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Introduction

I General area of geometric data analysis attempts to give
insight into data by imposing a geometry on it

I Sometimes very natural (physics), sometimes less so
(genomics)

I Value of geometry is that it allows us to organize and view
data more effectively, for better understanding

I Can obtain an idea of a reasonable layout or overview of the
data

I Sometimes all that is required is a qualitative overview
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Properties of Data Geometries

We Don’t Trust Large Distances

I In physics, distances have strong theoretical backing, and
should be viewed as reliable

I In biology or social sciences, distances are constructed using a
notion of similarity, but have no theoretical backing (e.g.
Jukes-Cantor distance between sequences)

I Means that small distances still represent similarity, but
comparison of long distances makes little sense
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I Both pairs are regarded as similar, but the strength of the
similarity as encoded by the distance may not be so significant

I Similarity more like a 0/1-valued quantity than R-valued
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I Distance measurements are noisy, as are the connections in
many graph models

I Requires stochastic geometric methods for study

I Methods of Coifman et al and others relevant here
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Topology

I To see that these pairs are “same” requires distortion of
distances, i.e. stretching and shrinking

I We do not permit “tearing”, i.e. distorting distances in a
discontinuous way

I How to make this precise?



Topology

I To see that these pairs are “same” requires distortion of
distances, i.e. stretching and shrinking

I We do not permit “tearing”, i.e. distorting distances in a
discontinuous way

I How to make this precise?



Topology

I To see that these pairs are “same” requires distortion of
distances, i.e. stretching and shrinking

I We do not permit “tearing”, i.e. distorting distances in a
discontinuous way

I How to make this precise?



Topology

I One would like to say that all non-zero distances in a metric
space are the same

I But, d(x , y) = 0 means x = y

I Idea: consider instead distances from points to subsets. Can
be zero.

This accomplishes the intuitive idea of permitting arbitrary
rescalings of distances while leaving “infinite nearness”intact.
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I Topology is the idealized form of what we want in dealing
with data, namely permitting arbitrary rescalings which vary
over the space

I Now must make versions of topological methods which are
“less idealized”

I Means in particular finding ways of tracking or summarizing
behavior as metrics are deformed or other parameters are
changed

I Ultimately means building in noise and uncertainty. This is in
the future - “statistical topology”.
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Persistent Homology

I Homology: crudest measure of topological properties

I For every space X and dimension k, constructs a vector space
Hk(X ) whose dimension (the k-th Betti number βk) is a
mathematically precise version of the intuitive notion of
counting “k-dimensional holes”

I Computed using linear algebraic methods, basically Smith
normal form

I β0 is a count of the number of connected components

I βi ’s form a signature which encodes topological information
about the shape
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Persistent Homology

β0 = 1, β1 = 2, β2 = 1, and βk = 0 for k ≥ 3



Persistent Homology

Question: For a point cloud X , can one infer the Betti
numbers of the space X from which it is sampled?



Persistent Homology - Čech Complex
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Č(X , ε) - involves a choice of a parameter ε (radius of the balls)

Points are connected if balls of radius ε around them overlap

Complex grows with ε
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Persistent Homology

I Obtain a diagram of vector spaces

· · · → Hi (Č(X , ε1))→ Hi (Č(X , ε2))→ Hi (Č(X , ε3))→ · · ·

when ε1 ≤ ε2 ≤ ε3 etc.

I Called persistence vector spaces

I Such diagrams can be classified by bar codes

I Analogue of dimension for ordinary vector spaces
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A segment indicates a basis element “born” at the left hand
endpoint and which dies at the right hand endpoint

Geometrically, means a loop which begins to exist (i.e. becomes
closed) at the left hand point and is filled in at the right hand
endpoint.
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Long segments correspond to “honest” geometric features in the
point cloud

Short segments correspond to “noise”

Look at an example.



Persistent Homology - Bar Codes

Interpretation:

Long segments correspond to “honest” geometric features in the
point cloud

Short segments correspond to “noise”

Look at an example.



Persistent Homology - Bar Codes

Interpretation:

Long segments correspond to “honest” geometric features in the
point cloud

Short segments correspond to “noise”

Look at an example.



Persistent Homology - Bar Codes

Interpretation:

Long segments correspond to “honest” geometric features in the
point cloud

Short segments correspond to “noise”

Look at an example.



Example: Natural Image Statistics

I Joint with V. de Silva, T. Ishkanov, A. Zomorodian

I An image taken by black and white digital camera can be
viewed as a vector, with one coordinate for each pixel

I Each pixel has a “gray scale” value, can be thought of as a
real number (in reality, takes one of 255 values)

I Typical camera uses tens of thousands of pixels, so images lie
in a very high dimensional space, call it pixel space, P
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I Lee-Mumford-Pedersen [LMP] study only high contrast
patches

I Collect c:a 4.5× 106 high contrast patches from a collection
of images obtained by van Hateren and van der Schaaf

I Normalize mean intensity by subtracting mean from each pixel
value to obtain patches with mean intensity = 0

I Puts data on an 8-dimensional hyperplane, ∼= R8
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point in S7 is “close” to a point in M

However, density of points varies a great deal from region to region

How to analyze?
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Example: Natural Image Statistics

5× 104 points, T = 25

One-dimensional barcode, suggests β1 = 5



Example: Natural Image Statistics

THREE CIRCLE MODEL



Example: Natural Image Statistics

THREE CIRCLE MODEL



Three Circle Model

Red and green circles do not touch, each touches black circle



Example: Natural Image Statistics

Does the data fit with this model?
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Example: Natural Image Statistics

IS THERE A TWO DIMENSIONAL SURFACE IN WHICH
THIS PICTURE FITS?



Example: Natural Image Statistics

4.5× 106 points, T = 10

Betti 0 = 1

Betti 1 = 2

Betti 2 = 1

Betti 0 = 1

Betti 1 = 2

Betti 2 = 1



Example: Natural Image Statistics

K - KLEIN BOTTLE
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Identification Space Model



Example: Natural Image Statistics

Three circles fit naturally inside K?
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Example: Natural Image Statistics
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Natural Image Statistics

Klein bottle makes sense in quadratic polynomials in two variables,
as polynomials which can be written as

f = q(λ(x))

where

1. q is single variable quadratic

2. λ is a linear functional

3.
∫
D f = 0

4.
∫
D f 2 = 1
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Can one obtain flexible topological mapping methods, with
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Miller-Reaven Diabetes Study, 1976
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Cell Cycle Microarray Data

Joint with M. Nicolau, Nagarajan, G. Singh
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Sections can be given an weighting depending on the length of I
for the vertices and depending on the length of I ∩ J for the edges.

Finding the high weight sections in the case of 1-D filters is
computationally tractable.
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I How can one adapt the technique to apply to qualitative
information, such as presence of loops or decompositions into
clusters?
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I Apply Hk to VR-complexes on each of these, get a diagram of
vector spaces of same shape

I If a family of homology classes “matches up” under induced
maps, then they are stable across samples
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To carry out analysis, one needs a classification of diagrams of
vector spaces of shape of upper row. Second row is shape for
ordinary persistence.
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Every diagram of this shape has a decomposition into a direct sum
of cyclic diagrams, i.e. diagrams which consist of either a
one-dimensional or a zero dimensional vector space.

Can therefore parametrize isomorphism classes by barcodes, just as
in the case of ordinary persistence.

Long intervals correspond to elements stable across samples, others
are artifacts.
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I Analysis of behavior of witness complexes under varying
choices of landmarks

This analysis is relevant and interesting even in zero dimensional
case, i.e. clustering.
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