New York University Abu Dhabi, 27/03/24

# Infinitesimal Higher Symmetries and Higher Connections

Severin Bunk joint with L. Müller, J. Nuiten, and R. J. Szabo [ArXiv: to appear]

#### University of Hertfordshire **UH**

School of Physics, Engineering and Computer Science



- Principal bundles, parallel transport and connections
- Higher principal bundles
- Higher connections as infinitesimal symmetries
- Case study: connections on *n*-gerbes

The classical story

Principal bundles, parallel transport and connections

## Principal bundles



### Fix a finite-dimensional smooth manifold M.

#### Definition (Principal G-bundle; global)

Let G be a Lie group. A principal G-bundle over M is a fibre bundle  $\pi: P \to M$ , together with a smooth G-action on P which preserves the fibres and satisfies that following map is a diffeomorphism:

$$P \times G \longrightarrow P \times_M P$$
,  $(p, g) \longmapsto (p, pg)$ .

#### Definition (Principal *G*-bundle; local)

Let  $\mathcal{U} = \{U_a\}_{a \in \Lambda}$  be a good open covering of M. A principal G-bundle is a family of smooth maps  $g_{ab} : U_{ab} \to G$  satisfying the Čech 1-cocycle condition,

 $g_{ab} g_{bc} = g_{ac}$  (restricted to  $U_{abc}$ )  $\forall a, b, c \in \Lambda$ ,  $g_{aa} = 1$ .

### Definition (Morphisms of principal G-bundles; global)

Let P,Q be principal G-bundles over M. A morphism  $P \to Q$  is a smooth map  $f \colon P \to Q$  which preserves fibres and the G-action.

### Definition (Morphisms of principal *G*-bundles; local)

Let  $(g_{ab})$  and  $(g'_{ab})$  define two principal G-bundles (over the same cover, for simplicity). A morphism  $(g_{ab}) \rightarrow (g'_{ab})$  is a collection of smooth maps  $h_a : U_a \rightarrow G$  which are a Čech coboundary:  $h_b g_{ab} = g'_{ab} h_a, \qquad \forall a, b \in \Lambda.$ 

**Remark:** Any morphism of principal G-bundles is an isomorphism; we obtain a groupoid  $\mathcal{B}un(M;G)$ .

### Definition (Parallel transport)

Let  $P \to M$  be a principal *G*-bundle. A parallel transport on *P* is assignment as follows: to each smooth path  $\gamma \colon [0,1] \to M$ , we assign a diffeomorphism  $\operatorname{PT}_{\gamma} \colon P_{|\gamma(0)} \longrightarrow P_{|\gamma(1)}$ , such that

- (1)  $PT_{\gamma}$  preserves the *G*-action,
- (2)  $\operatorname{PT}_{\gamma'} \circ \operatorname{PT}_{\gamma} = \operatorname{PT}_{\gamma' \circ \gamma}$ ,
- (3)  $PT_{\gamma} = id$  whenever  $\gamma$  is a constant path,
- (4) PT $_{\gamma}$  depends smoothly on  $\gamma$ ,
- (5)  $PT_{\gamma} = PT_{\gamma'}$  whenever  $\gamma$  and  $\gamma'$  are thin-homotopic.

### Definition (Parallel transport)

Let  $P \to M$  be a principal *G*-bundle. A parallel transport on *P* is assignment as follows: to each smooth path  $\gamma: [0,1] \to M$ , we assign a diffeomorphism  $\operatorname{PT}_{\gamma}: P_{|\gamma(0)} \longrightarrow P_{|\gamma(1)}$ , such that (1)  $\operatorname{PT}_{\gamma}$  are as the *G* action

(1)  $PT_{\gamma}$  preserves the *G*-action,

(2) 
$$\operatorname{PT}_{\gamma'} \circ \operatorname{PT}_{\gamma} = \operatorname{PT}_{\gamma' \circ \gamma}$$
,

- (3)  $PT_{\gamma} = id$  whenever  $\gamma$  is a constant path,
- (4)  $PT_{\gamma}$  depends smoothly on  $\gamma$ ,
- (5)  $PT_{\gamma} = PT_{\gamma'}$  whenever  $\gamma$  and  $\gamma'$  are thin-homotopic.

#### Proposition

A parallel transport is **flat** if and only if it is invariant under all homotopies  $h: \gamma_0 \to \gamma_1$ .

Relevance: Gauge theory; general relativity (geodesics); Aharonov-Bohm effect; machine learning; ...

### Infinitesimal deformations of bundles-the Atiyah algebroid



A parallel transport is a rule for comparing fibres of  $P \rightarrow M$  over different points.

Goal now: Infinitesimal parallel transport.

- Locally, we can trivialise P to  $P_{|U} \cong U \times G \xrightarrow{\operatorname{pr}} U$ .
- PT within U then assigns to a path  $\gamma$  an element  $g \in G$  (fibre translation).
- Passing to infinitesimals, this is a pair  $(X,\xi) \in T_x M \times \mathfrak{g}$ .

### Infinitesimal deformations of bundles-the Atiyah algebroid



A parallel transport is a rule for comparing fibres of  $P \rightarrow M$  over different points.

Goal now: Infinitesimal parallel transport.

- Locally, we can trivialise P to  $P_{|U} \cong U \times G \xrightarrow{\operatorname{pr}} U$ .
- PT within U then assigns to a path  $\gamma$  an element  $g \in G$  (fibre translation).
- Passing to infinitesimals, this is a pair  $(X,\xi) \in T_x M \times \mathfrak{g}$ .

#### Definition (Atiyah Lie-algebroid, local version)

Let  $g = (g_{ab})$  be the cocycle defining the bundle  $P \to M$ . The Atiyah (Lie-)algebroid of g is the  $C^{\infty}(M)$ -module

$$\operatorname{At}(g) = \left\{ (X,\xi) \, \middle| \, X \in \mathfrak{X}(M), \, \xi = (\xi_a \colon U_a \to \mathfrak{g}), \, \xi_b = \operatorname{Ad}_{g_{ab}} \xi_a + g_{ab}^* \mu_G(X) \right\}$$

with anchor map  $\rho \colon \operatorname{At}(g) \longrightarrow \mathfrak{X}(M), \ (X, \xi) \longmapsto X$  and bracket

$$\left[ (X,\xi), (Y,\eta) \right]_{\operatorname{At}(g)} = \left( [X,Y]_{\mathfrak{X}(M)}, \, \pounds_X \eta - \pounds_Y \xi - [\xi,\eta]_{\mathfrak{g}} \right).$$

- University of Hertfordshire
- An infinitesimal parallel transport, also called a **connection** on *P*, assigns to an infinitesimal path an infinitesimal fibre translation.
- Globalising, it is a smooth map

$$(\mathrm{id}_{\mathfrak{X}(M)}, A) \colon \mathfrak{X}(M) \longrightarrow \mathrm{At}(g), \qquad X \longmapsto (X, A(X)).$$

• This does not respect the Lie structures: the failure is called the curvature of A,

$$\left[ \left(X, A(X)\right), \left(Y, A(Y)\right) \right]_{\operatorname{At}(g)} - (\operatorname{id}_{\mathfrak{X}(M)}, A)([X, Y]) = \left(0, F_A(X, Y)\right).$$

#### Proposition

A connection on a principal bundle defined by g corresponds to a collection of 1-forms  $A = (A_a \in \Omega^1(U_a; \mathfrak{g}))$  such that

$$A_b = \mathrm{Ad}_{g_{ab}} A_a + g_{ab}^* \mu_G = g_{ab} A_a g_{ab}^{-1} + g_{ab}^{-1} \mathrm{d}g_{ab} \,.$$

Parallel transports and connections on P are in 1:1-correspondence.



The universal symmetry group Sym(P) of  $P \rightarrow M$  has the following descriptions:

- The group of smooth maps  $\hat{f} \colon P \to P$  which preserve the *G*-action and cover a diffeomorphism  $f \colon M \to M$ .
- The group of pairs  $(f, \alpha)$ , where  $f \in \text{Diff}(M)$  and  $\alpha \colon P \to \alpha^* P$  is a morphism of G-bundles.

There is a canonical smooth group homomorphism  $Sym(P) \rightarrow Diff(M)$ .



The universal symmetry group Sym(P) of  $P \rightarrow M$  has the following descriptions:

- The group of smooth maps  $\hat{f} \colon P \to P$  which preserve the *G*-action and cover a diffeomorphism  $f \colon M \to M$ .
- The group of pairs  $(f, \alpha)$ , where  $f \in \text{Diff}(M)$  and  $\alpha \colon P \to \alpha^* P$  is a morphism of G-bundles.

There is a canonical smooth group homomorphism  $Sym(P) \rightarrow Diff(M)$ .

#### Proposition

(1) Let H be a Lie group which acts smoothly on M by a map  $\Phi: H \to \text{Diff}(M)$ . Then, H-equivariant structures on P are in bijections with lifts of  $\Phi$  to  $\hat{\Phi}: H \to \text{Sym}(P)$ .

(2) The Lie algebra of Sym(P) is

$$\mathfrak{sym}(P) = \operatorname{At}(P)$$
.

**Previously:** Sym(P) for gerbes [SB, Müller, Szabo] and general smooth principal  $\infty$ -bundles [SB, Shahbazi]; applications to QFT anomalies and NSNS supergravity.

### **Higher structure**

 $\infty\text{-}\mathsf{groups}$  and  $\infty\text{-}\mathsf{bundles}$ 

### Higher groups



### 2-groups:

- Let G be a Lie group. Consider its fundamental groupoid  $\pi_{\leqslant 1}G$ :
  - objects = points  $g \in G$ , morphisms = {paths  $\gamma$  in G}/homotopies fixing endpoints. This inherits a monoidal structure from the group structure of G.
- A 2-group is a monoidal groupoid in which every object has an inverse [Baez? Older?].
- **Example:** BU(1) is the groupoid with objects = {\*} and morphisms = U(1). We set  $* \otimes * := *$ ,  $z \circ z' := z z'$  and  $z \otimes z' := z z'$ .

### Higher groups



### 2-groups:

- Let G be a Lie group. Consider its fundamental groupoid  $\pi_{\leqslant 1}G$ :
  - objects = points  $g \in G$ , morphisms = {paths  $\gamma$  in G}/homotopies fixing endpoints. This inherits a monoidal structure from the group structure of G.
- A 2-group is a monoidal groupoid in which every object has an inverse [Baez? Older?].
- **Example:** BU(1) is the groupoid with objects = {\*} and morphisms = U(1). We set  $* \otimes * := *$ ,  $z \circ z' := z z'$  and  $z \otimes z' := z z'$ .

### Even higher groups:

A group is (1) a set with a multiplication and (...), or (2) a groupoid with a single object. An  $\infty$ -group is, equivalently, [Stasheff; Lurie]

- a coherently monoidal  $\infty$ -groupoids where each object has an inverse (multiplication encoded as monoidal structure), or
- an  $\infty$ -groupoid with a single object (multiplication encoded as composition).

**Example:** The based loop group  $\Omega_x X$  of a topological space X [Stasheff].

Let Cart denote the category with objects  $\{\mathbb{R}^n \mid n \in \mathbb{N}_0\}$  and morphisms all smooth maps  $\mathbb{R}^n \to \mathbb{R}^m$ . This has a Grothendieck coverage of good open covers [Fiorenza, Schreiber, Stasheff]. Let S denote the  $\infty$ -category of spaces ('spaces' = ' $\infty$ -groupoids').

Definition (Smooth space) [Schreiber]

A smooth space is an  $\infty$ -sheaf  $X \in Sh_{\infty}(Cart)$ . We write  $\mathbb{H}$  for the  $\infty$ -category of smooth spaces. A smooth  $\infty$ -group is a group object in  $Sh_{\infty}(Cart)$ .

• Interpretation: X assigns to each  $\mathbb{R}^n$ ,  $n \in \mathbb{N}_0$ , the space of smooth maps  $\mathbb{R}^n \to X$ .

Let Cart denote the category with objects  $\{\mathbb{R}^n \mid n \in \mathbb{N}_0\}$  and morphisms all smooth maps  $\mathbb{R}^n \to \mathbb{R}^m$ . This has a Grothendieck coverage of good open covers [Fiorenza, Schreiber, Stasheff]. Let S denote the  $\infty$ -category of spaces ('spaces' = ' $\infty$ -groupoids').

Definition (Smooth space) [Schreiber]

A smooth space is an  $\infty$ -sheaf  $X \in Sh_{\infty}(Cart)$ . We write  $\mathbb{H}$  for the  $\infty$ -category of smooth spaces. A smooth  $\infty$ -group is a group object in  $Sh_{\infty}(Cart)$ .

- Interpretation: X assigns to each  $\mathbb{R}^n$ ,  $n \in \mathbb{N}_0$ , the space of smooth maps  $\mathbb{R}^n \to X$ .
- **Example:** If M is a manifold, then  $\mathbb{R}^n \mapsto \mathcal{M}fd(\mathbb{R}^n, M)$  defines an object  $M \in \mathbb{H}$ . This furnishes an embedding  $\mathcal{M}fd \hookrightarrow \mathbb{H}$ .
- BU(1) is a smooth  $\infty$ -group with BU(1)( $\mathbb{R}^n$ ) =  $N(Mfd(\mathbb{R}^n, U(1)) \rightrightarrows *) \simeq Bun(\mathbb{R}^n; U(1)).$
- There are smooth  $\infty$ -groups  $\mathcal{B}un_{\nabla}(-; U(1))$  without an 'underlying space/Lie groupoid'.



With a notion of (smooth) higher groups at hand, we can build higher principal bundles.

- Works in a particular type of  $\infty$ -categories, the  $\infty$ -topoi [Giraud; Rezk; Lurie].
- Example: Both S and  $\mathbb{H}$  are  $\infty$ -topoi. The EEpis in S are those maps which are surjective on  $\pi_0$ .

Definition (Principal ∞-bundle) [Nikolaus, Schreiber, Stevenson; SB]

Let  $\mathfrak{X}$  be an  $\infty$ -topos and G a group object in  $\mathfrak{X}$ . A *G*-principal  $\infty$ -bundle consists of an effective epimorphism  $P \to X$  in  $\mathfrak{X}$  and a fibre-preserving *G*-action on *P* such that the canonical morphism  $P \times G \longrightarrow P \times_X P$  is an equivalence.

#### Examples:

- For G a Lie group, the canonical map  $* \to BG$  is a G-principal  $\infty$ -bundle (G acts trivially).
- A (bundle) gerbe is equivalently a BU(1)-principal  $\infty$ -bundle.

- Parallel transport for a strict type of 2-bundles was introduced by [Baez, Schreiber '04], later linked to connections [Schreiber, Waldorf '07; Faria Martins, Picken '10; Waldorf '17; Saemann, Schmidt, Kim '19;...].
- For higher bundles whose structure ∞-group arises as an integration of an L<sub>∞</sub>-algebra, a general formalism was provided by [Sati, Schreiber, Stasheff '08].
- For ∞-groups with another strictness condition, connections and parallel transport on trivial bundles was given by [Kapranov '07, '15] using the free Lie algebroid on the tangent bundle TM.
- A theory of holonomy for flat connections and its relation to  $\infty$ -local systems was developed by [Abad, Schätz '14].
- An approach using rational homotopy for bundles controlled/classified by a **discrete** space by [Fiorenza, Sati, Schreiber '20].

- Parallel transport for a strict type of 2-bundles was introduced by [Baez, Schreiber '04], later linked to connections [Schreiber, Waldorf '07; Faria Martins, Picken '10; Waldorf '17; Saemann, Schmidt, Kim '19;...].
- For higher bundles whose structure ∞-group arises as an integration of an L<sub>∞</sub>-algebra, a general formalism was provided by [Sati, Schreiber, Stasheff '08].
- For ∞-groups with another strictness condition, connections and parallel transport on trivial bundles was given by [Kapranov '07, '15] using the free Lie algebroid on the tangent bundle *TM*.
- A theory of holonomy for flat connections and its relation to ∞-local systems was developed by [Abad, Schätz '14].
- An approach using rational homotopy for bundles controlled/classified by a **discrete** space by [Fiorenza, Sati, Schreiber '20].

### Higher connections as infinitesimal symmetries

Derived geometry and deformation theory

## Classifying stacks



For  $G \in \operatorname{Grp}(\mathfrak{X})$ , let  $BG \in \mathfrak{X}$  denote the quotient of the trivial action of G on the point \*.

Definition (Classifying object) [Nikolaus, Schreiber, Stevenson]

The object BG is called the **classifying object of** G.

#### Theorem [Nikolaus, Schreiber, Stevenson]

Let  $X\in\mathfrak{X}.$  There is an equivalence of  $\infty\text{-groupoids}$   $\mathcal{B}\mathrm{un}(X;G)\simeq\mathfrak{X}(X,\mathrm{B}G)\,.$ 

## Classifying stacks

For  $G \in \operatorname{Grp}(\mathfrak{X})$ , let  $BG \in \mathfrak{X}$  denote the quotient of the trivial action of G on the point \*.

Definition (Classifying object) [Nikolaus, Schreiber, Stevenson]

The object BG is called the **classifying object of** G.

#### Theorem [Nikolaus, Schreiber, Stevenson]

Let  $X\in\mathfrak{X}.$  There is an equivalence of  $\infty\text{-groupoids}$   $\mathcal{B}\mathrm{un}(X;G)\simeq\mathfrak{X}(X,\mathrm{B} G)\,.$ 

If  $p: X \to BG$  classifies a G-principal  $\infty$ -bundle  $P \to X$ , the symmetries of P are the 'deformations'



## For infinitesimal symmetries of P, study infinitesimal deformations of its classifying map

 $p\colon X\to \mathrm{B}G$ .

Incorporate infinitesimals into the formalism of smooth spaces: **derived differential geometry** (DDG) [Lawvere; Dubuc; Moerdijk, Reyes; Kock; Spivak; Carchedi, Steffens; Nuiten; ...].

- This works by incorporating algebra: the functions  $C^{\infty}(M;\mathbb{R})$  on each manifold form a  $C^{\infty}$ -ring.
- Roughly speaking, DDG is algebraic geometry over dg- or simplicial C<sup>∞</sup>-rings; it behaves differently form (derived) algebraic geometry, e.g. due to existence of partitions of unity.
- Strongly related to dg/higher Lie geometry [Xu, Zhu, Behrend, Weinstein, Gualtieri, Ševera, ...].



We replace Cart by  $Cart_{th}$ , whose function algebras are of the form  $C^{\infty}(\mathbb{R}^n; \mathbb{R}) \otimes W$ , where W is a local algebra with nilpotent ideal. These are the infinitesimal thickenings of the  $\mathbb{R}^n$ s.

Definition (Formal smooth space)

A formal smooth space is an  $\infty$ -sheaf  $X \in Sh_{\infty}(Cart_{th})$ . We denote this  $\infty$ -topos by  $\mathbb{H}_{th}$ .

We replace Cart by  $Cart_{th}$ , whose function algebras are of the form  $C^{\infty}(\mathbb{R}^n; \mathbb{R}) \otimes W$ , where W is a local algebra with nilpotent ideal. These are the infinitesimal thickenings of the  $\mathbb{R}^n$ s.

Definition (Formal smooth space)

A formal smooth space is an  $\infty$ -sheaf  $X \in Sh_{\infty}(Cart_{th})$ . We denote this  $\infty$ -topos by  $\mathbb{H}_{th}$ .

**Example:** We now indeed capture infinitesimal deformations of smooth geometric data intrinsically: Consider the space  $\mathbb{R}_{\epsilon}$  with function  $C^{\infty}$ -ring  $\mathbb{R} \otimes \mathbb{R}[\epsilon]/\epsilon^2$ . Then,

 $\mathbb{H}_{th}(\mathbb{R}_{\epsilon}, M) \cong TM \qquad (\text{as a set}).$ 

**Remark:** There is a fully faithful embedding  $\mathbb{H} \hookrightarrow \mathbb{H}_{th}$ .

## $L_\infty$ -algebroids and dg Lie algebroids

University of UH Hertfordshire

Let k be a field of characteristic zero and A a connective commutative dg algebra over k.

### Definition ( $L_{\infty}$ -algebroid)

A  $L_{\infty}$ -algebroid over A is a dg module E over A together with an anchor map  $\rho \colon E \to T_A$ and a family of brackets  $[-]_{n,E} \colon E^{\otimes n} \to E$  of degree 2 - n such that

- (1) the brackets turn E into an  $L_\infty$ -algebra (antisymmetry, coherent Jacobi),
- (2) ho is a morphism of  $L_\infty$ -algebras, and
- (3)  $[-]_{n,E}$  satisfies the Leibniz rule

$$[\xi, f \cdot \eta]_E = (-1)^{|\xi| |f|} f \cdot [\xi, \eta]_E + \rho(\xi)(f) \cdot \eta.$$

for n = 2 and is graded A-linear for n > 2.

If  $[-]_{n,E} = 0$  for all n > 2, then  $(E, [-, -]_E, \rho)$  is called a **dg Lie algebroid** over A.

## $L_\infty$ -algebroids and dg Lie algebroids

University of UH Hertfordshire

Let k be a field of characteristic zero and A a connective commutative dg algebra over k.

### Definition ( $L_{\infty}$ -algebroid)

A  $L_{\infty}$ -algebroid over A is a dg module E over A together with an anchor map  $\rho \colon E \to T_A$ and a family of brackets  $[-]_{n,E} \colon E^{\otimes n} \to E$  of degree 2 - n such that

- (1) the brackets turn E into an  $L_\infty$ -algebra (antisymmetry, coherent Jacobi),
- (2) ho is a morphism of  $L_\infty$ -algebras, and
- (3)  $[-]_{n,E}$  satisfies the Leibniz rule

$$[\xi, f \cdot \eta]_E = (-1)^{|\xi| |f|} f \cdot [\xi, \eta]_E + \rho(\xi)(f) \cdot \eta.$$

for n = 2 and is graded A-linear for n > 2.

If  $[-]_{n,E} = 0$  for all n > 2, then  $(E, [-, -]_E, \rho)$  is called a **dg Lie algebroid** over A.

**Morphisms** of  $L_{\infty}$ -algebroids: tower of  $\phi_1 \colon \mathfrak{g} \to \mathfrak{h}$  and  $\phi_n \colon \mathfrak{g}^{\otimes n} \to \mathfrak{h}[n]$  with coherences. Conveniently encoded using Chevalley-Eilenberg CDGCs.

**Our situation:**  $A = C^{\infty}(M)$ ; we then speak of  $L_{\infty}$ -algebroids on M.

#### Definition (Formal moduli problem over A) [Nuiten '17]

Let k be a field of characteristic zero and A be a connective commutative k-algebra. A formal moduli problem (FMP) over A is a functor  $F: (CAlg_k^{Art})_{/A} \longrightarrow S$  such that (1)  $F(A) \simeq *$ , and

(2) F maps square-zero extensions to pullbacks.

We use the following extension of the famous Lurie-Pridham Theorem [Pridham '07; Lurie '10]:

#### Theorem [Nuiten '17]

There is an equivalence of  $\infty$ -categories

$$\mathrm{MC} \colon L_{\infty}\mathcal{A}\mathrm{gd}_A \xrightarrow{\simeq} \mathrm{FMP}(A) \,.$$

### Defining higher connections, circumventing flatness



We are interested in the FMP describing deformations of the classifying map  $p: M \to BG$ .

Definition (Atiyah  $L_{\infty}$ -algebroid) [SB, Müller, Nuiten, Szabo]

Let G be a smooth  $\infty$ -group and  $P \to M$  a G-principal  $\infty$ -bundle classified by a morphism  $p: M \to BG$  in  $\mathbb{H}_{(th)}$ . The Atiyah  $L_{\infty}$ -algebroid  $\operatorname{At}(P)$  of P is the  $L_{\infty}$ -algebroid corresponding to the above FMP under Nuiten's theorem.

### Defining higher connections, circumventing flatness



We are interested in the FMP describing deformations of the classifying map  $p: M \to BG$ .

Definition (Atiyah  $L_{\infty}$ -algebroid) [SB, Müller, Nuiten, Szabo]

Let G be a smooth  $\infty$ -group and  $P \to M$  a G-principal  $\infty$ -bundle classified by a morphism  $p: M \to BG$  in  $\mathbb{H}_{(th)}$ . The Atiyah  $L_{\infty}$ -algebroid  $\operatorname{At}(P)$  of P is the  $L_{\infty}$ -algebroid corresponding to the above FMP under Nuiten's theorem.

**Goal:** Define (not necessarily flat) connections on generic  $\infty$ -bundles P. For  $l \in \mathbb{N}$ , there is an  $\infty$ -functor  $Q^{(l)} : L_{\infty} \mathcal{A} \mathrm{gd}_A \to L_{\infty} \mathcal{A} \mathrm{gd}_A$  which truncates away all terms in  $\mathrm{CE}_*(\mathfrak{g})$  containing more than l tensor factors, i.e.  $\mathrm{CE}_*(Q^{(l)}\mathfrak{g}) = \mathrm{Sym}_{C^{\infty}(M)}^{1 \leq \bullet \leq l}(\mathfrak{g})$  [Nuiten].

Definition (Space of *l*-connections) [SB, Müller, Nuiten, Szabo]

The  $\infty$ -groupoid of *l*-connections on *P* is the mapping space  $\operatorname{Con}_{l}(P) := L_{\infty} \mathcal{A}gd_{C^{\infty}(M)}^{\mathrm{dg}}(Q^{(l)}\mathfrak{X}(M), \operatorname{At}(P)) \in \mathfrak{S}.$ 

### **Case studies**

Testing the new model

**First check:** If  $P \to M$  is an ordinary principal bundle (*G* a Lie group), then  $\operatorname{Con}_1(P) = \{ \text{classical connections on } P \}, \quad \operatorname{Con}_l(P) = \{ \text{flat conns. on } P \}, \quad \forall l > 1. \quad \checkmark$  **First check:** If  $P \rightarrow M$  is an ordinary principal bundle (G a Lie group), then

 $\operatorname{Con}_1(P) = \{ \text{classical connections on } P \}, \quad \operatorname{Con}_l(P) = \{ \text{flat conns. on } P \}, \ \forall \, l > 1 \,. \quad \checkmark$ 

Particularly well-known higher case: connections on n-gerbes/higher U(1)-bundles.

Definition (*n*-gerbe with *l*-connection) [Deligne; Gajer; SB, Shahbazi]

Let  $\mathcal{U} = \{U_a\}_{a \in \Lambda}$  be a good open covering of M.

(1) An (n-1)-gerbe/B<sup>n</sup>U(1)-bundle on M is a collection  $g = (g_{a_0 \cdots a_n} : U_{a_0 \cdots a_n} \to U(1))$ satisfying the Čech cocycle condition,  $\delta g := \prod_{i=0}^{n} (-1)^i g_{a_0 \cdots \widehat{a_i} \cdots a_n} = 1.$  **First check:** If  $P \rightarrow M$  is an ordinary principal bundle (G a Lie group), then

 $\operatorname{Con}_1(P) = \{ \text{classical connections on } P \}, \quad \operatorname{Con}_l(P) = \{ \text{flat conns. on } P \}, \ \forall \, l > 1 \,. \quad \checkmark$ 

Particularly well-known higher case: connections on n-gerbes/higher U(1)-bundles.

Definition (*n*-gerbe with *l*-connection) [Deligne; Gajer; SB, Shahbazi]

Let  $\mathcal{U} = \{U_a\}_{a \in \Lambda}$  be a good open covering of M.

(1) An (n-1)-gerbe/B<sup>n</sup>U(1)-bundle on M is a collection  $g = (g_{a_0 \cdots a_n} : U_{a_0 \cdots a_n} \to U(1))$ satisfying the Čech cocycle condition,  $\delta g := \prod_{i=0}^n (-1)^i g_{a_0 \cdots \widehat{a_i} \cdots a_n} = 1.$ 

(2) An *l*-connection on an *n*-gerbe g is a tuple  $(A^{(1)}, \ldots, A^{(l)})$ , where

$$A^{(p)} = \left(A^{(p)}_{a_0 \cdots a_{n-p}} \in \Omega^p(U_{a_0 \cdots a_{n-p}})\right)$$

and such that

$$d \log(g) = \delta A^{(1)}, \qquad dA^{(p)} = (-1)^p \,\delta A^{(p+1)} \quad \forall p = 1, \dots, l-1.$$

For each  $0 \leq l \leq n+1$ , there is an  $\infty$ -groupoid  $\operatorname{Grb}^n_{\nabla | l}(M)$  of *n*-gerbes with *l*-connections.



**Example:** 0-gerbes are the same as U(1)-bundles.

1-gerbes with connections model the B-field in string theory/SuGra [Kapustin; Witten]

n-gerbes with (n+1)-connection model differential cohomology [Deligne; Brylinski; Gajer; Schreiber]



**Example:** 0-gerbes are the same as U(1)-bundles.

1-gerbes with connections model the B-field in string theory/SuGra [Kapustin; Witten]

n-gerbes with (n+1)-connection model differential cohomology [Deligne; Brylinski; Gajer; Schreiber]



Question: Is this space equivalent to the one obtained from our  $L_{\infty}$ -algebroid picture?

#### Theorem [Nuiten; SB, Müller, Nuiten, Szabo]

Let g describe an n-gerbe on M. Its Atiyah  $L_\infty$ -algebroid is the dg Lie algebroid

$$C^{\infty}(\mathcal{U}^{[0]}) \xrightarrow{\delta} \cdots \xrightarrow{\delta} C^{\infty}(\mathcal{U}^{[n-1]}) \xrightarrow{(0,\delta)} E_n(g) ,$$

where  $E_n(g) = \left\{ (X, f) \in \mathfrak{X}(M) \times C^{\infty}(\mathcal{U}^{[n]}) \, | \, \delta f = (-1)^{n+1} \mathrm{d}\log(g)(X) \right\}.$ 

The anchor map is the projection onto  $\mathfrak{X}(M)$ , and the bracket is the Lie derivative of functions and vector fields.

#### Theorem [Nuiten; SB, Müller, Nuiten, Szabo]

Let g describe an n-gerbe on M. Its Atiyah  $L_\infty$ -algebroid is the dg Lie algebroid

$$C^{\infty}(\mathcal{U}^{[0]}) \xrightarrow{\delta} \cdots \xrightarrow{\delta} C^{\infty}(\mathcal{U}^{[n-1]}) \xrightarrow{(0,\delta)} E_n(g) ,$$

where 
$$E_n(g) = \left\{ (X, f) \in \mathfrak{X}(M) \times C^{\infty}(\mathcal{U}^{[n]}) \, | \, \delta f = (-1)^{n+1} \mathrm{d}\log(g)(X) \right\}.$$

The anchor map is the projection onto  $\mathfrak{X}(M)$ , and the bracket is the Lie derivative of functions and vector fields.

#### Theorem [SB, Müller, Nuiten, Szabo]

For any *n*-gerbe g on M, there is an equivalence of (l-1)-groupoids

 $\operatorname{Con}_{\operatorname{geo},l}(g) \simeq \operatorname{Con}_{l}(g).$ 

This is an algebraic description of differential cohomology.

## Proof (sketch)



- Goal: compute explicitly the mapping space  $\operatorname{Map}_{L_{\infty}\mathcal{A}\mathrm{gd}_{\mathcal{C}^{\infty}(M)}^{\mathrm{dg}}}(Q^{(l)}\mathfrak{X}(M), \operatorname{At}(g)).$
- Use model structure on  $L_{\infty} \mathcal{A}gd^{dg}_{C^{\infty}(M)}$ :  $Q^{(l)}\mathfrak{X}(M)$  is  $C^{\infty}(M)$ -cofibrant.

## Proof (sketch)



- Goal: compute explicitly the mapping space  $\operatorname{Map}_{L_{\infty}\mathcal{A}\mathrm{gd}_{C^{\infty}(M)}^{\mathrm{dg}}}(Q^{(l)}\mathfrak{X}(M), \operatorname{At}(g)).$
- Use model structure on  $L_{\infty} \mathcal{A}gd_{C^{\infty}(M)}^{dg}$ :  $Q^{(l)}\mathfrak{X}(M)$  is  $C^{\infty}(M)$ -cofibrant.
- Find manageable simplicial resolution of At(g): we give a general, explicit construction for 'semi-abelian extensions' of a dg Lie algebroid structure on

$$[n] \mapsto \operatorname{Hom}_k \left( C_*(\Delta^n; k), \operatorname{ch}_k(\mathfrak{g}) \right),$$

which in this case allows us to simplify formal constructions of [Getzler; Robert-Nicoud, Vallette].

• Lemma: if  $\mathfrak{g}$  is fibrant (surjective anchor map) this produces a simplicial resolution  $\widehat{\mathfrak{g}}$  of  $\mathfrak{g}$ .

## Proof (sketch)



- Goal: compute explicitly the mapping space  $\operatorname{Map}_{L_{\infty}\mathcal{A}\mathrm{gd}_{C^{\infty}(M)}^{\mathrm{dg}}}(Q^{(l)}\mathfrak{X}(M), \operatorname{At}(g)).$
- Use model structure on  $L_{\infty} \mathcal{A}gd_{C^{\infty}(M)}^{dg}$ :  $Q^{(l)}\mathfrak{X}(M)$  is  $C^{\infty}(M)$ -cofibrant.
- Find manageable simplicial resolution of At(g): we give a general, explicit construction for 'semi-abelian extensions' of a dg Lie algebroid structure on

$$[n] \longmapsto \operatorname{Hom}_k \left( C_*(\Delta^n; k), \operatorname{ch}_k(\mathfrak{g}) \right),$$

which in this case allows us to simplify formal constructions of [Getzler; Robert-Nicoud, Vallette].

- Lemma: if  $\mathfrak{g}$  is fibrant (surjective anchor map) this produces a simplicial resolution  $\widehat{\mathfrak{g}}$  of  $\mathfrak{g}$ .
- The mapping space is thus modelled by the simplicial set

$$[n] \longmapsto L_{\infty} \mathcal{A} \mathrm{gd}_{C^{\infty}(M)}^{\mathrm{dg}} (Q^{(l)} \mathfrak{X}(M), \,\widehat{\mathfrak{g}}_n) \,.$$

• Explicit computation: we have an isomorphism of simplicial sets

$$L_{\infty} \mathcal{A} \mathrm{gd}_{C^{\infty}(M)}^{\mathrm{dg}} (Q^{(l)} \mathfrak{X}(M), \, \widehat{\mathfrak{g}}_n) \cong \mathrm{Con}_{geo, l}(g) \,.$$

Thank you for your attention!