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PREFPACE

The theory of categories was introduced by Eilenberg and Mac Lane in
1945 [4] 3 it arose from the field of topology. It was soon realized that
other mathematical theories s,a well could profit from their invention.
This was initially the main reason for the increasing interest in catego-
ries, The applications brought soon attention to problems peculiar to
the theory of categories, which in a few years grew enough to become ano-
ther area of mathematics. Even so, the now widespread interest in catego-
ry theory seems still to lie in the many virtues of its applications, such
as its unifying character, elegant and concise languaje, fruitfulness and
emphasis on results involving stiructure. This led to the idea that cate~
gory theory might provide a more suitable foundation for mathematics than
set theory. To carry out this program it was necessary to have also a
theory of the (meta)category of categories. Lawvere {17) has recently |
provided such a theory; this seems to be the proper framework in which
to develop mathematics on a categorical basis,

An important step in the program of categorizing nathematica has been
accomplished by Lawvere himself [16] upom reformulating set theory in
terms of categorical concepts alone, namely, those of mapping, domain,
codomain and composition,

I:; this papsr we study a class of categories closely related to the
category of sets and mappings. An essential preraquisite wili be an
acquaintance with [16] . To study this class of categories we introduce

what we call regular categories, which are weakened abelian categories ,

ix



especially as axiomatized by Freyd [8) , so that (8] is also assumed as

a prerequisite. A general knowledge of category theory is required as
well, Among the various sources, Freyd [8] , Mac Lane [22] and Mitchell

[ 23] seem to be the more introductory omes. Also, an acquaintance with
the literature on adjoint fimctors, starting with Kan [13] and following
with several others , e.g., Freyd {6 , 8], Lawvere {34], vill be assumed

The formation of functor categories is one of the basic comstructions
in the (meta)category of categories, Given any two categories JG and

Y , the functor category denoted by J/‘x bas as objects all func-
tors with domain J% and codomain Y~ and as maps, all natural trans-
formations between these. We will be concerned in this paper with a
special type of functor categories : 1;630 ;or which the codomain catego-
fy is ,d s the category of sets and mappings.

A motivation for this choice can be found in i;he following 3 any cate-
gory with amall hom-sets is & full subcategory of a category of this type.
Bxplicitly : if the category X has small hom-sets, there is a bifunc-
tor HOM + X% X —= of , vhich induces by exponential adjoint~
nesa a functor H s x —-""J x: The latter is full, faithful and pre-
serves all J.eft roots existing in x s+ it is called the regular repre-
sentation of x o

Bowever, if x is not amall, then d x*ﬁll not have amall hom—
-sets, and thus a not very manageable category. PFortunately there are
many interesting categories which, though not amall admit a regular repre-

sentation into a category with emall hom—-setes. These are categories

vhich have a mmall subcategory , let _A cipx be the inclusion funo-



tor, and such that the composite functor .
X M X AL 4

is still full and faithful. The functor is called the subregular repre-

sentation of X over #A , and A is eaid to be an adequate subcate-
gory of x » 'Therefore, if we restrict ourselves = as we will= to the
study of categories of set valued functors with amall domain category,
the class of categories admitting a representation as full subcategories
of these does not reduce to the class of amall categories. ¥The broader
class of categories with adequate subcategories are investigated by
1sbell [12] and it includes, e.g., every algebraic category in the sen-
se of Lawvere [ 14 , 15]): in this case, the dusl of the corresponding
algebraic theory is canonically embedded as an adequate subcategory.

Bvery category whose objects are all set valued functors with a gi-
ven small domain category is seen to be equivalent to a category of dia=
grams in ;(S with a given diagram scheme (Grothendieck [10], Mac Lane
{21] , Mitchell [23] ). This suggests the name “diagrammatic® or
" J - ﬁMﬁc' for these cgtogorioe. we sdopt throughout this
paper the name "diagrammatic® for any category of the fom Jﬁf G, with

C any mmall categorye.

In chapter I we study diagrammatic categories in general, simulta-
neously comparing them with (S s Which is the basic diagrammatic catego-
TYe

The aim of chapter II is to characterise abstractly the class of dia-
grameatic categories., We first introduce the theory of regular categoris,

the name being suggested by a consequence of the axioms according to which
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every map factors uniquely into an epi followed by a mono, and which is
usually called a regularity condition. It is strong enough to exclude
most algebraic categories, and those which satisfy a regularity condition
are called regular. All diagrammatic categories are regular, and they
are by no means the only regular categories : all abelian categories are
regular as well, and none is ﬁmtic. Therefore, if we hope to
characterige diagrammatic categories from regular categories, the strenght
ening of the axioms has $0 be done in a different way than abelianess.

At this point we notice a striking analogy between the regular repre-
gsentation theorem for any category with a amall adequate subcategory, and
the representation theorem for Boolean algebras which says that every Boo-
lean algebra is isomorphic to a field of sets. Thus, if we let regular
categories with small adequate subcategories cor;'espond to Boolean alge-
bras, then regular categories of get-valued fumctors with a amall domain
category (not mecessarily all such functors) must correspond to fields of
sets if the analogy between the two theorems is to be mantained. Also,
fields of all subsets of a set must correspond to diagrammatic categories.
It is now that the analogy gives some fruits : since the fields of all
subsets of some set are precisely the complete atomic Boolean algebras,
we might try an analogous characterization of diagramatic categories,
With the analogy in mind, we first stipulate which objects in a regular
category should be called "atoms® , and with this, when should a regular
category be called "atomic” , It turms out that complete atamic regular
categories have the atoms as an adequate subcategory, so that the existen=-

ce of a mmall adequate subcategory need not be postulated before. And
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what is more important, completé atomic regular categories are precisely
the diagrammatic categories, That is, just as any complete atomic Boolean
algebra is isomorphic to the field of all subsets of the set of its atoms,
so any complete (right-complete is encugh) atomic regular category is iso-
morphic to the diagrammatic category with domain category the dual of the
full subcategory determined by its atoms. 4

In chapter III we aim at the quesation of when are isomorphic any two
given diagrammatic categories, vhich is the same question that Morita (24)
asked for categories of modules (see also Bass [2] ) . Por this purpose
we first study functors between diagrammatic categories which have adjoint
or coadjoint, Our results can also be found in André [1] , though the
methods of proof are different , as 2 result of dispensing with generality
from our side., Next, we use these results to establish, as Preyd noticed
in [7 , 8} , that it is not the small domain category which determines
completely the functor category (in his case these were categories of addi-
tive group-valusd functors) but its amensble closure, The main theorem
of the chapter is called "Morita isomorphiem theorem for diagrammatic
categories® and states that any two given diagrammatic categories are
isomorphic iff the idnpoten’b-eplitting clwsures of the corresponding small
domain categories are isomorphic, This is used to investigate the ques-
tion of t:he uniqueness of the representation of a category as a diegram-
matic category.

Chapter IV ie a study of the algebraic side of every algebraic catego—
ry. For this we need the theory of triples and triplsble categories as

introduced and developped by Huber, Beck, and Eilenberg and Moore, To



avoid further requirements, we review briefly the ideas employed in the
chapter, We next discuss some relations between triples and cotiriples
which form an adjoint pair as well, and use this information to find out
which ard all coadjoint triples in ,qu « They are given by all sets,

so that Coadj Triples(gd ) = A *, gince the correspondence is contra-
variantly functorial, On the other hand, adjoint triples on d are given
by monoids. Similar queat:i.ons‘ arise for categories of the form d T ’
with I a set , regarded as a discrete category. Adjoint triples on a
category d T , are given by all amall categories whose set of objects
are isomorphic to I . And the diagrammatic categories with these

small domain categoriee come close to being the algebras of the triple.
Actually, to see better which are the algebras, we introduced the notions
of relative category and relative functor., These ideas have further po-
tentialities which are beyond the scope of this papex,

Some notations and ;bnventiona are the following : (1) small catego-
ries will be denoted by A, B, C, - ,.K.,Y, Z; (2) arbitrary cate-
gories will be denoted by 2f, B, G, X.Y.Z; 3 gr.f will
alwvaye denote the category of sets ; {4) the mmall categories which are
preorders will be denoted by O, i 2. 3,... 3 (5) emall categories
which are disérete will be denoted the same way as sets are , by 1, J,
K, etc, 3 (6) [E uthecategoxypicturedﬁuss -G' 3
(7) the set of objects of a mall category {s , will be dencted |G 1 ;
(8) the duaml of any category 54 will be denoted ;ﬂ* 3 (9) composition
of maps is denoted in the diagrammatic order , and evaluation is on the

left 3 (10) the identity map of the object A is either 1, or 4



Chapter I
DIAGRAMMATIC CATEGORIES IN RELATION

TO THE CATEGORY oF SETS

Let (l: be a fixed but arbitrary small category. We denote by .6 the
category of sets and mappings, and by ABC the category whose objects are
all covariant functors C —ué and whose maps are all natural transfor-
mations between these, For reasons given in the Preface, any such category
will be said to be diagrasmatic. Our aims in this chapter are: (1) to des-
cribe properties which are common to all diagrammstic categories; (2} to
determine the extent to which these properties rely on propertiea of,d ';

" (3) to investigate the range of validity in the class of diagrammatic cate-

gories of the axioms of Lawvere's elementary theory of A .
§ 1 - FINITE ROOTS

A category x is said to have finite roots iff for every small category
such that its set of objects is finite, and letting A\ be one such, the
punctor IC———» I induced by the fumctor A —>4L , has both a
coadjoint (insuring the existence of left roots) snd an adjoint (right fini-
te roots). It has been shown ( (8] , {14] ) that it is enough that the cai-
egory has terminal and cotersinal objects (LA © ), binary products
and coproducts (A = ‘2') and equalisers and coequaligers (Ac2E)
for it to have all finite roots. Among the finite roots are finite products

and coproducts, pull-backs and push-outs, images and inverse images, unions

1l



and intersections. We now show that any diagrammatic category has finite
roots.

Proposition 1,1 For any small category c, Achaa finite roots.
Proof:
A terminal object for AG is given by the functor which is constantly 1 ,
where 1 is the name for the temminal object in A . A coterminal object
is given dually and denoted O .
Given any two functors P and G we define (PXG, Py pG) as followss
let C(FX G) = CFXCG ; (pplo= Ppp and (Bg)g = Pgg ¢ for &Y ce|C).
1f C-EPC' is a map in C s lot x(PXG) = £ where f is the unique

map which renders cosmutative the following diagram:

CF _=F ~ C'F

per_—
CFxCG/r‘f .—C‘PxC'G/K’:
G
\ - \&\‘

— C'G

6 ce

By the way x(P x G) is defined, this says not only that PXG is a
functor, but also that Pp ¢ PXG——F and Pg ¢ PXG—>GC
are natural trapsformations. Dually one can define the coproduct F+4 G
together with the canonical injections i!' and iG .

Giwen any two natutal transformations 7 and ; , we want to define
their equaliser. For this, we look again in each coordinate , and let
oc = Eq (7gs ¥¢) for each C€ |@|. vo show next that the famiiyr
so obtained can be made into a natural transformation e which moreover

is the equalizer of 7) and § . Por this we first define a functor , the

e *
domain of e as follows : let CE = Ec where Bc C.'CP%*CG



is an equalizer diagram. If C—=»C' is a map in C y let xE

be defined as the unique map f : CE—C'E such that fe,, = ec(ﬂ').
That this map f exists and is unique follows froe the universal property
of equaligers together with the following identity:

(og(x®)) 1= g () ) = e (7p(x8)) = (o5 7 )(x0) = (ep §o)36 =
o (€0 = op (B Eei) = (op () e

With this we have that E is a functor and e s E —F & natural trans-

formation and it is inmediate to see that it is the equalizer of 7) and g .

Coequalizers are dually defined. QED .
§ 2 - THE EXISTENCE OF A GENERATING FAMILY

In d , the terminal object 1 is a generator. Arbitrary diagrammatic
categories need not have a generator, but they always have a generating fa-
mily of objects. We will show that the generating property of a particular
generating family in each diagresmatic catogorjr is a consequence .ot the ge-
nerating property of 1 in IES .

As usual, a functor is said to be representable and denoted by llc ir
it is C&lc Iwhich represents it, iff i is naturally equivalent to the
functor HOM(C, ). The family of representable functors in any diagramma-
tic category has the size of the domain category for the functors. Ve want
to show that it is generating, for which purpose we need to state and prove
(tor reference) a lemma due to Yoneda.

Lesma 2.1 (Yoneda) Por any small {, , any P n;dc , and any

c¢|C], (°, Pnat = cr @ g (1, CF)



Proof:

Lot @ +(iC, ¥) ——>CP be defined for N € (8%, ) by NP = 1,7 €CF
s ') ’ "’ ch

Let V)'z cr ——)-(Hc, P) be defined for %€ CP as the natural transfor-

mation s'l.f: Hc—y!' defined for x € C'Hc = HCH(C,C') by

syl = s(xF) and naturality follows since for any ¢ e

the following diagram commutes:

(Y,
c'u® Ve o C'F
yﬂc l l.ﬂ'
(=
cwa® Vler 5 C'F

Phat it §8 so can be seen as follows: let x € HOM(C,C'), arbitrary.
Then we have that x(z )., (3F) = (x(sy)y, )58} = ((=xB)GF)) =
- (P = P = GENGEP = WG P -
It is now easy to verlfy that both Y and W are identities., QED .
Theorem 2,2 For any small @ , the family {E°{ ce|C] **
generating for dc .
Proofs
Given any two natural transformations P 223 o guch that they are
different, there must exist at least a C¢|@ | for wnich 7 # €o -
This inpliss that there exists a mep 1 —=, CF in % , such that
sf # 5§+ By Toueds, lot s .E°—» P be the corresponding
patural transfommation. Ve want to show that (syn7) # (sy§ .
This will be zo irf 3 C'¢|@ | such that (3P ) # W Eor-
Take C' = C. Por (sY) 7, to be different from (s W) §o

it is emough that there exists x € HOM(C,C) for which x(sP) 7o be



different from x(z'yr)c Sc° Let x = lc , then we have that

(1 GYP)PTPe= GUINT= 37 # 25c = (I =0 P Ee

which implies the desired result. QED .

§ 3 - EXPONENTIATION

A category with products is said to have exponentiation iff for any
object A the functor A X{ ) has a coadjoint, denoted ( )Jl .
The category of sets has exponentiation and for every set A , we have
that { )‘l = HM(A, ). However, gd is the only category in which
exponentiation is given by HOM , precisely becauce ( )* has to be
an endofunctor:while the only category for which HOM (A, ) is an endo=
functor for every object A , is d . All diagrammatic categories have
exponentiation. However, the proof that it is so is not straightforward
as the proof of the existence of finite roots was, and this is so because
exponentiation is not defined coordinatewisely.

Theorem 3.1 Por any mmall { , and any object F mgfa" the

endofunctor P X ( ):é ___,.,JG has a cosdjoint,

Proofs -

Define a fumctor ( )T ;dc'_,dc.a follows:

if G is any object of 5‘5‘:, let the value at C €|‘E| of GF be given
| 4 C
by ce = (BXP G
and extend it to the maps C —»C!' in the obvious fashion so that it be-
comes a functor. We can now define a natural transformation

!XG'__E.'._v,—G



called evaluation , as follower given C € |@|one has to say what is

ev, ¢ CF X c(c’)_».cc, that 1s, ev, : CP x(ncx P, G) —CG
. ¢

If 2€CP and 1) € (X P,G), define (z,f,)evc = (10, z) e+

If CL)- C', there are induced maps CF-E—p-C'F and

(@ P), 6): @ xP, 6 (8" x ?, ) and these two induce

PR (ExP),0): Px (ExPE) — cFx(E X P06,

and the following diagram is commutative:

oV

cP x (B x P2 6 ¢ » CC
xF x ((H'x ¥), G)l lxc (%)
1 eV ]
crx (8% P, ¢) ¢ - C'G

To see that the diagram is commutative we take any & CF and sny
Ne (&° x P,G), and travel in the two orientations. We have
(5,9) ovp () = (1g.5) (o) ana
(2,9 (2 X((E" X B),evy, = (s(zF) , (F x M)Ylov;, =
. (1 » SENE X DY), = (x 5(2)) Ngre
¥o now use the fact that 7) is & naturel transformation , o that the follo-
ving diagrsm commutes:
i x cr Tc . GG
X 1P l l ¢
ot or — 2, ¢
and s0, for 1,6 CH° and 5€ iF, this says precisely that
1o D) = (g @R Y= (x, (xP)) Ygr w0 that (%) above

is commutative, and 80 evelustiom is indeed a natural transformation.

¥e still have to show that ( )' is coadjoint to P X ( ), snd it is

for this purpose that we will use the evaluation map Just defined,



Suppose given any functor H and a natural tranéformation h:PXH —_—C
to show that there exists a unique natural trensformation ¥ 3 H-'-’rGP

such that (F X¥lev =h , i.e., guch that the following diagram is comau-

tative:
F X H
rxE t 4
¥ X G!‘ A

Let  be given for each C €(@las follows: if ye€Cd,

1t y(5.) € (& X P, G) be glven by , for x' € o’ and z'€C'P
1et (x*, 2') (7 Ec)c. = (g'(x'P), y)h.

Ve verify now that (PXE)ev = b: given ce|Cl), s¢cr and ye CE
then ((g, Y)(? XE)ev, = (= ¥¥clev; = Ay B8 = (s(1F), y)b =
= (3, y)b. The definition of & was forced to make the diagram commute and
it is easy to see that it is the only possible choice. QED .

A functor which has a coadjoint preserves all right roots that exist,
so that the existence of exponentiation for any diagrsmmatic category implée
that products distribute over coproducts and that products preserve coequa-
ligers.

It is known that it { is any small category, the regular represemtatim
sunctor 8: @ ———-)-gfsc'deﬁnedby CE = HM( , C), is full and
faithful and preserves all left roots which might exist in @ . 1In fact,

12 ) 1s not small, but has a mall adequate subcategory (Isbell (12)). A,

the subregular representation functor of 3( over .A , vhich is just the

% *
composition Ao H ,dx 3 is by definition, full

and faithful and it preserves 1eft roots since each of the composite funo—-



tors does.

Vhat is not known is that if exponentiation exists , then the regular
representation functor or the subregular representation functor preserve it.
Ve prove two separate theorems to that effect:

Theorem 3.2 Let C be emall and with exponentiation. Then, the

regular representation functor H: G _> ;dc'* preserves exponentia-

tion. ’
Proof:
et A and B be objects inc , we have to show that

B(BA)=(.B‘)H ¢ mt = H.BHA

By definition, given c€lQ]l ¢ Rgh) = Eot (C, ') end
¢ (BFA) = (BX By, Hy) ¥ (B, +Hy) ¥ EM(CX4,B)
And since G is assumed to have exponentiation , we have that
HM (C X4, B) ¥ BEM(C, 3 ) which finishes the proof. QED .

Theorem 3.3 Let x be any category and let A be an adequate sub-

category of r . Then, ﬂevr has exponentiation, the subregular

representation of r over .A , that is, the functor
¥ H o e U4 ;JA*

preserves exponentiation.

Proof:

Let X and Y boanytuoobjectsinx We have to show that

~ e ¢ cud’ ))“‘3‘“ ) et ag LAl , srvitrary.
Outhe one hand, A (Y(H .d‘w)) = 1(3&9&3 - 4 3* §yX) = HOM (ag*, T ).
On the other hand we have:

A(TE .di')* "

(B, X J* Hy , 3= Bp) ¥ (3 B, x 3* By, J*H) ¥



o 3*(H‘3.an.H ) o g% (B oy By ) % HOM (%Y, X) =
gnm(u ). Q.

§ 4 ~ AUTONOMY

An autonomoug category (Linton [181 ) is a category d together with

')‘J;J‘— r‘J

and a forgetful functor

v .o

guch that the following tringle is commutative:

‘J* A¢) ._,9¢

Moreover, there is a law of compositinr for J ( , ), which is given by

a bifunctor

a collection of maps , one for each triple (A,B,C) of objects in d , and
which is natural in each of the three variables, it is associative and be—
haves well with respect to a ground objeet if there is any. The domain and
range of the maps are

: d(n, c) . —.-9/( af(a. B).QV(A, c))

With the above one can introduce "tensor products® as follows: let

L‘:gf__,.d be defined by BId = gff(a, B . for any A and B ingff .

Civen A and B , consider l.Jl and I-B . If we assume that the conm-

position I.Jl LB is representable, and denoting the objects which represents

it by 4 ® B, we have that
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gq(aun , C)= cit BB _oprif -g«(;. c) 1® d(n.ﬂ(;. c))

which indicates precisely that for each Aed , 4® ( ) is adjoint
o ).

But one can also start with tensor products, to mean the categorical pro—
ducts if the category has any, and see wheter the category has exponentiatim
as well as a forgetful functor and then shown to be autonomous with the bi-
functgr gotten from exponentiation by letting both the base and the exponent
vary. However, if this method is adopted for introducing the cobcept of
autonomous category, one has to show that there is a law of composition as
required. This is done as follows: let d be any category with exponentia-
tion (and products), and let us denote by ( Y®( ) and ( )( )
the two bifunctors corresponding to the operations of forming products and
exponentiating, respectively. Given any three objects A, B, C in d ’
by exponential adjointness there is a corresponding evaluation map

oviC B —  »C
and we let h be the map given by composition of the following maps:
Porr® A —2»ec = cnoa‘QA,c"_“..c'@n_‘i,.c
Let now k bYe the unique map such that the following diagram ‘commutes:
Porter ¥ 1P @ B
A®k l b
X-Xa ov il

by exponentisl adjointness, and sgain use exponential adjointness to define

w as the unigque map which renders commutative the diagrams:
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e
a*.wl o

(
8* @ (ch ew ot

Since ¥ was defined after a triple (4,B,C) was chossn , we can demote it

by w; c’ and it is a member of the family of maps which give the composi-
4

tion law since '; c H CB ((C‘)(B‘)) .

4

Therefore, we have shown that the above is an equally good method for intro-

ducing autonomous categories. We use this to show:

Theorem 4.1 For any small G ’ dc is an antonomous category.
Proofs
Ve already know that all diagrsmmatic categories have exponentiation (Theo-
rem 3.1) so that we have to find a forgetful functor and show that they are
related as they should for autonoamy.
Let U Aq——yd , be given by ¢t if T is any object in ch: let
™ -#(1, 'r)mt , and the obvious extension for the maps.

Then we need to show still, that the following triangle is cammutative:

(4C)% 4C &, 4C

¢
To see this, let F and G be any two objects in.J s then
' r | 4 ~
(r.e)hpu-,!_.c U-él,G)mt‘I(lx!'.G)ut 2 (r,c)mt
eince the functor 1 has the property that for every T in d c.
1XT 2 T, same as in the category of sets. Therefore, the above trian-

gle is commutative and Jc is autonomous., QED .
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§ 5.~ THE EXISTENCE OF A COGENERATOR

In A s, 2 = 141 is a cogenerator. We will show that any diagram-
matic category has a cogenerator, not only.(s , and that the fact that
it is a cogenerator relies on the fact that 2 is a cogenerator in d .

Let dc be any diagrammatic category, i.e., C is an arbitrary small
category. By Hc for C ClCl, we mean the contravariant functor whose
value at an object C' of G , is C'H, = nmgc , C). It is not an ob-
Ject in d@ but in d , and it may be called a corepresentable func—

tor, corepresented by C .

#*
On the other hand, consider the functor B% , 2) d ___,.A.

whith is denoted by B

2° .
Let now Qc =i llc ll2 . To be able to compose them , the codomain cai-
egory of Hchaatobeequaltothodo-aincatogoryof 112. This can be

done in two different ways since , in general, a functor T: af_.,,&
which is contravariamt can be viewed wither as a covariant functor with do-
main M*and codomain 3 » OT as a covariant functor with domain DV
and codomain ,3*. Accordingly, there are two ways of composing the co-

variant versions of H, and lz , snd we obviously choose Qc to be

o I, g T,
which in any case is covarisnt, and so, an object in d . Explicitly,
the value of Q (tor Cel@]) at an object C* of C.:
¢ Q¢ - md(na&c' . c),z)

and if C' c" isnupind:,,itindumaup
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2 s Mg (BoM 3 (¢ ©), 2) , HoM ¢ (HOMq (c*, C),2)
vhich is defined for f : HMq(C', C)—2 , by £(2a°): BME(C",C)—2
given by, for =€ Hom( C", C), :(f(zﬁc)) = (yz)L .
Let us now consider the fanily indexed by |Gl , whose members are the fun
tors Qc . We want to show that it is gogeverating for which purpose we
prove first a lemma corresponding to Yoneda lemma and which we may call Co-
Yoneds lemma for reference, although it is not precisely dual to Yoneda lem-
ma, but plays a dual role only.
Lenma 5,1 (Co-Yoneda) For any emall C , any G in dc, and any
e, (6 &), = My, 2.

Proofs .
et P (a ), B d(oc, 2) be defined by, if € (G, Q) , let
1)96- oLy € O S (c5, 2) be such that, for x€C0C, Toh= lox7c-
Let s Bogp(ce, 2)— (G Q%) be defined by, ifof € BOM g(cc, 2)
let Y= M€l G ®) be such that, for C'€|@l,

ﬂdc,: C'C —— rmd (Hom oy (¢*,C), 2) be such that for y€C'G
and s C'—3C, r(y%,) = (y(z6))X . To see that we have defined
a natural transformation, let s: C'—C", It induces
Wa, c) nonc(c', C) ———p BOM C(c', C) by sending m: C"—e C into
o 3 C'—s C, and this in turm induces
HoM 4 (oM g (C*,C), 2) - HOM g (ROM(C™, C), 2) Dy sending
£ s BM (C*, C) —»2 into ¥* : HM (c®, C)——>2 by nf* = (m)f,

for m: C"——wC, Ve verify that the following diagram is commutatives
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c'e P » HoM g (HOM o (CF, ¢), 2)
26 * = SQG
c"G e

‘;—mJ (Bou C (c"t C), 2)

Por this, let y€C'G and r s C'—pC, Travelling clockwise along the
disgram we haves (¥ Y o* * nondc* ¢)—s2 , given by, for C* ——.C,
s (v P = (myThy,,= (y((m)G))o(. Travelling counterclockwise we
bhave (y(26))Vyem * naqc(c-,c)__,. 2 which is given by , for C" ——C ,
n(y(26)) i~ ((y(26))(m6)) ¢ = (y({mm)G))oX , since G is a functor,
Therefore, the diagrsm is comsutative, or Ty: G —» @ is natural.
To see that Y is indeed inverse to @ , we have to verify that
LN = ?]q and (2) o = Oy, .
Given 19 a’,lia such that :«,’- 1 x‘?c for x¢ CG , and so, 7«(,, is
such that r(y?k,, o = (xe)ay = 2 () for yec's, CrrC. .
¥We want to show that

r(y '?c') = 1,(y(xc) '?c) .
The following disgram is commutative:s

c'e Lmﬁ (nouc(c;,c), 2)

] [

cc —7S—»nom g (M g (€,C), 2)
" eo that, by evaluating both (y%J* and (y(:6))7), st a particular ele-
ment of naldc , C) we are sure to get the mame result, Taking 1,:C—C,
we therefore have that 1, (y%,)* -1, (7(x6)) 7 - But we also knov
that 1, (7 N)* = rlz )  and that 1o(r(xe))R, = vy 7c0)

So, ) = "?q,r Given now o, we get 17,‘ and then X7y which, by defi-
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nition is such that given X€CG, T Olny = 10(1 Y]uc) - (x(ch) YoX =

=x0 . Therefore, &« = O('fh. QED .

Theorem 5,2 For any small © , the family {Q }Celdll is
cogenerating in ,d Q

Proof:

gsf 3
Let P G be any two natural tranéformations which are different.
Then, there exists a Ce\Cl- for which ‘qc;‘ E(.‘ s In ,6 y 2 is
a cogenerator and therefore there exist a map of 1 CG—>2 such that

'?c“ # gco( . But this in turn, implies (since 1 is a generator in

é) that there exists a map x 3 1——=CF such that :‘Y)co( £ x ;cot

By Co-Yoneda lemsa (5.1}, let 7)o correspond to the above o( . Ve show now
that %w §c 7"‘c’ and so that ‘77,‘.4 57,,, and since ‘?)d:c—yQ
we will have shown that {_Q } 18 cogenerating.

For the particular x € CF above, we have that x-7can¢ £ .

Ve nov show that also x(7)7) Je # 3 (57y); tms completing the proof:
Since both x(7)7,), and 2( § 7)o ave elements of the set C ¢,
let us find an C —pC for which r(x( % 7x)¢) ¢ o(x( ¥ Pudg) o
And since r(x( 17‘7“)(3) = (r(x "k))")qc - ((lqc)(rG))O( , and
r(x(?%)c) - (r(x}?)')qc = ((=E)(x6)) X, all we have to do is
to find an riC—»C for which --((i'yc)(ig)_)q',l ((x L) (x0)) et .
‘Choosing T = 1, and recalling that x was chosen 80 as to satisfy
2( 7‘:«) £ x( ‘;’cd) we have:

((xi]c)(lcc_))of = (x qc)_o( - x('l)cet) ; x(gcot) = (x;_.)o( -

= (x3)0FN o . @D
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We now assume to have shown already that any diagrammatic category is
complete. In fact, to this end we only need to show that arbitrary fami-
lies of objects indexed by a set have a product and a coproduct, and it

is easy to see that it can be shown in a way analogous to the proof of l.l.
We have not done it yet because we will show it in the last section of this
chapter, in an entirely different way.

If a category is such that for any two objects there is a map between (we
will call such categories gtrongly connected) then it is immediate to see
that the coproduct of a generating set of objects {assuming completeness
as well) is actually a generator for the category, and that the product of a
eogenerating set of objects is a cogenerator. For example, the above is
true in all abe_lian categories because they are strongly connected : given
A and B arbitrary there is always a zero map 1_8_-..3 between,

In the case of a diagrammatic category however, we can use Yoneda and Co-
Yoneda lemma, since to require that for am arbitrary object T € ém

and every € Q'Gl, there are maps Hc—-—)'.l' , is equivalent tham to requi-
re that there are maps 1 —»CT for every C elGL which is true only if
P has no empty values, so that arbitrary diagrammatic categories need not
havec;.ﬂ%c as & genorator ; and %o require that there be maps ?— 0’
is eguivalent than the requirement that there be maps cm_;..z for every
Cc 4@, which is always true in A , 8o that CII' Qc is a cogenerator.

¥We state this fact and prove it as follows:

Theorem 5,3 Por any small C » the object I ! Qc is a
C ca@i
cogenerator for A .

Proof:
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Given P &;G such that 7) # & , by 5.2 there exists a ce| Tl
and a natural transforsation ¥ 3 ¢ ——- ¢ such that ‘76@)‘ géyf).
Let C'€|(}} arbitrary but C' # C . Comsider C'G —p1 —3p2 in,qg ,
where C'G—. 1 is the unique map which exists since 1 is terminal and
1.2 is one of the injectione into the coproduct 1 + l, say 11 .
By Co-Yoneda , letéw correspond to the above C'G —.2 , for each
ctel@l, i.e., we have(c 16— Qc' for every C' # C and
(C tG —y Qc , which together induce a unique map

Y6 — ;I:‘L'Qc such that W%c.-éw &
such that ) Y~ 4 § P~ , since 771;1';&..4 SW& QED .

§ 6 - REGULARITY , PROJECTIVES AND INJECTIVES

The notions of mono, epi, injective and projective are basic in the theo
ry of categories, and we do not give their definjitions here.‘ However, in
the case of diagrammatic categories, and thanks to Yoneda lemma, the notias
of mono and epi can be replaced by the ones given in the next Proposition:

Proposition 6,1 ¥or any (L'. small, and ‘7 a map in ,dc

"’) is mono (epi) iff for every celCL ‘l,c is mono (epi).
Proof:
Let ™7 be mono. We want to show that o —28 501 s mono.
By Yoneda, ), : =°, !'J—)-(nc ). Let £ , & be such that
t‘?c- g"?c ind s i.0., for every x:1 —pd , zf‘?c- “‘7{: ’
where A is the common damain of £ and g . Since xf e (&° M),

(x£)7). = x£?) , same for g. Now, xf7] = (x£) Y = (x)W. = 227
Y, 1 Te c
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and since v} is mono, xf = xg for every x €& A . Therefore, fege.
Conversely, if for each Cel@l, 7 is mono, let Y~ and ¥ Do such that
WY = §7) . Assume that however, Y 4 & , but this implies that there
exists a C€|@lor which Ve # E¢ - Bub then, this contradicts that
"’Q was mono. Therefore, ¥ =& . QED.
We have omitted fam the proof the dual part, since it follows the same pat-
temn. |

In J , every mono map is the equalizer of a pair of maps. In particu-
lar, if L'_._a_,...A is mono then a = Eq(ioq.:l.lq) where q = (:oeq(a:l.o ’d“.l.)

where i ~and i, are the two (different) injections of A into the co-

1
product (which is the disjoint union ingd) A + A . Similarly:

MM For any small G , in Jceveryuono is an
equalizer. |
Proof: Given T'-l.pl‘ mono, by 6.1 for each CGIG‘, 'D)cis ®ONo mszg .
Therefore, by the previous remark, '70 = Eq(ioqc ’ :quc) where
9y = Coeq( Pl » ',cil). We draw a picture , a coequaliser diagram , as

followas:

c'r'__’)_t‘_,c'r=:;cr . O
and define a functor T by CT" = T%. and if C—2yC', let XT" = £

where f: T, —3T", exists , is unique and is such that
@t = ((x?) % (x1) ), Dy the universal property of coequalizers and the
fact that "1010 Garre o, = (x'r')f’c.io Q@ = (x2) Py 9o =

= Moty GMED qg o Tme family {qc} cqEProTides 8 natural transfor
mation q: T + T—T , and it is inmediate to see thal

'f) = Bq (1°q,11q) vhere now by 1i_ . i, We mean the two injections T=AT.

QED,
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Dually, in .J every epi map is the coequalizer of a pair of maps.
Precisely, if A-—3 yA" is epi, then q = Coeq(a O Pl) where p_
&d p, are the two projections A X AT=(3 4. Vith this and the
second (dual) half of 6.1 one can show that:

m' opition 6,3 For any small @ , every epi in dc is a coequalizex
These two propositions have a consequence which is usually tak:en for a
regularity condition, namely, that any map can be factored uniquely into
an epi followed by a mono. That this is so will be shown in general in the
next chapter.

To say that all epimorphisms iné are coequaligers is equivalent with
all epimorphisms being onto, which in tumn is equiveleht with the statement
that 1 is projective in J . Since 1 is then, a projective generator
iné , we would like to kmow whether the generating family of representa-
bles is composed of projective objects, and this is the content of the next
theoren. (Notice, by the way, the if Tl A, the family of representable
functors reduces to a single functor, Ho , where O 1is the na‘lle for the
only identity map (object) which exists in :ﬂ. » and therefore H, is.

. constantly ( it can only be evaluated at 0 )1, a singleton set contai-
ning the identity map 0 .) |

moores 6.4 FPorany c€ O, B° ie projective in AG .
Proof: |
Lot 75T be an epimorphism and B —J—f" any natural trans-
formation, By Yoneda leama, let ::,, t+ 1 —CT* correspond to ‘7 o Since
YLsCT—CI" is epi i.n;(! , and 1 is projective :I.nd, there erxists

1 L30T such that yYg= Ty - Using Yoneda again but in the other



direction, let ¥,= B%— T be the corresponding natural transformation
of y. 1tis inmediate that k}'qr = '9 and so, that Hc is projective,
QED .

Dually, it ie true that .d has an injective cogenerator, namely 2,
a fact which will be used to show that any diagrammatic category has an
injective cogenerator, namely, ;g ch « We firat show that:

Lemma 6,5 2 1s injective in d .

Proof:
We use the direct image function defined by Lawvere {16) as follows: given
f1A—pB and YWt A—p2, £ induces ¥ 32— 2” defined at Y by
Yr* : B—2 such that if yeé B, ¥ ((Wf") = :I.l iff there exists xle.i
guch‘that xw'-:|.1 and xf = y .

¥e now claim that if f is mono , the following triangle is commutative,

1—-—£——)-3
aWao

This is equivalent with the injectivity of 2 in.d o To see that the t

for each Y

triangle above commutes, assume given x € A , and asswme firet one of the
two possibilities, say, that xY = L.I. . But then, by definition of f*
we have that (xf)Yf* = i, also, For this we did not need the fact that .
£ was mono, but we will need it for the case that zx Y = 10 . If so,
assme that (xf)Yrft =1, . By the definition of £* . the last equation
implies that there exists x'€ A for which Y = i, and x'f = xf,
ISi.nco £ is mono, this :I.lpl:lea_that x* = x , but it is not possible to

have at the same time x\P° = :I.o and xYrs=4, . This contradiction
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implies that (xf) Y+ # 1, and so (zf)w';* = i, . Q.

With this we now prove :

Theorem 6,6 For any amall C , Ci G‘Qc is injective in éc.
- €
Proof:

Let 770 o7 be any mono natural transformation, and ™ _L,C]‘EQC any
natursl transformation. Let(d)= Y pe » for each C&|@ .

By Co-Yoneda, let(c_'w:)comspond to( ). since ¥, is mono in o , ama

2 is injective, there exists a( o8 ) euch that %CE)-@ In fact,
by the previous lewma, we can take (£ ) to be (c_'ub",c'. Again by Co-Yone
da, 161(¥): T —»Q° correspond to(c¥), and nov it is & matter of rou-
tine to verify that Wk (W) . e bunch of natural transformations {5}

so defined induce a unique natural transformation ; s T _—)&Qc such

that the following triangle is commtative:
™ U/

» T

v
M

This says that cl l Qc is injective, precisely because each Qc is injec—~

tive, QED ,

3

Therefore, every disgrammatic category has an .‘;.njectivé cogenerator,-mlqc .

, C
@ A P injective
Ircﬁ.‘d.,,d 2 s and CGIIOIIQ" = ZAfonouaaaparucularcm
of the above theorem. However, we needed to provi it firet since it is used

to establish the more general result,

§ 7 - SPECIAL SUBFUNCTORS
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One of the various consequences that the axiom of choice has in A s iB
that every subset of any set has a characteristic function. These subsets
are called gpecial by Lawvere [ 16] until he shows that all subsets are
special.

In Adc , We can also say that T'_] 5T is a subfunctor of T 1iff

7) is mono, i.e., iff, gor each CEIC, )¢ is mono ined . It is also
possible to define special subfunctors in such a way as to correspond to
the existence of a “characteristic morphism™. Although we have not been
able to find a counterexsmple, it seems injuitively clear that in general
most functors have subfunctors which are not special. |

Let A and B be objects in pdc ,and N —232 & mono natural
transformation of functors. Then, each CBL)-GL is mono mnA s and
p0 , it is a subset of CA and therefore has a characteristic function

s CA—p2, ice., ois such that a, = Bq(d, 1,). (In fact,
we do not mean 11 but rather, the composite function CA—>1 —t-'-)- 2,
tut will write i, for convenience) Therefore, for each C€ICI, we have
one such (g , the question being now when is such & family a natural trang
formation A J—-yz as well, for 2 the fumctor whose constant value is
2 . By the way equalizers are defined nudu, it is cle T that if {%}h
happens to be a natumel transformation, IX will automatically be the equa~
lizer of {f with 4A_, 141._,2 (notice that the functor constantly 2 jis
the coproduct of the functor constantly 1 with itself , i.e., 141 )s
and s0 , {f will be what we may call the characteristic morphiss of the

subfunctor a of 4.
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Let C 2, C' be any map in © . For [@c}to form a natural transformg

tion (P, the lower trimngle in the following diagram has to be commutative

vhere the square is commutative since a is a natural transformation 3

s_% Lo

If this is so, the characteristic function of ¢B_—T ,CA has to be
(aa) "c‘ . Tis statement is equivalent with the requirement that CB be
the largest subobject of CA carried into C'B by means of uk., Or,
equivalently (by the definition of inverse image of a map, see (23] ), that
the square in the above diagram be a pull-back. Actually, this condition
seems to be quite adequate for defining the motion of special subfunctor,
and we next prove a proposition to the effect that it coincides with the
requirement that the -'ubfunctor has a characteristic morphism.

Therefore, given a mono natural transforwation in da s B _...a'._.,.A s
i.e., & subfunctor of A, we say that the subfunctor a is special iff
gor every map C ——yC' in @ , the following is a pull-back diagram:

B _— 2 LCB

‘ci‘ . l%-

—3.CtA

On the other hand, we say that A _"£_>2 is the characteristic mor-

——— e ——————————

phism of B_‘__...L min,do‘, iff (P is a natural transformation

such that B > 4 "'—)2 is an equalizer diagram.
N, A
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Proposition 7,1 A subfunctor is special iff it has a characteristic

morphism,

Proof:
Assume first that the subfunctor B i-vp.l has the characteristic morphism

A L,? . We show that it is special . Consider the following commutative

“dcp 4«8 _JC'B
<A c'l:t. . with ac = EQ( '-'c ’ 11)
"x ﬁct and  ag,= Ba( ¢, i,')
2 vhere by 1i,' we mean
O C'A—>l '—‘pu?l

Since x(ud) = ya,, then x{= x(ua) Y= ya, ¥ = yasi' =
= X 11 .

Therefors, since a, == Ba(, » 11) there exists a wnique st X —»CB
such that sa, = x . But we still need to gshow that s(uB) = y :
since a,, is mono, assume s(uB) # y, then s(uB) a,, ¢ ¥ya, and
this implies that s(uB) 8, # =x(ub). But x = sa, therefore
s(uB) ac ¢ = a. (wA) and therefore (uB) acs * a (uA) which is a
contradiction. So, s(uB) = y . This shows that the smaller square is
a pull-back , and since C—C' was an arbitrary map in (, , this means
that the subfunctor a 1is special,

Por the converse, assume that a is a speciil subfunctor of A . 8ince

c
Ve have to show that the collection { % can be made into & natural trans

each of the a, is mono ind , it has a characteristic functidn(’cinJ.

formation and furthermore that it is the characteristic morphism of a.



Lot C——pC' be any map in @ . We have to show that the following

ca " _ca
R ‘A
2

In other words, that the subset of CA which is the equaliser of (uk)(fud

diagram commutes:

i, is precisely & . For this, let X _X ,CA be their equalizer and
c

and show that the two monomorphisms x and a

¢ Aare equivalent (see (8] )

and so they represent the same subfunctor.

= t = =
So, X Eq((u.&)t%‘ 11) and also ::(m):t1 x, x (uA) ¢ but
since a8, = Bq'(il', t?c.-) :, there exists y:X —»C'B such that

x(ud) = ya,, o That is, the following diagram is commutative:

and since the smaller square is a pull-back, there exists a unique 2:X _CB
guch that s(uB) = y and za, = x. Now, x = lq((u-&):ll o (wd) Yo )
and ay(ua)i, = (uB)aj i, = (uBlay, W = s (uA) g . Therefore,

there exists a unique 5's CB___, X such that sz' = (uB)y and S'x'm a,.
Therefore &, and I are equivalent . This can Ve seen as follows:

gince x(uB) =y ; sa,=x} s'y=uBj; s'z=a,
-acmdacmoimplieuthat g' 3 = CB, On the other hand,

then S'S.c = 3'xI=

ss'x = sa,= I and X mono therefore £ s5* = X , Therefore,
s, = Eq ((m)fy, i, ) which shows that W such that it is (), in each C-

-coordinate, is the characteristie morphism of B_L.,.l o QD .,



§ 8 - THE RANGE OF VALIDITY IN THE CLASS OF DIAGRAMMATIC CATEGORIES
OF THE AXIOMS OF LAWVERE'S ELEMENTARY THEORY OF THE CATEGORY

OF SETS

Lawvere [16] has characteriged tle category of sets and mappings
by means of eight first-order axioms adjoined to the first-order axioms
of the theory of categories plus & non-elementary axiom isuring complet-
ness. In this section, we investigate the validity, for diagramatic
categories, of these eight first-order axioms and leave for the next
psection the question of completeness.

Axiom 1 - There exist finite roots.
We have proved in 1.1 that this holds for arbitrary diagrammatic catego-
ries.

Axriom 2 - Exponentiation.

Theorem 3.1 says that angy diagrammatic category has exponentiation.

Axiom 3 - There exists an object B together with mappings 1Z,K2.¥
such that given an object X together with mappings 1 °,X °,X, there
ig a unique mapping ¥ 25 X such that x = =x and xt=sx,
This holdes also in any diagrammatic category and we show it as follows:
Let N dedote the constant functor whose value at each Ce¢{@C|, 1o the
object N ofJ whose existence is guarantedd by axiom 3 , and so, = and
s become natural transformations, if by 1 me mean the constant functor
1. Let X be any object in dc , together with natural transformations
X,

1 —>X L+;_. Then, for each ccm.thene:istaaunique X, such

that (xol:' =x, and xctc = 88X, . We wvant to show that the family



{xc} indexed by I([:l s is a natural transformation x: N——. X,
Por this, let C—2_C' be any map in C , and show that the follo-

wing diagram is comrutative:

3y

c'x c'x

Since 1.22,X is natural, we have that xoc (wX) = % and since t
is natural, that t (uX) = (ux)t,, . ¢
The maps Xn 9 Toer xc.a‘;'e”pmﬁdedbyaxion‘j :I.nlfs « By the unique-
ness part of the axiom, xc(ux) - x, ad 33X, = xoc as well as
5 X, = xoc' .

Axiom 4 1 is a generatory
We have mentioned already in § 5 that not every diagrammatic category has a
generator, let alone that it should be the functor constantly 1 . We first
give a sufficient condition for a diagrammatic category to have a generator,
and then we find out that there is only cne diagrammatic category for which
1 ie a generator, to wit, .d .

¥e have introduced before the name strongly connected for any category
for which there is a map between any two objects. We now prove:

Proposition 8,1 1If C is small and stpongly connected, then

él_ﬁ |llc is a generator for ,éc .

Proof’s



Let P % G be any two natural transformations which are differeht.

Since the family of representables is generating for ﬁﬂ}. , there exists

cel@l ant B € o P ouch that AN # A Ec . CGiven CUC

gince C is strongly connected there exists some map C _ff'...c' which

N 4
induces n° B nc so that (chc)s B 7.

Detine Wo' to be ( ) and consider the femily {VE} where

Wer= ESn, 4t ¢ 4 C and Y= b, . (Use the axiom of choice
to select an element from each non-empty set m(c.c-) for C and C* arbi-
trary objects in C, ). This family induces a unique map

W[ M)
such that for every C, 1, YW =TWg and so W £ YL, W .

?

Theorem 8,2 1 is a generator for AG irr C o A .

Proof:
Let 1 , the constant functor whose constant value is 1 , be a generator
for g& c.
since {HC} 15 a generating family for LG, cvenany T in L€,
there exists a set and an epinorp;him

Z lc —rp T
However, 1 is also a generator, therefore, for each llc there is a

set J'c and an epimorphidm

Z.l _an
:c



Bach Hc is projective , therefore, there is a mwap X, such that the

following diagru commates ¢

;1/ I

_—,

By Yoneda, let 1 d»(c(Z 1) 1 -.-%1 which by axiom 7 (to
be discussed) has to factor trough one of the injections, but asbnce there

is only one map 1 —» 1 , the identity, :c' ie one of the injections,

By Yoneda again, this says that nc._.. Zl factors trough one

I
C
of the injections, i.e., that there exist a map yc such that the follo=

wing diagram is commutative 3 Hc

/ lﬂc
1 < Z & &

l e
Je

Thus, f% s retract of 1 (for any ¢ ¢ \@.D and s0 it has to be isomor-

phic to 1, i.e., for any C and C* , EOM(C,C*) ¥ 1 which means that
C is a preorder but a particular kind of preoxder : there is always a
map between any two ob;jecta, i.e., it is also strongly comnected, Obviouw
ly, the only preorder and at:_mngly connected category is 41 s since, given
any two objects G, C' , there ave maps C —Sp.C' and ¢3¢ and votn
compoaitions have to be identity maps. QED .

Axion 5 (ixiom of Choice) If the domain of a map f has elements
then there exists amap g such that fgf = £,
This axiom does not hold in general for diagrammatic categories if it

is translated into : for every T .1..‘1" such that there exists a natu-



ral transformation 1 —X—5 T there exists a natural transformation
'I"Lp!f such that %P =7} . Although we know no counterexzample , it
seems unlikely that a collection of mapa in E, , indexed by @ , and
such that each member Wg be such that MW7 )¢ ,should prove to be a
natural transformation as well. If the domain category is discrete, i.e.,
any set I , then d: has the axiom of choice in the above form.
However, in d , the non-existence of maps from 1 is another characte-
rization of the coteminal object , O . With this, the axiom of choice
veads : if £ is any map with non eapty domain (non-gzero) there exists a
map & such that fgf = f. In any diagrammatic category, there are no
natural transformations 1 —30 . However, if T is any functor which has
at least an empty value, there will not be any maps 1 ~»T either, and

t 4 0. It [ is strongly connected, the two properties coincide in
AG , and the functor constantly O is precisely the object such that
there are no natural transformations 3 —>»0 . Since the only strongly
connected discrete category is i y it seems that the axiom of choice as
it ie usually stated, namely that if the dawain of a map is not O then

there is a g such that f£gf = £, holds only for d .

Axiom 6 - If A is not a coterminal object, then there exist 1-—p 4 .
¥e have commented above on this axiom already, It is not true in general,
gince there is no natural transformation 1 —>» T if T is a functor with
at least one empty value._ However, if G is strongly connected, the ax-
iom is equivalent with the existence, for every functor different from O ,
of a natural transformation élnc——).l' « Por arbitrary diagrammatic

categories we have the following elementary but useful result:



Proposition 8,3 For any amall QC ., and ang T in Ac' s there
exiasts a set J , a family of representable functors indexed by J
and an epimorphism ; Hc—-—p—-p T .
Proof:
Let J -Z_(u 'r) and let p be the induced map from the copro-
ductof this famny into T, To see that p is epi, let T ﬁut be
any two natural transformations such that pf= p¥ , and just assume
that ";‘ § . Then, there is a c€| (@ |end a natural transformation
x nc_+1' such that x"’ # x¥ , since {nc ;celdllj'a generating for
éc » Let j.I be the injection Hc—,; Bc corresponding to x ,
so that x = 1p. But xv,;‘ x¥¢ implies that p 7) # PE 2

contragiction. Therefore ‘q =g e QED,

Adiom 7 - Each element of a sum is a member of one of the injections.
At this point we introduce the following definition which can be atated in
any category with coproducts: an object 4 is said to be abstractly wnary
§¢f for any coproduct B + C and amsp A——-3B 4 C there exists either
a map AL)B such th#t x= Y"‘B or there exists a map A_.f,c such
that x = s:l.c « This implies that any map from 4 into a finite t;opro-
duct factors trough at least one of the injections. If the category has
arbitrary coproducts,we replace the above definition by the correspording
one for arbitrary coproducts, and call abstractly Shary any object such that
a map into an arbitrary coproduct factors trough at least one of the injec-
tions, definition which is more reatrictive than that of an abstractly fi-

nite object, as given by Freyd . But here, completeness is not yet assumed,

Axiom 7 can now be phrased : 1 is abstractly unary :I.n(é. Using Yoneda lemms
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this implies that every representable functor in d@ , ia abstractily una~
ry.

One of the consequences of the axioms so far stated for 8 :1;; ?t’li?t?z’o
two injections 1=——=1 + 1 are different (and are the only elements of 2).
If by an gbstractly exclusively unary object we mean an object such that
any map into a coproduct factors trough precisely one of the injections,
the above says that 1 is also abstractly exclusively unary :m.J And
it implies, again using Yoneda lemma, that any representable functor in any
diagramatic category is abstractly exclusively unary as well,

We remark that iné , O is abstractly unary btut not abstractly exclusively
unary.

Axiom 8 v There is an object with more tham one element,

This axiom is trivially satisfied in any diagrammatic category, by taking

S to be a functor constantly 8 , for S any set with more than one element.
The purpose of axiom 8 inaﬁ y ia to insure that the object N assumed to
exist by axiom 3 , is infinite and plays the role of the set of natural
numbers. Axiom 8 prevents the category with only one mapping from being

a model of the smioms .

This ends the list of axioms forxﬂ , and a rather superficial analys¥s
of their validity smong diagrammatic categories. The importance of the
knowledge of qd , for the knowledge of the class of diagrammatic categories
cannot be overeatimated, since d can always be recovered from any dia-
grammatic category as the full subcategory determined by the constant func-

tors. We can easily see that the usual operations with sets coincide with

those performed for the corresponding constant functors. The case of expo=
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nentiation may not be so inmediate since exponentiation was not defined
coordinatewise. However, we can see that it coincides with exponentiation
in d when we restrict to constant fanctors as follows: let ?, T be
any two constant functors and let HT(l and W'l be the names for

their constant values. Then, '1".'r is again a constant functor and its

value at any object C E,ld-.‘ul is C !'! -

" @xe, = &, )"
% (cm) N _ “.'Ilrll .

Constant functors have the following property in any diagrammatic category:
if T is constant ,.a.nd C , C*' are any two objects in the mmall dom-

ain category t the co t C4 Ct ats C , then

L85 o )

T™is is so, because, for any Acl@l,

[ (C i
i!(n)]- xet,n ¥ (€L e @E'd a)r F(crer)r &
NI DETE ' S DI !

The category denoted 2 is an important subcategory of d s When dea-
ling with applications of category theory to logic and the theory of models.
The functor 2 e._,.d induces a functor Zc__y dc for any C .
Ve want to characterige abstractly those objects of .dc which are also
objects of 2@ , 1e6s, those functors which have as valuese eiths‘e—r 0 or
1, and which we may call (Q.,1)-valued fumctors. To this end we define
for categories with products : an object is said to be ideppotent iff
it is isomorphic to its square , l.e., 4 is idempotent iff A X A ¥ A,
or else, iff both projections A X 4 =$A are isomorphisms, (Same as for

Boolean rings).



Ve want to show that both 2 and FQ are examples of "Boolean rings"
in the sense that all their objects are idempotents. It is equivalent to
ghow that, in &3 , the only idempotents are O and 1 (actuslly, it
is more) and that in a diagrammatic category the only idempotents are the
(0,1)= or two-valued functors.

Leema 8,4 Ind, the only idempotents are 0 and 1.
Proof:
Given any two objects A and B , their product 4 X B as well as the two

projections are given by the pull-back of the following diagram:
4
1

We first show that 0 and 1 areid@potontainﬁ s by showing that the

A ——>

following two disgrams are pull-backs:
(i —ty O 1
0 a 1

-—-—#
—_—s1 ——

- —

In fact, they are obviously pull-backe, and we do not vorify it in detall.
Lot now A be an object in s , such that both projections AX A=N A

are isomorphisms, in other worde :

st

Al 1 is a pull-back diagraa.
—_—1

Ve first notice that, if X is any object in d o olther ther*s no map
L —wA , or, if there is one, there is only one, since the above is a

p’llli-b&ck .



Assume A ¥ O, we will show that then A & 1. If A # O, by
axiom 6 , there exists l—xvl . And since for every object X ind »
there existe a (unique) map X —1 , it follows that for every X in

é , there exists amap X——pld = I......l..f..& » but by the pre-~
vious remark, there cannot be more than one map X — 54 . In other words,
for every X there exists a unique map X -4 , or, A is terminal, and

therefore isomorphic (equal, by a Convenience axiom which we will state

in the next chapter) to 1., QBD ,

Theorem 8.5 In any diagramatic category Ac s the only idempo-—
tents are the two-valued functors.
Proofs
Let T be a two-valued functor. Let TX T == T be the two projections.
For each C €|@], CT X CP —% CT  are also the two projections. And
gince CT is either O or 1 , by the firat part of 8.4, they are both
isomorphisms. Since this is so for each C , both TX ?—% T are ieomor-
phisms as well.
Lot T be an idempotent object in 23T, Ten, T X T ¥ P, and so,
for each CC|@], CTXCT % €T in ad . But by the second part of Lea-
wa 8.4 , the only idempotent objects in J are 0 and 1 , therefore,

CT im either O or 1, and T is a (0,1)-valued functor. QED .

§ 9 - COMPLETENESS

Te category of sets and mappings is any complete model for Lawvere's

eight elementary axioms adjoined to the axioms for categories, We want



to analyse what does it mean for a model of the elementary theory to be
complete. Consider a fixed object I of J . Let J s I ) be the
category (named by J. Beck) of “objects in J over I". Consider the

functor

o, SBLE. (B, 1)

This functor has en adjoint and a coadjoint , where by X{( )x I) ve
mean not only the objectl XXI in .(s , but the object X X I—E-rl
in (o8, I) . 4n adjoint is given by forgetting the “over 1" part of
any object A_’...,.I of (d » I ) .To give an object A over I by means
of a function p is the same as to partition A into disjoint sets given
by the inverse images of points in (elements of) I under p . But die-
joint unions in,d are precisely the categorical coproducts, so that

any object over 1 , say A...f.l, is already a sort of coproduct , only
it need not satisfy the universal mapping property of coproducts , for
which reason we call it an internal coproduct. A coadjoint gives intermnal
products by the classical method of constructing cartesian products , it
does not provide them with the universal mapping property of categorical
products, though. It ie defined as follows: for X_S,1 an object in
(J , 1) , one can partition X into a disjoint union of sets indexed

by I, by the sbove remark, i.e., X = Wsx with 1 = p725).

VY 4 i
I
Let now .‘x: X, be the subset of (H Ii) whose elements are those
functions f ¢ 1‘—'!;-411 for which f(1)€ X, forall 46 I .
This is exactly the classical definition of cartesian products and it
can al_so be expressed by the requirement that the following be a pull-

back diagram:



Xz, > 1
x l e
xL ¢ 1T

We still have to verify that (X —-€,I) wmaemp A X  gives indeed a
13

i
coadjoint to ( )X I . Por every Sé€ A and X.E,I , we show that

the following holds:
P
I &
X =
(5 X %) = W, p (X1 er, x Lo
Given amap S e x Ii » by composing with the maps in the above

“wX
pull- back diagram we get

/ S \ SX1
which yields | "
L s ot o x/ \,r

by exponential adjointness, i.e., ab element of HOM(SXI—pI, X——pl h

since & map from A—sI to B-YsI in (., I) is, by definition,a

map A-»B such that the triangle
r

A ——»B

oA

I

commutes. And conversely now, given a map in ( .d s 1),

SXI —/m»X
\I/

applying exponential adjointness to the maps SXI sl and SXI—X
I

to get maps Sepl and s __plI respectively, these form a

S
22 g

commutative triangle go that also the following




square is commutative :

S 1

L

I

1
and by the definition of ?:S X , and the universal property of pull-
»

backs there exists a unique 3 _...X X. such that the following dia-

pr 1
; %‘1 1
A

Let SXI —» X wu\)s_._.-Xxi.
\ / wX

- . I
Composition of ( )xI with ite adjoint gives the correspondence
X wapIXI = li) X , and with its coadjoint, the correspondence
I wap b = >:<I,forany x(,d .
Clearly, given any 1€, for any x¢ed thore exist votn It and
X X I, simply because the category has exponentiation and products, so

that campleteness need not be required for the existence of arbitrary
internal coproducts and products, and these exist in any model for the
elementary theory.

That A is complete means that arbitrary families of objects in

have a product and a coproduct., 4 family of objects of J indexed by
a set I (i.e., another object I of ,d )}, can be thought of as a

functor 1 —Pp» . There is a diagonal functor

o



vhich assigns to every object X of 3 , the family {X, .y such that

xiaxforeach icele

Yz
There is also a functor ( ;d s 1 } ,61 ,which assigns
P -1
to each AP ,I the family {Ai}“: givenbty & = p (i) .
The following triangle is commutative:

rv Az T

% >

That 18 is complete is equivalent with the statement that for every set

I, Az has sdjoint and coadjoint , and this implies that the internal
copesducts and products which are given by the adjoint and coadjoint to
( )xI, are indeed the categorical coproducts and products , in other
words , this is so iff Y is an equivalence of categories. Therefore ,

the statement that A is complete can be phrased as follows : the funce

(a8, 1) AT ¢

are all egquivalences of categories, for every set 1,

tors

We turn to the case of diagrammatic categories nowe Ifby I we mean
now, the functor constantly I , we can form the category (JG, I ) for
each object I in d , wade into a constant functor, We can define simi-
lar functors as in the case of d , and show, exactly as above, that

the following triangle is commutative 3
GG, 1)

, wo
el BN




Also, as for the case of oJ , { )x1I has adjoint and coadjoint for
every set 1 and that dc is complete can be replaced by the atatement
that for every set I , Wf is an equivalence of categories.
The aim of this section is to show in a way different than the usual one,
that every diagrammatic category is complete because J is complete.
Por this, let ‘ML be any model for the eight axioms of Lawvere ( and such
that Y is a category as well) , of wich we do not assume completeness.
Then, let ’”za be the corresponding functor category , for C amall,
We first prove a lemma:
Lepmp 9,1 !’oranynallc » and any lodelm ofthe'bheoryofld ’
and any set I , and the functor whose comstant value is 1 , we have
that (’m.z)“" ‘-‘-‘(’mc,x).
Proof:
Given a functor P q-‘a ——p(m, I) , we have, for each cd@l ’
an object in M over 1, CP = X,— T, and if CoepC' is any
msp in (} , P induces CP—2,C'P euch that the following triangle

commutes:

X b S Y
k‘: (%

Let X ¥ ,.I be an object in (ME, 1) vhere X ie an cbject in me
defined by CX = X, for each celCl, end xX= X  for each map

x 10 Q. ind obvicusly, by the commutativity of triangles like the above
one, this saps that the collection {{,} is a natural transformation
X% o1, vhere now I is interpreted as the functor constantly I .

We have defined & map (m,:)ﬁ__,(mﬁ.:).



Conversely, given any object '1'4—51 in (mc, I) s for each cem
there is a map ',c: C? ~w—I , and if C —»C' is any map m@

the following triangle is computative:

A4

Let Y =G__,(m,1)bedennedby, cY = c'rl..l.md
:¥ = x? whichisamapin ( 2L, I) sinceY = (V) Ppr o

It is now easy to see that both compositions of functors are equivalent
to the corresponding identities. QED.

Theorem 92,2 Let G be any mall category, and m any model

for the élemeptary theory of the category of sets. Then,

'm,c 1s complete iff JJL is. complete.
Proof:
Let m be complete, i.e., m is d » the category Iof sets, This means
by previous considerations in this section, that for every object I eof
d s the functor (gd ’ I)_____,,dl is an equivalence

of categories. This functor induces a functor

(o % ¥ (g ey
which 18 aleo an squivalence of categories since Yris .
By 91, (o, 1T 2 (T, 1) o that v have tnat the functor
8%, 1) _'u&c_* (JO*
is an equivalence of categories, in other words, o€ 1o complote.
Conversely, assme ne complete. An arbitrary family of objects of 7%

can be thought of as a famil;" of constant functors in mc, and so, it
has a product and a coproduct, or m is complete, QED,



Chapter 1l
THE THEORY oF REGULAR CATBEGORIES
AND AN ABSTRACT CHARACTERIZATION

oOF DIAGRAMMATIC CATEGORIES

In the first chapter we have described many features of the members of
the class of diagrammatic categories. Some of these properties, such as
having a generating family of projectives, can be stated without any refe-
rence to the set-valued functor nature of the objects in each diagramma-
tic category. The problem we pose in this chapter is whether there are
enough properties , which can be phrased in abstract categorical terms
and which could serve to characterize the class of diagrammatic categoriea

To this end, we introduce the name regular for categories satisfying
a list of axioms which are weakened versions of those given by Freyd
for the theory of abelian categories. Indeed, all abelian categories
are regular , the converse is not true, one example being the category
of sets. Regular categories are not strong enough to yield results as
interesting as those of the theory of hbelian categories ; yet, they
are strong enough to exclude many interesting categories aince there is
a regularity condition to be satisfied and which is not satigf:l_.qd by the
category of Hausdorff spaces or by many algebraic categories, for exam-
ple., We choose reguiar categories as a starting point in the program of
characterising abstractly the diagrammatic categories, since they are all
obviously regular. On the other hand, since there are no abelian diagram

matic categories, the strenghtening of the axiome has to deviate from

42
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abelianess and follow different paths. We next introduce the definition
of atom in a regular category, and say when shall a regular category be
called atomic. It turnms out that any complete atomic regular category
is isomorphic to some di#grammatic category and that all diagrammatic
categories are complete atomic regular : this is the characterization we
wanted. On the other hand, abelian categories, though regular, are far

from being atomic : only the zero abelian category is regular atomic.
§ 10 ~ REGULAR CATEGORIES

Before stating the axioms of the theory of regular categories, we
want to make precise what the coneequences of having finite roots are.
In this way, we determine better what do the other axioms really add
to the assumption of finite roots. Besides, all definitions of the
theory of regular categories can be stated for categories with finite
roots alone. We start by defining some notions which make aenee in any
category with finite roots.

3
By the induced map of a pair of maps Iéu , We mean the unique

map b which renders commutative the following diagram:

e

I P Y X
Ny

Dually, the coinduced map of a pair of maps Iét! is the

unique map k which renders commutative the following diagram:



A yelation on an object A is any pair of maps Ré'_-ﬁ-u. such that

their induced map be mono. A co-relation on an ebject B is any pair

of maps B —’._i"ﬁ* such that their co-induced map be epi.

A relation B:'-&-f-—:h& is a congruence on A iff
(1) Jaaten & ar, = & = ar,)
¢
(ii) 4 t(a—>R :.:fo =1, & tf, = fo) and
(1i1) V'n, Vh (=R & Bt =hb then 3 u(uf =hf &
& uf, = Wf ) e
The induced pair of maps of a map f ie the pair AX aebe, T8,
Dually, the co-induced pair of maps of a map f is the pair
"..r‘:i
A__ o, B—%B + B.
The kormel pair of a map f is the pull-back of the diagram:
A
1 £
4
A —————nB

Dually, the cokernel pajr of a map f is the push-out of the diagram:

a—L .8

-
B
Proposition 10,1 - In a category with finite roots, every map has

a kermel peir and a cokernel pair. Explicitly, let f be any map.
en, Ker pair (f) = (kp_ ,kp,) with k= Ba(pf, pyf) and B,

'Y L) £
plareasinthediagruz Kf_.lxl?l__ﬂ .
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and, Cok pairif) = (1°q, 11q) where q = Coaq(ﬁo ) T4y ) with 4, 4,
£

ue in the diagram ¢ A_T_oB =faB 4 p.L .k .
Proofs
The existence of products and equalizers implies the existence of pull-
backs and therefor of kernel pairs , and it is inmediate to see that
they are given as in the statement of the theorem. Dually, there are
cokernel pairs and they can be so defined, QED.
Propogition 10,2 In a category with finite roots, every kernmel
pair is a congruence relation,

Proof:

Let (fo, rl) = Ker pair(f) , i.e., the following is a pull-back diagram:

K, o
: ] f If
a L B

Clearly, the following square is also comrutative:
A

A= LA

gl

A -———’B
Therefore, by the universal property of pull-backs, there exists a uniqge

A _"._.xf such that the following diagram is comsutative:
A

so that df = A = df, , which is precisely condition(i), or reflex-

ivity.
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%o prove condition (ii) or symmetry, consider the following commtative

square: K fl A
fof N E
A £ B
Again, by the properties of a pull-back, there exisis a unique Kf _t_..lf

for which the follbwing diagram is commutative:

o

-—-—-—.—.B

In equations, this reads: tfo - f]. and tfl = fo , which is exactly

condition (ii) in the definition of a congruence relation., Pinally,

let us be given ho and h. such that horl = hlfo » Then, since

1
hofof - hofl:l' = hlfof = hlflf o the following square is commuta-
tive: I ht A
o |, |
4

and therefore there exists a unique X ..“_...If such that the following

diagram is commutative:
I

In other words, uf = hf and ut, = hf o, 80 that condition(iii)
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or transitivity, holds. QED.

The converse of this proposition is not necessarily true in a catego-
ry with finite roots, however it is true in most categories of interest,
e.g., all algebraic categories (Lawvere [15] ), all abelian categories,
all diagrammatic categories, and it will be an axiom of the theory of
regular categories.

A monomorphism is said to be a regular mono iff it is an equalizer}
and an epimorphism is said to be a regular epi iff it is a coequalizer.

Proposition 10,3 In a category with finite roots, equalizers are

mono, coequalizers are epi, every megular mono is the equalizer of ite

cokernel pair and every regular epi is the coequaliger of ite kermel
pair.
Proof:
Let u = Bq(fo, fl) , and let g, g' be such that gu = g'n.
Then, also gufo - gu.fl and g'u.fo- g'ufl but since u equalizes
fo and 1’1 there exists a unique k such that gu = ku, and a
unique k' such that gu= k'u, Since gu = g'n , and uniqueness,
we have that g = g' .
¥e show now that u is, in fact, the equalizer of its cokernel pair.
Let (qo, ql) = Cok pair(u). By properties of push-outs there exists

a unique map h such that the following diagram is commtative:

Al hod .y 3
S Y




Let e = Eq(qo. ql) and by the universal property of equalizers there
exists a unique A'— B such that the following diagram commutes:
N
But now, ef = eqh = eqh = of, and since u = Bq(fo, fl)
there is & unique E — s A' such that the following diagram commutes:
A' 4—--——-—- B
RN
So, ve=u and v'u = e . Therefore vv'a = ve = u and u moOMo
so that vv' = A' and vive = v'u = e and e mono (since it
is an equalizers) implies that v'v = B , Therefore A' ¥ E and
s, u = Eqlq, » q,) - @D,

Ve have omitted the proof of the dual assertions of the theorem,

Given any map f , by the regular image of f we mean the map which
is the equaliger of its cokernel pair, and by the M of ¢

we mean the map which is the coequaliser of ite kertsl. pair.
Corollary 10.4 In any category with finite roots we have that:
amap u is regular mono iff u = Reg Im (u) 3

a amep p is regular epi iff p = Reg Coim(p)e

Proofs

It follows inmediately from Prop. 10.3. QED.
Proposition 10,5 In any category with finite roots, given any map
¢ , there exist both Reg In(f) = I T _wB and the Reg Coin(f) =

P

A If* . Moreover, there exists a unique map IIIf .._h... TIIf

such that £ = phv,
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Proof:
It is clear that both the regular image and the regilar coimage exist.
Consider the following diagram, where the dotted arrows will be shown to

exist and make the diagram commtative:

A £ B
h ..\.
* L
Sk St —-It

vith v = Eq(ig, 4,q9) and q = Coeq(ti »fi,) 3 with

p = Coeq(kp, ,kp,) and k = Bq(p t »py1).

Therefore, fi g = fi,q and since v = Bq(:l.oq, :i.lq) there exists a
unique x @ 41—:;\.1r such that xv = £, On the other hand,

kpxv =kpf = kpf = kpav " and since v (being an equaliger) is
mono, this.implies that kp X = kpx end aince p = COeq(kpo,kpl)
there exists a unique h ¢ 11,"._....‘-.1[f such that ph.- X

BPut £ = T v = p h v is what wve wanted to show, QED,

A category with finite roots is said to have ynique regular factori-
gations iff for any map f there are maps p (regular epi) and v
(regular mono) such that f = p v and mprecver such that if p' , ¥
are maps which are regular epi and regular mono 'mspect:lvoly, and: are

euch that_ £ = Pp* v' , then there exists a unique ¥y such that the fol-

loving disgram commutes:
A k 4



Proposition 10,6 A category with finite roéts has unique regular

factorizations iff the unique h : Zlii,*'_..,.I[f is an isomorphism

for every map £ o

Assume h is an isomorphimm for every map f . Then given any 4

there is a regular factorization , namely, f = p Vv, where ¥ = RegIn(f)
and p = Reg Coim(f) . Uniqueness follows from 10.3.

Conversely, if for any f there are p' regular epi and v' regular mono
such that f = p' vt , by 10.3 again, p' = Reg Coim(f) and

v* = Reg Im (£) o QED,

A word of explanation about the name "regular factorigations® rather
than “factoriszations". It is customaty to . speak of unique factorisa-
tione, to mean, factorigations into epis followed by monos. In abelian
categories, both notions coincide and so will they in regular categories
but they need not in a category with just finite roots , and we needed
to make the difference to be able to state the above result,

In the theory of abelian categories, the existence of unique factori-
gations follows from nommality (every mono is a kernel and every epi is
a cokernel) pihowever , less can be assumed and in the theory of regular
categories it will follow from the assumptions that every mono is regu-
lar and every epi is regular.

Proposition 10,7 In any category with finite roots , (1) = (11),

where (i) Every mono is regular and every epi is regular

(11) Every map can be factored uniguely into a regular epi

followed by a regular RONO.
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Proof':

Let £ beanymap. Let £ = x v be the canonical factowization of f
through its image , where by this we mean , let v = Reg Im (£) and
let x be the unique map such that £ = x v, and which exists since
£iq = fi,q wvhere q = Coeq(fi , fi,) , and v = Bqf1_a.1;9).
NBext we show that x is epi ¢ let g and g* be any two maps such that
x¢ = 18'. Let e = Eq(g,e') » Then, g = &' iff e is an isomor-
phism, We know e to be mono and also Vv is mono, therefore ev ia
mono as well. By (i), ev is regular, and by 10,3, ev = h(ioqev’j‘.l.qev)
where q = Coeq(ev:lo, ov'l.l). By construction, v is the equaliger

of the cokernel pair of f . Let us show that ev also is the equaliser

of the cokernel pair of f. Consider the diagram below: £ *
. ev
A__§f _B——=B 4+ B X
yi /7— o % £
s v
R

that ye= x . 38ince ﬁoq“ - moq“ = ymoq“ = y.ﬂ,lq“ -

- 13 therefore since q, = Coea(fi o? ﬁl) there exists a

1%ev
unique =3 Kf* .._.-pK“* such that %y = qu e And finally, since
evi ¢, = eviq, and q = Coeq(evio, ovil). there exists a unigue
s's K“*__,.Kf' such that q_ s = g, . Therefore ev =

- lq(ioq“, 11q“) = Bq(1a, . ’1"1) = v. But v 4s mono, there-
fory, e = I, , the identity map of I, which is an isomorphiem. So,

g-g'. mo
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M™e converse of the last proposition is true for categories with
finite roots and which are balanced, i.e., such that a map which is both
mono and epi is always an isomorphism.

Proposition 10,8 1In a category which has finite roots and is balanced

(11) == (i), where (i) & (ii) are the statements appearing in 10.7
Proof:

Let A —aB be mono. By (ii) there are p , v , such that .u-pv,

p regular epi and v regular mono. bBut wu momo implies that p isa

mono as well as epi, and therefore, iso, since the category is balanced.
So, u and v represent the same subobject of B and eince ¥ is regu
lar mono, s0 is u . 7The dual is similarly proved. QED .

We now give the axioms of the theory of regular categories., We will
assume furthermore that we are dealing with categories with emall Hom-
-gets, i.e., such that the class of maps between any two objects is a set.

A category with small Hom-sets is said to be regular iff it satisfies

the following axioms:

R1 - There exists a terminal object.

R 1*= There exists a coterminal object,

R 2 = Any pair of objects A , B has a product (le,pl.p'B).

R 2%~ Any pair of objects A , B has a coproduct (A+ B, 4, 13).

R3%~- Anypairofnapahaéanequaiim.

R 3% Any pair of maps has a coequaliser.
So far, we have stated axioms saying that the category has finite roots,
Therefore, all definitions and theorems which we have proved for categories

with finite roots, are also definitions and theorems of the theory of regu-
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lar categories as well. The remaining axioms are the following:

. i
R 4 - Por any objects Ao and B , 1_1..14-3 is mono.

RS - Every congruence relation is a kernel pair.

R 6 = Every mono is an equaliser.

R 6%~ PREvery epi is a coequalizer.

We will also adopt what Lawvere calls a Convenience Axiom, to the
effect that if A is any object whose only sutomorphiem is the identity,.
and if B is any object isomorphic to A , then (it is convenient to
asgume that) A is equal to B o This axiom affects only terminal
and coterminal objects, and says that there is exactly one terminal ob-
ject, which we call 1 , and exactly one coterminal object, ﬁich we call
0 , as usual,

We show now that any abelian category is regulat as follows:

R 1 and 1* are satisfied by the presence of a sero object which is de-
fined as being terminal and cotermminal at the smme time; R 2 and 2%

are axioms in Proyd's formulation of the theory , and R} and 3* are
theorems which follow from stronger assumptions which say that every

map has a kernel and a cokernel 3 R 4 is aat:lsﬁod.sim;e , for any

A and B , 4 LAOD&A is mono, where @ denotes both the pro—
duct and the coproduct which coincide ; R 6 and 6* follow from axioms
saying that every momo is a kernel and every epi a cokermel , and R 5
polds because it holds in any algebraic category (Lawvere {151 ) and in

particular in any category of modules over some ring , and then because

of Mitchell's full embedding theorem (Freyd (8], Mitchell (231 %
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We also remari that all diagrammatic categories are regular
that R 1,1%,2,2%,3 and 3* hold wae shown in 1l.1l. Also, R 6 and 6% were
shown in 6.2, To see that R 4 is satisfied, we first see that it is in
d , as follows: let A and B be any objects in J yand assume first
that A ¢ O . ByaxionSforJ , there exisis a map 1. X2 .

Let h be the unique map which wakes the following diagram commutative:

Then, since A ismono and A = :I.‘h , 8lso i.Jl is mono.

If A= O, then 0....1..-0 is mono for any C n.d , since if g,g'
are such that gx = g'% , but g ¢ g' then, since 1 is a generalér,
there exists 1 _.’_..c such that yg # yg' , contradiction since
yg and yg' eremaps 1=%0 and there exists only one,

Since coproducts are defined pointwise in any diagrammatic category,
and natural transformations are mono iff they are mono in each coordi-
nate, it is clear that R 4 holds in any diagrsmmatic category because
it holds in%d . Finally, RS holds for sd (Lawvere [161), and
therefore holds also in any diagrammatic category since it is easy to
ges that n%! is a congruence relatiom in .JG, i£f for each

8 |
ctlcl, - CR Hc& is a congruence relation in .d .

¥We now derive some consequences of the axioms,

Proposition 10,9 Any regular category is balanced,
Proof:

Let 1..?...3 be mono and epi, therefore an equalizer and a coequali-
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zer by axioms R 6 and 6*., Moreover, by 10.4, we have that £'=
= Beg In(f) and f = BReg Coim(f). Them, by 10.5 , there exista
a unique map hs If"‘.._....]'.f such that = phv. But; since
1fop-1.508 ama 258 = 4 2 1*, the above is equive-
lent with the existence of a map h such that f = fhf , Since
£ isepi, hf = B and eince f ismono, fh = 4 . That is,
f bas an inverse, or , £ is an isomorphiem., QED.
Proposition 10, 10 In a regular category, every map can be
factored uniquely into an epi followed by a mono.
Proof:
Irmediate from 10.7 end R 6 , 6* , QED.
Proposition 10, 11 In a regular category, any congruence rela-
tion is the kemmel pair of its coequalisger.
Proof:

Tomediate from R 5 , and a similar argument to that of 10.3. QED.
¥We end here the list of the inmediate comsequences of the axioms
for regular categories, To get any further, we need more definitiona
and further asswaptions. Having as an aim to characterise abstractly
the class of diagrammatic categories, we want to study those regular
categories which are atomic , and to be able to define what 'atomic!'

means, we need to introduce the motion of atom, first. PFor a justi-

fication of the names 'atom' and 'atomic'; cf. the Preface.

§ 11 - ATMS IN REGULAR CATEGORIBS
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Let fo ’ tl Iie any two maps with common codomain . We say that
£, end f, are jointly epi iff Ve Vg'((fog = te &

te = r,8) = (¢ = g'))e

This definition can inmediately be genmeralized to n~tuples of maps
with coomon codomain., In parthcular, if n = 1 , the statement
that £ and f are jointly epi, simply says that £ is epl.

Ve recall that an object is said to be abstractly unary iff
any map from the object into a binary coproduct, factors trough
one (or the other, or both) of the injections 3 and Qstraétl; exclu~
sively unary iff it factors trough exactly one of the injections.
¥We now notice that if inetead of epis we take jointly epi pairs of
maps, the definition of asbstractly unary bears some resemblance to
the definition of projective object, if a particular type of join-
tly pairs of objects is consider, namely, pairs of injections into

a coproduct. We first dhow :

Lesma 11,1 Por any pair of objects 4 and B , the maps
i

A_2i+B  and nin...;-rn are jointly epi.
Proof:
Let g and g' be such that i‘.‘-i“"kg and
:I.ng- 133‘ -kn. Then, k‘andl:n induoe a unique k
suehthati‘k-kA and!.nk-k.n. But both g and g*
have that property, by uniqueness g = k = g' . QED .

It is now clear that the notion of abstractly unary object is
similar to a sort of "projective” with respect to jointly epli pairs

of injections into a coproduct. But we can inmtroduce *projectives"



with respect to arbitrary jointly epi pairs of maps. This is part
of the definition of 'atom', However, wve vaﬁt the atoms to be abastrac—
tly exclusively unary as well, since they are being modelled in the
set of representable functors in any diagrammatic category. It tums
out that it is enough to assume that they are abstractly exclusively
unary with respect to the two injections 1==$2 alone. Therefore,
we say that an object A in a regular category is an atom iff :

(at 1) VfOVfl Vr [ [(eeile.f) & cosom(f,)= Y &
2 Y1l = (3R x(xf = y) or Ax (xf, = ¥)) 1

(At?:Vh [.I.L-pl-l-l %(1—'1.:211-1-‘ &=
i
& 1_1.(_.].‘)...1-»1 # h)] .
Proposition 11,2 If A is an atom ,then A is projective,

Proof:

Let £ be epi. Then (f,£) is a jointly epi pair of maps . Given

A

x Lot
s

) QUL
43T , there oxists A_pX such that y = Xf . Therefore,
A is projective, QED.

Proposition _11,3 If A is an atom, then A is abstractly unawyg
Proof:
By 111, gven B amd ¢ , (B_lB Béc, ¢c_c B+ 0
is & jointly epi pair of maps. And by At 1, given amy map AT B+C

there exists either an x, such that xo:ln = y or there exists

an X, such that xlic = y , which says that A is abstractly

unary. QED .



Proposition 11,4 0 ims not an atom.

Proof: i
The following diagram is commutative : O ol SV
which means that At 2 is not \14’
satisfied. QED.
ti 11 If A is an atom, then there are no maps

with domain A and codomain 0O .
Proof:
Assume there is a map A_f_.,.o . Then, the following diagram is

commatatives

A_.f_,.o/l\a;l--rl
\1/‘:

This contradicts At 2, QED,

Proposition 11,6 Xf 4 is an atom, then 4 is abstractly

exclusively unary.
Proof:
Let B and C - be any two objects and A.Y 4B + C , Since
A is abetractly unary by 11,3, there exisis, say I such that

B
Let h be the unique map which makes the following diagram commu-

x°1 = ¥y o Assme that there exists aleo x, such that xl:l.c-y:

tative and which exists since B+C is a coproduct:




Then, also the following diagram is commutative:

\/ %

which contradicts At 2 in the definition of atom, QED.

Ve remark that it } does mot exclude the possiblility that a map
from an atom into the codomain of a jointly epi pair of maps , should
factor trough both mape in the pair.

Proposition 11,7 Any retract of an atom is an atom,

Proof’:
Lot A be an atom and A'S _A a retraction, i.e., there erists
A—P_A' such that the following triangle ie commutative:

AT i

vl

LAY
Let (q,q') be a jointly epi pair of maps and let AT .Y where Y=
= Codomain (q) = Codomain(q'). Since py 3 A —sY and A is an atom,
there sxists, say, x: A—»X such that xXqQ = PY o loi, also
raq = r(py)s But rp = A' eo that I¥qQ = Y. But rx : A' I,
end (rx)q = ¥y o Therefore, A' is an atom as far as At 1 goes.
At 2 is easy ¢ if l'_.l.l...l-l-l factors trough both 10 and 11,90
does ph . QED. | |
The following property that atoms have is very important, and it 4is

used in the characterisation of dingrammatie categories in section 13,



ti 1,8 In a regular category, if A is an atom , and {Ii
“x
is a family of objects indexed by a set, and such that ite coproduct

exists, m(A,Z_xi)zZm(L,xi).

el 7% o
Proof:
The empty coproduct is 0 , and HOM( 4, 0) & O by 11.5 , where the
0 on the left hand side of the equation is the coterminal object of the
regular category in guestion, and the O on the right hand side is the
coterminal object in d , that is, the empty ae_nt.
¥We now show that the result is true for binary coproducts, i.e., that
forany X snd T in the category, HOM(A, X+ Y) ¥ HOM(a,X)+ EoM(a,Y).

let h be tte unique map which makes the fédlovwing diagram commmtative:

s N\_b .
i
wn BoM(A,X) + HM(A,T) BoM(A,X + Y)
" .

(A iy)

HOM(4,T)
Ve want to define amap & , inverse to b o Let x€BOM(A, X+ Y )e
By At 1 , there exists amap y such that , say, T =¥ i, (bvy 11,6
A is abstractly exclusively wnary , so that if Xx factors through
1; » it cannot factor trough 1, then). Moreover, the above y is
the only one such, since, by R 4, il:la a monomorphism , so that if
y' is such that z = y'ix then y:lx- I = y'i.x implies
that y = ¥ . y€EM(4,T) so that ¥ igg, z) € BM(AX)enm(a,T)
and we define g 3 ntm(a , I+Y) —— 5 HON(A,X) + HOMN(4,Y) by

lotting xg = ¥ 1“(‘.1) . By the above, it is well defined.
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To see that we have defined an inverse to h , let xé¢ HOM(A, X+Y),
then, xga = (¥gq )b = Ypo(a, ¥ = y(d, 1)) = yig=x
and if x' € HOM(A,X) + HOM(A,Y) then

t - ] = L ] | = 4
the definition of g o since xg = x' iff x' =y 1(1,1) and y(.l,:lx)- x.
(Motice that we have assumed that x' factors trough i (LX) and not

]

trough 1(, v) but it wotks just as well with the other assumption)s
Let now { }“1 be any femily of objects indexed by a set I , whose
coproduct is an object in the category. Let I* & I ©be any subset

-

of I for which HOM(a, “Z.rxi) 2 % HoM(a , xi) .
Ve have shown the result to be true if I' 1is empty, =0 that there is
at least one I'% I for which the above holds, for any set I .

The family of all such subsets of I is such that all chains are boun-
ded by the union of the sete in the cljain. By Zorn's lemma, there is a

' o

marimal I' for which HOM(A ,%_ x,) é, HOM(A , X;) , and
I'" C I. Assume I' ¢ I andlet JEI-I'. Let I"=1I'4+{J}

which is a subset of I strictly larger than I' . Then,

Z_.I = X +

X
eI" i ext 3 {33
and by what we have already shown to hold for binary coproducts,
HOM(A , Zx) * noa(A,ZI +x:j=mu,;x)+
HOM X =z HoM{a , X A = BOR{(A,X
+u,j} Z(,)..m(,ug Z Bom(a,x,)
contradicting that I' was the marimal subset of I with that proper-

ty. Therefore, I' = I and we have the desired result, QEF .



§ 12 = ATOMIC REGULAR CATEGORIES

A regular category is said to be gtomic irf the class of atoms in it,
is isomorphic to a set and it is generating. |

In the mext section it will be shown that every right complete atomic
regular category is iscmorphic to some diagrammatic category. Therefore,
it will also be left complete and have exponentiation. However, the
fact that the category determined by the atome in any right complete
atomic regular category,is an adequate subcategory, is needed for the
representation theorem, This need not be assumed, as can be derived from
the assumptions made, We first prove:

Proposition 12,1 In any right complete atomic regular category,

given any object X there exists a gset J and a family { 2“3

of atoms, and an epimorphimm 7 A p.:l .
jegx 3

Proof:

Let J = Z. HOM(A , X) , where the coproduct is taken over the set

of atoms, By right completeness, A, exists, if a1 1is the
ey J 3 A%

family of atoms whose members are defined as follows ¢t 4 5 = A ifr

jG.H(l(L, X) Toeach j € J corresponds amap Jj s 4 —eX , and

J
the collection of such maps induce a msap

Z.Aj——-—..x

such that , ifidisthoinjectionoomnpomngto A, , 1ip-= 3.
To see that p 4s epi, let £ and g be such that pf = pg. Then,
for every 13:‘....1, j£ = jg which implies that £ = g since

the set of atoms is generating. QBED
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A diagram of the form I%:ALJ is said to be exact
(Linton [19) ) ife (ko,r_l) = Ker pair (p) and p = Coeqlk ,k; ) «
By the canonical exact diagram ending in X , for X an object in

a right-complete atomic regular category, we mean, the diagram
K, —- Z b Zag g tex

where p 1e as in the last proposition, Por any X in a right-com—
plete atomic category, there is a canonical exact diagram ending in X ,
by 1l2.1 and 10,1 .

Proposition 12,2 In a right-cmplete atomic regular category, the
atoms are an adequate subcategory.
Proof:
Let A be the full subcategory of I , right-complete, atomic regular,
generated by the atoms in x . .A is emall since there is at most a set

of atoms, Let A2, X e the inclusion functor. To see that

A is sdequate (Isbell [12] ), we have to show that the functor l

defined as the composition * -
Y_H, g% A g4

is full and faithful.

Yor X an objectin & , X = HoMao( , X) andif 120X is any
napinx ’ x¢- W( s X ) e

Heshovtha.t¢ is faithful: let x and y induce x¢- y¢ .
I.0., for every A € LAl B (a, %) '_—il.'__% EM(A , X') are equal
maps, This is equivalent with m:lng that for every a.ton“ 4 in x ’
and every Bap A—2eX , l—f-pl-—x--lf = 1..-';--1—-’-'1‘ e Since

the clasa of atoms is generating, this implies that x = ¥y .



64

Next, we show that ¢ 48 full ¢ given X and X* :l.nx, and a map
14__‘_. 1@ in F‘. to show that there existe a map X —Te-X'
euch that £ = y@ = Hag{ , y) . Let the following be a cenoni-
cal exact diagrem ending in X :
R .._._“:._n.. 1j __P;_-x
4
Since £ : B ( , X) ——» HOM( , X') is a natural transformation,
for each 4 , £, HoM {A,X) —p BM(4,X*) , s0 that for x€ BoM (A, X)
o, € HEM(A, X*) .
1t A_f..-p X , let us denote by 11 3 A—p%.‘j the corresponding
injection, i.e., the injection soch that x = 1 &L °
Now, ﬂ; 1 A—p X', and this collection of maps induces a unique map
t

Z,A _..._2....__...1‘ such that for each 1_’..1, i p* =xf o

T 3 x A
That is, the following diagrem is commutative for eack x t A ——o X ¢

Since D-M(d.p),ﬁushowthat X p' = (’bp‘,thereuill
be a unique 1...!.—.-!’ such that py = p'.
'.l'oshowthoabon,itisonnghifunﬁorthatforewryup 1__’...!,;1\&
eny atom A for which such a map exists, T o P' = r(ip'. Because
then, by the generating property of the family of atoms, this will imply
that o p' -pp'. Hotice that if we take atoms for which there

exists a map A—+ R , for those there will exist a map A—>I as well,



gince A SR, both r o¢ and r(b are maps from the atom A into
the coproduct % Ay . Since A isen atom this implies that there exists
atoms A' and A" for which there are maps At _E.... X and A"_f:. X
such that if i.:, and ix, are their corresponding injections into the
coproduct, there are also maps A % ar ana A%, 4"  such that
ro = a*i, and r(ﬁ=a"ix,.

But rdpzr{sp implies that
a'x'-a'ix,psrdp-r‘gp-a"ix,p-a"x"and
since both (a'x*) and (a"x") are maps A=—EX which are equal, then
also (a‘z')f‘ - (a"x")fl t A e XY,

Since f is a natural transfomation, the following square is commutative:

4

HM (A', X) A' ____Bom(a', X*)
Hom(a!X) l 1 Hom(a! X')
oM (o, X) A HOM (4, X*)

so that, by taking x' € HM (o', X ) and traveling in both directions
along the diagram, we get:

x! (f‘, Bom(a', X*)) = a' (= fv) and

' ( Bom{a' , X) fA) = (a'x') £, which must be equal elements of
EM(A,X*) , i.e., at (x f‘,) = (a'x') £,

By the ssme argument, since the following square is also commutative:

B (a®, X) __ Tan _HoM(a®, X%)

Hom(a®, x)l l Hom(a" 5 X*)
B (o, 1) Ta B (s, 1)

we have, for x" ¢ HM (A", X) the following identity:
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a" (x* f‘.) = (a"x") f, . Fnally, ve have that:
rocp! = atdi, p' = a'(x _f‘,) = (a'x*) £, = (rocp) £, =
= (r Pp) f.l - (a."x") f‘. = a"(x" fr,) = a% 11. pt = P P .
Since r was arbitrary, < p' = (5 p* o Therefore there exists a
wnique X _.!..I' such that py = p' .
To see that £ = y¢ , take the diagram into JA*bymeansor ¢ .
and see that both £ and y¢  wake it commutative, but p is
epi as well, so that they have to be equal , Actually, p¢ ie
the canonical epimorphi=m W) H‘ — Hx since, by Yoneda lem-
ma, (H,,Hy) & AH % HoM (A, X) ., QED,

¥We now attempt to prove the representation theorem for right-complete
atomic regular categories. The proof is analogous to that of Lawvere [14]

of the characterization theorem for algebraic categories.

§ 13 - CHARACTERIZATION OF DIAGRAMMATIC CATEGORIES

Thoores 13,1 Lot ) be any rignt-complete atomic regular catego-
ry. Then, there exists a smsll category A and a functor
X ¢ JA“
——tmiip

which is an isomorphism of categories.
Proof:
Lot A be the full subcategory of J generated by the atoms in x .
Let () Ve defined by 1@ « Bmge( , X) for any object i X,
andx¢-“( , x ) for any map I 2y Xt mx.

The statement that ¢ ig full and faithful is equivalent with the statg
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ment that the full subcetgory of A geherated by the atoms, i.e., A,
ie sdequate in J . Therefore, by 12.2, P ia full and faithful,
Next, we show that (D haes an adjoint Y, as follows. CGiven any objject

A*
T in _d , by 8,3 and 6,3 there is an exact diagram ending in T

IP—E’;-;-Z_ Xflli__—".-)_n‘_."_..f
T R HyT)* T

Reinterpreting 1l.8 , it says that ¢ is coproduct preserving, since
for any coproduct 2;_11 in x ’

W Zx)@) = wongela, Zx) 3 Zoomta, 1) ¥ Za (59)
for every atom 4 inx i.e., for every object A in A*

o, (Z-%)¢ = Z;_uiqh , a8 objects 1n s A",

To the above exact diagrsm ending in T , we can add the canonical epimor-

phism Z—. H,, _f_,. K. , which exists since K_ is an object in

_ ”‘ U"A'lkp) P P
J and by 8.3 . By Yoneda, (HA » T) = AT, so we replace it everywsra
Then, the diagram

Po
Z __..xp__...z_n x Z B —%7 B, N

AT AT b AT
can also be written , since is coproduct preserving, as:

r M
(E'A')¢_-+IP_L(.§_A)¢)((§L)¢ :ﬁ."‘-(%. 1)¢ LAY
Wo can now use the fact that 0 is full to get maps

€ )

%1‘ —_—."=%1 such that rk P, = °¢
rkppl'ﬁd) .Letq-Coeq(a al):ln x and
let (%l)¢ __qL—.-I¢ ,beitsmgeundor¢1n¢f”,

where I is the codomain of q . Define 2Y = I.
The following picture illustrates the situation where the above half is

adimth“,mdthehﬂfbelwiaadiagxum x



k
Ze, = & 2, ZE x 28, =328 7,1

<
ZL" ;z& --i-—lr I=72y
A Yy AT

To see that Y sodefinedisadjointto¢ , we show that ¥ is a
reflective subcategory of J , 1,00, foreach T in .d s there

€, 2y '
exists a natural transformation T —» T » such that if X

¢

i sn object in X ana T Lu x@ is & map in s % then there

is a unique Y ___I_,. X' such that the following is commutative:

—_— Ty
\ j x¢

To this end, we first motice that 3

re v, 0P) = (PP = (2P = (0,)f = (@)@ -
= rkp P, (q ¢) . But since p = Coeq( xkppo . rkppl) there exists
s mique T-YpX@ , such that p = q@b . Tat is, the follo-

wing is commtative:

2 d
A — >
N
[
Let I' bemyobjoctinx, such that there is a map '1'-;0-91‘¢ .

Since ¢ is full, there exists a map s such that a¢- ptp'.



On the other hand, q = Coeq(a.o, al) , We want to show that also

as = as and eince @ ie faithful, it is enough to show that
(a°-)¢ = (ala)¢ . HNow,

(00 ® = (s Pa@P) = Gep ey’ = (Hp)p@' = (@) =) =
- (;1.)¢ . So there exists a unique X ——= X' such that qx = s,

i.e., such that the following diagram is commutative:

But now, p( @ (x¢)) = @)=xP) = (q¢)(x¢) - s¢p = peg,
and p epi implies that lf(x¢ ) = (p! . Therefore, Y is adjoint
to ¢ . Notice that so far, we have used all axioms for regular categories
but axiom B S5 . We have also used right=-completeneas and atomicity.
Bat we need B 5 to finish the proof and show that (P is dense, and
therefore an equivalence of categories. It will be also an isomorphism,
We show now that ¢ is dense: for this we have to show that given T in
A2 thore exists X in J , such that X P ¥ P . Ve show that
this happens for X = TY , so that moreover the composition 'W'¢ is
Al'
the identity of W9 . It is already clear that the composition @y is
the identity of X , since given X in X, Gy =, x. so,
that ¢ is an isomorphism of categories will be proven onee we show that
foreach T , thomap T Lo 2P = T Epxp , is an iemorphiem

of objects.

Qe
Let O(-Iq(qg.qlq) whm%AXZAﬁZA are the pro-
° “Ar & AT

d.ctim. * i.e., (dqo » X ql) = Ker P’ir (Q) ]
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Then, o P= Bq(po(q¢). p,(a$)). nd since K, p(ap) =K v, (1)
there exists a unique Kp _..!.-p- qu such that ¥ (o{cp ) = kp as

jpdicated in the diagram below:

Ay ¥ . at mMETER A b
b b W xg
2 i - L
NKp a, % v
7‘\\ E _%_, %1 X %1 //!."

Now, both diagrams below are exact 3

’
¥
cd’

ﬂlﬂ o ma

—Q—Zn XZH‘__F,ZK xd

therefore, to show that T ¥ X , it is enough th show that

X 3, :qcp , is an isomorphiam.

Since a q = aq and (o< q, o ql) = Eer pair (q) , there existse
a unique r* such that r'o-(qo = a, and PTOCq = & and,

if a is such that a = a9, and a = ag) then rkp-aﬁ

s0o that r ¥ (XP) = re, = ap = (r'ﬁ)¢-(r'd))(“¢)
which implies, sincs @ ismono that P = r¥F .

(Motice that we have used the fact that @ , having an adjoint, is left
exact , and since both in K and n)&‘ all monos are equalisers,

is also mono preserving, or a mono functor. )

Since r is epi, it is a coequalisger and let r = Coeq((’,,/s,).



Actually , no matter what the domain of {5, and p, is, by 8,3 , there
will be a family of representables and an epimorphism from the coproduct
of this family into this domain , so that if r coequalizes @.md (‘.v,,
it also coequalises the composition of the epi vith each of (%, and (b, .

Therefore we can assume without loss of generality, that

b . r
ZH“__—.-Z —— K is a coequaliger
Akp P
where J is the corresponding indexing set.

diagram,

Since ¢ is full and preserves coproducts, there are (5. @ such that
('J.¢ ﬁoand@.¢ = (¥ .Lotr‘-Cmq((&,(b).

In the diagram below, the dotted arrows stand for maps which will be
gshown to exist and fit so as to make everything commute, A8 befors, we

draw a double diagrsm , the upper part being in ﬁﬂ, the lower in x 3

Z‘;-;,#Z H,, L -5 —.?vZn x2 B, ‘B"'Zn Lyt

Y
5-"-?

2 an _é: 2 Lk - r XeTa X 2a -——-ZA
-t
N Q"o'ff)

Now we have @ ‘bgr'ok = @.'r'o( since (@,’r‘o‘ b =
Box, = B, = ( flra )@ and @ is faitnpul .

Now, o( mono implies that ﬁ,’ AR (f r' ., Therefore there exists a

unique q_l..xq such that ©* = r"7) , and @,(ﬂé)-@_(r‘¢)f _
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because B(r"P) = (o)) = @¢ = (& ™M=
= (/P ) = 6. ).

Therefore there exists a unique K Lwqd euchthat rp = ™P.
Now, since r/o(1)¢) = (r"¢)("[¢) = (r""’)¢ - 2'¢- re
end r epithen P(NP) =¥ .

Since ¥ is mono, then also O is mono and *" @ epi implies that O

is epi, therefore O is iso.(To seo that r"@ is epi we show that

r* (b = Coeql B, » 3¢ ) Which is so because (@&, @) ) = Ker Pair(r*)
waso (B, @) = (@, AlP) = Eorpair (=" ) since

d) preserves left roots.)

Theretore [0 : K, —»Q is an isomorphism and 80, (7¢)-g .

Now, ™ = "7 epl implies 7| epi, and therefore since

qQ = Coeq(“qo, O(ql) then q = Couq('!!ﬂ'qo. N ql)aawell.

Now, since (o(p , & pl) is a kernel pair, it is a congruence relation,
i since oy, = & KPlp, = (NP )HaPlp, = ADNPlaP) -
- (qocqo)cp } end einilarly, <p = (9 x q1)¢" , this |
mouns that ((9& q )P , (7 )@ ) is & congruence relation,

but D full and faitnfull implies that ( 7 & a4 7 & q,) is & congrug
ce relation, therefore, by axiom RS and 10,11, it is the kernel pair

of its cosqualiser, which is q by the above considerations. Therefore,
since both ( N  q, N X g ) and (o q q,) are kernel
paire of q , it mesns that 7] is an isomorphism, And since (7P) =€ ,
§ 1is aleo an isomorphim. Therefors, T ¥ 1@ , and @ is dence.

It has already been shown that inthis case, it ie an isomorphism of catego-

ries, QED,



Chapter III

ISOMORBRPHISMS OF DIAGRAMMATIC CATEGORIES

¥We have just shown, in chapter II , that every right-camplete atomic
regular category is isomorphic to a diagrammatic category . That is,
one can view & right-camplete atomic regular category as a category whose
objects are all set-valued functors from a given small category . Howe-
ver, the representation given in Theoream 13.1 need not be the only pos-
sible one such., Actually, as we shall see, this representation is a
%sarimal" one, in a sense we will explain. This leads us to the quea-
tion : when are two given diagrammatic categories ,J‘mﬂ d °,. isomorw
phic? To answer thie question, we must begin by inveatigating the nature
of functors between diagrammatic categories, which have either adjoint
or coadjoint. Next , we may ask about functors between diagrammatic cate-
gories, which are isomorphisms. The main theorea of the chapter is cal-
led "Morita isomorphism theorem for diagrammatic categories" because it
resembles a theorem of Morita for categories of modules. It gives neces~
sary and sufficient conditions for two diagramétic categories to be isomore
phic, in terms of the mmall domain categories in each one of them., This
theorem is useful to find out , when is umique the representation of a

category as a diagrammatic category.
§ 14 - ADJOINT PUNCTORS BETWEEN DIAGRAMMATIC CATEGORIES

Given any complete category m , and a functor m ""A , this

3
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functor has an adjoint if and only if it is representable 3 If the func-
tor is represented by an object A in 7 , then B = HOMp(a, )
preserves all left roots, and since there are coproducts in 77'- ’ E‘ has
an adjoint, namely the one whose rule is S W'-)%—L for any object
S :lné p i.0., for any set S § if the functor has an adjoint , eva-
luating the adjoint at the object 1 of IJ s Wo get a representor for it.

By M_(_d_,_&l we mean the category whose objects are functors
ﬂ — 6 and which have adjointe , i.e., they are coadjoints to some
functor 3-—»94 . The above establishes informally, a well lmom
equivalence , namely that Coadj (M ,d) % m*.

It is clear that for any two categories of and 3 ’ cosd s ,B) =

“>

= (Ad.‘) (8 ,w))*. » 80 that, by the above, we have also that
ai(sd My e M.

Suposse we now replace ,d by an arbitrary diagrammatic category.
The question is whether we can also get good results for those. André (1)
has investigated the questiom , and he gets very general results concer-
ning adjoint pairs of functors Petween categories of nnctérs . |
However, we find that for our preseﬁt needs, the machinery he develops is
much too complicated, since we only need results where diagremmatic catego-
ries are involved , and we may dispense with generality, Thus, we find
simpler proofs of some of his results and we go further into the applica-
tions. Thus, we want to find “forwulas” for Adj( B M) ena aually,
for Coadj( m, AB) vhere TN ie any casplete category.
The functor ¢ defined in the theorem of characterisation of diagram-

matic categories, proves useful in these considerations. In the proof of
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13.1 , the adjoint YW to (D was constructed , however it waa not
given by a formula. We do this here.
Ve first recall how was (D defined , as the subregular representation of
the right-complete atomic regular category x over the category of atomas,
that is, 1ot Ci*be tbe full subcategory determined by the atoms (or, Zet
@ tve the dusl of the category of atoms) , and let (C* . x
be the inclusion functor, then (D is defined as the composition
* *

X M, g% AL 4@
Hext , we remark that every object T in,Jc is a direct limit over
a small category, ie.e., T = _li_}_( (=, ‘!)—'G"'!""AJG) ’
where the category (H,T) has as objects natural transformatione

9

H‘—r'.! , for some A 6‘0', and the nsps are commtative trianglea
B
B, % H, , and vhere the functor (K, 7) —» C* bas the
]
At rule : H‘—LT AR A
Hy T L,
n‘—’n‘! wvAr> A —pA

*P\!A'

To see this, let us take the following exact diagram ending in T3

»
K _..’..' H X B :: ) _—'* T
P % 4 AZr A 7, %’ A
vhere P is the epimorphism which exists by 8.3 , and where (x ppo,kppl)

is the kemel pairof p . We will write

T % 2%

K
AT 4 / p
to mean that the above diagram is exact , although what is factored out

frontheooproduct%_l‘ toget ? fsmot K iteelf but the congrues-

ce relation (k Po klpl).
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Put also lim ((E, T) . C* Jc‘) is gotten by first taking the
coproduct %H X and then factoring out relations which are given by
the small category (H L T) , and which are precisely -those we have irdi-
cated by K .
By the way ‘q}' was constructed , it is clear that its value at T nd‘c
is given by TY « lia ((5,7) —» C* -—Dx ) . Por this,
we recall that if r:%‘/xp then np:én /x
and morecver that Kp and Iq vwere isomorphic , and therefore, the
relations to be factored out are the same., This adjoint happened to be
an isomorphism because of axiom RS , however , we can use thebconstruc—
tion for a more gener.al case where the categories involved need not be
regular, though they have to be complete, or, at least , right-complete.

Let now m be any complete category o We imitate the above situa~
tion, although m need pot te regular or have an adequate subcategory
which is small either, We keep in mind the following coomutative trian-
gles : x 2. Jc 4C Y. ¥

é\c* /z “\ G*/(‘
Notice that the commutativity of the triangle to the right says that
for every C&'Cl . C = lil ((m, Ec)-*c*-ii"x ).
eorem 14,1 Por any m complete, and [b small ,
w48, M) = me*

Proof:

Let !:£ ’M. and define G, tb*-—ym as the compo=-

)
sition of the regular representation functor of B wita T . This



can always be done whether or not T has coadjoint , and we say that
we are "restricting along Yoneda™ .

Let G 1+ B* —» M , and define 7, : B8 o M vy 1etting
its; value at an object P of JB, be

P, - ua (@ »-+-8"SN).

Then, the following triangles are comsutative 3
m - 4® L8 o M
N AP

The one on the left is commutative by the definition of G,r and the one

on the right since : B (HT;) = Hy T, = lis ((n,nB)_,,n"E.,.m) .,
¥e now have to show that Ty : 8 P—pM , is also an object in
1a3( 8B, M) , 1.e., that it has a coadjoint T . Define ™
as follows : for X dn M , let Xre: B> , ve given by
B(X™¥) = HOM,y(BG , X) for any BE {B) . It is clear that it is
a functor when extended to the maps and that it is,adjoint to T .
To show the isomorphism of the theorem we have to prove that for every
® in 233,38, M) , %, ¥ T , and that for every
¢: BEsM , tuat Gy 2 6.
Given any BE|BI, (B) g, = (B) BT, = H; T, =
G e

- 1__13((!‘!3)-.8*5-'»7!) ¥86; mdgvenay P insd,
ne, - up (BN—B* ST M ) 3 ua (BB EJ2IM)
= M, QD,

Joroliary 14,2 Por any M cosplete, and B meall ,

Coad)( M , SB) % m+®

Proofs



coats( M +ed® = (4238, M = (MB*)= < M*C. am.
Ve vould Like to say, as in the sase of 2 , tnat Coad3( 7 ,of®)
is given by the "representable" functors.

To eay that a functor ”k I’J is representable means that there exists
anobject A dn T suchtat T ¥ E = By (A, ) o

In the category of categories (Lawvere [17] ), the category A is a gene-
rator and the functors 41. — /”’. are in one~to-one correspondence
with the objects of ‘7”, « This allows us to say, equivalently, that

T 3a representable iff T is naturally equivalent with the functor 3

Aot AT omrm fov. o

vhere i -&-"-/'n is the functor whose value at the only object of 11.
is the object A inll, so that T is represented by 4 .
This definition has the advantage that it can easily be generalized :
we say now that a fumctor T M —» J® 15 "representadle® iff
there exists IB* A, M such that
Bam 2xm _oprom
is naturally equivalent with ™ s IBX M —> of , vhere
™  gorresponds to T by exponential adjointness , i.e., such that
™ =« (B X T)ev . Novwe have automatically :
Theorem 14 , 3 Por any ‘Yl complete, B mmall , the functor
® 3 M —w» 8B bas an sdjoint 1ff it is "representable” .
Proofs
By the definition of “representable” . QED.
Theoram 14,1 has. several mﬁl Mcnces , first of all, it gives

back the previous results stated for ‘3 . This is so, since taking



B ¥ 4 , ve have , by 14,1 , that
My &, M) & s L4, M) s M md M,
1¢ M 1o taken to be also s diagrammatic category , then a useful
corollary to 14,1 is the following s
Corsilary 14,4 (a) Irf B and € are any two mmall categories,
15 (oS8 ,EC) ¥ FT*C s coaas(f8 ,5G) -}m
(b) ir A is any small category then,
ai A -, (A, G 2 LKA
conti( oA ) =y, costs (A, IH x S
(¢) irf 1 is any discrete category, iee., Just
aset, then MI(JE ) #fTT a2 coaas( 4T ) -5
| (@ m3(d) =d  omd coats (of ) =S¥

Proof :
s 30,40 « QOF o Jeha , JOxT,
con (8,40 5 (3 SC, LB (I -B)* ,J'm"*
i SR 2wy JA, SR w JN4,
contf A ) & (sl odA e w (AN LN
sy 4T ) ¢ ST T Jtnr.
oy ( T ¥ (as(dE, S 2 (S7De T
il ) 2 a8ty 2 d 1 comy () @ (ma(d))- z3¥.
- |

Whea I is discrete, the statesent AdJ(edT) ¥ 2§ 7" has an
obvious interpretation : there is a one-to~cne correspondence between
endomorphisms of a vector space and matrices . This ie 80 if we "see"

functors I—rg‘s , as vectors with coordinates in the set 1 , such



that the i-th coordinate of X is the value at & of X , which we may
denote by 11 rather that iX to suggest the given interpretation. 4
functor IX I —» d , can be seen as a matrix whose (i,j)~th coordina-
te be (3,j)A and denoted Aﬁ . Then, the correspondence is given as
in 14,1 , i.0., given B 1 dx__.,;gf'l, the matrix A correspon=
ding to the endomorphiem E is given by the commutativity of the triangle:

AI —E J;:

<

and therefore, 4, = (3 (nj) - J (ai E) . If B is the identity
functor, then the corresponding mabrix is diagonal , with Aij « 1 iff
1= ) and Ay = O iff 4 & 3 . Conversely, given a matrix
A 1 IxX —-,d , &he corresponding endamorphism of JI is given by:
gor X in2J%, the valusof 4 at X 1sdemoted X 3k A end

it is an ohject of ,JI defined, for i € I Dby

(X % 1), = 1 (X 3%A) -Z‘: Ay -2; I X Ay o

This suggests a matrix meltiplication as well, given by the usual
composition of functors, when defined,and the correspondence between

1
endomorphisas of,J and I X I matrices . That is, let

J TxK /J KxT 9 d IxY

. X B Ll

be the matrix multiplication given by the corresponce and the usual
camposition of adjoint functore to yield edjoint functors , so that the
coadjoint of the composition of two functors which have coadjoints is

the composition of the coadjoints in inverse order i

Ay ST %) x Adj (¥ 87 > ALS)



After the above diacus_sion, it is clear how the matrix sultiplication is
the usual one , i.ee, for A insd ™ ana B ind™’, AMB isan
object mJn’ defined for (i,3)¢ I XI by,
ax)y - Z (X ny)-
This can be done also in the non-discsete case : if P is an object in
;3‘ and G is an object mgf", then P ¥ G is an object u,&*

such that its vakue at any object A of A is:

1) ¢ -[ésr X @A), (1, (w0 3 @0n , 8

vhere XCBP; B'_PB ; x(bF) € BF and B® N Br

g€ (B,A)G so that g((v,a)G) € (B*,a)c .

This can be seen as follows:

WrEkea- oy (6B "5 40 =

= m((n,r)_,B*G' dA AL 4 )«

¥ s (8,7 _, B = oW & ) dnere ev, is "evaluation at A" .

Bnt' 13'((3,]‘) — R G'W J ) :‘Z_(B.l)cl /I where

the following is an exact diagrams

r = 2 (B X Z(a,n)c—_:z(n,a)c KA
P BF BF ®F

The relations by whith the coproduct factors ocut are forced by the con-

ditions ¢ B* _b....- B induces Hy —wi, commutative ,
S o

We can now express‘matrix multiplications
,JA*u B pE"C )mec.
by the following 3



given X :I.n,d"‘and N m-J’w. M ¥ N is an object in

z’“‘cmwh that its value at an object (4,0) of A¥x @ is

(4,C) Nk N [%(A'B)" * (B,CNY (h, g(b,C)N ) =(n(a,b)n,g)

where biB'—» B, h € (4,B')M so that h(a,b)M € (A,B)M and
g € (B,C)F  so that g(b,C)N € (B',C)M .
The above is so because :
(, N

(a,0) WKE = 1m (@ 4, W — B —3).

In the correspondence  Adj( JA JA ) & ,J‘A. , the identity
functor corresponds to the HOM —“matriz" , i.e., to the bifunctor

: LA >80 that

M 31 A%B sl defines an equivalence between JJA ana 8 B , iff
there exists N 3 B&A""A such that R MK ¥ ¥ MA-and

N3N = HMmp .

§ 15 - ON THE DIFFERENT REPRESENTATICNS OF A CATEGORY AS 4

DIAGRAMMATIC CATEGORY

If no category could be represented in more than one way as a diagram-
satie category, that would mean that a diagramatic category is complete-
ly determined by the.douin category for the set-valued functors. In
other words : it would be true that given any two diagrammatic categories '
which were :I.iolorph:l.c . AA - 4 AB , then also the domain categories

A ana [P would be isomorphic categories. Howsver, this is mot so,

as we shall see, On the other hand, and as in the cass of complete atomic
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Boolean algebras, complete atomic regular categories are completely
determined by the atoms in them . This is intuitively sx , and can be
ghown as follows :
Proposition 15,1 Let x ’ x ,be complete atomic regular categories
and ¢ s x """""x ! an isomorphimm of categories, Then, ¢ pre—-
serves the atoms and the corresponding full subcategories of x and
x‘ determined by the atoms in each one, are isomorphic categories
under the restriction of ¢ .
Proof:
Let A be an atom in ¥ . Let us shov that A 1 an atom in J'.
Let (£9,8') be a jointly epi pair of maps in & with codomain 2% o
Then, since ¢ is full and dense, there isa 2 :l.n-% pand £, g
vith codomain 2 such that Z ¥ 3' , £ = 1' , g = &'s Morep
ver, (f,g) 4is jointly epi in x : givem r, 8, such that fr = fs
and & = g8 , then almo, (fP)r@) = (£P)egf) and (e )= ) =
= (g@) (s @), oo that 1f (r @) is called r* and (e ), =,
we have f£'»' = f's' and g'r' = g's', But them r* = 8* which
implies since  is faithful, that r = & . So, given A( Lz
since ¢ is dense, there exists Z such that Z¢ﬁ' Zt and since
im full , there exists A-eZ such that s@ = s' . Since A isan
atoninx, there oxists x such that xf = s , for exsmple (it
could factor trough § instesd, or as well) . Ten (x)r* = (x@) ()
« (xt)p = sd = 3. The second property of being an atom is
similarly proven to be tm of 1¢ + Since ¢ is one-to-one on objects,

there is a one-to=cne correspondence between the two classes (sets) of



atows , and since (P is dense, full and faithful, the two emall categories
determined by the atoms in each category, are isomorphic categories under
@ ..

Any diagrammatic category is complete atomic regular, since the atoms
contain as a subclass the representable functors, which generate the cate-
20ry. ‘The question that comes up naturally, is whether thei.representable
functors are all the atoms, in an arbitrary diagrammatic category . We
already Emow that any retract of an aton_is again an atom , in any regular
category whatsoever. Are all retracts of representables again representa-
bles? Another question is : are there any other atoms which are not re-
tracts of any representable ? We answer the last question first:

Theorem 15,2 In any diagrammatic catego:yg!c, the atoms are

precisely the retracts of the representables.

Proof:
Let T be an atom in J c. Since the family of representables is gene-
rating, there exists a set J and a family of representables indeked by
J and an epimorphiem p from the coproduct of this family into T,
Z, g _P % , Since T ie an atom, it is projective, therefore
there existe a map T .—"p%n‘ guch that bp = T, But T
being an atom is also abstractly umary, therefore there exists I‘
and  T_X_ ¥ ouch that, it J is the injection corresponding to
F* trough which B factors, h = kj . Pinally , the following
c_utatife diagram says that T is a retract of ll‘ s
rat
ol A

QED.
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Ve nov plan to answer the question whether all retracts of representa-
bles are or not always representables . If the answer were to be affirma-
tive , then we would have ; after 15.2, that the representables would be
ali the atoms in any diagrammatic category ., However, it is not so in
general, and we want to give a sufficient condition for this to happen.

Ve first need a definition taken from Preyd ([8]) : an idempotent
(vap) i= amap e such that es = e . Inacatogo:yx,itis
seid that idempotents split iff for every idempotent A —wA , there
oxiste an object B and maps A eB, Bipd  such that
A2 B2 4 o 42,2 ama B 2o1.%3 - B2 wB.
Freyd defines amenable categories as categories which are additive, have
finite coproducte and where all idempotents split + Then a necessary
and sufficient condition for a category of additive functors with domainm
category d and codomain category g— (the category of abelian groups),
to have the property that every abstractly finite projective object be
representable is that the category d be amenable,

¥We want to prove an analogous theorem to that of Freyd , for diagram-
matic categories. The existence of coproducts in the domain category is
not needed since the atoms are more than abatractly finite : they are
abstractly wnary as well. There it is used that <@f, Z 2 ie abelisn,
in the fact that there are wnigue factorisatioms into epis followed by
monos. DBut this is true of any diagrammatic category, without being
abelian, Therefore, the proof is quite similar, only lees is needed

here 3

Eroposition 15,3 If in C , 811 idempotents split, then, in



AXG, every atom is representable.

g Proof:

Let T be an atom in "G. By 15,2, T is a retract of a.;.one lA R
j.e., there exists amap T _f.-.-ll‘ and a map E"._B_;..T such that

rse = T . But them, sr is an idempotent since (sx)(exr) = s(rs)r=
= or . Also , since the regular representation of C* is full and
l‘_.‘r—an-l!A , there exists x A~—wA ssuch that sr = Ix .

Now, EE = B = B =« B = X , end since  is faithful,

Ix = x,or x isan idempotent in @, . Therefore, it splits by

means of maps A e ,1'_.‘;,.1 such that L_i..L'_b..A = X

and A’ D oA —Spd' = A'} eo, P s . - =

= n‘__.l.:.-l“_g:.pi.' . Now, s = T implies that r ie
momo and & is epi ; therefore E= is factored into an epi followed
by a mono , by means of s and T . But H‘. is also a retract of HJl
so that Hb is epi and ©® » HONO o ain‘co such factorizations are
unigue in any diagrammatic category, * & B" e QED.

It ie an exercise in Preyd [8] , that any small category can be embed-
ded into another in which idempotents split, and moreover, it can ¥e done
in a minimal universal way. We shall define hare_ also the closure under
the splitting of the jdempotents of any small category , snd alyhough our
definition looks different from that of !'royd's. , it tums out that they
are oti;;ivalent. Ve prefer our definition because it is easier to draw
explanatory diagrams, however dissdvantageous is the fact that it resem—
bles a subcategory of a functor category though it is not.

Given any ssall category . (L‘. , We define its idempotents-splitting



closure C as follows: let the objects of Q',‘. be the idempotents

of € ,i.e., A-2+wa ieanocbject in § iff e is an idempo-
1

tent 3 ) . Civen any two objects A ——eA , and A' S A' 4in

([:, , a map from the first to the second is a commutative diagram :
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i.e., a commutative square with a builiwin diagonal , which reduces to
the following equations : ef = f = fe' , We will denote this map
by (e,f,e') . The condition for £ 3 A—=A' in Preyd’s definition ,
reads as follows : efe' = f , We show that both are equivalent .
If efe' = £ then eof = eefe' = eofe' = ¢ and
fo' = efe'e' = efe' = f o Conversely, if of = f = fe' then,
ofe' = fe'e' = feof y f .
Composition of maps (e,f,e')(e',g,e") = {(e,fg,e") because, if f
is such that of = f = fe' and g is such that e'g = g =
= go" then, e(fg) = (of)g = (fot)g = f(e'g) = f(ge") =
= (tg)e" , 8o that e(fg) = (of)g = fg = f(ge") = (fgle” .
The identity map of A—?--.g is (e,0,0) since eo = e = eo .,
On the other hand, if we had defined a subcategory of a functor category,
the identity map of A_%o4  would have to be A_wA , however
the condition imposed by the presence of the diagemal prevents this from
being so, since e # A and e £ A,

i

We now define the canonical funmctor c s (O , 38 follows:

given A€ ||, let a1 = (A,4,4) , the identity map of 1....&..1 ’



where L_ApA is certainly an idempotent in C. Let 4 _.E.;-l' be

any map in C s them fi = (a, £, A') . This defines obviously a
farctor We now show that idempotents in G , which are now objects in
@ » when mapped by 1 into (—f', , they become maps and only the
idempotents which are givo> -, - i . .+ s.iaiivy maps in a .

That they split in G s can be seen as follows: 1let A-f-p-l be

an idempotent in €, . Its image under i is the map (4,e,4) , i.e.,

the commutative diagram

‘.-——-——’A

TN

‘.———-"

The eplitting is given as follows s take the object A———pAd in
C. . and the maps given by the commutative diagrame:

A2 A—2 i

) 1\ le and 1\\1

A-—e—.l .
and then we verify that (A,e,e)(e,e,a) = (4, eo, i) = (A,e,4) and
(e,0,4)(a,0,8) = (e,ee,e) = (e,e,0) , therefore we have the required
splitting.

The canonical functor c. —"'P C induces a functor J ...._p- JC

and we want to show that the latter is an iscmorphisa of categories.
That the above construction gives the winimal category in which { 1s
anbedded and it is such that idempotents of C. split in a s is clear,

since the objects of the new category are idempotents of the first, and

the maps come from the category G as well.



Theorem 15,4 For any small G , and its idempotent-splitting closure

C, , the canonical functor -—L-C inducee an isomorphiam

S 30 _ = 4G,
Proof:
It is known (Lawvere [14]) )} that any functor between diagrammatic cate-
gories which is induce by a functor between the domain categories, has
both an adjoint and a coadjoint. We use the formulas of §14 to calculate
the sdjoint of af ' and then we show that it is actually an inverse.
Given ? in adC , the value of p§* at P is defined to be
r ,4;' = iPF (composition) , Let ,3‘ be the adjoint to 2d C , and
T any object of ;Jc o Then !‘3"' ia an object in Ja, vhose value
at an object A S ed of a , or equivalently an identity map
(e,0,e) of a , is given by

A, -
(e,0,0) Tolt = lig ((1,(s,0,0))= @ —=od ) ¥

o [Z.nml((v.n,u) , (e,0,8)) X m]
AdC! 7/ (bt, x*(aT)) = (b'(ai),x*)

where a: A" cpd' , x" € AT so that x"(a?) € A'T and

b* 3 (L‘,A' ,A')——p(o,e,o) so that b*(ai) 3 (1",1",1")——’ (o,e,e).
However , we can simplify these relations considerably if we notice that
the only (A',A',A') for which there is a map b* 3 (1',4',4') —o=(0,0,0)

is (A,A,A) since the following is a commutative diagraa :

LA
ol\lo
Y |

and if f isalsosuch that A'f = £ = fo = fA then £ = A wsince
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identity maps are unique., Also, the only A—.a..-A for which

(A,a,4)(A,e,8) = (A,0,0) is A_-2p A , 80 that we finally have :

(e,0,0) '!3'.' . {(A,e,e)} X AT /

" = x"(eT) for every x"€ AT,
i.e.’ QT = ﬂ .

Ve now compute both compositions ,Si J" » 3" ,8", to see that they are

the corresponding identities.

For sny identity map (e,e,e) in € , by the above , if P is in dc‘
then (e,e,0) (r,é‘a ) = [{(L,e,e)} X A (r,& )/ ‘5 -
2 |(as)r @ o(P it ) = 4
[ ]/ (et)F = A

-~

2 (A,4,A)P / and since (A,e,e) : (A,A,A)—»(e,e,0)
Aye,0)P = A

tl;.'l.a says that (A,A,A)F = (e,e,0)F , Mnally, we have

(e,e,0) (2 °8Y) = (a,8,0)P , d.0.,
° J b / (4,4,A)F = (eo,0,e)F °
(e,e,o) (’dg J‘) = (GthQ)r .

On the other hand, for any T m,&".m ae €,
o A A,
1(!3",3‘) - (n)('r,‘g") - (;,1,1)(!,.6‘) = AT, QD.,

With this theorem it is now clear that there may be diagrammatic
categories which are isomorphic , and such that they have non isomorphic
domain categories . It is enough to give an example of a small category
which is not isomorphic to its own idempotent-splitting closure. Take,
for example, a category with exactly tiwo mape, one identily map , |
and another nomwidentity map A .._.—'-.l vhich is sdempotent ,
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In any diagrammatic category, the atoms are precisely the retracte of
the representables, by 15.2 . Therefore, the full subcategory generated
by the atoms in any diagrammat:@c category is precisely the full subcate-
gory generated by the representables and their retrac#s. Moreover, we
have the following:

Theoream 15,5 In any diagrammatic category, the full subcategory

generated by all the representables and their retracts is isomorphic

to the idempotent-splitting closure of the full subcategory generated

by the representables—
Proof:
The atoms in dcm all the retracts of the representable functors,
These retracts give rise to idempotents in the full subcategory of
‘generated by the representables, which split in the corresponding clo-
sure, By unique factorisations of maps into epis followed by monos, it
is eashly seen that the splitting of idempotents arising from retracts
are given by the retractions themselves, So, every atom in d Cc is an
object in the closure under the splitting of idempotents of the full sub-
category of dc generated by the representables., Conversely, for any
idempotent EA _® o E'  in the closure of the subcategory of repre-
sentables, tuo splitting is given by maps HE Tt , T 2. H',

guch that r&a = e and ? ’-:llr-'l' m T 80 that T is a retract

of l‘ and therefore, an atom, QED.

Theorem 15,6 (Morita isomorphiem theorem for diagremmatic catego-

ries) JFor sny two small categories A anda B ,

S22 3% e A DB .
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Proof:

Asgpume there is an isomorphism of categories ¢ : pJA__g...Ar B.

Then, by 15.1 , the restriction of ¢ to the full subcategory of JA
generated by the atoms gives an isomorphiem onto the full aul?categoxy
generated by she atoms in JB. By 15.5, this implies that idempotente-
pplitting closures of the full subcategories generated by represeatables
in each category, are isomorphic categories. But , since in each diagram
matic category, the small domain category for the functors and the full
subcategory generated by the rejiresentable functors are isomorphic, alao

their idempotents-splitting closuréa are isomorphic, Therefore,

Az B,
Let x 4 E + Then Azﬂ di, and by 15,4, we have that
,JAQ’ JI ‘-'Jag AB . QB.

We now inveatigate the question of the uniqueness of 1;he representa-
tion of a given category (complete atomic regular) as a diagrsmmatic
category. The representation given in 13.1 is, in a sense, the maximal
one 1 there are at least as many others as generating subsets of the
get of atoms in the category., Thie is so, since the category of atoms,
besides being its own closure under splitting of idempotents, is the clo-
pure, as well, of any ﬁull. subcategory generated by a proper subset of
the set of atoms which is also gmemting for the category. 7This can
be shown as follows:

Proposition 15,7 Let x complete regular atomic, Let I be the
get of ite atome, C the full subcategory generated by the objects in

I. Let I'S I be any subset which is also generating (it need not
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be a proper subset) for I . Let @' be the full subcategory of X
generated by the objects in I* . Then, E' x @ . |
Proof:

Since there is an inclusion of sets I'C.I , it induces an inclusion
tunctor ¥ t...pC which in turn induces a‘ -—-D-E < E' —C
since @7 = @ . Ve now define & funotor in the opposite direc-
tion. 1If a family of objects is generating in a category, then every
atom is a retract of at least one object in the family . This is so
because, if A dis an atas and the family { A, } Whose members are
atoms , 18 generating, there exisis a set J and an epimorphism
%‘i —-p-+ A ., However, A being projective implies that there
exists a map 1_’...;11 guch that rp = A . But A Deing an atem
is also abstractly unary, and therefore there exists a map 8 and an
atom AY such that if 4 3 ia the injeqtiom corresponding to A, ,

3

r = l:l.j. Therefore, there exists an atom “3 and maps 1._5-1:'

and ;j_’j’;ni_‘_’_,a euch that n___’,;n:_iqp_,a - A
So, 4 s a retract of A, . Therefore , since (1 jp). is an idempo-
tent in €' whose splitting ie given by A , then A mWust be an ob-
ject in the closure of C', shat is, in €. Tis is a functor, and
both compositions give the identity. QED .

The above proposition suggests that if the mmall category is already
closed under splitting idempotents, and no subfemily of its set of ob=
jects is also generating, then, the corresponding diagrammatic categury
can be represented in no other way as a diagrammatic category, An exsm-

ple which is almost trivial of such categories is p_rov:l.ded by the mmall
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diascrete categories . Indeed, for them:

Proposition 15,8 Let x be complete regular atomic and assume that

the full subcategory generated by the atoms is discrete, i.e., a set I .

Then, x o )JI is the only representation of 5'5 as a diagramma~

tic category.
Proof:
If the full subcategory of x generated by the atoms in .T s is discrete,
no proper subset of I could be a generating family for x $ Assume
on the contrary, that there exists I' S I and I' ¢ I such that
the pbjécta in I' are a generating set of objects for X. e,
by the proof of 15,7 , if A is an atom and an element of I which is
not an elenent. of I', A 1s a retract of an object B of I' , since
I' is generating., That means that there are maps A—»B and B-®A
where both A and B are objects of 1 , However, I was discrete,
therefore there are no upa in 1, Contradiction., This means that no
proper subset of I 1s generating and so, I is mot the closure of any
proper subset. Assume there is a small category @ s Tor which
18 * - :3 (I:‘.. This implies, by Morita isomorphism theorem, that

@ o -]:- ¥ X , and therefore, discrete . Therefore, also
is discrete, and so, E 4 G. Therefore, C = I ., QEDo

Discrete amall categories are trivial exsmples of small categories
which determine uniquely their cofmuponding diagrammatic categories.
There are less trivial exsmples. Actually, for any & such that mo
proper msubset of lGl generates the category, this is true as well,

And for this, it is too much to ask that there be no maps in . .
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It ie more than enough that there be no idempotents . In fact, this con-
dition happens to be necessary as well. We now provet

Theorem 15,9 Let x be any complete atomic regular category.

Them , there is only one representation of x as a diagrammatic cate—

goty (up to isomorphism) iff the full subcategory of X generated

by the atoms, containe no idempotents, except the identity maps.
Proof:
Assume that A S s A is an idempotent which is not an identity map,
in C ¢ the full subcategory of generated by the atoms. Since
C is its own idempotent-splitting closure , there is an qb:ject B
andmaps A5 B , BSea in@ ,such that A2,B 554 = o
and B-T3A%.B = B. Then , the family of all the atoms in J
without the atom B is also é;enenti.ng. T see this, let £ and g
be any pair of maps in x with common domain and codomain , and such
that f |‘ § - Then, 1if there exists a map 3—:.1 such that
B. X5, x5,y 4 B EXE,Y ,themsp A B loX is
also such that A5, X . To1 4 4 .2, x 8,7 , since s 1s
epi. Let @' be the full subcategory of K generated by all the atoms
with the exception of B . By 15.7 E‘ ¥ G » and by 15;4 ’
-dc. g,‘gcg JC. Since C",VC , thia gives two
different representations of x as a diagrammatic category, since

3( = JC ‘!Jc: So, Hﬂnrepreoentationofxu Jcis

wnique (up to isomorphisa), there are no idempotents in (ﬂ .

The converse of the theorem is immediate : if (U is the full sub-

category of the atoms and contains no idempotents, them, it is minimal
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generating (no proper subset of its set of objects is generating) and its
own closure. Assume that there exists A s such that Jc‘ o ‘!A .
By 15.6, A 2 C =2 @€ . But this means that #A isa
subcategory of C whose closure is G » Moreover, .A is isomor-
phic to a family of representable functors and all maps between, which is
a generating family for JA. This contradicts the above. Therefore,

the representation is unique up to isomorphism. QED .

As examples of small categories which contain no idempotents other
than identity maps and which play important roles in the theory of dia-
grammatic categories and in the category of categories, are ﬁ » 2 ’
% ana 4 .

We remark that in A s 1 is a generator and an atom, therefore
the only atom, because any other atom would have to be a retract of 1
(eince {1} is generating) and therefore, isomorphic (equal, by Con-
venience amhom) to 1 . Therefore, another characterisation of A(f
is 3 d is the only (up to isomorphism) right-camplete atomic regular
category in which 1 is an atom and a generator (or else, i+h1ch ; |
is the only atoam) .

Vith this, we end the main part of our paper., In the next and last
chapter, we deal with applications to the class of diagrammatic catego-
ries, of the theory of tripl?a and of triplable categories. Chapter IV

is somewhat independent of the first three chapters,



Chapter IV
ALGEBRAIC ASPECTS OF DIAGRAMMATIC

CATEGORIES

§ 16 -~ ADJOINT AND COADJOINT TRIPLES AND COTRIPLES

In this section we review briefly the notions of triple and cotriple
in categories, along with some well known facts about them. Further infor-
mation can be found in Eilenberg & Moore [5] .

A iriple (1,7,,1.) in a category X ie an endofunctor T of X,

together with two natural transformations
1 -—j—' T ‘—L !2

such that the following diagrams are commutative:
Tz
’V N‘;
r L T
"1\. /f:

v’ * B - T

p ~

1 1is called the unit of the triple and ,b its sultiplication, The

three equations exxpressed by the commutativity of the diagrams above
say just that Y iz & two-sided unit for the multiplication and that
the latter is associative.

Dually, & sotriple ( @ ,¥,V ) in a category K 1= an endofunctor

of x » together with two natural transformations
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l Y __ ¢ ) 2

—-'G

such that the following diagrams are commutative t

02 G 0 - Gz
/ \*’j
¢ —2 G ___ ¢ J Gy
\ 24 #2 ,

Y is calied the counit of the cotriple and ¥ its comultiplication ,
and the three equations expressed by the commutativity of the diagrams
say that Y is a two-sided counit for the cotriple and that the latter
is asqociative.

The following is a more appropiate definition of adjointness for the

F

above context : given _2’ ,-____'v" 3/ , P 1is said to be adjoint to

U (and U coadjoint to F) iff there are natural tranaformations
1x—J—» 0 and w —Y
such that the following equations hold:
r F ,rr ¥y -1, am
v M1 ,umw ¥ u o= 1.
Adjoint pairs of functors give rise to triples in a canonical way, i.e.,
it P isadjoint to U with 9, ¥, as above, then (F9 , m, PYU)
is a triple structure on ¥ .
But conversely, triples give rise $o adjoint pairs of fumctors in a mini-
mal and a maximal way (the canonical rmctorfm-ua(x) to Tripl¥)
has adjoint and coad;)oint). Only maximal resolutions will interest us

here . lormxkthatif}‘# J then the maximal resolutions are



given by the equational categories (Linton [19) ), which generalise

Lawvere's algebraic categories (Lawvere £14), [15) ) by allowing infi-

nitary operations as well.

A maximal resolution of a given triple T on x is given by a categoTy
X7 said to be the category of T-algebras, and by a pair of adjoint

functors !'T and U! vhose camposition is T , i,e., such that

the following diagram is commmtative, with !‘,r adjoint to “'.I? 3

xT
F U,

Moreover, it is a maximal resolution of T in the sense that if J/‘ is

F y
any other category for which there are functors .z' — and
YV YoX cuchtiat W = T and P isaijointto U , them
T
there oxists a wnique functor H @ .,V..-._}F,mh that the diagraa

below is commutative :

4
T

/ Yr
.2/' T\

) T
The objects of X' can be described as follows : they are pairs (x.c.p)

vbere X isin § , eand X —Fm X 15 amapin F , satiefying the

equations expressed by the comutativity of the diagrams below:

| yn\t X7 $T - .

X , S | F‘J ?
% /‘I"

m Ir ¥ -
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Amap of Tealgebras (X, \p) —»(2°, ') is given by any map

X —5-'-1-1' guch that the following diagram comutes:
r T . xr
e
x —§ . x

'ﬁzey generalise the usual categorical notiom of algebra , as e.g., in
Mac Lane [21] & [22] .
The adjoint pair which gives the maximal resolution is defined by #

1e, - (@, 192 "% xT) , for X an object in ¥ and
obvious definition for the naps X —e X' of X 3

x ,¢) 85, = X end it is clear that Py is adjoint
to U,
The dusl constructions for coadjoint pairs of functors and cotriples can
now easily be done, a maximal resolution is given by a category
whose objects are called co-algebras , G-coalgebras, if G is the given
cotriple in K .

Vo ssy that a triple is a cosijoint triple in A if, as an endofunc-

tor has an adjoint, Dually we define adjoint triples on a category .
One can also define coadjoint cotriples and adjoint cotriples , and
a1l these motions are related. If T 4s a triple in & , and it has
a coadjoint G , then G has canonically a cotriple structure ., Moreo-
ver, the maximal resolutions for both T and G are isomorphic catego-
ries. This can be seen roughly as follows :
Since T has a triple structure, thers are ", /"-, satiafying the
required equations . And since T is adjoint to G , there are also

natural transformations :l..xviv G and GT —t.yr, satiafying the
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congjitions for T to be adjoint to G . A cotriple structure for G

can be given as follows : let 1‘_""' Lc_¥ ,.GZ be defined by

means of the two commutative diagrams below :

6 —¥ o1 H J — t?

e;l | L 96"
Gy & e b

; E N

The category of G-coalgebras , Gx , has as objects , pairs (Y, ¢)

with Y an object in .X and ILIG a map in x » satisfying
the three equations expressed by peans of the following commutative dia-
grams:

ym% Y a » 16

Y AJ > Y ¢l l 2,
}\"YG/?Y( TG i o 1GG

With the usual definition of adjoint functors (involving HOM-sets) ome can

inmediately see that _)'F T a %\ , since for each object I of x »
HM( X, X) ¥ HOM( X, X6) , and the commutativity of the diagrams
follow from the way the cotriple structure for G was defined.

similarly, given a cotriple G which has an adjoint T , T can be
given canonically a triple structure. The compositions of both procedures
give :he identities . On the other hand, if T 4is a triple on X which
has an adjoint F , then P has a cotriple structure and a cotriple with
coadjoint inducés a triple structure on the coadjoint. we can resume the

above considerations as follows:
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4dj triples ( ¥~ ) = ( Coadj Cotriples (') )* e

43§ Cotriples ( X ) = ( Coadjoint Tripies (Xn*.
T
§ 17 - THE EQUATIONAL CLOSURE OF d over 11

The category of sets and mappings bas the property that any emdofunc-
tor which has an adjoint is representable. Conversely, any representable
endofunctor EI p for Iél,(”, has an adjoint , namely the functor
"croseing with I", ( )} X I . Tis is so because :Lnﬁ. “Homing"
and “Exponentiating” coincide so that HGM(I, ) is coadjoint to ( )X I.
If we make the collection of coadjoint endofunctors of ,d into a cate-
gory, with the usual composition of functors (composition of functors
with adjoint i= again a functor with adjoint) and defibe a functor from

the category Coad j{ J ) to J » using the remarks made above we have

coad:(,d ) :5*

since exponentiation (in this sase HM( , )) is contravariant on the
exponent ( on the first variable)),

The question is now to find out which coadjoint endofunctors of K{
are also triples on d . By §16 , the answer to this problem will
be equivalent to the answer to the question : which adjoint endofumc-
tors of J have also a cotriple structure?

All adjoint emdofunctors of J areof the form T » ( )X1I,
for some 1€ I.Jl » 'The following is a cotriple utrﬁctnre en any such
T mdnﬁllshwtﬁatitistheonlym.itmhavo:

let 1 ..l".!. Ix1I _".x........ IXI X1 be given, for esach object



X of x s by (x,i)‘l& « x and (x,1) l’x = (x,i,i) for
(x,4) € XXI . In other words, U is the projection onto X , and

J}-is the map induced by the diagonal map I —» I X1 . That this
is the only cotriple structure for }X I can be seen by the
fact that if V', JJ' gave another , then ‘Q"' and &' wowld have

to satisfy a commutative diagram so :

IXIXI
)/ w:
X1 XxL X %I

which means that s if
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(1'1) ‘&‘ = (y’d!k) then ((Y!J)%' lk) = (I,i) = {(Y’J) ok)'{‘r

Merefore, i = k. Also, ((y,3),1)Ug = (x1) and

(y,3) lﬂi w x 80 that (y,5) = (x,33 -ud therefore y = x
and J = 1, so that (x,i.)l)i = (x,i,i) and (x,i)'w'z’ - X,
The exiastence and uniqueness of the cotriple structure given by Y ,17
tor ( )XI , implies , by §16, that G = ( ) has slways a triple
structure, and that moreover, it is ubique. Thie is so for any set I .
%o calculate the triple structure an ( )1 we have firat to calcula-
te the natumsl transformations H_"':_,m , GT _9_,}8
mchnke"r - (- )XI adjoint to G = ) . It is clear
that for each X = X, B 1 I —> (x x 1)1 is defined,

for x € X and 1 € I by i(xux).(i,:l) and that



o II X I ——» X 4is just the evaluation map , i.e., for £ € II

and 1€I, (f,i)e; = 1)t .

To define the induced triple structure on G , we have to use a procedure

dual to the one given in § 16 , since there it was a triple structure

inducing a cotriple structure on the coadjoint of the triple. 3o, define
1 _J_’.G ‘_#_-Ga

at each X of x , by means of the commutativity of the two diagrams

below :
Y Px £
de
((x‘) x ot xn)?
\ A
Y
(xxl) & ((_xl)lx 1x1)!
so that ; forany x€ X and 1€1,
i( x 1":) = i( Ihx !&) - (x,i)wx = X and
e fg) = ale h(lI)I ‘)(11)1 X o) =
= (£,1)( a)xI .xI o) = (f,i)( gy .xI ey )
= (£,4,1) e, e = ((1)2,4) of = (1)((2)1) .

xI } ¢

Therefore, we have shown that

*
,J = Coadjoint Triples { )8 ) = (Adjoint Cotriples ( ;5 ))*
and that the correspondences are given as follows @

given 1 1in 98 , () isa cosdjoint endofunctor of x’. which
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has a (unique) triple structure given by 7 and ,;. defined as follows
for € L and 161 snd £: I —wX 1

$( xy) = x amd () pg) = (N(@)F)  and
( )X I isan adjoint endofunctor of 2, vith a unique cotriple
)t

structure induced by that of as follows, W, J , are defi-

ned, for x €X and 1€1 by, (i)Y = x end (x,i)%- (x,1,1).
Conversely, any coadjoint endofunctor of é is representable by some
I, i.0., is of the form ( )I = HOM(I, ) , and has a unique tripfe-
structure as given above , and an adjoint endofunctor of J s of the
torm ( ) X I has therefore an induced cotriple atructure . The
uniqueness of these structures imply that the corvespondence established
is an isosorphism,

Therefore, A* gives 21l coadjoint triples in d , and we can now
fix a set' I and investigate the nature of the Twalgebras, with T
being the triple given by ( )X . we recall that a ( ) ~ algebra
jsapair ( X, Y ) where X is an object in ,J, i.e., a set,
and xt_._"L,.x is a-apin)d s i.6,, an I=ary operation on the
gset X which, by the equations it has to satiefy, has a two=gided iden~
tity and it is associative, And there is a universal resolution given

by the category of | )I- algebras and a pair of adjoint functors

relating it with gd ] T
% \
5 LA,

¥e now claim that there is a pair of adjoint functors relating the cate-

X
gory A » of all set=valued functors with dimain the discrete category



I, uithd , whose composition is the endofunctor { ;tI o Let
2\ Dbe a functor with donaind and codomain ;JI , defined, for X
and 1€I by (1)(xA) = X ; define VI: JI___...A
as usual, i.e., if P is an object in ,J ,let Pl = E ()P .

Then, it is easy to see that the following diagras is commutative :

o
»J/"’\.J

This is 8o beceuse, givesn X in ¥ , XAT ) = (x AW =
-T[(i)(xA) -]lx - T = x(( '):)'“
Adjointness is clear since ( X A ,rLt o Tr mﬁx ir)
z m}g(x,}lu} ¥ amg X, !"lT).

Since the resolution given by the category of  (

)I_ algebras,

is the maximal universal one, there exists a unique

such that the following diagral is commutative ¢

_® 47
T\A,

T
This says that ,J 1s the equational closure (since ’3 Tie equatio=
p 4
nal category) of J over A o 4And the closure is given by the functor
¢ + The definition of ¢ will tell us how to interpret fumctors with

domain category, the discrets category I , and values in ;J s 88 algebras



with an I-ary operation (plus all derived operations fwom this one).
Wo start by the simplest case where I ¥ 2 = V21 y 1.0.,
(SI = ;dxé , and examine closely how é ie defined in this case.
The.algebras are pairs ( X, o ) with X a set and o a binary ope-
ration on X satisfying the equations :
X 0 X = X for any x€ X
(21012)0(15014)-11014 for any

four elements II.’I .L,andx in X .

4
Thie is so, since if we denote the operation o as before, by ¢ , the
three equations to be satisfied are given by the requirement that the
two diagrams below commute
rx
XXX IXIXXINX . XXX
In ¢

x ¢T 4

X et
™ ]

IXX IxX PR ¢

The first two equations read the same since qu- (x,x) « A8 for

the third one, we notice that an element of 14 = XxXxXxX , can

be viewsd as a function 2 ——s X° as well, so that thenm,

it 1 2T , () pg) = (1)((1)) and the four coor-
dinated X ,X, Xy +X, stand respectively for (0)((0)1) ,

(1)((0)e) , (0){(2)£) and (1)((1)£) . Now we have that 3

(o)(¢ Pl:) = (0)(0)f) = x, ena (1)(:,&) = (X)) = x,
therefore, (X »T; 1%y »3)) iy = (x) »x,) .

On the otver hand,  (x,, X X5 3, ) = (5, 1), (2 ) € T x 2,
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and (x, X0 Xz x4)(t9xtl‘) = ((x;: 0 z), (xs, ° 14)) , 80 that
applying (f to both we finally have (vy the commutativity of the
square involved) that

((11 P x) ° (13 ° 14)) = ((:1 ° 12)-’(‘3 ° x4))l-f =
-(xl.x)lf- I, °ox, .

Ve now define ¢ as follows : for (4,B) € dxed , let

(4,8 = (AXB, o ) where e isa binary operstion defined
as follows

(A xB)x(ax B _* __ AxB

such that

(ao. bo) ° (al.bl) = (.o. bl) « To see that this defines an algebra,
we verify :
'(a,b) ° (a.b) = (a,b) end

((a b)) o (a0 ) o ((ayb) . (a50,)) = (a,0)) o ("2"’ ) =
= (s b;) = (a b)) o (aydy) .

Since AX B is the underlying set of the algebra, it is clear that
£its well into the diagram that has to commute, by uniqueness @ is the
required functor, Moreover, $ is full and has an adjoint in this
case, as we will show o

To see that ¢§ is full, let (AXB, o) Lo (a0 B, o) be
a homomorphism of algebras as described above, Then, for any & ,a im
A =pd eny b,b, in B, the following holds :

(a » B o (2,00} = ((a,b)) o (a0, )2 = (a,b)2, i.e.,

f = fp” X fyn. 'h:lchuans that it comes from a map of pairs

(a,B) —w(4',B°) & ‘!hanforo. ¢ is full.
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Wo now define an adjoint to ¢ . Given (X, o ) there are sets A
and Bx and amap X b Axx Bx which is an epimorphism . To
see this, consider the following two relations on X ¢

xiy ifr :oy-randxiyiff X 0 y = X.
Both are equivalence relations. We show it is so for y O for example ¢

S8ince x 0 X = X, 1 is reflexive .

Let x 0 y = y., Then, ¥y ¢ * = (x o y) o x = (xo y)o(xox)
= ¥ 0O X = X , and so it is symmetric,

Assume x 0 y = y &and y @ z = s then, since by sygmetry,

we have also y 0 X = :,then

x 0 s =x0f(yos) = (o02x) o (yos)=yozs=s=s=
andx ig transitive,

Therefore we can partition X into equivalence.classes according to both
equivalence relations , and there is a canomical X et ‘I % BI
which is an epimorphism : given (z,¥) Ay B we have that
xoylxand:oygybecauae

(x o y) o x = (x03) o (xo0x) =x0x =13 and

(x 0o y) oy = (xo03) o (yoy) =x07y.
So,letxoy-l.'men,z‘-(xoy)i-: and
IB-(xoy)nsra:_-f

If neither A mor B are empty, this s is unique , and the canonical
mop an isomorphism. That means that ) would be faithful if in uf 2
there were no functors with empty values other that O . This is

no so, however., The only discrete I for which this would happen,

would be I ¥ 1 , but this is the trivial case,
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Let us take now any set I ,.1;ht=n:|¢=‘41 dT is

clearly defined. as follows : if P is any object in dx, then
!'¢ = (:Il (1)? , (p ) where {p is an I-ary operation defined by

(t ), = (()2), for £ € ( ?:l;_ (1)9)Y . s vefore, it can
be shown that @) is full and that it has an adjoint. However, it is
not faithful since any functor with empty values is sent to the trivial
algebra. However, for pra;zt:i.ca'l. purposes, we can think of functors
I = J ’ asl algebras with underlying set the product set of ite values

and an I-ary operation defined on this pboduct set by (f(p)k - (‘k)k .
§ 18 - NMONOIDS IN CATEGORIES WITH MULTIPLICATION AND GROUND OBJECT

Following Mac Lane {22], we say that d is a category with multipli-
cation iff it is a category together with a covariant (in both variables)
bifunctor W€ 3 %x d ——bJ . Por any two objects A , B
of d , We will write A 3K B for the value of the bifunctor A
at the pair (4,B) . Also, if ASmst and B-E5.B' are any two
maps in ﬂ , they induce what we denote by f kg &t 4 Nk BpA'NKB*.
That JX is a bifunctor means that 1181' 1, = 1‘*3 and that
(222) 3k (g'g) = (£* ¥ £)(&* M g), whenever the campositions f'f
and g'g are defined. It is also assumed that there are given matural
isomorphisms & = 8(4,8,C) ¢ 4 ) (B 3 c) 2 (A JBiKC
and o = c¢(A,B) 8 AN B & BofA vwhich express associati-

vity and commutativity for the sultiplication , respectively ,

An object 1 ofd is said to be a ground object for M oare 1



behavee as an identity for the multiplication » » that is, for any
object A there are natural isomorphimms
o = old) & IMA o A and o = o(a): A I & a.

Any category with finite roots and a terminal object is a category

with sultiplicatioh and a ground object , namely the categorical product

is the wultiplication and the terminal object is the ground object.
However, we will be interested sometimes to have some other fized ob-

ject in the category as the ground object for some multiplication in

some category which should approximate the original one as msuch as pos~

gible. To this end, we prove the following :
Proposition 18,1 Let x be any category with finite roots and
let I be any object im x « Then, there exists a category f
with multiplication for which I is & ground object, There is
also a functor ¢s x ———-"".?_ » such that for any two
objects & and B in K , (AxB@p = a1 % 3P ,
where ¥X 4is the wultiplication in Z . 1t 1 isen idempotent
in X ,then I ¥ I, If I is the ground object for the
sultiplication in & (i.e., I 1is the terminal object) then @
is an equivalence of cstegories,

Proof:

Lot ,7- ( ¥, IXI), i.e., the category whose objects are maps

sn 3 of the fora A—> IXI, vhere A is any object in¥, 1

nas been nsmed by Beck as the category of objects in J over IXI.

One can also think of the objects in x as pairs of maps A —R. I

in .%. As for the maps, they are, as usual, given by maps A= A



:i.nx, mohthattheycanbethoughtofu'aupin! from the map
4 —e IXI to the map A' —eIXI iff the following iriangle is

comsutative : A cepn A

>/

IXI

¥e shovw first that x has multiplication, as follows: given any two ob=-

ao be g Co
Jecte 1—"'"7‘_...1 and B""""—b-—l in x s define AN B _-’TI
¢ (4

as the object and the two maps into I which are the exterior arrows

jn the following diagram, where the square ia a pull-back 3

ay I -

A
ay

A¥%B 4

>

i
B

\"

) §
Then, I :::=I is a ground object for this multiplication (which is

easily seen to be associative) since the pull-back of the relevant subdia=-
do 1

N e

A/’ \
) ¢
b 3
e,
I
\
1

graa in 3

¥ §

is given by the object A and the two dotted arrows , i.e., we have that



113

A% I==FI isgvenby A —%—'i'_: I = A :.—_.%*';... I, and so,
A 3 I % A. Simidarly one can show that I k4 & 4

Define now ¢:x -—-—-(I, IXI) as follows: given any
sbject X in JE , let X = XXZ=RI (i.e., the two maps are
equal to the projection onto I ) . That @ preserves multiplication

can be seen as follows 3 the following is a pull-back diagram (plus

P ol
el
TN
XKYXI ° 1
P A
\rxl .
\1

Therefore, (Ix!)d) - Id) e !4) o HNotice that this does not

two other maps)

imply that I is a ground object in & for X , since I isnmot
I but IXRI —»IXI, Also, even in the case where I is idempo-
tent in ¥ , o that I I, AXDP 1d  does not imply that
AXI 2 A since @ need not be faithful, Obviously, if I 1sa
ground object for x together with X , then ( )% I is an iscmor-
phism, But in all cases it has a coadjoint, namely the one given by the
rule (X —»IXI) vaadpX , QD o |
Ecimann and Hilton [3) gave the definition of a group in a category.
It can also be found in Freyd [8] or Mitchell [23] . BHowever, in all
these , the assumption that the category has a sero object is rather im-

portant, besides the existence of finite roots. We define here, along
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those lines, the notion of monoid in a category. The conditions for a
category to admit monoids in it, are the existence of a multiplication and
of a ground object for it.

By a monoid in the category g¢ » wheré. Qg is a category with mul-
tiplication #¥ and ground object I  for 2% , we mean, an object 4

of d , together with maps in rﬂ

ASA D A and 1.1 o

satisfying three equations expressed by means o-fthe commutativity of the

following diagrams :

(A:KA)#!A”—“--AJI‘A Asuxl — - AW A
A
AXxm m
q:n
m
A K A e o A AJKA

1t (a, -.v,) and (af, -',1) are both monoids in f , by a monoid hemo-
morphiss ve mean the obvious thing, i.e., any map RESYURETY")

such that it preserves the sultiplication and the unit , m and 1), of
the monoid A (no$ to be confused with the multiplication and ground ob-
ject of the category ‘d ) , ie6s, such that the following two diagrams

are commutative 3

T

A W A " A EN

A
"
™ w 1 / lf
A ¥ At | ’l\p

-
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We now give two elementary examples 3

(1) )5 wvith X and 1 is a category with multiplication X and ground
object 1 . A monoid in ,zf , by the above definition, is any set together
withmaps MX M 2 _ M and 1 T~ M . Thatis, aset N
wvith a binary multiplicatior m and a chosen element x of N ,such that
m is associative and x is a two-sided unit for m This coincides
vith the usual notion of monoid . Therefore, monoide in (of ,x, 1)
are jue: rdinary monoids,
{2) g with & and Z is a category with multiplication @® and
ground object 3 . Amonoid in ( &, @, 2 ) is therefore, an abe-
lian group R together with group homomorphiams R®R — R
and 2 _S_o R , satiefying the usual equations.  The multiplication
in R makes it into a ring and the existence of u implies that the
ring has an identity. .Therefors, monoids in (4, ®, 2)eare rings
with jdentity. Monoid homomorphimms become ring homomorphimss,

Other examples will be provided by the relative categories, which we

introduc_e in the ne:f gection,
§ 19 - BRELATIVE CATEGORIES

As there are monoids, groups, or any given structured objects in catego~
ries, there can be categories in catop_riea, as well, Por this, we need
categories with finite roots, or, at least, with products. Then, we can
define categories in a category with finite roots, where the objects in

the relative category form not a set or a class hecessarily, but will be
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collected into an object in the base category. That is, if _2’ is any
category with finite roots, and I any given object in X, ve say

that any monoid in ( A& , IX1I) is s category in A with I objects.
We analyse the definition further. Since .x has finite roots, and

I is an object in .Sl:" , them by 18,1, we can define a mxltiplication)ﬂ
in ( I , IXI) for which I ..f""i.-: I becomes a ground object,

To justify the name "category“ for a momoid im (X , 1Ix1), ve
interpret adequately the maps which are assumed to exist

A_i....IxI ,justbecauaeitiaanob;]ectin(j’, IXI)

and A KA .:.....1 s I _u_...A , because it is furthermore a

monoid , so that the following diagrams are commutative s

NV

IX1 Ix1I

and also there are commutative diagrame expressing the associativity of
o and the fact that u is a unit for = . The name "category” be-
couscloarﬂutakextobex{ so that I 1s a set nov,
¥e show that a category in _Juith I objects iaanoniinu'yentogo-
ry which ia nall and such that its class of objects is isomorpaic to
the set I , The object A i.ngf s is interpreted as the set of
maps in the small category. The pair of msapse 1%:1 are interpre-
toduthofunctionsuhichusimthedo-ainandthooodmunch
map in the category. The set I is the set of objects in the category.

Then, = will be interpreted as composition of mape, and u as the
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assignment of identity maps, for each object im the category.

Actually, to understand this better, it is useful to make an analogy
with fibre bundles. Consider the category of objects im )d over IXI
as a category of fibre bundles . Then, A is the bundle space, IX I
is the base space, d 1is the projection o Then, there are fibres over
points of the base space, i.e., for each (1,3) € 1 X I , the fibre over
(4,9 18 Ay = at ((1,3)) o end therefore, & s which is the set
of all maps, is the disjoint dmion of the collection { ‘l:l 3} indexed by
IxI. Obvicusly, in this anslogy, Ay = a1((4,3)) s correctly
jnterpreted as the sét of all maps with domain 1 and codomain j
Ay is the inverse image of (i,3) wnder & , vhere 4 can be nﬁlacod
by the pair of maps (do.dl) . It is also correct to say that 4 , the
st of maps , is the disjoint union of all possible Haw-sels 4,, (=
- EoM(i,3)), because, for any map in the category there is an object 1
which is its domain and an object J which is its codomain, As for the
sultiplication # for ( A , IXI) , we have calculated it in § 14,
and we have that A ¥¢ A is a bundle, whose fibre over (1,3) is .
given by {4 X ‘)13 = Zk. Ay X Ay Now, to see that =

can be interpreted as composition of mapp , Wwe see that = is juet

Z (2o agxa) —%
" — A Ay 53
so that m is defined only for maps such that the codomain of the first
js the domain of the second, As for the msp u 3 I ———p i, vhich
udpstouchobjoctinthoc&;goq (1.0., to each element of 1), s

map (an element of 1) , has to satisfy conditions eaying that the domain
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and codomain of the map have to be both the given object (since there is
a condition expressed by the commutativity of a triangle saying so) and
furthermore, gince u acts as a two-sided unit with respect to composi-
tion of maps (i.e., with respsct to = ) then it is clear that {i)u is
the identity map of the object 1 €I .

This interpretation of categories in ,d with I objects as small
absclute categories with a set of objects isomorphic to 1 is, in fact,
an isomorphims : to each relative category in zf with I objects,
we make correspond a small category G » bylett:lng‘ﬂl o I,

\© 2l2 o oo that d_,d ,mu bave the usual meanings of do-
main , codomain, composition and identities. Conversely, given any small
category C , we can define a category in d with IG lobjacts,
where the usual maps domainm, codomain, composition and assignment of iden—
tities can now be viewed as maps in ;r_'f .

This correspondence has no meaning outeide of J e That is, if
3’ is any category and A is a category in .X with X ob-
jecta, where X is an object of x s then A need not be a category,

small or large.
§ 20 - RELATIVE FURCTOR CATEGORIES

Let }(ba a category with finite roots , and I an object in I .
Let A be any category in x ‘with I objects, By this we mean, after
§19 , that A 4is an object in (X, IX1), actually o it is a mep

A_i_..lxl mtu-nobjoeun(j’,xxl)uthnand d in



J. Consider now the category (-/'r, I)., Then, if A —»IXxI
is an objewt in ( X , I » 1) , the functor ( } & A i an
endofunctor of ( ¥ , I)aswellasof ( K , I x I), vhere
it is obvious how the definition should be, Actually, since A has

a monoid structure over IX I, ( ) ¥ 4 has a triple structure
on (X, 1). The algebras are given by peirs formed by an object
x £,.1 ot (X,1) eandamap m X, xalfx--'g-x
over I , i,e., such that the following triangle commutes:

I B A ..._....x

N\ /4

satisfying the equations expressed by the commusativity of the diagrams:

p L) «

X & (x W1 X A A — o X

and
Izlf/'-
I ANMA e X A
¢HA ]y
X % A v - X
These algebras will be called relative functors , and the category whose

objects are all the [( ) & A]- algebras , for A a category in X

with I objects , will be called a relative functor category and
domoted (X, 1)7 =X (A) , instesd of ZA

& relative functor need not be & functor at all, it is a functor ga ¥ ,

with domain category A , & category in ¥ , and such that the rule
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for being a functor is encoded into two maps in ¥ , one giving the
rule for the objects of the category X _g_.-.. 1 s and another gi-
ving the rule of the functor for the.maps of the category A
X J A _.E_... X . This expresses the usual idea that a functor has
two “parts" , one is tl'_nat of being a function defined on the objects,
and the other on the maps of the category.

We recall now that any endofunctor of d which has a coadjoint

ig of the form { )X A for some set A , It has a unique cotriple

structure as we have shown in § 17 , but we remark that it need not

have a triple structure at all, Actually, if ( )} X A bad a triple

structure, this would mean that there are natural transformations

1JJﬂ( )X 4 o dxaxa

4.0., for each set X ,thenmuldbempsin)d s X ..’E..le

asd X X A K 4 #_—Ix A , satisfying the ususl equations.

But since the maps above are always induced by maps 1 ..L...L
and A X A — ™ o A , satisfying the equations for 4 to be
a monoid, we have that = ( ) X A 418 a triple on ;J ife A
is a monoid. (The comm to the above is trivially true) . There-
fore, we have that

Adjoint Triples ( ,d ) ¥ Monoids

In this case, the universal ropolution is given by a category whose
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objectsmpniu-(l,f) where X isaset and £ 3 I XA —»1IX

is the rule by which the monoid 4 operates on the set X

Ve remark that, since 1 1s the ground object for the categorical
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product in A , the relative categories in ’J with 1 object are,
by definition, the monoids in the category ( ,d , 1Xx1) & q! R
i,e., the categories in .(f witk 1 object are the monoidas, but the
usual categorical motion of monoid is precisely, that it is any category
with exactly one object and endomorphisms of that object,

Using the same arguments, we Nave the comclusion that all adjoint
triples on the category of abelian groups are given precisely by funo-
tors of the form “tenmsoring with a ring with wit®. As for the algebras,
they are abelian groupaonuhichﬂmrj.nc R acta (if the triple con-
sidered is ( ) ® B ), therefore, they are all R-modules , Finally,
since Z is the ground object for & im g , We have that
Rings ¥ Adjoint Triples ( g) ; however, in this case they are
not relative categories since & is not the product but the coproduct
in .

Prom § 14 , we lmow that MJ(JI) ﬂﬂJIﬂ; Ve now show

that for eny set I , viewed as a discrete category ,

(g’!.,l) ¥ ,J:

This is so because: if AP 1 ie any object in ( J s I) 5 let

s*: I —=gf , a functor, be defined as follows s

(1) a» = &, = (:l)p'1 o And for Al aupin(J.l),
(1.., suchthat p = fp') , define the corresponding natural transfor-
mation A* A e vy ((1)a) "l;. = (1){1: . And since
()9 ¢ p = (1) plp = 1 , them (1)17-?'!' 6 Wp™ = (@Ware.
Converssly, given any fmotor P: 1 —» of , let 4 = %{1)!

and let 4 —PwI admply be such that for each x, Ip = 1 iff
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x € (4)F . And given 1 P , natural, for each i we

have 1), (1) — - (4)P* which induces

A = Z(i\r — (1)rl = A

A

vhich is comsutative, since for x € A, say X € (1)? for sme 1€ I,

then xp = & by definition of p and

xgp* = (xf)p* = 4 since xf € (1) . It is now easy to see that

compositions of the two fumctors defined give the corresponding identities.
ith this result, e can finslly prove that the adjoint triples on of ©

are given by the emall categories with a set of obdjects isomorphic to

the set I 3 we have that Adj(d,l ﬁMj(JI 31‘1

¥ ( J s IX I ) 8o that

aaj triples( o T ) & 435 Triples (f,1) & Monoids ( f » IXI)

2 cat g ( 1) .

Let ,61 denote the category of all small categories with a set of

objects idomorphic to the set I . Since Cat AJ (1) & 'gr »

we have that
sy tripies (J3) 2 Apz

and for each @ such tat {C| & I, the corresponding adjoint
triple on A T pasa resolution given by the diagrammatic category ‘d C,
which, though not the maximal one, can be approximated to the category
of algebras corresponding t0o the triple, which is preciaoly the functor

category (relative) which we have denoted jg (Q).



