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Tangles and Framed Tangles

Tangles

Tangles generalize braids, knots and links. A tangle is a
collection of circles and arcs piecewise smoothly immersed in
R? x [0, 1] with endpoints on the planes R? x {0} and R? x {1}.
Specifically let m and n be given nonnegative integers; we will
define a tangle of type (m, n). Let us fix m points in R? x {0}
and R? x {1}: for definiteness

m={(k.0,0)[t <k<m},  {n=(£0,0)1<(<n}.

These are to be the endpoints of the arcs. We identify two
tangles if they are equivalent by an ambient isotopy that fixes
the endpoints on R? x {0} and R? x {1}.



Tangles and Framed Tangles

Tangles form a category

The objects in the tangle category are the nonnegative integers
N. We think of an (m, n) tangle as a morphism m — n. We will
draw this upside down with the m at the top. Here is a (3, 1)
tangle represented by its projection onto the plane.

/C/

Morphisms may be composed by gluing (k,0, 1) to (k,0,0),
then rescaling to fit between the planes z=0and z = 1.



Tangles and Framed Tangles

Tangles form a rigid monoidal category

The monoidal structure identifies my and mo with my + mo.
Given tangles Ty in Hom(my, ny) and T, in Hom(ms, no), we
may juxtapose them to get a tangle in Hom(my + mo, ny + no).

We may even define m* = m and make the tangle category into
a rigid category. Here is the coevaluation map for m = 2. ltis
an object in Hom(0,4) = Hom(0, 2 ® 2*).
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Tangles form a braided category

We may introduce a braiding by specifying morphisms in
Hom(m ® n,n® m). Here is the braiding for m=2,n = 3.



Tangles and Framed Tangles

Framed Tangles

A framed tangle associates to each strand a family of normal
vectors. Fattening up the strand in the direction of these normal
vectors produces a ribbon.

Framed tangles again form a braided monoidal category.



The naive trace

Knot invariants

We may try to model a knot or link in a rigid braided category.
Let us pick a module V in the category. Let K be the unit object
in the category. Assume that V** = V so that the evaluation
morphism coevy- : V* @ V** — K can be regarded as a
morphism V* ® V — K. Now we label the strands of a
2-dimensional projection as follow:
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Knot invariants, continued

Interpreting the caps and cups as coevaluation and evaluation,
this is a morphism K — K. If K happens to be a field, it is a
scalar. This approach to knot invariants has some problems,
but ultimately can be made to succeed.
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The simplest knot

The simplest knot is an unknotted circle.

coevy eV

K — VoV —— K.

Applying the above mentioned heuristic will expose some of the
problems with this plan.
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Dimension

The braided category of finite-dimensional vector spaces over a
field K is symmetric: the maps cy v and Cv y:U— Vare
equal. We may identify V with its double dual V** and so we a
linear map

coevy evy«
—

K VeV K.

Remember that if v; and v;* are dual bases of V and V* then
coevy(1) = > v/ ® v;. From this, this endomorphism of K is
the scalar dim( V).
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More generally we may include an endomorphism of V and
compute its trace.

coevy fR1 = evyx

K— VoV — Ve V¥ — K.
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The trace is multiplicative

Still working in the symmetric category of vector spaces, if
f:V—=Vandg: W— W are endomorphisms then

tr(f ® g) = tr(f) tr(9).
Here is a graphical proof. Remember,
coevygw = (1v ® coevy ®@1y+) coevy,
EVivew)s = BV gyx = eVV*(1 v ®evys 1 V*)
The evaluations evy-, evyy-

f v may be carried out separately,
then multiplied together.
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The trace in a braided rigid category

We can try to make a trace in a braided rigid category. We
create V ® V* with coev. We have to interchange them before
we evaluate:

coevy v

K 2 vgvs 22 gy 2V K

V*
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This trace is not multiplicative

f-VoV,g W—->W

If we try to prove multiplicativity for tr(f @ g) we cannot because
the two paths are linked and cannot be separated. This is a sign
that we need a new ingredient to make a satisfactory theory.



Reflexivity and twisting

Isomorphisms V — V**

In a rigid braided category V and V** are naturally isomorphic,
but there are potentially an infinite number of such natural
isomorphisms corresponding to increasingly twisted tangles.
The following morphism will be denoted uy:

1y®coevy« Cy, v @1 ysx evy ®1 s
—_— —_—

V V® V* ® V** V* ® V® V** V**

V*

V**
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The inverse of uy

1%+ ®COEVY Cyxx @1y 1y®evy
Ve S Ve e Ve v Sl

V®V**®V* V

V**
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Checking the inverse

Let us check that with uy : V — V** and u;1 that indeed
uyluy = 1y.

V %4
V** (Vs
/ % %
4 4

We use the naturality of the second (lower) crossing to move it
before (above) the first crossing.
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Checking the inverse (continued)

é

This shows that vy, uy = 1y.
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Checking the inverse (continued)

Now let us show that uyuy,' = 1y.

V** V**
v+ v*
4 4
v* v+

V** V**
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Checking the inverse (continued)

v+ v*
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Another isomorphism

1y®coevy« Cy,v=®@1Tyxx evy @1y s

uy VL v g v T rg Vg Ve XSV e
1y®coev 1y @cCy, yx evys @1

vy v Y s Ve Ve vV Ve VeV —L "V, v

V V**
V*
V*
V** 4

In addition to uy, whose definition we repeat, we will need
another isomorphism vy : V** — V. This is not u;1 V=V
whose definition we have already considered.
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Why are there two isomorphisms

Let us compare vy : V** — Vwith u, ' V** — V.

V** V**

V*

/

Left: vy. Right: uy,’.
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Why are there two isomorphisms

Let us compare vy : V** — Vwith u, ' V** — V.

Let V=Ux W.
U™ @ W* U™ @ W*
\ ]
wreUu*
/ weU*
dow ) U®6 [

The difference between vy and u\j1 is made clear if
V =Uw® W: itis in the direction of twisting.
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uy and vy

Bothuy : V — V** and vy : V** — V are counter clockwise 27
twists. (Our z axis points down and the y axis points away from

the viewer).
U o W \
Right: vy.
U™ ® W Us W

Composing them, vy o uy : V — V is a clockwise twist in 4.
We could solve many problems such as the non-multiplicativity
of the trace if we had a map V — V thatis a twist in 2.



The ribbon trace

Possible twistings

We have used the example V = U ® W to show what kinds of
twisting we can obtain with the tools we have so far. In a
braided rigid category, we can construct morphisms V — V
that twist a multiple of 47 times.

3
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Motivating the notion of a ribbon category

What we need, however, is a natural morphism 6 : V — V that
twists by 27. We expect that 62 = vy o uy. With such a
morphism in hand, we can construct a multiplicative trace.

We have not yet give an proper definition of 6 but heuristically
show how it solves this problem.
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Multiplicativity of the ribbon trace (informal)

feg g
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What did we forget?

We glossed over the following point. The morphism agéw isn’t
actually this:

It's this, because U and W themselves are ribbons that can

twist:
TR

N



Ribbon categories

We will now formulate the axioms that the twist 8y in a rigid
braided category must statisfy. We want a natural isomorphism
Oy : V — V for every object in the category satisfying certain
axioms. A braided rigid category with a twist is called a ribbon
category.

Naturality means if f : V — W then 0y f = f0y:

Ow f
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Ribbon axioms, continued

We must have (using naturality of ¢y w and cy y:

efjéw =Cw,u°Cuyw©° 961 & 971 = 9[11 ® 9;.; o Cw,u©° Cuw
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Ribbon axioms, concluded

Finally it is necessary to assume that if / is the unit object in the
category then 6, = 1/, and that 6\~ = 07,. This last axiom
means a compatibility with evaluation and coevalution:

v+ v v v

Oy

\J
L) O

v+ v v %%

Example: The category of framed tangles is a ribbon category.
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The trace in a ribbon category

The definition of a ribbon category contains all we need to
define a multiplicative trace. It is an endomorphism of /, which
in a category of vector spaces means a scalar.

o1 v
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Multiplicativity of the ribbon trace (formal)

Letf:U—~Uandg: W — W.
91

usWw

fog feeg
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Multiplicativity of the ribbon trace (continued)

This proves tr(f @ g) = tr(f)tr(g).
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Exercises

Exercise 1. In the slides called Checking the inverse we proved
that uy and u;1 as we defined it were inverses by the following
manipulations.

- -
v v
V= [] v

Explain carefully the justification of each step.

Exercise 2. What is the inverse of vy?

Exercise 3. Prove that 0y- = 6}, implies the evy and coevy
compatibilities under Ribbon axioms concluded.
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