Quantum Hall effect in Bose-Einstein condensates

Tiaqi Chen, Nanyang Technological University

Jonathan Dowling, Louisiana State University

TB and Dowling Phys. Rev. A **92**, 023629 (2015) Chen and TB Phys. Rev. B 99, 184427 (2019)

Quantum information using ensembles/BECs

Quantum metrology

Interferometry

Heisenberg $\phi \propto 1/N$ Statistics $\phi \propto 1/\sqrt{N}$

Gross J. Phys. B AMO Phys. 45, 103001 (2012)

Quantum simulation

Understanding quantum many body problems

M. Greiner et al. Nature 415, 39 (2002)

Quantum information

Entanglement and teleportation ensembles Julsgaard Nature 413, 400 (2001); Krauter Nature Phys. 9, 400 (2012)

Quantum computing Lukin Phys. Rev. Lett. 87, 037901 (

Lukin Phys. Rev. Lett. 87, 037901 (2001); Brion Phys. Rev. Lett. 99, 260501 (2007);

Quantum assisted interferometry

Standard trick to obtain quantum enhancement

Standard quantum limit:

$$|a\rangle \rightarrow |c\rangle + |d\rangle \rightarrow |c\rangle + e^{i2\theta} |d\rangle \rightarrow \cos\theta |a\rangle + \sin\theta |b\rangle \qquad \theta \propto 1/\sqrt{N}$$

Heisenberg limit:

$$|Na\rangle \xrightarrow{NL} |Nc\rangle + |Nd\rangle \rightarrow |Nc\rangle + e^{i2N\theta} |Nd\rangle \xrightarrow{NL} \cos N\theta |Na\rangle + \sin N\theta |Nb\rangle$$
$$\theta \propto 1/N$$

Enhancement by squeezing

Topological quantum states for metrology

The quantum Hall effect (QHE) forms the standard for electrical resistance, due to its extremely precise quantization of resistance

Observing the (bosonic) quantum Hall effect in ultracold atoms

It has been the aim for some time to observe quantum Hall type experiments in ultracold atoms:

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 r^2 - \mathbf{\Omega} \cdot \mathbf{L}$$

Can be rewritten as

$$H = \frac{(\boldsymbol{p} - m\boldsymbol{\Omega} \times \boldsymbol{r})^2}{2m} + \frac{1}{2}m(\omega^2 - \Omega^2)r^2$$

$$A = \mathbf{\Omega} \times \mathbf{r}$$
 $B = \mathbf{\nabla} \times A = 2\mathbf{\Omega}$

i.e. rotation = effective magnetic field + anti-trapping

Mass plays the role of charge!

Full realization of QHE remains elusive

Fetter Rev. Mod. Phys. **81**, 647 (2009) Aidelsburger Nature Phys. **11**, 162 (2014).

Another approach

Consider a BEC in a long channel, with the presence of vortices

Assume that the vortices are pinned to a particular location, and they can be controlled with bluedetuned lasers

E. C. C. Samson, PRA 93, 023603 (2016).

Magnus force

 $\vec{F}_{magnus} = \rho_s \vec{K} \times (\vec{v}_{vortex} - \vec{v}_s)$

Thouless Phys. Rev. Lett. 76, 3758 (1996)

If the vortex is moved, it will experience a Magnus force. For a pinned vortex, it will push the BEC to the right.

The amount of current that is created is a topological invariant, as we show.

Connections between the Berry phase and the magnus force has been known for some time

Ao Phys. Rev. Lett.70, 2158 (1993)

Single vortex

The total current in the x-direction is

$$J_x = \frac{\langle p_x \rangle}{m} = \int d\boldsymbol{r} j_x(\boldsymbol{r})$$

Local current: $\boldsymbol{j}(\boldsymbol{r}) = -\frac{i\hbar}{2m} \left[\psi(\boldsymbol{r})^* \nabla \psi(\boldsymbol{r}) - \psi(\boldsymbol{r}) \nabla \psi(\boldsymbol{r})^* \right]$

Now make assumption:

$$\psi(x,y) = \sqrt{\rho(y)}e^{iS(x,y)}$$

i.e. the density dependence is uniform along the channel

Current for one vortex

Under the assumption, since $\ \ oldsymbol{j}=rac{\hbar}{m}
hooldsymbol{
abla}S$

$$J_x = \frac{\hbar}{m} \int_{-\infty}^{\infty} dy \rho(y) \int_{-\infty}^{\infty} dx \frac{\partial S(x,y)}{\partial x}$$

The x-integral can be evaluated exactly!

$$I(C) = \oint \nabla S \cdot d\boldsymbol{l} = 2\pi$$

The phase around a vortex is 2π independent of the path

$$I(C_A) - I(C_B) = 2\pi$$

At
$$x = \pm \infty$$
 the phase change is 0

$$I(C_A) = k_0 - \pi$$
 (above vortex)
 $I(C_B) = k_0 + \pi$ (below vortex)

This gives

$$J_x = \frac{\hbar k_0 \mathcal{N}}{m} + \frac{h}{2m} A_y$$

Current-asymmetry proportionality

Asymmetry parameter:

$$A_y = \int_{-\infty}^{y_1} dy \rho(y) - \int_{y_1}^{\infty} dy \rho(y)$$

(Number of particles above the vortex – Number of particles below the vortex)

 \mathcal{N} = Total number of particles in BEC

Current-vortex position relation

δ

For an infinitesimal vortex displacement

$$\rho(y_1)$$
 = density at vortex position

$$J_x = \frac{h}{2m} [A_y(y_1 + \delta y) - A_y(y_1)]$$

= $\frac{h}{m} \int_{y_1}^{y_1 + \delta y} dy \rho(y)$
 $\approx \frac{h}{m} \delta y \rho(y_1).$

Agrees with Laughlin's gauge argument

- 1) Create vortex-antivortex pair
- 2) Wrap around in y-direction and annhilate
- 3) There is a phase in the x-direction like

 $e^{2\pi i x/L_x}$

- 4) The momentum is $\Delta p_x = \frac{2\pi\hbar\mathcal{N}}{L_x}$ = $2\pi\hbar nL_y$
- 5) Integrating gives same as above

Some numerics

Simulate 2D Gross Pitaevskii equation in a harmonic trap in y-direction

$$i\hbar\frac{\partial\psi}{\partial t} = \left[-\frac{\hbar^2\nabla^2}{2m} + \frac{1}{2}m\omega_y^2y^2 + V_0\sum_k\delta(\mathbf{r} - \mathbf{r}_k) + g|\psi|^2\right]\psi$$

Use open boundaries in y-direction, antiperiodic Mobius boundary conditions in x-direction

One vortex case

Length scale is healing length

$$\xi = \sqrt{\frac{\hbar^2}{2mgn}}$$

$$\hbar\omega_y/E_0 = 0.02, \ V_0/E_0 = 1, \ k_0 = 0$$

Multi-vortex version

Estimate of h/m

Why only 1%?

- Due to numerical restrictions, only short channels simulated
- Vortex size corrections significant?
- Numerical issues?

Quantum hall behavior

We can get a very quantum Hall effect like curve by assuming that the number of vortices is generated according to

$$N = \left\lfloor \kappa \frac{\Omega/\omega_c}{\sqrt{1 - (\Omega/\omega_c)^2}} \right\rceil$$

A. Kato, Phys. Rev. A 84, 053623 (2011).

 ωc = critical rotation frequency where vortices proliferate K= proportionality constant

$$G_0 = \frac{h}{2m}$$

Skyrmion quantum spin Hall effect

Using this new quantized spin current, we can define a new kind of QSHE

Then the total quantized spin current is

$$J_{\rm Q}^x \equiv \int_{-\infty}^{\infty} j_{\rm Q}^x(x) dx dy = \int_{-\infty}^{\infty} I(y) dy = j_0 w + \frac{h}{M} \bar{m} y_{\rm s}$$

Current-asymmetry relation

For a uniform spin density, the transverse quantity is the vortex displacement

$$\sigma_{\rm Q} = \frac{dJ_{\rm Q}^x}{dy_{\rm s}} = \frac{h}{M}\bar{m}$$

For a non-uniform spin density, we can define an asymmetry parameter as before

$$A_y = \int_{\infty}^{y_s} \rho(y) dy - \int_{y_s}^{\infty} \rho(y) dy$$

$$\sigma_{Q} = \frac{dJ_{Q}^{x}}{dA_{y}}$$

Chen and TB Phys. Rev. B 99, 184427 (2019)

S=1 BEC Example

Consider a S=1 spin texture, e.g. a Rb87 BEC

$$|\psi(\boldsymbol{x})\rangle = e^{i(f(\boldsymbol{x})+g(\boldsymbol{x})\boldsymbol{u}\cdot\boldsymbol{S})}|\psi_0\rangle$$

$$\boldsymbol{S} = (S_x, S_y, S_z)$$

 $u = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$

$$f(\mathbf{x}) = m\theta \qquad g(\mathbf{x}) = m'\theta n(\mathbf{x}) \qquad n(\mathbf{x}) = 1 + \gamma \sum_{i} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{|\mathbf{x} - \mathbf{x}_i|^2}{2\sigma^2}}$$

(noise function)
$$j^{(l)}(x) \equiv -\frac{i\hbar}{2M} \langle \psi(x) | (u \cdot S)^l | \nabla \psi(x) \rangle + \text{H.c}$$

Ith order spin currents

Current-asymmetry relations

For various choices of f(x) and g(x)

Perfect linear relations

Deviation from ideal relation

Very accurate quantization, even for large noise

Summary and conclusions

- Topological quantum states offer an exciting route towards quantum metrology and computing
- Kitaev chains can store quantum information robustly using Majorana Zero Modes.
- Experimentally performed quantum simulation of teleportation of anyon encoded states.
- Proposed a simple way to observe quantum Hall physics by manipulating vortices in BECs
- Conductance plateaus seen in units of m/h : a potential method of precisely measuring the mass of the BEC atoms
- Requires a precise measurement of the vortex position in the density distribution. This can be performed using phase contrast imaging

References

Teleportation Majoranas: Huang, Narozniak, TB et al. Phys. Rev. Lett. **126**, 090502 (2021) QHE in BEC: TB and Dowling Phys. Rev. A **92**, 023629 (2015) QSHE: Chen and TB Phys. Rev. B 99, 184427 (2019)

Acknowledgments

Tianqi Chen, SUDT

Jon Dowling, LSU

This work is supported by the Shanghai Research Challenge Fund; New York University Global Seed Grants for Collaborative Research; National Natural Science Foundation of China (61571301); the Thousand Talents Program for Distinguished Young Scholars (D1210036A); and the NSFC Research Fund for International Young Scientists (11650110425); NYU-ECNU Institute of Physics at NYU Shanghai; the Science and Technology Commission of Shanghai Municipality (17ZR1443600); and the China Science and Technology Exchange Center (NGA-16-001).