Topological Hochschild homology of topological modular forms

Bob Bruner¹ John Rognes²

¹Department of Mathematics Wayne State University

²Department of Mathematics University of Oslo

Nordic Topology Meeting, NTNU, November 2008

Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms

Outline

イロト イポト イヨト イヨト

æ

Red-Shift Trace Invariants Circle Action Results

Outline

- 2 K(n)-Local THH(tmf)
- Homology of THH(tmf)
- Homotopy of THH(tmf)

イロト イボト イヨト イヨト

э

Red-Shift Trace Invariants Circle Action Results

Chromatic Red-Shift

Algebraic *K*-theory often increases chromatic complexity by one.

- Algebraic *K*-theory of a finite field is a form of integral cohomology.
- Algebraic *K*-theory of the integers is a form of topological *K*-theory.
- Algebraic *K*-theory of topological *K*-theory is a form of elliptic cohomology.

We study algebraic *K*-theory of elliptic cohomology, K(tmf), expecting to find a form of a v_3 -periodic cohomology theory, tentatively called hyperelliptic cohomology.

Red-Shift Trace Invariants Circle Action Results

Periodic Families

With increasing chromatic complexity, more of the stable homotopy groups of spheres is detected.

- Rational cohomology detects the 0-stem $\pi_0(S)$.
- Topological *K*-theory detects the image-of-*J* summand in $\pi_*(S)$. This includes all classes in dimensions $* \le 5$.
- Elliptic cohomology detects the v_2 -periodic families in $\pi_*(S)$. For p = 2, this includes all classes in dimensions $* \leq 30$.

With K(tmf) we may hope to show that $\eta\theta_4$ in the 31-stem, or certain classes in the 39- to 41-stems, are part of v_3 -periodic families. No such periodic family is presently known for p = 2.

ヘロト ヘ戸ト ヘヨト ヘヨト

Red-Shift Trace Invariants Circle Action Results

Trace Invariants of Algebraic K-Theory

• We study the algebraic *K*-theory of an *S*-algebra *B* by the Bökstedt–Hsiang–Madsen trace maps

$$tr: \mathcal{K}(B) \xrightarrow{trc} \mathcal{TC}(B; p) \longrightarrow \mathcal{THH}(B).$$

 The right hand map factors through the S¹-homotopy fixed points

$$THH(B)^{hS^1} = F(S^{\infty}_+, THH(B))^{S^1}$$

and the approximate S¹-homotopy fixed points

$$THH(B)^{aS^1} = F(S^3_+, THH(B))^{S^1}$$

Red-Shift Trace Invariants Circle Action Results

σ -operator

• The cyclic structure on THH(B) gives a circle action

 $S^1_+ \wedge \textit{THH}(B) \to \textit{THH}(B) \,.$

• The σ -operator

$$\sigma \colon H_*THH(B) \to H_{*+1}THH(B)$$

is induced by circle action and the fundamental class in $H_1(S^1_+)$.

イロト イポト イヨト イヨト

э.

Red-Shift Trace Invariants Circle Action Results

Summary of Results

Let p = 2 and B = tmf, the topological modular forms spectrum. We can:

- Compute the Morava K(n)-localizations L_{K(n)} THH(tmf) for 0 ≤ n ≤ 2.
- Describe *H*_{*}*THH*(*tmf*) as an *A*_{*}-comodule algebra.
- Give a (quite complete) calculation of $\pi_* THH(tmf)$.

To pass from homological to homotopical calculations, we use the Adams spectral sequence.

Red-Shift Trace Invariants Circle Action Results

Plans for Further Work

Jointly with Sverre Lunøe-Nielsen we plan to:

- Determine $H_*THH(tmf)^{aS^1}$ as an A_* -comodule algebra
- Compute $\pi_* THH(tmf)^{aS^1}$ (in a range)
- Use this to detect potential ν₃-periodic classes in π_{*}(S)

Similar results for $THH(tmf)^{hS^1}$ or the S^1 -Tate construction $THH(tmf)^{tS^1}$ would establish v_3 -periodicity.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hyperelliptic Cohomology	K(0)-Local THH(tmf)
K(n)-Local THH(tmf)	K(1)-Local THH(tmf)
Homology of THH(tmf)	K(2)-Local THH(tmf)
Homotopy of THH(tmf)	Chromatic Assembly

Outline

Homology of THH(tmf)



・ 同 ト ・ ヨ ト ・ ヨ ト

æ

K(0)-Local THH(tmf) K(1)-Local THH(tmf) K(2)-Local THH(tmf) Chromatic Assembly

Rational THH(tmf)

In rational (= K(0)-local) homotopy

 $\pi_*(\mathit{tmf})\otimes \mathbb{Q}=\mathbb{Q}[\mathit{c}_4,\mathit{c}_6]$

equals elliptic modular forms, with $|c_i| = 2i$.

Theorem

 π_* THH(tmf) $\otimes \mathbb{Q}$ is an exterior algebra over π_* (tmf) $\otimes \mathbb{Q}$ on two algebra generators σc_4 and σc_6 in dimensions 9 and 13.

K(0)-Local THH(tmf) K(1)-Local THH(tmf) K(2)-Local THH(tmf) Chromatic Assembly

K(1)-Local THH(tmf)

By Hopkins and Laures, the KO_{*}-algebra unit map for *tmf* factors

$$KO_* \longrightarrow KO_*[x] \xrightarrow{f} KO_*tmt$$

where f is étale.

Theorem

 $\pi_* L_{K(1)} THH(tmf)$ is an exterior algebra over $\pi_* L_{K(1)} tmf = KO_*[j^{-1}]$ on one generator σf in dimension 1.

ヘロト 人間 とくほ とくほ とう

3

K(0)-Local THH(tmf) K(1)-Local THH(tmf) K(2)-Local THH(tmf) Chromatic Assembly

K(2)-Local THH(tmf)

By the Morava change-of-rings theorem the Hopkins–Miller spectrum $L_{K(2)}tmf = EO_2$ is a pro-étale extension of $L_{K(2)}S$.

Theorem

 $\pi_*L_{\mathcal{K}(2)}$ THH(tmf) is isomorphic to $\pi_*L_{\mathcal{K}(2)}$ tmf = π_*EO_2 .

 Hyperelliptic Cohomology
 K(C

 K(n)-Local THH(tmf)
 K(1

 Homology of THH(tmf)
 K(2

 Homotopy of THH(tmf)
 Chr

K(0)-Local THH(tmf) K(1)-Local THH(tmf) K(2)-Local THH(tmf) Chromatic Assembly

Chromatic Assembly Problem

THH(tmf) is

- K(0)-locally like four = 2^2 copies of *tmf*,
- K(1)-locally like two = 2^1 copies of *tmf*, and
- K(2)-locally like one = 2^0 copy of *tmf*.

What is the global picture?

Homology Calculation A_* -Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

Outline

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

The Steenrod Algebra

 Let A = ⟨Sqⁱ | i ≥ 1⟩ be the mod 2 Steenrod algebra and let

$$A_* = P(\bar{\xi}_k \mid k \ge 1)$$

be the dual Steenrod algebra, with $|\bar{\xi}_k| = 2^k - 1$.

• The coproduct on *A*_{*} is given by

$$\psi(\bar{\xi}_k) = \sum_{i+j=k} \bar{\xi}_i \otimes \bar{\xi}_j^{2^i}$$

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

Homology of tmf

In cohomology

$$H^*(tmf) = A \otimes_{A(2)} \mathbb{F}_2$$

where
$$A(2) = \langle Sq^1, Sq^2, Sq^4 \rangle$$
.

In homology

$$H_{*}(tmf) = P(\bar{\xi}_{1}^{8}, \bar{\xi}_{2}^{4}, \bar{\xi}_{3}^{2}, \bar{\xi}_{k} \mid k \geq 4)$$

is an A_* -comodule subalgebra of A_* .

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

The Bökstedt Spectral Sequence

The Bökstedt spectral sequence

$$E_{**}^2 = HH_*(H_*(tmf)) \Longrightarrow H_*(THH(tmf))$$

collapses at

$$E_{**}^2 = H_*(\textit{tmf}) \otimes E(\sigma \bar{\xi}_1^8, \sigma \bar{\xi}_2^4, \sigma \bar{\xi}_3^2, \sigma \bar{\xi}_k \mid k \ge 4)$$

since the algebra generators are in filtration \leq 1.

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

The Homology of *THH*(*tmf*)

The multiplicative extensions are determined by the Dyer–Lashof operations.

Theorem

$$H_*THH(tmf) = H_*(tmf) \otimes E^3P_*$$

as an A_{*}-comodule algebra, where

$$E^{3}P_{*} = E(\sigma \overline{\xi}_{1}^{8}, \sigma \overline{\xi}_{2}^{4}, \sigma \overline{\xi}_{3}^{2}) \otimes P(\sigma \overline{\xi}_{4}).$$

Homology Calculation *A*_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

The Adams Spectral Sequence for π_* *THH*(*tmf*), I

• The E2-term of the Adams spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{\mathcal{A}}^{s,t}(H^*THH(tmf),\mathbb{F}_2) \Longrightarrow \pi_{t-s}THH(tmf)_2^{\wedge}$$

can, by change-of-rings, be rewritten as

$$E_2^{**} = \operatorname{Ext}_{\mathcal{A}(2)}^{**}(E^3 \mathcal{P}^*, \mathbb{F}_2) = \operatorname{Ext}_{\mathcal{A}(2)_*}^{**}(\mathbb{F}_2, E^3 \mathcal{P}_*).$$

• We must understand E^3P_* as an $A(2)_*$ -comodule.

Homology Calculation **A_{*}-Comodule Decomposition** The Layer Comodules The *tmf*-Module Filtration

A_{*}-Coaction

The A_* -coaction is generated by

$$\begin{split} \sigma \bar{\xi}_{1}^{8} &\mapsto \mathbf{1} \otimes \sigma \bar{\xi}_{1}^{8} \\ \sigma \bar{\xi}_{2}^{4} &\mapsto \mathbf{1} \otimes \sigma \bar{\xi}_{2}^{4} + \bar{\xi}_{1}^{4} \otimes \sigma \bar{\xi}_{1}^{8} \\ \sigma \bar{\xi}_{3}^{2} &\mapsto \mathbf{1} \otimes \sigma \bar{\xi}_{3}^{2} + \bar{\xi}_{1}^{2} \otimes \sigma \bar{\xi}_{2}^{4} + \bar{\xi}_{2}^{2} \otimes \sigma \bar{\xi}_{1}^{8} \\ \sigma \bar{\xi}_{4} &\mapsto \mathbf{1} \otimes \sigma \bar{\xi}_{4} + \bar{\xi}_{1} \otimes \sigma \bar{\xi}_{3}^{2} + \bar{\xi}_{2} \otimes \sigma \bar{\xi}_{2}^{4} + \bar{\xi}_{3} \otimes \sigma \bar{\xi}_{1}^{8} \end{split}$$

so the square $(\sigma \bar{\xi}_4)^2$ in dimension 32 is A_* -comodule primitive.

Homology Calculation *A*_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

 A_* -Comodule Decomposition of E^3P_*

Definition

$$L[1]_* = \mathbb{F}_2\{\sigma\bar{\xi}_1^8, \sigma\bar{\xi}_2^4, \sigma\bar{\xi}_3^2, \sigma\bar{\xi}_4\}$$

with exterior powers the layer comodules

$$L[j]_* = \Lambda^j L[1]_* \quad \text{for } 0 \le j \le 4.$$

Lemma

$$E^{3}P_{*} = (L[0]_{*} \oplus \cdots \oplus L[4]_{*}) \otimes P((\sigma \overline{\xi}_{4})^{2})$$

is the direct sum of the terms $\Sigma^{32i}L[j]_*$ for $i \ge 0, 0 \le j \le 4$.

イロト イポト イヨト イヨト

э

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

The A_* -Comodules $L[j]_*$, I

The bottom and top exterior powers

$$L[0]_* = \mathbb{F}_2\{1\} \qquad 0$$

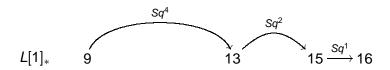
$$L[4]_{*} = \mathbb{F}_{2}\{\sigma\bar{\xi}_{1}^{8} \ \sigma\bar{\xi}_{2}^{4} \ \sigma\bar{\xi}_{3}^{2} \ \sigma\bar{\xi}_{4}\}$$
 53

are concentrated in dimensions 0 and 53.

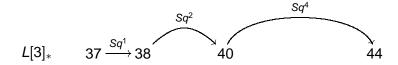
Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The tref Module Eiltration

The A_* -Comodules $L[j]_*$, II

The generating comodule



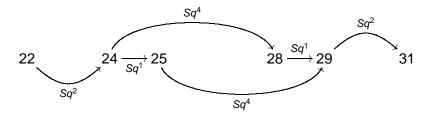
is dual to the third exterior power



Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules

The A_* -Comodules $L[j]_*$, III

The middle exterior power $L[2]_*$



is self-dual.

イロト イヨト イヨト イ

э

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Eiltration

A Realization Lemma

Lemma

For each $0 \le j \le 4$ there exists a finite CW spectrum L[j] with

$H_*L[j] = L[j]_*$

as *A*_{*}-comodules. This determines *L*[*j*] uniquely up to 2-adic equivalence.

イロト イポト イヨト イヨト

æ

Homology Calculation A_* -Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

A Linear Ordering

Each A_* -comodule $\Sigma^{32i}L[j]_*$ in the sum decomposition of

$$E^3 P_* = E(\sigma ar{\xi}^8_1, \sigma ar{\xi}^4_2, \sigma ar{\xi}^2_3) \otimes P(\sigma ar{\xi}_4)$$

has a unique A_* -comodule primitive.

We linearly order the summands according to the dimension of this primitive:

$$\begin{array}{c} L[0]_* \;,\; L[1]_* \;,\; L[2]_* \;,\; \Sigma^{32} L[0]_* \;,\; L[3]_* \;, \\ \Sigma^{32} L[1]_* \;,\; L[4]_* \;,\; \Sigma^{32} L[2]_* \;,\; \Sigma^{64} L[0]_* \;,\; \dots \end{array}$$

Homology Calculation *A*_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

A tmf-Module Filtration

Lemma

There is a filtration of tmf-module spectra

$$tmf = T^0 \rightarrow \cdots \rightarrow T^{k-1} \rightarrow T^k \rightarrow \cdots \rightarrow THH(tmf)$$

with homotopy cofiber sequences

$$T^{k-1} \rightarrow T^k \rightarrow \textit{tmf} \land \Sigma^{32i} L[j]$$

such that

$$H_*T^k = \bigoplus H_*(tmf) \otimes \Sigma^{32i}L[j]_*$$

is the sum of terms 0 through k in the linear ordering.

Homology Calculation A_{*}-Comodule Decomposition The Layer Comodules The *tmf*-Module Filtration

Comment on Proof

This is approximately the *tmf*-module filtration generated by a skeleton filtration.

When the $E^{3}P_{*}$ -summands overlap, as for $L[3]_{*}$ and $\Sigma^{32}L[1]_{*}$, the proof is incomplete, due to a possible attachment of a cell of the "lower" piece to a cell of the "higher" piece by η^{2} . This first plays a role in dimension 44, and can probably be resolved by the K(1)-local calculation.

Hyperelliptic Cohomology	Adams Sp. Seq. for <i>THH(tmf)</i>
K(n)-Local THH(tmf)	Adams Sp. Seg. for <i>tmf</i>
Homology of <i>THH(tmf</i>)	Adams Sp. Seq. for <i>tmf</i> \land <i>L</i> [1] and <i>tmf</i> \land <i>L</i> [2]
Homotopy of <i>THH(tmf</i>)	Remaining Steps

Outline

- K(n)-Local THH(tmf)
- Homology of THH(tmf)
- 4 Homotopy of *THH*(*tmf*)

イロト イポト イヨト イヨト

э

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

The Adams Spectral Sequence for $\pi_*THH(tmf)$, II

• The Adams spectral sequence E₂-term

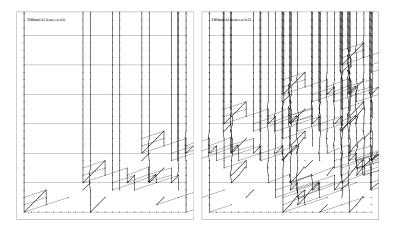
$$\begin{split} \mathsf{E}_2^{**} &= \mathsf{Ext}_{\mathsf{A}}^{**}(\mathsf{H}^*\mathsf{THH}(\mathit{tmf}), \mathbb{F}_2) \\ &= \mathsf{Ext}_{\mathsf{A}(2)}^{**}(\mathsf{E}^3\mathsf{P}^*, \mathbb{F}_2) \Longrightarrow \pi_*\mathsf{THH}(\mathit{tmf})_2^\wedge \end{split}$$

is machine computable using Bruner's ext-program.

• It gets crowded after the 30-stem.

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Adams Chart for π_* *THH*(*tmf*), $0 \le * \le 44$



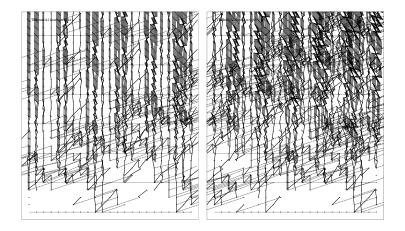
Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms

イロト イポト イヨト イヨト

3

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Adams Chart for π_* *THH*(*tmf*), $44 \le * \le 88$



Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Plan for the Calculation of π_* *THH*(*tmf*)

To clarify we use the *tmf*-module filtration:

- First calculate homotopy *tmf*_{*}(Σ³²*L*[*j*]) of the filtration quotients, for 0 ≤ *j* ≤ 4.
- Then assemble homotopy π_∗(T^k) of filtration stages, for k ≥ 0.

イロト イポト イヨト イヨト

э.

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Adams Spectral Sequence for Filtration Layers

• The Adams spectral sequence for the (*i*, *j*)-th layer

$$\begin{split} \mathsf{E}_2^{s,t} &= \mathsf{Ext}_A^{s,t}(\mathsf{H}^*(\mathit{tmf} \land \Sigma^{32i}\mathsf{L}[j]), \mathbb{F}_2) \\ &= \mathsf{Ext}_{\mathcal{A}(2)}^{s,t}(\Sigma^{32i}\mathsf{L}[j]^*, \mathbb{F}_2) \Longrightarrow (\mathit{tmf})_{t-s}(\Sigma^{32i}\mathsf{L}[j]) \end{split}$$

is practically independent of *i*.

• Reduces to the five cases $0 \le j \le 4$.

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Adams E_2 -Term for $\pi_* tmf$

For j = 0, L[0] = S and we are computing $\pi_* tmf$. The Adams E_2 -term

$$E_2^{s,t} = \mathsf{Ext}^{**}_{\mathcal{A}(2)}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow \pi_{t-s}(\mathit{tmf})_2^{\wedge}$$

was computed by Iwai-Shimada. It has algebra generators:

•
$$h_0, h_1, h_2$$

• $\alpha_0 = v_2^8, \alpha_1, \alpha_2, \dots, \alpha_6, \alpha_7$
• $\omega_0 = v_1^4, \omega_1$

イロト イポト イヨト イヨト

æ

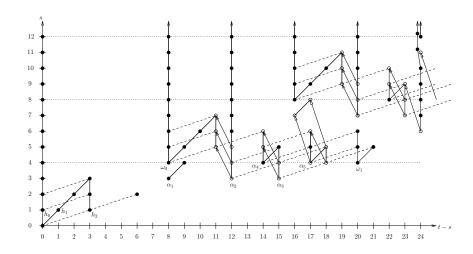
 Hyperelliptic Cohomology
 Adams Sp. Seq. for THH(tmf)

 K(n)-Local THH(tmf)
 Adams Sp. Seq. for tmf

 Homology of THH(tmf)
 Adams Sp. Seq. for tmf $\land L[1]$ and tm

 Homotopy of THH(tmf)
 Remaining Steps

Adams Chart for π_* *tmf*, $0 \le * \le 24$

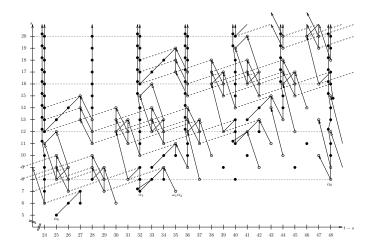


Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms

프 🖌 🖌 프

Adams Sp. Seq. for *THH*(*tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* \land *L*[1] and *tmf* \land *L*[2] Remaining Steps

Adams Chart for π_* *tmf*, $24 \le * \le 48$



프 🖌 🖌 프

Adams Sp. Seq. for *IHH*(*tmt*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* \land *L*[1] and *tmf* \land *L*[2] Remaining Steps

Adams Differentials for π_* *tmf*

Hopkins–Mahowald computed these Adams differentials. Permanent cycles are black. Dead classes are white. To describe the differentials, write the E_2 -term as the sum of two pieces:

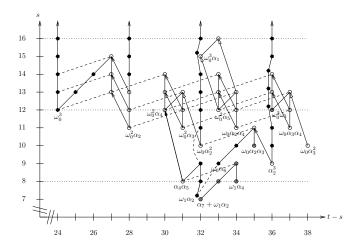
- The Bott periodic part: free over $P(\omega_0, \alpha_0) = P(v_1^4, v_2^8)$.
- The Mahowald–Tangora wedge: free of rank one over $P(v_1, w, \alpha_0)$ on $\omega_1 \alpha_3$ in dimension 35.

The first piece comes in several stages: Infantile, Puerile, Juvenile, Virile, Senile.

イロト イボト イヨト イヨト

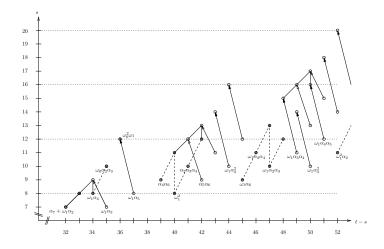
Adams Sp. Seq. for THH(tmf)Adams Sp. Seq. for tmfAdams Sp. Seq. for $tmf \land L[1]$ and $tmf \land L[2]$ Remaining Steps

Adams Chart for tmf — The Bott Periodic Part



Adams Sp. Seq. for *THH*(*tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* $\land L[1]$ and *tmf* $\land L[2]$ Remaining Steps

Adams Chart for tmf — The Wedge Part



Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms

3

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmfAdams Sp. Seq. for $tmf \land L[1]$ and $tmf \land L[2]$ Remaining Steps

Adams Spectral Sequence for tmf — Summary

- The Adams *E*₂-term for *tmf* is completely known, including cup and Massey products, by machine computation.
- The Adams differentials are completely known, using E_{∞} structure and/or the Adams–Novikov spectral sequence.
- The additive extensions of π_{*}(*tmf*) are completely known, using Massey products and Moss' theorem.

イロト イボト イヨト イヨト

Adams E_2 -Term for $tmf_*(L[1])$

• For
$$j = 1$$
, $L[1] = S^9 \cup_{\nu} e^{13} \cup_{\eta} e^{15} \cup_2 e^{16}$.

The Adams E₂-term

$$E_2^{s,t} = \mathsf{Ext}_{\mathcal{A}(2)}^{**}(\mathcal{L}[1]^*, \mathbb{F}_2) \Longrightarrow \mathit{tmf}_*(\mathcal{L}[1])_2^{\wedge}$$

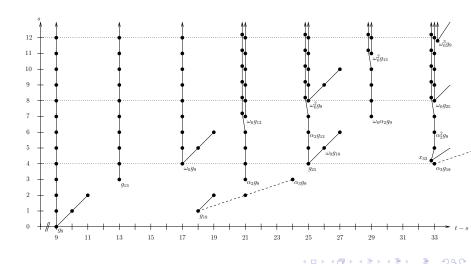
was computed by Davis-Mahowald.

- This spectral sequence is a module over the *tmf* spectral sequence.
- We write g_n (or x_n) for a module generator in dimension n = t s.

イロト イボト イヨト イヨト

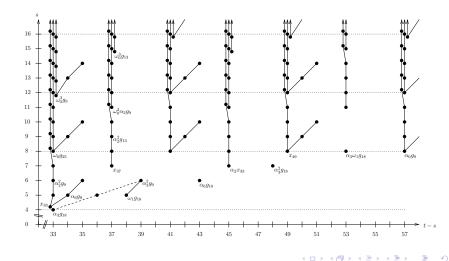
Adams Sp. Seq. for *THH*(*tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* ∧ *L*[1] and *tmf* ∧ *L*[2] Remaining Steps

Adams Chart for $tmf_*(L[1])$, $9 \le * \le 33$



Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmfAdams Sp. Seq. for $tmf \land L[1]$ and $tmf \land L[2]$ Remaining Steps

Adams Chart for $tmf_*(L[1])$, $33 \le * \le 57$



 Hyperelliptic Cohomology
 Adams Sp. Seq. for THH(tmf)

 K(n)-Local THH(tmf)
 Adams Sp. Seq. for tmf

 Homology of THH(tmf)
 Adams Sp. Seq. for tmf $\land L[1]$ and tmf $\land L[2]$

 Homotopy of THH(tmf)
 Remaining Steps

Adams Differentials for $tmf_*(L[1])$

- This spectral sequence is quite sparse.
- The first nonzero differential is

$$d_3(\alpha_0^2 g_{18}) = \omega_1^4 \alpha_3 g_{18}$$

landing in dimension t - s = 113.

• This is well beyond the initial range of interest.

イロト イ押ト イヨト イヨト

Adams E_2 -Term for $tmf_*(L[2])$

- For j = 2, L[2] is a self-dual 6-cell CW spectrum.
- The Adams E₂-term

$$E_2^{s,t} = \mathsf{Ext}_{\mathcal{A}(2)}^{**}(L[2]^*, \mathbb{F}_2) \Longrightarrow \mathit{tmf}_*(L[2])_2^{\wedge}$$

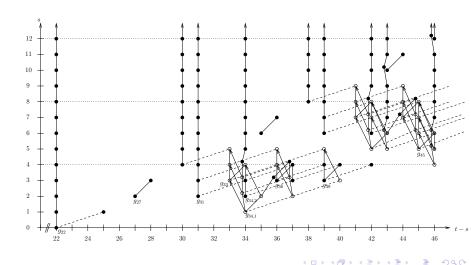
is machine computable.

- This spectral sequence is a module over the *tmf* spectral sequence.
- We write g_n for a module generator in dimension n = t s. The two generators in dimension 34 are called $g_{34,1}$ and $g_{34,2}$.

イロト 不得 トイヨト イヨト

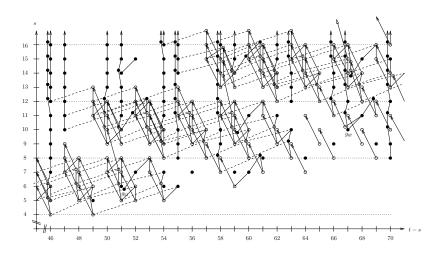
Adams Sp. Seq. for *THH*(*tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* ∧ *L*[1] and *tmf* ∧ *L*[2] Remaining Steps

Adams Chart for $tmf_*(L[2])$, $22 \le * \le 46$



Adams Sp. Seq. for *THH(tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* ∧ *L*[1] and *tmf* ∧ *L*[2] Remaining Steps

Adams Chart for $tmf_*(L[2])$, $46 \le * \le 70$



Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms

- ∢ ⊒ →

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Adams Differentials for $tmf_*(L[2])$

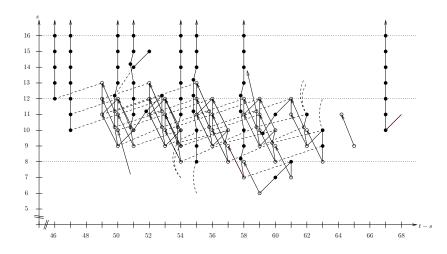
We have computed the Adams differentials for $tmf_*(L[2])$. To describe the differentials, write the E_2 -term as the sum of two pieces:

- A Bott periodic part, which is free over $P(\omega_0, \alpha_0)$.
- A double Mahowald–Tangora wedge, which is free of rank two over P(v₁, w, α₀) on ω₁g₃₉ and α₃²g_{34,1} in dimensions 59 and 64.

イロト イ押ト イヨト イヨト

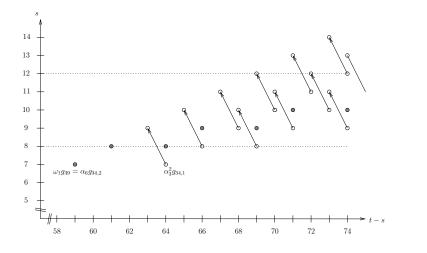
Adams Sp. Seq. for *THH(tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* ∧ *L*[1] and *tmf* ∧ *L*[2] Remaining Steps

Adams Chart for $tmf_*(L[2])$ — The Bott Periodic Part



Adams Sp. Seq. for *THH(tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* ∧ *L*[1] and *tmf* ∧ *L*[2] Remaining Steps

Adams Chart for $tmf_*(L[2])$ — The Wedge Part



Adams Sp. Seq. for *THH*(*tmf*) Adams Sp. Seq. for *tmf* Adams Sp. Seq. for *tmf* ∧ *L*[1] and *tmf* ∧ *L*[2] Remaining Steps

Adams Spectral Sequence for $tmf_*(L[2])$ — Summary

- The Adams *E*₂-term for *tmf*_{*}(*L*[2]) is completely known, including cup and Massey products.
- The Adams differentials are completely known, using rational information and the *tmf*-module structure.
- The additive extensions of tmf_{*}(L[2]) are (almost) completely known.

イロト イポト イヨト イヨト

Hyperelliptic CohomologyAdams Sp. Seq. for THH(tmf)K(n)-Local THH(tmf)Adams Sp. Seq. for tmfHomology of THH(tmf)Adams Sp. Seq. for $tmf \land L[1]$ and $tmf \land L[2]$ Homotopy of THH(tmf)Remaining Steps

Adams spectral sequences for $tmf_*(L[3])$, $tmf_*(L[4])$

$$L[3] = S^{37} \cup_2 e^{38} \cup_{\eta} e^{40} \cup_{\nu} e^{44}$$

the Adams spectral sequence for $tmf_*(L[3])$ is sparse like the one for $tmf_*(L[1])$.

For *j* = 4, with *L*[4] = S⁵³ the Adams spectral sequence for *tmf*_{*}(*L*[4]) is a shifted copy of the one for π_{*}(*tmf*).

ヘロト ヘ戸ト ヘヨト ヘヨト

 Hyperelliptic Cohomology
 Adams Sp. Seq. for THH(tmf)

 K(n)-Local THH(tmf) Adams Sp. Seq. for tmf

 Homology of THH(tmf) Adams Sp. Seq. for $tmf \land L[1]$ and $tmf \land L[2]$

 Homotopy of THH(tmf) Remaining Steps

Assembling the Layers

- The zeroth layer $T^0 = tmf$ splits off from THH(tmf).
- The second layer *tmf* ∧ *L*[2] is nontrivially attached to the first layer *tmf* ∧ *L*[1]:

Theorem

There is a differential

$$d_2(g_{22}) = h_2 g_{18}$$

in the Adams spectral sequence for π_* THH(tmf).

イロト イボト イヨト イヨト

æ

The String Orientation

The proof uses the string orientation

 $M \operatorname{String} = MO\langle 8 \rangle \to \mathit{tmf}$

and the induced map

 $tmf \land BBO\langle 8 \rangle_{+} = THH(MO\langle 8 \rangle, tmf) \rightarrow THH(tmf)$

to prove that $g_9^2 = g_{18}$ in $\pi_* THH(tmf)$. From $h_2g_9 = 0$ it follows that h_2g_{18} is a boundary.

イロト イポト イヨト イヨト

Hyperelliptic Cohomology
K(n)-Local THH(tmf)Adams Sp. Seq. for THH(tmf)Adams Sp. Seq. for tmfAdams Sp. Seq. for tmfHomology of THH(tmf)Adams Sp. Seq. for tmf $\land L[1]$ and tmf $\land L[2]$ Homotopy of THH(tmf)Remaining Steps

The NeXT Step

The third layer $tmf \wedge S^{32}$ is nontrivially attached to the second layer:

Lemma

There is a nonzero differential

$$d_{k+2}(g_{32}) = h_0^k g_{31}$$

for some $k \ge 0$.

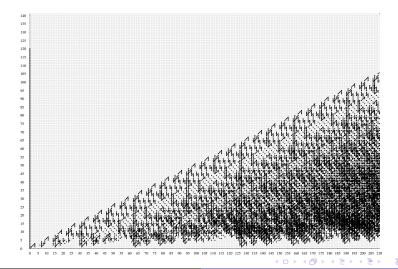
May need Pontryagin power operations in tmf-homology to determine k.

イロト イポト イヨト イヨト

э.

Adams Sp. Seq. for THH(tmf) Adams Sp. Seq. for tmf Adams Sp. Seq. for tmf \land L[1] and tmf \land L[2] Remaining Steps

Christian Nassau's Big Ext Chart



Bob Bruner, John Rognes

Topological Hochschild homology of topological modular forms