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Tangles

Tangles generalize braids, knots and links. A tangle is a
collection of circles and arcs piecewise smoothly immersed in
R2 × [0,1] with endpoints on the planes R2 × {0} and R2 × {1}.
Specifically let m and n be given nonnegative integers; we will
define a tangle of type (m,n). Let us fix m points in R2 × {0}
and R2 × {1}: for definiteness

m = {(k ,0,0)|1 6 k 6 m}, {n = (`,0,0)|1 6 ` 6 n}.

These are to be the endpoints of the arcs. We identify two
tangles if they are equivalent by an ambient isotopy that fixes
the endpoints on R2 × {0} and R2 × {1}.
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Tangles form a category

The objects in the tangle category are the nonnegative integers
N. We think of an (m,n) tangle as a morphism m→ n. We will
draw this upside down with the m at the top. Here is a (3,1)
tangle represented by its projection onto the plane.

Morphisms may be composed by gluing (k ,0,1) to (k ,0,0),
then rescaling to fit between the planes z = 0 and z = 1.
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Tangles form a rigid monoidal category

The monoidal structure identifies m1 and m2 with m1 + m2.
Given tangles T1 in Hom(m1,n1) and T2 in Hom(m2,n2), we
may juxtapose them to get a tangle in Hom(m1 + m2,n1 + n2).

We may even define m∗ = m and make the tangle category into
a rigid category. Here is the coevaluation map for m = 2. It is
an object in Hom(0,4) = Hom(0,2⊗ 2∗).
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Tangles form a braided category

We may introduce a braiding by specifying morphisms in
Hom(m ⊗ n,n ⊗m). Here is the braiding for m = 2,n = 3.
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Framed Tangles

A framed tangle associates to each strand a family of normal
vectors. Fattening up the strand in the direction of these normal
vectors produces a ribbon.

Framed tangles again form a braided monoidal category.
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Knot invariants

We may try to model a knot or link in a rigid braided category.
Let us pick a module V in the category. Let K be the unit object
in the category. Assume that V ∗∗ ∼= V so that the evaluation
morphism coevV∗ : V ∗ ⊗ V ∗∗ → K can be regarded as a
morphism V ∗ ⊗ V → K . Now we label the strands of a
2-dimensional projection as follow:

V V ∗

V V ∗
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Knot invariants, continued

V V ∗

V V ∗

Interpreting the caps and cups as coevaluation and evaluation,
this is a morphism K → K . If K happens to be a field, it is a
scalar. This approach to knot invariants has some problems,
but ultimately can be made to succeed.
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The simplest knot

The simplest knot is an unknotted circle.

K V ⊗ V ∗ K .
coevV evV∗

V V ∗

Applying the above mentioned heuristic will expose some of the
problems with this plan.
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Dimension

The braided category of finite-dimensional vector spaces over a
field K is symmetric: the maps cU,V and c−1

V ,U : U → V are
equal. We may identify V with its double dual V ∗∗ and so we a
linear map

K V ⊗ V ∗ K .
coevV evV∗

V = V ∗∗ V ∗

Remember that if vi and v∗
i are dual bases of V and V ∗ then

coevV (1) =
∑

v∗
i ⊗ vi . From this, this endomorphism of K is

the scalar dim(V ).
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Trace

More generally we may include an endomorphism of V and
compute its trace.

K V ⊗ V ∗ V ⊗ V ∗ K .
coevV f⊗1V∗ evV∗

V

f V∗
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The trace is multiplicative

Still working in the symmetric category of vector spaces, if
f : V → V and g : W →W are endomorphisms then

tr(f ⊗ g) = tr(f ) tr(g).

Here is a graphical proof. Remember,

coevV⊗W = (1V ⊗ coevW ⊗1V∗) coevW ,

ev(V⊗W )∗ = evW∗⊗V∗ = evV∗(1V ⊗ evW∗ ⊗1V∗)

f g

V

W

V∗W∗

The evaluations evV∗ , evW∗

may be carried out separately,
then multiplied together.
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The trace in a braided rigid category

We can try to make a trace in a braided rigid category. We
create V ⊗ V ∗ with coev. We have to interchange them before
we evaluate:

K V ⊗ V ∗ V ∗ ⊗ V K
coevV cV ,V∗ evV

V ∗

V
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This trace is not multiplicative

f : V → V , g : W →W

f g W∗

V

V∗

W

f

g

If we try to prove multiplicativity for tr(f ⊗ g) we cannot because
the two paths are linked and cannot be separated. This is a sign
that we need a new ingredient to make a satisfactory theory.
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Isomorphisms V → V ∗∗

In a rigid braided category V and V ∗∗ are naturally isomorphic,
but there are potentially an infinite number of such natural
isomorphisms corresponding to increasingly twisted tangles.
The following morphism will be denoted uV :

V V ⊗ V ∗ ⊗ V ∗∗ V ∗ ⊗ V ⊗ V ∗∗ V ∗∗1V⊗coevV∗ cV ,V∗⊗1V∗∗ evV ⊗1V∗∗

V ∗∗

V

V ∗
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The inverse of uV

V ∗∗ V ∗∗ ⊗ V ⊗ V ∗ V ⊗ V ∗∗ ⊗ V ∗ V
1V∗∗⊗coevV cV∗∗,V⊗1V∗ 1V⊗ev∗V

V

V ∗∗

V ∗
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Checking the inverse

Let us check that with uV : V → V ∗∗ and u−1
V that indeed

u−1
V uV = 1V .

V ∗∗

V

V ∗

V

V ∗

V ∗∗

V

V∗

V

V ∗

We use the naturality of the second (lower) crossing to move it
before (above) the first crossing.
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Checking the inverse (continued)

V

V∗

V

V

V∗

V

V

V

This shows that u−1
V uV = 1V .
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Checking the inverse (continued)

Now let us show that uV u−1
V = 1V .

V

V ∗∗

V ∗

V ∗∗

V ∗

V

V ∗∗

V ∗

V ∗∗

V ∗
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Checking the inverse (continued)

V

V ∗∗

V ∗

V ∗∗

V ∗

V ∗∗

V ∗∗

V ∗

V ∗∗

V ∗∗
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Another isomorphism

uV : V V ⊗ V ∗ ⊗ V ∗∗ V ∗ ⊗ V ⊗ V ∗∗ V ∗∗1V⊗coevV∗ cV ,V∗⊗1V∗∗ evV ⊗1V∗∗

vV : V ∗∗ V ∗∗ ⊗ V ⊗ V ∗ V ∗∗ ⊗ V ∗ ⊗ V V
1V⊗coevV 1V∗∗⊗cV ,V∗ evV∗ ⊗1V

V ∗∗

V

V ∗

V ∗∗

V

V ∗

In addition to uV , whose definition we repeat, we will need
another isomorphism vV : V ∗∗ → V . This is not u−1

V : V ∗∗ → V
whose definition we have already considered.
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Why are there two isomorphisms

Let us compare vV : V ∗∗ → V with u−1
V : V ∗∗ → V .

V ∗∗

V

V ∗

V

V ∗∗

V ∗

Left: vV . Right: u−1
V .
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Why are there two isomorphisms

Let us compare vV : V ∗∗ → V with u−1
V : V ∗∗ → V .

Let V = U ⊗W .

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗

U ⊗W

U∗∗ ⊗W ∗∗

W∗⊗U∗

The difference between vV and u−1
V is made clear if

V = U ⊗W : it is in the direction of twisting.
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uV and vV

Both uV : V → V ∗∗ and vV : V ∗∗ → V are counter clockwise 2π
twists. (Our z axis points down and the y axis points away from
the viewer).

Left: uV .
Right: vV .

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗

Composing them, vV ◦ uV : V → V is a clockwise twist in 4π.
We could solve many problems such as the non-multiplicativity
of the trace if we had a map V → V that is a twist in 2π.
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Possible twistings

We have used the example V = U ⊗W to show what kinds of
twisting we can obtain with the tools we have so far. In a
braided rigid category, we can construct morphisms V → V
that twist a multiple of 4π times.

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗
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Motivating the notion of a ribbon category

What we need, however, is a natural morphism θ : V → V that
twists by 2π. We expect that θ2 = vV ◦ uV . With such a
morphism in hand, we can construct a multiplicative trace.

V

V ∗θ−1

f

We have not yet give an proper definition of θ but heuristically
show how it solves this problem.
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Multiplicativity of the ribbon trace (informal)

θ−1

f ⊗ g g

f

f g
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What did we forget?

We glossed over the following point. The morphism θ−1
U⊗W isn’t

actually this:

It’s this, because U and W themselves are ribbons that can
twist:

θ−1
U θ−1

W
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Twists

We will now formulate the axioms that the twist θV in a rigid
braided category must statisfy. We want a natural isomorphism
θV : V → V for every object in the category satisfying certain
axioms. A braided rigid category with a twist is called a ribbon
category.

Naturality means if f : V →W then θW f = fθV :

f

θW
=

f

θV
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Ribbon axioms, continued

We must have (using naturality of cU,W and cW ,U :

θ−1
U⊗W = cW ,U ◦ cU,W ◦ θ−1

U ⊗ θ−1
W = θ−1

U ⊗ θ−1
W ◦ cW ,U ◦ cU,W

θ−1
U θ−1

W

=

θ−1
U θ−1

W

= θ−1
U⊗W
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Ribbon axioms, concluded

Finally it is necessary to assume that if I is the unit object in the
category then θI = 1I , and that θV∗ = θ∗V . This last axiom
means a compatibility with evaluation and coevalution:

V ∗ V

θV∗

=
V ∗ V

θV

V ∗ V

θV∗
=

V V ∗

θV

Example: The category of framed tangles is a ribbon category.
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The trace in a ribbon category

The definition of a ribbon category contains all we need to
define a multiplicative trace. It is an endomorphism of I, which
in a category of vector spaces means a scalar.

V

V ∗θ−1

f
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Multiplicativity of the ribbon trace (formal)

Let f : U → U and g : W →W .

f ⊗ g

θ−1
U⊗W

f g

θ−1
U θ−1

W
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Multiplicativity of the ribbon trace (continued)

g

f

f

θ−1
U

g

θ−1
W

This proves tr(f ⊗ g) = tr(f ) tr(g).
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Exercises

Exercise 1. In the slides called Checking the inverse we proved
that uV and u−1

V as we defined it were inverses by the following
manipulations.

V

V ∗∗

V ∗

V ∗∗

V ∗

V

V ∗∗

V ∗

V ∗∗

V ∗

V ∗∗

V ∗∗

V ∗

V ∗∗

V ∗∗

Explain carefully the justification of each step.

Exercise 2. What is the inverse of vV ?

Exercise 3. Prove that θV∗ = θ∗V implies the evV and coevV
compatibilities under Ribbon axioms concluded.
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