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These are lecture notes for three lectures in Jerusalem, March 2001. To key
the reader, the transparency page numbers numbers are displayed in boxes.

We'’ve tried to give a pithy account of the Spectral theory, emphasizing rep-
resentation theory, with proofs reduced to their essentials. More complete proofs
and details of many aspects can be found in Bump, Automorphic Forms and Rep-
resentations, Chapter 2 and Chapter 3, Section 2.

One omission is that we only prove the analytic continuation and functional
equations of the Eisenstein series for SL(2,Z). This case is atypical and there-
fore somewhat misleading, as the work of Sarnak and Philips showed. Thus one
should ponder also the nonarithmetic case, for which we recommend Appendix IV
in Langlands [LES]. We also prove the Selberg trace formula only for compact quo-
tients, and we omit several important related matters such as truncation and the
Maass-Selberg relations.

At the end we consider the Jacquet-Langlands correspondence.
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is a G-invariant differential operator. Let I' be a discrete cocompact subgroup of
G = SL(2,R). Then X =T'\$ is a compact Riemann surface. A is symmetric with
respect to the invariant metric y~2(dz A dy):

(Af,9)=(f,Ag),  [,9€C™(I\9)
(Stokes). It extends to a self-adjoint differential operator on L?(T'\$), dz A dy/y?).

(Proof later.)

Example. 1 # v € I' is hyperbolic if its eigenvalues are real, elliptic if complex
of absolute value 1. I' is hyperbolic if each 1 # ~ € I is hyperbolic. Let X be a
compact Riemann surface of genus > 2. Its universal cover is $ and I' = m(X)
acts with quotient X. These examples are precisely the hyperbolic groups.

Let g be the Lie algebra of G. Thus g = {g € Mat2(R)|tr(9) = 0} with
[X,Y] = XY — YX (matrix mult). The universal enveloping algebra U(g) is the
free algebra on g modulo the relations

[X,Y]- (XY -Y-X)=0
(- = mult in U(g)). The center of U(g) is C[A],
(2) —4A = H? + 2RL + 2LR,

s (0 1Y+ (0 0\ 4 (1 0
w=(o)2= (0 0) o= (0 5)

This is the Laplace-Beltrami operator. It gives rise to the Laplacian, as we will

explain.

Let p: G — C*°(G) be the right regular representation: (p(g)f)(h) = f(hg).
This has a Lie algebra version: if X € g let

® (X)) = 5 F(he ™) imo.

It is a Lie algebra rep: [X,Y] has the same effect as X oY —Y 0 X (o = composition
of operators). So it extends to a representation of U(g). Because A is in the center,
it commutes with left and right translation.

Functions on $) are the same as functions on G right invariant by K. Since A
commutes with right translation, it preserves right invariance by K. So A acts on
functions on £, and it agrees with the Laplacian defined by (1).
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The right invariance of A implies that A commutes with certain integral oper-
ators. These are easier to study because they are compact operators, in fact trace
class.

Let H, be the space of K-biinvariant, compactly supported smooth functions
on G. It is a ring without unit under convolution.

Theorem 1 (Gelfand). The ring Ho is commutative.

Proof. Matrix transposition preserves K so it induces an involution ¢+ on H, such
that ¢(¢ * 1) = 1(¢0) o 1(¢p), where (vf)(g) = f(g?). Every double coset in K\G/K
has a diagonal representative. So ¢ is the identity map.

This implies the representation of G induced from the trivial representation of
K is multiplicity-free. Therefore (G, K) is called a Gelfand pair.

In this case K has a stronger property. Since K is commutative, any irreducible
representation of K is a character y, and the ring

Hy = {¢ € C°(G)|p(krgk2) = x(k1) ¢(g) x(k2) }-

is commutative.

Thus K is a strong multiplicity one subgroup meaning that every irreducible
representation of K induces a multiplicity free representation of G. This is a rarer
property than Gelfand subgroup.

For example a maximal compact subgroup of a reductive algebraic group over a
locally compact field F' is a Gelfand subgroup. Rarely has it the strong multiplicity
one property. In particular SO(n) is a Gelfand subgroup of SL(n, R) but only when
n = 2 is it a strong multiplicity one subgroup. On the other hand there are a few

important examples of strong multiplicity one subgroups: GL(n —1) in GL(n) and
SO(n—1) in SO(n).

Any representation 7 : G — End(V) (V a Banach or Frechet space) gives a
representation of H,:

m()v = /G b(9) 7(g) dg.
3



(Haar integral.) In particular the right regular representation p of G gives rise to a
representation of #, on L?(T'\G) which we will denote by T

Ty f(z / #(9) f(zg) dg.

This is convolution with g — ¢(g~1).
Let

(4) Ky(z,y) = ¢z ).

vyerl

At first we regard (z,y) as an element of G X G. Since ¢ is compactly supported
for x and y restricted a compact set, only finitely many ~ contribute.

A change of variables shows that K4(x,y) is invariant if either z or y is changed
on the left by an element of v, so we may regard the kernel as defined on either
G x G or on I'\G x I'\G, and it is a continuous function.

Theorem 2. We have

(5) (T f)(x) = Kg(z,y) f(y) dy.

G

Proof. The left side equals

/cb xy)dy—/cﬁ:v y) f dy—Z/ ¢(z ™ vy) f(y) dy,

yel

where we have used f(yy) = f(y). Interchanging sum and integral gives

(5). m

Recall X =T'\$. The kernel K is well defined as a function on X x X.
If H is a Hilbert space, an operator T': H — H is compact if T maps bounded
sets into compact sets.

Theorem 3. Ty is a compact operator.



Proof. The kernel Ky is continuous on the compact space X x X, so it is certainly
in L2(X x X). The well-known theorem of Hilbert and Schmidt asserts that if X
is any locally compact Borel measure space such that L?(X) is a separable Hilbert
space then integral operator

(Tf)(z) = / K(z,y) f(y) dy
X

with the kernel K € L?(X x X) is compact.

9]

If

(6) ¢(g~") = 8(9)
then Ky(z,y) is symmetric and Ty is self adjoint.

Theorem 4 (Spectral theorem for compact operators). Let T be a compact
self-adjoint operator on a separable Hilbert space H. Then H has an orthonormal
basis ¢; (1 =1,2,3,---) of eigenvectors of T, so that T¢; = p;p;. The eigenvalues
i =0 ast—oco. W

Thus if (6) is true then T is a self-adjoined compact operator whose nonzero
eigenvalues p; of T, — 0. The Hilbert-Schmidt property implies more: > |u;]? <
oo. Later we will see that more is true: ) |u;| < co. This means that Ty is trace
class. This fact is important because of the Selberg trace formula.

Theorem 5. L2(X) has a basis consisting of eigenvectors of A.

Proof. The operators T, with ¢ satisfying (6) are a commuting family of self-
adjoint compact operators so they can be simultaneously diagonalized. By the
spectral theorem the nonzero eigenspaces are finite-dimensional; there is no nonzero
vector on which the operators Ty are all zero, since ¢ can be chosen to be positive,
of mass one and concentrated near the identity in which case Ty f approximates f.
Therefore the simultaneous eigenspaces of H, are finite dimensional.

Let V' be such an eigenspace. Since A commutes with the Ty, it preserves V,
and since it is symmetric it induces a self-adjoint transformation on V. Choose an
orthonormal basis for each such V' consisting of eigenvectors of A and put these
together for all V.



A point ¢ is called a reqular singular point for
(1) (r=0?g"(r)+(r—c)P(r—c)g'(r) +Q(r —c)g(r) =0

with P(r — ¢) and Q(r — ¢) analytic at 7 = ¢. Let o and ( be the roots of the
indicial equation o + (P(0) — 1)a + Q(0) = 0.

Proposition 1. (i) If a — (3 is not an integer, then (7) has two solutions (r —
c)*g1(r —¢) and (r — ¢)? g2(r — ¢), where g1 and g are analytic and nonzero at
r=c.

(i) If o — (B is a nonnegative integer, there exists a solution (r — ¢)® g1(r — ¢) and
another
(r —c)Pga(r —c) + C log(r —c) (r — ¢)* g1(r — ¢),

with g;(r — ¢) analytic at r = ¢, and g2(0) = 0 if and only if = (. M

Let A be a fixed complex number. We investigate K-bi-invariant functions on
G such that Af = Af. Of course, such a function cannot be in H, since it is not
compactly supported. Since

y1/2
G = K K
U ( y_l/Z)
y>1

f is determined by the function w on (0, 1) such that

1/2
w(r) = f(y y—1/2) )

where 7 = (y — 1)/(y + 1). The eigenvalue property amounts to the differential
equation

4
A sw(r) = 0.

" 1 /
(8) w(r)-l—;w(r)-}-m

This has regular singular points at (0,1) and there are two solutions of interest.
One is nicely behaved at 0, the other at 1.
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Let A = —s where s is any sufficiently large positive real number. At r =1 the
roots of the indicial equation are %(1 + /1 + 4s). Only one is positive, so there is
a unique (up to multiple) solution g to (8) which vanishes near the boundary. We

will use it to study the resolvant of the Laplacian.

Lemma 1. g(r) has a logarithmic singularity at r = 0.

Proof. The roots of the indicial equation at » = 0 are 0 with multiplicity 2, so
one solution has a logarithmic singularity, another is analytic. If g does not have
the logarithmic singularity, then g(r) is real and analytic on [—1,1] hence has a
maximum or minimum. At such a point ¢’(r) = 0 and since A = —s < 0 eq. (8)
implies that g and ¢” have the same sign, impossible at the maximum or minimum

because g(—1) =¢(1) =0. M

Let

g(%C)ZQ(

z,C € $. This is a Green’s function.

0? 0?
[_yz (ﬁ + 8—y2) + 5] 9(2,¢) = 0;

9(z, ) is singular on the diagonal z = (;

9(2,¢) = g(¢, 2);
9(2,() = 0 asy — 0;

Theorem 6.

(9) g(h(z)7 h(C)) = g(z,C), h € SL(27R)'

Proof. These properties follow immediately from the properties of g(z).

Since g has a logarithmic singularity at 0 it can be normalized so g(r)— 5= log(r)

is bounded as r — 0. It follows from Proposition 1 that ¢’(r) — 5= is analytic near

2
r = 0.



Theorem 7. If f € C°(H) then

[ a0 |- (8— ‘ 3—) wo] 10 B4 ).
9

0&2  0n?

Proof. Let w = (z —()/(z —¢) =u+iv € D. Let F : ® — C be defined by
F(w) = f(z). In the w coordinates we must prove

@/g(|w\) [— (8‘9; 4 8‘9;) + _4@)‘2)2] Fw) du A dv = F(0).

Let B, be the disk of radius r, and let 1 < R be large enough that the support of
F is contained in Br. With A, = 8%2/0u? + 0%/0v? the left side equals

4s
(1—fw[?)?

iy [ gu) |80+

e—0
BR_BE

} F(w)duA dv.

Use Green’s theorem (Stokes). For a planar domain €2,

0 0 0 0
/(gAef — fA%g)dx N dy = /(g(a—idy—a—gdm) —f (%dy—(%dw)).

Q oN

Boundary is traversed counterclockwise.

We obtain
) 0? 0? 4s
lim | F(w) [_<8u2 + 8v2> T \w|2)2}
Br—B.

g(Jw|) du A dv+

iy [ o) (P50 a0 - S ) -
i a0 (55,70 = 25 )
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where C¢ is the path circling the origin counterclockwise around the circle with
radius e. (There should also be terms integrating around Cpg, but these are zero
because they lie outside the support of F.)

The first term vanishes by Theorem 6. The last term vanishes because the
length of the arc shrinks faster than g blows up (logarithmically).

10

To evaluate the middle term let w = re®.

dg(|w() dg(lwl) .
9 dv — ER du=rg'(r)do.
We obtain
2m
: 6 / —
ll_)r% ; F(ee)dheg'(e) = F(0),

since g'(e) ~ 1/(2me) as e — 0. M

Lemma 2. There erists a constant C such that for all 0 < r < 1 the number of
v €I such that

1z — ¢

|z — (]

<r

is less than Cr2/(1 —r?).

Proof. The volume of the ball B, of radius r with center at the origin in the
noneuclidean metric (3.27) is 4wr?/(1—r?). Let F be a fundamental domain for the
action of I'. The union of the images under the Cayley transform z — (2—¢)/(z—()

of v(F'), where 7y runs through the elements of I" such that (yz—()/(y(z)—¢) roughly
covers B, so the number of such v is approximately vol(F)~!4rr2/(1—r2). =

Proposition 2. The series

G(za C) = Z g(za'Y(C)) = Z 9(7(z)’<—)-

ye{£1}\T ye{£1}\TI

1s absolutely convergent.



Proof. The typical term is
—1
Yz
Z, =g|l———=).
9(2,7(C)) g(,y_lz — C>
By Lemma 2, the number of v such that
-1,
u € Br
7'z —¢
is of the order R%2/(1 — R?), and the function g(r) is of the order (1 — r)® near

r =1, where a = (1 £ +/1+ 4s) > 1; consequently, the convergence issue reduces
to the convergence of the integral

which is finite. 1

G(z,() is the automorphic Green’s function. We will see that it is an integral
kernel for the resolvant of the Laplacian.

Theorem 8. G is defined and analytic for all values of (z,() except where { = v(z)
for some vy € I'. We have

[—y2 (% - aa—yz) + s} G(z,¢) =0
G(h(z), h({)) = G(z,(), h € G,
G(z,¢) = G(7(2),¢) =G(2,7(¢), ~veT,

G(2,() = G(¢2),
and G(z,() ~ 5=log|z — (| near z = (. For f € C*°(T'\$)

10) [ 6o |- ( 25+ L) ] 10 B2 = pia).
s £ U U
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Proof. Most of these properties follow from the corresponding properties of g. We
prove (10). By a partition of unity argument we can find a function F € CZ°($))
such that f(z) = >_ cp F(vz). Substituting this and the definition of G and using
(9) gives
82 0? dé A dn
> [ 96@©) |- (e + 5 + o] Pt B,

One of the summations may be collapsed with the integration to give

Z/ (5(2), ¢ [—n (53—;+8—2)+3}F(§)d£7;\2d":}?(z).

v, 6€I‘

This completes the proof. 1

Theorem 9. (i) The eigenvalues \; of A on L2(T'\$) tend to oo, and satisfy
Y2 < oo
(ii) The Laplacian A has an extension to a self-adjoint operator on the Hilbert space

L2(T\$).

Proof. By Theorem 4 let ¢; be a basis of H = L*(T"\§) consisting of eigenvectors
of A, with corresponding eigenvalues ;.

Let s > 0 be a positive constant. As is easily checked, the logarithmic singu-
larity along the diagonal is not sufficient to cause divergence of the integral

/ /\G Pda:/\dydf/\dn

772
T\HT\H

Thus the corresponding integral operator, which we shall denote 7', is Hilbert-
Schmidt. If ¢ is an eigenfunction of A with eigenvalue A, then it follows from
(10) that it is also an eigenfunction of T' with eigenvalue (A + s)~!. Since T is
Hilbert-Schmidt, Y°;(A; + )2 < oo, whence Y, A7? < oo.

We prove (ii). Let DA be the linear subspace of §) consisting of elements of
the form Y a;¢; such that Y A\?|a;|? < oo; on this space, define

A(Z ai¢i) = Z Ai G 5.
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Since the \; tend to infinity, and in particular are bounded away from zero, it is not
hard to check that this operator is closed and in fact self-adjoint. This completes
the proof of Theorem 3.11. HR

We have shown incidentally that if s is a sufficiently large real number, then
sI + A has an inverse, which is a compact operator. This is the resolvant of the

Laplacian.

We have already shown that the integral operators Ty are Hilbert-Schmidt,
hence compact. More is true: they are trace class. A compact operator is trace
class if it can be factored as the composite of two Hilbert-Schmidt operators. If
it is self-adjoint, and has eigenvalues JA;, it is easy to see that this is equivalent
to > || < oo. Lang’s book SL(2,R) contains useful material about trace class
operators.

If ¢ € § satisfies (6), let f; be a basis of L?(T'\$)) consisting of eigenfunctions
of Ty which are also eigenfunctions of A. Let p; be the eigenvalues of Ty with
respect to this basis. Making a Fourier expansion we have

(11) K¢(l‘,y) = Zuzfz(aj) fz Yy

Theorem 10. Ty is trace class.

Proof. A linear combination of trace class operators is trace class. Hence it is
sufficient to prove this with ¢ replaced by 3 (¢(g)+#(g~1)) and by o (¢(g)—d(g~1)).
We may thus assume that ¢ satisfies (6) and so Ty is self-adjoint. Let p; be
its (nonzero) eigenvalues. Let A; be the corresponding eigenvalues of A. Thus
SN2 < oo

Applying A to Ky(z,y) in the first variable gives a new kernel

(A Ky)(z,y) = Y pidifi(x) fuly).

by (11). Since this function is continuous, it is Hilbert-Schmidt, and so we obtain
the bound

(12) Z \,ui)\i|2 < 0.

Now >~ |u;| < oo follows from Y |A\;|72 < oo and (12) by Cauchy-Schwarz.
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The trace tr T of a self-adjoint trace class operator T is by definition the sum
of its eigenvalues.

Theorem 11. If ¢ satisfies (6), and if p; are the eigenvalues of Ty, the trace

dx A\ dy

(13) trTy = Ky(z,2) 5

r'\$ Yy

Proof. This follows from orthonormality on integrating (11). m

The Selberg trace formula is a more explicit formula for its trace. Let {v}
denote a set of representatives for the conjugacy classes of I'. Let Zp(7y) denote the
centralizer in I" of ~.

Theorem 12. We have

(14) tr Ty = Z/ ¢(9~1vg) dg.
{v} Zr (V\G

Proof. We rewrite the right side of (13) as

Z/Gﬁf’(g‘lw)dg=z > /qu(g_l(s_lfyég)dg.

ver {7} 6€Zr\'

Combining the integral and the summation gives (14). 1

This is a primitive form of the trace formula. To make it more useful, we
introduce the spherical functions wy,.
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Theorem 13. (i) Let A € C. Then there is a unique smooth K -bi-invariant
function wy on SL(2,R) such that Awy = dwy and wy(1) = 1.

(i) If f : G — C is any smooth function such that Af = \f then
(15) | rhgk) dkak = (1) n(o).

KxK
(iii) If f is right K -invariant, then

(16) /K f(hkg) dk = f(R) wr(g).

Proof. To satisfy Aw = Aw we need

1/2 y—1
w=w(V Lp)e 1=t

to satisfy (8). As we have seen, this differential equation has a regular singular
point at the origin, and one solution is bounded there, whereas the other has a
logarithmic singularity. Hence wy, if it exists, is unique.

To show that such a function exists, let f be any continuous function on G
which is an eigenfunction of A. Then (15) is a K-bi-invariant function which is an
eigenfunction of A; if f is right K-invariant this is equivalent to (16). If f(1) # 1,
this will satisfy (i), proving existence. For example we can take f = fs where
A=s(1—-s) and

(17) fs(g) =y°.

Formulas (15) and (16) follow since the left sides in both equations are func-
tions satifying the hypotheses of (i) except possibly the normalization, so these are
constant multiples of wy. The normalization constant can be determined in either
case by takingg=1. W
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Theorem 14. Suppose that f is a smooth function on G which is right invariant
by K and such that Af = \f. Then for ¢ € Ho we have Tyf = x(¢)f where

(18) X(6) = /G #(9) wa(g) dg-

Proof. By Theorem 13, we have

(19) /K F(hkg) dk = F(R) wa(g).

We note that Ty f is an average of right translates of f, and right translation
commutes with left translation. Hence we may apply T to both sides of (19) to

obtain

| Tap ko) dk = £(1) (Toor) o).
We take g = 1 in this identity. Since T f is right K-invariant, the integrand on the

left side becomes constant when g = 1 and so the left side becomes just (T f)(h).
On the other hand (Tywy)(1) equals the integral (18), so Ty f(h) = x(¢) f(R). M

The function x : Ho — C is a character of H,.

Theorem 15. If ¢1 and ¢ps € H,, then

x(91 % ¢2) = x(¢1) X(¢2).
Proof. This follows from Theorem 14 applying Ty to any f, for example f; as in

(17). m

To make this more explicit, we introduce

o st [( ) (7))
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and let
(21) h(t) = / g(u) et dt
be its Fourier transform.

Theorem 16. The functions g and h are even, and g is compactly supported. If
A= % +t2, then

(22) x(¢) = h(2).

Proof. Let f, be as in (17) with s = § 44t so that A = ; + ¢ = s(1 — 5). By
Theorem 13,

/K fo(kg) = wa(g),

and

X($) = /G /K 8(9) fa(gk) dk dg.

Interchanging the order of integration and making the variable change g — gk™1!,
since ¢ is right k invariant, we obtain

x($) = /G 8(9) £.(9) dg.

Now we use the coordinates

o 0= () (1)

[ cos(f) sin(6) 1
o= (—sin(G) cos() )’ dg = o dudzx df.

Noting that in these coordinates f,(g) = e*/? et we obtain
w .
x(¢) = / g(u) e du,
35-36

proving (22). We note that wy, and therefore the character x(¢) is unchanged if
s — 1 —s, that is, if ¢ — —t. Hence (22) implies that A is an even function. By
Fourier inversion, so is g. 1
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Theorem 17. We have

(1) = ﬁ /_ " L h(t) tanh(rt) dt.

This is the “Plancherel formula”, essentially the Fourier inversion formula on the
noncommmutative group SL(2, R).

Proof omitted. For proof see Gelfand, Graev and Piatetski-Shapiro [GGP], Chap-
ter 2 Section 6 and Varadarajan [V] Theorem 39 on p. 205. 1

We assume now that I" is a hyperbolic group. If 1 # v € T" define N = N(v)
by asking that v be conjugate to

N1/2
(24) (M yoan)-
for some N. Let Ng = Ny(y) be such that
1/2
(7 )
NO—1/2

is conjugate to a generator of Zr(y). We may obviously assume that N and Ny
are > 1. We note that Zg(7y) is conjugate to the diagonal subgroup. Its image in X
is a closed geodesic. So the numbers N () are thus the lengths of closed geodesics,
and the numbers Ny(7) are the lengths of prime geodesics.

Theorem 18. With g the function in (20),

(25) /Z na P9~ "vg) dg = NIz N1z g(log N).

Proof. We may assume that v equals (24). Using Iwasawa coordinates (23) the
integral is

[ a [l ) ) ()
i [((7 ) (0

and a change of variables proves (25). 1
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Theorem 19 (Selberg trace formula). Let g be a smooth, even, compactly
supported function and let h be its Fourier transform, defined by (21). If % + it;
are the eigenvalues of A on 9, and if log(N) runs through the lengths of closed
geodesics of I', where for each N we let Ny be the length of the corresponding prime
geodesic, we have

S h(t) = % /_ Z £h(#) tanh(rt) dtvol(T\)

log N,
+Z o8 0 g(log N).
N

N1/2 — N—-1/2

Proof. Theorems 12, 17 and 18. 1

With similar hypotheses on g and A, let %—i—ti be the zeros of ((s). Weil proved
(following similar formulae of Riemann, von Mangoldt and Ingham):

> h(t:) = h(%) - h(—%) + %/_oo h(r)iil((ﬁ)) dr

-2) l(\)ig—f) g(log(p™)).

Motivated by the mysterious resemblence of the Selberg trace formula to this ex-
plicit formula, Selberg introduced

zZis)= [ JIa-Nom—"".

{~} primitive k=0

Its zeros are s with s(1 — s) an eigenvalue of A, so Z(s) = 0 implies s = % +it, t
real or s € [0, 1].

Let



(26) Hzl(ﬂlé>

They are elements of the complexified Lie algebra gc. Note that iH € Lie (K).
These elements satisfy the same relations as H, R and L defined in (2):

[H,R]=2R, |[H,L]=-2L, [R,L]=H.

This is no coincidence, for they are conjugate to H, R and L in the complexified
group SL(2,C)—in fact, the conjugating element (interpreted as a linear fractional
transformation of the Riemann sphere) is just the Cayley transform which we’ve
already applied to map the upper half plane into the disk.

The action (3) of g extends by linearity to gc, and as differential operators

o 9 10
219 s - -
h= (’ya Yoy 2 aa)

, 0 0 10
_ =20 ( . -
Li=e ( s Yoy 2@59)’
and

10

H=-=
i 00’

in the Iwasawa coordinates

1/2 ~1/2
_[u ) Ty
g_< U>< y*”)“m

o= (O S,

Let k£ be an integer, and let C*°(G, k) be the subset of elements of C*®°(G)
satisfying
F(grg) = ™ F(g).

Since H = 1-2. the element H acts by the scalar k on C*°(G, k).
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Let T" be a cocompact discrete subgroup of SL(2,R). We may assume that
—I €T. Let x : I' - C* be a unitary character. Let C°°(I'\G, x) be the space of
f € C*(G) satistying

flva) = x(v) f(9)
for v € T. Let k be such that x(—1I) = (—1)*. Let
C=(\G, x, k) = C=(T\G,x) N C*(G, k).

Since this is characterized as the k-eigenspace of H on C*°(I'\G, x), [H, R] = 2R
and [H, L] = —2L imply that R and L shift C*°(I'\G, x, k) into C°(I'\G, x, k + 2)
and C*(T\G, x, k — 2).

On the other hand let C*°(I'\$, x, k) be the space of smooth functions on £
such that .
cz+d az+b
x(v) f(z) = <m) f(m) ,

a b
7—(6 d)EI‘.

If f,g e C®(I'\9, x, k), then f7 is invariant under I", and so we may define

/ £z da: dy

'\

Let L2(I'\$, x, k) denote the Hilbert space completion of C°°(I'\$), x, k) with re-
spect to this inner product. If f € L2(T\$, x, k), then k is called its weight. Let

0? 0? . 0
M=t (gt g ) +ikugs.
T Y

One may check Ay preserves L?(T'\H, x, k); we will soon see the reason for
this. An eigenform of Ay on this space is called a Maass form of weight k.

For example, the trace formula shows that Maass forms of weight zero exist.
Another, very special class of Maass forms is obtained from holomorphic modular
forms. Let f be a holomorphic function on § such that

X() £(2) = (cz + d)™* f(az + b)

cz+d
for (gb) € I'. Then y*/2 f(z) is a Maass form of weight k. The eigenvalue of Ay, is
A=Z (1 — —) The Riemann Roch theorem guarantees that holomorphic modular

forms exist if k is sufficiently large and of the correct parity, i.e. x(—1I) = (—1)*.
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Theorem 20.  The spaces C®(I'\G, x, k) and C>*(T\$, x, k) are isomorphic.
Indeed, an isomorphism is given by

o : CP(IT\9, x, k) = C(T\G, x, k)

a b —ci+d\" [(ai+b
(e a) = (Tea) /(55a)

for f € C=(T\9,x, k). =

given by

The importance of this theorem is that we may exchange the classical spaces
of Maass forms of weight k, which are right invariant by K but have a cocycle
built into their multiplier systems, for functions with simpler multipliers (just x)
on which K acts by a character.

By Theorem 20 we should be able to transfer R, L and A to the spaces of
Maass forms. Define the following Maass differential operators on C*°(I'\$, k):

.0 0 k
Rk:zy%-l-ya—y-i-a,

I .0 L+ Jd k

= —y — —_— — =,
b Yoz 7Y oy 2
and the (weight k) noneuclidean Laplacian

0? 0? 0
Ap=—12 [+ 2 ) yiky L.
i Y (8x2+8y2>+z Y or

It is easily checked that

k k k k
Ak:—Lk+2Rk—§ (1+—) =—Rp_oLp+ — (1——).

2 2 2

Of course these operators are simply the Lie operators L, R and A in U(gc),
whose actions on C*®°(I'\G, x) are transferred to the spaces of Maass forms by

21



Theorem 20. Thus R shifts the weight up by 2, and L shifts it down by 2. In
general the weight can by shifted as much as you like in either direction, with
one exception: it is a consequence of the Cauchy-Riemann equation that Ly kills
y*/2 f(z) € C®(T\9, x, k) where f is a holomorphic modular form of weight k.
Similarly, R kills certain vectors in C*°(I'\$), x, —k) if £ > 0; these come from the
complex conjugates of holomorphic modular forms.

We will leave the Maass forms with weight and holomorphic modular forms
aside and study the spectral theory of I'\G. Most aspects of the spectral theory
which we have discussed transfer without much change to weight k. But considering
functions on G instead of §) lets us introduce a new perspective of representation

theory.

Let H = C(G). It is a ring under convolution. Unlike # it is not commuta-
tive.

Lemma 3. If 0 # f € L*(I'\G, x) there exists ¢ € H such that Ty is self-adjoint
and Ty f # 0.

Proof. By taking ¢(g) dg to be a probability distribution concentrated near the
identity we may make Ty f as near f as we like. We may make ¢ symmetric with
respect to g — g~ ! so Ty is self-adjoint. HE

Theorem 21. Let H be a nonzero G-invariant subspace of L2(I'\G, x). Then H
contains an irreducible subspace.

Proof. (Langlands.) By the Lemma we can find ¢ such that T} is nonzero on H.
Let L C H be the eigenspace of a nonzero eigenvalue. It is finite-dimensional by
Theorem 4. Let Ly be a nonzero subspace minimal with respect to the being the
intersection of L with a nonzero closed invariant subspace. Let V be the smallest
closed invariant subspace such that L "W = Ly. We show V is irreducible. If not,
V =Vi®V,. Let 0 # f € Lo. Write f = f1+ fo with f; € V;. Since 0 =Ty f —Af =
(T¢f1 — )\f1) + (T¢f2 - Af2) and T¢fi — Afi € V; we have T¢f7; — Afi = 0. Thus
fi € LNV;. By the minimality of Ly, Lo = L N V; for some 7, say Lo = LN V.
Now the minimality of V' is contradicted. 1R

Theorem 22. L%(I'\G,x) decomposes as a direct sum of closed, irreducible sub-
spaces.
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Proof. By Zorn, let S be a maximal set of orthogonal closed irreducible sub-
spaces. Let H = @VG ¢ V. If H is proper, applying Theorem 21 to its orthogonal
complement contradicts the maximality of S. I

If (7, V) is an irreducible representation of SL(2,R), decompose it as

V=PVk

where K acts as the character kg — e*¢. Thus with H as in (26), V (k) is the
k-eigenspace of H. If w(—I) acts by 1, only even k appear; if w(—1I) acts by —1,
only odd k appear. Let ¢ = 0 or 1 be the parity of =(—1I).

Theorem 23. A acts by a scalar A on' V. R maps V (k) into V(k+2) and similarly
L maps V (k) into V(k —2). If z € V(k) then

(27) LRz = (-A—5(1+ %)) 2,

RLz = (-A+%1-%))a.

Proof. Since [H,R] = 2R, if x € V (k) then HRz = 2Rz + RHxz = (k + 2)Rx.
Since A is in the center of U(g) it acts by a scalar A. From

—4A = H> +2H + 4LR = H?> — 2H + 4RL

we obtain (27).

Given a representation (7, V), the algebraic direct sum of the V (k) is not in-
variant by G but it has compatible actions of g and K and is called a (g, K)-module.
Two representations with isomorphic (g, K)-modules they are infinitessimal equiv-
alence and essentially the same. Let

{k e Z|V(k) # 0}
be called the set of weights or K -types of .
Theorem 24. If X is not of the form %(1 + %), where | is an integer of the same

parity as €, there is a unique infinitessimal equivalence class of ™ with A and 7(—1I)
acting by X and (—1)¢. The set of K-types of ® consists of all integers of parity e.
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Proof. (27) shows that R and L do not annihilate V(k), so all K-types appear.
There’s enough information in Theorem 23 to recover the Lie algebra action, so 7
is unique. For existence, find s so s(1 —s) = A. Let

1/2 —1/2 .
(28) fs,k((y my—1/2 ) ’ie) =y’ ezke,

Y

y > 0. Then
P(s,)in= P Cfon

k=e(mod 2)
is an irreducible (g, K)-module realizing A, e. 1

The principal series representation P(s, €) is constructed by induction from the
Borel subgroup. It consists of all functions f : G — C such that

1/2 ~1/2
f((y o )ge) — (1) e p(g),

Y

and such that the restriction of f to K is square integrable. Its (g, K)-module is
Ij(s,e)ﬁn.

Since P(s,€¢) and P(1 — s,€) correspond to the same value A = s(1 — s) of
A, if 25 is not an integer congruent to ¢ modulo 2, then Theorem 24 implies that
P(s,€) and P(1 — s,€) are infinitessimally equivalent. Suppose first re(s) > 1. An
intertwining map M(s) : P(s,€)an — P(1 — s,¢€) is given by

(29) (M(S)f)(g)z/_if«l ‘1) (1 f)g)dg.

It may be checked that the integral is absolutely convergent, and that

L(s)T(s - 5)

M(s) fs = (—0)* V7 T(s+5)T(s—%)

fl—s,k-

This formula extends M (s) to an intertwining map for all s such that 2s is not an
integer congruent to e mod 2.
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If we embed P(s,¢) into L*(T'\G.x), where x(—I) = (—1)¢, then the image
of V (k) function corresponding to a Maass form of weight £ by Theorem 20. The
representation P(s,€) obviously must be unitary, and this implies that either s =
% + it, where t is real, or that ¢ = 0 and s is real, s € (0,1). The first class
of unitary representations are called the unitary principal series, the second the
complementary series.

If k>0, k =e (mod 2) and A = 5(1 — %), then (27) is consistent with L
vanishing on V(k). In this case P(k/2,¢) has a subrepresentation D (k) whose
set of K-types is {k,k + 2,k +4,---}; it has another whose D~ (k) set of K-types
is {—k,—k —2,—k —4,---}. If k > 2 the representations D* (k) are unitary, in
fact square integrable. These are the discrete series. If we embed DT (k) into
L?(T'\G, x), where k > 2, then the image of a vector in the minimal K-type V (k)
corresponds to a modular form of weight k.

If the group I' is of cofinite volume but has a cusp, the spectral theory is
complicated by a continuous spectrum, coming from the Eisenstein series. However
the cuspidal spectrum is discrete. For simplicity assume that oo is the only cusp of
I', and the stabilizer of co in T' is

1 n
roo:{< 1) |n€Z}.
We may choose a fundamental domain F of I" contained in a “Siegel set”
1/2 —-1/2
_ ) ry

For some C. For I' = SL(2,7Z), we may take C = \/3/2.
Let LZ(I'\G) be the subspace of “cusp forms” f € L?(I'\G) satisfying

LA 7))

Following Godement, let f € LZ(T\G).

2 < 1yl >o}

Tyf(g) = /G o(h) f(gh) dh = /G o(g"h) F(1) dh = /F K (g, h) f(h) dh,

o \G
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K(g,h) = Z (I)gyh(n) = Z (i)ng(n),

nezZ NeEZ

by Poisson summation, where

Dyn(t) = ¢<g—1 (1 i) h) .

Since @g,h(O) is unchanged when g+ (li) g, cuspidality implies
[ b =0
T \G

Hence we may omit this term from K (g, h) without harm and

T, f(g) = /F - Kolg, 1) Sy

(31) Ko(g,h) = > _ &gn(n).
n#0
Let
1 y1/2
g= 1 y—1/2 kg,
1 u v1/2
(D e

Then

(32) (D91 ()] = 190,05 10 (y1)],

1/2
o=t () (7 )

We say that a function f on S is of rapid decay if f and is < |y|~" on S for
every N, and if Df has the same property for every D € U(g). We say that f is
of moderate growth if it is < |y|V for some N, and if Df has the same property
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for every D € U(g). We say that f is K -finite if it is a finite linear combination of
functions fi where fi(grg) = €% fi(g). We say f is A-finite if it is a finite linear
combination of eigenvalues of A.

If X € g then X(Tyf) =Ty, f where

(33) bx(9) = S0l 0) |,y

so all conclusions we draw about Ty f will apply equally to its derivatives D(Tyf)
with D € U(g).

We consider the behavior of K¢(g, h) when g is restricted to the S. This means
that y > C. Since ¢ is compactly supported, (32) shows that Ky(g,h) vanishes
unless y~1v is restricted to a compact set.

Recall that the Fourier transform of a smooth compactly supported function
on R is of Schwartz class. We have proved that

[Ko(g:0)| < [y do,o-10(ym)],
n#0

where (0,0,w,t) — g0, (t) is compactly supported and smooth on [0, 2] x
[0,27] x R* x R. Consequently as the series defining Ky(g,h) converges abso-
lutely and uniformly to a function which as a function of g is of rapid decay on
S. Moreover if y is restricted to S the set of possible v for which Ky(g,h) # 0 is
bounded below.

If X is a compact Hausdorff space, the ring C(X) of continuous functions
on X is a closed subspace of L*°(X). If ¥ is a subset of C(X), then ¥ is called
equicontinuous if for any € > 0 and for any x € X there exists a neighborhood N
of z such that |f(y) — f(z)| < eforally e N, f € X.

The Ascoli-Arzéla Lemma. Let Y be a compact Hausdorff space, and let 3 C
C(Y) be an equicontinuous set which is bounded in the L*° norm. Then the closure
of ¥ in C(Y) is compact in L>*°(X). M

Theorem 25 (Gelfand, Graev and Piatetski-Shapiro). If ¢ € H, the restric-
tion of Ty to L3(I'\G) is a compact operator.
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Proof. (Godement.) We compactify I'\G' by adjoining a single point at infinity
corresponding to the cusp. The decay and support properties of Ky(g,h) imply an
estimate of the form

sup [Ty f(g)| < C[fl]1;
gel\G

since S contains a fundamental domain for I' it is sufficient to prove this for g € S.
This in turn is dominated by ||f||2 since S is of finite volume. We extend Ty f to the
compactification of I'\G by making it zero at the cusp. The image X of the unit ball
in L?(T'\G) is therefore bounded in L?(I'\G). In fact, ¥ is equicontinuous, because
we can bound the derivatives of its elements uniformly using (33). It is thus compact
in L*(T'\G) by the Ascoli-Arzéla Lemma and hence compact in L2(T'\G).

Theorem 26. LZ(T'\G) decomposes as a direct sum of irreducible invariant sub-
spaces. Any K -finite element of one of these spaces is of rapid decay.

Proof. The proof of Theorems 21 and 22 are easily adapted to give compactness
in the present context. For the second assertion, it is sufficient to show that if
V C LA(T'\G) is an irreducible subspace and f € V (k) then f is of rapid decay. We
may find ¢ € H satisfying ¢(kggk,) = e*¥+9) ¢(g), and such that

y1/?
y— 925( y—1/2)

is a positive function of mass 1 concentrated near y = 1. Then Ty f is near f,
therefore nonzero, and it is in V' (k), which is one-dimensional, so it is proportional
to f. It follows from the rapid decay of Ko(g, f) that Ty f is of rapid decay, thus
sois f. W

As in the case of compact quotient, the Laplacian acts by scalars on each on
irreducible one-dimensional subspace. The cuspidal spectrum behaves much as the
entire spectrum in the noncompact case.

On the other hand the orthogonal complement of L3(I'\G) contains a contin-
uous spectrum. To gain intuition, we consider a simpler example.

Example of a continuous spectrum. The group R acts on itself by con-
jugation, and the Laplacian —d?/dz? is an invariant differential operator. It has
eigenfunctions f,(z) = €2™*%® with eigenvalues a®. Any L? function has a Fourier
expansion

o(z) = / " $(a) fula) da,
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but f, is itself not L2. If T C R is measurable, the Fourier transforms of L? func-
tions supported on 7' form an invariant subspace. There are no minimal invariant
subspaces, so L?(R) doesn’t decompose as a direct sum of irreducible representa-

tions.

We consider the Eisenstein series of weight zero, which occur in the spectrum
of L?2(T'\$). Define

fs(x +iy) = y°.

Or transferring this function to the group,

/2 pp—1/2
(7 22) )

It is the K-fixed vector in the principal series representation P(s,0). The Fisenstein

Bzs)= Y. fuly2)

YET\T

is convergent if re(s) > 1. Selberg proved that it has meromorphic continuation
to all C. The continuous spectrum is spanned by FE(z, % + it). If we considered a
group with multiple cusps, there would be an Eisenstein series from each cusp.

There are substantial differences between the arithmetic case where I' =
SL(2,7Z) or a congruence subgroup and the general case. In the arithmetic case, it
is possible to normalize the Fisenstein series to get rid of most of its poles.

In the Selberg-Langlands theory, the analytic continuation of the Eisenstein
series is proved simultaneously with that of the constant term

[o((* 1)=e)a

Since we are assuming there is only one cusp, this has the form y* +c¢(s) y
¢ is a meromorphic function. If I' = SL(2,Z) one computes

_¢es-)
W= e

Hence multiplying by (*(2s) normalizes the Eisenstein series. But if I is nonarith-
metic normalization is impossible.

1=s where

(*(s) = 7" T(s/2) ((5)-
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IfI' = SL(2,Z), the normalized Eisenstein series is

(34) E*(z,s) =n°T(s)((2s) E(z,s)

Theorem 27. E*(z,s) has analytic continuation to all s except s = 0, 1, where
it has simple poles; the residue at s = 1 is the constant function % It satisfies the
functional equation E*(z,s) = E*(z,1 — s).

Proof. If z=xz+iy € H and t > 0, let

o)=Y o—Tlmatn|*t/y

(m,n)€Z?

It follows from Euler’s integral for I' that

dt

/(@(t) ~ye?

E*(z,s) =

N[

Define the Fourier transform:

f(.’l?) _ / f(y) e27ri(a:1y1—|—...+:cnyn) dy.
Rn

The Poisson summation formula for R" asserts

Y=Y f©

gezn gezn

to a Gaussian on R? gives
o) =t"tei).

Using this and




LAt 1

dt 1 1
o) (t* +t°%) = - — — )
(&) (¢ + )t 25 2—2s

From this the analytic continuation and functional equation follow. R

In the general case where I' is not arithmetic the functional equation is much
more difficult to prove. Selberg and (much later) Bernstein found important general
principles to get the analytic continuation. Langlands established the general theory

in great generality.

In order to use representation theoretic methods we need to consider more
general functions fs € P(s,¢€). Fix x : I' = oo such that x(—I) = (—1)° mod 2 and
such that x|['w is trivial. We wish to regard f; as varying continuously with s.
This may be accomplished by asking that the restriction of f; to K be independent
of s. It is best to assume this function is K-finite. Let

E(g:8 fssx) = Y x(0) fs(v9:%).

Lo\l

Let A(T'\G, x) be the space of functions on I'\G which are K-finite, A-finite
and of moderate growth. Such functions are called automorphic forms. Let
Ao(T\G, x) be the space of cusp forms satisfying (30). It follows from Theorem 26
that elements of Ay(I'\G, x) are of rapid decay and that Ay(T'\G, Xx) is contained

in and spans L2(T'\G, x).
70-71

Then fs — E(g, s, fs, x) is an embedding of the (g, K)-module of the principal
series representation P(s, €) into the space A(I'\G, x). We study the constant term

1
(35) EO(gasaf&X):/O E(<1 i)g,s,fs,X) dt
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We recall that an intertwining operator M (s) : P(s,e) — P(1 — s,€) was defined
by (29).

Theorem 28. Assume re(s) > 1. There ezists an analytic function c(s) such that
for all fs € P(s,¢) ~
EO(.ga 3, f87 X) = fs(g) + C(S) fl—sa

where f1—s = M(s) fs € P(1— s,¢€).

Proof. Substitute the definition of F(g, s, fs, x) into (35). The coset I'o in I'xo\I'
contributes f;. We show that the contribution of the remaining terms is propor-
tional to M (s) fs. This equals

[, Zemsls(t 1))
= >, W/_:fs<7<1 313>9>d:v-

~—

Y€l oo
YET o \I'/Teo
’Ygr‘oo

If v = (*) with ¢ # 0 then

= ()00 )

so the variable change x — x — d/c shows that

o 1 =z
/ f5<7( 1)9) d.’1:=‘c|_2sM(3)fs7
and summing gives the required relation.

Selberg proved:

Theorem 29. c(s) and E(g, s, fs, xX) have meromorphic continuation and the same

poles. They are analytic for re(s) > % except possibly for a finite number of poles

on the real azis in (1,1]. On the line re(s) = 1 they are holomorphic.

1 . .
To the left of 5 there may be infinitely many poles.
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Proof when I' = SL(2,Z) and x = 1. In this case € = 0, and it is sufficient to prove
this when f; = fs x as in (28). In this case, we will have c(s) = ((2s —1)/{(2s). If
k = 0, the analytic continuation is proved in Theorem 27; the general case where &
is an even integer may be obtained by applying the raising and lowering operators
Rand L. m

We recommend Appendix IV of Langlands [LES] as an introduction to the
general case.

Theorem 30. If s is not a pole of E(g,s, fs,x) then E — Eqy is of rapid decay.

Proof. Let ¢ € H. The function E’(g) = E(g,5) — Fo(g,s) is not automorphic
with respect to I' but it is left invariant by I',, so as before we have

T, f(g) = /F ol p (),

where (31). Since f, is assumed K-finite we may choose ¢ so that Ty fs = fs, in

which case Ty E' = E. The rapid decay now follows from the corresponding property
of the kernel Ky(g,h).

The asymptotic behavior of E(g, s, fs) near the cusp is therefore determined
by its constant term. The constant term, we see, consists of two parts, one of the
order y* and the other of order y'~%. The smallest growth evidently occurs on the
line re(s) = %, where it is of order ,/y. Even on this line, the Eisenstein series is
not quite L2.

Let Goo = {(*?) |z € R} and let ¢ be a K-finite element of C3°(G\G). The

incomplete theta series

Op(g) = > ¢(v9)

Too\I'

is something like an Eisenstein series but it is not a A-Eigenfunction. If f €

C>=(T'\QG) let
folg)= [ flug)du
be its constant term, which is in C*° (G \G).
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Theorem 31. The incomplete theta series and constant term maps are adjoints;

that 1s
Je | #0Tads
NG G \G

Proof. The left side is

SN—r
“~+
~—~
o
SN—r
.
Q
I

which equals the right side. W

The incomplete theta series are easily seen to be square-integrable.

Theorem 32. L2(T'\G) is the orthogonal complement of the closed subspace
spanned by the incomplete theta series.

Proof. Immediate from Theorem 31, since the cuspidal spectrum is characterized
by vanishing of its constant terms.

We will describe the spectral expansions for SL(2,R). To avoid the slight
complexity of having to make a Fourier expansion over K, we restrict ourselves to
L2(T\$). Let & (i =1,2,3,---) be an orthonormal basis of L3(T'\$), and let &, be

the constant function 1/4/vol(I'\$).

For the remainder, all functions are right K-invariant, and we do not distin-
guish functions on G and $; fs is as in (17), E(g, s) is the corresponding Eisenstein

series and E*(g, s) is (34).

Theorem 33. If ¢ is a cusp form then

(36) ¢(9) E(g,s)dg=0
T\$
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Even though E(z,s) is not L? (36) converges absolutely due to the rapid decay of
b.
Proof. Assume first re(s) > 1. Then (36) is
/ ¢(9) fs(vg) dg
r

\9 YET \I‘

/ ¢(9) fs(g9) dg =
T \$
/ / P(ug) fs(g) dudg =0

since ¢ is a cusp form. The general case follows by analytic continuation. 1

Theorem 34. The function &y is square integrable and orthogonal to the cusp
forms.

Proof. The square integrability is trivial. Taking the residue at s = 1 in (36) with
a cusp form ¢

¢(g) dg =

\$
so ¢ is orthogonal to the constant function. I

Thus the constant function &y occurs in the discrete spectrum. If besides the
constant function &, the Eisenstein series has other poles in (%, 1], these would
also be square integrable. The residues of Eisenstein series comprise the “residual
spectrum.” The discrete spectrum consists of the cusp forms and residual spectrum.

From now on we assume I' = SL(2,7Z).

Theorem 35. Let ¢ € L*(T\$). Assume also that ¢(g) f1/2(g) is integrable over
the Siegel set S. Then

=Y (,&)&(g 17r/0 (p, B(-, L +it)) E(g, L +it) dt.
7=0

The integrability assumption on that 1(g) f1/2(g) guarantees that the inner prod-
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ucts occurring in the expansion are convergent. Correctly interpreted, the expansion
is valid for all f € L?(T'\$). This is like the Fourier inversion formula for R, which
is valid for all L?(R) though the usual definition of the Fourier transform as an
integral is only strictly correct on L?(R) N L(R).

Proof. By Theorems 33 and 34 this is true for cusp forms. By Theorem 32 it is
sufficient to prove it for incomplete theta series; that is,

1

B7) 06(0) = Coro) o) + - [ (0o B3 +i0) (o3 ity

when ¢ € C° (G \H). Define

n . . > y1/2 ) —s%
3(s) = /G |90 Fosla) o = / ¢( e )t 2

By the Mellin inversion formula

1/2 o+ico
(38) ¢<y y—1/2> :/ . o(s) y* dy.

This is valid for all values of . Now

1 o+ioco .
= — dy.
00 =5 [ 9 o) dy
Indeed, both sides are left invariant by G, right invariant by K, and agree on the
diagonal by (38), so this follows by the Iwasawa decomposition. We take o > 1 and
sum over g with v € T',o\I" to obtain

A

o+100
00) =5z [ 99 Elg.9)ds

2me o—100

Now we move the path of integration to the left. The pole at s = 1 contributes a
residue so

R PREASTIN
(39) 05(9) = & $(1) + - / $(s) E(g, s) ds.

5—7/00



The constant term

s = [ B((1 ) 0s)w=r0)+ S0

S[0]

(40) /F\G9¢>(9)E(ga3)d9: > /F 05(v9) E(g, s) dg =

(25— 1)

@)

/ 9¢(79) EO(Q, 8) dg = QAS(l — 8) +
T \G

In (39) we use the functional equation (Theorem 27):

C*(1 — 2it)

E(g,5 +it) = 3 (E(ga 3 Tit) + mE(Qvé - it)) :

Also, vol(T'\G) = w/3, as may be shown by applying the spectral expansion as
derived so far to the function 1 or by any other method, so

3(1) = / | P0de= / | 00(0)dg = ¥0llT\G) (04, 65) o

Substituting these last two identities into (39) and applying (40) we obtain (37).
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The Jacquet-Langlands
Correspondence

If D1 and D, are central division algebras over a field F', then Dy ® Dy =
Maty (D3) for some D3 and k, and Dy, Do — Dj is an associative multiplication on
the set B(F') of isomorphism classes of central division algebras. Thus B(F) is a
group, called the Brauer group.

If D is a central division algebra over F' then the dimension of D is a square
d?, and if E/F is any field extension of degree d then E ® D = Maty(E). Thus a
division ring is a Galois form of a matrix ring. The composite map

D - E®D = Maty(E) — E,

the last map being either the trace or determinant, takes values in F', and gives us
the reduced trace or reduced norm.

The Brauer group of a local or global field F' admits a simple and beautiful
description related to the reciprocity laws of class field theory. For example, suppose
that D is a quaternion algebra over a local field F', that is a central simple algebra
of degree 4, whose reduced norm is equivalent to the quadratic form z? — ay? —
bz% + abw?, define (a,b) = 1 if D is a matrix ring, —1 if D is a division ring. Then
(a,b) is the Hilbert symbol.

If F is a global field and v is a place, let (a,b), be the corresponding local
Hilbert symbol. The Hilbert reciprocity law states that

[](ab), =1.

v

This is equivalent to the quadratic reciprocity law. It implies that there are an even
number of places v such that D, = F, ® D is not a matrix ring. These facts may
be extended to a full description of B(F).

Let F be a global field, A its adele ring, and D a central division algebra of
degree p? over F', where p is a prime. Let Z be the center of D*. Let S be the
finite set of places where D,, is a division ring. If v ¢ S we identify D, = Mat,(F,).

Let H be the set of functions on D% = [[, D which are finite linear combi-
nations of functions of the form [], ¢, where for each v, ¢, : DY — C is smooth
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and compactly supported modulo Z,, satisfies ¢,(z,9,) when z, € Z,, and agrees
with the characteristic function of Z,Mat,(0,) for almost all places v of F.

ZaDF\D’ is compact. As with SL(2,R), L*(Z4D;\D’) admits integral
operators Ty for ¢ € H:

Ty(g) = /Z . o(h) d(gh) dh.

Let {7} be a set of representatives for the conjugacy classes of Dj.. We denote
by C, the centralizer of v in Dj. It is an algebraic group, so Cy(A) C D will
denote its points in A.

Theorem 36. (Selberg trace formula).
(@) Ty = 3 wl(C)\Cy() | #o™79) do.
o C,(A)ZA\D%
Proof. The proof of Theorem 2 goes through without change, so

(Ts1)(g) = / Ky(g.h) £ (1) dh,

ZAD;\DE;

Ky(g,h) =) _ (g~ yh).

~Y€er

As with SL(2,R), the operator T} is thus Hilbert-Schmidt, and with more work
may be shown to be trace class. As in Theorem 11,

trTy = / Ky(g,9)dg
ZAD;;\DX

Now (41) follows as in Theorem 19. 1

The conjugacy classes of D} are easily described.
Theorem 37. If a € Di — Zp, then F(a) is a field extension of F' of degree p.
Elements o and (3 are conjugate in D3 if and only if there is a field isomorphism

F(a) — F(B) such that a— B. If F(«) is a field extension of degree p, then F(«)
may be embedded in D if and only if [Fy() : F,] =p for allv € S.

39



Proof. The conjugacy of o and [ follows from the Skolem-Noether Theorem (Her-
stein [He|, p. 99). The last statement follows from (i) «<» (ii) in Weil [W], Proposi-

tion VIIL.5 on p. 253. M

The trace formula can be used to prove functorial liftings in many cases. We
describe the simplest example, from Gelbart and Jacquet [GJ].

Let E be another division algebra of degree p?, and assume that the set of
places where E, is a division ring agrees with the set S of places where D,, is. If
p = 2 this implies that D and E are isomorphic, but not in general. We will show
that two spaces of automorphic forms on D and on F are isomorphic.

Suppose that m = ®,m, is an irreducible constituent of L%(Z4D3\D’). Since
Z,\D} is compact for v € S, m, is finite-dimensional at these places. We assume
that m, is trivial when v € S.

If v ¢ S, then D, = E, = Mat,(F,). We may therefore identify 7, with an
irreducible representation 7, of F, when v ¢ S, and if v € S we take 7w/ = 1. Let
7! = @ml. It is an irreducible representation of E.

Theorem 38. 7’ occurs in L2(ZaEF\EY).

Proof. If v € S, then Z,\D) is compact, so the constant function ¢¢(g,) = 1 is
in C°(F,). Let Hg be the subalgebra of H spanned by functions [ ¢, such that
¢y = ¢, for v € S. It is isomorphic to the corresponding Hecke ring on E. Let
¢ — ¢’ denote this isomorphism.

By Theorem 37, noncentral conjugacy classes in Dy and Dy are both in bi-
jection with the set of Galois equivalence classes of elements a of field extensions
[F(a) : F] = p such that [F,(«) : F,] = p for all p € S. This intrinsic characteriza-
tion shows that we may identify the conjugacy classes of Dy and Er, and compare
trace formulae to get

(42) tr Ty = tr T,
This is almost but not quite as easy as we’ve made it sound.

It follows from (42) that the representations of Hg on the spaces
L*(ZAD% [1,es DX\D2%) and L*(ZoEy [],es ExX\E%) are isomorphic, and the
theorem follows. 1

vES
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Underlying the final step is the fact that two representations of rings are char-
acterized by their traces. For example if R is an algebra over a field of characteristic
zero and if My, M, are finite dimensional semisimple R-modules, and if for every
a € R the induced endomorphisms of M; and M, have the same trace, then the
modules are isomorphic. This statement is not directly applicable here but it gives
the flavor.

For the remainder we take p = 2, and review the Jacquet-Langlands correspon-
dence. Let D be as before. The Jacquet-Langlands correspondence is a lifting of
automorphic representations from D* to GL(2, F).

There is a local correspondence for v € S. D. is compact modulo its center,
so its irreducible representations are finite dimensional. These lift to irreducible
representations of GL(2, F,) having the same central character. The lifting was
constructed by Jacquet and Langlands by use of the theta correspondence. Indeed,
Z,\D) is a quotient of the orthogonal group GO(4) while GL(2) is the same as
GSp(2), and theta correspondence GO(4) <> GSp(2) gives the Jacquet-Langlands
correspondence. Its image is the square integrable representations (supercuspi-
dal+Steinberg).

Jacquet and Langlands constructed a global correspondence from automorphic
forms on D* to automorphic forms on GL(2) first using the converse theorem in
Section 14 of their book. To prove functional equations of L-functions on D*, they
use the Godement-Jacquet construction, because the Hecke integral is not available

in this context.

Finally, they reconsidered the lifting from the point of view of the trace formula.
This allowed them to characterize the image of the lift. They sketched a proof (and
later Gelbart and Jacquet completed) of:

Theorem 39. An automorphic representation © of GL(2,A) is the lift of an
automorphic representation of D’ if and only if m, is square integrable for every
vesS. M

The remarkable fact is that their paper of this fact uses the full range of techniques
which have proved important in the subsequent 30 years: the Hecke and Godement-
Jacquet constructions, the Weil representation and the trace formula.

The trace formula on GL(2) is hard because of the presence of the continu-
ous spectrum. We’'ve avoided these problems by proving Theorem 38 instead of
Theorem 39.
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