(r,r) ∈ Z.

For example, A2 and E8 are root lattices.

Since Φ generates Λ and Φ is invariant under W = 〈wr|r ∈ Φ〉, the same
holds for Λ, so root lattices have a large group of automorphisms.

A fundamental system of roots Π in a root lattice Λ is a set of roots
generating Λ and such that (r, s) ≤ 0 for distinct r, s ∈ Π. A reduced funda-
mental system of roots is a fundamental system that is linearly independent.
A non-reduced fundamental system is called extended.

For example, in A2 the set {r, s} is a reduced fundamental system, and
{r, s,−r − s} is an extended fundamental system.

The Dynkin diagram of a fundamental system Π such that (r, s) 6= −2
for r, s ∈ Π, is the graph with vertex set Π where r and s are joined by
an edge when (r, s) = −1. (The case (r, s) = −2 happens only for a non-
reduced system with A1 component. In that case we do not define the
Dynkin diagram.)

Every root lattice has a reduced fundamental system: Fix some vector
u, not orthogonal to any root. Put Φ+(u) = {r ∈ Φ|(r, u) > 0} and Π(u) =
{r ∈ Φ+(u)|r cannot be written as s + t with s, t ∈ Φ+(u)}. Then Π(u) is
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a reduced fundamental system of roots, and written on this basis each root
has only positive or only negative coefficients.

(Indeed, if r, s ∈ Π(u) and (r, s) = 1, then say r − s ∈ Φ+(u) and
r = (r − s) + s, contradiction. This shows that Π(u) is a fundamental
system. If

∑
γrr = 0, then separate the γr into positive and negative ones

to get
∑
αrr =

∑
βss = x 6= 0 where all coefficients αr, βs are positive.

Now 0 < (x, x) =
∑
αrβs(r, s) ≤ 0, contradiction. This shows that Π(u) is

reduced. Each root in Φ+(u) has an expression over Π(u) with only positive
coefficients.)

Proposition 5.1 Let Π be a reduced fundamental system.
(i) For all x ∈ Rn there is a w ∈ W such that (w(x), r) ≥ 0 for all

r ∈ Π.
(ii) Π = Π(u) for some u. (That is, W is transitive on reduced funda-

mental systems.)
(iii) If Λ is irreducible (not an orthogonal direct sum), then there is a

unique r̃ ∈ Φ such that Π ∪ {r̃} is an extended fundamental system.

Proof: (i) Let G be the Gram matrix of Π, and write A = 2I −G. Since
G is positive definite, A has largest eigenvalue less than 2. Using Perron-
Frobenius, let γ = (γr)r∈Π be a positive eigenvector of A. If (x, s) < 0 for
some s ∈ Π, then put x′ = ws(x) = x− (x, s)s. Now

(x′,
∑
r

γrr) = (x,
∑
r

γrr)− (Gγ)s(x, s) > (x,
∑
r

γrr).

But W is finite, so after finitely many steps we reach the desired conclusion.
(ii) Induction on |Π|. Fix x with (x, r) ≥ 0 for all r ∈ Π. Then Π0 =

Π∩x⊥ is a fundamental system of a lattice in a lower-dimensional space, so
of the form Π0 = Π0(u0). Take u = x+ εu0 for small ε > 0. Then Π = Π(u).

(iii) If r ∈ Φ+(u) has maximal (r, u), then r̃ = −r is the unique root
that can be added. It can be added, since (r̃, s) ≥ 0 means (r, s) < 0, so
that r+ s is a root, contradicting maximality of r. And it is unique because
linear dependencies of an extended system correspond to an eigenvector with
eigenvalue 2 of the extended Dynkin diagram, and by Perron-Frobenius up to
a constant there is a unique such eigenvector when the diagram is connected,
that is, when Λ is irreducible. 2

The examples

The irreducible root lattices one finds are An (n ≥ 0), Dn (n ≥ 4), E6, E7,
E8. Each is defined by its Dynkin diagram.
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(1) An: The lattice vectors are: x ∈ Zn+1 with
∑
xi = 0. There are

n(n+1) roots: ei−ej (i 6= j). The discriminant is n+1, and A∗n/An ' Zn+1,
with the quotient generated by 1

n+1(e1 + ...+ en − nen+1) ∈ A∗n.

s
e2 − e1

s
e3 − e2

s s s
en+1 − en

c(e1 − en+1)

��
��

�
��
�

HH
HH

H
HH

H

(2) Dn: The lattice vectors are: x ∈ Zn with
∑
xi ≡ 0 (mod 2). There

are 2n(n − 1) roots ±ei ± ej (i 6= j). The discriminant is 4, and D∗n/Dn is
isomorphic to Z4 when n is odd, and to Z2×Z2 when n is even. D∗n contains
e1 and 1

2(e1 + ...+ en). Note that D3 ' A3.

s
e2 − e1

s
e3 − e2

se1 + e2

s s s
en−1 − en−2

c(−en−1 − en)

s
en − en−1

(3) E8: (Recall that we already gave a construction of E8 from the
Hamming code.) The lattice is the span of D8 and c := 1

2(e1+...+e8). There
are 240 = 112 + 128 roots, of the forms ±ei±ej (i 6= j) and 1

2(±e1± ...±e8)
with an even number of minus signs. The discriminant is 1, and E∗8 = E8.

s
e2 − e1

s
e3 − e2

s
e4 − e3

s1
2
(1, 1, 1,−1,−1,−1,−1, 1)

s
e5 − e4

s
e6 − e5

s
e7 − e6

s
−e7 − e8

c
(c)

(4) E7: Take E7 = E8 ∩ c⊥. There are 126 = 56 + 70 roots. The
discriminant is 2, and E∗7 contains 1

4(1, 1, 1, 1, 1, 1,−3,−3).

c
(e1 − e8)

s
e2 − e1

s
e3 − e2

s
e4 − e3

s1
2
(1, 1, 1,−1,−1,−1,−1, 1)

s
e5 − e4

s
e6 − e5

s
e7 − e6

(5) E6: For the vector d = −e7 − e8, take E6 = E8 ∩ {c, d}⊥. There
are 72 = 32 + 40 roots. The discriminant is 3, and E∗6 contains the vector
1
3(1, 1, 1, 1,−2,−2, 0, 0).
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s
e2 − e1

s
e3 − e2

s
e4 − e3

s 1
2
(1, 1, 1,−1,−1,−1,−1, 1)

c (e7 − e8)

s
e5 − e4

s
e6 − e5

That this is all, is an easy consequence of the Perron-Frobenius theorem:
A = 2I−G is the adjacency matrix of a graph, namely the Dynkin diagram,
and it is easy to classify the connected graphs with largest eigenvalue less
than 2—they are the Dynkin diagrams of reduced fundamental systems of
irreducible root systems—and the connected graphs with largest eigenvalue
2—they are the Dynkin diagrams of extended root systems.

6 The Leech lattice

Theorem 6.1 There exists a unique even unimodular lattice without roots
in R24. It has 196560 vectors of weight 4.

Construction: a spanning set consists of the vectors 1√
8
(∓3,±123) with

∓3 in any position, and the upper signs in a code word of the extended
binary Golay code.

For the vectors of weight 4 one finds the shapes 42 022, 3 123, 28 016

(omitting the 1√
8
) with frequencies 22

(
24
2

)
, 212.24 and 27.759, respectively.

Uniqueness is proved using θ-functions and the theory of modular forms.
Given a lattice Λ, define

θΛ(z) =
∑
x∈Λ

q
1
2

(x,x)

where q = e2πiz and Im(z) > 0.
One has

θΛ∗(z) = det(Λ)
1
2

(
i

z

)n
2

θΛ(−1

z
).

Here the Leech lattice has Λ = Λ∗ and det(Λ) = 1, so that θΛ(z) is a
modular form of weight 12.

The space of modular forms of weight 12 has dimension 2, and the two
conditions: unique vector of norm 0, no vectors of norm 2, determine θΛ(z)

7



uniquely. Thus, any even unimodular lattice without roots in R24 must have
the same weight enumerator as the Leech lattice.

Some more work gives the desired conclusion.

7 The Barnes-Wall lattice

Take the first order Reed-Muller code C of length 16. This is a binary linear
[16,5,8] code, with weight enumerator 1 + 30X8 +X16.

Define the Barnes-Wall lattice Λ16 by: 1√
2
x ∈ Λ16 iff x is an integral

vector, with x mod 2 in C and
∑
xi ≡ 0 (mod 4).

This is a lattice of determinant 28 and minimum norm 4. The kissing
number equals τ = 4320 (namely, 480 vectors of shape 1√

2
(±22, 014) and

3840 vectors of shape 1√
2
(±18, 08) with the 1’s at the positions of a code

word.

(This type of construction is especially useful when d = 8, since two
shapes contribute to the kissing number. For larger n chains of binary codes
are used to place the 1’s, 2’s, 4’s, etc.)

8 The Coxeter-Todd lattice

Let ω = −1
2 + 1

2

√
−3 be a cube root of unity, and put θ = ω − ω̄ =

√
−3.

Let Λ be the 6-dimensional Z[ω]-lattice spanned by the six vectors
(4, 0, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0), (2, 0, 2, 0, 0, 0), (2, 0, 0, 2, 0, 0), (2, 0, 0, 0, 2, 0),
(θ, 1, 1, 1, 1, 1), provided with the positive definite inner product (u, v) =
uv̄>. Since θ = 2ω+ 1 all inner products are divisible by 4, and we see that
1
2Λ is a unimodular lattice Z[ω]-lattice.

This definition looks asymmetric, but in fact the group is large: the
automorphism group of the 6-dimensional Z[ω]-lattice is 6.U4(3).2 of order
29.37.5.7, inducing the symmetric group Sym(6) on the coordinate positions.

This 6-dimensional Z[ω]-lattice Λ is a 12-dimensional Z-lattice. If the
complex lattice has coordinate positions eh (1 ≤ h ≤ 6), then we can take
12 coordinate positions eh, ieh for the real lattice, and given a Z[ω]-basis
with vectors uj , we find a Z-basis with vectors uj , (ω − 1)uj . A diagonal

2 now becomes
(

2
−3
√

3

)
. Consequently, K12 := 1√

2
Λ is an integral lattice

with determinant 36. (One checks that (a+ bi)(c−di) = ac+ bd+ (bc−ad)i
and ((a, b), (c, d)) = ac + bd so that the real inner product is the real part
of the complex inner product. Since Re(ω) = −1

2 , we need an extra factor 2
to guarantee that the inner product is integral.)
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The dual K∗12 is spanned by the six vectors 1√
2
uj and the six vectors

1
3
√

2
(ω − 1)uj . (Thus, K∗12/K12 can be regarded as a 6-dimensional vector

space over GF (3).)
The minimum norm is 4, and the kissing number is 756. (Indeed, there

are 32.6.3 = 576 vectors of the form 1√
2
ωj(±θ,±1, ...,±1) with an even

number of minus signs, the ±θ in any position, and j = 0, 1, 2, and also
15.4.3 = 180 vectors of the form 1√

2
ωj(±2,±2, 0, 0, 0, 0) with the ±2 in any

positions.)
There are many equivalent descriptions. A short one: take the vectors

u+ ωθv, with u ∈ E6 and v ∈ E∗6 .

9 Records

We quote a table from Conway & Sloane giving the best lattices known in
low dimensional spaces.

dimension 1 2 3 4 5 6 7 8 12 16 24
densest
packing

Z A2 A3 D4 D5 E6 E7 E8 K12 Λ16 Λ24

highest
kissing
number

Z A2 A3 D4 D5 E6 E7 E8 P12a Λ16 Λ24

2 6 12 24 40 72 126 240 840 4320 196560
thinnest
covering

Z A2 A∗3 A∗4 A∗5 A∗6 A∗7 A∗8 A∗12 A∗16 Λ24

best
quantizer

Z A2 A∗3 D4 D∗5 E∗6 E∗7 E8 K12 Λ16 Λ24

Here K12 is the Coxeter-Todd lattice, Λ16 is the Barnes-Wall lattice, Λ24

is the Leech lattice, and P12a is a certain non-lattice packing.
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