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1. Introduction

String topology deals with algebraic structures on the homology of the free loop space of a manifold,

i.e. the space of continuous maps from S1 into the manifold. This area started when the loop product

was introduced in [MCDS] by M. Chas and D. Sullivan. This product is defined on the homology of

the free loop space of a manifold and encodes the geometric operations of intersecting submanifolds and

concatenating loops. Initially, it was hoped that the loop product might be able to distinguish between

different smooth structures on a manifold. However, in [CKS], it was shown that this structure is

homotopy invariant. Since then, a lot of work has been done. Recently, in [MGNH], the loop coproduct

was introduced by M. Goresky and N. Hingston. Contrary to the loop product, it is not homotopy

invariant in general, as was shown in [FN]. In fact, this structure distinguishes homotopy equivalent

non-homeomorphic 3-dimensional lens spaces ([NRW]).

In this work we study the loop product and coproduct in the simplest non-trivial spaces - the spheres.

These were the first examples studied ([CJY]). But, as far as the author knows, the loop coproduct had

only been partially computed in [NHNW]. Our computations rely on geometric descriptions of the loop

product and coproduct proved in [NHNW]. They have the advantage of being elementary in the sense

that they don’t use complicated machinery, such as spectral sequences.

2. Homology of LSn

In this section, we study the homology of the free loop space of the sphere, LSn = C(S1, Sn). Throughout
this text we’ll use [M] to denote the fundamental class of an oriented manifold M . And for an oriented

manifold with boundary (N,∂N), we’ll use [N,∂N] or simply [N] to denote its fundamental class. We

start by looking at the fiber bundle ΩSn ↪ LSn evÐ→ Sn, where ev denotes the evaluation of the loop

at t = 0. Let Dn
+
and Dn

−
be the northern and southern hemispheres of Sn, respectively. Furthermore,

let Ω+Sn and Ω−Sn be the based loop spaces at the North pole, N , and South pole, S, respectively.

Then, we may apply Mayer-Vietoris to trivializations ϕ± ∶ Dn
±
× Ω±Sn ≅ ev−1(Dn

±
). After an algebraic

simplification, we get the following long exact sequence, called the Wang sequence:

Theorem 2.1. The following sequence is exact:

H∗−(n−1)(Ω+Sn) H∗(Ω−Sn) H∗(LSn) H∗−n(Ω+Sn)tWang j∗ ∂Wang

Here, j denotes the inclusion and

∂Wang = prF ○ (ϕ−1
+
)∗∂M

tWang = proj∗ ○ (ϕ−1− ○ ϕ+)∗([Sn−1] × −)

where ∂M is the boundary map of the Mayer-Vietoris sequence associated with

{ev−1(Dn
+
), ev−1(Dn

−
)}, prF ∶ H∗(Sn−1 × Ω+Sn) → H∗−(n−1)(Ω+Sn) is the map sending 1 × x to 0 and
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[Sn−1] × x to x ∈ H∗−(n−1)(Ω+Sn). Moreover, proj ∶ Dn
−
×Ω−Sn → Ω−Sn is the projection on the second

component. Here, Sn−1 ⊂ Sn is the equator.

If we know H∗(Ω±Sn) and tWang, we can use this sequence to compute H∗(LSn). With that in mind,

let

σm
+
∶ (Sn−1)m → Ω+Sn

x↦ γ1 ⋅ γx1 ⋅ ... ⋅ γ1 ⋅ γxm

and

σm
−
∶ (Sn−1)m → Ω−Sn

x↦ γ1 ⋅ γx1
⋅ ... ⋅ γ1 ⋅ γxm

Here, γy with y ∈ Sn−1 is the unique geodesic from S to N that passes through y; (γ ↦ γ) is the path-

reversing map; and ((α,β) ↦ α ⋅β) denotes the concatenation of loops. Then, we may use techniques from

Morse-Bott theory (see [AO]) to conclude that {(σm
±
)∗[(Sn−1)m] ∣ m ≥ 0} together with any constant

map is a basis of H∗(Ω±Sn) as a free abelian group.

Proposition 2.2. Let αk
±
be (σk

±
)∗[(Sn−1)k] and let α0

+
(α0
−
) be the constant loop based at N (S). Then,

{αk
±
∶ k ≥ 0} is a basis of H∗(Ω±Sn).

Consequently, tWang is completely described by the homological effect of the maps proj ○(ϕ−1
−
○ϕ+)○(id×

σk
+
). And it can be computed by relating these maps with σk+1

−
. We then get the following results:

Proposition 2.3. For n odd,

tWang
∗

(αk
+
) = 0

For n even,

tWang
∗

(αk
+
) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 , if k is even

±2αk+1
−

, if k is odd

Finally, we conclude that

Theorem 2.4. Let n ≥ 3. If n is odd, then H∗(LSn) is non-trivial only for degrees k(n − 1) and

k(n − 1) + n, for k ≥ 0. The following sequences are exact for k ≥ 0:
0 Hk(n−1)(Ω−Sn)) Hk(n−1)(LSn)) 0

j∗

0 Hk(n−1)+n(LSn) Hk(n−1)(Ω+Sn) 0∂Wang

If n is even, then H∗(LSn) is non-trivial only for degrees k(n − 1) and 2k(n − 1) + n, for k ≥ 0. The

following sequences are exact for k ≥ 0:
0 H(2k+1)(n−1)(Ω−Sn)) H(2k+1)(n−1)(LSn)) 0

j∗

0
H(2k)(n−1)(Ω

−Sn
))

tWang(H(2k−1)(n−1)(Ω+Sn))
H(2k)(n−1)(LSn)) 0

j∗

0 H(2k)(n−1)+n(LSn) H(2k)(n−1)(Ω+Sn) 0∂Wang

Here,
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H(2k)(n−1)(Ω−Sn)
tWang(H(2k−1)(n−1)(Ω+Sn))

= Zα2k(n−1)
−

2Zα2k(n−1)
−

for k ≥ 1.

Consequently, for n ≥ 3 odd and m ≥ 4 even,

Hi(LSn) ≅

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z if i = k(n − 1), k ≥ 0

Z if i = k(n − 1) + n, k ≥ 0

0 otherwise

Hi(LSm) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z if i = 0

Z if i = (2k + 1)(m − 1), k ≥ 0
Z
2Z if i = (2k)(m − 1), k ≥ 1

Z if i = (2k)(m − 1) + n, k ≥ 0

0 otherwise

However, this is not enough to compute the loop product and coproduct geometrically. We need to

represent the generators in homology by closed manifolds. We have already determined part of the

manifold generators of H∗(LSn): those coming from the inclusion of the fiber, i.e., j∗(H∗(Ω−Sn)). For

the sake of consistency, we’ll consider the generators coming from H∗(Ω+Sn) instead of H∗(Ω−Sn). Note
that this choice makes no difference, since Ω+Sn and Ω−Sn are isotopic submanifolds of LSn.

The other generators we are missing are the ones that yield a generator of H∗(Ω+Sn), when we apply

∂Wang. Accordingly, we introduce the manifolds Yj and s∗Yj together with maps φj ∶ Yj → ΛSn and

s∗φj ∶ s∗Yj → ΛSn. It should be mentioned that the manifolds Yj and the maps φj were first introduced

in [AO] as completing manifolds of the Energy functional in the free loop space.

Definition 2.5. Let Y ∶= {(x, v, y) ∈ Rn+1 ×Rn+1 ×Rn+1 ∶ x ∈ Sn, v ∈ STSn
x , y ∈ v⊥ ∩ Sn} and

p ∶ Y →Sn

(x, v, y) ↦x

Consider as well the map φ ∶ Y → ΛSn that associates to each (x, v, y) the unique constant speed loop

with initial velocity in the direction of v that parametrizes the circle (x + spanR(v, y − x)) ∩ Sn, if y ≠ x.
If y = x, then φ(x, v, x) is the constant loop at x.

Figure 1. Manifold Y and map φ. Here γx,v denotes the unique geodesic starting from
x with initial velocity v and x∗ = −x. Figure from [AO].
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We know that p ∶ Y → Sn is a Sn−1 ×Sn−1-bundle and π ∶ Y → STSn is a Sn−1-bundle, where π(x, v, y) =
(x, v). We may then define its fibered product. Moreover, one easily extends the map φ to the fibered

product by concatenating the loops resulting from each fiber.

Definition 2.6.

Yk ∶= Y ×Sn ... ×Sn Y

k times. Moreover, pk ∶= p × ... × p k times. And,

φk ∶ Yk → LSn

(x,u1, y1, ..., un, yn) ↦ φ(x,u1, y1) ⋅ ... ⋅ φ(x,uk, yk)

When n is odd, one can choose a section s ∶ Sn → STSn. Hence we may pullback the previous fiber

bundles and make the following definition:

Definition 2.7. Let s∗Y ∶= {(x, y) ∶ x ∈ Sn, y ∈ s(x)⊥ ∩ Sn} and

s∗p ∶ s∗Y →Sn

(x, y) ↦x

Furthermore, let s∗φ(x, y) ∶= φ(x, s(x), y).

Similarly, we can extend these definitions to the fibered products:

Definition 2.8.

s∗Yk ∶= s∗Y ×Sn ... ×Sn s∗Y

k times. Moreover, s∗pk ∶= s∗p ×Sn ... ×Sn s∗p k times. And,

s∗φk ∶ s∗Yk → LSn

(x, y1, ..., yk) ↦ s∗φ(x, y1) ⋅ ... ⋅ s∗φ(x, yn)

Recalling the formula for ∂Wang, we can use the naturality of the Mayer-Vietoris sequence to get ∂M ○
(φj)∗ = (φj)∗ ○ ∂M . And when we apply ∂M to Yj we get the fundamental class of p−1j (Sn−1) ≅ Sn−1 ×
(Sn−1 ×Sn−1)j , when given the boundary orientation. Finally, when we apply prF we essentially remove

the first Sn−1 resulting in (φj)∗[p−1j (N)], i.e., the image via (φj)∗ of the fundamental class of the fiber

of Yj at the North pole. Then, the following holds:

Proposition 2.9. For n even,

∂Wang((φj)∗[Yj]) = (−1)jα2j
+
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And, for n odd,

∂Wang((s∗φj)∗[s∗Yj]) = −αj
+

Finally, we have a full description of the generators of H∗(LSn) as an abelian group:

Definition 2.10. Let am ∶= σm
+
[(Sn−1)m] for m ≥ 0. Let b0 = c∗[Sn], where c ∶ Sn → LSn is the constant

loop section. For n odd, let bm ∶= (s∗φm)∗[s∗Ym] for m ≥ 1.
For n even, let b2m ∶= (φm)∗[Ym] for m ≥ 1.

Theorem 2.11. For n odd, the homology of H∗(LSn) is generated (as an abelian group) by am and bm

for m ≥ 0. Moreover, the relative homology H∗(LSn, Sn) is generated by am and bm for m ≥ 1.
For n even, the homology of H∗(LSn) is generated by am and b2m for m ≥ 0. Furthermore, the relative

homology H∗(LSn, Sn) is generated by am and b2m for m ≥ 1.

3. Loop Product

The loop product is a binary operation on H∗(LM) that is derived from the intersection product of

the base space and the Pontryagin product (concatenation of loops) on the fibers. Indeed, the original

construction in [MCDS] tries to capture the following geometric idea: consider two families of loops

parametrized by a manifolds A and B, respectively, such that their basepoints intersect transversely;

then the loop product yields the a family of loops parametrized by the intersection of the basepoints,

where at each intersection point we concatenate the original loops.

Figure 2. Loop product of two families of loops whose basepoints are parametrized by
the dashed lines.

Recall that the intersection product on an oriented manifold M , usually defined using Poincaré duality,

may be expressed via the Thom isomorphism. Indeed, let A and B be two closed oriented submanifolds

that intersect transversally. Then the intersection product of their fundamental classes, [A] ⋅[B], is given
by the cap product of [A] with the Thom class of the normal bundle of B, τB ∩ [A] (see section 11 of

chapter VI of [GB]). Accordingly, in this section we give a definition of loop product (definition 3.2)

using a Thom-Pontryagin construction and present the geometric result from [NHNW] (proposition 3.3).

Then, we apply the latter to the generators ai and bj of the previous section to compute the loop product

in the case of spheres. But before introducing the loop product, we need the following definition.

Definition 3.1. Let (M,g) be a closed Riemannian manifold. Let UM be the tubular neighbourhood of

∆M ⊂M ×M defined as follows:
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UM ∶= {(x, y) ∈M ×M ∣ ∣x − y∣ < ϵ}

Moreover, let τM ∈ Hn(N(∆M),N(∆M) ∖∆M) ≅ Hn(UM , UM ∖∆M) be the Thom class of N(∆M),
when this vector bundle has the orientation making the following isomorphism orientation-preserving:

T (M ×M)∣∆M ≅ N(∆M)⊕T (∆M)

Here, ϵ > 0 is a constant smaller than the injectivity radius.

Now Let

ΛM ×M ΛM ∶= {(γ, η) ∈ ΛM ×ΛM ∣ γ(0) = η(0)}

and let UCS ∶= (ev × ev)−1(UM) = {(γ, η)∣ ∣γ(0) − η(0)∣ < ϵ}. Then there is a retraction RCS ∶ UCS →
ΛM ×M ΛM . Given (c, l) ∈ UCS , RCS(c, l) can be described as follows: it follows c from 0 to 1; then it

follows the minimal geodesic connecting c(0) and l(0); then it follows l from 0 to 1; and, finally, it follows

the minimal geodesic connecting l(0) and c(0). Now we can give the definition of the loop product.

Definition 3.2. Let τCS = (ev×ev)∗(τM). Then, the loop product of two homology classes x, y ∈H∗(LM),
denoted by x ∧Th y , is the defined as follows:

concat∗ ○ (RCS)∗(τCS ∩ exc(x × y))

Here exc denotes the excision isomorphism between (ΛM2,ΛM2∖ΛM ×M ΛM) and (UCS , UCS ∖ΛM ×M
ΛM), and concat denotes the concatenation of loops.

The geometric computation result of [NHNW] is the following:

Proposition 3.3. Assume an i-cycle a ∈Hi(ΛM) and a j-cycle b ∈Hj(ΛM) are represented by oriented

closed manifolds f1 ∶ Z1 → ΛM and f2 ∶ Z2 → ΛM . Suppose the maps ev○f1 ∶ Z1 →M and ev○f2 ∶ Z2 →M

are transverse. Then,

(f1)∗[Z1] ∧Th (f2)∗[Z2] = (f1 ∗ f2)∗[Z1 ×ev Z2]

Here,

(f1 ∗ f2) ∶ Z1 ×ev Z2 → ΛM

(x, y) ↦ concat(f1(x), f2(y))

and Z1×evZ2 ∶= (ev○f1×ev○f2)−1(∆(M)) ⊂ Z1×Z2 has the orientation making the following isomorphism

orientation-preserving:

T (Z1 ×Z2)Z1×evZ2 ≅ (ev ○ f1 × ev ○ f2)∗N(∆M)⊕T (Z1 ×ev Z2)
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Then, we can apply the previous result to express the loop product in terms of the generators ai

and bj of the previous section. The transversality condition is always satisfied, except in ai ∧Th aj =
(σi
+
)∗[(Sn−1)i] ∧Th (σj

+
)∗[(Sn−1)j]. In this case, we can change the basepoint of the map σj

+
. For in-

stance, let R be a small planar rotation such that R(N) ≠ N . Then ev○R○σj
+
≠ N = ev○σi

+
and R○σj

+
≃ σj
+
.

Consequently, ev ○σi
+
and ev ○R○σj

+
are transverse because they don’t intersect and, hence, ai∧Th aj = 0.

For the other cases, we observe that (Sn−1)i ×ev Yj = (Sn−1)i × p−1j (N) ≅ (Sn−1)i+2j ; Yi ×ev Yj = Yi+j ;

(Sn−1)i ×ev s∗Yj = (Sn−1)i × s∗p−1j (N) ≅ (Sn−1)i+j and s∗Yi ×ev s∗Yj = s∗Yi+j .

Theorem 3.4.

For n even,

● ai ∧Th aj = 0
● ai ∧Th b2j = (−1)jai+2j
● b2i ∧Th b2j = b2(i+j)

For n odd,

● ai ∧Th aj = 0
● ai ∧Th bj = −ai+j
● bi ∧Th bj = bi+j

4. Loop Coproduct

The loop coproduct is a coproduct on the relative homology of the free loop space, H∗(ΛM,M).
Geometrically this amounts to an operation taking H∗(ΛM,M) to H∗(ΛM ×ΛM,M ×ΛM ∪ΛM ×M),
obtained by cutting loops along their self-intersections with their base points. The relative homology

appears since we want to exclude the trivial self-intersections on constant loops. It is a more recent

construction that was introduced in [MGNH].

Figure 3. Loop coproduct of a family of loops whose basepoints are parametrized by
the dashed line.

Definition 4.1. Let F ∶= {(γ, s) ∈ ΛM × I ∣ γ(0) = γ(s)}. Then we define the map

cut ∶ F → ΛM ×ΛM

(γ, s) ↦ (γ[0,s], γ[s,1])

Now let eI be the following map:
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eI ∶ ΛM × I →M ×M

(γ, t) ↦ (γ(0), γ(t))

and let UGH ∶= e−1I (UM) = {(γ, s)∣ ∣γ(0) − γ(s)∣ < ϵ}. Then there is a retraction RGH ∶ UGH → F . Given

(c, s) ∈ UGH , RGH(c, s) can be described as follows: it follows c until time s; then goes from c(s) to
c(0) via the minimal geodesic connecting them; then goes from c(0) to c(s) via the minimal geodesic

connecting them; and finally it follows c from s until 1. Now we can give the definition of loop coproduct.

Definition 4.2. Let τGH = e∗I(τM) ∈Hn(UGH ,Fc) be its Thom class. Then, the loop coproduct, denoted

by ∨Th, is the degree 1 − n map on H∗(LM,M) that is defined as follows for a class x ∈H∗(LM,M):

cut∗ ○ (RGH)∗(τGH ∩ exc(x × I))

Here I ∈ H1([0,1],{0,1}) denotes the (relative) fundamental class of [0,1] and exc denotes the excision

isomorphism between (ΛM × I,Fc ∪M × I ∪ΛM × ∂I) and (UGH ,Fc ∪M × I ∪ΛM × ∂I).

The geometric computation result of [NHNW] is the following:

Proposition 4.3. Assume a relative k-cycle a ∈Hk(ΛM,M) is represented by an oriented manifold pair

f ∶ (Y,L) → (ΛM,M). Let YB ∶= L × I ∪ Y × ∂I and

E(f) ∶ (Y × I) ∖ YB →M ×M

(x, s) ↦ (f(x)(0), f(x)(s))

Suppose that E(f) is smooth and transverse to the diagonal map ∆ ∶M →M ×M .

Now let Y∆ ∶= E(f)−1(∆M) and Y∆ be its closure inside Y × I. There is a natural orientation on Y∆

induced by the isomorphism T(x,s)(Y × I) ≅ NE(f)(x,s)∆M⊕T(x,s)Y∆. Then,

∨Tha = (cut ○ (f × id))
∗
[Y∆]

I.e., ∨Tha is represented by Y∆ via cut ○ (f × id).

Contrary to the previous section, our manifold representatives don’t satisfy the transversality condition.

To overcome this challenge, we must suitably deform the maps. After this, we can apply the previous

geometric result to get the following:

Theorem 4.4.

∨Thai =
i−1

∑
k=2

(−1)(i+k+1)(n−1)ak−1 × ai−k

For n odd,

∨Thbj = −
j−1

∑
k=1

(bk−1 × aj−k + ak−1 × bj−k)

For n even,

∨Thb2j =
j−1

∑
k=1

((−1)j−k−1b2k × a2(j−k)−1 + (−1)ka2k−1 × b2(j−k))
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