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We investigate the statistical mechanics of a gas of fractional statistics particles in 2+ 1
dimensions. In the case of statistics very close 10 Fermi statistics (statistical parameter
& = m(1 — 1/n), for laige n). the effect of the statistics is a weak attraction. Building upon ear-
lier RPA calculation of Fetter, Hanna, and Laughlin for the case 7 = 2, we argue that for large
perturbation theory is reliable and exhibits superftuidity {or superconductivity after coupling
1o electromagnetism). We attempt to describe the order parameter for this superconducting
phase in terms of “spontancous breaking of comunutativity of translations™ as opposed 10 the
usual paining order parameters. The vortices of the superconducting anyon pas are charged,
and superconducting order parameters of the ysual type vanish. We investigate the characteris-
tic P and T violating phenomenology.

1. Introduction

Since the early days of qguantum mechanics it has been appreciated that the be-
havior of assemblies of identical particles is influenced not only by conventional
*forces” but also by the particle statistics. Indeed, the ideal Bose and Fermi gases
are the points of departure for most studies of condensed matter at low
temperature. It has been extremely useful to have these simple paradigms; for
example such ubiquitous concepts as the Fermi surface and Bose condensation
were abstracted from their study.

While Bose and Fermi statistics are the only logical possibilities in three spatial
dimensions (and the whole notion of quantum statistics degenerates in one
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spatial dimension), in two dimensions the situation is more interesting. In two
spatial dimensions, the possibilitics for quantum statistics are not limited to
bosons and fermions, but rather allow continuous interpolation between these
extremes. The quantum statistics is defined by the phase of the amplitude
associated with slow motion of distance particles around one another. If the
phase e” on interchanging the particles is + | the particles are bosons, if it is — 1
the particles are fermions; but other values of the phase are allowed, and give us
generically anyons.

1t is a very attractive problem, to figure out the behavior of these new quantum
ideal gases. The high temperature, low density behavior was addressed several
vears ago in a paper by Arovas, Schrieffer, Wilczek, and Zee ' They calculated, in
particular. the value of the second virial coefficieni, A simple answer was found,
that interpolates contintuvously between bosons and fermions. While this result
was significant as a check of the consistency of the whole circle of ideas, and as an
exercise for sharpening technique, it hardly addressed the central guestions
regarding the new quantum ideal gases. The most important effects of quantum
statistics, of course, occur only at low temperatures or high density. The existence
of a cusp in the virial coefficient st Bose statistics was one of several indications
that the behavior of anyon gases ai low temperatures would be interesting and
probably far from smooth. However, it has proved quite difficult to extend the
calculations startirg from the high-temperature end, and since the problem
seemed both esoteric and inaccessible it was largely abandoned.

Recently, however, there has been a sharp increase in the interest in this
problem — for reasons we shall review shortly — and important progress,
especially through the work of Laughlin,>* Kalmeyer and Laughlin,’ and Fetter,
Hanna, and Laughlin® on high-temperature superconductivity.

In this paper we report further progress in understanding the behavior of the
anyon gases with statistics parametrized by '

8=nr(1—1/n), (1.1)

at zeru temperature. Here 7 is a positive integer. n = 1 corresponds to bosons,
while we approach fermions at large 2. In accord with Laughlin and coworkers,
we shall argue that these gases generically form superfluids, and become super-
conductors if the anyons are electrically charged. The mechanism of superfluidity
seems rather different from conventional pairing, and seems to lie outside the
usual Nambu-Goldstone-Higgs framework. Our conclusions are based both on
detailed calculations in a controlled approximation, and on qualiiative symmetry
arguments we expect 10 be quite robust. We will also derive an effective
Lagrangian, that summarizes the electromagnetic response of the charged anyon
gas. This Lagrangian, which to a first approximation is of the usual London or
Landau-Ginzburg form, also contains small but characteristic interactions
violating the discrete symmetries P and 7. These terms lead to novel effects,
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whose occurrence (or not) should enable us to determine whether the anyon gas is
realized in concrete physical systems,

At this point it would be disingenuous not to remark that much of the stimulus
for the recent upsurge in interest in the anyon gas are some theoretical
speculations that guasiparticles in CuQ planes, which presumably are the key
actors in high temperature superconductivity, are in fact anyons. These specula-
tions were motivated by analysis of excitations around certain types of ordered
states {chiral spin liquids) that have been proposed for the electronic ground state
in the plases. Neediess to say, the fact that superconductivity is an automatic
by-product makes these ideas considerably more compelling.

For simplicity, most of the discusston of this paper will be given for the case in
which there is a single type of anyon. The discussion can be readily generalized to
a set of two or more types of anyons, possessing identical charge and mass, but
distinguished by an isospin index 1. Although some of the quantitative formulas
will be modified, the qualitative results will be generally similar. For reasons
which will be discussed elsewhere we believe that in models of relevance to high-
temperature superconductivity there will always be an even number of anyon
species.

Before we embark on the analysis, it seems approptiate to establish the context
with a brief quasi-historical account of the development of the circle of ideas we
are dealing with.

Many of the basic principles involved in fractional quantum statistics were
clearly stated and illustrated in a remarkable paper by Leinaas and Myrheim.*
Unfortunately this paper received little notice at the time, and did not enter the
general consciousness, presumably because it was felt to be a purely academic
exercise without a broader context. The continuous modern development of the
ideas began as part of the recent interest in peculiar, and in particular fractional,
quantum numbers more generally.

In fact, it was argued 'ong ago in prescient work by Skyrme’ that in 2 nonlinear
sigma model of pions, particles with the quantum numbers of nucleons can
emerge in the form of solitons. What was surprising about this is that spin and
isospin one-half can emerge in a theory in which the elementary fields have
integer spin and isospin. Later, Finkelstein and Rubinstein® clarified the
topological considerations responsible for Skyrme’s phenomenon, and showed by
a topological argument that solitons of half integral spin in fact obey Fermi
statistics, as one would expect on general grounds. {This work probably also
represented the first study of what would now be called a & angle in quantum field
theory.) In a somewhat analogous fashion, magnetic monopoles in 3+1 dimen-
sions can be fermions even in a theory in which the elementary fields are all
bosons,” and can carry fractional'® and even irrational'' electric charge. Also,
Skyrme’s spontaneous generation of half integral spin turns out to have an
analog'? for the case of more than two “flavors” of strong interactions, provided
one takes account of the global effects of the Wess-Zumino coupling.'* Closely
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related phenomena occur in condensed matter systems' and in a wide variety of
quantum field theories.'*'®

Of course in three spatial dimensions the non-trivial commutation relations of
the angular momentum algebra ensure that the spin of any particle, regardless of
microscopic origins, must be an integer or half-integer. Thus, the above cited
results generating half-integer spin from integer spin in 3+ 1 dimensions are in a
sense the besi possible. In two dimensions the situation is different. The rotation
group has a single generator which in principle can have any real sigenvalue, For
instance, partictes orbiting areund gauge theory strings, or even around ordinary
magnetic flux tubes, can readily be seen to carry fractional angular momentum."’
Once this is realized, tt is then natural to ask {as Finkelstein and Rubinstein had
dore in connection with Skyrme’s work in 3+ | dimensions} what happens to the
spin-statistics connection in these circumstances. This was investigated in a
saries of papers'®'"!"¢ at first largely rediscovering (in ignorance) the results of
Leinaas and Myrheim, but soon going beyond them in various ways, particularly
in suggesting how objects of fractional statistics could actually be realized in the
physical world. (For an account of early controversies surrounding these ideas,
and their resolution, see Goldhaber and MacKenzie.?")

One early application of the idea of fractional statistics'’ was to the
2+ 1-dimensional $? o model, used to model the low-energy excitations of planar
ferromagnets and antiferromagnets. It was shown that the classical & model does
not determine a unique quantum tieory. The quantum theory allows incluston of
a new interaction, represented by thé so-called Hopf term, which is invizible
classically. The coefficient of the Hopf term is an angle G, closely related to the 8
introduced in connection with fractional statistics. Indeed, in the ¢ model the
coeflicient of the Hopf termm determines the spin and statistics of certain
collective excitations, the baby Skyrmions. Roughly speaking, the Hopf term
plays a role for these excitations somewhat similar to the role played by the Wess-
Zumino interaction in connection with 3+ 1 dimensional Skyrmions,

Soon afterward the most important realization of fractional statistics so far
established arose from a most unexpected quarter, in studies of the behavior of
semiconductor heterojunctions held at millikelvin temperature in a strong
external magnetic field, The fractional quantized Hall effect (FQHE), discovered
in this context, established the existence of a rich new state, or actually series of
states, of matter. The theory of these states was developed mainly by Laughlin,*
with important contributions from Haldane?® and from Halperin.?* At the
foundation of the theory is the idea that the new states are best described as in-
compressible quantum liquids, around which the low-energy excitations are
localized quasiparticles with unusual quantum numbers, including notably
fractional statistics. Using this idea, Halperin was able to predict the values of the
allowed fractions in the FQHE hierarchy in a simple and convincing, as well as
observationally successful, way. Arovas, Schrieffer, and Wilczek, using :he Berry
phase technique, showed directly®® that the quasiparticles had the properties
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assumed by Halperin. (For an account of early objections to these ideas, and their
resolution, see Laughlin.?®) They also suggested that since the statistical “interac-
tion”, together of course with ordinary electromagnetism, is the dominant
interaction of the quasiparticles at long distances, it should be possible to write an
effective Lagrangian for the long-wavelength behavior of the quasiparticle gas,
ustng just these interactions. The formal implementation of this idea was carried
through in the abovementioned paper by Arovas, Schrieffer, Wilczek, and Zee.'
A important element of that paper, which has played 2 key role in the further
devetopment of the subject, is the introducti~n of a local implemeniation of
fractional quantum statistics, through the Chern-Simons interaction.

It 15 alsc quite likely that fractional statistics excitations exist for liguid *He
fitms in the 4 phase.”

The applicaiion of this circie of ideas 10 superconductivity is by no means as
certain or well-developed even as it is in the contexts mentioned above. It is
surely premature to be writing even the most informal of histories here. Still, it
may be useful to orient ourselves with respect to some of the relevant recent liter-
ature on high-temperature superconductivity.

Immediately upon the experimental discovery of the new superconductors,
Anderson® stressed their essentially two-dimensional character, the importauce
of strong magnetic ordering, and the possible existence of excitations with exotic
quantum numbers. A relatively ccnecrete proposal embodying one form of
Anderson’s vision was put forward by Kivelson, Rokshar, and Settna.® They
showed that division of valence bonds on a square lattice occupied by
approximately one valence electron per site into localized dimers, as suggested by
the phase ‘“‘resonating valence bond”, could plausibly support excitations —
specifically, defe<ts in the pair-bonding of electrons, trzapping a single unpaired
site — which are charged, spinless bosons. The initial thought was that Bose con-
densation of such charged excitations was the mecharnism of superconductivity.
A closely related proposal was made by Dzyaloshinskii, Polyakov, and
Wiegmann.” Their starting point was a o-mudel description of the spir ordering
in the CuQ layers. They proposed that one employ the Hopf term, as we
mentioned above, with & = xn. (The paper contains the remark, without
¢laboration, that only 8 = 0 or # = n are consistent with unitarity. This is mista-
ken.) The effect of this term is to make the baby Skyrmions of the pure spin model
obey Fermi statistics. The idea then is that the charge carriers plausibly induce or
bind to these baby Skyrmions, making the compositz a boson. Although the
microscopic basis of this picture was never clear, and in fact the whole scenario
now appears rather dubious, this paper caught the imagination of many
physicists, Altogether, these early papers focused considerable attention on the
possibility of exotic quantum numbers and statistical transmutation in two
dimensions.

Unfortunately, the most immediate natural consequence of all these sugges-
tions is that, since one has direct Bose condensation instead of pairing, the flux
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quantum should be k/e. Experimentally, it appears to be i/2e, at least in the
regimes where it has been studied so far. Various modifications of the ideas have
been proposed,” but it is difficult to know what conclusions to trust when such a
seemingly straightforward one must be abandoned. Also, with the loss of the
compellingly simple concept of Bose condensation as a mechanism of supercon-
ductivity, the motivation for the suggestion of exotic quantum numbers becomes
much less clear.

An essentially new set of ideas was added by Laughlin and collaborators, in
Refs. 2, 3 5. Kaimeyer and Laughlin made an approximate mapping of certain
frustrated spin models onto Bose gases with short range repulsive interactions
and subject 1o a strong external maguetic field. The latter situation is completely
analogous to that in the guantized Hall effect, and one can therefore take battle-
tested knowledge of the ground s1ate and low-lying excitations ia the Hali system
over into the spin models. Given the previous discussion of the FQHE, it should
not seem shocking that the quasiparticles are then found to obey fractional
statistics. Wen, Wilczek, and Zee®' have given a more abstract treatment of the
problem, not relying on the details of a specific wave function, indicating what
sort of spin ordering is essential to obtain fractional statistics quasiparticles, We
follow them in referring to this class of ordered systems as chiral spin liquids.

Once one has a chiral spin liquid, it is plausible that charged particles doped
into .he system induce or bind to the fractional statistics quasiparticles, thus
themselves acquiring fractional statistics. In several papers, Laughlin and his
collaborators have argued that fractional statistics in and of itself leads to
superconductivity. The present paper sharpens and extends these arguments.

An important feature of most models incorporating anyons is that they violate
the discrete symmetries P and 7. This is quite natural for the FQHE, which takes
place in an external magnetic field. It occurs spontaneously in *He-4. It would
also have to occur spontaneously in high-temperature superconductors, if anyon
models are 1o describe them. It is, of course, characteristic of chiral spin liquids.
That such symmetry breaking could occur, and can have important experimental
consequences, was first emphasized by March-Russell and Wilczek,” and
considerably elaborated recently by these two together with Halperin.* Some of
the issues have also been discussed recently by Wen.and Zee*® and by Anderzon.*
The considerations of this paper suggest some additional possibilities, and allow
us to begin to discuss them quantitatively.

Calculations of the energy of the undoped spin systems using variational wave
functions of the Kalymeyer-Laughlin type have not yielded particularly good
energies for simple model Hamiltonians, such as Heisenberg antiferromagnets
with any combination of couplings to a few near neighbours. Moreover, for the
undoped parent compounds of the actual copper-oxide superconductors (e.g.,
La,Cu0Q,) there is compelling evidence that the planes of copper spins are well
described by a nearest-neighbour Heisenberg model on a square lattice, with a
ground state that has conventional antiferromagnetic order.” [t is known,
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however, that the addition of a relatively small concentration of holes is sufficient
to destroy the antiferromagnetic order. It is certainly possible that the holes also
induce an effective multispin-interaction which favors a chiral spin state for the
remaining copper spins. If this is the case, then it is reasonable to approach the
superconducting state by starting with a model Hamiltonian where the spins form
a chiral spin liquid even in the absence of free charges. Laughlin has shown that
there exists in fact a model Hamiltonian (with long-range four-spin interactions,
and with explicitly broken time-reversal and chural symmetries) for which the
quantum-Hall-effect wave function is the exact ground state.’? There is litile
reason to doubt that there exists also a class of Hamiltontans which only have
finite range interactions. and are invarian: undzr P and 7T, for which the ground
state is a chirz! spin liquid.

Shraiman and Siggia® have argued that a very dilute concentraticti of holes in
a copper-oxygen plane inay lead to a ground state with a spiral spin structure,
assuming that one can ignore the effects of the compensating charged impurities,
which must be present and would tend to localize the holes in an actual system at
low concentrations. A spiral spin structure, in general, would have a chiral
character, as well as a broken translational invariance. It is then plausible that
above a certain critical concentration of holes, the broken translational symmetry
will be destroyed by fiuctuations, but the chiral character will persist,

Finally let us note that while the work reported here was proceed.ng, Hosotani
carried out some calculations of the properties of the anyon gas using a somewhat
different approximation scheme. Where they overlap, our conclusions agree.
Also, Wen and Zee*' have attempted to study some guestions related to those
studied in this paper, by perturbing from bosons. Also, interesting numerical
studies of small systems of anyon: subject to an external magnetic field have been
reported recently.*

2. The Hamiltonian

In this section we derive a non-local Hamiltonian formulation of the anyon
interaction, starting from a formulation in terms of a Chern-Simons Lagrangian.
The Chern-Simons formulation is local, but contains redundant variables. The
point of the exercise is that each description has its virtues. The Chern-Simons
form clearly exhibits the full symmetry and global nature of the interaction. The
Hamiltonian form, on the other hand, has the great advantage that its variables
represent true physical degrees of freedom. It is therefore better suited 10
approximations and explicit calculations.

The Lagrangian for an ideal gas of fractional statistics particles is

L= 2 {% X2+ e[—ag(x,) + %, a(x,,)]] + g j d*xe" a,9,a, . 2.1
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Here the x, are particle coordinates and a is a vector field. The coupling of the
particles to the gauge field is standard, but the gauge field action is unusual.
Instead of a conventional kinetic energy for the gauge field, one has the final term
in (1}. This term, tha so-called Chern-Simons term, is special to 2+ 1 dimensions.
The action is gauge invariant, despite the explicit appearance of undifferent:ated
vector potentials. This is because these vector potential always appears con-
tracted with conserved currents — either the conventional particle current, or the
unusual “current”™ ¢™ f which is automatically conserved because of the Bianchi
identity. :
Varying with respect to a, we find the field equations

ej" =

& o (2.2}

b | R

where j is the standard point-particle current and J° the standard field strength.
These equations indicate that the gauge invariant content of the vector field g is
entirely determined by the particle current. In other words. a has no independent
dynamics. To avoid confusion with the true eleciromagnetic potentials and
fields, it is convenient to refer to these a fields, whose only purpose in life is to be
integrated out and implement fractional statistics, as *“fictitious” fields. It fallows
from the field equation that the field strength f is confined to the particle
worldlines, and determined localiy by the current of these lines. Thus there are no
classical Lorentz forces among the particles.

Integrating the 0 component of the field equation, we find the fundamental
relation

eN = u, (2.3)

where N is the particle number and @® the fictitious flux. This indicates that the
effect of the Chern-Simons term is to associate with zach particle fictitious flux
efu. Of course, the particles also carry fictitious charge ¢, Thus as they wind
around one another, they acquire phase through the Aharonov-Bohm effect. The
consequence of all this is that the sole result of adding the fictitious fields is to
alter quantum-mechanical amplitude for trajectories where the particles wind
around one another, or are interchanged, by a phase proportional to the amount
of winding. In other words, the quantum statistics has been altered. A simple
calculation shows this alteration of statistics is parametrized by

A =— (2.4}

in terms of the angle § mentioned before.
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Turning to the Hamiltonian formulation, we find again that the system has a
unique underlying simplicity. Writing out the Lagrangian in more extended form:

L= 2%;&3,‘4—[4‘2;;%{_% +#Egafﬂ;}+ezi,-a+§fdzxs.-,-a,-dj.
(2.5)

we sece that apart from the first term, the rest are either linear in 4, or linear in
time derivatives. Since the iime derivative of a, ncver appears, varying with
respect 1o it simply yields the constraint

efy = ueda,=pb. (2.6)

Also, when we pass from the Lagrangian to the Hamittonian terms linear in time
derivatives cancel. Thus the Hamiitonian is numerically equal to the free-particle
Hamiltonian — the net effect of all the extra terms is to enforce an unusual rela-
tionship between the canonical momentum and the velocity. The classical
equations of motion are just those of non-interacting free particles; the non-
trivial dynamics arises entircly from the altered quantum commutation relations.

Since a is a redundant variable we can eliminate it. To do this conveniertly, we
impose the gauge condition

d,a,=0. ' 2.7

Then we can solve the constraint {6) to find

a(x)——f "( ”’p{.v)=5§; s% 2.8)

The final result is that the Hamiltonian is simply

1 _ 2 2.9
H=- Z(pa ea(x,)), (2.9)

with g given as a function of x according to (8).

The Hamiltonian (9) forms the starting point for most of the further
considerations in this paper. It was also the starting point adopted by Fetter,
Hanna, and Laughlin.® As far as we know it has not previously been explicitly
derived in full generality from the Chern-Simons Lagrangian, though the result
was stated in Ref. | and a probf has been skctched before. ™

To conclude this section we add a few remarks that are not strictly essential to
the logical development, but address some points that might be puzzling.
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If one were given the Hamiltonian (9) without any explanation of its origins, it
might be hard to believe that this Hamiltonian does not lead to classical forces
among the particles. Indeed, H looks like the Hamiltonian for a charged particle
interacting with an electromagnetic field, in a gauge where a, = 0. Since the vec-
tor potential depends on the particle positions, it varies in time, and one might
therefore expect there to be electric fields depending on the relative positions of
the particles, and therefore forces among them. Of couse we know from the
preceding discussion that it is not so:; what gives? Another puzzle is this: how does
our H, lacking as it does the standard scalar potential piece, manage to give gauge-
invariant results?

The resolution of these puzzles is really quite simple. The resemblance between
our H and the standard Hamiltonian for an assembly of particles interacting with
an external gauge field is 1n one crucial respect misleading. That is, our a is given
as an explicit non-local function of the particle positions. This means, in
particular, a(x,) depends not only on the position of particle «, but on the
position of all the other particles as well. Thus when we derive the Hamiltonian
equations of motion, there will be additional terms that do not appear in the usual
equations for particles interacting with an external gauge field. Keeping this in
mind, a straightforward analysis of the equations of motion derived from the
Hamiltonian H resolves both our puzzles at the same time. It is found that the
additional terms serve exactly to reconstitute the full fictitious electric field,
including specifically the gradient of the scalar potential 4, as determined from
(2) in the gauge (7}, in the Lorentz force equation, And the full fictitious electric
field, as we discussed before, does not depend on the positions or velocities of
distant particles, and does not generate classical interparticle forces,

At the risk of being pedantic, we wish to emphasize explicitly one implicatioa
of the preceding discussion. No approximation has been made in deriving H.
Especially — despite apparent instantaneous interaction terms — retardation
effects have not been neglected.

3. Approach to the Problem

The statistical mechanics of an ideal gas of anyons has a very different flavor
from that of the more familiar quantum ideal gases of bosons and fermions.

In the case of bosons or fermions, one can construct the eigenstates of the many
particle Hamiltonian directly from the cigenstates of the single-particle Hamil-
tonian, simply by taking tensor products. The sole effect of the statistics, in these
two cases, is that one restricts to the subspace of many-body wave functions
either symmetric or antisymmetric under permutations, respectively. The reason
why this familiar, simple procedure fully incorporates the quantum statistics, is
ultimately that the rule for assigning amplitudes to trajectories beginning at
Xy Xy, . . . and ending at xp, xp,, . . . depends only on the sign of the permutation

P. Thus symmetry or antisymmetry in these coordinates is a condition stable in
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time. Also, we can obtain all trajectories with the proper weighting from
trajectories along which the particles do not change their identity, if we allow all
permutations of identity, with the appropriate sign factors, in the initial state.
{Indeed, we have just the same trajectories, but with P~' acting on the initial con-
fig_ration instead of P on the final one.)

For generic anyons, the situation is different, The amplitude assigned 10 a
trajectory depends not only upon the permutation suffered by the particles as
they fullow the trajectory, but aiso on other aspects of the trajectories by which
they wind around one another. Mathematically, white the Hilbert space of a
system of identical bosuns and fermions gives a representation of the permuta-
tion group, the Hilbert space of a svstem of identical anyons gives 2 represanta-
sian of the “braid group”, in which one distinguishes topologically inequivalent
trajectories leading to the same perrautations of the particles. Incidentally, in
2+ i dimensional many-body physics il is possibie in principie 10 have a system
even more exotic than “ordinary” tractional statistics, in which trajectories that
involve braidings of identical particles are represented by non-commuting
matrices, not just by abelian phases. (It is far from straightforward to construct
representations of the N particle braid group 8, that are compatible with all the
physical requirements of locality and cluster decomposition, but the Jones
representations of the braid group*® satisfy all of the physical conditions, and in
fact have a realization in local quantum field theory via a non-abelian Chern-
Simons theory,**) Leaving aside these more exotic possibilities, which may or
may not eventually play a role in condensed matter physics, our interest here is
with the anyon gas in which particle trajectories are represented by phases. In
fact, the phase associated with a given trajectory is the product of the statistical
paramester and the linking number of the trajectory.'®"

Once the permutation group is replaced by the braid group, the simple
construction passing from the solution of one-particle problems to the suiution of
many-particie problems, familiar for free bosons and free fermions, does not
work any more. It seemns most unlikely that there is any comparably simple
substitute. For this reason, even an ideal gas of anyons must be regarded as an
interacting system,

Since an exact solution seems out of reach, it seems a good strategy to attempt
to begin to understand anyon gases by perturbing around the familiar cases of free
bosons or fermions, taking advantage of the tools developed over many years for
the study of interacting systems of identical particles.

There is an extremely naive argument, which suggests that in general —
excluding fermions — an anyon gas will be superfluid (or, for electromagnetically
charged anyons, superconducting) at zero temperature. It goes as follows.
Fermions with arbitrarily weak attractive forces are known to form superfluids at
zero temperature. But there is a real sense in which anyons in general can be con-
sidered as fermions with an additional attractive interaction. Indeed, the most
important effect of quantum statistics at short distances is that it determines the



353

1012 Y.-H. Chen et al.

allowed vaues of kinetic angular momentum, and thus the strength of the
centrifugal barrier. For bosons the allowed vaues are even integers; for fermions
they are odd integers, and for general 6 they are 8/n+ even integer. Thus the mini-
mum alowed absolute value is generically smaler than it is for fermions; and so
generic anyons can be regarded as fermions with an additional attractive
interaction. Although it will become evident in the following that this argument is
realy much too naive, clearly it points us in the direction of suspecting
superfluidity in the anyon gas at zero temperature.

With this suspicion, it might seem logica to try to perturb around Bose
dtatistics. After al, the ideal Bose gas exhibits the phenomenon we are after —
superfluidity — aready in the zeroth approximation. (It is sometimes said that
the ideal Bose gas requires a repulsive interaction to become superfluid. We think
it is more accurate to say that the ideal Bose gas is a superfluid with zero critical
velocity, and poised on the brink of instability — a weak attraction will cause it to
cease to have a sensible thermodynamic limit.) On further reflection, however,
severa difficulties with this approach become apparent. The most important one
is the following. Consider the gas with statistical parameter

o=". 3.0)
n

Now if we imagine that superfluidity is characterized by an effective condensa-
tion into bosons — generdizing ordinary Bose condensation or Cooper pairing
— then we must ask: how many of these anyons does it take, to form a boson? If
we take one m-tuple around another, we find the accumulated phase zm?/n. Thus
the condition is

2

’"7 =0 (mod 2). (3.2)

Clearly, the minimum required number grows with n, roughly as the square root.
It is not easy to see how to obtain this behavior smoothly, starting from
condensation of single particles in the Bose gas.

Anyons near 8 near zero are similar to a system of bosons with a weak repulsion
of dtatistical origin (representing the centrifugal barrier that is present at 8 # 0)
and in a background magnetic field (representing the interaction of one particle
with the average statistical background of the others; this interpretation will be
clearer in Sec. 4). Now, bosons with a weak repulsion undergo bose condensation
and become superfluid. In the presence of a magnetic field, bose condensation
still occurs but not in a trandationally invariant fashion; one should expect to
form some sort of vortex lattice.

Our approach instead will be to work near Fermi statistics:
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0=7t(1—%]). (3.3)

Then as n gets large the expectation that condensation requires more and more
particles appears rather as a virtue than as an embarrassment — it allows us to
lose superfluidity in the limit of fermions.

One reason that we think it is natural to work near 8 = ais the following. In
order to establish that the statistical attraction (relative to fermions) of a
departure from € = A gives rise to superfluidity, it seems to us that the key case is
to show that even a weak statistical attraction among a system of otherwise free
fermions leads to superfluidity. Once it is established that a weak statistical
atraction gives superfluidity, it is natural to expect the same for the strong
statistical attraction that arises at the case (8 = n/2) that is believed to be of most
interest. Once the effects of a weak statistical attraction are understood
qualitatively, it is reasonable to hope that the effects of a strong statistical
atraction are smilar qualitatively. Our basic strategy is thus to attempt to
understand the statistical mechanism for superfluidity starting from the regime
of 8 near = where this mechanism is operating weskly and can be studied in a con-
trolled way.

Both the qualitative arguments of the next section and the detailed calculations
which follow are based on an approximation procedure suggested by Arovas
et al.i and employed to great effect by Laughlin® and by Fetter, Hanna, and
Laughlin.i We now describe this procedure, and identify a limit in which it is
expected to be valid.

Above, we have seen that in a precise sense the statistical interaction can be
implemented by attaching fictitious charge and flux to fermions. It is, however,
very awkward to deal with the resulting long-range interactions directly. In other
problems involving long-range interactions, it is sometimes valid to replace the
effect of many distant particles by a mean field or collective variable, with the
deviations from the mean represented by residual weak or short-range interac-
tions. Could something like that occur in our problem?

We will argue that in fact very plausibly it does. To get started, let us consider
the self-consistency of the approach. Suppose, then, that we do replace the total
effect of the distant particles by their average. In our context, this means we are
replacing the many singular flux tubes by a smooth magnetic field with the same
flux density. For 8 =n( 1 — I/n), the resulting magnetic field is related to the
average particle density p by

b=—7p. 3.49)

In such a magnetic field, the particles move along cyclotron orbits with radius
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T e )

Taking for the velocity the velocity at the nominal Fermi surface, we substitute

\/ 4np

v = (3.6)
m
and find that a typical cyclotron orbit contains
prrt=nt (3.7)

particles on the average. If the number of particles inside the wypical significant
orbit is much greater than 1, we should expect that it is indeed valid as a first
approximation to replace the field generated by the particles by its average value.
since fluctuations will be small compared to the total,

While this argument can and should be sharpened, it seems clear that in the
limit of large # it is at least seli-consistent s a first approximation to replace our
anyon gas by a gas of fcrmions carrying fictitious charge and propagating in a fic-
titious magnetic field tied to their density according to (3.4).

4. A Qualitauve Picture

Several of the most important qualitative features of the anyon gas can be
understood readily from the simple starting point defined in the previous section,

There, the anyon gas was replaced to a first approximation by fermions
propagating in a uniform background fictitious magnetic field given by b =
2np/n. In the fictitious background field b, the energy eigenstates of the fermions
form Landau bands, each with degeneracy

- eb p
=— == 4.1
== 4.1)
per unit area, with energy eigenvalues
1\ eb 1
e (42 2o (16,
¢ (P 2/ m 2 (4.2)
where /=0, 1, 2,... . When the statistical parameter is # = x{l — 1/n), the den-

sity is just such as to fill # Landau levels exactly. (In the next approximation we
will find a massless particle that will give the ferriions a logarithmically divergent
self-energy, which we ignore for the present.)
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The fact that the bands are exactly filled suggests that the ground state will have
a particularly favorable energy at these values of the statistical parameter, Exactly
filling the top band ought to be analogous to completing a shell in atomic or
nuclear physics, or filling an ordinary band in a solid, If this is true, the ground
state should exhibit a certain rigidity, and exhibit an energy gap.

To test and quantify these expectations, let us consider the effect of adding a
small rea/ magnetic field B to the fictitious one b. The situation is asymmetric
with respect to the sign of the real field relative to the fictitious field, and we must
consider the two cases where the fields add or cancel separately.

if the real field is in th= same direction as the fictitious one, the density of states
per Landau level will be somewhat greater, and we will not quite completely fill n
ievels anymore. Let us derote the fractional filling of the highest level by 1 — x.
Then from the conservation of particle number we derive

(b+BY(n—x) = bn, (b+ B)x = Bn. 4.3)

For the total energy we have then

_ e(b+3)e(b+3){""( l)_( _l) }_n=e2
2r m ,Zo £'+2 " T aam

X {b’+lbﬁ—(1 —1)32}. (4.4)
n ]

Thus the energy relative to the ground state is positive, and grows linearly with B
for small B.

If the real field is in the opposite direction from the fictitious one, the density of
states per Landau level will be smaller, and we will have to promote some
particles to the (n + 1) level. Denoting the fractional filling of this level by x, we
have from particle conservation

(b—BY(n+Xx) = bn, (b— B)x = Bn, (4.5)

and for the energy

_ e(b—B)e(b—B){"“( 1) ( 1) } nlet
E 2n m on £+2 + n+2 * dnm

X {b2+1b3—(1 +1)32}. (4.6)
n n

Thus in this case too the energy relative to the ground state is positive, and grows
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Iinearly with B for small B, Despite the asymmetry of the situation, the
coefficients of the terms linear in B are equal in the two cases. The quadratic
terms differ,

These arguments though simple are quite significant, They suggest that the
anyon gas, at the statistics considered, will strive to exclude external magnetic
fields. This is the germ of the Meissner effzct, a hallmark of superconductivity. At
the same time they suggest the existence of an energy gap in the charged particle
spectrum. Indeed, the energy to create a separated particle-hole pair should be
just the energy to excite a fermion into the lowest empty Landau band, viz.

Epait ==, (4‘7)

Considered more closely, these arguments also suggest a close conaection
between vortices and fermion excitations that seems to be something new in the
theory of superconductivity. This connection is characteristic of anyon supercon-
ductivity, and will play a key role below both in its deeper theory and in its pheno-
menology. The point is this: since the fictitious field is uniquely tied to the
particle density, and is appropriate to # Landau levels being exactly filled, to
accommodate any additional real magnetic field we will necessarily have to excite
particles across the gap. {Or to create holes, a process which we have seen is also
characterized by a gap.) Conversely, if the particles do not fill the Landau levels
exactly, there must be a real magnetic field present to account for the mismatch,
Anticipating that the filled Landau level state, and its possible adiabatic
modulations, 15 the superfluid component, we are led to conclude that in anyon
superconductivity, charged gquasiparticles and vortices do not constitute two
separate sorts of elementary excitations — they are one and the same.

We can also infer the value of the flux quantum, from this identification.
Adding a single fundamental unit 2n/e¢ of real flux increases the number of
available states by one per Landau level. Thus, for # filled Landau levels, the act
of piercing the material by a unit flux tube creates n holes. Clearly this is not the
most elementary excitation. The most elementary excitation is to produce just
one hole. Thus the elementary fluxcid is 1/n of the fundamental unit, or 27/ ne.

Although these simple arguments have taken us a long way, there remains a
central feature of superfluidity that is not at all obvious, or even true, in the
simple approximation described thus far. This feature is the existence of a sharp
Nambu-Goldstone mode, or concretely an excitation with the dispersion relation
@? oc k? at low frequency and small wave vector. It does exist. It was discovered
in a remarkable calculation by Fetter, Hanna, and Laughlin.’ They calculated the
effect of adding back the residual interactions, and found that these interactions
produced the necessary pole in the current-current correlation function. In
physical terms, this means that there are particle-hole bound states at zero energy.
In the following two sections we shall review and generalize these calculations.
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Unfortunately these calculations do not by themselves make it clear why the
massless mode exists, Aside from being emotionally disturbing, it is not
objectively satisfactory to lack such understanding. Without it, one may be left
uncertain whether this central qualitative feature of the anyon gas is robust, or an
artifact of the approximations employed in the calculation. Similarly, one may be
left uncertain whether small changes in the model Hamiltonian itself — which
after all, is highly idealized ~— might change this feature. Fortunately, the
exlstence of the massless mode can also be demonstrated simply. and i can be
understood qualitatively using arguments closely related 1o those in the present
section This is the subject of Sec. 7.

To conclude the present section we would like to make some brief remarks
concerning the znyon gas at other values of the statistical parameter, when
g a(l—1/n).

ir the top Landau level were not completely flied, then the second of our calcu.
lations above (leading to Eq. (4.6)) would be valid for either sign of the field. The
energy is then analytic in B, and the presence of a iinear term is indicative of the
fact that the ground state of the anyon system possesses an orbital ferromagnetic
moment in this case, (We also find that there is an orbital magnetic moment when
8 = n(1 -~ 1/n) but the analysis is considerably more complicated.’)

For more general rational values of 8/x, it is possible that the anyons in the
highest Landau level will form a correlated many-body state, similar to the states
of the fractional quantized Hall effect.*® In this case there is again an energy gap
for vortex excitations, and we expect again 1o find a superfluid ground state.

For most of our discussion, up to and including the previous sentence, we have
assumed that the ground state is homogeneous. (An exception was when we
discussed the expected ground state for fractional statistics near bosons.) This is
almost surely true for the values § = x(1 — 1/n) which are our main concern.
However, it is almost surely not true in general. For exaraple, let us consider again
statistics very close to, but not equal to, one of our favored values, say n = n,.
Then clearly instead of expanding around n = o -— fermions — we should
expand around n = n,. The particles will then have a small residual interaction.
More important, the particle density will then not quite fit the density
appropriate to the fictitious magnetic field. It seems very likely that the best way
to accommodate this situation is to allow an occasional normal particle — or
equivalently, an occasional vortex — rather than to disrupt the superfluid state
globally, Thus, operationally, one would separate the anyons into two classes —
the first, with fractional density n,/n to be treated as an anyon gas with 8 =
{1 — 1/n,y) and the remainder to be treated as vortices or antivortices in that
background. Readers familiar with the fractional quantized Hall effect** will
recognize a strong resemblance to the situation that occurs there, when the
density is close to but not quite equal to one of the favored rational filling
fractions.

These considerations are by no means rigorous or complete, but they do serve
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to suggest that the physics of the anyon gas at general values of @ is likely to be
quite rich and to depend quite strongly on *“number-theoretic’ properties of 8.

5. The RPA Calculation

In this section we discuss the mechanics of calculations in the random phase
approximation. The method follows closely that of Fetter, Hanna and Laughlin;
we have merely added a few observations and elaborated several points left
implicit in their very concise presentation.

To begin with, as we discussed in Sec. 2, the Hamiltonian of the anyon gas 1s
(changing notation slightly to agree with Ref. 3)

|
H = Z S—lp+atrp, (5.1)

where r, is a two-dimensional vector specifying the position of particle « and

! ZXr.;
a(r) =~ E : (5.2)
Mjea |rasl
with r,; = r, — ;. Here the particles are to be regarded (in the absence of

mteractlons) as fermions; the inleractio then makes them anyons with statistical
parameter § = n{l — 1/n).
It will be convenient 10 use second quantized notation, in which

1
H= fd%‘l”(r)-—|ﬁ+a(r)|"l’(r). (5.
2m
Here ¥ is a spinless fermion field, and
a(r) = - I dr -—-—--) ‘I’T(r’)‘l‘(r ). 5.4

The Hamiltonian describes a system of spinless fermions interacting through long
range gauge potentials,

Actually these expressions are somewhat formal, in that if the density is
constant the integral for a will diverge. For this reason, and also to implement the
ideas of Sec. 3, it is useful to separate @ into a background part and a fluctuating
part. This is analogous to the familiar use of normal ordering or subtractions in
defining the vacuum quantum numbers in quantum field theory, It should be
considered as part of defining the theory. We shall have to check wheiher the
theory so defined retains the properties — and in particular, the symmetries —
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we expected of the naive model. Alternatively, one could in principle formulate
the theory in a finite geometry, say on a torus.

If we ignore fluctuations and substitute the average density 7 for the density
operator in a(r), we expect that the system should reduce to spinless fermions
propagating in z constant fictitious magnetic field. Thus we are led to define

_ 1 ) ZX(r—r9) _
a(r) = a(r}+-fd r——— (P - 7). (5.5)
n fr=r’y|’
where
.
am= -2-bz><r, (5.6)
b =@. (5.7)
n

This definition of a-replaces (5.4). However. the formula (5.6) for @(r) requires
some explanation. The mean vector potential @ should naturally be defined by
the same integral

ar = % J’ dair Mﬁ (5.8)

Ik

as (5.4), with the true charge density W'V replaced by the mean density 7. The
only problem with this is that the integral in (5.8) is not unambiguously
convergent if 7 is strictly constant. To interpret this integral, note that for
arbitrary 5 such that the integral in (5.8) is well-defined, that integral computes an
abelian gauge field @ such that & = 2#5/n, where b = 9,4, — 8,4,,and moreover
such that V- @ = 0, and such that & vanishes at oo. @ is uniguely determined by
those conditions, and the integral in (5.8) has exactly the kernel required to
produce the field @ obeying those conditions, For the limiting case in which the
support of p extends over all of space, the integral in (5.8) is ambiguous (not abso-
lutely convergent), and it is impossible to obey all of the conditions that would
hold if 7 had compact support (to give the right b, @ cannot vanish at o), We in-
terpret the integral in {5.8) as giving an average Z field that gives the right 5 and
obeys the gauge condition and has a behavior at oo that is as good as possible. The
proposed form in (5.6) obeys these desiderata, but is not quite unique since
without changing b or violaring the gauge condition or worsening the behavior at
oo, one could add a constant to Z. This ambiguous integration constant is actually
closely related to the pnysics that we will eventually find. Modulo an integration
constant, the answer in (5.6) is certainly what one would get by doing the integral
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in (5.4) for some almost constant 7 of compact support, and then taking the limit
as the support of p extends over all space. The value that one would get for the
integration constant would depend on exactly how one took the limit.

For later use, we define current operators

. 1
Ji(r) = ‘l"(f);(ﬂe'i'ﬂ.-(r))‘l’(f) (5.9)

. 1
Jn= ‘l"(r);(Pﬁﬁ.-)‘l‘(r) : (3.10)

Since on the one hand it is a soluble problem, and on the other we have argued it
contains much of the important physics, we will treat the system of otherwise free
fermions propagating in the average field as the reference problem, and regard
the rest of the Hamiltonian as a perturbation. The interaction Hamiltonian for
this perturbation scheme is

H=H-H, = fd’r-ii—n-‘}"(r){2(p+§)(a—£i)+(a—ﬁ)’}‘i’(r)

= H + H,, (5.11)

)

l e (T ¥ () -5}

H = — j J‘d’rd’r ‘l”(r)(p,-l-ai)‘i'(r)

= Ifd’rd’r ;,() = |2 (p 7)), (5.12)

Iffdzrdzr'dzr*wf( )'P(){l”( I’ )Y () — p)}

2mn?

Ealr—r o __}
X{—[r_ i (E¥C)=p)

f f f dratr 2rpn 20 on By o —) .

2mn’ lr—#Pjr—r|?
(5.13)

In the same spirit let us reorganize H, inito two pieces, using p(r) = 7 + (p(r) — 7).
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The first half of the resulting expression is expected to dominate for large n, when
fluctuations in density are relatively small. Its meaning becomes transparent
upon doing the integral:

fdzr o)) ity = (5.14)
fr=r*r—r?

it represents an eftective Coulomb interaction! The interaction is repulsive

vetween like-signed particles, attractive between oppositely-signed particles.

The existence of such an interaction is important in two respects. First, it
generaies an effective long range repulsion between two particles, or two holes.
Given the identification of these excitations with vortices, this is responsible for
the anyon superconductor being type 1L

Second, it generates an effective long range attraction between particles and
holes. This is responsible for the formation of the zero-mass bound state.

The nature of the interaction can be given an interesting interpretation.
Imagine that a massless gauge field has developed dynamically, such that our par-
ticles couple to this field. Then there would be a logarithmic interaction of
precisely the calculated form. Later we shall see that the premises in this
interpretation do actually hold.

If we simply drop the other half of H,, we are left with two-body interactions
only, and can make great progress. Note that the discarded term, besides being in-
trinsically small, is manifestly translation, rotation, and (even if we couple in
electromagnetism) gauge invariant. The remaining interactions czn be written

H; f d*r f d*r J DV, 1) i), (5.15)

-1
2
where the spatial part of j, has been defined before, and

N =p()—7p. (5.16)

There is no distinction between j, and J,. V' takes a simple form in Fourier space.
To exhibit this, we take a momentum vector ¢ with component only in the  and x
directions, and we order the coordinates as (¢, x, ¥}. Then one has

Vola)= J‘ arr' Vo (r,r')e® "
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pf  in
| mng’
= ; 0 0 0 ’ (517
—i2n 0 0
q

The appearance of the Coulomb interaction suggests the importance of summing
bubble graphs, as in the standard treatment of the eleciron gas. Since the
interaction Hamiltonian can be writien in terms of J, the correlation function of
f obeys a simple geometric equation, in this approximation. Thus defining

D,(1,2) = —i{T((1)/,(2)} (5.18)

as the matrix of time-ordered expectation values in the true ground state, and D%,
as the corresponding object in the non-interacting ground state, we have in this
approximation

D =D,+D,VD. (5.19)

The product is 10 be regarded as convolution in real space or simple multiplica-
tien in Fourier space,
Solving this equation, we find

D=(1-D"V)"'D°, (5.20)

Another perspactive on the bubble-graph approximation, thai is actually
superior from a logical point of view, is to regard it as simply a perturbative
evaluation of the inverse propagator D™ !. The previous equation, in the form

D~'=Dp"'(4-D%), (5.21)

is then simply lowest-order perturbation theory. Why is it more appropriate 1o
perturb in the inverse propagator than in the propagator itseif? That is a standard
story that we shall not belabor here; the key point is that the inverse propagator,
unlike the propagator itself, is regular at small frequency and wave vector, so
whereas for the propagator itself we find immediately that the limits «, g — 0 and
n— o do not commute, there is every reason to expeci the perturbative
evaluation of the inverse propagator to become accurate as # — co.

The calculation of 7 Jﬂ, is straightforward though rather arduous; it is presented
in Appendix A. The result may be parametrized in the form
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n q'%, QI —igw L,
D° = Y qul, (W'IX,—wll) —ivwX |. (5.22)
‘\ignw,2,  iwwX, wlZ,

Tn writing this result we have specialized to the case ¢, = 0; this involves no real
inss of generality.

Lt is not quite the object we want, The electromagnetic response is rather given
e terms of the true current-current correlation function

ALY = 0TI T (5.23)

where (1) denotes the dependence on r), ¢, and |} denotes the exact ground state.

Fortunately, A and D are ciosely related, Consider, for example, the 10 entry, We
have

—i
A-D)= . (T ¥()a—a) D), ¥'¥2)—7l)

—i z X — N >
- (71D f 2T R, (5.24)
mn |J"3

_rll

In the now familiar manner, we separate g into an average and a fluctuating part:

—i z X 17N} . r
(A=D)o= —7 (IT[ f dznf—;—{—)_rum, rlyo(z)]n

1 n

(rs—n)
2

— . 5% ) )
—Z (lT[J‘O(l) f d’ry z.ijo(rs’ fl)fo(z)]l) . (5.25)
mn Irs—n

The contribution to A— D involving the average can be simply expressed in
terms of D itself; the contribution from fluctuations is small in the # — oo limit
and we drop it. Passing to Fourier space, we arrive at

A—D)yy=F+i——Dy. (5.26)
m

A generalization of this argument leads easily to

A=~ (1+5uNYD(1+puw),
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0 i
0 of. (5.27)
0 0

Finally, the true electromagnetic response includes not only the current-current
correlation (which essentially represents the iteration of the first order term in the
true electromagnetic potential 4) but also a contact term, from the direct
appearance of A% in the Lagrangiar, which is quadratic in momentum. Thus the
final expression for the response function, defined according to

dn (J (g, w)) = —K,(q, )47 (g, w) (5.28)
is

2

K. (q ) = "’;ﬁaw (1—30)+ €A, (g, ) . (5.29)

Collecting the various formulae, we find (setting, for reasons discussed in
Appendix A, X, = 1)

) -
q w ig=
_Eu ‘?_Zo
2 o, W,
e 2 iwE 5.30)
K= iw= .
mdet | 425, 25, (
wl’.‘ wf

—igE  —iwE ©(E-I +I,+det)

where
E=-3-Z{4+I,5,4+ %, (5.31)
and

det = 1 —%+2%,+ X7 - 5,%,. (5.32)

In arTiving at this expression, we have made approximations at three stages: in
the perturbative evaluation of the inverse propagator D~', in formulating the
interaction Hamiltonian, and in passing from D to A. We have discussed the first
of these above, now let us address the other two. Both these approximations were
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of the same general form: in an expression involving the correlation of the density
at one point with density fluctuations at two other points, we replaced the density
with its average. In concluding this section, we wish to remark that this
approximation can be justified in the large # limit. Indeed, the triple correlations
of density fluctuations satisfy a simple Dyson equation. Although we will not pre-
sent the details here, a straightforward analysis based on this equation shows that
the termns dropped invoive a highe: power of tha intzraction than the terms kept,
and thus a higher power ot 1;#n. Cigarly, tiese remarks also point the way to a
practical method of calculating to higher oider.

6. Results of the RFA Calculution

Ve now evaluate the elentromaguetic response K. (g, 20 for small ¢ and
explicitly. From Appendix A we derive in this limit

1 3 2
5% _1_(3) +_ffffz),

, 8 \A

I A% 1*14)’
Ia —| (w¢)+4(1 , (6.1)

2 2
ne 1 (2) e (3).
@, A

It is noteworthy that to this order only transitions between the two tcp filled
Landau levels and the two bottom empty ones contribute.
There is evidently a pole in the response functicn, at

A 5)’ 5
(wc) Nn(ﬂ. ’ (6.2)

The physical significance of K becomes more transparent if we reformulate it
in terms of an effective Lagrangian. We have found that we can reproduce the re-
sponse function at low frequency and small wave vector using an effective model
which contains a massless scalar field interacting with the electromagnetic gauge
field, of the form

1 2
L= 2 (= CAS ~ (@9~ CAY

+ ag;9,4;(d— CAo) + be (34, — 8:4)(3,6 — CA,) . 6.3)
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Notice that this Lagrangian is invariant under the gauge transformation:

o o+ Cf
(6.4)
A, — A, +9,f.

This model exhibits the Higgs mechanism in its pristine form (due to Stuckel-
berg): ¢, which in the absence of electromagnetism represents a scalar degree of
freedom — essentially a sound wave, with v equal to the speed of sound squared
— loses its independent significance when thus coupled to electromagnetism,
Indeed, it can be set to zero by a gauge transformation.

The first twe terms in L are familiar 1o the thecry of superconductivity. They
generate the ordinary London equations. The next two terms are higher order in
gradients, and thus formally subdominant. However, we have kept them because
they display a qualitatively new feature. Whereas the first two terms are
automatically invariant under parity and time reversal, the next two are not.
They are of course fully rotationally and gauge invariant, but violate both P and
T, in such a way that PT is conserved. In a word, they obey the symmetries of our
underlying microscopic model — the anycn gas — and we have every right to
expect that they should occur. The fact that these terms are in a real sense small is
both entertaining and sig.ificant. It is entertaining, in that it is a rather
unexpected analogue of a familiar situation in high-energy physics. There, it is an
important result that in QCD, parity violation and time-reversal violation cannot
occur through low-dimension {renormalizable) interactions. It is this fact that
makes it comprehensible that parity and the time-reversal violation are hard to
observe, even though neither is fundamentally a good symmetry. Similarly here,
it is very significant that parity and time-reversal symmetry are in some sense
automatically hidden in anyon superconductivity. This inakes the phenomeno-
logy morc challenging to work out and the experimeats 1o meaningfully test the
symmetries necessarily subtle.

If we put ¢ = 0 inside the Lagrangian, we see that these new terms are closely
related to gauge theory Chern-Simons terms. It is amusing that upon dropping the
requirement of relativistic invariance we find there are two possible Chern-
Simons like terms. To a first approximation the charge density and electric
current associated with ¢ are

p= —C(¢d— CAg)
(6.5)
Ji= Cvz(aﬁ' —CA4;)

as follows from varying the Lagrangian with respect to A4, A; respectively and
dropping the terms proportional to a and b. Using these approximate expres-
sions, we can write the new terms in a more transparent form:
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. a
az,d A= CA) = — =pB, (6.6)

: b
be(dyA;— 3;4y) 09 —CA) = — ﬁ' JXE. 6.7

Thus we see that g coirelates electric charge density with magnetic fields, and &
correlates current with perpendicular 2iectric field in 2 manner reminiscent of the
Hali effect. Also, we see that a change Jp in the density is generallv accompanied
by a cthange in the magnstic moment density, proporticnal to a.

The numerica! evaluation is carried out by comparing the photon tv.o-point
tunction calculated from L with the response function K. A few details of the cal-
culation are presented 1n Appendix B. Qur resuits, valid in the limit n — oo, are:

=22
vi= prf .
m
m
C= -
¢ 2nh’
(6.8)
#
a= Hn
N 32zm
b= 0

where proper units have been rastorad.

The values of v2 and C are just such as to reproduce the standard formula for
the London penetration depth. The vanishing of b can be understood on physical
grounds. We will discuss this, as well as some phenomenological implications of
L, in Sec. 8.

One can also obtain the coefficient 4 by another type of analysis, which we
believe to be exact, and whose details will be given elsewhere.*® The correct
formula for a differs from that in (6.8) by an additional factor (1 — n 7%). Note that
this gives @ = O for the case of bosons (7 = 1) as we expect for this situation,
where P and T are actually good symmetries.

To conclude this section we would like to comment on the relation of the effec-
tive Lagrangian discussed above to a more complete effective Lagrangian, and
how the latter might be calculated. These comments illustrate certain points but
do not incorporate the special featurcs of the order parameter discussed in Sec. 7;
thus the equations that follow should be interpreted metaphorically.

In the Landau-Ginzburg generalization of the London framework one con-
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siders that the density as well as the phase of the superfluid condensate can vary.
In this generalization, we wouid have instead of the Lagrangian considered
above, a Lagrangian of the form

1. v?
LLG, = Eltb_IqA0¢|2__2‘|al¢_-lqu¢|2

ia .
—Z—Vaﬁa,.A, {®N D — igd, D) —c.c.}

ib ]
- E;e,-,-(anA,- — 3,40) (O, P ~ igd,®) —c.c.}
+ m*DF—A|®|*. (6.9)

Qur previous considerations on the unit of quantized flux suggest ¢ = ne. This
form goes over into the London Lagrangian if we specialize the complex scalar ¢
to the form

O = VeV (6.10)

where V = \/ m?/24 is the vacuum expectation value of ¢, and work to lowest
order in gradients. Notice that the mass term m and the self-interaction A lose
their significance in this limit.

We determined the coefficients of the London Lagrangian by matching to the
electromagnetic response at low frequency and small wave vector. One could in
principle determine the coefficients of the Landau-Ginzburg Lagrangian, or an
appropriate modification of'it, within the framework of the calculations reported
above, by matching to the response at higher frequency and larger wave vector. It
should be remarked, however, that the unique feature of the statistical interaction
— its long-range nature — does not guarantee, or even make it reasonable to
expect, that it is a pood guide with respect to short-distance or small-time
behavior. Other interactions of a more prosaic sort will surely come into play.
Therefore the idealization involved in treating the quasiparticles in any real
material as an ideal gas of anyons generally becomes more severe as we move
away from the London regime, except for certain qualitative questions of a global
character.

We might also step back one more step, and try to build into an effective
Lagrangian the fact that the P and T violation, which we have been treating as if it
were fundamental, must actually have its origins in spontaneous symmetry
breaking. A simple possibility is the following. Let 5 be a real scalar field, meant
to parametrize the degree of chiral spin liquid order. Then let
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L=L,¢+L, 6.11)

where

1 . v? .
L= 5[®—igd,®* - S loo— igA, >+ idne,8,A,{ (D — igd,d) —c.c.}

+ ibnedand,— o A (WO - ig4, @) — .oy + (on’ — m) DY — AlD|",
(6.12)

1£ 2 medified version of the Landau-Ciinzburg Lagrangian considered before, and

1
L =

. 5??’—%(6,-'1)4:14’-:;“—1\4‘. (6.13)

The Lagrangian is invariant under P and T if 1 is defined to be P and T odd. Now
if y acquires a vacuum expectation value, ({5} = + \/ M?*/2A), then clearly the
modified Landau-Ginzburg Lagrangian takes the same form as the original
Landau-Ginzburg Lagrangian. The signs of the coefficients of the P and T
violating terms a and b will depend on the sign of the vacuum expectation “alue
of 1. Notice that if m] is positive but

k{ny:—mi>0 (6.14)

then chiral spin order will drive the onset of superconductivity. At the level of the
Landau-Ginzburg Lagrangian discussed here the two transitions are in principle
quite distinct, however.

Another direction in which the effective Lagrangian can be extended usefully is
to take into account the coupling of the superfluid to normal electrons, or
vortices. This will be discussed extensively in the following section.

7. The Order Parameter

One of the mysterious features of the RPA treatment of the anyon gas in Ref. 5,
and its further elaboration in the present paper, is that the calculation proceeds
without exhibiting the superconducting order parameter. One finds a massless
pole in the two point function of the electromagnetic current, but the computa-
tion that reveals the existence of this pole does not also exhibit a local order para-
meter analogous to the charge-violating local order parameters familiar in the
theory of conventional superconductors. In contrast, in conventional treatments
of ordinary superconductors, it would be practically impossible to compute the
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interesting physical observables without at the same time exhibiting the key order
parameter,

We may restate this puzzle in terms of the mechanics of the calculation, In gen-
eral, we would expect that in constructing a broken symmetry ground state we
would have to make some arbitrary choice among a set of energetically
degenerate possibilities. Thus for instance in a ferromagnet we would have to
choose a definite direction for the magnetization; in a BCS superconductor we
would have to choose a phase for the condensate, and so forth. However, in the
RPA calculation presented above it is not at all obvious where such a choice has
been made. Indeed, if there were a conventional condensate it would necessarily,
for large #1, be very complicated. for regsons we tnentiona2d in Sec. 3. For it to in-
fluence a calculation, the calcutation would need to involve high-order correla-
tion funciions somewhere along the way. But the comiputaiion we actually
performed involved only simple correlation functions, with intermediate states.

This mystery of the order parameter is a familiar story in somne of the other
2+ 1 dimensional systems in which fractional statistics play a role. In particular,
there has never been a fully satisfactory description of the relevant order
parameter in the fractionally quantized Hall effect — a description, that is, of
what is the general class of things of which the celebrated Laughlin wave function
is an example, We will unfortunately not be able in this paper to shed much light
on the fract.onal Hall effect, but we hope to clarify the nature of the order
parameter in the case of the superfluid anyon gas.

In a way, it is encouraging that the order parameter of the superfluid anyon gas
should be rather elusive and somewhat novel, The reasoning that begins with
two-dimensional spin models, proceeds (for example, via the mean field theory of
Ref, 31} to fractional statistics, and then atiempts to derive superconductivity
from properties of the anyon gas, is long and indirect. It would be less than satis-
fying if the output of all this were to be merely a strongly coupled version of BCS
theory. The anyon gas as a mechanism for superconductivity is far more
interesting if it leads to a new universality class (but see the remarks at the end of
Secs. 7.1 and 7.6.)

Of course, spontaneous P and T violation is essential in this circle of ideas, and
is absent in usual superconductors. However, there is no problem in having P and
T viclation coexist with the ordinary superconducting order parameter. The BCS
theory could perfectly well be elaborated to describe a system with both
sponianeous breakdown of P and T and spontaneous violation of charge
conservation, Such a situation actually arises in the conventional description of
the A phase of liquid He. But we will argue that in the case of the anyon gas,
superconductivity does not merely coexist with spontaneous P and T violation;
P and T violation are built into the correct description of the order parameter
responsible for superconductivity.
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7.1. Sum Rule Argument

The necessity for the existence of a zero-energy boson-like mode at long wave-
lengths can actually be demonstrated by a direct argument,* which makes no
reference to an order parameter or a broken symmetry. Let us define a spectral
weight,

Wik, @) = Y [lp0) 2w 8w — E.+ Ey), (7.1)

!

where p, 15 the density operator at wave vector &, [0} is the ground state of the
system, and the sum is over all excited states |/}, while £, and E, are the respective
energy cigenvalues, For a system of rnion-relativistic particles of mass m, with
forces that are velocity-independent, there is a well-known sum rule:

-y 2

f ? Wik, w)ew’dw = 3;5—. (7.2)
[+) m

This sum-rule, which is obtained by evatuating the quantity {O|[[g-., H} ][0}, is
casily derived for the anyon system using a representation given below, where the
wavefunction is multivalued and the kinetic energy has just the free-particle
form. At the same time, we know that

J’m Wik, wydw = Ayl(k), (7.3)

where Ay (k) is the density response function defined by (5.23) evaluated at
e = 0, The k — 0 limit of this function is the compressibility, which is finite for
our system since the ground state energy is an analytic function of 7. (For non-in-
teracting anyons, the energy per particle is simply proportional to 5.} It follows
that the root-mean square value of the energy in the speciral density at wave
vector k is given, in the limit k — 0, by,

(l'.-)k = Uok,
(7.4)

vy = (B/mAg(0))" .

Now there are two possibilities, The spectral density may be exhausted by a single
mode, in which case its frequency must be precisely equal to tok. (This is what
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happens in superfluid *He, or in a neutral fermion superconductor, such as *He.)
Alternatively, there may be a spread of energies entering the spectral weight at
wave vector k. In this case there will be some excitations with energies greater
than vpk, while others must have energy less than vyk. This is the case in a normal
Fermi liquid, where there are particle-hole excitations throughout the interval
0 < w < vk, where vg is the Fermi velocity. For anyons, there is no continuum of
particle-hole excitations at low energies, so we are not surprised to find that there
is an isolated boson mode, with energy w = vk,

The very generality of the sum rule argument means that it provides only a
limited amount of insight about the properties of a particular system. For more
insight, one might try to find a conventional order parameter for the system. Spe-
cifically, we would iike to find an operator ‘¥ (r) which reduces the charge in the
vicinity of the point r by 7 units, and which has the propeity that for iarge separa-
tions [r—r’|, the correlation function (0|¥'(r’)¥(r)|0) approaches a finite
constant, or at worst falls off as a power of |r —r’|. Operators that satisfy thesc
requirements can possibly be constructed in direct analogy with the order
parameters employed recently to describe the quantized Hall effect.¥* These
operators are highly non-local, however, at least when they are expressed in terms
of anyon operators in the fermion representation used above. In fact, we shall
argue below that there can be no superfluid order parameter of the conventional
type for this system that is local in this representation.

The fact that an operator 'P(r) is non-local in terms of the anyon uperators does
not necessarily imply that it is non-local in the underlying electror; operators,
when applied to a solid state system on a lattice, To investigate this question ulti-
mately we must refer to the specific microscopic model from which the anyons
were derived. We shall discuss elsewhere some insight into this issue that can be
derived from general symmetry properties.* Preliminary results of this analysis
suggest that the symmetry of the order parameter ¥(r) for a system containing
two kinds of anyons with half-Fermi statistics (8 = n/2) is compatible with the
symmetry of a Cooper pair of electrons in a spin-singlet state.

7.2. Translation Invariance of the Underlying System

It is instructive to begin by considering some elementary facts about the spin
models that can be considered to underlie the anyon gas. In these models, one
has a system of quantum spins arranged on a two-dimensional lattice L. The total
Hamiltonian H is a sum over lattice sites ¢ € L of a local Hamiltonian density 9z,:

H=) . (7.5)

ael

The density % is constructed from the spins at the site ¢ and their close
neighbors. The construction of the &, is translation invariant. This means that if
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e, and e; are clementary lattice vectors, then the operators T, and 7; that
translate the spins one step in the e, or e, directions commute with the
Hamiltonian:

[T, H]1 =(T;, H] =0, (7.6)
1n addition, of cuurse, they commute with one another,
[1,, T, = 0. (1.7

Conitnuows Translation Symmetry

Although the spin models (like mast condensed matter systems) possess only
discrete translation invariance, the anyon gas which is conjectured to give ar
approximate description of a system of electrons interacting with a suitable spin
model is a system with continuous translational symmetries. The translation
generators of the anyon gas are the momenium operators. The anyon gas can be
described in a variety of mathematical formalisms. Each formalism leads to a dif-
ferent description of the momentum operators P; and the Hamiltonian H. In any
formalism, these obey the fundamental microscopic relations

[H, P] =10, (7.8)
and

(P, P =2 9

Al the risk of belaboring the obvious, we will review the definition of appropriate
operators H and P, obeying (7.8) and (7.9) in several possible formalisms.

To begin with, one can treat the anyons as a gas of N particles with position
operators X, « = 1,...,N and a wave function ¢(x,, . . . , Xy) that is multivalued
and changes by a factor of exp(2xi/n) when one particle lcops around another. In
this formalism, H and P, are defined by the familiar free particle formulas

1 & )
H= —_— 7.10
i ( 2m Ay 710

and

P=) —i—. (.11)
. dx)/
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Clearly, (7.8) and (7.9) are obeyed.
Alternatively, if one wishes to work with ordinary single-valued wave func-
tions, then the replacement

W x| [ a2 (- x) (1.12)
a<f

(where z, = x,' + ix,?) permits us to replace ¢ with a single-valued wave function
¥'. As a result, one gets

1 n? )
- — : 7.1
" Z( 2m D(xV .13
and
D
P=)> —ji—, 7.14
. Z o (7.14)

Here the covariant derivatives are defined by

D d |
— =—+1ia,, (7.15)
Dx! dx,

with the effective vector potential seen by particle « being

_ 15 &lny—Xg)

. (7.16)
niTe |Xa— gt

am'

Obviously, (7.8) and (7.9) are still obeyed, since we have merely made the
redefinition (7.12).

Finally, one can derive the anyon gas in a second quantized formalism from the
Chern-Simons Lagrangian

- 2y (ol gy z(--ﬂ_L * )
A4 4nfdtd x(e a,aja,‘)+fdtdx ¥ IDI“’ szﬂp D). (717

Here ¢ is a sccond quantized “clectron” field. It is known' that the system
obtained by quantizing (7.17) is a system of particles (conserved in number) that
interact only via the statistical interaction of the anyon gas. The conserved
particle number is
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Q =fd2x.fo= fd‘x\b‘\b.

{7.18)

Conservation of the particle number follows from the current conservation law

8 S°+ 3,7 =0,

where
i
Ji= == (#* Dy — (DY)

2m
The Hamiltonian and momentum operators derived from (7.17) are

H= j dzx Tw 1,
and

Pr' = J.dzx:ron
where the energy density is

1
Tm =5 Dlthf';‘s
2m

and the momentum density is

Tu =5 (4* D= (DY*)).

(7.19)

{7.20)

(7.21)

(7.22)

(7.22)

(7.24)

The equivalence with the particle description of the anyon gas ensures that the F;
commute with each other and with H. This can be directly verified in the second

quantized description using the commutation relations

2
{¢*(x),¥(N)} =d(x—y), [Ai(x),4(y)] = -“—n—.e,jé(x -y
and the Gauss law constraint

2
Jilx) = e,;f\l/*w(x),

(7.25)

(7.26)
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where f; = 8,a,— d;a,.

Before leaving this subject let us note the amusing fact (visible in the above for-
mulas) that the particle current and the momentum density of the anyon gas are
equal:

Ty = mJ,. (1.27)

This reftects the fact that at the microscopic level, the system is invariant under
Galilean transformation and all particles have a common charge to mass ratio.
We will later have use for this fact,

[n summary. the anyon gas, in any mathzmatical formalism, has at the
microscopic level a Hamiltonian H and momentum operators P, that obey the
basic relations (7.8) and (7.9). The following discussion will focus on trying to
understand how those properties aie realized macroscopically. Then, since in
realistic superconductors the continuous iranslation symmetries are broken
down to discrete translation symmetries by the presence of a lattice, we will
consider the more realistic case of (7.6) and (7.7) with discrete translational
symmetries only.

7.3. Macroscopic Realization of Translation Invariance

The question now arises of how the symmetries we have just surveyed are
realized macroscopically, at the level of the physical excitations of the system.

It is a familiar story in condensed matter and particle physics that a symmetry
of the microphysics is not necessarily manifested as a symmetry of the
macroscopic physics. An underlying symmetry that does not leave invariant the
vacuum state is *spontaneously broken”. Spontaneous breaking of a continuous
symmetry leads to the existence of a massless mode which in particle physics is
calied a Goldstone boson. Spontaneous symmetry breaking is the key to most
modern understanding of superfluids, and has offered such a fruitful perspective
for understanding snperfluids that one tends to assume that it has universal
applicability.

We would now like to claim, however, that the key concept for understanding
the superfluidity of the anyon gas is not really spontaneous breaking of a
symmetry but what might be called spontaneous violation of a fact. The fact that
is spontaneously violated is the fact that the momentum generators commute.
While microscopically

[P, P]=0, (7.28)
macroscopically, at the level of quasi-particles, one obtains

[P. P;) = if- g,Q, (1.29)
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where Q is the particle number and f is a constant which we would like to inter-
pret as the fundamental order parameter of the anyon gas. From f # 0, we will
deduce the existence of a massless mode. This will be our explanation of the mode
first uncovered in Ref. 5, the mode that is responsible for the superfluidity of the
anyon gas.

Axiomatically, this mode can be interpreted as a Goldstone boson, since it
appears as a pole in the two point function of the electromagnetic current, as was
already seen e Ref, 5. in ihis interpretation, the existence of this mode is rather
rmyster tous, since it seems {and it will be argued later) that there 1s ne local order
parameter that would naturally explain the existence of a Goldstone boson, We
belicwe that the crucial massless mode dces have a natural explanation s a
censequance of spentanzous violatien of the fact that P, and £;,commute. Its role
as a Golds.ione boson (appearing as a pole in the two point function of the
electrontagnetic current) can then be deduced as a corollary.

7.4. Plane Waves and Landau Levels

It is easy to see why (7.29) is true. If the translation generators P; are conserved
and commuie, it must be possible to take the quasi-particle excitations to be
momentum eigeastates. This is what is most definitely not possible in the
perturbative calculations that we have been pursuing. The charged quasi-
particles in those calculations are not in plan~ wave states but in Landau levels. It
15 precisely because the quasi-particle states are not plane waves that the
perturbative computations are difficult.

That tke guasi-particle states are not plane waves could be well understood, of
course, if translation invariance were spontaneousty broken — if the P; did not
annthilate the vacuum, This is not the case here, however. It is because of the in-
teraction with a non-zero expectation value of the fictitious magnetic field
f= %e“(&,—a}-— d;a;) that the charged quasiparticles are not plane waves. Because
we take f to be translation invariant, this background is translation invariant,
and conservation of the P, is not spontaneously broken. However, in a magnetic
field, the translation generators do not commute, $p the nonzero expectation
value of f results in a spontaneous violation of the commutation relation
[Py P;]=0.

We can make this somewhat more precise. Consider, first of all, a single
particle moving in a constant magnetic field. The one particle Hamiltonian is

H= —ﬁ D%, (7.30)
k

where the covariant derivatives D@, obey
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(D9, DO = ig,f. (7.31)

The superscript “(0)" is meant to indicate that we are considering the interaction
with a fixed vector potential; the gauge field is not dynamical. It is important to
realize that the translation generators are not simply the covariant derivatives
D™; these do not commute with the Hamiltonian. Rather, the conserved
translation operators are

P, = —iD9+ fe,x'; (7.32)

these are easily seen to commuete with M. They do not commaute with each other,
however, but obey

[P, Pl = ife;. (7.33)

To express the same thing in a second quantized language, recall first that in
studying the anyon gas, one finds, in lowest order in 1 /#, an expectation value of
the fictitious magnetic field f, and the following “‘obvious™ elementary excita-
tions: quasiparticles that can occupy all Landau levels but the first »n, and
quasiholes that can fill any state in the first # Landau levels. What must be
explained is why one finds in addition one more type of elementary excitation,
namely the massless boson. The “obvious™ elementary excitations can be
represented by an effective fermion field y with a Lagrangian

DY 1
Vg =jdtd2x (x*:Ex—EDﬁ”x*Df’z). (7.34)

The gauge fieid is no longer dynamical; and instead of the elementary fermion
field ¢, we use a quasiparticle field x 10 emphasize that (7.34) is meant 1o be not a
microscopic Lagrangian but (a piece of) a phenomenological Lagrangian in which
as much as possible of the relevant physics is visible at tree level.

Can (7.34) be the whole of such a phenomenological Lagrangian? To
investigate this, we examine the realization of translation invariance. The
Hamiltonian derived from (7.34) is

1
H= 5 I d*xDQy* DOy (1.35)

It may not be immediately obvious what the translation generators can be, but by
virtue of the single particle result (7.32) one can see that the operators that
generate translations and commute with H are
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PA, = f d'x (x*(—iDMyx + feyx'x*x) - (7.36)

The quasiparticles and quasiholes appearing in (7.35) cannot be the whole
story because the translation generators in (7,36} do not commute; they obey a
relation

[P{:'X}' PEX}] = U-EIJQ (?3?)

‘chere

~

0= J d*xx*y (.38}

is the conserved charge operator. (7.37) is the second-quantized version of the
single particle result (7.33) (being a single particle result, (7.33) effectively
corresponds to the sector Q = 1),

Now we can see that the quasiparticles and quasiholes that are visible in lowest
order in 1/n cannot be the whole story. At a microscopic level the translation gen-
erators of tlh.e anyon gas commute, as we emphasized in the last subsection. But
the translation generators of the phenomenological model (7.34) do not com-
mute. Something must be done to correct this discrepancy between the
microphysics and the putative macroscopic realization in {7.34),

There is another, closely related reason that (7.34) cannot be the whole story. In
the underlying microscopic anyon gas, the translation generators P, are the
integrals of intrinsically defined local densities T, for which a formula was given
in (7.24), In the macroscopic model {7.33) this is not true. The translation
genera*ors can be written, as in (7.36), as the integrals of local densities, but
because of the “x” in (7.36), the definition of these local densities does not de-
pend only on the intrinsic local physics, but also depends on the arbitrary choice
of an origin of coordinates.

This second version of the problem, though it may sound more abstract, isina
way a more powerful formulation, since this version of the difficulty is relevant to
the sector of Q = 0 as well as to the charged sectors.

7.5. Restoring Commutativity of the Translation Generators

We will now see that if, in addition to the quasiparticles and quasiholes
described in (7.34), we assume the existence of an additional spin zero massless
boson, the above-cited problems can be repaired. This massless boson is
analogous to a Goldstone bosor., since its role is to correct for a discrepancy
between the microscopic properties of a system and the macroscopic realization.
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However, while a Goldstone boson is tied to the violation of a symmetry, the
massless boson present in this problem is tied to the violation of a fact — the fact
that (P, P;] = 0.

Of course, we cannot prove on grounds such as these that a spin zero massless
boson must exist. There would be other logical possibilities, notably the
possibility that the approximation leading to the excitations that appear in (7.34)
is wrong even for large n. The best that we can say is that {f one postulates the exis-
tence of the excitations in (7.34), then this creates problems that can be cured by
the additional existence of a massless boson with certain properties.

The obvious way 10 represent a spinless massless boson by a quantum field is to
consider a scalar field ¢ with Lagrangian

-

. {1 :
L= J dt d*x (E(aoq»)’ - 32—(3,.¢)2) : (7.39)

Here v is the velocity of pronagation of the massless boson. While the description
(7.39) of a massless boson is possible in any dimension, in 2+ | dimensions there
is another possibility. One can represent a massless spinless boson by an abelian
gauge field b, with field strength h;= 8,;b,— d;b;. The Lagrangian for b, is

1
Lb =Ejdld2X(Zho,z‘-vz fz). (?-40)
The equivalence between the two descriptions is made by the change of variables
O = Ry, 0’3 = gyhy; - (7.41)

For our present purposes, ii is mosi convenient to first consider the description
in terms of b,. The conventional translation generator of an abelian gauge field is

P = fd’x %, (7.42)
where the conventional form of the momentum density is
j

This leads to the standard result [ P, P;] = 0. But if one adds an additional term to
* the momentum density, taking
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TP = =~ > hyhyte,fhy, (7.44)
i

then a short computation, using the canonical comrmutation relations derived
from (7.44), gives the result

]:J'){b),-, ij_,-] = I'ffl,_’, f d:).' {fj;—-'lim) = f_l;‘::j,' %ﬂﬂ n‘-hm‘, {7‘45)

where the intcgral is over a large circle at infinity, and n* is the normal vector to
this circle,

Evidently, therefore, if we. combine the y and b systems, and form the total
momentum operators P, = P9+ P then

(P, B] = ife; (Q— §dfn*huk) : (7.46)

Thus, all is well if we restrict ourselves to the subspace of Hilbert space for which

Q- %df n*“ho, = 0, (7.47)

If we take the free Lagrangians (7.34) and (7.40) literally, then the Gauss' law
constraint (the equation of motion obtained by varying with respect to by} would
give dyhg, = 0 and theretore ¢ din*hy, = 0. in contradiction to the desired resuit
(7.47). To obtain (7.47) (and at the same time give this condition a physical inter-
pretation), we must modify the iree Lagrangians by adding a suitable term
coupling & to y. This term means that y is a charged field interacting with the
dynamical gauge field b. The requisite Lagrangian is

1 D |
L= Ej dtd*x (h,? —vh},) + [dtd’x (x‘iaX"ﬂDkX‘DkX) , (7.48)

where now D, = 9, + ib, and b, is a dynamical gauge field. It is now easy to s¢e
what is the role of b; in restoring the commutativity of the translations. Indeed,
(7.48) is a perfectly normal Lagrangian with commuting translation generators.
By expanding around a constant expectation value f of the *magnetic ﬁelq"
3, b, — 3,b,, one will find the y excitations to be Landau orbits with apparent vio-
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lation of commutativity of translations. But this phenomenon is “spontaneous”,
simply reflecting the non-zero expectation value of h. Because the Lagrangian
(7.48) has “normal” translation invariance, the translation operators will
commute regardless of what background one expands around, when one includes
all contributions to these operators.

The way that commutativity of translations is realized in Eq. (7.46} is very
similar to the way that relations expressing an underlying symmetry are usually
realized in systems with spontaneously broken symmetry. The translation
generators commute — but only if one takes into account surface terms involving
massless particies. The local measurement of the motion of the y quasiparticles
sess broken cormmutativity of the transfations.

r1inally, we can now readily resolve the other difficulty noted in connection
with Eq. (7.36), which was that the quasiparticle mementum density could not be
written as the integral of a local density that could be defined in a natural way.
The offending term can be rewritten by using the Gauss law constraint and
integration by parts:

Jd’x s,]xjx*x= szxfﬁyxj&khok

= _ff dzxsikhﬂk . (7.49)

Thus, the offending term in (7.36) is actually equivalent, using Gauss’s law, to the
integral of a local density which is naturally defined, since it does not contain any
explicit factors of “x*™.

Let us now briefly consider the formulation in which b, is replaced by an
equivalent scalar boson ¢. To restore translation invariance, one must include in
the stress tensor 7%’ a non-minimal term similar to the one required in 7, or
specifically

T = — 4030+ /3;9. (7.50)

The surface integrals transform as follows:
§d¢’n"hm = p? §d1‘6i¢. (7.51)

The operator on the right-hand side of (7.51) is usually called the vortex number
P,
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¢ =’ %df'-a,-qb (7.52)

There is a subtlety here. In any state in which & # 0, the scalar field ¢ must have a
singularity somewhere in space. Thus, the description in terms of a scalar field ¢
is only adequate at infinity; usually, of ccurse, the situation is repaired by
interpreting 4 as the argument of a complex-valued scalar field that may have
L0705

In terms of ¢. the fundamentai relation (7.47) says that

9= (7.53)

In other words, the charg=d excitations must have vorticity. We firsi encountered
this resuit in another way in Sec. 4, where 1t appeared in the opposite fashion;
there it was more naturat 1o szy that we had learned that the vortices must carry
charge.

Since we know that the eigenvalues of  are arbitrary integers, we know the
aliowed values of vorticity; and we can say, in particular, that ¢ should be
regarded as a periodic field with periodicity equal to 1/2mv?,

Incidentally, although this point possibly should be addressed with greater
care, it would appear that the fluxons (or ¥ quasiparticles) obeying (7.53) are
ordinary fermions with @ = x, at least if n is large cnough so that the discussion is
valid. In fact, the gauge field b;in the effective Lagrangian (7.48) has no Chern-
Simons term (otherwise it would get a mass and the surface term needed to make
sense of the situation would vanish). This being so, the statistics of the y particles
is unshifted trom its free fieid vaiue of # = n.

7.6, Superfluidity Without Charge Violation

We have now learned that the system under study must — given the existence
of the y quasiparticles — have a massless boson ¢. What is more, in view of the
term T*y; ~ £3,¢ in (7.50), this boson must appear as a pole in the two point
function of the momentum density T,,. We would now like to know, however,
whether the system is superfluid in the usual sense, or in other words whether this
boson appears as a pole in the two point function of the current density .J,.

For the simple anyon gas, this question can be answered quickiy. Because of the
microscopic formula T, = mJ; (Eq. (7.27)) a massless boson that appears as a
pole in T, must also appear as a pole in J,.

Of course, a realistic two-dimensional CuQ plane will not be described
precisely by the simple anyon gas. At best the latter is an approximation of some
kind. However, once we know that the idealized anyon gas has a current density
obeying
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mJ;~ fd;¢, (7.54)

so that ¢ appears as a pole in the two point function of J,, this situation cannot be
ruined if one makes a generic small perturbation in the Hamiltonian. At most
such a generic small perturbation wold change the value of the coefficient fin
{7.54),

This argument for why there must be a massless pole in the two point function
of the current should seem peculiar. Usually such a result is deduced as a
corollary of the existence of spontaneous breakdown of conservation of electric
charge. The latter in turn is related to the existence of a non-vanishing
expectation valve for some charge-bearing local observable. In the present
discussion, we have instead understood superfluidity as a consequencs of the fact
that the commutativity of translations is spontaneousty modified to a phenomen-
ological law (ignoring massless boson contributions)

{P, P) = ‘ﬁa‘jQ- (7.55)

We would like to regard the parameter f that appears here as the fundamental
order parameter characterizing the superfluid anyon gas. Note that {(as the ¢;
symbolin (7.55) is P violating and the complex number { is odd under T), Pand T
violation are prerequisites for the ability even to define this order parameter. The
order parameter is cdd under P and T but conserves PT — as it must, since the
anyon gas from this orcdler parameter is derived is PT invariant,

One might wonder whether in fact there is a local order parameter of the usual
kind — an expectation value of a charged observable — which we have merely
overlooked. There is, however, a strong argument that this is not the case. This
follows from the fundamental relation

0=0. (7.56)

(It must be understood that () here is the guasiparticle number, not the total elec-
tric charge which includes a supercurrent contribution.) In a two-dimensional
superconductor of any kind, the number & of vortices is absolutely conserved
(since it can be measured as a surface integral at infinity, which cannot change, or
since after coupling to dynamical electromagnetism it can be identified with the
physical magnetic flux). Therefore, (7.56) means that in the two-dimensional
superconductors under discussion, (2 must also be conserved.

To say this differently, in a two-dimensional BCS superconductor, one begins
microscopically with a law of conservation of (J; this conservation law is then lost
(spontanecusly broken). One also usually generates spontaneously a conservation
law — conservation of vortex number. The total number of conservation laws is
unchanged, but the conservation law lost is different from the conservation law
gained.



386

On Anyon Superconductivity 1045

In the case at hand, the fundamental relation Q = @ means that the law of con-
servation of Q is not broken; it is just reinterpreted macroscopically as the law of
conservation of @, Thus, it must be that a local order parameter of the usuval kind
(which would trigger non-conservation of @) does not exist.

For applications to realistic superconductors, we must consider th.e interaction
of the anyon gas with a crystal lattice. We then need not realize arbitrary
translations, but only those consistent with the symmetry of the lattice. The
=ssentiai featurs of the anyon gases that concern us, namely that when one anyon
winds around another the phase of the amplitude changes by n(l — 1 /n), then
need not be implemented by a U{1) gauge field — a Z, gauge field should suffice.
The anyons will have unit charge with respect to this gaugs field,

The analysis then proceeds in compleie analogy to the continuum case, leading
t¢ the spontaneous violation of the commutation relations for quasiparticie
translations, and their dynamical restoration through vortex coupling to a
massless field, Notice that both charge and vorticity are both defined as integers
modulo #, so that the fundamental relation @ = @, central for the whole
mechanism, makes sense.

However, there is a crucial difference between the laitice and continuum
models, arising from the fact that for a Z, gauge theory charge and vorticity are
defined only modulo n. It is, that in the attice model the product of n anvon fields
is a fictitious gauge singlet. It could therefore conceivably acquire a vacuum
expectation valne, without breaking the crucial fictitious gauge invariance. This
would be an order parameter of the more familiar kind for a superconductor —
an expectation value of a field of charge »n.

Also, such a product could well couple to the product of an equal number of
copies of {the complex conjugate of) the ¢elementary electron field, in a fully real
and fictitious gauge invariant maaner. Such a coupling would allow Josephson
coupling petween anyon and usual superconductors

71.7. Consequences »f the Relation between Cuvyrent and Momentum

The simple anyon gas is a Galilean invariant system in which all particles have
the same charge to mass ratio. This fact is conveniently expressed in the relation

mi,= T, (1.57)

that we have discussed earlier. This relation, together with current conservation,
has very strong implications for the low energy interactions of the massless
bosons. It is these implications that we wish to consider in this subsection, The
properties that we will deduce are exact properties of the low energy physics
obtained from the anyon gas as’long as there are no massless particles other than
the ¢ field that we will consider. These properties will not hold exactly in realistic
superconductors, where there is not a simple relation between J; and T,.
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In treating this problem, we will use the formulation in which the massless
boson is represented by a scalar field ¢. To begin with, at the level of precision
that we have considered so far, the ¢ field is described by a quadratic Lagrangian,

P4
= f ded” x (%(ao«»)’—%(am)’), (7.58)

which ieads to the equation of motion

—¢— g = 0. (7.59)

The current and momerntum deasity are
mI® = T = [3,¢+ dobdi. (7.60)

Now we wish to ask whether there is a charge density J§ such that the current
conservation law

dodo+3J, =0 (7.61)

is obeyed. For a first orientation to the problem, ignore tli¢ term in (7.60) that is
quadratic in ¢. One may readily see that in this approximation, the charge density
that works is

mj, = v_f;ao'ﬁ- (7.62)

In verifying (7.61), one uses the equation of motion (7.59).
Now we wish to include the term of order (V¢)? in J;, We have to assume that
there might be a term of order (V¢)? in J, as well, so now

mJ, = —izaw +7Y, (7.63)
v

where Y is to be quadratic in ¢. In addition, we have to assume that there might be
a term of order {V4$)* in the equation of motion, so this will now be

a2 a2

a:’qb a( ky?

¢+Z=0, (7.64)

where again we assume that Z is of order (Vo)
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Current conservation now gives the statement

0= —f; Z+8,Y +38,00,0). (7.65)
/]

Though (7.65) by itself does not uniquely determine Y and Z, these are uniquely
determined when one requires that the correction Z to the free equation of
mintion must be derivable from a Lagrangian. One finds that the Lagrangian must
be corrected to

2
.= Idtdl ( {50¢)2——(3¢)1—?6‘o¢ (3:¢)) (7.66;

and the charge d=nsity must be

mJ——fé‘ +l ? 7.67
[ Eu‘b E(aiﬁb)- ( )

This is not the end of the story, because the term that we have added to the
Lagrangian results in an addition to the momentum: density. (The extra term in
the Lagrangian results in a2 modification of the canonical commutation relations,
and as a result the objects [ d>xT*;, with T, as defined in (7.60), no longer
generate translations.) One can now take the momentum density to be

2

T = 3,0+ 3090 — fa.qb-(am)z. (7.68)

However, the current J; derived from (7.66) is unchanged from (7.60). Therefore,
{7.66) does not lead to the desired equality of current and momentum density. To

save the day, it is necessary to add a term of order (V¢)* to the Lagrangian, which
now becomes

= 2 2____ 2__ b3
f did*x ( =(3o¢) (6¢) 2f60¢’ (3:9)

1 232
+3 ("7) (8@)2(3@)2) . (7.69)

It is now possible to assume that J, is given by 1/m times the formula in (7.68);
there is no modification of J,. This latest addition to the Lagrangian does not
require any further modification of T, (since it does not bring about a change in
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the canonical commutation relations), and therefore (7.69) is compatible with the
underlying fact that all particles have the same charge to mass ratio.

A more systematic treatment of the consequences of T, = mJ, will be given
separately elsewhere.*® [t can be used to explain the vanishing of the # term in the
anyon model discussed above, and to derive some interesting, though from a
modern perspective rather peculiar-looking, relations proposed by London.*
London's original motivation for his proposals was a pre-BCS, hydrodynamic
picture of superconductivity. Let us emphasize again that we do not expect these
relations (or & = 0) to be exact in real materials, though they can be exact
consequences of highly non-trivial models,

8. Phenomenology

In this section we will discuss three distinctive phenomenological effects
associated with anyon superconductivity, Qur emphasis will be on effects that
can be motivated directly within the framework of the models discussed above,
Other aspects of possible P and T violating phenomenology are discussed in Ref,
34,

The basis for our discussion will be the effective Lagrangian (6.3). We will
mainly consider the most naive extension to three dimensions, in which ¢ is taken
10 be independent of the direction Z perpendicular to the plane. In the Maxwell
Lagrangian the interplanar spacing s then appears as a multiplicative factor:

Loy = 8—; j dx di(E*— *BY). 8.1

Implicit in this framework is the assumption that the couplings 2 and & are con-
stant; and in particular that they do not change sign from plane to plane. Even if
the basic idea of anyon superconductivity does apply to the actual high-T,
materials, and even if the energetics favors alignment of the sense of Pand T vio-
lation in neighboring planes, it is unlikely that such alignment can persist through
a bulk sample. For this reason among others, we cannot atiempt to give a
complete or quantitative discussion of possible experiments at this time,
However, we can indicate what appear to be some promising directions, and to
point out some surprising qualitative aspects of the suggested phenomenology.

1) Charge inhomogeneities around vortices

As we have emphasized repeatedly, in anyon superconductivity the charged
excitations are intimately related to vortices; indeed, in a strong sense they are
identical. In the absence of screening the vortices would be electrically charged,
Unfortunately in bulk the electric screening length is
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l ﬁS Sﬁ 1/2
b=~ (zamc) ®2)

and if we take as typical values s = 20 A and m the electron mass, this is only 3 A.
Of couse this value, extracted from our simple London Lagrangian, is not really
applicable in the neighborhood of a vortex, but it should indicate the correct
order of magnitude. It might be possible to observe even such small-scaie
inhomogeneities by scanning tunnelling microscopy. The screening is of course
tess effective for thin fiims.

We expzct transverse voltage to accompany current gradients generally, as we
sinall discuss in some detaii immediately below. In this sense, the charge
inhomogeneity associated with 2 vortex should extend at least over the region
where there are sigmficant current pradients, t.e, over a coherence length.

2) Zero-field Hall effect

We have just argued that there is a charge inhomogeneity associated with
vortices; naturally this implies a potential difference between the center of the
vortex and infinity. Now a vortex is in some sense a small circulating current, and
we can imagine straightening it cut. This leads us to suspect that there will in gen-
eral be an electric field transverse to current flow: a sort of Hall effect, but
persisting in zero external field. The existence of such an effect would of course be
direct evidence for P and T violation.

The simplest case to analyze is the flow of smali currents in a semi-infinite buik
sample. For sufficiently small currents will be in the Meissner regime, with no
vortices. Then the London Lagrangian is adequate, and we find the Maxwell-Lon-
don equations:

- CAO 1 02 CBJA'; + (a - b)&u(a,A}) = 0, (8-3)

1
s 3:(3pA;— 3:Ag) = —~ C A+ (a+ b) Ce,0,4;, (8.4)

1
E (Czar(arAf —8pAg) — (94— 3,40))

= 02 C? A+ Cagydp Ay — Cheyldo Ay — 8,40) — Chey0pA,. (8.5)

To get oriented, let us first consider the situation with a = b = 0. Trying the
ansatz

Ao =f(0; p=C, (8.6)
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4,=g(x);, j,=—Ch'g, (8.7

(other components zero) appropriate to a sample with x = ¢ we find two
solutions:

—xtf, e _ s
M) f)=e ™, g=0 0=
(8.8)
2
o ¥ &5
Iy f =0, glx)=e "% fi_?mc'?'

The first corresponds to expulsion of an electric field; it contains an inhomogen-
eous charge density but nd current. The second corresponds to expulsion of a
magnetic field; it contains a current but no variation in charge density. Clearly
the a and b terms will mix these modes. Regarding g and b as small, we can solve
for the asymptotic charge distribution using the zeroth order ‘‘magnetic expul-
sion” solution; thus starting from (II) and perturbing (I} we find:

A= e Mo j = Clle
8Ay = Ve ™% (8.9)
+5
V= 4 .
Ct,

The relation between the potential drop and total current in the asymptotic
region is given by:

5A0 a+b 1

J Ct, Cv?*

(8.10)

Charge accumulates at the surface, to compensate the charge accumulated in the
asymptotic region. However, it is not difficult to see that the dominant
contribution to the voltage drop comes from the asymptotic region. Taking a and
b from the microscopic theory and the numerical values as before, we find for the
ratio of potential to current:

V a+b |1 =4Jl'(a+b)

i ¢ v seiC

(8.11)

In this equation the current is the current per layer; for many layers the current



392

On Anyon Superconductivity 1051

adds while the voltage stays the same. For n = 2 and the parameter values men-
tioned above we have:

V  fnn
— = —— = .03 volt/amp. (8.12)
Iji sme

The electrostatic potential V can in principle be measured by transporting a test
charge through empty space from just outside one side of the sample, where
current is flowing, 10 just outside another side of the same sample, in a region
where there is uc surface current. (Here and below we sha'l no longer insist on a
semi-infinite sainple; rather we imagine it large but finite in the £ direction.} A
more subtle issue is whether it can Le measured using an ordinary voltmeter with
contact to the sample which measure the electrochemical potential. Can the
electrochemical potential across the superconductor be non-zero?

One might well doubt the possibility, on the following grounds. An ordinary
voltmeter requires a non-zero current flow through it, and dissipates a small but
finite amount of energy in its operation. On the other hand, at small current den-
sities, the current-carrying state in a superconductor can, for most purposes, be
considered an equilibrium state, A small persistent current flowing around a
loop, for example, is really a metastable state. Thus if we could use it to drive a
voitmeter, we would violate the principles of thermodynamics. The electroche-
mical potential in this situation must in fact be constant, so the voltmeter will
measure no voltage.

A different situation can occur if the current exceeds a critical value, so that
dissipation can occur by nucleation and flow of vortices. In this case there can be
a Hall voltage in a superconductor measurable with a voltmeter, which can occur
in principle without an external magnetic field, in the case of an anyon
superconductor,

There is a general inequality between voltage and current, in the anyon case,
that follows from this line of reasoning. The force on the normal electron must
always be such as to keep it moving in the right direction; this implies {for the
core region)

dj = eE, (8.13)

with ® = 2x/ne, and its integrated form

22 y=v. (8.14)
ne

This inequality is comfortably satisfied in our case. It is saturated by the Hall
current for n filled Landau levels.
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The problem of the Hall voltage in a conventional superconductor subject to an
external magnetic field has been studied by various authors. Experiments* in
that case confirmed that there exists a Hall electric field, which was observed
using an a.c. technigue with a capacitative pickup; whereas no Hall voltage can be
measured by a voltmeter through ohmic contacts except in the regime where
there is dissipation associated with the motion of magnetic vortex lines.

It is interesting to consider how the current carrying state behaves as we
approach fermions, that is # — co. At first the situation seems quite disturbing,
because (for constant density and mass) the penetration depth remains fixed at
the London value. Superconductivity this robust is too much of « good thing.
However, we should realize that the gap (4.7) to create voriices shrinks with n.
Thus the domair of non-dissipative, vortex-free superconductivity becomes
vanishingly small — the amount of current that can be carried, or magnetic field
expelied, shrinks to zero.

3) Reflection of polarized light

A very interesting possible manifestation of P and T violation, pointed out by
Wen and Zee,* is that the direction of polarization of linearly polarized light is
subject to rotation by reflection at normal incidence. It is not difficult to see thai
the a teriu, despite its being P and T violating, does not lead to this effect. Indeed
this term couples the charge density to the perpendicular magnetic field, and does
not affect the propagation of fields tangential to the plane. An effect of the type
proposed by Wen and Zee wouid indeed arise from the b term. However, as we
have seen, the # term does not arise in the simplest anyon model, for reasons we
alluded to in Sec. 7. A more direct argument is the following. In a translation in-
variant system such that the charged particles all have the same charge to mass
ratio, a spatially constant electric field couples to the center of mass coordinate,
Since the equation of motion of the center of mass is not affected by the
interactions, the response must be that of free particles; in particular, it cannot
violate P and T. Now the b term, if present, would lead to transverse current flow
in response to a uniform electric field. Since the anyon modcls we have studied
satisfy the premises of this argrument, they cannot generate a non-zero b term.

Now of course in real materials the charged particles do not all have the same
charge to mass ratio, and translation invariance is spontaneously broken. Thus
the optical rotation effect should exist, but it will be suppressed.

There will be characteristic, unsuppressed polarization effects at non-normal
incidence, due to the g term, The necessary computations are rather cumbersome
and will not be attempted here,

The underlying reason for these optical effects will be readily appreciated by
those readers familiar with the field theory literature on Chern-Simons terms. In
fact these sorts of terms were first studied not in connection with fractional
statistics, but rather as a means of giving mass to gauge bosons.** The effect of a
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Chern-Simons term, when combined with the ordinary Higgs mechanism, is
essentially to give unequal masses to the two circular polarization states of the
photon. Below threshold, they will be exponentially attenuated with distance, but
at different rates. This way of regarding the situation suggests that the most
sensitive way to search for the effects o."interest is actually in transmission rather
than in reflection,

¢ Concluding Remarks

In this paper we have investigated the ground state of the anyon gas for
statistical parameters of tae form # = z(l — 1/n). Using an analysis which is
valid at least in the case of large n, we confirm the existence of a superconducting
ground siate with a low frequency sound mode at long wavelengths, and
quasiparticie excitations that are identified as charged vortices. We have
introduced an effective Lagrangian for the superconductor, which contains
anomalous terms that reflect the lack of Pand 7 symmitry, and we have calculated
the values of the associated coefficients in the large n limit. We have noted the
existence of a violaticn of the commutativity of the generators of translations of
the quasiparticle excitations, which is a key to understanding this system. We
have also noted some phenomena which are consequences of the violations of P
and 7 symmetry in the model, whosc o .ervation would establish the model’s
relevance to actual high-temperature superconductors.

As a theory of high-temperature superconductivity, the anyon model is clearly
incomplete. Most pressing, of course, are the need to establish the connection to
microscopic models of interacting electrons more convincingly, and to under-
stand how this new mechanism of two-dimensional superconductivity can be
extended inte the third dimension.

Despite such major gaps in the theory, it is certainly suggestive thai the new
high-temperaturz superconductivity arises in a variety of highly anisotropic
materials sharing a common two-dimensional structure. If these materials are as
two-dimensional and their behavior as qualitatively new as they seem to be, it is
tempting to think that in them Nature has realized anyon superconductivity.

Appendix A

Here we present some details of the calculation of the unperturbed correlation
function Df,, (g, w). We shall work in the second quantized scheme. We define the
inverse magnetic length and cyclotron frequency for a particle of mass mz in the
presence of a statistical field b:

hi
A= e where @.=—b. (A.1)
h m

By definition, at zero temperature
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Dp(ry, tiyry, 1) = — i (TP (D) LYY LY e (A2)

where j, is as defined in (5.10) and ¥ is the electron field operator

W(r, 0) = D gulr)calt) (A3)
[X3

with ¢, (r) being the Landau wave function. We have found it convenient to work
in the asymmetric gauge

a, = — h by, a,=0 (A.4)

1 2
gu(r) = e™ A lzexp _& y+E 2 HA y+E (A.5)
Jr2'n 2 b b

where H,is the Hermite polynomial. The expectation value is taken with respect
to the state with n completely filled Landau levels.
We can now express Dﬁ, (1, 2) in terms of Landau wave functions

DAL, = ~i D o¥1)j.e(1)9%2)),u(2)

a.bed

= (0] H ay, T(a,‘,(l)ab(l) (Z |, k) (m, kzl)aI(Z)aa(Z))

LK, m.ky

X []al, [0)

1k,

= =i > 3 (TR g (1) Pty (19 (20,0, (O — 1)

f.t| m, kz

+ e gt (1) ok ()% (DB (DOG 1) . (A6)

We will calculate the Fourier transform of the correlation function:

D:)"(q’ w) = 23 I dridrgdtl drzef-(‘xuz-ll)""y(yz_)'lne _l'ﬂl(fz_'l)Dlop(l’z)

(A.7)
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without loss of generality, we choose the momentum transfer to be in the
x-direction

=4 q,=0. (A.8)
We now proceed to evaluate each component of D2,(g, ) in turn. First,

n-t m
s o H fglas fhey — khtxy — x;)
b.};(:?,t‘.)) = Z Z Cim J’ (IJ_ dx,—dy,—dk‘) e:q & nlea y = kb — g

(=0 m=n i=12

/ 1 i )
k(}-} - ((Um - (.E?;) +ie w+ (O)m - OJ,'} — IE

Do) Tl)
Dol LNl

where
i 14
Cpp=—————. (A.10)
o apam a2t
Let
=, _ P — == - Al
i (_v. 25 ) i=1,12, v % ( )

and change integration variables:

k
f dk,dk, = 2(2) f dud(k'—;—i) (A.12)

k, + k, is essentially the y coordinate of the center of mass; the integrand will be
essentially independent of it. The integration over v is very simple as well, as the
integration over x,, x, results in a delta function:

A
Stk — ky +g) = (%) J(v +2—‘;) : (A.13)
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Now using

NE T
i)
S R

a1l a

we find

l
Dy(g.w) = Z E c,,,,(;;) f du, du, dvexp[— ui —ul— 2v?)

=0 m=n

x( S(v+ig/2b)  S(—v+2q/2b) )

w—(w,,,—w,)-}-ie w+(a),,,—w,)—i£
Hiu, — v)H{u, — 0) H . (u, + 0) H (4, + v)

Using the identity

jm dxexp{— x*|H|(x+ y)H,(x+ 2) = 2"'\/;1!2”'"}2, H—-2yz1)  (A.15)

where m = {, we get;

5 o

)

(A.14)

D= >

X exp[—202 122" g (¥ o?" VLT (— 207

L& 2w(m—1)

= > = - expl~ X)X (LI (O

n Saemol-wlim-1)

where

)]
par el 22"'m'2'ﬂf w—{w,~w)t+ite wt+(w,—w;—ic

(A.16)
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).242 ql
X=y =o0p (A.17)
and
n—1 = —f
0= E Z i exp(— X1 X™ LT (0. (A.18)

-

[~
3

A
-,,m (_) —(m—f)z

it is difficult to simplify further; fortunately this equation lends itself readily o
eXpansion in w and 4,

Now we pass to the nther components. The entries involving j, depend on the
quantity

. ﬁ k] + k:
2%, (1) jx @i, (1) =;wﬁ.(l)(T—by.)¢.¢,(l) (A.19)
where

—fi— = (A.20)
m

»|8

After shifting the origin of the y, only the gauge potential part contributes. Hence

[l B e
Dot @) = % z Cim ,[ (H dxr'dyidkf) g™ it =kl =)

{=0 mw=n =12

X

1 1
(m—(a),,,—co,)+:‘e w +(w, —co;)-—ze)( bv)

)
2 {y+L 4+ —
xil_lexp_ 5 ytoy _H:lya 5
-2 () a6 )
- = I A2l
Xl;[zexph > ) At (A.21)
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)(( dv+Ag/2b)  d(—v+Aq/2h) )

w—(w,~w)tie w+{w,—w)—ic

—-b
X (T) (4, — v+ v)exp[—ui—ui—2v’)

X H(u, — v)H{u, — 0} H,, (u, + V) H (u, +v).

Using the recursion relationship:

1
xH(x) = ‘2‘Hf+n(x)+ tH_(x) {A.22)
we have
‘h =1 = l _ .
D% (g, w)= — Z Cim (—2) f du, diudv (—b) exp[—ul—u3—2v?%}
(e, A A

N ( S(v+Ag/2b)  d(—v+Aq/2b)

w—(w,—w)+ie wt{w,.—w)—ie

) H{u,— v)

1
X (EHM (w4, — o)y +HIH,_ (1, — )+ vH, (1, — v)) H,(u,+v)

X H (u,+v)

1 (wsz) oan ( 1 1 )
— = — +
e\ Mg/ [ amm \o—(0,—w)tie w+(w,—w)—ie
X exp[— X]X"'“L?'"(X)((H DL X0+ XL (X1 —60)

+ L}"“'(X))) . (A.23)

Now using the recursion relationship
xL(x) = ((+a+ DLIx)—({+ 1LY, (x) (A.24)

we have
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(+ DLET X+ XS (D=8 + LX) = m—DHLT'(X)

and finally

1 febPNS & D 2wim-—1D)
o= 5(5)5 5.4

exp{—~ X|X" L0

= quwi,. (A.2%)
2rw,

A stmilar calculation gives

1 kA H? )2 = 2“’ N 2w(m—0
0 T — e | bt e

exp[— X)X~ [(m—HLT(X))?

LA S S

2rm A

fm{l m=n
w!

_l _X an—f—] Lm—l X 2

(w’—mi(ﬂn—f)2 )exp[ : (L7

- L win el (A26)
2nw,
where
A=l w i “ —
—n= ;'”Z‘nexp[—X]X”" ;-!(m-—f)[L: ‘)

- n(n—1)}(n—2)

. X2+ o(XY). (A.27)

Notice that a possible term proportional to g° vanishes.
X, — n, taken beyond the first term, is something of an embarrassment. Current

conservation, applied to the response funiction K, should force it (given the other
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formulas in Sec. 5) to terminate after the first term. We suspect that the method of
including the electromagnetic contact interaction used there is not quite right,
and when done correctly it will cancel the offending part of X;. We hope to
remedy this defect soon. In any case, since the trouble starts at order ¢*, none of
our conclusions are affected.

Now we calculate D},(g, ). The current in the y-direction is: (a,=0)

_ B2 - 2 kY 2 kY
- A3 el o5 oo 48]

(e )2 )
)
(oo )2 )
<nli(2). m

Therefore
il R —_
Phiae) = EAZ"E &2 % mzz—(’:ftza—kn’
exp[~ XIX" 'L X)L’ (I,m, X)
1
= i OO E (A.29)
where

. 1
L'thmX)= — (XL (XNt =89 — I+ DLET' (X)

—mLP™ (X0 + XLPH(X)). (A.30)

By the same method of calculation, we find
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2 =l @ _
D, (¢,w) = ! (i) PE: (2)22 zi 2m— Do,

2 \m g/ = mm ol-wi(m—1Y

X exp[— X]X™ L’ (I, m, X)}?

1

- 2
B lnwcwczz
(A.3D)
1 (BN /(NS & ' 2Am—Dw
DY (g,e0) = —:‘-—(—) 2 ) Sy
A2.) 2x\m \q ;;,_—:,m!ca‘—wﬁ(mﬂ!}’

X exp[— X)X LT OL (Lm, X)

= —i

wwXl .
2nw, ©

C

We now calculate Z; in the small g, w limit. To first order in g%, w?

Lx > —X)X’”""l—!-!*l(l - (3’3—)2)

T2 mim—{ w,

( m! m! 2
X il(m—l)!_(I*l)!(m*1+l)!‘x)

~ n(—l - (-“—’-)2+§nx). (A.32)
w, -

Notice that by demanding low powers of X we are restricted to a very limited
rangeof mand [, thus m—1! = 1 implies m = n, ! = n—1;, m—1I{ = 2 implies
m=nl=n=2orm=n+1,1= n—1.So the results for the low frequency,
long wavelength limit used in the text are sensitive only to the top two occupied
Landau levels, and the two empty ones right above the Fermi level.

Similar calculations give

(- (5) +3)
Zan—-1—|—}) +-nX},
@, 2

w 2
gzn(—l—(—) +2nX).
e

For convenience, let us define

(A.33)
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i

==
n

and drop the tilde. Putting everything together, we have then

. qE, qwZy —igw X,
D= | ok (WS —ieol,
“\iqw. £, iww X, wlZ,

With the interaction matrix derived tn Sec. 5:

W, i
- 0 -
2n e 4
V=— 0 0 0
n .
P oo
q
and the correction matrix
on B 0 0 i
=n_q;1- 00
000
we find
#
K= e’Aﬂ,+e’§;—J,,(l —d,)
(3
2 w
q_zo iy ig2
3 G .
-7 ) w?
2ndet qﬁzo —2(2'.0-det(23—1) ;) fwE
@, w, w
—igg ~ 0= @ (E—L,+2,+det)

where

(A.34)

{A.35)

(A.36)

(A.37)

{A.38)
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E = "'E[_Ef+20£2+£o

2
=202

det=1-%,+2%, +32-%,%,

=] +nl=1. (A.20)
W, A

i

Appendix B

We show here how we determine the effective Lagrangian by matching the two
point function calculated from the Lagrangian to the linear response function K,,,
which is calculated in Appendix A.

Consider the effective Lagrangian

2

1
L= (- CA.,)h";(a,-qb» cAy

The sound velocity v and the other coefficients g, b, C are to be determined.
In the calculation of X, we have chosen the momentum transfer to be in the x

direction ouly, i.. g4, = 0. Here we shall consider the same situation.
For this choice, the Feynman rules for the effective Lagrangian are (Fig. 1)

Ao A.o A

q ~. 1 - hin
ce iy N *l.w_:-”

i wC Cqla +8)
wz.-”zq: A' 1 As A?
8 o

A' ‘*\.\_;__- ‘.‘Uzqc \\L;OJ’I/
~wq(a - b) ¢
Fig. 1

where the broken line denotes the scalar field ¢, and the wiggled line denotes the
gauge field 4,. _

We now calculate the two point functions from the cffective Lagrangian, to the
lowest order Feynman diagrams. The two point function that couples to A, 4,
comes from two diagrams (Fig. 2):
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Fig. 2

They yield:

iCw(aviqg® — bw?)

wz—vlqz

(B.2)

{n the small ¢, @ limit we have

@ 2 q 2
det = —(-—) +n(—) . (B.3)
w, A

This determines the position of the pole, and thus identifies

w? (1‘&)2
e p=2n5|—]) . 4
v nl" np " (B.4)

We shall assume this identification in the following formulas. We have:
Ky=———F— (B.5)

Equating (B.2) and (B.5) we have

b=0, (B.6)

1

Ca=-—n. (B.7)
8x

Similarly, the two point function that couples to 4, A, is (Fig. 3)

Ay Ay Ag A,

e N

Fig 3
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55 (B.8)
and
Ky=—4—— 5 (8.9)

The matching here simply confirms the result from the X, matching.

For Kg,, the corresponding two potnt functicn comes from ¢nly one diagram
(Fig %)

.......

Fig. 4
2 2
° “’qf - (B.10)
wl—vig
Maziching to
e’ 9 (B.11)
Kw=5nw¢-§2_vzqz .
we find
Ll (B.12)
2n H )
if we choose C > 0, then we have
m
=¢ | — (B.13)
¢ 2nhi

and

#
- f _ B.14)
a=enyf o — (

Our effective Lagrangian is thus fully determined.
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