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Abstract

We extend Connes’s computation of the cyclic cohomology groups
of smooth algebras arising from foliations with separated graphs. We
find that the characteristic classes of foliations factor through these
groups. Our results also explain some results of Atiyah and Segal on
orbifold Euler characteristic in the setting of cyclic homology.

Contents

1 Introduction 2

2 Smooth groupoids and their convolution algebras 3

3 A reduction to loops 8

4 A simplicial resolution 12

5 The main results 20

∗Partially supported by NSF grants DMS 92-03517 and DMS 89-03248
†Partially supported by NSF grant DMS 92-05548

1



1 Introduction

This paper is part of a program whose purpose is to understand the connec-
tions between Connes’s index theorem for foliations [12] and Bismut’s local
index theorem for families [3]. We are particularly interested in relating this
with the characteristic classes of foliations [6], and computing the bivariant
Chern-Connes character [31, 32].

A very general index theorem for foliations was proved in [17] (Theorem
5, page 67; an english translation is soon due). This theorem gives a geomet-
ric description of the index associated to any even cyclic cocycle for foliation
algebra (i.e. the convolution algebra of smooth compactly-supported func-
tions on the graph of the foliation). An important ingredient in the proof
of this theorem is the construction of a map from the cyclic cohomology of
the foliation algebra to the de Rham cohomology of the underlying manifold
(ibidem, corollary 2, page 64).

Bismut’s approach is to extend the heat kernel proof of the Atiyah-Singer
index theorem using Quillen’s theory of superconnections [36]. Specifically
he proves that the rescaled curvature of a superconnection he associates to
the bundle of L2 sections along the fibers, is convergent to the curvature of
the index bundle [2].

One can see that there are both conceptual and technical difficulties in
extending the local index theorem for families to foliations. There are (as we
understand the problem now) three major steps to be undertaken. The first
step is to make sense of the curvature of the index. As in the family index
case a solution to this problem is known: the curvature is an element of a
cyclic homology group [15, 26]. What is not known in general, however is
what is the form of these homology groups. The second step is to prove that
the superconnection formalism remains valid for operators “with connected
spectrum”, operators that in particular have neither closed range, nor finite
dimensional kernel. Of course in this case the index, an element of a K0-
group, is to be defined by the connecting morphism in algebraic K-theory.
The solution to this problem depends essentially upon cyclic cohomology.
The last step is to carry out the local computations.

In this paper we undertake the first step. We make a the following as-
sumptions. First we use the (slightly simplified) setting of etale groupoids.
It is known that these groupoids are Morita equivalent to the groupoids
obtained from foliations [24]. Since Morita equivalent algebras have the
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same cyclic cohomology groups one would only need to establish that Morita
equivalent groupoids have Morita equivalent algebras. This principle is def-
initely true for the corresponding noncommutative topological spaces (i.e.
C?-algebras) [24, 34], and is also true for the case we are interested in. We
will establish this principle for the smooth case in a forthcoming paper [29].
Then we make the far less trivial assumption that our groupoids are Haus-
dorff. This is definitely true in many interesting cases coming from foliations
[44] but not in general. To give the reader a sense of the difficulties we will
only mention that there are fairly simple examples of nonseparated groupoids
for which smooth forms make sense (they always do using linear combina-
tions of forms supported in coordinate patches) but the de Rham differential
does not make sense! We do obtain results valid without any separability
assumption, but they are not complete.

The final result identifies the periodic cyclic cohomology groups with the
cohomology of some “fiber bundles” over the classifying space G of the given
groupoid. This extends a result of Connes [16]. These spaces are obtained
from the universal principal G-bundle. We identify the part corresponding to
the units with the result predicted by Connes [16]. The result generalizes the
case of group algebras [11] and that of crossed products of smooth commu-
tative algebras by discrete groups [19, 30, 42]. Moreover since the classifying
space construction of Morita equivalent groupoids gives homotopy equivalent
spaces [23, 35], we obtain that the characteristic classes of a foliation (V,F)
factor through HCper(C∞c (V,F)), see also [16, 17].

2 Smooth groupoids and their convolution al-

gebras

We are going to work with smooth groupoids. We first recall some defi-
nitions.

Definition. 2.1 A groupoid G is a small category in which every morphism
is invertible.

This is the shortest but at the same time the least explicit definition. We
are going to make this definition more explicit bellow. Also recall that a cat-
egory is called small if the class of its objects, and hence also the morphisms,
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form a set. The objects X = G(0) of G will be called units and the morphisms
G(1) of G will be called arrows. In the next section we will identify G to G(1).
The set of composable pairs of arrows will be denoted by G(2):

G(2) = G(1) ×X G(1) = {(g, h) : d(g) = r(h)} (1)

Here d(g) and r(g) denote the domain and, respectively, the range of the
arrow g.

Definition. 2.2 A smooth groupoid G is a groupoid such that the spaces
G0, G(1) and G(2) are smooth manifolds G(0) is a Husdorff space, the maps
d, r, ◦, ( )−1 are smooth, d, r are submersions, and G(0) → G(1) is an embed-
ding.

We see that a smooth groupoid G is given as

G = (G(1), G(0), d, r, ◦, ( )−1, u)

where:
(i) G(0), G(1) and G(2) = {(g, h) : d(g) = r(h)} are smooth manifolds, G(0)

being separated (i.e. Hausdorff);
(ii) The “range” and “domain” maps r, d : G(1) → G(0), the partially

defined multiplication ◦ : G(2) → G(1), g ◦ h = gh, the “inverse” map ( )−1 :
G(1) → G(1), and the “unit” map u : G(0) → G(1) are smooth maps satisfying:

1. r(gh) = r(g), d(gh) = d(h) for any pair (g, h) ∈ G(2), and the partial
multiplication g ◦ h = gh is associative.

2. d(u(x)) = r(u(x)) = x ∀x ∈ G(0), u(r(g))g = g and gu(d(g)) = g
∀g ∈ G(1) and u is a smooth embedding.

3. r(g−1) = s(g), d(g−1) = r(g), gg−1 = u(r(g)) and g−1g = u(d(g)).

Here are some examples of smooth groupoids:

1. Lie groups.

2. Principal groupoids: Let X be a smooth manifold and define G(0) = X
and G(1) = X ×X such that a pair (x, y) is composable with the pair
(x′, y′) if and only if y = x′ and then (x, y)(y, y′) = (x, y′).
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3. Group actions: If H is a Lie group acting smoothly on the left on a
manifold X, then the crossed product groupoid is defined by G(0) = X,
G(1) = H ×X, d(h, x) = x, r(h, x) = hx and (h1, hx)(h, x) = (h1h, x).

Definition. 2.3 A topological groupoid G = (G(1), G(0), r, s, ◦, ( )−1, u) is
a groupoid such that the sets G0 and G(1) are topological spaces, the maps
d, r, ◦, ( )−1 are continuous, d, r are open maps, and G(0) → G(1) is a home-
omorphism onto its image.

In [12, 13, 37] it is shown how to associate to a locally compact groupoid
endowed with a Haar measure a convolution algebra. These definitions and
constructions easely generalize to the smooth case.

Definition. 2.4 A smooth Haar system on a smooth groupoid G is a family
of positive Radon measures (λx)x∈G(0) on G(1) satisfying the following condi-
tions:

1. The support of λx is Gx = {g ∈ G(1) : r(g) = x} and λx is a smooth
measure on Gx.

2. (Left invariance) For any continuous function f : Gx → [0,∞) and
any g ∈ G(1) such that r(g) = x and d(g) = y we have∫

Gx
f(t)dλx(t) =

∫
Gy
f(gt)dλy(t)

(i.e. g?(λ
d(g)) = λr(g)).

3. (Smoothness) If U ⊂ G(1) is a coordinate neighborhood in G(1) (so
in particular it is separated) and ϕ is a smooth compactly supported
function on U , then the function

G(0) 3 x→
∫
Gx
ϕ(t)dλx(t)

is a smooth function on G(0) (ϕ is extended to be 0 outside U).

We shall denote by C∞c (X), where X is a smooth but not necessarily
separated manifold, the complex linear subspace of the space of all functions
on G(1) generated by C∞c (U) for all coordinate domains U . In general it is

5



not closed under pointwise multiplication. If we denote by C∞(X; sep) the
space of continuous functions that are smooth in every coordinate domain
then C∞c (X) is a module over C∞(X; sep) for the pointwise multiplication.
We agree to denote C∞c (G(1)) by C∞c (G).

A smooth Haar system (λx)x∈G(0) on G defines a convolution product on
C∞c (G)

(ff0)(g) =
∫
Gr(g)

f(γ)f0(γ−1g)dλr(g)(γ)

We denote by A(G) the smallest subalgebra of compactly supported Borel
functions on G which is closed under the convolution product and contains
C∞c (G).

In the following we are going to be interested in etale groupoids.

Definition. 2.5 A smooth etale groupoid is a smooth groupoid G such that
the domain and range maps are local diffeomorphisms.

Etale groupoids are sometimes called discrete groupoids.
Fix g ∈ G(1) and choose a neighborhood U of g in G(1) such that the

domain and range maps define diffeomorphisms d : U → U0 ⊂ G(0) and
r : U → U1 ⊂ G(0). We will call a neighborhood with this property a defining
neighborhood. A defining neighborhood U gives rise to a diffeomorphism
ϕU : U0 → U1 whose germ does not depend on the choice of U , because the
intersection of two defining neighborhoods is also a defining neighborhood.
For an element g ∈ G(1) we will denote by ϕg the germ of ϕU .

It is easy to observe that for a smooth etale groupoid the counting measure
on each Gx, x ∈ G(0) defines a smooth Haar system.

In order to describe the multiplication on C∞c (G) for this Haar system
let us make the following observations.

If U is a defining neighborhood of g then the smooth compactly supported
functions on U are in one-to-one correspondence with smooth compactly
supported functions on d(U), and similarly for r(U).

Let f, f ′ be two smooth functions whose supports are compact and con-
tained in defining neighborhoods U,U ′ of g and, respectively, g′. If UU ′ is
empty we have ff ′ = 0. So we will assume that UU ′ is not empty. Using
the fact that U and U ′ are defining neighborhoods, we get smooth compactly
supported functions f1 on d(U) and, respectively, f ′1 on r(U ′). Their point-
wise product is a smooth compactly supported function on d(U) which then
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gives, using ϕU , a smooth function on r(U), whose support is compact and
contained in r(UU ′). Since UU ′ is a defining neighborhood for any of its el-
ements, we finally obtain a smooth compactly supported function h on UU ′.
Then

h = ff ′ (2)

This shows that for smooth etale groupoids A(G) = C∞c (G).
The main examples of etale smooth groupoids come from the action by

diffeomorphisms of discrete groups and from smooth foliations.
The following Proposition is proved in [28].

Proposition. 2.6 Let g, g′ be arrows in G(1). If g and g′ can not be separated
by two open sets then d(g) = d(g′), r(g) = r(g′), and there exists an open set
V ∈ G(0) whose closure contains d(g) such that ϕg|V = ϕg′|V .

The converse is also true if g → ϕg is one-to-one.

We agree to identify G(0) with u(G(0)) ⊂ G(1).

Proposition. 2.7 If G is a smooth etale groupoid then, using the above iden-
tification, G(0) is an open subset of G(1) which is closed if and only if G is
separated.

Proof. By definition u is an immersion. For a smooth etale groupoid G
G(0) and G(1) have the same dimension. Then u is also a submersion, so it is
an open map.

If G(1) is not separated, let g, γ ∈ G which cannot be separated. We
have d(g) = d(γ) and r(g) = r(γ) since d and r are continuous and G(0) is
separated. Let U and W be defining neighborhoods of g and γ such that
r(U) = r(W ). We show that d(g) and g−1γ can not be separated. Indeed
consider the neighborhoods d(U) and f(W ) of d(g) and g−1γ, where f(γ′)
is defined as g′−1γ′ with g′ the unique element in U satisfying r(g′) = r(γ′).
By the definition of a etale groupoid f is a continuous map W → G(1). We
see that since g and γ can not be separated the intersection V = U ∩W is
a nonempty set containing g and γ in its closure and such that g and γ are
limits of a sequence xn ∈ V . This shows that d(g) and g−1γ are limits of the
sequence d(xn) = f(xn) so G(0) is not closed.

Conversely, if G(1) is separated a convergent sequence has a unique limit.
Let xn be a sequence of elements of G(0) which is convergent to g ∈ G(1).
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Then xn = d(xn) converges also to d(g). This shows that g = d(g) so it
belongs to G(0), and hence G(0) is closed. ut
Proposition. 2.8 Let G be a smooth etale groupoid. Assume G(1) is sepa-
rated and denote by B

(0)
fin the elements of finite order in G(1):

B
(0)
fin = {g : ∃n > 0 such that gn ∈ G(0)}

Then B
(0)
fin is a smooth submanifold of G(1) and is an open and closed subset

of B(0) = {g ∈ G(1) : r(g) = d(g)}. Moreover the function o : B
(0)
fin → N

assigning to an element of finite order its order is continuous.

Proof. Let g ∈ B(0)
fin be an element of order n. Then ϕg has finite order so we

can assume that it comes from a diffeomorphism ϕW of an open neighborhood
V of r(g) = d(g) for some defining neighborhood W of g. Choosing a metric
on V invariant for the action of ϕW we see that the set of fixed points of ϕW
is a submanifold of V . Since for h ∈W we have r(h) = ϕW (d(h)) we obtain
that B(0) ∩W is a submanifold of W and hence also of G(1).

In order to prove now that o is continuous it is enough to show that all
elements in a given path component of B(0) ∩W have the same order. Let
hm ∈ G(0) for some natural number m. If f : [0, 1] → B(0) ∩W is a path
starting at h we obtain that f(t)m is a path starting at a unit and hence it
is completely contained in G(0) due to the previous proposition. ut

3 A reduction to loops

In this section we give a preliminary description of the Hochschild and
cyclic homology of the algebra of functions on a smooth etale groupoid. More
precise results will be obtained in the next sections for separated groupoids.

We will identify G(1), the space of arrows of a groupoid G, to G itself.
This is justified by the fact that G(1) and the partial multiplication determine
the rest of the structure of G. This will simplify notation without leading to
confusions.

Recall that for a locally convex algebra A the Hochschild homology of A
with coefficients in a bimodule M , denoted here Hn(A,M), is the homology
of Bar(A,M), the Bar complex of the bimodule M :

M
b←M ⊗ A b← . . .

b←M ⊗ A⊗n b←M ⊗ A⊗(n+1) b← . . . (3)
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Here ⊗ is the projective tensor product [22] and b, the Hochschild boundary,
is given by the usual formula:

b(m⊗ a1 ⊗ . . .⊗ an) = ma1 ⊗ . . .⊗ an −m⊗ a1a2 ⊗ . . .⊗ an
+m⊗ a1 ⊗ a2a3 ⊗ . . .⊗ an + . . .+ (−1)nanm⊗ a1 ⊗ . . .⊗ an−1 (4)

In case M = A with the usual A bimodule structure we denote Hn(A,A) =
HHn(A) and call it simply the Hochschild homology of A.

For a separated smooth etale groupoid G and A = C∞c (G) we have that
there exist linear surjection Φ : A⊗(n+1) → C∞c (Gn+1) defined by

Φ(f0 ⊗ . . .⊗ fn)(g0, . . . , gn) = f0(g0)f1(g1) · · · fn(gn)

One can prove this map to be injective too, but for our purpose this is
irelevant. In any case it is not a homeomorphism unless G is compact [22],
see also [4]. With respect to Φ the action of the differential b becomes:

(bf)(g0, . . . , gn−1) =
n−1∑
i=0

(−1)i
∑

r(γ)=r(gi)

f(g0, . . . , gi−1, γ, γ
−1gi, . . . , gn−1)

+ (−1)n
∑

r(γ)=r(g0)

f(γ−1g0, g1 . . . , gn−1, γ) (5)

In order to include the nonseparated case too we let A⊗(n+1) = C∞c (Gn+1),
the boundary being defined by the previous formula.

The cyclic homology of C∞c (G) [15, 26, 41] is the homology of the complex

A
b← A⊗ A/(1− τ)A⊗ A b← . . .

b← A⊗n/(1− τ)A⊗n

b← A⊗(n+1)/(1− τ)A⊗(n+1) b← . . . (6)

where τ(a0 ⊗ . . .⊗ an) = (−1)nan ⊗ a0 ⊗ a1 ⊗ . . .⊗ an−1.
It can be defined also as the homology of the bicomplex [26]
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

? ? ?

b −b′ b

A⊗(n+2) � A⊗(n+2) � A⊗(n+2) � · · ·
ε N ε

? ? ?

b −b′ b

A⊗(n+1) � A⊗(n+1) � A⊗(n+1) � · · ·
ε N ε

? ? ?

b −b′ b

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

? ? ?

b −b′ b

A � A � A � . . .
ε N ε

where we have denoted ε = 1− τ , N = 1 + τ + . . . τn, b′(a0 ⊗ . . .⊗ an) =
b(a0 ⊗ . . .⊗ an)− (−1)nana0 ⊗ a1 ⊗ . . .⊗ an−1.

To define what we mean by “reduction to closed loops” consider for 0 ≤
i ≤ n the open set Un+1,i = {(g0, . . . , gn) ∈ Gn+1 : r(gi+1) 6= d(gi)} with the
convention that gn+1 = g0. This sequence of open sets defines an increasing
sequence of subcomplexes of the Hochshild complex by

FiA
⊗n =

i∑
j=0

{f ∈ C∞c (Gn) : supp(f) ⊂ Un,j} (7)

We let as usual F−1A
⊗n = 0 and F∞A

⊗n = FmA
⊗n for any m ≥ n− 1.

Lemma. 3.1 Let FiA
⊗n be defined by the above equation for any n. Then we

have b(FiA
⊗(n+1)) ⊂ FiA

⊗n and the induced complexes (FiA
⊗n/Fi−1A

⊗n, b)
are acyclic (i.e. their homology vanishes). The same is true of the b′-complex.

Proof. The first part follows from the definition. In order to prove the
second part it is enough to find for any n a family of linear maps χ(i)

m :
FiA

⊗n → A⊗(n+1), m ∈ M , with the property that for any a ∈ FiA
⊗n we

can find an m such that χ(i)
m (a) and χ(i)

m (b(a)) are in FiA
⊗(n+1), respectively
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in FiA
⊗n, and (bχ(i)

m + χ(i)
m b)a = a (mod Fi−1A

⊗n). Indeed let M be the
set of pairs (K, (ϕj)1≤j≤N) where K is a compact subset of G(0) and ϕj are
smooth compactly supported functions on G(0) such that

∑
ϕ2
j = 1 on K.

By definition ϕj ∈ C∞c (G).
For any smooth compactly supported functions ψ0, ψ1 we define the linear

map l
(i)
ψ0,ψ1

: A⊗(n+1) → A⊗(n+2) by the formula

l
(i)
ψ0,ψ1

(a0 ⊗ . . .⊗ an) = a0 ⊗ . . . ai ⊗ ψ0 ⊗ ψ1ai+1 ⊗ . . .⊗ an
if 0 ≤ i ≤ n− 1,

l
(n)
ψ0,ψ1

(a0 ⊗ . . .⊗ an) = ψ1a0 ⊗ . . .⊗ . . .⊗ an ⊗ ψ0

and l
(i)
ψ0,ψ1

= 0 if i > n. Observe that l
(i)
ψ0,ψ1

(Fi−1A
⊗n) ⊂ Fi−1A

⊗(n+1). We
define for m = (K, (ϕj)1≤j≤N)

χ(i)
m =

∑
j

l(i)ϕj ,ϕj

Consider now an arbitrary a ∈ FiA
⊗n. By the definition of Fi−1A

⊗n and
FiA

⊗n we know that a can be written as a1 + a2 where a1 ∈ Fi−1A
⊗n and

L = supp(a2) ⊂ Un,i. If m = (K, (ϕj)1≤j≤N) where K is big enough, and the
supports of ϕj are small enough (i.e. if L ⊂ Kn and the support of each ϕj
has diameter < ε/3 for ε = inf{d(d(gi), r(gi+1)) : (g0, . . . , gn) ∈ supp(a2)},
for a metric d on K which defines the topology on K) we find out that χ(i)

m (a)
and χ(i)

m (b(a)) are in FiA
⊗(n+1), respectively in FiA

⊗n. An easy computation
also shows that b(χ(i)

m (a2)) + χ(i)
m (b(a2)) + (−1)ia2 has support contained in

Un,i−1. This proves the Lemma.
The proof for b′ goes without change using the same maps χ(i)

m . ut
The above Lemma immediately implies the following Proposition which

we see as a “reduction to loops”.

Proposition. 3.2 Let G be a smooth etale groupoid. The maps of complexes

(A⊗(n+1), b)→ (A⊗(n+1)/F∞A
⊗(n+1), b)

(A⊗(n+1), b′)→ (A⊗(n+1)/F∞A
⊗(n+1), b′)

and

(A⊗(n+1)/(1− τ)A⊗(n+1), b)→ (A⊗(n+1)/F∞A
⊗(n+1) + (1− τ)A⊗(n+1), b)

are quasi-isomorphisms (i.e. induce isomorphisms in homology).
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Proof. The previous Lemma implies that the projection

A⊗(n+1) → A⊗(n+1)/F∞A
⊗(n+1)

is a quasi-isomorphism for the b and b′ complexes. Using the double complex
definition of cyclic cohomology it follows that the projection map is a quasi-
isomorphism also for the cyclic complex. ut

Let Rinv denote the ring of locally constant functions defined in a neigh-
borhood of B(0) in G and satisfying f(x) = f(γ−1xγ). We have an Rinv-
module structure given nn A⊗(n+1)/F∞A

⊗(n+1)by

(ρf)(g0, . . . , gn) = ρ(g0 . . . gn)f(g0, . . . , gn)

for ρ ∈ Rinv. Moreover b, b′ are compatible with this structure.
We now consider an analog of the decomposition of the cyclic cohomology

of a group algebra according to conjugacy classes [11].
LetO ⊂ B(0) be an open-closed set invariant under the action of G, that is

gγg−1 ∈ O for any γ ∈ O and g ∈ G such that d(g) = r(γ). To this open set
there corresponds an idempotent eO ∈ R. Define HHn(C∞c (G))O to be the
homology of eO(A⊗(n+1)/F∞A

⊗(n+1)) and define similarly HCn(C∞c (G))O.
The following Proposition follows from definitions.

Proposition. 3.3 Let B(0) = ∪αOα be a partition of B(0) into disjoint in-
variant open sets. Then

HHn(C∞c (G)) '
⊕
α

HHn(C∞c (G))Oα

HCn(C∞c (G)) '
⊕
α

HCn(C∞c (G))Oα

4 A simplicial resolution

Convention. In this sections we will assume that G is a separated mani-
fold.

In what follows it will be convenient for us to use the language of sheaves.
Standard references for this are [20, 40], see also [39].

Recall ([39], page 323) that a sheaf S of vector spaces on a topological
space Z is a contravariant functor from the category of open subsets U of
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Z and inclusion maps to vector spaces satisfying certain conditions. This
implies that to any open set U ⊂ Z there is associated a vector space S(U)
and that for any V ⊂ U there exists a restriction morphism rV U : S(U) →
S(V ), S(∅) = 0, satisfying rWUrUV = rWV , and rUU = id. This data defines a
presheaf. A sheaf is a presheaf such that if U = ∪Vi the map S(U)→ ∏S(Vi)
is injective and its image consists of the kernel of a suitable defined map∏S(Vi) →

∏S(Vi ∩ Vj). To any presheaf there is associated a canonical
sheaf. Define the stalk Sx of a sheaf S at x ∈ Z by Sx = lim

→
S(U) where the

direct limit is taken over the set of all open neighborhoods U of x.
If f : Z0 → Z is a continuous map and S is a sheaf on Z then there is a

canonical pull-back sheaf f−1S on Z0 see [20]. We have f−1Sy = Sf(y).
If Z is a separated (i.e. Hausdorff) smooth manifold, then U → C∞(U),

or more generally U → Ωp(U) define sheaves, the sheaf of smooth functions
and, respectively, the sheaf of smooth p-forms on Z. The assignment U →
C∞(Un) is only a presheaf. The associated sheaf is the space of germs at
the diagonal of smooth functions on Gn, it coincides with i−1(C∞(Gn)), if
i : G → Gn is the diagonal embedding and C∞(Gn) is the sheaf of smooth
functions on Gn.

In case f is a local homeomorphism, the case we are going to be mostly
interested in, f−1S(U) is canonically isomorphic to S(f(U)), whenever f is
a homeomorphism from U to an open set in Z.

A section of S over U is simply an element of S(U). Such a section is said
to have compact support if its restriction to the complement of a compact
set vanishes. We will denote by H0

c (Z,S) the space of compactly supported
sections of S over Z.

If f : Z0 → Z is a local homeomorphism and S is a sheaf on Z then we
have a map f? : H0

c (Z0, f
−1S)→ H0

c (Z,S) which we shall sometimes refer to
as integration along the fibers of f . If f is a homeomorphism from an open set
U to its image, then the restriction of f? to H0

c (U, f−1S) is the isomorphism
onto H0

c (f(U),S) which defines f−1S.
We now proceed to identify A⊗(n+1)/F∞A

⊗(n+1) with sections of a sheaf.

Notations. In the following we shall denote for any defining neighborhood
U ⊂ G by ϕU the difeomorphism defined by U , that is ϕU : d(U) → r(U),
ϕU(g) = UgU−1. (Observe that for a defining neighborhood U the set UgU−1

consists of at most one element.)
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Consider the Burghelea spaces

B(n) = {(g0, g1, . . . , gn) ∈ Gn+1 : d(gi) = r(gi+1)}

By definition B(n) is the the complement of ∪Un+1,i in Gn+1.
We see that B(0) = {g ∈ G : d(g) = r(g)} is the space of loops in G.
The composition defines a continuous map

π : B(n) → B(0), π(g0, g1, . . . , gn) = g0g1 . . . gn

The spaces B(n) have a natural simplicial structure whose face maps are
given by di(g0, g1, . . . , gn) = (g0, . . . , gigi+1, . . . , gn) for 0 ≤ i ≤ n − 1 and
dn(g0, g1, . . . , gn) = (gng0, . . . , gn−1). The maps di for 0 ≤ i ≤ n−1 satisfy π◦
di = π. Denote by t : Bn → Bn the cyclic permutation map t(g0, g1, . . . , gn) =
(gn, g0, . . . , gn−1), then π ◦ dn = π ◦ t.

Any point x = (g0, g1, . . . , gn) ∈ B(n) has a neighborhood in Gn+1 home-
omorphic to Un+1 for some small neighborhood U of d(gn) in G(0). This
is due to the fact that G is etale. We specify this isomorphism in the fol-
lowing way. Choose V0, V1, . . . , Vn defining neighborhoods of g0, g1, . . . , gn in
G, satisfying d(Vk) = r(Vk+1) for k = 0, . . . , n − 1. (Recall that a defin-
ing neighborhood is a neighborhood on which d and r are local homeomor-
phisms.) Let V = d(Vn) and Wi = ViVi+1 . . . VnV . The map ηi : V → Wi,
ηi(g) = ViVi+1 . . . Vng(Vi+1 . . . Vn)−1, is a diffeomorphism. Denote by Ψ :
C∞c (V n+1)→ C∞c (W0 × . . .×Wn) the induced map.

Ψ(f0 ⊗ . . .⊗ fn) = (f0 ◦ η−1
0 )⊗ (f1 ◦ η−1

1 )⊗ . . .⊗ (fn ◦ η−1
n ) (8)

The above observation suggests the following definition. Let in : B(0) →
Gn+1 be the map γ → (d(γ), d(γ), . . . , d(γ)) and C∞(Gn+1) be the sheaf of
smooth functions on Gn+1. Define F (0)

n = i−1
n C∞(Gn+1).

The sequence of sheaves F (0)
n has a simplicial structure which is a per-

turbation of the usual simplicial structure of the Bar complex of C∞(G) (see
[14, 26, 27]). It is defined as follows.

The vector space (C∞(G)v)
⊗(n+1) is a subspace of the stalk (F (0)

n )g of
F (0)
n at g, here v = d(g). The simplicial structure has face morphisms di,

0 ≤ i ≤ n given by the usual formulae for 0 ≤ i ≤ n− 1:

di(a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ ai−1 ⊗ aiai+1 ⊗ ai+1 ⊗ . . .⊗ an (9)
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dn is replaced by:

dn(a0 ⊗ . . .⊗ an) = ϕ−1
g (an)a0 ⊗ . . .⊗ an−1 = (an ◦ ϕg)a0 ⊗ . . .⊗ an−1 (10)

The degeneration morphisms are unchanged, see [15, 30]. These formulae are
direct generalizations of the corresponding formulae for crossed products see
[19, 30]. Let d =

∑
(−1)idi be the simplicial boundary.

The sheaves F (0)
n are the pull-backs of some sheaves on G(0). The mor-

phism dn, however, is not a pull-back, and can only be defined on B(0).

Proposition. 4.1 Define on B(n) the sheaves F (n)
m = π−1F (0)

m . The map Ψ
defined in equation (8) defines a vector space isomorphism

Ψ : H0
c (B(n),F (n)

n ) ' A⊗(n+1)/F∞A
⊗(n+1).

Proof. This is a standard fact about sheaves which we review for the con-
venience of the reader.

Let f be a global section of F (n)
n which vanishes outside a compact set

K. For any x = (g0, . . . , gn) ∈ K there is a neighborhood V of g = π(x) =
g0 . . . gn and a function h ∈ C∞(V n+1) such that f(x) is the germ of h at
g. Replacing V , if necessary, with a smaller neighborhood, we can assume
that we can find W0, . . . ,Wn as in the definition of Ψ (see equation 8 and
above for definitions and notations) and hence Ψ(h) is a smooth function in a
neighborhood W0× . . .×Wn of x. We can find V0,g ⊂ V a relatively compact
open neighborhood of g such that f(v) is the germ of h at v for all v ∈ V0,g.
We can also assume that the closure of V0,g is contained in V . Since K is
compact we can find a finite cover of it with open sets of the form V0,g: K ⊂
∪Ni=1V0,γi . Denote the corresponding functions on V n+1

0,γi by hi. The functions
Ψ(hi) coincide on a common domain so they define a smooth function on a
neighborhood of K in Gn+1. It coincides on a smaller neighborhood of K
with the restriction of a compactly supported function on Gn+1. This shows
that Ψ gives a well defined morphism H0

c (B(n),F (n)
n )→ A⊗(n+1)/F∞A

⊗(n+1),
denoted also Ψ, and that this morphism is surjective. It is obvious that it is
injective. ut

The previous Proposition also explains the twisting in the definition of dn
for the sheaves F (0)

n . In order to separate the effect of the cohomology of the
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simplicial set B(n) and that of the cohomology in the sheaf direction we will
need new constructions.

Consider for n,m ≥ 0 the spaces

Zn,m = {(k0, . . . , kn, γ, h1, . . . , hm) ∈ Gn+m+2 :

d(k0) = . . . = d(kn) = d(γ) = r(γ) = r(h1),

d(h1) = r(h2), . . . , d(hm−1) = r(hm)} (11)

The spaces Zn,m have the structure of a bisimplicial set. The face maps for
the first simplicial structure are given by

dI0(k0, . . . , kn, γ, h1, h2, . . . , hm) = (k0h1, . . . , knh1, h
−1
1 γh1, h2, . . . , hm) (12)

dIi (k0, . . . , kn, γ, h1, . . . , hm) = (k0, . . . , kn, γ, h1, h2, . . . , hihi+1, . . . , hm) (13)

for 1 ≤ i ≤ m− 1, and

dIm(k0, . . . , kn, γ, h1, h2, . . . , hm) = (k0, . . . , kn, γ, h1, h2, . . . , hm−1) (14)

The face maps for the second simplicial structure delete arrows:

dIIi (k0, . . . , kn, γ, h1, . . . , hm) = (k0, . . . , k̂i, . . . , kn, γ, h1, . . . , hm) (15)

Define p1 : Zn,m → B(0) by

p1(k0, . . . , kn, γ, h1, . . . , hm) = γ (16)

and consider on Zn,m the sheaves An = p−1
1 F (0)

n . The above equations show
that integration along the fibers of the structural face morphisms of the first
simplicial structure induces a differential

dI =
m∑
i=0

(−1)idIi? : H0
c (Zn,m,An)→ H0

c (Zn,m−1,An) (17)

dI(a)(k0, . . . , kn, γ, h1, h2, . . . , hm−1) =∑
h

ϕ
⊗(n+1)
h−1 (a)(k0h

−1, . . . , knh
−1, hγh−1, h, h1, h2, . . . , hm−1)

+
∑
h

m−1∑
i=1

(−1)ia(k0, . . . , kn, γ, h1, h2, . . . , hih
−1, h, hi+1, . . . , hm−1)

+ (−1)m
∑
h

a(k0, . . . , kn, γ, h1, h2, . . . , hm−1, h) (18)
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The define a second differential as follows. Consider the composition δi
of the following morphisms

H0
c (Zn,m,An)

dIIi?−→ H0
c (Zn−1,m,An)

di−→ H0
c (Zn−1,m,An−1)

the first one being an integration along the fibers and the second one is
induced by the morphism of sheaves di : F (0)

n → F
(0)
n−1. Let dII =

∑n
i=0(−1)iδi.

An explicit formula is given by

dII(a)(k0, . . . , kn−1, γ, h1, . . . , hm) =∑
k

n∑
i=0

(−1)idia(k0, . . . , ki−1, k, ki, . . . , kn−1, γ, h1, . . . , hm) (19)

Consider the maps νn,m : Zn,m → B(n) defined by (compare to [30])

νn,m(k0, . . . , kn, γ, h1, h2, . . . , hm) = (knγk
−1
0 , k0k

−1
1 , k1k

−1
2 , . . . , kn−1k

−1
n )

(20)
These maps satisfy

νn,m ◦ dIi = νn,m+1 for 0 ≤ i ≤ n (21)

and
νn,m ◦ dIIi = νn+1,m for 0 ≤ i < n (22)

The following Proposition summarizes the properties of the previous con-
structions.

Proposition. 4.2 The sheaves and maps defined above satisfy the following
properties:

(1) (dI)2 = 0, (dII)2 = 0 and dIdII = dIIdI .
(2) There exists an augmentation morphism

ε : H0
c (Zn,0,An)→ A⊗(n+1)/F∞A

⊗(n+1)

defined using integration along the fibers of νn,0 such that the augmented
complex

A⊗(n+1)/F∞A
⊗(n+1) ε←− H0

c (Zn,0,An)
dI←− H0

c (Zn,1,An)
dI←− . . . (23)

is acyclic.
(3) The morphism ε commutes with the differentials, that is εdII = bε, so ε

induces a morphism of complexes from the total complex defined by the double
complex (H0

c (Zn,m,An), dI , dII) to the complex (A⊗(n+1)/F∞A
⊗(n+1), b).
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Proof. The proof of (1) is a straightforward computation based on the
definitions and equations (12)-(19).

Let a be a smooth function in a neighborhood of v and d(g) = d(g′) = v,
we shall denote by gag′−1 the germ at gg′−1 of the function b(h) = a(V −1hV ′)
where V and V ′ are defining neighborhoods of g and, respectively, g′. We
define ε0 : (An)z → C∞νn,0(z) by

ε0(a0 ⊗ . . .⊗ an) = (knγa0k
−1
0 )⊗ (k0a1k

−1
1 )⊗ . . .⊗ (kn−1ank

−1
n ) (24)

where z = (k0, k1, . . . , kn). The final formula for ε is obtained by integration
along the fibers of νn,0. This definition immediately gives εdII = bε.

Define the sheaves A′n = ν−1
n,mF (n)

n on Zn,m. Let W be a defining neighbor-
hood of k−1

n for z = (k0, . . . , kn, γ, h1, . . . , hm), then a→ a ◦ (ϕW × . . .×ϕW )
defines an isomorphism of stalks (An)z ' (A′n)z. This shows that (An) '
A′n. We use this isomorphism to define a differential dI : H0

c (Zn,m,A′n) →
H0
c (Zn,m−1,A′n).

There exists a section s of νn,0 (i.e. νn,0 ◦ s = id) defined by

s(g0, . . . , gn) = (g1 . . . gn, g2 . . . gn, . . . , gn−1gn, gn, d(gn), g0 . . . gn)

Since s? satisfyies νn,0?s? = id we see that s? is well defined (i.e. s−1A′n =
F (n)
n ) and ε is onto. In order to prove that the augmented dI complex is

acyclic it is enough to find σm : H0
c (Zn,m,A′n) → H0

c (Zn,m+1,A′n) satisfying
dIσm + σm−1d

I = 1 for any m ≥ 0 where σ−1 = s?. Indeed σm = sm? where

sm(k0, k1, . . . , kn, γ, h1, h2, . . . , hm) =

(k0k
−1
n , k1k

−1
n , . . . , kn−1k

−1
n , r(kn), knγk

−1
n , kn, h1, h2, . . . , hm)

satisfies this condition. We observe that sm? is well defined since we have
s−1
m A′n = A′n. ut

Next we proceed to replace the spaces Zn,m with other spaces on which
there is no twisting necessary in the definition of the differentials.

Let Ym be defined by Y0 = B(0) and

Ym = {(γ, h1, h2, . . . , hm) : d(γ) = r(γ) = r(h1),

d(h1) = r(h2), . . . , d(hm−1) = r(hm)}, m > 0 (25)

The spaces Ym have the structure of a simplicial space with faces defined
such that the projection

p2 : Zn,m → Ym, p2(k0, . . . , kn, γ, h1, . . . , hm) = (γ, h1, . . . , hm) (26)
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is a simplicial map for the first simplicial structure on Zn,m’s. (This gives
d0(γ, h1, . . . , hm) = (h−1

0 γh0, h1, . . . , hm), etc.) The degeneracies insert units.
Consider the map

p : Ym → B(0), p(γ, h1, . . . , hm) = γ (27)

so p ◦ p2 = p1, see equations (16) and (26). Define a sequence of sheaves on
Ym by Bn = p−1F (0)

n .
The vector spaces H0

c (Ym,Bn) form a double complex with respect to the
differentials dI induced by integration along the fibers of the face maps, and
dII induced by the simplicial structure of the sheaves F (0)

n .

dI(a)(γ, h1, h2, . . . , hm−1) =∑
h

ϕ
⊗(n+1)
h−1 (a)(hγh−1, h, h1, h2, . . . , hm−1)

+
∑
h

m−1∑
i=1

(−1)ia(γ, h1, h2, . . . , hih
−1, h, hi+1, . . . , hm−1)

+ (−1)m
∑
h

a(γ, h1, h2, . . . , hm−1, h) (28)

dII(a)(γ, h1, . . . , hm) =
n∑
i=0

(−1)idia(γ, h1, . . . , hm) (29)

This double complex corresponds to a bisimplicial structure on the vector
spaces H0

c (Ym,Bn).
The definitions of the two differential dI and dII above are very closely

related to the differentials of the bicomplex (H0
c (Zn,m,An), dI , dII). In fact

the only difference is that for the first complex the second differential dII

is defined only in terms of morphisms of sheaves, whereas for the second
complex in order to define dII we need to integrate along fibers.

The following Proposition explains the relation between these two bi-
complexes and gives a complex better suited for the computation of the
Hochschild homology of C∞c (G).

Proposition. 4.3 We have An = p−1
2 Bn so there are natural maps

p2? : H0
c (Zn,m,An)→ H0

c (Ym,Bn) (30)

which commute with dI and dII . The map p2? defines a quasi-isomorphism
for the dII differential, and hence also for the total complexes.
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We obtain that the homology of the total complex associated to the bicom-
plex (H0

c (Ym,Bn), dI , dII) is naturally isomorphic to HH?(C
∞
c (G)).

Proof. The first statement was explained in our discussion about integra-
tion along fibers.

The relations p2?d
I = dIp2? and p2?d

II = dIIp2? follow from the defi-
nitions. We proceed now to prove that the morphisms p2? induce an iso-
morphism for the dII homology. Define on Ym the sheaf B′n whose stalk at
y ∈ Ym is the vector space generated by p−1

2 (y), where p2 is the projection
p2 : Zn,m → Ym. The locally constant sections correspond to locally constant
functions f on open subsets of Zn,m such that supp(f) intersects the fibers
of p2 in compact sets. The main feature of B′n is that we have an isomor-
phism α : H0

c (Zn,m,An) ' H0
c (Ym,Bn ⊗ B′n). Both Bn and B′n have natural

simplicial structures which induce a simplicial structure on Bn ⊗ B′n. This
simplicial structure defines a complex (H0

c (Ym,Bn ⊗ B′n), d) such that α is a
morphism of complexes.

Let C denote the constant sheaf of complex numbers. The map of sheaves
B′n → C which sends the canonical basis of each stalk to 1 ∈ C defines a
morphism β : H0

c (Ym,Bn ⊗ B′n)→ H0
c (Ym,Bn ⊗ C) ' H0

c (Ym,Bn). Using the
definitions we see that p2? = β ◦ α. This shows that it is enough to prove
that β is a quasi-isomorphim.

Both Bn⊗B′n and Bn are fine sheaves ([39], page 330) so in order to prove
that β induces a quasi-isomorphism of complexes it is enough to prove that
we have a quasi-isomorphism of the complexes of stalks (Bn ⊗B′n)y → (Bn)y
(loc. cit. Theorem 9, page 335). This follows from the fact that the homology
of the complex of sheaves B′ is C and from the Eilenberg-Zilber theorem [27].
ut

5 The main results

In this section we study the homology of the complex of stalks (F (0)
n , d)

defined in the previous section (equations (9), (10) and below). It turns out
that the homology of this complex is the homology of a Koszul complex,
which we review below.

Let R be a commutative complex algebra and f1, . . . , fn ∈ R. Fix a basis
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e1, . . . , en of C
n and define Kj = R⊗ ∧jCn, and ∂ : Kj → Kj−1 by

∂(a⊗ ei1 ∧ . . . ∧ eij) =
j∑

k=1

(−1)kfika⊗ ei1 ∧ . . . ∧ êik ∧ . . . ∧ eij

The complex K?(f1, . . . , fn) = (Kj, ∂) is called the Koszul complex associated
to the sequence (f1, . . . , fn).

Consider now a diffeomorphism ϕ : U → V , U, V ⊂ G, such that ϕ(v) =
v. It induces an automorphism of the ring C∞v of germs of smooth functions
on G at v: ϕ(a) = a ◦ ϕ−1. Choose coordinate functions x1, . . . , xn on U
(n = dimU), and let fi denote the germ of xi − xi ◦ ϕ.

Lemma. 5.1 Denote by Sp the group of permutations of the set {e1, . . . , ep},
and let κ : Kp(f1, . . . , fp)→ (F (0)

p )γ be defined by

κ(a⊗ ei1 ∧ . . . ∧ eip)(g0, g1, . . . , gp) =

a(g0)
∑
σ∈Sp

sign(σ)xiσ(1)
(g1)xiσ(2)

(g2) . . . xiσ(p)
(gp) (31)

where xi and fi are defined as above, ϕ = ϕW for some defining neighborhood
W of γ ∈ G, and ϕγ = the germ of the diffeomorphism ϕW . Then κ is a
quasi-isomorphism.

Proof. The proof is a standard argument in homological algebra. We re-
view this argument for the convenience of the reader.

We can assume that U is the open unit ball in R
n. Let R = C∞(U),

then K?(x1 ⊗ 1 − 1 ⊗ x1, . . . , xn ⊗ 1 − 1 ⊗ xn) is a resolution of R with
projective R⊗R modules (everything is in the topological sense, in particular
R ⊗ R is the projective tensor product, and a projective module is a direct
summand of the module R⊗ E ⊗ R for some complete locally convex space
E). The Bar complex (R⊗(n+2), b′) is also a strong projective resolution of R
(“strong” means that b′ is chain homotopic to 0, an assumption needed in
the topological case since not every subspace is complemented) so the two
complexes are chain equivalent as complexes of R ⊗ R-modules [27]. This
property is preserved by localization.

The statement then follows using Lemma 3.1, localization at the maximal
ideal corresponding to v = d(γ) = r(γ) and tensoring with M(γ). Here M(γ)
is the twisted bimodule which has C∞(G)v as underlying space but the action
of C∞(G)v is changed to a ·m · a1 = ϕ−1

γ (a)ma1 = (a ◦ ϕγ)ma1. ut
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Denote by Ωp(X)g the germs of smooth p-forms on a manifold X at g.

Lemma. 5.2 Let γ,M(γ), v = d(γ) = r(γ), ϕ : U → V, ϕg be as above.
Suppose that X = {x ∈ G(0) : ϕ(x) = x} is a smooth submanifold of V , and
that

∪p>0{ξ ∈ TxG(0) : (dϕg − 1)pξ = 0} = TxX (32)

(1) Consider the restriction rX : C∞(G)v → C∞(X)v. Then rX induces a
quasi-isomorphism Bar(C∞(G)v,M(γ))→ Bar(C∞(X)v, C∞(X)v).

(2) We have Hp((F (0)
? )γ, d) ' Hp(C∞(G)v,M(γ)) ' Ωp(X)γ, and the

isomorphism is induced by

a0 ⊗ . . .⊗ ap → i?X(a0da1 . . . dap) (33)

where d is the DeRham differential and iX : X → G(0) is the inclusion.
(3) The condition (32) is satisfied for any γ of finite order, and more

generally if γ preserves a metric.

Proof. Let x1, . . . , xk be a normal coordinate system on a neighborhood of
v defined using a connection on V and such that x1, . . . , xl correspond to the
eigenvalue 1 on dϕ and the other ones correspond to a dϕ invariant comple-
ment of TvX in TvV . This implies using (32) that ϕ(xj)−xj for j = l+1, . . . , k
form a regular sequence [21] and hence the homology of the Koszul complex
of the sequence ϕ(xj) − xj for 1 ≤ j ≤ k in the ring C∞(G)v is the same
as the homology of the Koszul complex of the sequence (ϕ(xj)− xj) + I for
1 ≤ j ≤ l in the ring C∞(G)v/I where I is the ideal generated by the sequence
ϕ(xj)−xj for j = l+1, . . . , k (see [21]). Since the first complex computes the
twisted Hochschild homoology H?(C∞(G)v,M(γ)) and the second complex
computes the Hochschild homology of C∞(X)v ' C∞(G)v/I this proves part
(1).

The first isomorphism in part (2) follows from Lemma 5.1, and the second
isomorphism follows from part (1).

The last statement is a well known fact which is proved using the Levi-
Civita connection for an invariant metric. ut

Let O be a component of B(0) and define Ym(O) = p−1(O) where p is as
in equation 27. The spaces Ym(O) form a simplicial space Y (O). We define
Ωp,?
c (Y (O)), the compactly supported p-forms on Y (O), as the homology of
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the complex (Ωp
c(Yq(O)), d) were d is the simplicial differential and is defined

in the usual way in terms of the face maps: d =
∑

(−1)idi?.

Theorem. 5.3 Let O be an open-closed invariant subset of B(0). Assume
that any g ∈ O satisfies the condition (32) of the previous Lemma, then

HHn(C∞c (G))O '
⊕

p+q=n

Ωp,q
c (Y (O))

Proof. We use Lemma 5.1 and the fact that the restriction map (33)
H0
c (Ym,Bn) → Ωn

c (Ym) defines a quasi-isomorphism (H0
c (Ym,Bn), dI , dII) →

(Ωn
c (Ym), dI , 0). ut

In order to get a similar description of the cyclic cohomology we have to
introduce new versions of the spaces Zn,m and Ym. The problem is as usual
that the action of the cyclic group in the cyclic structure on A⊗(n+1) does
not lift to an action on the sheaves on Zn,m [33, 30]. As in the case of group
algebras and crossed products [11, 33, 30] we have to treat the torsion and
torsion free elements separately.

Recall the map p1 : Zn,m → B(0), p1(k0, . . . , kn, γ, h1, . . . , hm) = γ, and

that we have defined B
(0)
fin as the subset of finite order elements of G (see

Proposition 2.8). We consider on p−1
1 (B

(0)
fin) the equivalence relation

(k0, . . . , kn, γ, h1, . . . , hm) ≡ (k0γ
l, . . . , knγ

l, γ, h1γ
l1
1 , . . . , hmγ

lm
m )

where γj = (h1 . . . hj)
−1γ(h1 . . . hj) and l, l1, . . . , lm are arbitrary nonnegative

integers. The space Z̃n,m is defined as the quotient of p−1
1 (B

(0)
fin) with respect

to this equivalence relation. Define Ỹm similarly to be the set of equivalence
classes of elements of Ym(B

(0)
fin) with respect to the action of Z

m defined by

the action of γ on each component. We get a projection map p̃2 : Z̃n,m → Ỹm.
Observe first that the cyclic group generated by ϕγ acts on the stalks at

γ of the complex (F (0)
n , d) by the formula

a0 ⊗ . . .⊗ an → ϕγ(a0)⊗ ϕγ(a1)⊗ . . .⊗ ϕγ(an)

and that this action induces a trivial action on homology due to Lemma 5.2
(at least in the case γ a torsion element). The action of this group lifts to
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the pull-back sheaves An and Bn. Define Ainvn and Binvn to be the elements
invariant under these actions (on each stalk acts a different group).

The formulae (12)-(15) immediately generalize to Z̃n,m. In order to obtain
formulae generalizing dI and dII defined in equations (17) and (18) we have
to replace An by Ainvn and to let h and k in the sums defining dI and dII run
through a complete set of representatives of the cosets with respect to the
action of the cyclic group generated by γ or its conjugates.

Recall that B
(0)
fin is an invariant closed-open set, Proposition 2.8. The

idempotent e
B

(0)
fin

is defined before Proposition 3.3.

The map νn,0 : Zn,m → B(n) defined in equation (20) factors to a map
ν̃n,0 : Z̃n,m → B(n).

Propositions 4.2 and 4.3 and their proofs generalize in the following way.

Proposition. 5.4 The sheaves Ainvn and the maps defined above satisfy:
(1) (dI)2 = 0, (dII)2 = 0 and dIdII = dIIdI .
(2) The map p̃2? : H0

c (Z̃n,m,Ainvn )→ H0
c (Ỹm,Binvn ) commutes with dI and

dII and defines a quasi-isomorphism.
(3) There exists an edge morphism

ε̃ : H0
c (Z̃n,0,Ainvn )→ e

B
(0)
fin

(A⊗(n+1)/F∞A
⊗(n+1))

which is defined using integration along the fibers of ν̃n,0 and which induces
a quasi-isomorphism from the total complex of (H0

c (Z̃n,0,Ainvn ), dI , dII) to the
complex (e

B
(0)
fin

(A⊗(n+1)/F∞A
⊗(n+1)), b). In particular εdII = bε.

Proof. The proof of (1) is a straightforward computation.
For (2) the only difference with the proof of Proposition 4.3 is that this

time the stalks (B′n)y have the same homology as that of a finite cyclic group
(of order = the order of p(y)). Since we are working over a field of charac-
teristic 0 the homology of the stalks (B′n)y vanishes [27] in positive degree,
and hence B′n → C is a quasi-isomorphism.

In order to define ε̃ we first observe that in the formula (24) defining ε we
can replace Zn,m with Z̃n,m and An with Ainvn . The Proposition 2.8 shows

that there exists a decomposition of B
(0)
fin = ∪Ok where Ok is the open-closed

invariant set of elements of order k. Let ek = eOk be the idempotents defined
before Proposition 3.3.
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For each k the map ekH
0
c (Ym,Bn) = H0

c (Ym(Ok),Bn) → ekH
0
c (Ym,Binvn )

is the projection map onto the invariants of the cyclic group of order k (in
each stalk). Let efin = e

B
(0)
fin

=
∑
k≥0 ek. Since, by Lemma 5.2 the action

of this group on the homology of the stalks is trivial and all the involved
sheaves are fine we get that the projection map on the space of invariants
(efinH

0
c (Ym,Bn), dI , dII)→ (efinH

0
c (Ym,Binvn ), dI , dII) is a quasi-isomorphism

which commutes with p2?. This shows that we also have a quasi-isomorphism
(efinH

0
c (Zn,m,An), dI , dII)→ (efinH

0
c (Zn,m,Ainvn ), dI , dII), and hence the ho-

mology of (efin(A⊗(n+1)/F∞A
⊗(n+1)), b) is the same as that of the subcomplex

ε(efinH
0
c (Zn,0,Ainvn )). Since ε and ε̃ have the same image and the complex

(H0
c (Z̃n,m,Ainvn ), dI) is a resolution of ε(H0

c (Zn,0,Ainvn )) we get (3). ut

The extra piece of information needed to generalize theorem 5.3 to cyclic
cohomology is contained in the following Lemma.

Lemma. 5.5 There exists an action t of the generator of Zn+1 on the vector
spaces H0

c (Z̃n,m,Ainvn ) and H0
c (Ỹm,Binvn ) which is compatible with the maps ε,

dI and p2?. Moreover it defines a structure of cyclic vector spaces on these
spaces which commutes with dI for the last two complexes. The cyclic struc-
ture on A⊗(n+1)/F∞A

⊗(n+1) is obtained using the usual cyclic permutation
and the simplicial structure of the sheaves F (0)

n .

Cyclic vector spaces were introduced by Connes [14]. The sheaves (F (0)
n )inv

have a cyclic structure very similar to the usual structure [30], see also below.
This Lemma is very closely related to the treatment of crossed products

by compact Lie groups in [33].

Proof. The action of t on A⊗(n+1)/F∞A
⊗(n+1) is defined by the usual for-

mula t(a0 ⊗ . . .⊗ an) = (−1)nan⊗a0⊗. . .⊗an−1 and by a similar but twisted
formula on (F (0)

n )γ [30]: tγ(a0 ⊗ . . .⊗ an) = (−1)n(an ◦ϕγ)⊗ a0⊗ . . .⊗ an−1.
On H0

c (Z̃n,m,Ainvn ) it is given by

t(a)(k0, . . . , kn, γ, h1, . . . , hm) = tγ(a(knγ, k0, . . . , kn−1, γ, h1, . . . , hm))

and similarly on H0
c (Ỹm,Binvn ).

The compatibility with dI and p2? follows from the above formulae. The
compatibility with ε is the same computation as in [30], actually it is for this
reason that we introduced the twisted action tγ. ut
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Observe that the above action on Ainvn does extend to an action on An
which is however not cyclic. Also it is only on A⊗(n+1)/F∞A

⊗(n+1) that a
natural cyclic structure can be defined and not on A⊗(n+1), in general. This
shows the power of the sheaf approach.

Let O be an invariant open-closed subset of B
(0)
fin. Define for any n the

double complex D(n)(O) by D(n)
p,q = (Ωn−q

c (Ỹp(O)), dI , dDR), where dDR is the
DeRham differential, n, p, q ≥ 0. There exists a morphism σ of bicomplexes
D(n+1)[0, 1]→ D(n) which identifies D(n+1)

p,q+1 to D(n)
p,q .

Recall [15, 26] that there is a periodicity morphism S : HCn → HCn−2,
defined at the level of complexes. The homology of the inverse limit complex
is denoted HCper and called periodic cyclic homology, it is a Z2-graded theory.
The groups HCper fit into a lim1 exact sequence:

0→ lim
←

1HCi+2m+1 → HCper
i → lim

←
HCi+2m → 0

([25], page 160).

Theorem. 5.6 Suppose G is a smooth etale separated groupoid. Let O be
an invariant closed-open subset of B

(0)
fin, and D(n)(O) be the double complex

defined above. We have using the notations introduced above
(1) eOHCn(C∞c (G)) ' ⊕nm=0Hn−m(D(m)(O)).
(2) The periodicity morphism S : eOHCn(C∞c (G)) → eOHCn−2(C∞c (G))

is induced by σ : Hn−m+1(D(m+1)(O))→ Hn−m(D(m)(O)) defined above.
(3) eOHC

per
n (C∞c (G)) ' ∏

m∈n+2Z
Hm(D(N)) if N is even ≥ dimG.

Proof. Let V = C[u, u−1]/u−1
C[u−1], u being considered of degree 2. Us-

ing Proposition 5.4 and Lemma 5.5 we see that the cyclic homology group
eOHCn(C∞c (G)) is computed by the triple complex

(H0
c (Ỹm(O),Binvn )⊗ V, dI , dII , Bu−1)

We use the formalism in [26]. Also recall that dI is induced by integration
along the face maps, dII is the Hochschild differential and acts along the
stalks, and B is as defined in [15, 26] by getting rid of the acyclic columns
involving b′. Then Lemma 5.2 shows that there exists a (degree preserving)
quasi-isomorphism of triple complexes where the total degree is n+ p+ q:

(H0
c (Ỹp,Binvn−q)u

q, dI , dII , Bu−1)→ (D(n)
p,q , d

I , 0, dDR)
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from which (1) and (2) follow. We also obtain that D(n)(O) = D(N)(O) (up
to a shift) for n ≥ N , and hence

eOHC
per
n (C∞c (G)) ' lim

←i

n+i⊕
m=−i

HCn+N+2m(D(N)(O))

which proves (3). ut

For an arbitrary manifold M we denote by o the orientation local coeffi-
cient system (sheaf) [43], and by Hp(M, o) the homology groups with values
in this coefficient system. We consider complex orientations, so the stalk of
o at any point is C. This sheaf is functorial for local homeomorphisms, and
lifts to the geometric realization Y(O) of the simplicial space Ym(O).

Consider for each m the sphere bundle SYm(O) and the ball bundle
BYm(O) defined such that BYm(O) − SYm(O) = TYm(O). The simplicial
realization of these spaces will be denoted by SY(O) and BY(O) respectively.

Remark For a groupoid G which is Morita equivalent to a manifold the
isomorphism in (3) is the Generalized Mayer-Vietoris principle in [8]. In par-
ticular it gives the equality between the de Rham and the Cech cohomology
groups with values in the complex locally constant sheaf C.

The following theorem gives a more concrete description of the periodic
cyclic homology of C∞c (G).

Theorem. 5.7 (1) eOHC
per
n (C∞c (G)) ' ∏

m∈n+2Z
Hm(BY(O), SY(O)) ⊗ C,

where the last groups denote the usual (simplicial) homology.
(2) Suppose all the components of O have the same dimension N (mod 2),

then eOHC
per
n (C∞c (G)) ' ∏

m∈n+N+2Z
Hm(Y(O), o).

Proof. The proof is to adapt the Poincaré duality to the case of simplicial
manifolds and their geometric realization.

Denote, for a dimension N manifold M , by Ωq(M, o) the space of com-
pactly supported q-currents with values in o. By definition Ωq(M, o) is the
dual of the space Ωq(M, o) of smooth q-forms with coefficients in the canon-
ically flat bundle o and with arbitrary support. The space Ωq(M, o) consists
of compactly supported distributional sections of ∧qTM ⊗ o⊗ |Λ|, where |Λ|
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is the bundle of 1-densities. The integration of densities defines a diffeo-
invariant map Ωq

c(M)→ ΩN−q(M, o), commuting with the natural de Rham
differential on currents. This gives a chain morphism (D(N)

p,q , d
I , dDR) →

(Ωq(Yp, o), d
I , dDR). Moreover this map is a quasi-isomorphism due to the

ordinary Poincaré isomorphism. The rest of (2) follows from a theorem of
Bott [6]. (1) follows from (2). ut

We give some applications.

Corollary. 5.8 (Connes) The periodic cyclic homology HCper
n (C∞c (G)) of

algebras associated to smooth etale Hausdorff groupoids contain as a direct
factor the twisted cohomology of BG. ut

This is obtained from the above theorem by taking O to be the set of
units which is closed and open since G is assumed to be Hausdorff and etale.
Compare to [16].

Let now G be a transformation groupoid obtained from a smooth action
of a discrete group Γ on a manifold X. Explicitly G(0) = X and G(1) = X×Γ
with d(x, γ) = x, r(x, γ) = γx and (γx, γ′)(x, γ) = (x, γ′γ).

Fix a torsion conjugacy class a in Γ and denote by Xγ the set of fixed
points of γ. Then Oa = {(x, γ) : γ ∈ a, x ∈ Xγ} is an invariant open-
closed subset of B(0). Let Γγ denote the centralizer of γ and E = EΓγ be a
contractible space equiped with a free and proper action of Γγ. Then, using
the notations in Theorem 5.7, we have that Y(O) is homotopy equivalent to
the homotopy quotient (Xγ × E)/Γγ = Xγ//Γγ.

Corollary. 5.9 Let G be the transformation groupoid defined above. Using
the notation we have defined we have the following isomorphism

eOγHC
per
n (C∞c (G)) =

∏
m∈n+N+2Z

Hm(Xγ//Γγ, o)

where N = dimXγ. ut
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Suppose that in the previous remark the group is finite or that it is
compact with discrete stabilizers. Then we obtain (up to Morita equivalence
of groupoids, see [1, 23, 34, 37]) that G is the groupoid associated to an
orbifold. Since the stabilizers in the above discussion are compact we can get
rid of them (use the Cartan-Leray spectral sequence) and using the Poincaré
duality we obtain

Corollary. 5.10 (i) eOγHC
per
n (C∞c (G)) =

∏
m∈n+2Z

Hm(Xγ/Γγ)

(ii) HCper
n (C∞c (G)) =

∏
m∈n+2Z

Hm(X̂/Γ) where X̂ = {(x, γ) : γx = x} ⊂
X × Γ.

(iii) If the group Γ is finite and χ(X,Γ) denotes the orbifold Euler char-
acteristic of X/Γ [1, 18] we have

χ(X,Γ) = dimHCper
0 (C∞c (G))− dimHCper

1 (C∞c (G))

ut

See also [1].
This gives an interpretation in cyclic homology of the orbifold Euler char-

acteristic, and a way to define it in general, that is when the orbifold is not
a quotient by a finite group. (We warn the reader that this orbifold Euler
characteristic does not coincide with the one defined by Satake [38]).

For the proof of (iii) one can either proceed directly or use the results of
[5, 10, 9] stating that for finite groups the Connes-Chern character gives an
isomorphism K?

Γ(X)⊗ C ' HCper
? (C∞c (G)).

It is also interesting to mention that in the orbifold case the complex D(N)

of theorem 5.6 is quasi-isomorphic to the de Rham complex of the union of
the strata corresponding to O.

Let X be a smooth manifold, assumed to be compact for simplicity. Fix
a covering (Uα) of X with contractible open domains of some charts. Let
ξ be a rank n complex vector bundle on X and gα,β : Uα ∩ Uβ → GL(n)
be the transition functions of ξ. The covering Uα defines a groupoid G
by G(0) = ∪α(Uα × {α}) and G(1) = ∪α,β(Uα ∩ Uβ) × {(α, β)} (i.e. we
consider disjoint unions). This groupoid is Morita equivalent to X, and
hence the space of orbits of G is X. Choose a partition of unity (ϕ2

α) of X
subordinated to (Uα). Then if we define e = ϕαgα,βϕβ on (Uα∩Uβ)×{(α, β)}
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we obtain an idempotent e ∈ Mn(C∞c (G)). Using the Chern character in
cyclic cohomology and the quasi-isomorphism mentioned above we get the
following expression for the Chern character of the vector bundle ξ in terms
of transition functions and partitions of unity:

Ch(ξ) = Tr(
∑

(n!)−1(edede/2πı)n) (34)

Here Tr is the canonical map Ωp(G(1))⊗Mn → Ωp(X). Compare to [7].
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Inst. Fourier Grenoble, 33:201–208, 1983.

[25] J.-L Loday. Cyclic Homology. Springer, Berlin-Heidelberg-New York,
1992.

[26] J.-L. Loday and D. Quillen. Cyclic homology and the Lie algebra ho-
mology of matrices. Coment. Math. Helveticii, 59:565–591, 1984.

[27] S. MacLane. Homology. Springer, Berlin-Heidelberg-New York, 1963.

[28] C. C. Moore and C. Schochet. Global analysis on foliated spaces, vol-
ume 9 of Math. Sci. Res. Inst. Springer, Berlin-Heidelberg-New York,
1988.

[29] A. Nica and V. Nistor. Work in progress.

[30] V. Nistor. Group cohomology and the cyclic cohomology of crossed
products. Invent. Math., 99:411–424, 1990.

[31] V. Nistor. A bivariant Chern character for p-summable quasihomomor-
phisms. K-Theory, 5:193–211, 1991.

[32] V. Nistor. A bivariant Chern-Connes character. Ann. of Math., 138:555–
590, 1993.

[33] V. Nistor. Cyclic cohomology of crossed products by algebraic groups.
Invent. Math., 112:615–638, 1993.

[34] J. Renault P. S. Muhly and D. Williams. Equivalence and isomorphism
for groupoid C∗-algebras. J. Operator Theory, 17:3–22, 1987.

[35] D. Quillen. Higher algebraic K-theory I. In Algebraic K-theory I, volume
341 of Springer Verlag Lect. Notes in Math., pages 85–174, 1973.

[36] D. Quillen. Superconnections and the Chern character. Topology, 24:89–
95, 1985.

[37] J. Renault. A Groupoid approach to C?-algebras, volume 793 of Lect.
Notes in Math. Springer, Berlin-Heidelberg-New York, 1980.

32



[38] I. Satake. The Gauss-Bonnet theorem for V -manifolds. J. Math. Soc.
Japan, pages 464–492, 1957.

[39] E. H. Spanier. Algebraic Topology. McGraw Hill, New York, San Fran-
cisco, St. Louis, Toronto, London, Sydney, 1966.

[40] R. G. Swan. The Theory of Sheaves. University of Chicago Press,
Chicago-London, 1964.

[41] B. L. Tsygan. Homology of matrix Lie algebras over rings and Hochschild
homology. Uspekhi Math. Nauk., 38:217–218, 1983.

[42] A. Wassermann. Cyclic cohomology I: Finite group actions and Schwarz
algebras. 1987.

[43] G. W. Whitehead. Elements of Homotopy Theory. Springer, Berlin-
Heidelberg-New York, 1978.

[44] E. Winkelkemper. The graph of a foliation. Ann. Global Anal. Geom.,
1:53–73, 1983.

33


