
CLASSIFICATION OF SURFACES

CHEN HUI GEORGE TEO

Abstract. The sphere, torus, Klein bottle, and the projective plane are the

classical examples of orientable and non-orientable surfaces. As with much of

mathematics, it is natural to ask the question: are these all possible surfaces,
or, more generally, can we classify all possible surfaces? In this paper, we

examine a result originally due to Seifert and Threlfall that all compact surfaces

are homeomorphic to the sphere, the connect sum of tori, or the connect sum
of projective planes; for this paper, we follow a modern proof from Lee [2].
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1. Introduction

In this paper, we prove that all compact surfaces are homeomorphic to the sphere,
the connect sum of tori, or the connect sum of projective planes. We develop the
notion of Euclidean simplicial complexes to understand the triangulation theorem,
and the idea of polygonal presentations as a combinatorial view of a surface. We
then prove the classification theorem for surfaces by proving that given any surface,
we can get to the polygonal presentation of the sphere, the connect sum of tori, or
the connect sum of projective planes via a sequence of elementary transformations
which preserve the surface up to homeomorphism.

We assume the reader is comfortable with point-set topology from the basic
notions of a topological space and topological continuity to Hausdorffness, com-
pactness, connectedness and constructing new spaces via the subspace, product,
and quotient topology. Two results from point-set topology that we will use often
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deserve special mention: the uniqueness of the quotient topology, which states that
given two quotient maps from the same space, if the maps make the same identifi-
cations, then the two resultant quotient spaces are homeomorphic, and the closed
map lemma, which states that a map from a compact space to a Hausdorff space
is a quotient map if it is surjective, and a homeomorphism if it is bijective. We
also assume the reader is familiar with linear algebra, in particular affine maps and
transformations.

2. Surfaces

We begin by defining our mathematical object of study: the surface.

Definition 2.1. A surface is a 2-manifold, by this we mean a second countable
Hausdorff space that is locally homeomorphic to R2.

The classic examples of surfaces are the sphere, the torus, the Klein bottle, and
the projective plane.

The torus T2 is the subset of R3 formed by rotating the circle S1 of radius 1
centered at 2 in the xz-plane around the z axis.

Figure 1. A torus as the rotation of a circle around the z-axis.

Equivalently, we see that the torus is homeomorphic to the quotient space of
I × I (where I denotes the closed unit interval) modulo the equivalence relation
given by (x, 0) ∼ (x, 1) for all x ∈ I and (0, y) ∼ (1, y) for all y ∈ I.

Figure 2. The torus as the identification of I × I.
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More generally, given an even sided polygon, identifying edges pairwise will al-
ways result in a surface. However, is the converse true?

Question 2.2. Can every surface be constructed from a polygon with the edges
identified in an appropriate manner?

To answer this question, we shall first prove that every surface can be ‘covered’
by finitely many triangles that are connected at an edge, thus by taking the convex
polygon spanned by these triangles, we obtain a polygon whose quotient space is
the surface. To achieve this goal, we shall rigorously define the idea of a complex
of triangles.

3. Triangulation

3.1. Euclidean Simplicial Complex. In this section, we introduce the idea of a
simplicial complex, which will serve as the triangular building blocks of manifolds.

Definition 3.1. Given points v0, . . . , vk in general position (by which we mean
{v1 − v0, . . . , vk − v0} are linearly independent) in Rn, the simplex spanned by
them is the set of points

{x ∈ Rn | x =

k∑
i=0

tivi such that 0 ≤ ti ≤ 1 and

k∑
i=0

ti = 1}

with the subspace topology.
Each point vi is a vertex of the simplex and we sometimes denote the simplex
spanned by vertices {v0, . . . , vk} by 〈v0, . . . , vk〉. The dimension of σ is k.

Definition 3.2. Let {v0, . . . , vk} be vertices of a simplex σ. The simplex spanned
by each non-empty subset of {v0, . . . , vk} is a face of σ. The simplex spanned by a
proper subset of vertices is a proper face. The (k − 1)-dimensional faces are called
boundary faces.

Figure 3. From left to right: a 0-simplex, 1-simplex, 2-simplex, 3-simplex.

We can combine simplices together to form a simplicial complex.

Definition 3.3. A Euclidean simplicial complex is a collection K of simplices in
Rn satisfying the following conditions:

(1) If σ ∈ K, then every face of σ is in K.
(2) The intersection of any two simplices in K is either empty or a face of each.
(3) Every point in a simplex of K has a neighborhood that intersects finitely

many simplices of K.

Definition 3.4. The dimension of a simplicial complex K is the maximum dimen-
sion of any simplex in K.
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The following is an example of a valid simplicial complex.

Figure 4. A 2-dimensional simplicial complex

For 2-dimensional simplicial complexes, like those pictured above, condition 2
means that simplicies intersect at either vertices or edges. The following is an
example of condition 2 being broken:

Figure 5. Not a simplicial complex

Definition 3.5. Given a Euclidean complex K, the union of all simplices in K is
a topological space denoted |K| with the subspace topology from Rn.

Definition 3.6. Let K be a Euclidean simplicial complex. For any non-negative
integer k, the subset K(k) ⊂ K, which is the subset of all simplices with dimension
less than or equal to k, is a subcomplex of K called the k-skeleton of K.

Definition 3.7. Further terminology:

(1) The boundary of a simplex is the union of it’s boundary faces. i.e., the
union of all proper faces. We denote the boundary of a simplex σ by ∂σ.

(2) The interior of a simplex is the simplex minus its boundary. We denote
the interior of a simplex σ by Int σ.

Whenever we have mathematical objects, a question that naturally arises is:
what are the functions that map between these objects. (e.g., group homomor-
phisms in group theory and linear maps in linear algebra.) In this subsection, we
study the maps between Euclidean simplicial complexes. We begin with a motivat-
ing proposition.

Proposition 3.8. Let σ = 〈v0, . . . , vk〉 be a k-simplex in Rn. Given k + 1 points
w0, . . . , wk ∈ Rm, there exists a unique map f : σ → Rm that is the restriction of
an affine map that maps vi to wi for each i.

Proof. We may assume that v0 = 0 and w0 = 0, since we can simply apply the
invertible affine transformations x 7→ x − v0 and y 7→ y − w0. Recall that for a
k-simplex, {v1 − v0, . . . , vk − v0} are linearly independent. In our case, we have
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{v1, . . . , vk} as linearly independent. We can let f : σ → Rm be the restriction
of any linear map such that vi 7→ wi for 1 ≤ i ≤ k. To prove that f is uniquely
determined by the map of the vertices, observe that

f(v) = f

(
k∑
i=0

tivi

)
=

k∑
i=0

tif(vi),

where v ∈ σ and ti has the usual conditions. �

Using this motivating proposition, we define a simplicial map:

Definition 3.9. Let K and L be two Euclidean simplicial complexes. A continuous
map f : |K| → |L| such that the restriction to each simplex of K maps to some
simplex in L via an affine map is a simplicial map.

Definition 3.10. The restriction of f (from the previous definition) to K(0) yields
a map f0 : K(0) → L(0) called the vertex map of f .

Definition 3.11. A simplicial map that is also a homeomorphism (recall that |K|
and |L| have topological structure) is a simplicial isomorphism.

Lemma 3.12. Let K and L be simplicial complexes. Suppose f0 : K(0) → L(0)

is any map satisfying the following: if {v0, . . . , vk} are vertices of a simplex of K,
then {f0(v0), . . . , f0(vk)} are vertices of a simplex of L. Then there is a unique
simplicial map f : |K| → |L| whose vertex map is f0.

Proof. Let f : |K| → |L| be a map such that the restriction to each simplex
σ = 〈v0, . . . , vk〉 maps the vertices of σ to the vertices {f0(v0), . . . , f0(vk)} of a
simplex in L via the vertex map f0. The convex hull 〈f0(v0), . . . , f0(vk)〉 is the
simplex in L spanned by {f0(v0), . . . , f0(vk)}. Thus, f is a simplicial map.

To show that f is uniquely determined by f0, notice that for any point v in each
simplex:

f(v) = f

(
k∑
t=0

tivi

)
=

k∑
t=0

tif(vi) =

k∑
t=0

tif0(vi),

where ti has the usual conditions. �

Lemma 3.13. Let K and L be simplicial complexes and f0 and f as above. The
function f is a simplicial isomorphism if: i) f0 is bijective, and ii) {v0, . . . , vk}
are vertices of a simplex of K if and only if {f0(v0), . . . , f0(vk)} are vertices of a
simplex of L.

Proof. From the previous lemma, we know that f is a simplicial map, it remains
to show that f is a homeomorphism from |K| to |L|. Since the vertex map f0
is bijective, the number of vertices in K equals the number of vertices in L, so
{v0, . . . , vk} are vertices in some simplex of K if and only if {f0(v0), . . . , f0(vk)} =
{w0, . . . , wk} are distinct vertices in L. So 〈v0, . . . , vk〉 and 〈w0, . . . , wk〉 are k-
dimensional simplicies in K and L respectively. Thus, σ is a k-simplex in K if and
only if f0(σ) (the convex hull of f0 applied to each vertex point in σ) is a simplex in
L, so |K| and |L| with the subspace topology are homeomorphic, so f is a simplicial
isomorphism. �
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3.2. Triangulation.

Definition 3.14. A polyhedron is a topological space that is homeomorphic to an
Euclidean simplicial complex

Definition 3.15. A triangulation is a particular homeomorphism between a topo-
logical space and a Euclidean simplicial complex.
Notice that there can be multiple different triangulations for a topological space.

Recall that I × I/ ∼ with the equivalence relation given by (x, 0) ∼ (x, 1) for
all x ∈ I and (0, y) ∼ (1, y) for all y ∈ I is homeomorphic to a torus. We can make
I × I into a simplicial complex K as pictured below:

Figure 6. The minimal triangulation of the torus.

The homeomorphism between this simplicial complex with the equivalence rela-
tion ∼ from above and the torus is a triangulation of the torus.

The following is a simple example of an invalid triangulation of the torus:

Figure 7. Not a triangulation of the torus.

It fails to be a triangulation, because given the identification of the sides of the
square region, the two simplexes share 3 edges and 3 vertices, which fails condition
2 of a simplicial complex.

The primary purpose of this section is to prove that all surfaces are triangulable.
This result was originally proven by Rado in the 1920’s.

Theorem 3.16 (Triangulation Theorem for 2-Manifolds). Every 2-Manifold is
homeomorphic to the polyhedron of a 2-dimensional simplicial complex, in which
every 1-simplex is a face of exactly two 2-simplices.
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Proof. The proof of this result is long and intricate, and, thus, we shall not present
it here. The basic approach is to cover the manifold with regular coordinate disks
and show that each disk can be triangulated compatibly. The main lemma that is
needed is the Schonflies Theorem, which states that a topological embedding of the
circle into R2 can be extended to an embedding of the closed disk. A proof of the
Schonflies Theorem and the triangulation theorem for surfaces can be obtained in
Mohar and Thomassen [1]. �

4. Polygonal Presentation

4.1. Polygons. We begin by formally defining a polygon.

Definition 4.1. A subset P of the plane is a polygonal region if it is a compact
(not necessarily connected) subset whose boundary is a 1-dimensional Euclidean
simplicial complex satisfying the following conditions:

(1) Each point q of an edge that is not a vertex has a neighborhood U ⊂ R2

such that P ∪ U is equal to the intersection of U with a closed half-plane
{(x, y) | ax+ by + c ≥ 0}.

(2) Each vertex v has a neighborhood V ⊂ R2 such that P ∪ V is equal to
the intersection of V with two closed half-planes whose boundaries only
intersect at v.

Condition 1 and 2, illustrated below, define a subset of R2 that is a polygon.

Figure 8. Left: Condition 1. Right: Condition 2.

A polygonal can be made into a surface by identifying pairs of edges.

Theorem 4.2. Let P be a polygonal region in the plane with an even number of
edges and suppose we are given an equivalence relation that identifies each edge with
exactly one other edge by means of a (Euclidean) simplicial isomorphism. Then the
resultant quotient space is a compact surface.

Proof. Let M be the quotient space P/ ∼ and let π : P →M denote the quotient
map. Since P is compact, f(P ) = M is compact. The equivalence relation identifies
only edges with edges and vertices with vertices so the points of M are either:

(1) face points - points whose inverse image in P are in IntP .
(2) edge points - points whose inverse images are on edges but not vertices.
(3) vertex points - points whose inverse images are vertices.

To prove that M is locally Euclidean, it suffices to consider the three types of
points.
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Face points - Because π is injective on Int P and π, being a quotient map is
surjective, π is bijective on Int P . So by the closed map lemma, π is a homeomor-
phism on Int P . Since Int P ⊂ R2 is a open set, R2 ∼= Int P ∼= π(Int P ), so every
face point is in a locally Euclidean neighborhood, namely π(Int P ).

Edge points - For any edge point q, pick a sufficiently small neighborhood such
that there are no vertex points in the neighborhood N . By the definition of a
polygonal region, q has two inverse images, q1 and q2 with neighborhoods U1 and
U2 such that V1 = U1 ∩ P and V2 = U2 ∩ P are disjoint half planes. Furthermore,
notice that π|V1∪V2 is also a quotient map. We construct affine homeomorphism
α1 and α2 such that α1 maps V1 to a half disk on the upper half plane and α2

maps V2 to the lower disk on the lower half plane. We can shrink V1 and V2
until they are saturated open sets in P ; i.e., for every boundary point of V1, the
corresponding boundary point is in V2 and vice versa. We can now define another
quotient map ϕ : V1 ∪ V2 → R2 such that ϕ = α1 on V1 and ϕ = α2 on V2.
Modulus the equivalence relation r1 ∼ r2, where r1 and r2 are edge points in V1
and V2 respectively, whenever ϕ(r1) = ϕ(r2). Notice that ϕ is a quotient map onto
a Euclidean ball centered at the origin and makes the same identifications as π.
By the uniqueness of the quotient map, the quotient spaces are homeomorphic, so
edge points are locally Euclidean.

Vertex points - Repeat the same process as the edge points, but this time there
will be multiple pieces of the polygon that are identified in a fanning manner in R2.
The resultant quotient space is homeomorphic to an open ball, so we may conclude
by appealing to the uniqueness of the quotient map. Therefore, we know that M
is locally Euclidean.

To show that M is Hausdorff, simply pick sufficient small balls. Since M is
the quotient space of the quotient map from the polygonal region P , the preimage
of any pair of points in M can be separated into disjoint open sets by picking
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sufficiently small open balls; the image of these open balls will be open sets in M
that separate the two points in M . �

The converse of this is also true: every compact surface is the quotient space of
a polygon with sides pairwise identified, but the proof of this is cleaner after we
develop the notion of a polygonal presentation, so we prove this in the next section.

Example 4.3. The sphere S2 = {(x, y, z) ∈ R3 | x2+y2+z2 = 1} is homeomorphic
to the square region S = {(x, y) | |x| + |y| ≤ 1} modulo the equivalence relation
(x, y) ∼ (−x, y) for (x, y) ∈ ∂S.

Figure 9. Polygon identification homeomorphism to sphere.

Example 4.4. The torus T2 is homeomorphic to the square region modulo the
equivalence relation (x, y) ∼ (−y,−x) for (x, y) ∈ ∂S.

Example 4.5. The Klein bottle K2 is homeomorphic to the square region modulo
the equivalence relation (x, y) ∼ (−x,−y) for (x, y) ∈ ∂S such that 0 ≤ x, y ≤ 1 or
−1 ≤ x, y ≤ 0, and another equivalence relation (x, y) ∼ (−y,−x) for (x, y) ∈ ∂S
such that −1 ≤ x ≤ 0 ≤ y ≤ 1 or −1 ≤ y ≤ 0 ≤ x ≤ 1.

Figure 10. Klein Bottle.

Example 4.6. The projective plane P2 is homeomorphic to the square region
modulo the equivalence relation (x, y) ∼ (−x,−y) for (x, y) ∈ ∂S.
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Figure 11. The identification of the square region that yields a
projective plane.

4.2. The Connect Sum of Surfaces. Given two surfaces, we wish to join them
in a natural way such that we end up with another surface. For example, given two
tori, the natural gluing process should result in a two hole torus. This operation is
called the connect sum.

Definition 4.7. Suppose X and Y are topological spaces, A is a closed subset of
Y , and f : A→ X is a continuous map, then we define an equivalence relation ∼ on
the disjoint union X q Y such that a ∼ f(a) for all a ∈ A. The resulting quotient
space (X q Y )/ ∼, denoted X ∪f Y is an adjunction space.

The connect sum is the adjunction space given a particular choice for the closed
set A.

Definition 4.8. Given surfaces M1 and M2 and regular coordinate balls Bi ⊂Mi,
the subspace M ′i := Mi \Bi are surfaces with boundaries homeomorphic to S1. Let
f : ∂M ′2 → ∂M ′1 be any homeomorphism, then the adjunction space M ′1 ∪f M ′2 is
the connect sum of M1 and M2 denoted M1#M2.

The connect sum operation basically involves cutting out open balls from surfaces
and gluing points along the S1 by an equivalence relation, giving a new manifold.

Figure 12. connect sum of two Surfaces M1 and M2.
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So far, we have assumed that the connect sum of two surfaces indeed results in
a surface, now we shall prove it.

Theorem 4.9. The connect sum M1#M2 of two connected surfaces M1 and M2

is a connected surface.

Proof. It suffices to show that M1#M2 is locally Euclidean and Hausdorff. The
proof of this is similar to Theorem 4.2, so we only provide a sketch of the proof.
Let π : M ′1 qM ′2 → M1#M2 be the quotient map. As with Theorem 4.2, there
are two types of points: points in M1#M2 with preimage in Int M ′1 or Int M ′2, or
points with primages ∂M ′1 and ∂M ′2. As with Theorem 4.2, the first type of points
are clearly Euclidean: simply pick a neighborhood small enough such that it is
strictly in the interior M ′i , i = 1, 2, and homeomorphic to R2. For the second type
of points, proceed analogous to the proof for edge points in theorem 4.2. Adjust the
neighborhoods such that for each point of ∂M ′1 in one neighborhood, the equivalent
point in ∂M ′2 is in the other neighborhood, and vice versa. Then map the two half
planes to R2 with the same identification as the original quotient map. By the
uniqueness of quotient maps, since the two maps make the same identifications, the
two space are homeomorphic, so the second type of points is also locally Euclidean.
Hausdorffness follows by picking sufficiently small neighborhoods.

To show that M1#M2 is connected, simply note that M1#M2 is the union of
two connected sets π(M ′1) and π(M ′2), where π(M ′1) ∩ π(M ′2) 6= Ø. �

4.3. Polygonal Presentation. We begin by defining a polygonal presentation:

Definition 4.10. A polygonal presentation is a finite set S with finitely many
words W1, . . . ,Wk, where Wi is a word in S of length 3 or longer. We denote a
polygonal presentation P = 〈S |W1, . . . ,Wk〉.

To explain this definition, we need two other definitions:

Definition 4.11. Given a set S, a word in S is an ordered k-tuple of symbols of
the form a or a−1 where a ∈ S.

Definition 4.12. The length of a word is the number of elements in the word,
where a and a−1 count as distinct elements.

Notation 4.13. As a matter of notation, we leave out the curly braces when
describing the elements of S and denote words by juxtaposition. So if we had,
for example, S = {a, b} and two words W1 = {aba−1b−1} and W2 = {aa}, then
P = 〈a, b | aba−1b−1, aa〉.

As with simplicial complexes, any polygonal presentation determines a topolog-
ical space |P| called the geometric realization.

Definition 4.14. The geometric realization of a polygonal presentation, denoted
|P| is determined by the following algorithm:

(1) For each word Wi, let Pi denote the convex k-sided polygonal region in the
plane that has its center at the origin, side length 1, equal angles, and one
vertex on the positive y axis. (k is the length of the word.)

(2) Define a bijective function between the symbols of Wi and the edges of Pi
in counterclockwise order, starting at the vertex of y-axis.
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(3) Let |P| denote the quotient space of
∐
i Pi determined by identifying edges

that have the same edge symbol by an affine homeomorphism that matches
up the initial vertices and and terminal vertices of edges with labels a and
a, or a−1 and a−1, and initial to terminal vertices for edges labeled a and
a−1.

Definition 4.15. In the special case where Wi is a word of length 2, we define Pi
to be a sphere if the word is aa−1 or a−1a and the projective plane if the word is
aa or a−1a−1.

Figure 13. Presentation of the two words of length 2.

If we want the geometric realization of a presentation to be a surface, we make the
addition stipulation that each symbol a ∈ S only occurs twice in the presentation
P.

Definition 4.16. A surface presentation is a polygonal presentation such that each
symbol a ∈ S occurs only exactly twice in W1, . . . ,Wk, counting each a or a−1 as
one occurrence.

By theorem 4.2, the geometric realization is a compact surface.

Examples 4.17. The common surfaces S2, T2, K and P2 all have presentations:

(1) The sphere: 〈a | aa−1〉 or 〈a, b | abb−1a−1〉
(2) The torus: 〈a, b | aba−1b−1〉
(3) The projective plane: 〈a | aa〉 or 〈a, b | abab〉
(4) The Klein Bottle: 〈a, b | abab−1〉

Figure 14. Polygonal presentation of S2, T2, P2, and K.

Definition 4.18. If two presentations P1 and P2 have homeomorphic geometric
realizations, we say that the are topologically equivalent and write P1

∼= P2.
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We are now ready to prove the converse of theorem 4.2.

Theorem 4.19. Every compact surface admits a polygonal presentation.

Proof. Let M be a compact surface. By the triangulation theorem, M is homeo-
morphic to a 2-dimension simplicial complex K, in which each 1-simplex is a face
of exactly two 2-simplices.

From this simplicial complex, construct a surface presentation P such that each
2-simplex is a word of length 3, where edges are labeled with the same letter if they
are the same 1-simplex. Thus, we have two quotient maps: πK : P → |K| and
πP : P → |P|, where the domain P = P1q . . .qPk. It is sufficient to show that the
two quotient maps make the same identifications.

It is clear by construction that the two quotient maps identify the same edges.
Now it remains to show that πK and πP identify vertices with instructions from

the edge identifications. Suppose v ∈ K is any vertex. v must be in some 1-simplex,
otherwise it would be an isolated point. By the triangulation theorem, this edge
must be in two 2-simplices σ and σ′. Now we define an equivalence relation on the
set of 2-simplices containing v by saying two 2-simplices containing v, σ and σ′,
are equivalent if there exists a sequence of 2-simplices σ = σ1, . . . , σk = σ′ such
that σi shares an edge with σi+1 for i = 1, . . . , k − 1. Thus to prove that the two
quotient maps identify the same vertices, it is sufficient to prove that there is only
one equivalence class.

Suppose that there were two equivalence classes {σ1, . . . , σk} and {τ1, . . . , τm}
such that σi ∼ σj and σi 6∼ τj . Let ε be small enough such that Bε(v) only
intersects simplices containing v. Bε(v) ∩ |K| is an open subset of |K|, so v has a
neighborhood U homeomorphic to R2 that is also a subset of Bε(v)∩|K|. Since this
neighborhood is homeomorphic to R2, U \ {v} is connected. However, if we assume
for contradiction that there are two equivalence classes, then W ∩(σ1∪· · ·∪σk)\{v}
and W ∩ (τ1∪· · ·∪τm)\{v} are both open in |K|, since their intersection with each
simplex is open. Then W \{v} = (W ∩(σ1∪· · ·∪σk)\{v})∪(W ∩(τ1∪· · ·∪τm)\{v})
is disconnected, which is a contradiction. �

The following lemma will provide a simpler method of proving that two polygonal
presentations have homeomorphic geometric realizations.

Lemma 4.20. Let P1 and P2 be convex polygons with the same number of edges,
and let f : ∂P1 → ∂P2 be a simplicial isomorphism. Then f extends to a homeo-
morhism F : P1 → P2.

Proof. Choose any point pi ∈ Int Pi, i = 1, 2. By convexity, the line segment from
pi to each vertex of Pi lies entirely in Pi. The convex hull spanned by pi and each
pair of adjacent vertices of Pi is a simplex. The disjoint union of these simplices with
each inner line segment and their attendant endpoints identified form a simplicial
complex whose polyhedron is Pi. Now simply let F : P1 → P2 be the simplicial
map whose restriction to ∂P1 is f and takes p1 to p2. �

Pictorially, extending the simplicial isomorphism to a homeomorphism F looks
like this:
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We will now define a series of elementary transformations of polygonal presen-
tations.

Notation 4.21. For the following definitions, we shall adopt the following conven-
tion:

(1) e denotes any symbol not in S.
(2) W1W2 denotes a word formed by concatenating W1 and W2.
(3) (a−1)−1 = a

Definition 4.22. The following operations are elementary transformations of a
polygonal presentation.

(1) Reflecting: 〈S | a1 · · · am,W2, . . . ,Wk〉 7→ 〈S | a−1m · · · a−11 ,W2, . . . ,Wk〉.

(2) Rotating: 〈S | a1 · · · am,W2, . . . ,Wk〉 7→ 〈S | a2 · · · ama1,W2, . . . ,Wk〉.

(3) Cutting: If W1 and W2 both have length at least 2, 〈S |W1W2, . . . ,Wk〉 7→
〈S, e |W1e, e

−1W2, . . . ,Wk〉.
(4) Pasting: IfW1 andW2 both have length at least 2, 〈S, e |W1e, e

−1W2, . . . ,Wk〉 7→
〈S |W1W2, . . . ,Wk〉.

Figure 15. Cutting/Pasting.
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(5) Folding: If W1 has length at least 3, 〈S, e | W1ee
−1,W2, . . . ,Wk〉 7→ 〈S |

W1,W2, . . . ,Wk〉. W1 can have length 2 if the presentation only has one
word.

(6) Unfolding: 〈S |W1,W2, . . . ,Wk〉 7→ 〈S, e |W1ee
−1,W − 2, . . . ,Wk〉.

Figure 16. Folding/Unfolding.

Theorem 4.23. Elementary transformations of a polygonal presentation produce
a topologically equivalent presentation.

Proof. Notice that cutting/pasting and folding/unfolding are symmetric, so we only
need to prove that one of the pair presents homeomorphic geometric realizations.

(1) Reflecting: Let P1 be the geometric realization of a1, . . . , am and P ′1 be the
geometric realization of a−1m , . . . , a−11 . Since reflection is a linear transfor-
mation, we choose the reflection matrix to be our homeomorphism; clearly,
it is bijective and bicontinuous. We can extend the homeomorphism to
W2, . . . ,Wk by the identity map.

(2) Rotation: Let P1 be the geometric realization of a1, . . . , am and P ′1 be the
geometric realization of a2, . . . , am, a1. Similar to reflecting, we choose the
rotation matrix to be our homeomorphism. The reflection linear transfor-
mation is clearly bijective and bicontinuous. We can similarly extend to
homeomorphism to W2, . . . ,Wk by the identity map.

(3) Cutting: Let P1 and P2 be polygons labeled W1e and e−1W2 respectively,
and let P ′ be the polygon labeled W1W2. Let π : P1 q P2 → S and
π′ : P ′ → S′ be the two quotient maps. Let e be the line segment from
the terminal to initial vertex of W1 in P ′; by convexity, the edge is in P ′.
The continuous map f : P1 q P2 → P ′ takes each edge of P1 or P2 to its
corresponding edge in P ′, and identifies e and e−1. Thus, by the closed map
lemma, f is a quotient map. So π′ ◦ f and π make the same identifications
from the same domain, so by the uniqueness of the quotient map, S and S′

are homeomorphic. If there are other words, W3, . . . ,Wk in the polygonal
presentation, then extend the homeomorphism by the identity.

(4) Folding: Assume without loss of generality that the W1 has at least length
3. (If it has a shorter length, simply introduce a new face, divide an existing
face into two parts, labeled with different letters.) First assume that W1 =
abc and let P and P ′ be polygons of abcee−1 and abc respectively. Also, let
π : P → S and π′ : P ′ → S′ be the two quotient maps. Transform P into a
simplicial complex by adding edges. The resultant words to represent the
simplicial complex are of the form: e−1ad, d−1bf, f−1ce, where sides of the
same letter are identified and the vertex identification is forced by the edge
identification. Let f : P → P ′ be the simplicial map that takes edges in P
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to edges with the same label in P ′. Then π ◦ f and π are quotient maps
that make the same identifications, so by the uniqueness of the quotient
map, S and S′ are homeomorphic. We can extend the homeomorphism to
the other words W2, . . . ,Wk by the identity.

�

The connect sum of two surfaces can also be expressed as an operation on the
polygonal presentation.

Theorem 4.24. Let M1 and M2 be surfaces that admit presentations 〈S1 | W1〉
and 〈S2 | W2〉, in which S1 and S2 are disjoint sets and presentation has a single
face. Then 〈S1, S2 |W1W2〉 is a presentation of the connect sum of M1#M2.

Proof. Given the presentation of M1 as 〈S1 | W1〉, we get 〈S1 | W1〉 ∼= 〈S1, a, b, c |
W1c

−1b−1a−1, abc〉 by cutting 3 times. The word abc represents a polygon and its
convex hull is a 2-simplex, which is homeomorphic to B. Let B1 be the interior of
the convex hull of the polygon corresponding to the word abc. Thus, the geometric
realization of 〈S1, a, b, c | W1c

−1b−1a−1〉 is homeomorphic to M1 \ B1 := M ′1. By
a similar argument, we get the presentation of M ′2 is 〈S2, a, b, c | abcW2〉. So
the presentation 〈S1, S2, a, b, c |W1c

−1b−1a−1, abcW2〉, which shows that a, b, c are
identified in a complementary manner, is the presentation of M ′1 qM ′2 where the
ball represented by abc is identified, which is exactly M ′1#M ′2 Pasting along c and
folding a and b gives a homeomorphic presentation 〈S1, S2 |W1W2〉. �

5. The Classification Theorem

We are now ready to prove the main result of this paper. This theorem was first
proved in 1907 by Max Dehn and Poul Heegaard.

Theorem 5.1. Every non-empty, compact, connected 2-manifold is homeomorphic
to one of the following:

(1) S2
(2) A connect sum of one or more copies T2

(3) A connect sum of one or more copies of P2.

It might appear that some of the surfaces are absent from the list. In particular,
the Klein bottle K and any connect sum involving both tori and projective planes,
for example T2#P2.

Lemma 5.2. The Klein bottle is homeomorphic to P2#P2.

Proof. The Klein bottle has a presentation: 〈a, b | abab−1〉. By a sequence of
elementary transformations, we get

〈a, b | abab−1〉 ∼= 〈a, b, c | abc, c−1ab−1〉 (cut along c)

∼= 〈a, b, c | bca, a−1cb〉 (rotate and reflect)

∼= 〈b, c | bbcc〉 (paste along a and rotate).

The final presentation is the connect sum of two projective planes. �

Lemma 5.3. The connect sum of T2#P2 is homeomorphic to P2#P2#P2.
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Proof. By the previous corollary, P2#P2#P2 ∼= K#P2 = 〈a, b, c | abab−1cc〉. By a
sequence of elementary transformations,

〈a, b, c | abab−1cc〉 ∼= 〈a, b, c, d | cabd−1, dab−1c〉 (rotate and cut)

∼= 〈a, b, c, d | abd−1c, c−1ba−1d−1〉 (rotate and reflect)

∼= 〈a, b, d, e | a−1d−1abe, e−1d−1b〉 (paste along c and cut along e)

∼= 〈a, b, d, e | ea−1d−1ab, b−1de〉 (rotate and reflect)

∼= 〈a, c, e | a−1d−1adee〉 (paste along b, rotate, and reflect)

The final presentation is the connect sum of a torus and projective plane. �

Before we begin, we shall give two preliminary definitions that will make expo-
sition simpler:

Definition 5.4. A pair of edges that are to be identified is twisted if they both
appear as a, . . . , a or a−1, . . . , a−1.

Definition 5.5. A pair of edges that are to be identified is complementary if it
appears as a, . . . , a−1 or a−1, . . . , a.

Given the two preceding lemmas, we are now ready to prove the classification
theorem for compact 2-manifolds.

Proof of the Classification Theorem. Given any compact surface, this proof will
show that by a sequence of elementary transformations, we get a surface that has
a polygonal presentation homeomorphic to the sphere, the connect sum of tori, or
the connect sum of projective planes.

Step 1 M admits a presentation that has only one face (only one word). Since M
is connected, each word must have a letter in common with another word,
so by repeated pasting transformations (with rotations and reflections as
necessary), we get a polygonal presentation with only one word, which
admits a presentation with one face.

Step 2 M is either a sphere or admits a presentation with no adjacent complemen-
tary pairs. If there is an adjacent complementary pair, we may remove it
by folding. The only time, when an adjacent complementary pair cannot
be removed is if it is the only pair of letters left. i.e., 〈a, aa−1〉, in which
case, we have a sphere. Now we assume that the surface is not a sphere.

Step 3 M admits a presentation in which all twisted pairs are adjacent. Suppose
we have a non-adjacent twisted pair. Then the word will take the form
V aWa, where V and W are non-empty words. By a sequence of elementary
transformations:

〈a, V,W | V aWa〉 ∼= 〈a, b, V,W | V ab, b−1Wa〉
∼= 〈a, b, V,W | bV a, a−1W−1b〉
∼= 〈b, V,W | VW−1bb〉.
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We may have introduced new non-adjacent twisted pairs in the process.
However, recall that the set of symbols S is finite, so by repeating the same
process, we can transform each non-adjacent twisted pair into adjacent
complementary pairs without affecting the bb complementary pair. So after
a finite number of iterations, we get a word with no non-adjacent twisted
pairs and a string of adjacent complementary pairs. The complementary
pairs can be removed by repeating step 2, which does not increase the total
number of non-adjacent twisted pairs.

Step 4 M admits a presentation in which all vertices are identified to a single
point. Recall that we have an equivalence relation on the set of edges. The
identification of the edges, as we have seen before, forces an equivalence
relation on the set of vertices; choose some equivalence class of vertices [v].
Suppose that there are vertices not in the equivalence class [v]. Then there
must be some edge a that connects [v] to some other vertex class [w]. Since
this is a polygonal surface, the other edge that touches a at [v] cannot be
a−1, or else we would have got rid of it in step 2. The other edge cannot be
a, because, if it were, then the initial and terminal ends would be identified
under the quotient map, which is not the case. So we label this other edge
b and the other vertex x.

Somewhere else in the polygon, there is another edge labeled either b or
b−1. Without loss of generality, assume that it is b−1. The proof if it is b is
similar except for an extra reflection. Thus the presentation is of the form
baXb−1Y . By elementary transformations:

〈a, b,X, Y | baXb−1Y 〉 ∼= 〈a, b, c,X, Y | bac, c−1Xb−1Y 〉
∼= 〈a, b, c,X, Y | acb, b−1Y c−1X〉
∼= 〈a, c,X, Y | acY c−1X〉.
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Recall that the [v] referred to the initial vertex of a and the terminal
vertex of b, so by pasting the edges labeled b, we have reduced the number
of distinct vertices in the polygon labeled v. We may have increased the
number of vertices labeled w and we may have introduced new complemen-
tary pairs. To repair the latter, perform step 2 again noticing that step 2
does not increase the number of vertices labeled v. Thus, by repeating this
process finitely many times, we can eliminate the vertex class [v]. Repeating
this procedure for each vertex class, we can get the desired result.

Step 5 If the presentation has any complementary pairs a, a−1, then it has an-
other complementary pair b, b−1 that occurs intertwined with the first. i.e.,
a, . . . , b, . . . , a−1, . . . , b−1. Assume that this is not the case, that is, the
presentation is of the form aXa−1Y , where X and Y only contain matched
complementary pairs or adjacent twisted pairs. (By matched, we mean that
the complementary pairs remain exclusively within X or Y .) Recall that
non-adjacent twisted pairs and adjacent complementary pairs are not pos-
sible by step 2 and 3. Thus each edge in X is identified with another edge in
Y and similarly for Y . This means the terminal vertices of a and a−1 both
touch vertices in X and the initial vertices are identified with only vertices
in Y . This is a contradiction, since all vertices are within one equivalence
class by Step 4.

Step 6 M admits a presentation in which all intertwined complementary pairs oc-
cur together with no other edges in between: aba−1b−1. The presentation
is given WaXbY a−1Zb−1. By elementary transformations:

〈a, b,W,X, Y, Z |WaXbY a−1Zb−1〉
∼=〈a, b,W,X, Y, Z |WaXc, c−1bY a−1Zb−1〉
∼=〈a, b, c,W,X, Y, Z | XcWa, a−1Zb−1c−1bY 〉
∼=〈b, c,W,X, Y, Z | XcWZb−1c−1bY 〉
∼=〈b, c,W,X, Y, Z | c−1bY XcWZb−1〉
∼=〈b, c, d,W,X, Y, Z | c−1bY Xcd, d−1WZb−1〉
∼=〈b, c, d,W,X, Y, Z | Y Xcdc−1b, b−1d−1WZ〉
∼=〈c, d,W,X, Y, Z | Y Xcdc−1d−1WZ〉
∼=〈c, d,W,X, Y, Z | cdc−1d−1WZY Z〉.

Notice that this step required no reflection. Repeating this process for
each set of intertwined pairs, we get the desired result.

Step 7 M is homeomorphic to either a connect sum of one or more tori or a connect
sum of one or more projective planes. By Steps 1−6, all twisted pairs occur
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adjacent to each other: aa (projective planes) and all complementary pairs
occur in intertwined groups bcb−1c−1 (tori). If the presentation consists
exclusively of either case, then we are done, since we would either have the
connect sum of tori or connect sum of projective planes. If the presentation
contains both twisted and complementary pairs, then the presentation must
be one of the following forms: aabcb−1c−1X or bcb−1c−1aaX. In either case,
by the previous lemma, T2#P2 ∼= P2#P2#P2. So, if both cases occur in the
presentation, we can eliminate all occurrences of T2 by this transformation,
and we get the connect sum of P2.

�

6. Concluding Remarks

In this paper, we proved that all compact surfaces are homeomorphic to the
sphere, the connect sum of tori, or the connect sum of projective planes, but the
keen reader may have noticed that we have yet to prove that the surfaces are
topologically distinct. e.g., a sphere is not homeomorphic to a torus. The answer
to this non-trivial question lies with other topological invariants such as the Euler
Characteristic and orientibility. The interested reader should refer to Lee [2].
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