Infinitesimal Higher Symmetries and Higher Connections

Severin Bunk
joint with L. Müller, J. Nuiten, and R. J. Szabo
[ArXiv: to appear]
• Principal bundles, parallel transport and connections
• Higher principal bundles
• Higher connections as infinitesimal symmetries
• Case study: connections on n-gerbes
The classical story

Principal bundles, parallel transport and connections
Fix a finite-dimensional smooth manifold M.

Definition (Principal G-bundle; global)

Let G be a Lie group. A principal G-bundle over M is a fibre bundle $\pi: P \to M$, together with a smooth G-action on P which preserves the fibres and satisfies that following map is a diffeomorphism:

$$P \times G \to P \times_M P, \quad (p, g) \mapsto (p, pg).$$

Definition (Principal G-bundle; local)

Let $\mathcal{U} = \{U_a\}_{a \in \Lambda}$ be a good open covering of M. A principal G-bundle is a family of smooth maps $g_{ab}: U_{ab} \to G$ satisfying the Čech 1-cocycle condition,

$$g_{ab} g_{bc} = g_{ac} \quad \text{(restricted to } U_{abc}) \quad \forall a, b, c \in \Lambda, \quad g_{aa} = 1.$$
Morphisms of principal bundles

Definition (Morphisms of principal G-bundles; global)

Let P, Q be principal G-bundles over M. A morphism $P \to Q$ is a smooth map $f: P \to Q$ which preserves fibres and the G-action.

Definition (Morphisms of principal G-bundles; local)

Let (g_{ab}) and (g'_{ab}) define two principal G-bundles (over the same cover, for simplicity). A morphism $(g_{ab}) \to (g'_{ab})$ is a collection of smooth maps $h_a: U_a \to G$ which are a Čech coboundary:

$$h_b g_{ab} = g'_{ab} h_a, \quad \forall a, b \in \Lambda.$$

Remark: Any morphism of principal G-bundles is an isomorphism; we obtain a groupoid $\mathcal{B}un(M; G)$. ```
Definition (Parallel transport)

Let $P \to M$ be a principal G-bundle. A parallel transport on P is assignment as follows: to each smooth path $\gamma: [0, 1] \to M$, we assign a diffeomorphism $\text{PT}_\gamma: P_{\gamma(0)} \to P_{\gamma(1)}$, such that

1. PT_γ preserves the G-action,
2. $\text{PT}_{\gamma'} \circ \text{PT}_\gamma = \text{PT}_{\gamma' \circ \gamma}$,
3. $\text{PT}_\gamma = \text{id}$ whenever γ is a constant path,
4. PT_γ depends smoothly on γ,
5. $\text{PT}_\gamma = \text{PT}_{\gamma'}$ whenever γ and γ' are thin-homotopic.

Proposition A parallel transport is flat if and only if it is invariant under all homotopies $h: \gamma_0 \to \gamma_1$.

Relevance: Gauge theory; general relativity (geodesics); Aharonov-Bohm effect; machine learning; ...
Parallel transport

Definition (Parallel transport)

Let $P \to M$ be a principal G-bundle. A parallel transport on P is assignment as follows: to each smooth path $\gamma : [0, 1] \to M$, we assign a diffeomorphism $PT_\gamma : P|_{\gamma(0)} \to P|_{\gamma(1)}$, such that

1. PT_γ preserves the G-action,
2. $PT_{\gamma'} \circ PT_\gamma = PT_{\gamma' \circ \gamma}$,
3. $PT_\gamma = id$ whenever γ is a constant path,
4. PT_γ depends smoothly on γ,
5. $PT_\gamma = PT_{\gamma'}$ whenever γ and γ' are thin-homotopic.

Proposition

A parallel transport is flat if and only if it is invariant under all homotopies $h: \gamma_0 \to \gamma_1$.

Relevance: Gauge theory; general relativity (geodesics); Aharonov-Bohm effect; machine learning; ...
A parallel transport is a rule for comparing fibres of $P \to M$ over different points.

Goal now: **Infinitesimal** parallel transport.

- Locally, we can trivialise P to $P|_U \cong U \times G \xrightarrow{\text{Pr}} U$.
- PT within U then assigns to a path γ an element $g \in G$ (fibre translation).
- Passing to infinitesimals, this is a pair $(X, \xi) \in T_xM \times g$.

Definition (Atiyah Lie-algebroid, local version)

Let g^ab be the cocycle defining the bundle $P \to M$. The **Atiyah (Lie-)algebroid** of g is the $C^\infty(M)$-module $\text{At}_{P,g}$ with anchor map $\rho: \text{At}_{P,g} \to X|_M$, $\rho(X, \xi)^a \mapsto g^ab(\xi)$ and bracket $\{X, \xi\}^a = \text{Ad}_{g^ab}\xi`g^ab\mu G$.

Infinitesimal deformations of bundles—the Atiyah algebroid

A parallel transport is a rule for comparing fibres of $P \to M$ over different points.

Goal now: **Infinitesimal** parallel transport.

- Locally, we can trivialise P to $P|_U \cong U \times G \xrightarrow{P_T} U$.
- PT within U then assigns to a path γ an element $g \in G$ (fibre translation).
- Passing to infinitesimals, this is a pair $(X, \xi) \in T_x M \times g$.

Definition (Atiyah Lie-algebroid, local version)

Let $g = (g_{ab})$ be the cocycle defining the bundle $P \to M$. The **Atiyah (Lie-)algebroid** of g is the $C^\infty(M)$-module

$$\text{At}(g) = \{(X, \xi) \mid X \in \mathfrak{X}(M), \xi = (\xi_a : U_a \to \mathfrak{g}), \xi_b = \text{Ad}_{g_{ab}} \xi_a + g_{ab}^* \mu_G(X)\}$$

with anchor map $\rho : \text{At}(g) \to \mathfrak{X}(M)$, $(X, \xi) \mapsto X$ and bracket

$$\left[(X, \xi), (Y, \eta)\right]_{\text{At}(g)} = ([X, Y]_{\mathfrak{X}(M)}, \mathcal{L}_X \eta - \mathcal{L}_Y \xi - [\xi, \eta]_\mathfrak{g}).$$
An infinitesimal parallel transport, also called a connection on P, assigns to an infinitesimal path an infinitesimal fibre translation.

Globalising, it is a smooth map

$$(\text{id}_{\mathfrak{X}(M)}, A): \mathfrak{X}(M) \to \text{At}(g), \quad X \mapsto (X, A(X)) .$$

This does not respect the Lie structures: the failure is called the curvature of A,

$$[[X, A(X)), (Y, A(Y))]_{\text{At}(g)} - (\text{id}_{\mathfrak{X}(M)}, A)([X, Y]) = (0, F_A(X, Y)) .$$

Proposition

A connection on a principal bundle defined by g corresponds to a collection of 1-forms $A = (A_a \in \Omega^1(U_a; g))$ such that

$$A_b = \text{Ad}_{g_{ab}} A_a + g_{ab}^* \mu_G = g_{ab} A_a g_{ab}^{-1} + g_{ab}^{-1} d g_{ab} .$$

Parallel transports and connections on P are in 1:1-correspondence.
The universal symmetry group $\text{Sym}(P)$ of $P \to M$ has the following descriptions:

- The group of smooth maps $\hat{f}: P \to P$ which preserve the G-action and cover a diffeomorphism $f: M \to M$.
- The group of pairs (f, α), where $f \in \text{Diff}(M)$ and $\alpha: P \to \alpha^*P$ is a morphism of G-bundles.

There is a canonical smooth group homomorphism $\text{Sym}(P) \to \text{Diff}(M)$.

Previously: $\text{Sym}(P)$ for gerbes [SB, Müller, Szabo] and general smooth principal 8-bundles [SB, Shahbazi]; applications to QFT anomalies and NSNS supergravity.
The universal symmetry group $\text{Sym}(P)$ of $P \rightarrow M$ has the following descriptions:

- The group of smooth maps $\hat{f} : P \rightarrow P$ which preserve the G-action and cover a diffeomorphism $f : M \rightarrow M$.
- The group of pairs (f, α), where $f \in \text{Diff}(M)$ and $\alpha : P \rightarrow \alpha^* P$ is a morphism of G-bundles.

There is a canonical smooth group homomorphism $\text{Sym}(P) \rightarrow \text{Diff}(M)$.

Proposition

1. Let H be a Lie group which acts smoothly on M by a map $\Phi : H \rightarrow \text{Diff}(M)$. Then, H-equivariant structures on P are in bijections with lifts of Φ to $\hat{\Phi} : H \rightarrow \text{Sym}(P)$.

2. The Lie algebra of $\text{Sym}(P)$ is

$$\mathfrak{sym}(P) = \mathfrak{at}(P).$$

Previously: $\text{Sym}(P)$ for gerbes [SB, Müller, Szabo] and general smooth principal ∞-bundles [SB, Shahbazi]; applications to QFT anomalies and NSNS supergravity.
Higher structure

∞-groups and ∞-bundles
Higher groups

2-groups:

- Let G be a Lie group. Consider its fundamental groupoid $\pi_{\leq 1} G$:
 - objects = points $g \in G$, morphisms = {paths γ in G}/homotopies fixing endpoints.
 This inherits a monoidal structure from the group structure of G.
- A 2-group is a monoidal groupoid in which every object has an inverse [Baez? Older?].
- Example: $\text{BU}(1)$ is the groupoid with objects = {$*$} and morphisms = $\text{U}(1)$.
 We set $* \otimes * := *$, $z \circ z' := zz'$ and $z \otimes z' := zz'$.
Higher groups

2-groups:

- Let G be a Lie group. Consider its fundamental groupoid $\pi_{\leq 1}G$:
 - objects = points $g \in G$, morphisms = \{paths γ in G\}/homotopies fixing endpoints.
 - This inherits a monoidal structure from the group structure of G.

- A 2-group is a monoidal groupoid in which every object has an inverse [Baez? Older?].

- Example: $\text{BU}(1)$ is the groupoid with objects = $\{\ast\}$ and morphisms = $\text{U}(1)$.
 - We set $\ast \otimes \ast := \ast$, $z \circ z' := z z'$ and $z \otimes z' := z z'$.

Even higher groups:

A group is (1) a set with a multiplication and (...), or (2) a groupoid with a single object.

An ∞-group is, equivalently, [Stasheff; Lurie]

- a coherently monoidal ∞-groupoids where each object has an inverse (multiplication encoded as monoidal structure), or

- an ∞-groupoid with a single object (multiplication encoded as composition).

Example: The based loop group $\Omega_x X$ of a topological space X [Stasheff].
Smooth spaces and smooth groups

Let Cart denote the category with objects $\{\mathbb{R}^n \mid n \in \mathbb{N}_0\}$ and morphisms all smooth maps $\mathbb{R}^n \to \mathbb{R}^m$. This has a Grothendieck coverage of good open covers [Fiorenza, Schreiber, Stasheff].

Let S denote the ∞-category of spaces (‘spaces’ = ‘∞-groupoids’).

Definition (Smooth space) [Schreiber]

A smooth space is an ∞-sheaf $X \in \mathcal{S}h_\infty(\text{Cart})$. We write \mathbb{H} for the ∞-category of smooth spaces. A smooth ∞-group is a group object in $\mathcal{S}h_\infty(\text{Cart})$.

- Interpretation: X assigns to each \mathbb{R}^n, $n \in \mathbb{N}_0$, the space of smooth maps $\mathbb{R}^n \to X$.

Let \(\mathbf{Cart} \) denote the category with objects \(\{ \mathbb{R}^n \mid n \in \mathbb{N}_0 \} \) and morphisms all smooth maps \(\mathbb{R}^n \to \mathbb{R}^m \). This has a Grothendieck coverage of good open covers [Fiorenza, Schreiber, Stasheff]. Let \(\mathcal{S} \) denote the \(\infty \)-category of spaces (‘spaces’ = ‘\(\infty \)-groupoids’).

Definition (Smooth space) [Schreiber]

A smooth space is an \(\infty \)-sheaf \(X \in \mathbf{Sh}_\infty(\mathbf{Cart}) \). We write \(\mathbb{H} \) for the \(\infty \)-category of smooth spaces. A smooth \(\infty \)-group is a group object in \(\mathbf{Sh}_\infty(\mathbf{Cart}) \).

- **Interpretation:** \(X \) assigns to each \(\mathbb{R}^n, n \in \mathbb{N}_0 \), the space of smooth maps \(\mathbb{R}^n \to X \).

- **Example:** If \(M \) is a manifold, then \(\mathbb{R}^n \mapsto Mfd(\mathbb{R}^n, M) \) defines an object \(M \in \mathbb{H} \).
 This furnishes an embedding \(Mfd \hookrightarrow \mathbb{H} \).

- \(\mathbb{B}U(1) \) is a smooth \(\infty \)-group with \(\mathbb{B}U(1)(\mathbb{R}^n) = N(\text{Mfd}(\mathbb{R}^n, \mathbb{U}(1)) \rightrightarrows *) \cong \mathbf{Bun}(\mathbb{R}^n; \mathbb{U}(1)) \).

- There are smooth \(\infty \)-groups \(\mathbf{Bun}_\nabla(\dashv; \mathbb{U}(1)) \) without an ‘underlying space/Lie groupoid’.
With a notion of (smooth) higher groups at hand, we can build higher principal bundles.

- Works in a particular type of ∞-categories, the ∞-topoi [Giraud; Rezk; Lurie].

- **Example:** Both S and \mathcal{H} are ∞-topoi. The EEpis in S are those maps which are surjective on π_0.

Definition (Principal ∞-bundle) [Nikolaus, Schreiber, Stevenson; SB]

Let \mathcal{X} be an ∞-topos and G a group object in \mathcal{X}. A **G-principal ∞-bundle** consists of an effective epimorphism $P \to X$ in \mathcal{X} and a fibre-preserving G-action on P such that the canonical morphism $P \times G \to P \times_X P$ is an equivalence.

Examples:

- For G a Lie group, the canonical map $\ast \to BG$ is a G-principal ∞-bundle (G acts trivially).

- A **(bundle) gerbe** is equivalently a $\text{BU}(1)$-principal ∞-bundle.
Parallel transport for a strict type of 2-bundles was introduced by [Baez, Schreiber '04], later linked to connections [Schreiber, Waldorf '07; Faria Martins, Picken '10; Waldorf '17; Saemann, Schmidt, Kim '19;...].

For higher bundles whose structure ∞-group arises as an integration of an L_∞-algebra, a general formalism was provided by [Sati, Schreiber, Stasheff '08].

For ∞-groups with another strictness condition, connections and parallel transport on trivial bundles was given by [Kapranov '07, '15] using the free Lie algebroid on the tangent bundle TM.

A theory of holonomy for flat connections and its relation to ∞-local systems was developed by [Abad, Schätz '14].

An approach using rational homotopy for bundles controlled/classified by a discrete space by [Fiorenza, Sati, Schreiber '20].

...
Higher connections—(some of) what happened so far

- Parallel transport for a **strict** type of **2-bundles** was introduced by [Baez, Schreiber '04], later linked to connections [Schreiber, Waldorf '07; Faria Martins, Picken '10; Waldorf '17; Saemann, Schmidt, Kim '19;...].

- For higher bundles whose structure ∞-group arises as an integration of an L_∞-algebra, a general formalism was provided by [Sati, Schreiber, Stasheff '08].

- For ∞-groups with another **strictness condition**, connections and parallel transport on trivial bundles was given by [Kapranov '07, '15] using the free Lie algebroid on the tangent bundle $T M$.

- A theory of holonomy for **flat** connections and its relation to ∞-local systems was developed by [Abad, Schätz '14].

- An approach using rational homotopy for bundles controlled/classified by a **discrete** space by [Fiorenza, Sati, Schreiber '20].

- ...
Higher connections as infinitesimal symmetries

Derived geometry and deformation theory
For $G \in \text{Grp}(\mathcal{X})$, let $BG \in \mathcal{X}$ denote the quotient of the trivial action of G on the point \ast.

Definition (Classifying object) [Nikolaus, Schreiber, Stevenson]

The object BG is called the **classifying object of G**.

Theorem [Nikolaus, Schreiber, Stevenson]

Let $X \in \mathcal{X}$. There is an equivalence of ∞-groupoids

$$\mathcal{Bun}(X; G) \simeq \mathcal{X}(X, BG).$$
Classifying stacks

For $G \in \mathcal{G}p(X)$, let $BG \in X$ denote the quotient of the trivial action of G on the point \ast.

Definition (Classifying object) [Nikolaus, Schreiber, Stevenson]

The object BG is called the **classifying object of G**.

Theorem [Nikolaus, Schreiber, Stevenson]

Let $X \in \mathcal{X}$. There is an equivalence of ∞-groupoids

\[\mathcal{B}un(X; G) \simeq \mathcal{X}(X, BG) . \]

If $p : X \to BG$ classifies a G-principal ∞-bundle $P \to X$, the symmetries of P are the ‘deformations’
For infinitesimal symmetries of P, study infinitesimal deformations of its classifying map
$$p: X \to BG.$$

Incorporate infinitesimals into the formalism of smooth spaces: derived differential geometry (DDG) [Lawvere; Dubuc; Moerdijk, Reyes; Kock; Spivak; Carchedi, Steffens; Nuiten; ...].

- This works by incorporating algebra: the functions $C^\infty(M; \mathbb{R})$ on each manifold form a C^∞-ring.
- Roughly speaking, DDG is algebraic geometry over dg- or simplicial C^∞-rings; it behaves differently form (derived) algebraic geometry, e.g. due to existence of partitions of unity.
- Strongly related to dg/higher Lie geometry [Xu, Zhu, Behrend, Weinstein, Gualtieri, Ševera, ...].
We replace Cart by Cart\(_{th}\), whose function algebras are of the form \(C^\infty(\mathbb{R}^n; \mathbb{R}) \otimes W\), where \(W\) is a local algebra with nilpotent ideal. These are the infinitesimal thickenings of the \(\mathbb{R}^n\)s.

Definition (Formal smooth space)

A **formal smooth space** is an \(\infty\)-sheaf \(X \in Sh_\infty(\text{Cart}_{th})\). We denote this \(\infty\)-topos by \(\mathbb{H}_{th}\).
We replace \(\text{Cart} \) by \(\text{Cart}_{th} \), whose function algebras are of the form \(C^\infty(\mathbb{R}^n; \mathbb{R}) \otimes W \), where \(W \) is a local algebra with nilpotent ideal. These are the infinitesimal thickenings of the \(\mathbb{R}^n \)s.

Definition (Formal smooth space)

A **formal smooth space** is an \(\infty \)-sheaf \(X \in \text{Sh}_\infty(\text{Cart}_{th}) \). We denote this \(\infty \)-topos by \(\mathcal{H}_{th} \).

Example: We now indeed capture infinitesimal deformations of smooth geometric data intrinsically: Consider the space \(\mathbb{R}_\epsilon \) with function \(C^\infty \)-ring \(\mathbb{R} \otimes \mathbb{R}[\epsilon]/\epsilon^2 \). Then,

\[
\mathcal{H}_{th}(\mathbb{R}_\epsilon, M) \cong TM \quad \text{(as a set)}.
\]

Remark: There is a fully faithful embedding \(\mathcal{H} \hookrightarrow \mathcal{H}_{th} \).
Let k be a field of characteristic zero and A a connective commutative dg algebra over k.

Definition (L_∞-algebroid)

A L_∞-algebroid over A is a dg module E over A together with an anchor map $\rho: E \to T_A$ and a family of brackets $[-]_{n,E}: E^\otimes n \to E$ of degree $2 - n$ such that

1. the brackets turn E into an L_∞-algebra (antisymmetry, coherent Jacobi),
2. ρ is a morphism of L_∞-algebras, and
3. $[-]_{n,E}$ satisfies the Leibniz rule

$$[[\xi, f \cdot \eta], E] = (-1)^{|f|} f \cdot [\xi, \eta]_E + \rho(\xi)(f) \cdot \eta,$$

for $n = 2$ and is graded A-linear for $n > 2$.

If $[-]_{n,E} = 0$ for all $n > 2$, then $(E, [-, -]_E, \rho)$ is called a dg Lie algebroid over A.

Morphisms of L_∞-algebroids: tower of $\phi_1: g \to h$ and $\phi_n: g^b_n \to h^r_n$ with coherences.

Conveniently encoded using Chevalley-Eilenberg CDGCs. Our situation: $A = C_8^p M_q$; we then speak of L_∞-algebroids on M.
Let k be a field of characteristic zero and A a connective commutative dg algebra over k.

Definition (L_∞-algebroid)

A L_∞-algebroid over A is a dg module E over A together with an anchor map $\rho: E \to TA$ and a family of brackets $[-]_{n,E}: E^\otimes n \to E$ of degree $2 - n$ such that

1. the brackets turn E into an L_∞-algebra (antisymmetry, coherent Jacobi),
2. ρ is a morphism of L_∞-algebras, and
3. $[-]_{n,E}$ satisfies the Leibniz rule

$$[\xi, f \cdot \eta]_E = (-1)^{|\xi||f|} f \cdot [\xi, \eta]_E + \rho(\xi)(f) \cdot \eta.$$

for $n = 2$ and is graded A-linear for $n > 2$.

If $[-]_{n,E} = 0$ for all $n > 2$, then $(E, [-, -]_E, \rho)$ is called a **dg Lie algebroid** over A.

Morphisms of L_∞-algebroids: tower of $\phi_1: \mathfrak{g} \to \mathfrak{h}$ and $\phi_n: \mathfrak{g}^\otimes n \to \mathfrak{h}[n]$ with coherences. Conveniently encoded using Chevalley-Eilenberg CDGCs.

Our situation: $A = C^\infty(M)$; we then speak of L_∞-algebroids on M.

L_∞-algebroids and dg Lie algebroids
Definition (Formal moduli problem over A) [Nuiten '17]

Let k be a field of characteristic zero and A be a connective commutative k-algebra. A **formal moduli problem (FMP) over A** is a functor $F: (\text{CAlg}_k^{\text{Art}})_A \to \mathcal{S}$ such that

1. $F(A) \simeq \ast$, and
2. F maps square-zero extensions to pullbacks.

Theorem [Nuiten '17]

There is an equivalence of ∞-categories

$$\text{MC}: L_{\infty} \text{Agd}_A \xrightarrow{\sim} \text{FMP}(A).$$
We are interested in the FMP describing deformations of the classifying map \(p: M \to BG \).

Definition (Atiyah \(L_\infty \)-algebroid) [SB, Müller, Nuiten, Szabo]

Let \(G \) be a smooth \(\infty \)-group and \(P \to M \) a \(G \)-principal \(\infty \)-bundle classified by a morphism \(p: M \to BG \) in \(\mathbb{H}_{(th)} \). The **Atiyah \(L_\infty \)-algebroid** \(\text{At}(P) \) **of** \(P \) is the \(L_\infty \)-algebroid corresponding to the above FMP under Nuiten’s theorem.
Defining higher connections, circumventing flatness

We are interested in the FMP describing deformations of the classifying map $p: M \to BG$.

Definition (Atiyah L_∞-algebroid) [SB, Müller, Nuiten, Szabo]

Let G be a smooth ∞-group and $P \to M$ a G-principal ∞-bundle classified by a morphism $p: M \to BG$ in $\mathbb{H}_{(th)}$. The **Atiyah L_∞-algebroid** $\text{At}(P)$ of P is the L_∞-algebroid corresponding to the above FMP under Nuiten’s theorem.

Goal: Define (not necessarily flat) connections on generic ∞-bundles P.

For $l \in \mathbb{N}$, there is an ∞-functor $Q^{(l)}: L_\infty \text{Agd}_A \to L_\infty \text{Agd}_A$ which truncates away all terms in $CE_\ast(g)$ containing more than l tensor factors, i.e. $CE_\ast(Q^{(l)}g) = \text{Sym}^{1 \leq \bullet \leq l}_{C^\infty(M)}(g)$ [Nuiten].

Definition (Space of l-connections) [SB, Müller, Nuiten, Szabo]

The ∞-groupoid of l-connections on P is the mapping space

$$\text{Con}_l(P) := L_\infty \text{Agd}_{C^\infty(M)}(Q^{(l)}\mathcal{X}(M), \text{At}(P)) \in S.$$
Case studies

Testing the new model
First check: If $P \to M$ is an ordinary principal bundle (G a Lie group), then

$$\text{Con}_1(P) = \{\text{classical connections on } P\}, \quad \text{Con}_l(P) = \{\text{flat conns. on } P\}, \quad \forall l > 1. \quad \checkmark$$
Higher $U(1)$-bundles/n-gerbes

First check: If $P \to M$ is an ordinary principal bundle (G a Lie group), then

$$\text{Con}_1(P) = \{\text{classical connections on } P\}, \quad \text{Con}_l(P) = \{\text{flat conn. on } P\}, \quad \forall l > 1. \quad \checkmark$$

Particularly well-known higher case: connections on n-gerbes/higher $U(1)$-bundles.

Definition (n-gerbe with l-connection) [Deligne; Gajer; SB, Shahbazi]

Let $\mathcal{U} = \{U_a\}_{a \in \Lambda}$ be a good open covering of M.

1. An $(n-1)$-gerbe/$B^nU(1)$-bundle on M is a collection $g = (g_{a_0\ldots a_n} : U_{a_0\ldots a_n} \to U(1))$ satisfying the Čech cocycle condition, $\delta g := \prod_{i=0}^{n} (-1)^i g_{a_0\ldots \hat{a}_i\ldots a_n} = 1$.

Higher $U(1)$-bundles/n-gerbes

First check: If $P \rightarrow M$ is an ordinary principal bundle (G a Lie group), then

$$\text{Con}_1(P) = \{\text{classical connections on } P\}, \quad \text{Con}_l(P) = \{\text{flat conn. on } P\}, \quad \forall l > 1. \quad \checkmark$$

Particularly well-known higher case: connections on n-gerbes/higher $U(1)$-bundles.

Definition (n-gerbe with l-connection) [Deligne; Gajer; SB, Shahbazi]

Let $\mathcal{U} = \{U_a\}_{a \in \Lambda}$ be a good open covering of M.

1. An $(n-1)$-gerbe/B$^nU(1)$-bundle on M is a collection $g = (g_{a_0\ldots a_n} : U_{a_0\ldots a_n} \rightarrow U(1))$ satisfying the Čech cocycle condition, $\delta g := \prod_{i=0}^{n} (-1)^i g_{a_0\ldots \hat{a}_i\ldots a_n} = 1$.

2. An l-connection on an n-gerbe g is a tuple $(A^{(1)}, \ldots, A^{(l)})$, where

$$A^{(p)} = (A^{(p)}_{a_0\ldots a_{n-p}} \in \Omega^p(U_{a_0\ldots a_{n-p}}))$$

and such that

$$d \log(g) = \delta A^{(1)}, \quad dA^{(p)} = (-1)^p \delta A^{(p+1)} \quad \forall \; p = 1, \ldots, l - 1.$$

For each $0 \leq l \leq n + 1$, there is an ∞-groupoid $\text{Grb}^n_{\nabla| l}(M)$ of n-gerbes with l-connections.
Example: 0-gerbes are the same as $U(1)$-bundles.
1-gerbes with connections model the B-field in string theory/SuGra [Kapustin; Witten]
n-gerbes with $(n+1)$-connection model differential cohomology [Deligne; Brylinski; Gajer; Schreiber]
*connections on \(n \)-gerbes

Example: 0-gerbes are the same as \(U(1) \)-bundles.

1-gerbes with connections model the B-field in string theory/SuGra \([\text{Kapustin; Witten}]\)

\(n \)-gerbes with \((n+1)\)-connection model differential cohomology \([\text{Deligne; Brylinski; Gajer; Schreiber}]\)

(Space of connections) \([\text{SB, Shahbazi}]\)

The **space of \(l \)-connections** on an \(n \)-gerbe \(g \) is the (homotopy) fibre \([\text{SB, Shahbazi}]\)

\[
\begin{align*}
\text{Con}_{\text{geo},l}(g) & \longrightarrow \text{Grb}_{\nabla|l}^n(M) \\
\downarrow & \\
\ast & \longrightarrow \text{Grb}^n(M)
\end{align*}
\]

Question: Is this space equivalent to the one obtained from our \(L_\infty \)-algebroid picture?
The Atiyah L_∞-algebroid of an n-gerbe

Theorem [Nuiten; SB, Müller, Nuiten, Szabo]

Let g describe an n-gerbe on M. Its Atiyah L_∞-algebroid is the dg Lie algebroid

$$
C^\infty(U^{[0]}) \xrightarrow{\delta} \cdots \xrightarrow{\delta} C^\infty(U^{[n-1]}) \xrightarrow{(0, \delta)} E_n(g),
$$

where $E_n(g) = \{ (X, f) \in \mathcal{X}(M) \times C^\infty(U^{[n]}) \mid \delta f = (-1)^{n+1} d \log(g)(X) \}$.

The anchor map is the projection onto $\mathcal{X}(M)$, and the bracket is the Lie derivative of functions and vector fields.
The Atiyah L_∞-algebroid of an n-gerbe

Theorem [Nuiten; SB, Müller, Nuiten, Szabo]

Let g describe an n-gerbe on M. Its Atiyah L_∞-algebroid is the dg Lie algebroid

$$C^\infty(U[0]) \xrightarrow{\delta} \cdots \xrightarrow{\delta} C^\infty(U[n-1]) \xrightarrow{(0, \delta)} E_n(g),$$

where

$$E_n(g) = \{(X, f) \in \mathfrak{X}(M) \times C^\infty(U[n]) \mid \delta f = (-1)^{n+1} d \log(g)(X)\}.$$

The anchor map is the projection onto $\mathfrak{X}(M)$, and the bracket is the Lie derivative of functions and vector fields.

Theorem [SB, Müller, Nuiten, Szabo]

For any n-gerbe g on M, there is an equivalence of $(l-1)$-groupoids

$$\text{Con}_{\text{geo}, l}(g) \simeq \text{Con}_{l}(g).$$

This is an algebraic description of differential cohomology.
Proof (sketch)

- Goal: compute explicitly the mapping space $\text{Map}_{L_{\infty}\mathcal{A}dg_{C^{\infty}(M)}}(Q^{(l)}\mathcal{X}(M), \text{At}(g))$.

- Use model structure on $L_{\infty}\mathcal{A}dg_{C^{\infty}(M)}$: $Q^{(l)}\mathcal{X}(M)$ is $C^{\infty}(M)$-cofibrant.
Proof (sketch)

- Goal: compute explicitly the mapping space \(\text{Map}_{L^\infty \mathcal{A} \text{gd}^{dg}_{C^\infty(M)}} \left(Q^{(l)} \mathcal{X}(M), \text{At}(g) \right) \).
- Use model structure on \(L^\infty \mathcal{A} \text{gd}^{dg}_{C^\infty(M)} \): \(Q^{(l)} \mathcal{X}(M) \) is \(C^\infty(M) \)-cofibrant.
- Find manageable simplicial resolution of \(\text{At}(g) \): we give a general, explicit construction for ‘semi-abelian extensions’ of a dg Lie algebroid structure on
 \[
 [n] \mapsto \text{Hom}_k \left(C_\bullet(\Delta^n; k), \text{ch}_k(g) \right),
 \]
 which in this case allows us to simplify formal constructions of [Getzler; Robert-Nicoud, Vallette].
- Lemma: if \(g \) is fibrant (surjective anchor map) this produces a simplicial resolution \(\hat{g} \) of \(g \).
Proof (sketch)

- **Goal:** Compute explicitly the mapping space \(\text{Map}_{L_\infty \mathcal{A} \text{gd}^{\text{dg}}_{C^{\infty}(M)}} (Q^{(l)} \mathcal{X}(M), \text{At}(g)) \).

- **Use model structure on** \(L_\infty \mathcal{A} \text{gd}^{\text{dg}}_{C^{\infty}(M)}: Q^{(l)} \mathcal{X}(M) \) is \(C^{\infty}(M) \)-cofibrant.

- **Find manageable simplicial resolution of** \(\text{At}(g) \): we give a general, explicit construction for ‘semi-abelian extensions’ of a dg Lie algebroid structure on

\[
[n] \mapsto \text{Hom}_k(C_\ast(\Delta^n; k), \text{ch}_k(\mathfrak{g})),
\]

which in this case allows us to simplify formal constructions of [Getzler; Robert-Nicoud, Vallette].

- **Lemma:** If \(\mathfrak{g} \) is fibrant (surjective anchor map) this produces a simplicial resolution \(\hat{\mathfrak{g}} \) of \(\mathfrak{g} \).

- **The mapping space is thus modelled by the simplicial set**

\[
[n] \mapsto L_\infty \mathcal{A} \text{gd}^{\text{dg}}_{C^{\infty}(M)} (Q^{(l)} \mathcal{X}(M), \hat{\mathfrak{g}}_n).
\]

- **Explicit computation:** We have an isomorphism of simplicial sets

\[
L_\infty \mathcal{A} \text{gd}^{\text{dg}}_{C^{\infty}(M)} (Q^{(l)} \mathcal{X}(M), \hat{\mathfrak{g}}_n) \cong \text{Con}_{\text{geo,l}}(g).
\]
Thank you for your attention!