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We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + I 
dimensions. In the case of statistics very close to Ferm~ statistics (statistical parameter 
(J =-= n(1 - I/n), for lalge n). the effect of the statistics is a weak attractiol1. Building upon ear
lier RPA calculation of Fetter, Hanna, and Laughlin for the case n - 2, we argue that for large n 
perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling 
to electromagnetism). We attempt to describe the order puameter for this superconducting 
phase in terms of "spontaneous breaking ofcommutat\vity of translations" as opposed to the 
usual pairing order parameters. The vortices of the superconducting anyon eas are charged, 
and superconducting order parameters of the usual type vanish. We investigate the characteris
tic P dnd T violating phenomenology. 

1. Introduction 

Since the early days of quantum mechanics it has been appreciated that the be
havior of assemblies of identical particles is influenced not only by conventional 
"forces" but also by the particle statistics. Indeed, the ideal Bose and Fermi gases 
are the points of departure for most studies of condensed matter at low 
temperature. It has been extremely useful to have these simple paradigms; for 
example such ubiquitous concepts as the Fermi sutface and Bose condensation 
were abstracted from their study. 

While Bose and Fermi statistics are the only logical possibilities in three spatial 
dimensions (and the whole notion of quantum statistics degenerates in one 
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spatial dimension), in two dimensions the situation is more interesting. In two 
spatial dimensions, the possibilities for quantum statistics are not limited to 
bosons and fermions, but rather allow continuous interpolation between these 
extremes. The quantum statistics is defined by the phase of the amplitude 
associated with slow motion of distance particles around one another. If the 
phase e'o on interchanging the particles is + 1 the particles are bosons, if it is - 1 
the particles are fermions; but other values of the phase are allowed, and give us 
generically anyons. 

It is a very attractive probh~m; to figure out the behavior of these new quantum 
ideal gases. The high temperature, low density behavior was addressed several 
years ago in a paper by Arovas, Schridfer, Wilczek, anc Zee.: They calculated, in 
particular. the value of the second virial coefficip.nt. A simple answer was found, 
that interpolates continuously between bosons and ferI'!1ions. While this result 
was significant as a check of the consistency of the whole circle of ideas, and as an 
exercise for sharpening technique, it hardly addressed the central questions 
regarding the new quantum idc=al gases. The most important effects of quantum 
statistics, of course, occur only at low temperatures or high density. The existence 
of a cusp in the vi rial coefficient at Bose statistics was one of several indications 
that the behavior of anyon gases at low temperatures would be interesting and 
probably far from smooth. However, it has proved quite difficult to extend the 
calculations :itarti~~ from the high-temperature end, and since the problem 
:;eemed both esoteric and inaccessible it was largely abandoned. 

Recently, however, there has been a sharp increase in the interest in this 
problem - for reasons we shall review shortly - and important progress, 
especially through the work of Laughlin,2,4 Kalmeyer and Laughlin,3 and Fetter, 
Hanna, and LaughlinS on high-temperature superconductivity. 

In this paper we report further progress in understanding the behavior of the 
anyon gases with statistics parametrized by 

8 = 1£(1 - lin), (1.1 ) 

at zeru temperature. Here n is a positive integer. n = 1 corresponds to bosons, 
while we approach fermions at large n. In accord with Laughlin and coworkers, 
we shall argue that these gases generically form superfiuids, and become super
conductors if the anyons are electrically charged. The mechanism ofsuperfiuidity 
seems rathe: different from conventional pairing, and seems to lie outside the 
usual Nambu-Goldstone-Higgs framework. Our conclusions are based both on 
detailed calculations in a controlled approximation, and on qualitative symmetry 
arguments we expect to be quite robust. We will also derive an effective 
Lagrangian, that summarizes the electromagnetic response of the charged anyon 
gas. This Lagrangian, which to a first approximation is of the usual London or 
Landau-Ginzburg form, also contains small but characteristic interactions 
violating the discrete symmetries P and T. These terms lead to novel effects, 
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whose occurrence (or not) should enable us to determine whether the anyon gas is 
realized in concrete physical systems. 

At this point it would be disingenuous not to remark that much of the stimulus 
for the recent upsurge in interest in the anyon gas are some theoretical 
speculations that quasiparticles in euo plane~, which presumably are the key 
actors in high t~mperature superconductivity, are in fact anyons. These specula
tions were motivated by analysis of c.xcitations arollnd certain types of ordered 
stat~s (chiral spin liquids) that haye been proposed for the electronic ground state 
in the planes. Needless to say, the fact that superconductivity is an automatic 
by-product nlakes these ideas considerably more compelling. 

For sim plicity) most of the discuss!O~ of this paper win be given for the case in 
which there is a single type of any on. The d!scussi~n can be readily generalized to 
a set of t\\'O or more types of anyon:;~ possessing identical charge and Inass, but 
distinguished hi" an isospin index t. Although some of the quantitative formulas 
will be modified, the qualitative results will be generally similar. For reasons 
which will be discussed elsewhere we believe that in models of relevan~e to high
temperature sup~rconductivity there will always be an even number of anyon 
species. 

Bf'fore we embark on the analysis, it seems appropriate to establish the context 
with a brief quasi-historical account of the develooment of the circle of ideas we 
are dealing with. 

Many of the basic principles involved in fractional quantum statistics were 
clearly stated and illustrated in a remarkable paper by Leinaas and Myrheim.6 

Unfortunately this paper received little notice at the time, and did not enter the 
general consciousness, presumably because it was felt to be a purely academic 
exercise without a broader context. The continuou~ modem development of the 
ideas began as part of the recent interest in peculiar, and in particular fractional, 
quantum numbers more generally. 

In fact, it was argued !ong ago in prescient "Nork by Skyrme7 that in 3 nonlinear 
sigma model of pions, particles with the quantum numbers of nucleons can 
emerge in the form of solitons. What was surprising about this is that spin and 
isospin one-half ~n emerge in a theory in which the elementary fields have 
integer spin and isospin. Later, Finkelstein and Rubinstein8 clarified the 
topological considerations responsible for Skyrme's phenomenon, and showed by 
a topological argument that solitons of half integral spin in fact obey Fermi 
statistics, as one would expect on general grounds. (This work probably also 
represented the first study of what would now be called a 8 angle in quantum field 
theory.) In a somewhat analogous fashion, magnetic monopoles in 3+ I dimen
sions can be fermions even in a theory in which the elementary fields are all 
bosons,9 and can carry fractional 'o and even irrational I I electric charge. Also, 
Skyrme's spontaneolis generation of half integral spin turns out to have an 
analog12 for the case of more than two "flavors" of strong interactions, provided 
one takes account of the global effects of the Wess-Zumino coupling. I] Closely 
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related phenomena occur in condensed matter systemsl4 and in a wide variety of 
quantum field theories. IS

·
16 

Of course in three spatial dimensjons the non-trivial commutation relations of 
the angular momentum algebra ensure that the spin of any particle, regardless of 
microscopic origins, must be an integer or half-integer. Thus, the above cited 
results generating half-integer spin from integer spin in 3 + I dimensions are in a 
sense the best possible. In two dimensions the situation is different. The rotation 
group has a single generator which in principle can have any real eigenvalue. For 
instance, particles orbiting arwnd gauge theory strings, or even around ordinary 
magnetic flux tunes, can readily be seen to carry fractional angular momentum. 1 

7 

Once this is realized, it is then natural to asi<. (as Finkelstein and Rubinstein had 
done in connection with Skyrme"s work in 3 + 1 dirnensions) what happens to the 
spin-s1atistics connection in these circumstances. This VIas in\'estigated in a 
series of papers· lI

,19,1."'O at first largely rediscovering (in ignorance) the results of 
Leinaas and Myrheim, but soon going beyond them in various ways, particularly 
in suggesting how objects of fractional statistics could actually be realized in the 
physical world. (For ~n account of early controversies surrounding these ideas, 
and their resolution, see Goldhaber and MacKenzie.21 ) 

One early application of the idea of fractional statistics'9 was to the 
2 + I-dimensional S2 u model, used to model the low-energy excitations of planar 
ferromagnets and antiferromagnets. It was shown that the c1assiCRI u model does 
not determine a unique quantum theory. The quantum theory allows inclusion of 
a new interaction, represented by the so-called Hopf term, which is invi3ible 
classically. The coefficient of the Hopfterm is an angle 8, closely related to the (J 

introduced in connection with fractional statistics. Indeed, in the (J model the 
coefficient of the Hopf term determines the spin and statistics of certain 
collective excitations, the baby Skyrmions. Roughly speaking, the Hopf term 
plays a role for these excitations somewhat similar to the role played by the Wess
Zumino interaction in connection with 3 + 1 dimensional Skyrmions. 

Soon afterward the most important realization of fractional statistics so far 
established arose from a most unexpected quarter, in studies of the behavior of 
semiconductor heterojunctions held at millikelvin temperature in a strong 
external magnetic field. The fractional quantized Hall effect (FQHE), discovered 
in this context, established the existence of a rich new state, or actually series of 
states, of matter. The theory of these states was developed mainly by Laughlin,22 
with important contributions from Haldane23 and from Halperin.24 At the 
foundation of the theory is the irlea that the new states are best described as in
compressible quantum liquids, around which the low-energy excitations are 
localized quasiparticles with unusual quantum numbers, including notably 
fractional statistics. lJsing this idea, Halperin was able to predict the values of the 
allowed fractions in the FQHE hierar~hy in a simple and convincing, as well as 
observationally successful, way. Arovas, Schrieffer, and Wilczek, using !he Berry 
phase technique, showed directly25 that the quasiparticles had the properties 
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assumed by Halperin. (For an account 0f early objections to these ideas, and their 
resolution, see Laughlin.26) They also suggested that since the statistical Hinterac
tion", together of course with ordinary electromagnetism, is the dominant 
interaction of the quasi particles at long distances, it should be possible to write an 
effective Lagrangian for the long-wavelength behavior of the quasiparticle gas, 
usingjust these interactions. The formal implementation of this idea was carried 
tllrough in the abovementioned paper by Arovas, Schricffer, \\'ilczek, and Zee.' 
·\n important denlent of that paper, which has played a key role in the further 
d,~veioprnent of the subject, is the intrQducti"'n of a local implementation of 
fractional Quantum statistics, through the Chern-Simons interaction. 

It is alsc quite likely that fracti()nal statistics eAci!ation~ exist for liquid 3He 
RIms in the A pha.se.21 

The application of this circie of ideas to superconductivity is by no rneans as 
certain or well-developed even as it is in the contexts mentioned above. It is 
surely premature to be writing even tile most informal of histories here. Still, it 
may be useful to orient ourselves with respect to some of the relevant recent liter
ature on high-temperature superconductivity. 

Immediately upon ~he experimental discovery of the new superconductors, 
Anderson28 stressed their essentially two-dimensional character, the importahce 
of strong magnetic ordering; and the possible existence of excitations with exotic 
quantum numbers. A relatively ccncrete propo~al e;nbodying one form of 
Anderson's vision \Vas put forward by Kivelson, Rokshar, and SetJ..-na.29 fhey 
showed that division of valence bonds on a square lattice occupied by 
approximately one valence electron per sit~ into localized dimers, as suggested by 
the phase "resonating valence ~ond", could plausibly support excitations -
specifically, defe-:::ts in the pair-bonding of electrons, tra;>ping a single unpaired 
site - which are charged, spinless bosons. The initial thought was that Bose con
densation of such charged excitations was the mechanism of superconductivity. 
A closely related proposal was made by Dzyaloshinskii, Polyaicov, and 
Wiegmann.3o Their starting point was a a-mudel description of the spira ordering 
in the euo layers. They proposed that one employ the Hopf tenT., as we 
mentioned above, with 8 = 1C. (The paper contains the remark, without 
elaboration, that only 8 = 0 or 8 = 1C are consistent with unitarity. This is mista
ken.) The effect of this tenn is to make the baby Skynnions of the pure spin model 
obey Fenni statistics. The idea then is that the charge carriers plausibly induce or 
bind to these baby Skynnions, making the composite a boson. Although the 
microscopic basis of this picture was never clear, and in fact the whole scr.nario 
now appears rather dubious, this paper caught the imagination of many 
physicists. Altogether, these early papers focused considerable attention on the 
possibility of exotic quantum numbers and statistical transmutation in two 
dimensions. 

Unfortunately, the most immediate natural consequence of all these sugges
tions is that, since one has direct Bose condensation instead of pairing, the flux 
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quantum should be h/ e. Experimentally, it appears to be h/2e, at least in the 
regimes where it has been studied so far. Various modifications of the ideas have 
been proposed,29 but it is difficult to know what conclusions to trust when such a 
seemingly straightforward one must be abandoned. Also, with the loss of the 
cO'1lpellingly simple concept of Bose condensation as a mechanism of supercon
ductivity, the motivation for the suggestion of exotic quantum numbers becomes 
much less clear. 

An essentially new set of ideas was added by Laughlin and collaborators, in 
Refs. 2, 3 5. Kalmeyer and Laughlin made an approximate mapping of certain 
frustrated spin models onto Bose ga.ies with short range repulsive interactions 
and subje~t to a strong external ma~rJetic field. The latter situation is completely 
analogous to that in the quantiL:c~ Hall effect, and one can therefore take battle
tested knowledge oftht~ ground state and low-lying ~xcitatio!'\s in the H.an system 
over into the spin models. Given the previous discussion of the FQHE~ it should 
not seem shocking that the quasi particles are then found to obey fractional 
statistics. Wen, Wilczek, and Zee31 have given a more abstract treatment of the 
problem, not relying on the details of a specific wave function, indicating what 
sort of spin ordering is essential to obtain fractionaJ statistics quasiparticles. We 
follow them in referring to this class of ordered systems as chiral spin liquids. 

Once one has a chiral spin liquid, it is plausible that charged particles doped 
into .. he system induce or bind to the fractional statistics quasiparticlt!s, thus 
themselves acquiring fractional statistics. In several papers, Laughlin and his 
collaborators have argued that fractional statistics in and of itself leads to 
superconductivity. The present paper sharpens and extends these arguments. 

An important feature of most models incorporating anyons is that they violate 
the discrete symmetries P and T. Thi3 is quite natural for the FQHE, which takes 
place in an external magnetic field. It occurs spontaneously in 3He-A. It would 
also have to occur spontaneously in high-temperature superconducton:, if anyon 
models are to describe them. It is, of course, characteristic of chiral spin liquids. 
That such symmetry breaking could occur, and can have important experimental 
consequences, was first emphasized by March-Russell and Wilczek,33 and 
considerably elaborated recently by these two together with Halperin.34 Some of 
the issues have also been discussed re~ntly by Wen. and Zee3S and by Anderson.36 
The considerations of this paper suggest some additional possibilities, and allow 
us to begin to discuss them quantitatively. 

Calculations of the energy of the undoped spin systems using variational wave 
functions of the Kalymeyer-Laughlin type have not yielded particularly good 
energies for simple model Hamiltonians, such as Heisenberg antiferromagnets 
with any combination of couplings to a few near neighboUrs. Moreover, for the 
undoped parent compounds of the actual copper-oxide superconductors (e.g., 
La2CU04) there is compelling evidence that the planes of copper spins are well 
described by a nearest-neighbour Heisenberg model on a square lattice, with a 
ground state that has conventional antiferr9magnetic order.31-39 It is known, 
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however, that the addition of a relatively small concentration of holes is sufficient 
to destroy the anti ferromagnetic order. It is certainly possible that the holes also 
induce an effective multispin-interactian which favors a chiral spin state for the 
remaining copper spins. If this is the case, then it is reasonable to approach the 
superconducting state by starting with a model Hamiltonian where the spins form 
a chiral spin liquid even in the absence of free charges. Laughlin has shown that 
there exists in fact a model Hamiltonian (with long-range foul-spin interactions, 
and with ex.plicitly broker. time-reversal and chlral symmetries) for which the 
quantu111-Hall--effect wave function is the exact ground state.)2 There is little 
re~son to doubt that there exists also a class of Hamiltonians which only have 
finite range interactions, and are invariant under P and T, fer which the ground 
state is a chira! spin liquid. 

Shraiman and Siggia4U have argued that a very dilute concentration o~· holes in 
a copper-oxygen plane lnay lead to a ground state with a spiral spin structure, 
assuming that one can ignore the effe~ts of the compensating charged impurities, 
which must be present and would tend to localize the holes in an actual system at 
low concentrations. A spiral spin structure, in general, would have a chiral 
character, as well as a broken translational invariance. It is then plausible that 
above a certain critical concentration of holes, the broken translational symmetry 
will be destroyed by fluctuations, but the chiral character will persist. 

Finally let us note that while the work reported here was proceed~ng, I-!osotani 
carried out some calculations of the properties of the anyon gas using a somewhat 
different approximation scheme. Where they overlap, our conclusions agree. 
Also, Wen and Zee41 have attempted to study some questions related to those 
studied in this paper, by perturbing from bosons. Also, interesting numerical 
itudies of small systems ofanyon~ subject to an exte~nal magnetic field have been 
reported recently.42 

2. The Hamiltonian 

In this section we derive a non-local Hamiltonian formulation of the anyon 
interaction, starting from a formulation in terms of a Chern-Simons Lagrangian. 
The Chern-Simons formulation is local, but contains redundant variables. The 
point of the exercise is that each description has its virtues. The Chern-Simons 
form clearly exhibits the full symmetry and global nature of the interaction. The 
Hamiltonian form, on the other hand, has the great advantage that its variables 
represent true physical degrees of freedom. It is therefore better suited to 
approximations and explicit calculations. 

The Lagrangian for an ideal gas of fractional statistics particles is 
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Here the Xa are particle coordinates and a is a vector field. The coupling of the 
particles to the gauge field is standard, but the gauge field action is unusual. 
Instead of a conventional kinetic energy for the gauge field, one has the final term 
in ( 1). This term, th~ so-called Chern-Simons term, is special to 2 + 1 dimensions. 
The action is gauge invariant, despite the explicit appearance of undifferentiated 
vector potentials. This is because these vector potential always appears con
tracted with conserved currents - either the conventional particle current, or the 
unusual Hcurrent'" efX1T JUT which is automatically conserved because of the Bianchi 
identity. 

Varying with respect to a, we find the field equations 

i1 
eifl = -eptlT r 

J 2· Jar' (2.2) 

where j is the standard i>oint-particle current and f the standard field strength. 
These equations indicate that the gauge invariant content of the vector field a is 
entirely determined by the particle current. In otherwords~ a has no independent 
dynamics. To avoid confusion with the true electromagnetic potentials and 
fields, it is convenient to refer to these a fields, whose only purpose in life is to be 
integrated out and implement fractional statistics, as "fictitious" fields. It f"lIoms 
from the. field equation that the field strength f is confined to the particle 
worIdlines, and determi~ed localiy by the-current of these lines. Thus there are no 
classical Lorentz' forces among the particles. 

Integrating the 0 component of the fi~ld equation, we find the fundamental 
relation 

eN = 11~, (2.3) 

where N is the particle number and <I> the fictitious flux. This indicates that the 
effect of the Chern-Simons term is to associate with ~ach particle fictitious flux 
e/ p. Of course, the particles also carry fictitious charge e. Thus as they wind 
around one another, they acquire phase through the Aharonov-Bohm effect. The 
consequence of all this is that the sole result of adding the fictitious fields is to 
alter quantum-mechanical amplitude for trajectories where the particles wind 
around one another, or are interchanged, by a phase proportional to t!le amount 
of winding. In other words, the quantum statistics has been altered. A simple 
calculation shows this alteration of statistics is parametrized by 

(2.4) 

in terms of the angle 8 mentioned before. 
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Turning to the Hamiltonian formulation, we find again that the system has a 
uniqu~ underlying simplicity. Writing out the Lagrangian in more extended form: 

we see that apart from the first tenn, the rest are either linear in ao or linear in 
time derivatives. Since the time derivative of ao n~ver appears, varying with 
respect to it simply yields the constraint 

(2.6) 

Also) when we pass from the Lagranllian to the Hal!1iltonian terms linear in time 
derivatives cancel. Thus the Hamiltonian is numerically equal to the free-particle 
Hamiltonian - the net effect of all the extra ttnns is to enforce an unusual rela
tionship between the canonical momentum and the velocity. The classical 
equations of motion are just those of non-int~racting free particles; the non
trivial dynamics arises entirely from the altered quantum commutation relations. 

Since a is a redundant variable we can eliminate it. To do this conve~ier:~!y, we 
impose the gauge condition 

(2.7) 

Then we can solve the constraint ~6) to find 

e J .. e;j(x- J')j e " (x-xar)j 
a;(x) = -2 d"y 1 12 p(y) = -2-- L t;j I 12 . (2.8) 

1tjJ. x - y IljJ. CI X - XCI 

The final result is that t"e Hamiltonian is simply 

H = -2
1 L (Par - eo(x,,»)2 , 
m CI 

(2.9) 

with a given as a function of x according to (8). 
The Hamilti>nian (9) forms the starting point for most of the further 

considerations in this paper. It was also the starting point adopted by Fetter, 
Hanna, and Laughlin. S As far as we know it has not previously been explicitly 
derived in full generality from the Chern-Simons Lagrangian, though the result 
was stated in Ref. I and a proof has been sketched before. 54 

To conclude this section we add a few remarks that are not strictly essential to 
the logical development, but address some points that might be puzzling. 
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If one were given the Hamiltonian (9) without any explanation of its origins, it 
might be hard to believe that this Hamiltonian does not lead to classical forces 
among the particl~s. Indeed, H looks like the Hamiltonian for a charged particle 
interacting with an electromagnetic field, in a gauge where ao = O. Since the vec
tor potential depends on the particle position4\, it varies in time, and one might 
therefore expect there to be electric fields depending on the relative positions of 
the particles, and therefore forces among them. Of couse we know from the 
preceding discussion that it is not so: what gives? Another puzzle is this: how does 
our H, lacking as it does the standard scalar potential piece, manage to give gauge
invariant results? 

The resolution of these puzzles is really quite silnplc. The resemblance between 
our H and the standard Hamiltonian for an assembly of particles interacting \lfith 
an external gauge field is In one crucial respect misleading. That is, our a is g\ven 
as an explicit lion-local function of the particle positions. This means, in 
particular, a(xa ) depends not only on the position of particle lX, but on the 
position of all the other particles as well. Thus when we derive the Hamiltonian 
equations of mc,tion, there will be additional terms that do not appear in the usual 
equatiuns for particles interacting with an external gauge field. Keeping this in 
mind, a straightforward analysis of the equations of motion derived from the 
Hamiltonian H resolves both our puzzles at the same time. It is found that the 
additional terms serle exactly to reconstitute the full fictitious electric field, 
including specifically the gradient of the scalar potential ao, as determined from 
(2) in the gauge (7), in the Lorentz force equation. And the full fictitious electric 
field, as we discussed before, does not depend on the positions or velocities of 
distant particles, and does not generate classical interparticle forces. 

At the risk of being pedantic, we wish to emphasize explicitly one implicatioil 
of the preceding discussion. No approximation has been made in deriving H. 
Especially - despite apparent instantaneous interaction terms - retardation 
effects have not been neglected. 

3. Approach to the Problem 

The statistical mechanics of an ideal gas of anyons has a very different flavor 
from that of the more familiar quantum ideal gases of bosons and fermions. 

In the case ofbosons or fermions, one can construct the eigenstates of the many 
particle Hamiltonian directly from the ~igenstates of the single-particle Hamil
tonian, simply by taking tensor products. The sole effect of the statistics, in these 
two cases, is that one restricts to the subspace of many-body wave functions 
either symmetric or antisymmetric under permutations, respectively. The reason 
why this familiar, simple procedure fully incorporates the quantum statistics, is 
ultimately that the rule for assigning amplitudes to trajectories beginning at 
x I, X2, •.• and ending at xp" x P2 ' ••• depends only on the sign of the permutation 

P- Thus symmetry or antisymmetry in these coordinates is a condition stable in 
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time. Also, we can obtain all trajectories with the proper weighting from 
trajectories along which the particles do not change their identity, if we allow all 
permutations of identity, with the appropriate sign factors, in the initial state. 
(Indeed, we have just the same trajectories, but with p-I acting on the initial con
fig~ration instead of P on the final one.) 

For generic anyons, the situation is different. Tt,e amplitude assigned to a 
trajectory depends not only upon the permutation suffered by the particles as 
thl.~y follow the trajecto£ 'i, but aiso on other aspects of the traj~ctories by which 
they wind around one another. Mathematically, while the Hilbert sp3.ce of a 
system of identical bosuns and fermions gives a representation of the permuta
~~'Jn &fOHP, the Hilbert spase of a 5~rstem of identical anyons gives a representa
f;')i1 of the 4;br3id group", in which one distinguishes topologicaliy inequivalent 
trajectories leading to the same perrl1utatiuns of the particles. IncidentaHy. in 
2 + 1 dimensional Inany-uody physics it is possible: in principle to have a system 
even more exotic than Hordinary" fractional statistics, in which trajectories that 
involve braidings of identical particles are represented by non-commuting 
matrices, not just by abelian phases. (It is far from straightforwarci to construct 
representations of the N particle braid group (lJN that are compatible with all the 
physical requirements of locality and cluster qecomposition, but the Jones 
repre~entations of the braid group43 satisfy all of the physical conditions, and in 
fact have a realization in lo~al quantum field theory via a non-abelian Chern
Simons theory.44) Leaving aside these more exotic possibilities, which mayor 
may not eventually playa role in condensed matter physics, our interest here is 
with the anyon gas in which particle trajectories are represented by phases. In 
fact, the phase associated with a given trajectory is the product of the stati~tical 
parameter and the linking number of tJ1e trajectory.ls.1 

()nce the permutation group ic; replaced by the braid group, the simple 
construction passing from the solution of one-particle problems to the sulution of 
many-particl~ problems, familiar for free bosons and free fermions, does not 
work any more. It seems most unlikely that there is any comparably simple 
substitute. For this reason. even an ideal gas of anyons must be regarded as an 
interacting system. 

Since an exact solution seems out of reach, it seems a good strategy to attempt 
to begin to understand anyon gases by perturbing around the familiar cases of free 
bosons or fermions, taking advantage of the tools developed over many years for 
the study of inter~cting systems of identical particles. 

There is an extremely naive argument, which' suggests that in general -
excluding fermions - an anyon gas will be superfluid (or. for electromagnetically 
charged anyons, superconducting) at zero temperature. It goes as follows. 
Fermions with arbitrarily weak attractive forces are known to form superfluids at 
zero temperature. But there is a real sense in which anyons in general can be con
sidered as fermions with an additional attractive interaction. Indeed, the most 
important effect of quantum statistics at short distances is that it determines the 



353

1 0 1 2  Y.-H. Chen  et al.

allowed values of kinetic angular momentum, and thus the strength of the
centrifugal barrier. For bosons the allowed values are even integers; for fermions
they are odd integers, and for general 8 they are 19/a+ even integer. Thus the mini-
mum allowed absolute value is generically smaller than it is for fermions; and so
generic anyons can be regarded as fermions with an additional attractive
interaction. Although it will become evident in the following that this argument is
really much too naive, clearly it points us in the direction of suspecting
superfluidity in the anyon gas at zero temperature.

With this suspicion, it might seem logical to try to perturb around Bose
statistics. After all, the ideal Bose gas exhibits the phenomenon we are after -
superfluidity - already in the zeroth approximation. (It is sometimes said that
the ideal Bose gas requires a repulsive interaction to become superfluid. We think
it is more accurate to say that the ideal Bose gas is a superfluid  with zero critical
velocity, and poised on the brink of instability - a weak attraction will cause it to
cease to have a sensible thermodynamic limit.) On further reflection, however,
several difficulties with this approach become apparent. The most important one
is the following. Consider the gas with statistical parameter

*=n.
n

(3.1)

Now if we imagine that superfluidity is characterized by an effective condensa-
tion into bosons - generalizing ordinary Bose condensation or Cooper pairing
- then we must ask: how many of these anyons does it take, to form a boson? If
we take one m-tuple around another, we find the accumulated phase nm*/n.  Thus
the condition is

$ = 0 (mod 2).

Clearly, the minimum required number grows with n, roughly as the square root.
It is not easy to see how to obtain this behavior smoothly, starting from
condensation of single particles in the Bose gas.

Anyons near 19 near zero are similar to a system of bosons with a weak repulsion
of statistical origin (representing the centrifugal barrier that is present at 8 # 0)
and in a background magnetic field (representing the interaction of one particle
with the average statistical background of the others; this interpretation will be
clearer in Sec. 4). Now, bosons with a weak repulsion undergo bose condensation
and become superfluid. In the presence of a magnetic field, bose condensation
still occurs but not in a translationally invariant fashion; one should expect to
form some sort of vortex lattice.

Our approach instead will be to work near Fermi statistics:
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ëg=a  1-i( 1n ’ (3.3)

Then as n gets large the expectation that condensation requires more and more
particles appears rather as a virtue than as an embarrassment - it allows us to
lose superfluidity in the limit of fermions.

One reason that we think it is natural to work near 8 = a is the following. In
order to establish that the statistical attraction (relative to fermions) of a
departure from 8 = A gives rise to superfluidity, it seems to us that the key case is
to show that even a weak statistical attraction among a system of otherwise free
fermions leads to superfluidity. Once it is established that a weak statistical
attraction gives superfluidity, it is natural to expect the same for the strong
statistical attraction that arises at the case (0 = n/2) that is believed to be of most
interest. Once the effects of a weak statistical attraction are understood
qualitatively, it is reasonable to hope that the effects of a strong statistical
attraction are similar qualitatively. Our basic strategy is thus to attempt to
understand the statistical mechanism for superfluidity starting from the regime
of 8 near 7c where this mechanism is operating weakly and can be studied in a con-
trolled way.

Both the qualitative arguments of the next section and the detailed calculations
which follow are based on an approximation procedure suggested by Arovas
et al.í and employed to great effect by Laughlin* and by Fetter, Hanna, and
Laughlin.í We now describe this procedure, and identify a limit in which it is
expected to be valid.

Above, we have seen that in a precise sense the statistical interaction can be
implemented by attaching fictitious charge and flux to fermions. It is, however,
very awkward to deal with the resulting long-range interactions directly. In other
problems involving long-range interactions, it is sometimes valid to replace the
effect of many distant particles by a mean field or collective variable, with the
deviations from the mean represented by residual weak or short-range interac-
tions. Could something like that occur in our problem?

We will argue that in fact very plausibly it does. To get started, let us consider
the self-consistency of the approach. Suppose, then, that we do replace the total
effect of the distant particles by their average. In our context, this means we are
replacing the many singular flux tubes by a smooth magnetic field with the same
flux density. For 8 = K( 1 - l/n), the resulting magnetic field is related to the
average particle density jj by

In such a magnetic field, the particles move along cyclotron orbits with radius
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mv 
r = eb . 

355 

(3.5) 

Taking for the velocity the velocity at the nominal Fermi surface, we substitute 

~4xp 
v=-

m 

and find that a typical cyclotron orbit contains 

(3.6) 

(3.7) 

particles on the average. If the number of particles inside the typical significant 
orbit is much greater than I, we should expect that it is indeed valid as a first 
approximation to replace the field generated by the particles by its average value. 
since fluctuations will be small compared to the total. 

While this argument can and should be sharpened, it seems clear that in the 
limit of large n it is at least self-consistent &s a first approximation to replace our 
anyon gas by a gas of fcrmions carrying fictitious charge and propagating in a fic
titious magnetic field tied to their density according to (3.4). 

4. A Qualitative Picture 

Several of the most important qualitative features of the anyon gas can be 
understood readily from the simple starting point defined in the previous section. 

There, the anyon gas was replaced to a first approximation by fermions 
propagating in a uniform backgro~nd fictitious magnetic field given by b = 
21£P / n. In the fictitious background field b, the energy eigenstates of the fermions 
.form Landau bands, each with degeneracy 

eb p 
Pt = - =-

21£ n 

per unit area, with energy eigenvalues 

(4.1) 

(4.2) 

where I = 0, 1, 2, .... When the statistical parameter is () = x( 1 - 1/ n), the den
sity is just such as to fill n Landau levels exactly. (In the next approximation we 
will find a massless particle that will give the feunions a logarithmically divergent 
self-energy, which we ignore for the present.) 
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The fact that the bands are exactly filled suggests that the ground state will have 
a particularly favorable energy at these values of the statistical parameter. Exactly 
filling the top band ought to be analogous to completing a shell in atomic or 
nuclear physics, or filling an ordinary band in a solid. If this is true, the ground 
state should exhibit a certain rigidity, and exhibit an energy gap. 

To test and quantify these expectations, let us consider the effect of adding a 
small real magnetic field B to the fictitious one b. The situation is asymmetric 
with respect to the sign of the real field relative to the fictitious field, and we must 
consider the two cases where the fields add or cancel separately. 

I f the real field is in the same direction as the fictitious one, the density of states 
per Landau level will be somewhat greater, and we will not quite completely fill n 
~C\'el~ a!lymore. Let us der.ote the fractional filling of the highest level by I-x. 
Then from the conservation of particle number we derive 

(b+ B) (n - x) = bn; (b+ B)x = Bn. (4.3) 

For the total energy we have then 

_ e(b+B)e(b+B){~( 1) ( 1) }_n
2
e

2 

E - L t+- - n-- x ---
21£ m 1-0 2 2 41£m 

{ 2 1 ( 1) 2} X b +~bB- 1 -;; B . (4.4) 

Thus the energy relative to the ground state is positive, and grows linearly with B 
for small B. 

If the real field is in the opposite direction from the fictitious one, the density of 
states per Landau level will be smaller, and we will have to promote some 
particles to the (n + 1) level. Denoting the fractional filling of this level by x, we 
have from particle conservation 

(b - B) (n + x) c:: bn; (b - B)x = Bn, (4.5) 

and for the energy 

e(b-B) e(b-B) {~( 1) ( I)} n
2
e

2 

E= L t+- + n+- x =--
21£ m 1-0 2 2 41lm 

(4.6) 

Thus in this case too the energy relative to the ground state is positive, and grows 
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linearly with B for small B. Despite the asymmetry of the situation, the 
coefficients of the terms linear in B are equal in the two cases. The quadratic 
terms differ. 

These arguments though simple are quite significant. They suggest that the 
anyon gas, at the statistics considered, will strive to exclude external magnetic 
fields. This is the germ of the Meissner eff~ct, a hal!mark of superconductivity. At 
the same time they suggest the existence of an energy gap in the charged particle 
spectrum. Indeed, the energy to create a separated particle-hole pair should be 
just the energy to excite a fermion into the lowest empty Landau band, viz. 

eb 21CP 
E· =-=

P~1r m mn 
(4.7) 

Considered more closely, these arguments also suggest a close connection 
between vortices and fermion excitations that seems to be something new in the 
theory of superconductiyity. This connection is characteristic of anyon supercon
ductivity, and will playa key role below both in its deeper theory and in its pheno
menology. The point is this: since the fictitious field is uniquely tied to the 
iJarticle density, and is appropriate to n Landau levels being exactly filled, to 
accommodate any additional real magnetic field we will necessarily have to excite 
particles across the gap. (Or to create holes, a process which we have ~een is also 
characterized by a gap.) Conversely, if the particles do not fill the Landau levels 
exactly, there must be a real magnetic field present to account for the mismatch. 
Anticiilating that the filled Landau level state, and its possible adiabatic 
modulations, is the superfluid component, we are led to conclude that in anyon 
superconductivity, charged quasi particles and vortices do not constitute two 
separate sorts of elementary excitations - they are one and the same. 

We can also infer the value of the flux quantum, from this identification. 
Adding a single fundamental unit 21C/ e of real flux increases the number of 
available states by one per Landau level. Thus, for n filled Landau levels, the act 
of piercing the material by a unit flux tube creates n holes. Clearly this is not the 
most elementary excitation. The most elementary excitation is to produce just 
one hole. Thus the elementary tluxoid is 1/ n of the fundamental unit, or 21C/ ne. 

Although these simple arguments have taken us a long way, there remains a 
central feature of superfluidity that is not at all obvious, or even true, in the 
simple approximation described thus far. This featare is the existence of a sharp 
Nambu-Goldstone mode, or concretely an excitation with the dispersion relation 
(J)2 ex: k 2 at low frequency and small wave vector. It does exist. It was discovered 
in a remarkable calculation by Fetter, Hanna, and laughlin. S They calculated the 
effect of adding back the residual interactions, and found that these interactions 
produced the necessary pole in the current-current correlation function. In 
physical terms, this means that there are particle-hole bound states at zero energy. 
In the following two sections we shall review and generalize these calculations. 
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Unfortunately these calculations do not by themselves make it clear why the 
massless mode exists. Aside from being emotionally disturbing, it is not 
objectively satisfactory to lack such understanding. Without it, one may be left 
uncertain whether this central qualitative feature of the anyon gas is robust, or an 
artifact of the approximations employed in the calculation. Similarly, one may be 
left uncertain 'Nhether small changes in the model Hamiltonian itself - which 
after 311, is highly idealized - might change this feature. Fortunately, the 
exi:;:ence of the massless mode can also be derrlonstrated simply, and it can b~ 
ul1d~rstood qualitatively using arguments closely related to those in the present 
"eel Ion. This is the subject of Sec. 7. 

To conclude the present section we would like to make some brief remarks 
cO~':t'rning the enyon B3S at other v3.1ues of the statistical paralneter, when 
6* 1l(1-1/n). 

I f [he lOp Landau level were not completely filled, !hen the second of our calcu·· 
lations above (leading to Eq. (4.6» would be valid for either sign of the field. The 
energy is then analytic in B, and the presence of a iinear term is indicative of the 
fact that the ground state of the anyo:l system possesses an orbital ferromagnetic 
moment in this case. (We also find that there is an orbital magnetic moment when 
8 = n(1 - lIn) but the analysis is considerably more complicated.34) 

For more general rational values of 8/n, it is possible that the anyons in the 
highest Landau level will form a correlated many-body state, similar to the states 
of the fractional quantized Hall effect.45 In this case there is again an energy gap 
for vortex excitations, and we expect again to find a superfluid ground state. 

For most of our discussion, up to and including the previous sentence, we have 
assumed that the ground state is homogeneous. (An exception was when we 
discussed the expected ground state for fractional statistics near bosons.) This is 
almost surely true for the values 8 = n( I - lIn) which are our main concern. 
However, it is almost surely not true in general. For example, let us consider again 
statistics very close to, but not equal to, one of our favored values, say n = no. 
Then c1ear!y instead of expanding around n = 00 - fermions - we should 
expand around n = no. The particles will then have a small residual interaction. 
More important, the particle density will then not quite fit the density 
appropriate to the fictitious magnetic field. It seems very likely that the best way 
to accommodate this situation is to allow an occasional normal partic!e - or 
equivalently, an occasional vortex - rather than to disrupt the superfluid state 
globally. Thus, operationally, one would separate the anyons into t~NO c1asses
the first, with fractional density nol n to be treated as an anyon gas with 8 = 

n( I - 1/ no) and the remainder to be treated as vortices or anti vortices in that 
background. Readers familiar with the fractional quantized Hall effect45 will 
recognize a strong resemblance to the situation that occurs there, when the 
density is close to but not quite equal to one of the favored rational filling 
fractions. 

These considerations are by no means rigorous or complete, but they do serve 
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to suggest that the physics of the any on gas at general values of 8 is likely to be 
quite rich and to depend quite strongly on "number-theoretic" properties of 8. 

5. The RPA Calculation 

In this section we discuss the mechanics of calculations in the random phase 
approximation. The method follows closely that of Fetter, Hanna and Laughlin; 
we have merely adcted a few observations and elaborated several points left 
implicit in their very concise presentation. 

To begin with, 3S we discussed in Sec. 2, the Hamiltonian of the anyon gas is 
(changing notation slightly to agree with Ref. 5) 

(5.1) 

where ra is a two-dimensional vector specifying the position of particle a and 

(5.2) 

with raj) = ra - rp. Here the particles are to be regarded (in the absence of 
interactions) as fermions; the interactio~ then makes them anyons with statistical 
parameter (J = n(1 - 1/ n). 

It will be convenient to use second quantized notation, in which 

(5.3) 

Here '¥ is a spinless fermion field, and 

a(r) = - d 2 r' 'I't (r')'I'(r'). 1 J iX(r-r') 

n Ir- r'1 2 
. 

(5.4) 

The Hamiltonian describes a system of spiriless fermions interacting through long 
range gauge potentials. 

Actually these expressions are somewhat formal, in that if the density is 
constant the integral for a will diverge. For this reason, and also to implement the 
ideas of Sec. 3, it is useful to separate a into a background part and a fluctuating 
part. This is analogous to the 'familiar use of normal ordering or subtractions in 
defining the vacuum quantum numbers in quantum field theory. It should be 
considered as part of defining the theory. We shall have to check whether the 
theory so defined retains the properties - and in particular, the symmetries -
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we expected of the naive model. Alternatively, one could in principle fonnulate 
the theory in a finite geometry, say on a torus. 

If we ignore fluctuations and substitute the average density p for the density 
operator in a(r), we expect that the system should reduce to spinless fermions 
propagating in a constant fictitious magnetic field. Thus we are led to define 

where 

1 J Z X (r- r') 
a(rl = a(r) + - d 2 r' ('JIt'JI(r) - .0), 

n Ir- "12 

I 
a(r) = - biX r, 

2 

21lp 
b=-. 

n 

(5.5) 

(5.6) 

(5.7) 

This definition of a 'replaces (5.4). However; thp formula (5.6) for a(r) requires 
some explanation. The mean vector potential a should naturally be defined by 
the same integral 

I J iX(r- r') 
a(r) = - d 2r' .0 

n Ir- r'1 2 
(5.8) 

as (5.4), with the true charge density 'l't'JI replaced by the mean density p. The 
only problem with this is that the integral in (5.8) is not unambigaously 
convergent if p is strictly constant. To interpret this integral, note that for 
arbitrary .0 such that the integral in (5.8) is well-defined, that integral computes an 
abelian gauge field li such that b = 21lp / n, where b = a. a2 - a2a., and moreover 
such that V . ii = 0, and such that ii vanishes at 00. a is uniquely determined by 
those conditions, and the integral in (5.8) has exactly the kernel required to 
produce the field a obeying those conditions. For the limiting case in which the 
support ofp extends over all of space, the integral in (5.8) is ambiguous (not abso
lutely convergent), and it is impossible to obey all of the conditions that would 
hold ifp had compact support (to give the right b, ii cannot vanish at (0). We in
terpret the integral in (5.8) as giving an average a field that gives the right band 
obeys the gauge condition and has a behavior at 00 that is as good as possible. The 
proposed form in (5.6) obeys these desiderata, but is not quite unique since 
without changing b or viola ring the gauge condition or worsening the oehavior at 
00, one could add a constant to ii. This ambiguous integration constant is actually 
closely related to the pnysics that we will eventually find. Modulo an integration 
constant, the answer in (5.6) is certainly what one would get by doing the integral 
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in (5.4) for some almost constant p of compact support, and then taking the limit 
as the support of p extends over all space. The value that one would get for the 
integration constant would depend on exactly how one took the limit. 

For later use, we define current operators 

j;(r) EE 'I't (r)~(p; + a;(r) ) 'I' (r) 
m 

.. t I 
j;(r) == \f' (r)-(p; + a;)'I'(r) . 

m 

(5.9) 

(5.10) 

Since on the one hand it is a soluble problem, and on the other we have argued it 
contains much of the important physics, we will treat the system of otherwise free 
fermions propagating in the average field as the reference problem, and regard 
the re~t of the Hamiltonian as a perturbation. The interaction Hamiltonian for 
this perturbation scheme is 

= H. + H" (5.11) 

(5.12) 

H2 = _1_2 J J J d 2 r d 2r' d 2r"'I't(r)'I'(r) {e;j(r- r;j ('I't(r')'I'(r') - P)} 
2mn Ir-r'l 

X {eik(r - r")k ('I't (r")'I'(r") _ -)} 
Ir-r"12 p 

I J J J (r- r'). (r- r") 
= --2 d 2 rd2 r' d2 r" p(r) 2 2 (p(r') - p) (p(r") - p). 

2mn Ir- r'l Ir- r"1 
(5.13) 

In the same spirit let us reorganize H2 iuto two pieces, usingp(r) = p + (p(r) - p). 
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The first half of the resulting expression is expected to dominate for large n, when 
fluctuations in density are relatively small. Its meaning becomes transparent 
upon doing the integral: 

J (r- r')' (r- r") 
d2 r = - 21r Inlr' - r"I. 

I r - r' 12 ·1 r - r" 12 
(5.14) 

It represents an effective COulomb interaction! The interaction is repulsive 
L'etween like-signed particles, attractive between oppositdy-signed particles. 

The existence of such a~ interaction is important in two respects. First, it 
generates.an effective long range repulsion between two particles, or two holes. 
Given the identification of these excitations with vortices, this is responsible for 
the anyon superconductor being type II. 

Second, it generates an effecti ve long range attraction between particles and 
holes. This is responsible for the formation of the zero-mass bound state. 

The nature of the interaction can be given an interesting interpretation. 
Imagine that a massless gauge field has developed dynamically, such that our par
ticles couple to this field. Then there would be a logarithmic interaction of 
precisely the calculated form. Later we shall see that the premises in this 
interpretation do actually hold. 

If we simply drop the other half of H 2, we are left with two-body interactions 
only, and can make great progress. Note that the discarded term, besides being in
trinsically small, is manifestly translation, rotation, and (even if we couple in 
electromagnetism) gauge invariant. The remai~ing interactions c~n be written 

(5.15) 

where the spatial part of i has been defined before, and 

Jo(r) = p(r) - p . (5.16) 

There is no distinction betweenJo and jOe V takes a simple form in Fourier space. 
To exhibit this, we take a momentum vector q with component only in the t and x 
directions, and we order the coordinates as (t, x, y). Then one has 
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p(21C)2 
0 

i21C 

mnq2 q 

0 0 0 (5.17) 
n 

-i21l 
0 0 

q 

The appearance of the Coulomb interaction suggests the importance of summing 
bubble graphs, as in the standard treatment of the electron gas. Since the 
interaction Hamiltunian can be written in terms of j, the correlation function of 
.f obeys a simple geometric equation, in this approximation. Thus defining 

(5.18) 

as the matrix of time-ordered expectation values in the true ground state, and D~v 
as the corresponding object in the non-interacting ground state, we have in this 
approximation 

(5.19) 

The product is to be regarded as convolution in real space or simple multiplica
tion in Fourier space. 

Solving this equation, we find 

(5.20) 

Another perspective on the bubble-graph approximation, thai is actually 
superior from a logical point of view, is to regard it as simply a perturbative 
evaluation of the inverse propagator D- 1

• The previous equation, in the form 

(5.21) 

is then simply lowest-order perturbation theory. Why is it more appropriate to 
perturb in the inverse propagator than in the propagator itself? That is a standard 
story that we shall not belabor here; the key point is that the inverse propagator, 
unlike the propagator itself, is regular at small frequency and wave vector, so 
whereas for the propagator itself we find immediately that the limits 00, q ~ 0 and 
n - 00 do not commute, there is every reason to expect the perturbative 
evaluation of the inverse propagator to become accurate as n ~ 00. 

The calculation of !}~v is straightforward though rather arduous; it is presented 
in Appendix A. The result may be parametrized in the form 



364 

On Anyon Superconductivity 1023 

(5.22) 

~n writing this result we have specialized to the case q~, = 0; this involves no real 
toss of generality. 

D is not quite the object we want. The electromagnetic response is rather given 
in terms of the true c~rrent-current corrdation function 

~ (1 2) - __ 0; II Tr ~ (I) JA (2' 1'\ 
.. "p,'I' - ~ \ I t J Il" Y.'! , (5.23) 

where ( I ) denotes the dependence on ," t I, and I ) denotes the exact ground state. 
Fortunately, A and Dare ciosely related. Consider, for exa:nple, the 010 entry. We 
have 

-; 
(A - D)IO =" - (IT['I't'l'(I)(a - a)(l), 'I't'l'(2) - p]l) 

m 

(5.24) 

In the now familiar manner, we sp.parate p into an average and a fluctuating part: 

(5.25) 

The contribution to A - D involving the average can be simply expressed in 
terms of D itself; the contribution from fluctuations is small in the n -+ 00 limit 
and ·Ne drop it. Passing to Fourier space, we arrive at 

21CP I 
(A-D)IO = + ;--Doo. 

mn q 

A generalization of this argument leads easily to 

(5.26) 
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2 (0 0 i) U=m: 000. 
q 0 0 0 

(5.27) 

Finally, the true electromagnetic response includes not only the current-current 
correlation (which essentially represents the iteration of the first order term in the 
true electromagnetic potential A) but also a contact term, from the direct 
appearance of A 2 in the Lagrangian, which is quadratic in momentum. Thus the 
final expression for the response function, defined according to 

(5.28) 

is 

(5.29) 

Collecting the various formulae, we find (setting, for reasons discussed in 
Appendix A, 1:3 = I) 

q2 W iqE 
-1:0 q-l:o 

e2n 
We We 

K=-- W w 2 iw'E. (5.30) 
21ldet q-1:o -1:0 

We We 
-iqE -iwE we(E -1:1 + 1:2 + det) 

where 

(5.31 ) 

and 

(5.32) 

In arriving at this expression, we have made approximations at three stages: in 
the perturbative evaluation of the inverse propagator D -I, in formulating the 
interaction Hamiltonian, and in passing from D to A. We have discussed the first 
of these above, now let us address the other two. Both these approximations were 
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of the same general form: in an expression involving the correlation of the density 
at one point with density fluctuations at two other points, we replaced the density 
with its average. In concluding this section, we wish to remark that this 
approximation can be justified in the large n limit. Indeed, the triple correlations 
of density fluctuations satisfy a simple Dyson equation. Although we will not pre
sent the details here, a straightforward analysis based on this equation shows that 
the terrns dropped invoive a highe:- POVllcf of the lr~tera,~tion than the terms kept, 
and thus a higher power or 1; n. Lieady, these re.rnarks also pOInt the way to a 
practical method of calculating to higher ord·~r. 

6. Results.,( the RPA Cal~lation 

\Ve now evaluate the e:e/~tror.lag\l("'li(' rEspon~e K;;..Jq, .::0) for snlall q ~nd w 

explicitly. From Appendix A we derive in this limit 

Io~ -1-(~)\3n(!r we 8 \,t , 

Il~ -I-(:r + 3; (*r. (6.1) 

I2~ -I-(~J +n (1)'. 
It is noteworthy that to this order only transitions between the two tcp filled 

Landau levels and the two bottom empty ones contribute. 
There is evidently a pole in the response funeticn, at 

(6.2) 

The physical significance of K becomes more transparent if we reformulate it 
in terms of an effective Lagrangian. We have found that we can reproduce the re
sponse function at low frequency and small wave vector using an effective model 
which contains a massless scalar field interacting with the electromagnetic gouge 
field, of the form 
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Notice that this Lagrangian is invariant under the gauge transformation: 

(6.4) 

This model exhibits the Higgs mechanism in its pristine form (due to Stuckel
berg): tP, which in the absence of electromagnetism represents a scalar degree of 
freedom - essentially a sound wave, with v2 equal to the speed of sound squared 
- loses its independent significance when thus coupled to electromagnetism. 
I ndeed, it can ~e set to zero by a gauge transformation. 

The f~rst two terms in L are familiar in the theory of superconductivity. They 
generate the ordinary London equations. The next two terms are higher order in 
gradients, and thus formally subdominant. However, we have kept them because 
they display a qualitatively new feature. Whereas the first two terms are 
automatically invariant under parity and time reversal, the next two are not. 
They are of course fully rotationally and gauge invariant, but violate both P and 
T, in such a way that PT is conserved. In a word, they obey the symmetries of our 
underlying microscopic model - the anyen gas - and we have every right to 
expect that they should occur. The fact that these terms are in a real sense small is 
both entertaining and Sif;a!ficant. It is entertaining, in that it is a rather 
unexpected analogue of a familiar situation in high-energy physics. There, it is an 
important result that in QCD, parity violation and time-reversal violation cannot 
occur through low-dimension (renormalizable) i:lteractions. It is this fact that 
makes it comprehensible that parity and the time-reversal violation are hard to 
observe, even though neither is fundamentally a good symmetry. Similarly here, 
it is "'ery significant that parity and time-reversal symmetry are in some sense 
automatically hidden in anyoD superconductivity. This inakes the phenomeno
logy more challenging to work out and the experiments t\l meaningfully test the 
symmetries necessarily subtle. 

If we put tP = 0 inside the Lagrangian, we see that these new terms are closely 
related to gauge theory Chern-Simons terms. It is amusing that upon dropping the 
requirement of relativistic in variance we find there are two possible Chern
Simons like terms. To a first approximation the charge density and electric 
current associated with tP are 

p = -C(cP- CAo) 
(6.5) 

as follows from varying the Lagrangian with respect to Ao, Ai respectively and 
dropp!ng the terms proportional to a and b. Using these approximate expres
sions, we can write the new terms in a more transparent form: 
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(6.6) 

(6.7) 

Thu~ we see that a cor rd~tes electric charge density with magnetic fields, and b 
correlates current with perpendicular electric field in a nlanner reminiscent of the 
Hall effect. Also, we see that a change tJp in the density is generally accompanied 
by a change in the ffi:Ignetic moment density, proportional to a. 

The num~rica! evaluation is carried out by comparing the photon two-point 
function calculated froln L with the response function K. A few details of the cal
culation are presented In Appendix B. OUT results, valid in the limit n - 00, are: 

m 2 ' 

c= e~ 2:1i' 

a = ne~ Ii , 
327tm 

b = 0 

where proper units have been restored. 

(6.8) 

The values of v2 and C are just such as to reproduce the standard formula for 
the London penetration depth. The vanishing of b can be understood on physical 
grounds. We will discuss this, as well as some phenomenological implications of 
L, in Sec. 8. 

One can also obtain the coefficient a by another type of analysis, which we 
believe to be exact, and whose details will be given elsewhere.34 The correct 
formula for a differs from that in (6.8) by an additillnal factor (I - n -2). Note that 
this gives a = 0 for the case of bosons (n = I) as we expect for this situation, 
where P and T are actually good symmetries. 

To conclude this section we would like to comment on the relation of the effec
tive Lagrangian discussed above to a more complete effective Lagrangian, and 
how the latter might be calculated. These comments illustrate certain points but 
do not incorporate the special featurc3 of the order parameter discussed in Sec. 7; 
thus the equations that follow should be interpreted metaphorically. 

In the Landau-Ginzburg generalization of the London framework one con-
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siders that the density as well as the phase of the superfluid condensate can vary. 
In this generalization, we wouid have instead of the Lagrangian considered 
above, a Lagrangian of the form 

(6.9) 

Our previous considerations on the anit of quantized flux suggest q = nee This 
form goes over into the London Lagrangian if we s&>ecialize the complex scalar <I> 
to the form 

(6.10) 

where V = .J m 2/2A. is the vacuum expectation value of <1>, and work to lowest 
order in gradients. Notice that the mass term m and the self-interaction A. lose 
their significance in this limit. 

We determined the coefficients of the London Lagrangian by matching to the 
electromagnetic response at low frequency and small wave vector. One could in 
principle determine the coefficients of the Landau-Ginzburg Lagrangian, or an 
appropriate modification of it) within the framework of the calculations reported 
above, by matching to the response at higher frequency and larger wave vector. It 
should be remarked, however, that the unique feature of the statistical interaction 
- its long-range n!lture - does not guarantee, or even make it reasonable to 
expect, that it is a good guide with respect to short-distance or small-time 
behavior. Other interactions of a more prosaic sort will surely come into play. 
Therefore the idealization involved in treating the quasiparticles in any real 
material as an ideal gas of anyons generally becomes more severe as we move 
away from the London regime, except for certain qualitative questions of a global 
character. 

We might also step back one more step, and try to build into an effective 
Lagrangian the fact that the P and T violation, which we have been treating as if it 
were fundamental, must actually have its origins in spontaneous symmetry 
breaking. A simple possibility is the following. Let " be a real scalar field, meant 
to parametrize the degree of chiral spin liqui.d order. Then let 
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L = fL.G. + L" (6.11 ) 

where 

I . 2 V
2 

• 
LL.G. = :;-1<1> - iqAo <I> 1 - -::;-ld,<I> - iqAj<l> I 2 + ia17eijd,A;{<I>t(<I> - iqAo<l» - C.C.} .. 

-+- ib1'/Gjj(aaA, - d,A,,,) {~t (dj<li -- iqAj<t» - C.C.} + (K'l2 - m~) 1<1>12 - A!<l>1
4 

, 

(6.12) 

t~ a m~dified version of the- Lan(1a~I-(~in?burg Lagrangian con5idered b~fole, and 

( 0.13) 

The Lagrangian is invariant under P and T if '1 is defined to be P and T odd. Now 

if" acquires a vacuum expectation value, «( t1) = ± "M2 /2A), then clearly the 
modified Landau-Ginzburg Lagrangian takes the same form as the original 
Landau-Ginzburg Lagrangian. The signs of the coefficients of the P and T 
violating terms a and b will depend on the sign of the vacuum expectation "alue 
of". Notice that if m~ is positive but 

(6.14) 

then chiral spin order will drive the onset of superconductivity. At the level of the 
Landau-Ginzburg LagranGian discussed here the two transitions are in principle 
quite distinct, however. 

Another direction in which the effective Lagrangian can be extended usefully js 
to take into account the coupling of the superfluid to normal electrons, or 
vortices. This will be discussed extensively in the following section. 

7. The Order Parameter 

One of the mysterious features of the RPA treatment of the anyon gas in Ref. 5, 
and its further elaboration in the present paper, is that the calculation proceeds 
without exhibiting the superconducting order parameter. One finds a massless 
pole in the two point function of the electromagnetic current, but the computa
tion that reveals the existence of this pole does not also exhibit a local order para
meter analogous to the charge-violating local order parameters familiar in the 
theory of conventional superconductors. In contrast, in conventional treatments 
of ordinary superconductors, it would be practically impossible to compute the 
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interesting physical observables without at the same time exhibiting the key order 
parameter. 

We may restate this puzzle in terms of the mechanics of the calculation. In gen
eral, we would expect that in constructing a broken symmetry ground state we 
would have to make some arbitrary choice among a set of energetically 
degenerate possibilities. Thus for instance in a ferromagnet we would have to 
choose a definite direction for the magnetization; in a BeS superconductor we 
would have to choose a phase for the condensate, and so forth. However, in the 
RPA calculation presented above it is not at all obvious where such a choice has 
been made. Indeed. if there were a conventional condensate it would necessarily, 
for large n, be very complicated. for reasons we Inentioned in Sec. 3. For it to in
iluence a calculation, the calculation WOL:ld need to involve high-order correla
tion functions somewhere along the way. But the corrtputation we actually 
performed involved only simple correlation functions, with intermediate states. 

This mystery of the order parameter is a familiar story in sOlne of the other 
2 + I dimensional systems in whir,h fractional statistics pl3Y a role. In particular, 
there has never been a fully satisfactory description of the relevant order 
parameter in the fractionally quantized Hall effect - a description, that is, of 
what is the general class of things of which the celebrated Laughlin wave functioIi 
is an example. We will unfortunately not be able in this paper to shed much light 
on the fract~onal Hall effect, but we hope to clarify the nature of the order 
parameter in the case of the superfluid anyon gas. 

In away, it is encouraging that the order parameter of the superfluid anyon gas 
should be rather elusive and somewhat novel. The reasoning that begins with 
two-dimensional spin models, proceeds (for example, via the mean field theory of 
Ref. 31) to fractional statistics, and then aHempts to derive superconductivity 
from properties of the anyon gas, is long and indirect. It would be less than satis
fying if the output of all this were to be olerely a strongly coupled version of BCS 
theory. The anyon gas as a mechanism· for superconductivity is far more 
interesting if it leads to a new universality class (but see the remarks at the end of 
Sees. 7.1 and 7.6.) 

Of course, spontaneous P and T violation is essential in this circle of ideas, and 
is absent in usual superconductors. However, there is no problem in having P and 
Tviolation coexist with the ordinary superconducting order parameter. The BeS 
theory could perfectly well be elaborated to describe a system with both 
spontaneous breakdown of P and T and spontaneous violation of charge 
conservation. Such a situation actually arises in the conventional description of 
the A phase of liquid 3He. But we will argue that in the case of the anyon gas, 
superconductivity does not merely coexist with spontaneous P and T violation; 
P and T violation are built into the correct description of the order parameter 
responsible for superconductivity. 



372 

On Anyon Superconductivity 1031 

7.1. Sum Rule Argument 

The necessity for the existence of a zero-energy boson-like mode at long wave
lengths can actually be demonstrated by a direct argument,46 which makes no 
reference to an order parameter or a broken symmetry. Let us define a spe~tral 
weight, 

W(k, (0) = L !(l!pdO)1 2w -lc5(w - E!+ Eo), (1.1 ) 
I 

wh~re Pk IS the density operator at wave vector k, iO) is the ground state of the 
system: and the sum is over a.ll excited states II}: while Eo and E, are the ~espective 
energy C'igcnvalues. For a system of non-relativistic particles of mass m, with 
forces that are velocity-independent, there is a well-known sum rule: 

(7.2) 

This sum-rule, which is obtained by evaluating the quantity (Ol([p-k, H], Pk]IO), is 
easily derived for the anyon system using a representation given below, where the 
wavefunction is multivalued and the kinetic energy has just the free-particle 
form. At the same time, we know that 

f W(k, w)dw = Aoo(k), (7.3) 

where Aoo(k) is the density response function defined by (5.23) evaluated at 
(J) = 0. The k --t. ° limit of this functi\ln is the corr,pressibility, which is finite for 
our system since the ground state energy is an analytic function ofp. (For non-in
teracting anyons, the energy per particle is simply proportional to p.) It follows 
that the root-mean square value of the energy in the spectral density at wave 
vector k is given, in the limit k -+ 0, by, 

(7.4) 

Now there are two possibilities. The spectral density may be exhausted by a single 
mode, in which case its frequency must be precisely equal to toke (This is what 
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happens in superfluid 4He, or in a neutral fermion superconductor, such as 3He.) 
Alternatively, there may be a spread of energies entering the spectral weight at 
wave vector k. In this case there will be some excitations with energies greater 
than vole, while others must have energy less than vole. This is the case in a normal 
Fermi liquid, where there are particle-hole excitations throughout the interval 
o < CJ) < vFk, where VF is the Fermi velocity. For anyons, there is no continuum of 
particl~-hole excitations at low energies, so we are not surprised to find that there 
is an isolated boson mode, with energy CJ) = volc. 

The very generality of the sum rule argument means that it provides only a 
limited amount of insight about the properties of a particular system. For more 
insight, one might try to find a converltional order parameter for the systenl. Spe
cifically, we would iike to find au operator '¥(r) which reduces the charge in the 
vicinity of the point r by n units, and which has the p:-opel1y that for large.separa
tions Ir - r' I, the correlation function (OI'J'f(r')'¥(r)IO) approaches a finite 
constant, or at worst falls off as a power of Ir - r' I. Operators that satisfy these 
requirements can possibly be constructed in direct analogy with the order 
parameters employed ;-ecently to describe the quantized Hall effect.47-49 These 
operators are highly non-local, however, at le~st when they are expressed in terms 
of anyon operators in the fermion representation used above. In fact, we shall 
argue below that there can be no superfluid order parameter of the conventional 
type for this system that is local in this representation. 

The fact that an operator 'I'(r) is non-local in terms of the anyon uperators does 
not necessarily imply that it is non-local in the underlying electron operators, 
when applied to a solid state system on a lattice. To investigate this question ulti
mately we must refer to the specific microscopic model from which the anyons 
were derived. We shall discuss elsewhere some insight into this issue that can be 
derived from general symmetry properties.34 Preliminary results of this analysis 
suggest that the symmetry of the order parameter 'I'(r) for a system containing 
two kinds of anyons with half-Fermi statistics (8 = 1C/2) is compatible with the 
symmetry of a Cooper pair of electrons in a spin-singlet state. 

7.2. TrlllUlatio" l",lIriace 0/ tu UlUlerlyi", SYltem 

It is iilstructive to begin by considering some elementary facts about the spin 
models that can be considered to underlie the anyon gas. In these models, one 
has a system of quantum spins arranged on a two-dimensional lattice L. The total 
Hamiltonian H is a sum over lattice sites a E L of a local Hamiltonian density ~: 

(7.S) 

The density %a is constructed from the spins at the site a ~nd their close 
neighbors. The construction of the %a is translation invariant. This means that if 
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e. and e2 are elementary lattice vectors, then the operators T. and T2 that 
translate the spins one step in the e. or e2 directions commute with the 

Hamiltonian: 

(7.6) 

In addition, of cuu::-se, they commute wi~h one another, 

(7.7) 

Coniinuous Trart.)/ution Symmetry 

Although ihe spin n.lodels (like mcs~ \~nde!iSed matter systems) possess only 
discrete translation invariance, the anyun gas which is conjectured to give ar: 
approximate description of a system of electrons interacting with a suitable spin 
model is a system with continuou£ translational symmetries. The translation 
generators of the anyon gas are the momentum operators. The anyon gas can be 
described in a variety of mathematical fOlmalisms. Each formalism leads to a dif
ferent description of the momentum operators Pi and the Hamiltonian H. In any 

formalism, these obey the fundamental microscopic relations 

[H, P;] = 0, (7.8) 

and 

(7.9) 

At the risk ~fbelaboring the obvious, we will review the definition of appropriate 
operators H and Pi obeying (7.8) and (7.9) in several possible formalisms. 

To begin with, one can treat the anyons as a gas of N particles with position 
operators Xa , a = 1, ... ,N and a wave function t/I(x., ... ,XN) that is multivalued 
and chan~es by a factorofexp(2ni/n) when one particle loops around another. In 
this formalism, H and Pi are defined by the familiar free particle formulas 

and 

d 
P;= L -i-.. 

a dxa' 

(7.10) 

(7.11) 
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Clearly, (7.8) and (7.9) are obeyed. 
Alternatively, if one wishes to work with ordinary single-valued wave func

tions, then the replacement 

1/I(X., ... ,xN) ....... f1 (za - Z,)I'''1/I' (X., ... ,xN ) (7.12) 
a<, 

(where Za = xa l + iXa2) permits us to replace 1/1 with a single-valued wave function 
1/1'. As a result, one gets 

(7.13) 

and 

(7.14) 

Here the covariant derivatives are defined by 

D d 
-. =-.+iaa;, 

Dx~ dxa' 

(7.15) 

with the effective vector potential seen by particle a being 

(7.16) 

Obviously, (7.8) and (7.9) are still obeyed, since we have merely made the 
redefinition (7.12). 

Finally, one can derive the anyon gas in a second quantized formalism from the 
Chern-Simons Lagrangian 

Here 1/1 is a second quantized "electron" field. It is known I that the system 
obtained by quantizing (7.11) is a system of particles (conserved in number) that 
interact only via the statistical interaction of the anyon gas. The conserved 
particle number is 
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(7.18) 

Conservation of the particle number follows from the current conservation law 

(7.19) 

where 

i 
J; = - 2m (-./;* 1),,,, -(D;1/;*)y,,). (7.20) 

The Hamiltonian and momentum operators derived from (7.1 7) are 

(7.21) 

and 

(7.22) 

where the energy density is 

1 
T.oo = - D··I,* D··I, 2m ,'t' ,", 

(7.2~) 

and the momentum jensity is 

-; 
To; = 2 (1/;* D;1/; - (D;1/;*)1/;). (7.24) 

The equivalence with the particle description of the anyon gas ensures that the Pi 
commute with each other and with H. This can be directly verified in the second 
Quantized description using the commutation relations 

{1/;*(X),,p(y)} = b(X- y), (7.25) 

and the Gauss law constraint 

(7.26) 
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where/;j = a;aj-aja;. 
Before leaving this subject let us note the amusing fact (visible in the above for

mulas) that the particle current and the momentum density of the anyon gas are 
equal: 

To; = mJ;. (7.27) 

This reflects the fact that at the microscopic level, the system is invariant under 
Galilean transformation and all particles have a common charge to mass ratio. 
We will later have use for this fact. 

In summary. the ~nyon gas, in any mathematical formalism, has at the 
microscopic level a Hamiltonian H and momentum operators Pi that obey the 
bas~c relations (7.8) and (7.9). The following discussion will focus on trying to 
understand how those properties are realized macroscopically. Then, since in 
realistic superconductors the continuous transl&tion symmetries are broken 
down to discrete translation symmetries by the presence of a lattice, we will 
~onsider the more realistic case of (7.6) and (7.7) with discrete translational 
symmetries only. 

7.3. Macroscopic RellliVltion 0/ Trlluilltion In,arianee 

The question now arises of how the symmetries we have just surveyed are 
realized macrosc :lpically, at the level of the physical excitations of the system. 

It is a familiar story in condensed matter and particle physics that a symmetry 
of the microphysics is not necessarily manifested as a symmetry of the 
macroscopic physics. An unoerlying symmetry that does not leave invariant the 
vacuum state is "spontaneously broken". Spontaneous breaking of a continuous 
symmetry leads to the existence of a massless mode which in particle physics is 
called a Goldstone boson. Spontaneous symmetry breaking is the key to most 
modern understanding of superfiuids, and has offered such a fruitful perspective 
for understanding snperfiuids that one tends to assume that it has universal 
applicability. 

We would now like to claim, however, that the key concept for understanding 
the superfluidity of the anyon gas is not really spontaneous breaking of a 
symmetry but what might be called spontaneous violation of a fact. The fact that 
is spontaneously violated is the fact that the momentum generators commute. 
While microscopically 

(7.28) 

macroscopically, at the level of quasi-particles, one obtains 

(7.29) 
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where Q is the particle number and f is a constant which we would like to inter
pret as the fundamental order parameter of the anyon gas. From f :F 0, we will 
deduce the existence of a massless mode. This will be our explanation of the mode 
first uncovered in Ref. 5, the mode that is responsible for the superfluidity of the 
anyon gas. 

Axiomatically, thi8 mode can be interpreted as a Goldstone boson, since it 
appears as a pole in th\! two point function of the electromagnetic current 1 as was 
already seefl ill Ref. 5. i.n ihis interpretalion, the existenc~ of this lnode is rather 
n~ysterious, since it seems (aad it will be argued later) that there is nc local order 
parameter that would naturally explain the existence of a Goldstone boson. We 
believe that tne crucial massless mode dces have a natural explanatio!1 as a 
consequence of spontaneous viol~tion of th~ fact that Pi and Pj commute. Its role 
as a Golds~one boson (appearing as a pole in the two po;nt function of the 
electronlagnetic current) can then be deduced as a corollary. 

7.4. Pillne Waves and Landau Levels 

It is easy to see why (7.29) is true. If~he translation generators Pi are conserved 
and commute, it must be possible to take the quasi-particle excitations to be 
momentum eigeilstates. This is what is most definitely not possible in the 
perturbative calculations that we have been pursuing. The charged quasi
particles in those calculations are not in plan" wave states but in Landau levels. It 
is precisely because the quasi-particle states are not plane waves that the 
perturbative computations are difficult. 

That !I:e quasi-particle states are not plane waves could he well understood, of 
course, if translation invariancc were spontaneously broken - if the Pi did not 
annihilate the vacuum. This is not the case here, however. It is because of the in
teraction with a non-zero expectation value of the fictitious magnetic field 
f = ~t'J(d;aj - dja;) that the charged quasi particles are not plane waves. Because 

we take f to be translation invariant, this backbround is translation inveriant, 
and conservation of the Pi is not spontaneously broken. However, in a magnetic 

field, the translation generators do not commute, so the nonzero expectation 
value of f results in a spontaneous violation of the commutation relation 
[Pi' Pj ] = o. 

We can make this somewhat more precise. Consider, first of all, a single 
particle moving in a constant magnetic field. The one particle Hamiltonian is 

...'1 = __ 1_ L D(O)~, 
2m k 

where the covariant derivatives D(O); obey 

(7.30) 
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[D(O). D(O).] = ie .. f 
" J IJ' 

(7.31) 

The superscript "(0)" is meant to indicate that we are considering the interaction 
with a fixed vector potential; the gauge field is not dynamical. It is important to 
realize that the translation generators are not simply the covariant derivatives 
D(O);; these do not commute with the Hamiltonian. Rather, the conserved 
translation operators are 

p. = -iD(O)·+fie .. x i . 
I I IJ' (7.32) 

these are easily seen to comnlute with H. They do not commute with ertch other, 
however. but obey 

(7.33) 

to express the same thing in a second quantized language, recall first that in 
studying the anyon gas, one finds, in lowest order in 1/ n, an expectation value of 
the fictitious magnetic field f, and the fol!owing "obvious" elementary excita
tions: quasi particles that can occupy all Landau levels but the first n, and 
quasiholes that can fill any state in the first n Landau levels. What must be 
explained is why one finds in addition one more type of elementary excitation, 
namely the massless boson. The "obvious" elementary excitations can be 
represented by an effective fermion field X with a Lagrangian 

(7.34) 

The gaug~ fieid is no longer dynamical; and instead of the elementary fermion 
field 1/1, we use a quasiparticle field X to emphasize that (7.34) is meant to be not a 
microscopic Lagrangian but (a piece of) a phenomenological Lagrangian in which 
as much as possible of the relevant physics is visible at tree level. 

Can (7.34) be the whole of such a phenomenological Lagrangian? To 
investigate this, we examine the realization of translation invariance. The 
Hamiltonian derived from (7.34) is 

H = _1_ J d2 xD(O)X* D(O)X 
2m k k· 

(7.35) 

It may not be immediately obvious what the translation generators can b~, but by 
virtue of the single particle result (7.32) one can see that the operators that 
generate translations and commute with Hare 
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(7.36) 

The quasi particles and quasi holes appearing in (7.35) cannot be the whole 
story because the translation generators in (7.36) do not commute; they obey a 
relation 

[ p<!-) p<!)] = i'e··Q ,') J 4 I) (7.37) 

(7.38) 

is the conserved charge operator. (7.37) is the seco!ld-quantized version of the 
single particle result (7.33) (being a single particle result, (7.33) effectively 
corresponds to the sector Q = I). 

Now we can see that the quasiparticles and quasiholes that are visible in lowest 
order in lin cannot be the whole story. At a microscopic level the translation gen
erators of tL.~ anyon gas commute, as we emphasized in the last subsection. But 
the translation generators of the phenomenological model (7.34) do not com
mute. Something must be done to correct this discrepancy between the 
microphysics and the putative macroscopic realization in (7.34). 

There is another, closely related reason that (7.34) cannot be the whole story. In 
the underlying microscopic anyon gas, tl!e translation generators P; are the 

integrals of intrinsically defined local densities To;, for which a formula was given 
in (7.24). In the macroscopic model (7.34) this is not true. The translation 
genera!ors can be written, as in (7.36), as the integrals of local densities, but 
because of the uxi" in (7.36), the definition of these local densities does not de-
pend only on the intrinsic local physics, but also depends on the arbitrary choice 
of an origin of coordinates. 

This second version of the problem, though it may sound more abstract, is in a 
way a more powerful formulation, since this version of the difficulty is relevant to 
the sector of Q = 0 as well as to the charged sectors. 

7.5. Restori"g Commutativity of the Translation Generaton 

We will now see that if, in addition to the quasiparticles and quasiholes 
described in (7.34), we assume the existence of an additional spin zero massless 
boson, the above-cited problems can be repaired. This massless boson is 
analogous to a Goldstone bosor:, since its role is to correct for a discrepancy 
between the microscopic properties of a system and the macroscopic realization. 
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However, while a Goldstone boson is tied to the violation of a symmetry, the 
massless boson present in this problem is tied to the violation of a fact - the fact 
that [Pi' Pj] = O. 

Of course, we cannot prove on grounds such as these that a spin zero massless 
boson must exist. There would be other logical possibilities, notably the 
possibility that the approximation leading to the excitations that appear in (7.34) 
is wrong even for large n. The best that we can say is that ;f one postulates th~ exis
tence of the excitations in (7.34), then this creates problems that can be cured by 
the additional existence of a massless boson with certain properties. 

The obvious way to represent a spinless massless boson by a quantum field is to 
consider a scalar field <p with Lagrangian 

(7.39) 

Here v is the velocity of pro !lag at ion of the massless boson. While the description 
(7.39) of a massless boson is possible in any dimension, in 2 + I dimensions there 
is another possibility. One can represent a massless spin less boson by an abelian 
gauge field b; with field strength hij = a;bj - ajb;. The Lagrangian for h; is 

(7.40) 

The equivalence between the two descriptions is made by the change of variables 

(7.41) 

For our present purposes, it is mosi convenient to first consider the description 
in tenns of bi • The conventional translation generator of an abelian gauge field is 

where the conventional form of the momentum density is 

r~) = - L hOjhij . 
j 

(7.42) 

(7.43) 

This leads to the standard result [Pi' Pj ] = O. But if one adds an additional tenn to 
.. the momentum density, taking 
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(7.44) 

then a short computation, using the canonical commutation relations derived 
from (7.44), gives the result 

(7.45) 

w!iere the int~gral i:i oY~r a large (:irck at infinity, and ."1
k is the !lor~al vector to 

~his cirdc. 
Evidently, ~hcrefore, if we. combine the X a~d b systems, and form the total 

momentum operators Pi = p{J.); + p(b};, then 

(7.46) 

Thus, all is well if we restrict ourselves to the subspace of Hilbert space for which 

(7.47) 

Ifwe take the free LagraGgians (7.34) and (7.40) literally, then the Gauss' law 
constraint (the equation of motion obtained by varying with respect to bo) would 
give dkhOk = 0 and therefore f dl n;': hOk = 0, in contradiction to the desired result 
(7.47). To obtain (7.47) (and at the same time give this condition a physical inter
pretation), we must modify the tree Lagrangians by adding a suitable term 
coupling b to X. This term means that X is a charg~d field interacting with the 
dynamical gauge field b. The requisite Lagrangian is 

where now D; = a; + ib;, and b; is a dynamical gauge field. It is now easy to see 
what is the role of b; in restoring the commutativity of the translations. Indeed, 

(7.48) is a perfectly normal Lagrangian with commuting translation gener~tors. 
By expanding around a constant expectation value f of the Umagnetic fiel'!" 
al b2 - a2 bl , one will find the X excitations to be Landau orbits with apparent vio-
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lation of commutativity of translations. But this phenomenon is "spontaneous", 
simply reflecting the non-zero expectation value of h. Because the Lagrangian 
(7.48) has "normal" translation invariance, the translation operators will 
commute regardless of what background one expands around, when one includes 
all contributions to these operators. 

The way that commutativity of translations is realized in Eq. (7.46) is very 
similar to the way that relations expressing an underlying symmetry are usually 
realized in systems with spontaneously broken symmetry. The translation 
generators commute - but only if one takes into account surface terms involving 
massless particles. The lvcal measurement of the motion of the X quasiparticles 
se~s broken commutativity of the translations. 

Finally, we can now readily resolve the other difficulty noted in connection 
with Eq. (7.36), which was that the quasiparticle momentum density could not be 
written as the integral of a local density that could be defined in a natural way. 
The offending term can be rewritten by using the Gauss law constraint and 
integration by parts: 

(7.49) 

Thus, the offending term in (7.36) is actually equivalent, using Gauss's law, to the 
integral of a local density which is naturally defined, since it does not contain any 
explicit factors of "Xi". 

Let us now briefly consider the formulation in which hi is replaced by an 
equivalent scalar boson </>. To restore translation invariance, one must include in 
the stress tensor T(~) a non-minimal term similar to the one required in T(b), or 
specifically 

(7.50) 

The surface integrals transform as follows: 

(7.51) 

The operator on the right-hand side of (7.51) is usually called the vortex number 
~, 
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(7.52) 

There is a subtlety here. In any state in which <I> :p 0, the scalar field cP must have a 
singularity somewhere in space. Thus, the description in terms of a scalar field cP 
is only adequate at infinity; usually, of ccurse, the situation is repaired by 
interpreting if> as the argument of a complex-valued scalar field that may have 
i:eros. 

I n terms of ¢>. the fundamental relation (7.47) says that 

Q = t!>. (7.53) 

In other words, the charg~d excitations must have vurticity. YJ./e first encountered 
this resuit in another way in Sec. 4, where it appeared in the opposite fashion: 
there it was more natural to S2Y that we had learned that the vortices must carry 
charge. 

Since we know that the eigenvalues of Q are arbitrary integers, we know the 
allowed values of vorticity; and we can say, in particular, that cP should be 
regarded as a periodic field with periodicity equal to 1/2xv 2

• 

Incidentally, although this point possibly should be addressed with greater 
care, it would appear that the fluxons (or X quasi particles) obeying (7.53) are 
ordinary fermions with (J = 7C, at least if!1 is large enough so that the discussion is 
valid. In fact, the gauge field hi in the effective Lagrangian (7.48) has no Chern-
Simons term (otherwise it would get a mass and the surface term needed to make 
sense of the situation would vanish). This being so, the statistics of the X particles 
is unshifted from its free fieid value of (J = x. 

7.6. Superjluidity Without Charge Violation 

We have now learned that the system under study must - given the existence 
of the X quasi particles - have a massless boson t/J. What is more, in view of the 
term T(~)Oi ,..., f aicP in (7.50), this boson must appear as a pole in the two point 
function of the momentum density TOi • We would now like to know, however, 
whether the system is superfluid in the usual sense, or in other words whether this 
boson appears as a pole in the two point function of the current density li. 

For the simple anyon gas, this question can be answered quickiy. Because of the 
microscopic formula TOi = mJi (Eq. (7.27» a massless boson that appears as a 
pole in TOi must also appear as a pole in li. 

Of course, a realistic two-dimensional CuO plane will not be described 
precisely by the simple anyon gas. At best the latter is an approximation of some 
kind. However, once we know that the idealized anyon gas has a current density 
obeying 
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(7.54) 

so that tP appears as a pole in the two point function of J i , this situation cannot be 
ruined if one makes a generic small perturbation in the Hamiltonian. At most 
such a generic small perturbation w01 t1d change the value of the coefficient fin 
(7.54). 

This argument for why there must be a massless pole in the two point function 
of the current should seem peculiar. Usually such a result is deduced as a 
corollary of the existence of spontaneous breakdown of conservation of electric 
charge. The latter in turn is related to the existence of a non-vanishing 
expectation v~~ue for som~ charge-J:,earing local observable. In the preeent 
discussion, we have instead understood superfluidity as a consequenc: of the fact 
that th~ commutativity of translations is spontaneously modified to a phenomen· 
ologic~llaw (ignoring massless boson contributions) 

(7.55) 

We would like to regard the parameter f that appears here as the fundamental 
order parameter characterizing the superfluid anyon gas. Note that (as the tij 

symbol in (7.55) is Pviolatingand the complex number i is odd under T), Pand T 
violation are prerequisites for the ability even to define this order parameter. The 
order parameter is odd under P and T but conserves PT - as it must, since the 
anyon gas from this or~er parameter is derived is PT invariant. 

One might wonder whether in fact there is a local order parcameter of the usual 
kind - an expectation value of a charged observable - which we have merely 
overlooked. There is, however, a strong argument that this is not the C3se. This 
follows from the fundamental relation 

Q = <1>. (7.56) 

(It must be understood that Q here is the quasiparticle number, not the total elec
tric charge which includes a supercurrent contribution.) In a two-dimensional 
superconductor of any kind, the number ~ of vortices is absolutely conserved 
(since it can be measured as a surface integral at infinity, which cannot change, or 
since after coupling to dynamical electromagnetism it can be identified with the 
physical magnetic flux). Therefure, (7.56) means that in the two-dimensional 
superconductors under discussion, Q must also be conserved. 

To say this differently, in a two-dimensional BeS superconductor, one begins 
microscopically with a law of conservation of Q; this conservation law is then lost 
(spontaneously broken). One also usually generates spontaneously a conservation 
law - con~ervation of vortex number. The total number of conservation laws is 
unchanged, but the conservation law lost is different from the conservation law 
gained. 



386 

On Anyon Superconductivity 1045 

In the case at hand, the fundame·ntal relation Q = <J) means that the law of con
servation of Q is not broken; it is just reinterpreted macroscopically as the law of 
conservation ofCl>. Thus, it must be that a local order parameter of the usual kind 
(which would trigger non-conservation of Q) does not exist. 

For applications to realistic superconductors, we must consider tl&e interaction 
of the anyon gas with a crystal lattice. We then need not realize arbitrary 
translations, but only those consistent with the symmetry of the lattice. The 
essentiai feature of the anyon gases that concern us, namely that when one anyon 
winds around another the phase of the amplitude changes by n(1 - lin), then 
need not be implemented by a U( I) gauge field - a Zn gauge field should suffice. 
Tile anyons will have unit charge with respect to this gauge field. 

The analysis then proceeds in complete analogy to the continuum case, leading 
to the spontaneol!s violation of the commutation relations f~r quasi.particle 
translations, and their dynamical restoration through vortex coupling to a 
massless field. Notice that both charge and vorticity are both defined as integers 
modulo n, so that the fundamental rela~ion Q = ~, central for the whole 
mechanism, makes sense. 

However, there is a crucial difference between the lattice and continuum 
models, arising from the fact that for a Zn gauge theory charge and vorticity are 
defined only modulo n. It is, that in the lattice model the product of n anyon fields 
is ~ fictitious gauge singlet. It could therefore conceivably acquire a vacuum 
expectation vallie. without breaking the crucial fictitious gauge invariance. This 
would be an order parameter of the more familiar kind for a superconductor -
an expectation value of a field of charge n. 

Also, such a product could well couple to the product of an equal number of 
cories of (the complex conjugate of) the elementary electron field, in a fully real 
and fictitious gauge invariant ma:lner. Such a coupling would allow Josephson 
coupling oetween anyon and usual superconciuctors 

7.7. Consequences It! the Relation between CItJTellt Gnd Momentum 

The simple anyon gas is a Galilean invariant system in which all particles have 
the same charge to mass ratio. This fact is conveniently expressed in the relation 

mJ; = To; (7.57) 

that we have discussed earlier. This relation, together with current conservation, 
has very strong implications for the low energy interactions of the massless 
bosons. It is these implications that we wish to consider in this subsection. The 
properties that we will deduce are exact properties of the low energy physics 
obtained from the anyon gas as "long as there are no massless particles other than 
the cJ> field that we will consider. These properties will not hold exactly in realistic 
superconductors, where there is not a simple relation between J; and To;. 



387 

1046 Y.-H. Chen et aJ. 

In treating this problem, we will use the formulation in which the massless 
boson is represented by a scalar field 4>. To begin with, at the level of precision 
that we have considered so far, the 4> field is described by a quadratic Lagrangian, 

(7.58) 

which leads to the equation of motion 

(7.59) 

The current and momer.tum density are 

(7.60) 

Now we wish to ask whether there is a charge density J~) such that the current 
conservation law 

(7.61) 

is obeyed. For a first orientation to the problem, ignore the term in (7.60) that is 
quadratic in 4>. One may readily see that in this approximation, the charge density 
that works is 

f 
mJo = 2"ao4>. 

v 

In verifying (7.61), one uses the equation of motion (7.59). 

(7.62) 

Now we wish to include the tenn of order (V4»2 in Ji• We have to assume that 
there might be a tenn of order ty 4»2 in Jo as well, so now 

(7.63) 

where Y is to be quadratic in t/>. In addition, \ve have to assume that there might be 
a term of order (Vt/»2 in the equation of motion, so this will now be 

(7.64) 

where again we assume that Z is of order (V 4> )2. 
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Current conservation now gives the statement 

(7.65) 

Though (7.65) by itself does not uniquely determine Yand Z, these are uniquely 
determined when one requires that the correction Z to the free equation of 
motion must be derivable from a Lagrangian. One finds that the Lagrangian must 
be corrected to 

(7.66) 

and the charge d~nsity must be 

f 1 2 
mJo = - 2 00tP + -(O;tP) . 

v 2 
(7.67) 

This is not the end of the story, because the term that we have added to the 
Lagrangian results in an addition to the momentum den~ity. (The extra term in 
the Lagrangian results in a modification of the canonical commutation relations, 
and as a result the objects f d 2 

Xr·)Oi' with T{·iO, as defined in (7.60), no longer 
generate translations.) One can now take the momentum density to be 

(7.68) 

However, the current Ji derived from (7.66) is unchanged fronl (7.60). Therefore, 
(7.66) does not lead to the desired equality of current and momentum density. To 
save the day, it is necessary to add a term of order (VtP)4 to the Lagrangian, which 
now becornes 

~= 

(7.69) 

It is now possible to assume that J; is given by 11m times the formula in (7.68); 
there is no modification of Jo. This latest addition to the Lagrangian does not 
require any further modification of To; (since it does not bring about a change in 
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the canonical commutation relations), and therefore (7.69) is compatible with the 
underlying fact that all particles have the same charge to mass ratio. 

A more systematic treatment of the consequences of To; = mJ; will be given 
separately elsewhere. so It can be used to explain the vanishing of the b term in the 
anyon model discussed above, and to derive some interesting, though from a 
modern perspective rather peculiar-looking, relations proposed by London. SI 

London's original motivation for his proposals was a pre-BeS, hydrodynamic 
picture of superconductivity. Let us emphasize again that we do not expect these 
relations (or b = 0) to be exact in real materials, though they can be exact 
consequ~nces of highly non-tri vial models. 

8. Phenomenology 

In this section we will discuss three distinctive phenomenolQgical effects 
associated with anyon superconductivity. Our emphasis will be on effects that 
can be mutivated directly within the frame,,'ork of the models discu~sed above. 
Other aspects of possible P and T violating phenomenology are discussed in Ref. 
34. 

The basis for our discussion will be the effective Lagrangian (6.3). We will 
mainly consider the most naive extension to three dimensions, in which cf> is taken 
to be independent of the direction i perpendicular to the plane. In the Maxwell 
Lagrangian the interplanar spacing s then appears as a multiplicative factor: 

(8.1) 

Implicit in this framework is the ass~mption that thr couplings a and b are con
stant; and in particular that they do not change sign from plane to plane. Even if 
the basic idea of clnyon super~onductivity does apply to the actual high-Tc 
materials, and even if the energetics favors alignment of the sense of P and Tvio
lation in neighboring planes, it is unlikely that such alignment can persist through 
a bulk sample. For this reason among others, we cannot attempt to give a 
complete or quantitative discussion of possible experiments at this time. 
However, we can indicate what appear to be some promising directions, and to 
point out some surprising qualitative aspects of the suggested phenomenology. 

1) Charge inhomogeneities around vortices 

As we have emphasized repeatedly, in anyon superconductivity the charged 
excitations are intimately related to vortices; indeed, in a strong sense they are 
identical. In the absence of screening the vortices would be electrically charged. 
Unfortunately in bulk the electric screening length is 
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(8.2) 

and if we take as typical values s = 20 A and m the electron mass, this is only 3 A. 
Of couse this value, extracted from our simple London Lagrangian, is not really 
applicable in the neighborhood of a vortex, but it should indicate the correct 
order of magnitude. It might be possible to observe even such small-scale 
Inhomogeneities by scanning tunnelling microscopy. The screening is of course 
less effective for thin films. 

We expest transverse voltage to accompany current gradients generally, as we 
silall discuss in some detaii immediat.ely below. In this seese, the charge 
inhohl0geneity associated with a vortex should extend at least over the region 
where there are si~nific.ant current gradient~, i.e. over a coherence length. 

2) Zero-field Hall effect 

We have just argued that there is a charge inhomogeneity associated with 
vortices; naturally this implies a potential difference between the center of the 
vortex and infinity. Now a vortex is in some sense a small circulating current, and 
we can imagine straightening it out. This leads us to suspect that there will in gen
eral be an electric field trar:sverse to current flow: a sort of Hall effect, but 
persisting in zero external field. The existence of such an effect would of course be 
duect evidence for P and T violation. 

The simplest case to analyze is the flow of small currents in a semi-infinite butk 
sample. For sufficiently small currents will be in the Meissner regime, with no 
vortices. Then the London Lagrangian is adequate, and we find the Maxwell-Lon
don equations: 

-CAO+v 2 C-a·A.+(a-b)e.·(8.A·\ = 0 
I , '} 'J' ' (8.3) 

(8.4) 

To get oriented, let us first consider the situation with a = b = O. Trying the 
ansatz 

Ao =/(x); p = e2f, (8.6) 
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(8.7) 

(other components zero) appropriate to a sample with x ~ 0 we find two 
solutions: 

-xlt 2 s (,I) f(x) = e ., g = 0·, t -
I - 41tC2 

c2 s 
(II) .r = 0, g(x) = e -»t2; t~ = -2 --., . 

V 47rC~ 

(8.8) 

The first corresponds to expulsiun of an electric field~ it contains an inhoffiogen
eous charge density but. n~ current. The second corresponds to expulsion of a 
magnetic field; it contains a current but no variation in charge density. Clearly 
the a and b terms will mix these modes. Regarding a and b as small, we can solve 
for the asymptotic charge distribution using the zeroth order "magnetic expul
sion" solution; thus starting from (II) and perturbing (I) we find: 

A = -»t2 . C2 2 -»t2 
y e ~ 1y = v e 

(8.9) 

The relation between the potential drop and total current in the asymptotic 
region is given by: 

(8.10) 

Charge accumulates at the surface, to compensate the charge accumalated in the 
asymptotic region. However, it is not difficult to see that the dominant 
conf:ribution to the voltage drop comes from the asymptotic region. Taking a and 
b from the microscopic theory and the numerical values as before, we find for the 
ratio of potential to current: 

V a + b 4n(a + b) 
-=:----=----
f j Ct~ C2

V
2 sc2C 

(8.11) 

In this equation the current is the current per layer; for many layers the current 
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adds while the voltage stays the same. For n = 2 and the parameter values men
tioned above we have: 

v ;'xn 
-. = -- = .03 volt/amp. 
fJ smc2 

(8.12) 

The electrostatic potential V can in principle be measured by transporting a test 
charge through en1pty space from just outside one side ·Jf the sample, where 
current is flowing, to just outside another side of the same sample, in a region 
where: there is no :;urface current. (Here and below we .;haH no longer insist on a 
~mi-infini[t salnple; rather we imagine it large but finite in the .f' direction.) A 
luore ~ublle issue is whtthei' it can be lneasured using an ordinary voltmeter with 
contact to the sample which measure th~ electrochemil-'al potential. Can the 
electrochemical potential across the superconductor be non-zero? 

One might well doubt the possibility, on the following grounds. An ordinary 
voltmeter requires a non-zero current flow through it, and dissipa!es a small but 
finite amount of energy in its operation. On the other hand, at small current den
sities, the current-carrying state in a superconductor can, for most purposes, be 
considered an equilibrium state. A small persistent current flowing around a 
loop, for example, is really a metastable state. Thus if we could use it to drive a 
voltmeter, we would violate the principles of thermodynamics. The e!ectroche
mical potential in this situation must in fact be constant, so the voltmettr will 
measure no voltage. 

A different situation can occur if the current exceeds a critical value, so that 
rlissipation can occur by nucleation and flow of vortices. In this case there can be 
a Hall voltage in a superconductor measurable with a voltmeter, which can occur 
in principle without an external magnetic field, in the case of an anyon 
superconductor. 

There is a general inequality between voltage and current, in the anyon case, 
that follows from this line of reasoning. The force on the normal electron mu:;t 
always be such as to keep it moving in the right direction; this implies (for the 
core region) 

4:>j ~ eE, 

with 4> = 2x/ ne, and its integrated form 

2x 
-J~V. 
ne2 

(8.13) 

(8.14) 

'This inequality is comfortably satisfied in our case. It is saturated by the Hall 
current for n filled Landau levels. 
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The problem of the Hall voltage in a conventional superconductor subject to an 
external magnetic field has been studied by various authors. ExperimentsS2 in 
that case confirmed that there exists a Hall electric field, which was observed 
using an a.c. technique with a capacitative pickup; whereas no Hall voltage can be 
measured by a voltmeter through ohmic contacts except in the regime where 
there is dissipation associated with the motion of magnetic vortex lines. 

It is interesting to consider how the current carrying state behaves as we 
approach fennions, that is n --+ 00. At first the situation seems quite disturbing, 
because (for constant density and mass) the penetration depth remains fixed at 
the London value. Superco'lductivity this robust is too much of a good thing. 
However, we should realize that .. he gap (4.7) to create vortices shrinks with fl. 

Thus the domain of non-dissipativf', vortex-free superconductivity becomes 
vanishingly smal1- the amount of cnrrent that can be carried, or magnetic field 
expelied, shrinks to zero. 

3) Reflection of polarized light 

A very interesting possible manifestation of P and T violation, pointed out by 
Wen and Zee,35 is that the direction of polarization of linearly polarized light is 
subject to rotation by reflection at normal incidence. It is not difficult to see thai 
the a terhl, despite its being P and T violating, does not lead to this effect. Indeed 
this term couples the charge density to the perpendicular magnetic field, and does 
not affect the propagation of fields tangential to the plane. An effect of the type 
proposed by Wen and Zee wouid indeed arise from the b term. However, as we 
have seen, the b term does not arise in the simplest anyon model, for reasons we 
alluded to in Sec. 7. A more direct argurr.ent is the following. In a translation in
variant system such that the charged particles all have the same charge to mass 
ratio, a spatially constant electric field couples to the center of mass coordinate. 
Since the equation of motion of the center of mass is not affected by the 
interactions, the response must be that of free particles; in particular, it cannot 
violate P and T. Now the b term, if present, would lead to transverse current flow 
in response to a uniform electric field. Since the anyon models we have studied 
satisfy the premises of this argrument, they cannot generate a non-zero b term. 

Now of course in real materials the charged particles do not all have the same 
charge to mass ratio, and translation invariance is spontaneously broken. Thus 
the optical rotation effect should exist, but it will be suppressed. 

There will be characteristic, unsuppressed polarization effects at non-normal 
incidence, due to the a term. The necessary computations are rather cumbersome 
and will not be attempted here. 

The underlying reason for these optical effects will be readily appreciated by 
those readers familiar with the field theory literature on Chern-Simons terms. In 
fact these sorts of terms were first studied not in connection with fractional 
statistics, but rather as a means of giving mass to gauge bosons.53 The effect of a 
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Chern-Simons term, when combined with the ordinary Higgs mechanism, is 
essentially to give unequal masses to the two circular polarization states of the 
photon. Below threshold, they will be exponentially attenuated with distance, but 
at different rates. This way of regarding the situation suggests that the most 
sensitive way to search for the effects 01- interest is actually in transmission rather 
than in reflection. 

Q, Concluding Remarks 

In this paper we have investigated the ground state of the anyon gas for 
statistical parameters of t!le fonn e = n(l - 1/ n). Using an analysis which is 
valid at least in the ca ~e of large n, we confirm the existence of a superconducting 
~round state with a low frequency sou!ld mode at long wavelengths, and 
quzsiparticie excitations tnat are jdentified as charged vortices. We have 
introduced an effective Lagrangian for the superconductor, which contains 
anomalous terms that reflect the lack of Pand Tsymmtry, and we have ca!culated 
the values of tite associated coefficients in the large n limit. We have noted the 
existence ofa violation of the commutativity of the generators of translations of 
the quasiparticle excitations, which is a key to understanding this system. We 
have also noted some phenomena which are consequences of the violations of P 
and T symmetry in the model, whos~ o! ·~ervation would establish the model's 
relevance to actual hi~h-temperature superconductors. 

As a theory of high-temperature superconductivity, the anyon model is clearly 
incomplete. Most pressing, of course, are the need to establish !he connection to 
microscopic models of interacting electrons more convincingly, and to under
stand how this new mechanism of two-dimensional superconductivity can be 
extended into the third dimension. 

Despite such major gaps in the theory, it is certainly suggestive thai. the new 
high-temperatur~ supea-conductivity arises in a variety of highly arlisotropic 
materials sharing a common two-dimensional structure. If these materials are as 
two-dimensional ~nd their behavior as qualitatively new as they seem to be, it is 
tempting to think that in them Nature has realized anyon superconductivity. 

Appendix A 

Here we present some details of the calculation of the unperturbed correlation 
function D~ (q, w). We shall work in the second quantized scheme. We define the 
inverse magnetic length and cyclotron frequency for a particle of mass m in the 
presence of a statistical field b: 

where 

By definition, at zero temperature 

Ii 
wc = -b. 

m 
(A.I) 
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where jp. is as defined in (5.10) and 'I' is the electron field operator 

'I'(r, t) = L fPlk(r)c,k(t) 
I,k 

395 

(A.3) 

with 'P11c(r) being the Landau wave function. We have found it convenient to work 
in the asymmetric gauge 

ax = -Ii by, (A.4) 

where H, is the Hermite polynomial. The expectation value is taken with respect 
to the state with n completely filled Landau levels. 

We can now express D~" (I, 2) in terms of Landau wave functions 

D~,,( I, 2) = -; L fP:(l )j"fPb(l )9'~2)j"d(2) 
lI,b,c,d 

(A.6) 

We will calculate the Fourier transform of the correlation function: 

(A.7) 
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without loss of generality, we choose the momentum transfer to be in the 
x-direction 

(A.8) 

We now proceed to evaluate each component of D~v(q, w) in tum. First, 

I I 1) 
X \(J} - (0",- W() + if - W + (Wm - Wi) - it 

(A.9) 

where 

I A,4 
C =-----

1m 21[2 2m m! 2'/! . 
(A.tO) 

Let 

i = 1,2, (A. I I) 

and change integration variables: 

(A.12) 

k. + k2 is essentially the y coordinate of the center of mass; the integrand will be 
essentially independent of it. The integration over v is very simple as well, as the 
integration over X2, Xl results in a delta function: 

(A.13) 



397 

1056 Y.-H. Chen et aJ. 

Now using 

we find 

x ( d(V + Aq/2b) _ d( -v;- Aq/2b) ). 
W - (Wm - WI) + it: W + «(JJm - WI) - it: 

(A.14) 

U sing the identity 

(A.15) 

where m ~ I, we get: 

(A.16) 

where 
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(A. 17) 

and 

(A. is) 

It is diffi~uh to simplify further; fortunately this eQu~tion lends itseh~ readily (0 

ex.~a!1Si0n in (jJ and q. 
r,,"ow we pass to the other components. The entries involving j x depend on the 

Quantity 

(A. 19) 

where 

(A. 20) 

After shifting the origin of the y, only the gauge potential part contributes. Hence 

(A.2l) 

Ii n-. co ( I ) f - L L elm "2 du. du2dv 
m 1-0 m-n A 



399 

IOS8 Y.-H. Chen et aI. 

( 
tS(v + lq/2b) tS( -v + lq/2b) ) 

X W - (wm - w,) + it - W + (wm - w,) - it 

(-b) 2 2 2 X T (u.-v+v)exp[-u.-U2- 2v ] 

U sing the recursion relationship: 

1 
xll,(x) = 1: H,+. (x) + IH,_. (x) (A.22) 

we have 

Ii n-I co ( 1 ) J ( -b) D~o(q, w) = - L L e'm 2 dUldu2dv - exp[-u~-u~_2v2] 
m 1-0 m-n A. A. 

( 
tS(v + ,tq/2b) tS( -v + Aq/2b) ) 

X - H(u - v) 
W - (wm - w,) + it W + (wn'! - w,) - ;8 I 2 

(A.23) 

Now using the recursion relationship 

(A.24) 

we have 
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and finally 

D
o ( ) _ 1 (Wcb2 ) ~ ~ I! 2w(m-/) 
x1) qw - - -- L L-------

, 2n A. 2 q 1"'0 m-r. m! (J)2 - w~(m _1)2 

1 
-2 - qw Eo . 

1rWe 
(A.:l5) 

A similar calculation gives 

I 11 (b)2 n
-

1 
co I! -- ~ I I -,(m-l) 

2n m A. /-0 m-n m. 

(A.26) 

where 

"-I GO I' 
1:3 - n == I I exp[ - X]Xm

-
I
-

1 ~ (m -I) [Lj-/(X)]2 
1-0 m-" m. 

(A.27) 

Notice that a possible term proportional to q2 vanishes. 
1:3 - n, taken beyond the first term, is something of an embarrassment. Current 

conservation, applied to the response function K, should force it (given the other 
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formulas in Sec. 5) to terminate after the first term. We suspect that the method of 
including the electromagnetic contact interaction used there is not quite right, 
and when done correctly it will cancel the offending part of :El . We hope to 
remedy this defect soon. In any case, since the trouble starts at order q4, none of 
our conclusions are affected. 

Now we calculate D~o(q,ClJ). The current in the y-direction is: (a, = 0) 

(A.28) 

Therefore 

exp[ - X]Xm
-

1 Lj-/(X)L' (I, m, X) 

(A.29) 

where 

(A.30) 

By the same method of calculation, we find 
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X exp[ - X]Xm-'[L' (/,m,X)]2 

(A.31) 

We now calculate 1:; in the small q, (J) limit. To first order in q2, (J)2 

I (l-X)Xm - I - 1_· -- 1- -I' - 1 ( ( (JJ )2) 
m-I-I,2 In! m -/ We 

( 
m! m! )2 

X - X 
I!(m -I)! (/- l)!(m -I + I)! 

(A.32) 

Notice that by demanding low powers of X we are restricted to a very limited 
range of m and I, thus m -I = 1 implies m = n, 1 = n - 1; m - 1 = 2 implies 
m = n,1 = n - 2 or m = n + 1,1 = n - 1. So the results for the low frequency, 
long wavelength limit used in the text are sensitive only to the top two occupied 
Landau levels, and the two empty ones right above the Fermi level. 

S:milar calculations give 

~, ~n( -I-(:J +~nx), 
(A.33) 

For convenience, let us define 
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... 1:; 
~=

n 

and drop the tilde. Putting everything together, we have then 

-;qwc~. ) 
- ;wwe1:. . 

W: 1:2 

With the interaction matrix deri·.'ed in Sec. 5: 

We 
0 

; 
-

21l 
q2 q 

V=- 0 0 0 
n 

0 0 
q 

and the correction matrix 

we find 

;q'S 

;W'S 

-;q'S -;CJJE Wt"('S -1:. + :t2 + det) 

where 
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(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 
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(A.39) 

(A.40) 

Appendix B 

We show here how we determine the eft'ect!ve Lagrangian by matching the two 
point function calculated from the Lagrangian to the linear response function KIl,,, 

which is calculated in App~ndix A. 
Consider the effer.tive Lagrangian 

The sound velocity v and the other coefficients Q, b, C are to be determined. 
In the calculation of KIl'l we have chosen the momentum transfer to be in the x 

direction only, i.e. qy = O. Here we shall consider the same situation. 
For this choice, the Feynman rules for the effective Lagrangian are (Fig. I) 

q 
- - - j- - -

Ao "'-.. q 

,- -> -
iwC 

A.~_q_>- __ 

i,,2 qC 

Fig. 1 

Ao A, 
~~ / 

V 
0,(4 + b) 

A.~AI 

bOw 

where the broken line denotes the scalar field 4>, and the wiggled line denotes the 
gauge field A". . 

We now calculate the two point functions from the tJfective Lagrangian, to the 
lowest order Feynman diagrams. The two point function that couples to AX' Ay 
comes from two diagrams (Fig. 2): 
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All .A , 
'"\~ q / 

"I." 
... ---~---

Fig. 2 

They yield: 

iCw(av 2 q2 - b(2) 

(j)2_v 2q2 

[n the small q, co limit we have 

This detennines the po~ition of the pole, and thus identifies 

We shall assume this identification in the following formulas. We have: 

Equating (B.2) and (B.S) we have 

b = 0, 

e2 

Ca =-n. 
87r 

Similarly, the two point function that couples to A(b A, is (Fig. 3) 

Ao A, 

'~----:--_/ 
Ao A, 

~ 
Fig. 3 
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(B.2) 

(B.3) 

(B.4) 

(B.S) 

(B.6) 

(B.7) 
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(B.8) 

and 

(B.9) 

The matching here simply confirms the result from the Kry matching. 

FrJr KoJC J the cO!Tespondir..g two point t'.lncti(;n co~ues from only one diagram 
(Fig. i) 

Ao Az 

~q/ 
---~--_/ 

Fig. 4 

Matching to 

we find 

if we choose C> 0, then we have 

and 

C=e ~ 
'J~ 

a=en~ Ii . 
32xm 

Our effective Lagrangian is thus fully determined. 

(B.IO) 

(B. 1 1) 

(B.12) 

(B.13) 

(B.14) 
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