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Section 2 Real and rational homotopy theory 883 

Est Theorem holds, namely, H*{K{R, n); R) is a polynomial or exterior algebra on one 
generator in dimension n, according as n is even or odd. The rational and real theories 
are then so similar that we can do them simultaneously. Hereafter, we let R denote R 
or Q. When R = Q our theorems apply to AS and when R = i? to AT where T is 
the category of topological spaces with compactly generated topologies. (See Section 2.) 
We also view simplicial sets as simplicial spaces with the discrete topology so the real 
theory also applies to AS. In Section 8, we compare the real and rational theories on 
AS. They turn out to be substantially different. 

Our second direction for extending this theory is to eliminate the nilpotent requirement. 
We do this by fixing a group TT, considering path connected X e AT with 6 : TTI (X) « TT 
and localizing X by fibrewise localizing the map X to BIT defined by e. The problem is 
then to make sense out of minimal models in this context. A first approximation would 
be to take a minimal model for X, the universal covering of X. However, this is too 
crude. For example, one loses the action of TT on the higher homotopy groups so that X 
and X X B-K would have the same minimal model. Including a TT action on the minimal 
model for X will give a satisfactory definition of a minimal model for X when TT is 
finite. However, this model will not in general, contain enough information to include all 
possible k invariants, for example, for adding Z as -KI to -BTT when TT = Z. A strategy 
that works for all TT is to replace R by a DG algebra AQ with a TT action which models 
fi{E'K) (for all local coefficients). One can then define AT^, QT^ and minimal models so 
that the foundational theorems referred to above hold. (See Section 5.) 

The notion of localization being considered here may also be viewed as localizing 
a category with respect to a set of weak equivalences [14]. For the Quillen-Sullivan 
rational homotopy theory one considers the category Zî Np of nilpotent simplicial sets of 
finite type and as weak equivalences, mappings / : X —> Y inducing an isomorphism 
on rational cohomology. For real homotopy theory one enlarges -4«SNF to ^ T N F . the 
category of nilpotent simplicial spaces of finite type and as weak equivalences, maps 
which induce an isomorphism on continuous cohomology with coefficients in the reals. 
In this paper, we in effect consider Zi5o,F, the category of connected simplicial sets with 
base point and finitely generated homotopy groups and as weak equivalences mappings 
/ : X —• Y which induce isomorphisms on fundamental groups and on cohomology 
with local coefficients in Q vector spaces. We also consider A%j:, the category of 
connected simplicial spaces with base point and locally Euclidean homotopy groups and 
as weak equivalences mappings / : X —^ Y which induce isomorphisms on fundamental 
groups and on continuous cohomology with local coefficients in R vector spaces. 

2. The categories A% and A-n 

In this section, we introduce the important categories A% and A-j^. We also prove a 
basic result (Theorem 2.2) relating function spaces and fibrations in these categories. 

Recall that for a category C, A, J5 G C means A and B are objects of C and {A, B) 
denotes morph(>l,B). We denote by CT^ the category of C objects with TT actions and 
TT-equivariant maps as morphisms. An object of CTT is a pair (A, p) where A ^C and p 
is a homomorphism of TT into {A, A), required to be continuous when the morphisms of 
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with rrin —>̂  oo as n —> oo, a sequence {Mn} of topological 7r-modules in T, and a 
sequence of mappings k^'^^ : Xn-\ -> K{Mn,rnn^\) such that Xn = (Xn~i)fcn+i 
and limXn is homotopy equivalent to X. We say X has a simple Postnikov system if 
Ml = 0 and nin = n for all n. 

Suppose X is a 0-connected Kan simplicial space with 7ri(X) = n and suppose 
p : X —> BIT = -Rr(7r, 1) induces an isomorphism on fundamental groups. Let p : 
X —y £J(7r, 0) = Eir be the induced fibration: 

X — ^ ETT 

[ i 
X —^-^ BIT 

The following is well known: 

THEOREM 4.4. Ifir is discrete and {X,p) E {A%,)E'K is a simplicial set, then {X,p) 
has a simple Postnikov system. 

Within the context of our machinery, one can study all simplicial spaces (sets) through 
the following approach. Let ATT^ be the category of pairs {X, p) where X is a 0-connec-
ted Kan simplicial space (set) with base point and p : X —• Brc is a fibration such that 
p* : 7ri(X) « 7ri(B7r). The category ATT, embeds in {A%)E7r by sending {X,p) to 

DEFINITION 4.5. We say that {X,p) e AT^ has a Postnikov system if (X,p) has a 
simple Postnikov system. 

THEOREM 4.6. If {X, p) e. A% and X is a 0-connected simplicial set (discrete topology) 
then it has a Postnikov system. 

Suppose X = BXrF is ai twisted Cartesian product of B and F with structural group 
G, all in A%r. Let JB^ )̂ be the p skeleton of B, that is, the smallest simplicial subspace 
of B containing all Bq, q^p. Filter C*{X; My by 

F^'^ = {ue C^+^(X;M)-|u(47;) X Fp+,) = O}. 

The usual definitions ([15]) then yield the Serre spectral sequence {E^^^} with its usual 
relation to H*[X\M). Let 

e : CP(B;C^(F;M)) —^ C P + ^ ( X ; M ) 

be given by 


