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PREFACE V

 

A notion of equational theory is introduced; more general than

previous notions, equal in descriptive power to the essentially

algebraic theories of Freyd E51 , and hence to the logic of

left exact categories, we call the theories generalised algebraic.

The extra generality of these equational theories is achieved by

the introduction of sort structurasmore general than those usually

considered in that sorts may denote sets as is usual or else they may

denote families of sets, families of families of sets and the like.

This acceptance of variable types at the level of syntax (the idea

and the form of syntax is taken directly from Martin-Lof type theory)

makes the theories particularly suited to the description of the

structures that occur in category theory. The basic example being the

theory of categories, in which Ob appears as a sort to be interpreted

as a set where as Hom appears as a sort to be interpreted as a family

of sets indexed by Ob'X Ob. Hom(x,y) appears in the syntax as a

variable type.‘

The definition of the most general or algebraic semantics for

generalised algebraic theories necessitates the introduction of the

notion of a contextual category. 80 called because we shall see that

the objects of a contextual category should be thought of as contexts.

The theory of contextual categories is seen as an algebraic des-

cription of the structure imposed on certain classes of term and type

expressions by the operation of substitution of correctly typed terms for

variables. Now this is something one might also say of the theory of



(ii)

categories
. However the theory of contextual

categories
captures the

ucture of substitut
ion at work in a more general situation,

it is 6;

str

f substituti
on as found in the generalise

d algebraic

the struc
ture

0

es but not in algebraic
theories.

as found originally
in

theori

but not in theories of the typed A- calculus.

Martin-
Lof type theory

It is proved that the category of contextual
categories

is

e category of generalise
d algebraic

theories and

equival
ent to th

Thus we say that we have the most

equivalence
classes of interpretat

ions.

This result is a generalisa
tion of the

general possible
semantics.

licit in LawyereE‘d that the old syn

) and Lawyerew algebraic notion are
result imp

tactic notion of algebraic

theory (i.e. one sorted equational

both one and the same (i.e. equivalent
categories)

.

ped from the desire to develop the model theory

 

This thesis develo

of Martin-Lo!
type theory. The model theory rests on the notions of

generalised
algebraic theory and contextual

category.
It is only in

these terms that we can define the notion model of Martin-Lof
type

theory. We also give the definition
of model for a strengthened

this definitio
n can be reworked

version of Martin-Lof type theory,

We briefly-des
cribe a

e strengthen
ed version of Martin-Lof

type

The model theory of th

theory is a generalisat
ion of the well known corresponde

nce of the

typed }\rcalculus
with cartesian closed categories.
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CHAPTER 1

GENERALISED ALGEBRAIC THEORIES.______________________________

The purpose of this chapter is to describe and to formally

define the notion of generalised algebraic theory. It is hoped

that it will be clear from the description that (i) the notion is

a natural one formalising actual mathematical language and that

(ii) the notion is a simple generalisation of the notion of a many

sorted algebraic theory. Though (ii) tends to be obscured by the

form of the chosen syntax no doubt the choice is correct.

The formal definition is given in 31.6. Most of the material

that follows 51.6 is in preparation for Chapter Two, 51.8 is

partially in digression and partially to explain some of the

informal syntax that is used in the early sections of this Chapter.



1.2

1,1 Introduc
tion

The notion of generalised
algebraic theory is a generalisati

on

of the notion of many sorted algebraic theory in just the following

Whereas the sorts of a many sorted algebraic theory are

manner
.

constant types in the sense that they are to be interpreted
as sets the sort

of a generalised
algebraic theory need not all be constant types some

of them may be nominated to be variable types in which case they are to

be interpreted
as families of sets. The type or types on which the

of sorts, each with

(ii) a set of operator

else as a variable type varying in some way~

symbols, each with its argument types and its value type specified,

(iii) asset of axioms.

either between terms of the same possible varying type or else

between type expressions.

The theory of categories
is a good example. The sort symbols we

shall call Ob and Hom, the operator symbols id and o.

0b is a constant type. Hom is a symbol for a variable type

That is to say that if t1 and t2 are both

depending twice on Ob.

terms of type Ob then Hem (t1,t2) is a type. In particular if x and y

are both variables of type Ob then Rom (x,y) is a type.
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The operator symbol id has one argument type.name1y Ob.

The value type of id varies as the argument varies,for if x is

a variable of type Ob then id(x) is of type Hom(x,x).

Not all the argument types of o are constant. If x,y and z are

variables of type Ob, if “5a variable of type Hom(x,y) and if

g is a variable of type Hom(y,z).then o(f,g) is a term of type

Hom(x,z).

One way ofsetting up the syntax to deal with variables would

be to assume that for every type A we had a supply VA

of variables of type A . However this method would lead to

complications. Instead we assume just one set V of variables and

then repeatedly assign types to variables as required. In a

particular context the assertion or assumption that the Variable

x is of type A is written shorthand as XGA . More generally,

the assertion that an expression t is a term of type A will be

written as te A. If the term t has variables 3:1,...xn occuring

within, it then it will only make sense to assertt C-A under an

assumption that 5.....xn are variables of particular types. The

complete assertion will be of the form: if):1 is a variable of

type A1,... and if xn is a variable of type An then t is

a term of type A . This complete assertion we write shorthand

85 IleA1.X2EA2,..oXn€An

 

teA

or else as x16 A1,x2e 02,...xneAn : teA.
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Similarly x15 A1,...xne An
is used to assert that if x1 is a

A is a type

is a variable 'of type A n ,

 

a variable of type A1,... if xu

then A is a type.

These shorthands of the forms x16 A 1,."an A n

teA

we call rules. They serve to express

 

and A-lyoe
exnebn

 

A is a type

which expressions of a given language are well formed as terms or as

types. We work with these rules as units rather than with the

basic expressions.
For example, in the formal definition instead of

defining the notions of well formed term and well formed type

we define inductively
a set of rules. to be called the derivable rules,

 

which express the well formed types. the well formed terms their

types.

Instead of the

The axioms of a theory are also written as rules.

more usual Vxle A livxze A av'vxneb n’tl = t:2

we write xle A1,x2e A 2,...xneA n

____________
__———-—

‘I‘here again, we might just write t1 = t2, wheneVer x1e A1,...xne An.

For example the theory of categories
has as axioms the following:

o(id(x).f) = f, whenever x,y€-.Ob and feHom(x.y).

o(f,id(y)) = f, whenever x,y€0b and feHom(x,y).

o(o(f,g).h)
= o(f,o(g,h)),

whenever w.x.y,z€0b.
f€Hom(w,x),

g GHom(x,y) and hefiom(y,z).
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A theory is presented by specifiying the language and by listing

the axioms. The language is specified by listing the symbols

and by specifying the role that each symbol plays within the language

either as a sort symbol of some kind or as a particularly typed

operator symbol. The role that a symbol plays can always be specified

by way of the assertion of a single rule. In the case of a sort

symbol A there is a rule of the form x16 [51,...an A n that will

 

A(X1....xn) 18 a type

correctly specify over what types A is dependent. In the case of an

operator symbol 1’ a rule of the form xleA1,...xneA n suffices

 

will be. In either case we call the symbol the introductory rule

associated with the symbol.

For example the sort Horn of the theory of categories has

introductory rule x60b,y90b: Hom(x,y) is a type. The symbol id has

introductory rule erb : id(x) e Hom(x,x).

Finally, then, every theory is presented as a set of symbols each

with associated introductory rule and a set of axioms. -And of course

everything must be well formed, but we leave all that until we give the

formal definition in $1.6.

The theory of categories nWlooks like this:

Symbol. Introductory Rule.

Oh
0b is a type.

Hon: x,y e Ob : Hom(x,y) is a type.

° xtyvz 6 Oh, fEHom(x,y),geHom(y,z) : o(f,g)eHom(x,z).

id
erb : 1d(x)eHom(x.x).
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Axioms
.

o(id(x),f)
= f, whene

o(f,id(y)) = 1‘, whenever x,ye0b and

1.6

ver x,yeOb and f e Hom(x,y).

f e Hom(x,y).

o(o(f.g).h) = o(f.o(g,h)), whever w,x,y,z & Ob,

f e Hom(w,x),g e Hom(x,y) and h e Hom(y,z).

Whenever we speak of a model of a theory Kl

qualification
. then we shall mean a mode

is where type symbol

types are interpreted
as families of sets,

interpreted at operators and so on.

theories 1

preted as objects within a structure r

n algebraic structures. in which case type s

, without

1 in the usual sense, that

s are interpreted
as sets, symbols for families of

operator symbols are

Later we shall be interpretin
g

ymbols will be inter-

ather than as sets.
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l . 2 Examples of Theories

The first example is a theory which can be called the theory of

families of elements of families of sets:

smbol ' Introductorx Rule

A A is a type

B For xEA : B(x) is a type

b For xGA : b(x)eB(x)

Axioms - None

A model of this theory will consist of a set, a family indexed by

this set and a distinguished element of each set in this family; which

is to say that a model will consist of a set indexed family of

elements of a family of sets. We are not sure of the notation that

8m( (1)

 

Fig. l. - for every element a of the set Am we have i. a set BTW“)

and ii. an element bm (a) of the set Bm(a).
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If both m and m' are models of this theory then a

homomorphism
f : m——»m~‘ consists of a function

f ' Am—->Am
‘ and an Am - indexed family of functions fB

A .
|

such that for every aEAm, fB(a) : Em (a)——-*Bm (fA(a))

and ‘such that for every aEAm, fB(a)(bm (a)) = hm (fA(a)).

Alternatively
we can say that a homomorphism

consists of a

0

m and an operator fB such that for every

m‘
. .

(fA(a)) and satisfying

function fA :Am ——->A

ae Am for every be Bm (a) . fB(a,b)€ B

U

.

f (a.bm(a)) = hm (fA(a)), whenever ae Am. Now this means that there

between the m

the case). This theory of homomorphisms
can be presented as follows:

 

The theory of families of elements of families of sets in the language

<A,B,b> + the same theory in the language <A‘,B',h'> +

Sflbol . Introductogz
Rule

" 0 V
'

fA For 12A . fA(x)€A .

fB For xEA, for 3630:) : fB(x,y)€ B'(fA(x)).

Axiom.

fB(x.b(x)) s b'(fA(x)), whenever xeA.

An example similar to the first example we call the theory of

families of families of elements of families of families of sets:

Sflbol . Introducto
g Rule

A A is a type

B For 16A : 3(x) is a type

C For 16A, for yeB(x) : C(x.y) is a type

c For xGA. for yeB(x) : c(x.y)r."(,v.v
..

,_,_r_.-,,
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Axioms - None.

Suppose that m is a model of this theory. Then Am is a set.

For every element a of the set Am we have a set Bm (a) and for

every element b of the set Bm(a) we have a set Cm(a,b) and an

element crh(a,b) of the set CTn(a,b).

BM (03

.a ’

9

Now for every element a of A"‘, Xb.CTn(a,b) is

a Bm

G

O,

C

10

(FNMA

- indexed family of sets. Thus /\a./\b.Cm(a,b), ie. Cm,

is an AT“ - indexed family of families of sets. Similarly on“ is an

A"‘ - indexed family of families of elements.

Note that in the presentation of this theory no harm is done

if we replace the introductory rule for C by the rule:—

for xeA, for yGB(x) : C(y) is a type, this rule having the same

meaning as the given rule. The expression C(x,y) in the given rule depend:

explicitly on x and y. We say that the expression C(y) in the alternative

rule depends implicitly on x by virtue of its explicit dependence on y

and by virtue of the dependence of y on x. In the alternative version

of the theory we say that a variable has been omitted. This is one

way in which a theory may be informally presented. We use this method

and another in presenting the next theory - the theory of trees.
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The theory of trees has countably
many sort symbols, no operator

symbols and no axioms. However, we chose to write the theory informally

with just two sort symbols,
one of these symbols doing the work that in a

formal presentat
ion would be shared among countably

many distinct symbols.

Symbol
Introdu

ctog Rule

 

-
-

1

SI
61 is a type

s For x1651 : S(x1) is a type

s For x16 Srfor xaesbtl) : S(x2) is a type

i

o

0

l

S For x1e81,for
x268(x1),.

..for xne S(xn_1) : S(xn) is a type

0

0

.

Axioms - None.

nodes to x. In a formal

symbols 51.82.33,
... and the symbol Sn+1 would be introduce

d by the

me

' o. .XnE
e o exn_1)

/
/

S (x1....xn)
is a type

Q:

n+1
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We use the same methods in presenting the theory of functors

informally. The theory of functors consists of the theory of categories a

in the language <0b,Hom,id,o) + the theory of categories in the

language <Cb',Hom,id,o) (and at this point we have used the same

three symbols Hom,id and o in new roles) +

Subol. Introductog Rule

F For erb : F(x)€ 013'

F For x,ye Oh, for £6 Hom(x,y) : F(f)eHom(F(x),F(y))

Axioms.

F(id(x)) = id(F(x)), whenever erb.

F(o(f.g)) = o(F(f),F(g)), whenever x,y,z e0b,feHom(x,y) and geHom(y,z).

A model of this theory is Just a functor. The category of

models is the category Cate, which is to say that if F : C_,—~g

is a functor and if G : 2——>2' is a functor then a homomorphism from

F to G consists of a pair of functors <H,H'> such that H : 9—113

and H' : §'——-)2' and such that

commutes.
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The final example
is to indicate

one way of axiomati
sing the

union of a. family of types.

disj
oint

If U is a theory
which include

s a type symbol
A and a symbol

B for

an A—indexe
d family of types then U can be extended

by three operator

y model m
of U uniquely

extends
to a model of the

odel m
of the extended

theo

m and 1368‘“ (5)} , that is to say

way that i. ever

ry interpr
ets the

set 34a,b)\
aeA

f the family of sets interpre
ting B. The

Introdu
ctory Rule

 

51131501.

a B
21‘: B is a type

’

P1
For ze§B

: P1(z)eA

P2
For z EZAB : P2(z)eB(P1

(z))

Pr-
For 19A, for yeB(x) : Pt'(x,y)e

ZAB

Axioms

PP(Pl(z),
P2(z)) = 2, whenever

zéZAB.

P1(Pr(x.y
)) = x, whenever

x 6A and yEB(x).

P2(Pr(x,y)
) = y, whenever

x EA and yEB(x).

In future we might refer to an extensio
n of a theo

disjoint
unions of specifie

d families
of types.
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1. 3 Predicates as types

It is possible to introduce sort symbols into a generalised

algebraic theory and then axiomatise them in such a way as they are

effectively predicate symbols. In this way any theory of predicate

calculus all of whose axioms are of the form Vi(<plAcp2...Atpn-——~‘{/ ),

where 1,... (pa and 34’ are all atomic, can be expressed as

generalised algebraic. Let us call such an axiom a universal condition.

We do not work with relations directly but rather with their

characteristic families. If R is an n-ary relation on a set A then its

characteristic family is the family Aal. Asa.../\ an.P(a1....an),

where P(a1,...an) : {fl} if R(a1,...an) and P(a1,...an) = fl otherwise.

The following theory indicates how an neary predicate symbol may

be introduced into a theory. The given theory has as models just

characteristic families of n-ary relations on a set.

Sflbol. Introductory Rule

A A is a type

P For x1....xneA : P(x1,...xn) is a type

Axiom

y1 = ya, whenever x1"..an A and yl,y26 P(x1,...xn).
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A
M
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It remains to show how universal
conditions

may be expressed
as

neralised
algebraic.

We distinguis
h three forms that such a

ge

aka. The first case is when each of Q1....Qn
and \7V

conditi
on, might

t

stances of a predicate
other than the equality predicate.

can be expressed
merely by the introducti

on of a new ope

example the transitivi
ty of a binary predicate

P is expressed
by the introd-

symbol t by the rule 1- $0? X\sx1~,x3 é AwFOV

notion of a new operator

)EP(x1,x3).
The point is that

c-

_
O

y1_P(x1,x2)
and for yZCP(x2.x3)

. t(y1.y2

once P is interprete
d then t is interpreta

ble in at most one way and then

only in case the predicate is transitive.

The second case to consider is the case where each of £91,...(Pn
are

predicate
and is _-_ >_

of a predicate other than the equality

In this case VXUPI /\ ... («Spa—
a \IV)

instance of the equality predicate.

For example the anti-symmet
ry

can be expressed as an axiom of the theory.

y the axiom '.— X‘sxhwhen
ever

of a binary predicate P can be expressed b

x1,x2€-,A and yl EP(x1.x2) ,yze P(x2,x1).

as when one of the Epi's is an

Lastly we must consider the ca

inary predicate

instance of the equality predicate.
In this case a new b

6 added to the language and axiou‘iatise
d to be the equality predicate.

(Du—A Y)
can then be dealt with by one

s way in which the

must b

of the

The axiom VSKQIA ...

The following
theory indicates

th

first two cases.

a theory and axiomatise
d to be the

predicate
Eq can be added to

equality predicate.

"um.ymlw,
.»W.
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smbol. Introductorz Rule

 

A A is a type

Eq For x1,xaeA : Eq(x1,x2) is a type

r For 2: GA : r(x)e Eq(x,x)

Axioms

x2, whenever x1,x2 9A and yeEq(x1,x2).

One final example. The theory of a 1-1 function is the theory of

equality in the language (B,Eq,r) +

S be]. . Introducto Rule
L

———_L_

>
A Aisatype

f FoerA:f(x)€B.

Axioms

x1 = x2, whenever x1,x2e A and yGEq(f(xl),f(x2)).
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1.’+ Essentially Algebraic Theories and Categories with Finite L s

The essentially algebraic theories of Freyd Y. S 1 can be seen

at less

to have the same descriptive power as generalised algebraic theories,

as far as the usual set valued models are concerned. In this section

we look at the relationship between these two notions and also at the

relationship between essentially algebraic theories and categories with

all finite limits. In the next section we point out the way in which

generalised algebraic is a more general notion than essentially algebraic.

Essentially algebraic theories are introduced and very briefly discussed

in Freyd [51 ; they are many sorted partial algebraic theories such

that the domain of every partial operation is specified

as the extension of some conjunction of identities between terms compo

 

from previously introduced operators.

has two sorts, Oh and morph, three total operations, dom : Morph«———»Ob.

cod : Horph————v0b and id : Ob-———+Morph, and one binary partial operation

0 form Morph x Morph to Morph whose domain is specified by asserting

that o(x.y) is defined if! cod(x) = dom(y).

In order to write an essentially algebraic theory as generalised

algebraic. all the equality predicates used in defining domains of

partial operations must be introduced. For example if f is to be a

partial C-valued function defined on ixeA \ t1 = t2} , where

for xeA : t e B and for xGA : tch, then the equality predicate on B

1

Then I can be introduced by 6;
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the rule for xéA, for ye Eq(t1,t2) : f(x,y)ec.

In this way every essentially algebraic theory can be rewritten

as generalised algebraic. The converse is also the case, at least

in so far as that to every generalised algebraic theory there

corresponds an essentially algebraic theory with the same category

of models. This is the case because of the equivalence between

A-indexed families of sets and morphisms in the category get with codomain

A. This equivalence holds for any set A and is given by the following

1. If {B(a)la€A} is an A-indexed family of sets then proj :

ClB(a)-—-*A is a morphism of get with codomain A (remember that

030;) = i<a,b>| aeA,beB(a)§ ) .

2. If f : A'————+A is a map in §2£ with codomain A then {- f-1(a)) a‘éA.}

is an A-indexed family of sets.

l.and 2.establish an isomorphism between the class of A-indexed families

of sets and the class of functions with codomain A. Thus. if in a

generalised algebraic theory there is a sort symbol B introduced

as an A-indexed family of types then in the corresponding essentially

algebraic theory there is introduced a new sort symbol A' and a map

P : A'————~A.

The notion of an essentially algebraic theory can be seen as a

notion of type theory in which the only type forming principles are

for the formation of product types and for the formation of types of the

form ixeAI t1 = tag , were A is a type and t1 and t2 are terms

of the same type. Now if we think of the objects of an arbitrary category.
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of U is equivalent to the category LEX(C(U),Set)

1.18

les is just to have finite

en to have these two type forming princip

’

and

as types “1

ate and equalisers of pairs. Since a category with finite productsc: a

prod“

equalisers of pairs is precisely a category with finite limits, the

In fact for every essentially algebraic theory U there is a

category with finite limits C(U) such that the category of models

of all finite limit preserv-

ing functors from C(U) to Set. with all natural transformatio
ns between

them as morphisms
.

This is the content of a remark made by Lawvere, pages 8-9 of

Lawvere [17]. though the remark does not actually use the term

 

essentially
algebraic.
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1.5 The Extra Generality of the Algebraic Semantics

One of the advantages of generalised algebraic over essentially

algebraic is to be found in the syntax particularly with regard to

the presentation of theories. In presenting theories as essentially

algebraic there is a coding process in that, in general, families

of sets indexed by a set are represented by functions with codomain

that set. On the otherhand in presenting a theory as generalised

algebraic there need be no such coding. This distinction whereby

families in a generalised algebraic theory can have a life of their

own goes through into the algebraic semantics. The algebraic semantics

of generalised algebraic theories is more general than any possible

such semantics for essentially algebraic theories. There are

elements that are there to interpret functions with codomain. This

can never be the case with essentially algebraic theories because already in

the syntax families of types are coded as functions with codomain.

The notion of type is adequately captured by the notion of

object of category. However having decided to think of the objects of a

particular category fi_as types and in particular having decided to

think of an actual object A of.§.as a type then it is incorrect tixen

to suppose that the notion of A-indexed family of types should always

be taken to be the notion morphism of §.with codomain A. This is just

one possibility. In general, there will be other possibilities some
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e more attractive.
The example that we have in mind <:

of which may b

§_is taken to be the category C2: of all (small) categories.

15 when

Now the questio
n is what

5? In particular if A is a category then what shall we

0 f cateeorie

Well, what we would like

mean by an A—indexed
family of categorie

s?

This is not the same as

odomain A. The idea that a

family of categories
indexed by the category A should just be a

categogy of all (small)

Af——§Cg£ arises because there is a

e ories just as the fact that there is a class U of all sets (= small

933.5...
—

.

xed by a set A

o the definition
of a family of sets inde

functo
r B:

A functor B:§-—->Cat
can be thought of as a structure

of the general

kind (for example take sort symbols ObA. HomA, ObB and HomB introduced
by

for erbAzOb ‘ x)

by rules ObA is a type; for x,ye0bA:Hom
A(x.y) is a type;

is a type; for x.éObA, for y,z EObB(x):Hom
B(x.y.z) is a type). It

ed families of

follows that there is a category of category index

categories
and structure

preserving
homomorphi

sms (it turns out that a

§—>Cat
to B. :A'——'>Cat

is describabl
e just as

a pair F,N wnere F:-A_——>§l
is a functor and NzB—éFoB'

-is a natural

homomorphism
from B:

transformat
ion). But now there follows the notion of a category

indexed family 0

cries. This

procedure can be iterated. We get a hu

category indexed families of categories.
category indexed families of

0 on. It is a structure

category indexed families of categories
and s

theories
can be interpret

ed - by

into which generalised algebraic
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interpreting types as categories, type indexed families of types

as category indexed families of categories and so on.

A model of the theory of families of elements of families of sets

in this structure will consist of category A, a functor B:A——>9it,,

for each aE|A‘, an object b(a) of 3(3) and for each f:a———>a‘ in A, a

morphism b(f): B(f)(b(a))—>b(a’) in B(a’). Such t': :t b(id(a))=id(b(a”.fc

all objects a of A andsuch that ‘B(f’)(b(f))ob(7f’) = b(fof’), whenever

y—fé—fL). in A .
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1.6 The Formal Definition

We must insist that the introductory rule for a symbol into 6:

into a language be well formed. In order that we “may say what

it is for a rule to be well formed we require a notion of derivability.

since the notion of derivability depends upon the introductory rules there

is a difficulty in giving the formal definition.

The difficulty is that we need knowledge of the derived rules of a

theory when we are still in the process of defining the possible

languages in which the theory'wnag be written. We chooseto overcome the

difficulty by leaving aside the question of wellformedness until we have

available the complete set of derived rules of the theory. For this

reason the theories that are admitted by the definition below may not be

well formed; we call them pretheories and accept that they might make

little sense. Later we shall define a theory to be a well formed

 

pretheory.

We assume throughout that we have a set v of variables which

has countably man distinct members. We begin by giving a definition

‘
4

of rule, more precisely a definition of rule of the alphabet W. The

definition is crude in that most of the permitted rules are

meaningless in all circumstances; it does suffice, though, for the

purpose of turning rules into objects. Suppose then that W is a

set. We consider the set W to be an alphabet and its elements to be

Symbols. The following definition is relative to W(and, of course,

it is relative to the set of variables V, but V will remain fixed

throughout).
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The set of expressions is defined inductively in such a way that

every expression is a finite sequence of elements of vaUiflUfflUf ,3

by the clauses: 1. If xEV then x is an expression. 2. If Lew then L

is an expression. 3. If Lew and el,...en are expressions then

L(el,...en) is an expression.

A premise is defined to be any finite sequence of elements of

Vx the set of expressions. The empty sequence is included as a

premise. called funnin enough, the empty premise. The premise

determined by (03. A1)....(xn, Ann is written as xleA1,...xneAn.

A T-conclusion is determined by a single expressionA and is written

‘

as A is a type'.

An €-conc1usion is determined by a pair of expressions

(t.A) and is written as'teA'.

(A. (X) and is written ae.A=A”.

An 6 =-conclusion is determined by a triple of expressions

(t,t’ , A) and is written as'tzt’ 6A..

A rule is determined by a premise P and a conclusion C and is

written as 2. A rule is said to be a T-rule, an é-rule, a T=ru1e or

an €=rule according as to the form of its conclusion.

If A.t:l,...tn are expressions and if x1"..xn are distinct

variables then the expression Aftl'fi,...tnlxn] is that expression

which results from simultaneously replacing every occurence of the
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in the expression A
by t1....tn. Please note that

variable
s x1....x

n

A[t1\x1,..
.tn\xn] and Attflxi

indeed AL tll 5&9le and Afiflxlu t

J ... [tn‘l xn] are not usually the same,

2‘3‘2]
are distin

ct whene
ver

x1 appears in A , x2 appears in t1 and t2 is distinct from x2.

We can now give the main definitions
.

Definition 1. A pretheog consists of l. a set S, called the set

2. A set Z called the set of operator symbols.

of sort symbols.

To each sort symbol A, an associated rule of the alphabet SUZ, called

3.

the introductory
rule for A

xlE Al' ' ' 'xne A n for

___________
——

A(x1,...xn)
15 a type

 

and of the form

an associated
rule of the

some n>:o. 1+. To each operator synlbol F.

alphabet sVz called the introductory rule for F and of the form

xle A1,...xn
eAn , for some n), o. 5. A set of axioms. Each axiom

__________
__———

F(x1,...xn) G A

is either a T=rule or an e=rule of the alphabet.

Taken together, definition 2(a) and 2(b) define the derived rules

of a pretheory.
The definition is of an inductive nature.

If U is a pretheory then(i) a context

XIGA1,...xn
e A n such that the rule xlEA 1"":Kn-1E

n-l

_________
____———

Definition 2(a).

f U. (ii) (a) The rule xle A 1....xngA n 15

____"___
———

A is a type

is a derived rule 0

wellformed
iff x1e A 1,...xueA n is a context. (b) The rule

is wellformed
1ff x16 A1,...xne

An is a derived

1,...XDQ
A n

__,_____.—
—————

t EA

A is a type

 

rule of U.



(d) The rule Lie A1""xne An

and X1€A1,...xne An

Definition 2(b).
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t=tl E A

are both derived rules of U.

t’EA

derivable by the' following Erincigles of derivatio .

LII.

LIZ.

LI}.

LIlh

LIS.

LI6.

L17.

T1.

CFl.

providing that xn+1 is a variable distinct from all of 1:1,...x

               

From P derive P .

A is a type
A= A

From P derive P .

t e A t=t e A

From P derive P ,

A1= A2 = A1

From p derive p .

From P and P derive P .

A1: A2 A2:
A = A

l 3

From P P
P .

t1=t26A and t2=t3€A derive tzl=t3 E A

From P and P derive P _

t1=t25 Al A1: A2 t1=t2 E A2

From P and P derive P .

A1: A2 1: e A1 te A2

For n>,o, 1S i(n+1 .

From x1e 131,...an An derive xleA 1,...xn+le A

 

A is a type
n+1

11

is wellformed iff x1e A1'°”"ne A n'

t e A

 

The set of derived rules of U is the set of rules
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CF2(a). For every sort symbol A with vellformed introductory
rule

, for every context P, from

 

A(x1....xn)
is a type

 

P ' f ’ "H
P

derive

tle A1 tZEAZ Ltl\ x2]
cue AnCt1\x1,..

.tn_1\xn_1]

p

_______
_—————-

——

A(t1....tn)
is a type.

CF2(b). For every operator symbol F with wellformed
introductor

y rule

ileAl....xn
eAn

F(X1,..
.xn5 E A

, for every context P,

  

from P ,
P ,.... and

P

tlé A1 tee A2[t1\xll
tneAnUl\x1,.

..tn_l\xn_]

derive
P

F(tlgeo
otn) e

fi'OOIt
n‘ In

ylefl1""5’
menm AHA Q

811. If Q is a context then from

5| =3: 6 DH

  

I

57551

0‘
Q

_______Q.
____———

51: a,
a. . . SM:

€
7| ,...Sm-¢ | Ym...) AQ’v‘va

VHSM‘ Y”'1:_(I£s.
\y“n

  

“ESL”...
YMESLN

“a
a

I I 3 hS. q s a to text “an Swm Sues/bf)" ,—_ (£51..

Q
I

Q
Jertve

$2? 51’. e 51 1LS‘H‘] 1 I H Sm= E SLM'LEHYHW Snag \‘l’u-t]

 

'
-Q

1

SY-Sl\ y1,...Sm‘
ym] :8, [511‘ y1,...Sm’

\ ym] Efltsl‘
y1,..,sm\

ym

A1. I! x1e 31....1 QA is an axiom than from

n n
________

_.___———
——

xle A1,...xné An

_______
___————

-—

A is a type

 



M
-
.
.
.
A
,
.

e.

X 6A
1 1,...xn6An

1.2?

A2. If He A1,...xné An is an axiom thenfrom

 

t=tl e A

teLX

Definition 3.

rules and axioms are vellformed.

Hellformed pretheory.

and xleA1,...xneAn

t’ 6A

derive xle A1,...xné An

t=t’ e A

A pretheory is wellfomed iff all of its introductory

A generalised algebraic theory; is a
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.

1.7 The Substitution
Lemma and Other Lemmas

C:

Each lemma in this section is needed at some later stage.

st of

For example the substitution lemma which asserts that the 5

derived rules of a theory is closed under the operation of the

substitution
of correctly typed terms for variables, is needed in

the definition of the category of generalised algebraic theories.

Substitution
could have been taken as one of the principles

of derivation; however to have done this would have hindered the

definitions by induction which surround the semantics. Compare with

Lambek [,lQ] , though of course the problem is Gentzens.

It is assumed throughout thntU is some generalised algebraic theory.

Let us say that a derived rule of U of the form ylefll....yme
flm

  

Conclusion

the substitution property iff for every context Q of U, whenever

$1.82....Sm are expressions such that Q . Q . o.-

sle {L1 szen2[51\ yll

and
Q

are all derived rules of U then

1
sue.ng 51‘ y1,...Sm_1\ ym_1

the rule
Q

is also a derived rule of U.

Conclusion [51\ yl....Sm‘ ym]

We aim to show that all derived rules of U have the substitution
property.

We need two preliminary lemmas.

is a derived rule of U then any

Lemma 1. HEAlgoo
oxneAn

  

Conclusion

e:

variables appearing in the conclusion occur among {.x1,...xn} .



-
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.
—
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Proof. By induction on the derivationof rules in .11. Look at each

 

principle of derivation in turn and see that it is impossible to use the

principle to derive a rule without this property from rules which

do have the property. This is very easy to see.

Lemma 2. (i) The premise of a derived rule is a context. (ii) If

x1 6A1....anAn is a context then for all i . 1 $15“, the rule

pxl E A1,...xi_le Aid. is a derived rule.

 

Ai is a type.

 

Proof. (i) is proved by induction on derivations. ‘- If each principle

of derivation is checked it will be seen that the premise of the derived

rule is either a context by hypothesis (CF2, SH and SI2). or is a

premise of a previously derived rule (LIl,...LI7, Tl, R1 and A2). or else

satisfies the conditions necessary to be a context (CFl).

(ii) follows from an iteration of (i). If x1e A1,...xne A n is

a context then x1 6 A1,...xn_1e An_1 is a derived rule. Hence

 

An is a type

by (i). x1 6A1....xn_1e An_1 is a context. Continue until you get

to x1e A1,...xie A1 is a context and x1 EA1"”xi-le Ai--l is a

 

Ai is a type.

derived rule.

The substitution lemma. Every derived rule of the theory U has the
m

substitution property.

Proof. The derived T=rules and e=rules of U have the substitution

 

property.because there are principles of derivation SIl andSIZ which

have just that effect.



The proof that '1‘ and esrules of U have the substituti
on property

is by induction
on derivation

s in U. It suffices to show that no

principle
of derivation

by which such rules are derived can be used

to derive a rule without the property from rules with the property

Thus we just have to check the principles
Tl. CF]. and CF2. 3. Suppose

that both yl e511,...y
meflm and ylefl1,...ym

e51m are derived rules

___________
-——————°-

A1: A2 I c 6A1

 

of U which have the substitutio
n property.

We must show that

y16fl1,...y
251m has the substitution

property. So suppose that for

each 5, 153531.
Q

is a derived rule of U.

AICSI‘ y.‘L,...Sm\
ym = AEESl‘yl..

..SmVL‘-"‘

and
g

t[51|y1,.
..5m‘ 3m] e A1[51|y1,

...sm\y 1

Thus. by an application
of T1, 80 is

______
_____3

___——/
’

t [51‘ y1,...sm\ ym] e A 2L31\y1....5m‘y
m3

Hence yl ES). 1 , . . .ym e 51m has the substitution
property.

________
__—————-

t e (32

CH. Suppose that He A1,...xné
An is a derived rule of U having

A

the substitutio
n property.

We must show that x15 A1,...xn+1
& A n+1

/

 

n+1 is a type

has the substitutio
n property.

So suppose that for each :1, i$j $n+1 ,

Q
‘ is a derived rule of U. By lemmas l

53.5 Ajfisll xl,...Sj_1‘
xj_1]

 

   

are derived rules of U.
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and 2, xj‘d....xn+1 do not occur in Aj. Hence

As. [sl \ L1,...sj_l\ x.-1] = Aj [51‘ fi,...sn+1\ x 3. Thus
J n+1

Q is a derived rule of U. Which is to say

Sie A1 le x1""sn+l‘ xn+l]

Q is a derived rule of U. Thus

(xie A1) Es1 x1""su+1I xn+1J

x1€:A'1""xu+le An+1 has the substitution property. CFZ (a).

 

xi 6. A1

(CF2(b) is very similar and we shall not bother checking it).

Suppose that A is a sort symbol of U introduced by the rule

XIEAlpuxne: An . Suppose that for each i, 1 S i S“ ,

 

A(x1,...xn) is a type

ylefl1.o--ymeflm

 

tie AXE t1\ x1....ti_l\ xi_1]

is a derived rule of U and has the substitution property. We must

show that ylefll,...ymeflm has the substitution property. So

A(tl,...tn) is a type

suppose that for each j, 1. S 3 4m , the rule Q

53- EQJLSl \-yl,...Sj_l\ arid]

is a derived rule of U. Then because for each i, i S i S“ ,

371 6511, .. .yme J‘lm has the substitution property and beacuse

 

t1i.e Aittl| x1""ti-1l xi-1] it follows from lemma 1 that

A1 ‘ 11,...ti_l| Xi‘lj [ y1,-..Sm‘

=AiLtl[sl| y1,...Sm| ym‘J ‘ x1....ti_1[ s1|y1....sm\ym]\xi_1],

so it is the case that for each i, 1sign ,
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______________
___Q_.’__—————

————————
_

\ yl’."
sm‘

e
ylgeoos

m‘ymllx
l,.. .

________
_______—

———-———-
_—‘

tip-1
y1,...Sm\

ym] \ X‘l]

is a derived rule of U. Thus, by an application of CF2(a), the

rule
Q

ylgooosm‘ ym] ,oootanl‘ 31’...sm‘ ym] is a type

is a derived rule of U. Which is to say that the rule

._____—
——-3——-

———‘—-—
" is a derived rule of U.

A(t1,...tn)Csl\ yl,...Sm\ ym] is a type

Thus yle fl 1, . . .ym eflm
has the substitution property.

 

A(t1.oootn)
is a. type

Corollarx. (Change of Variables) If x16 [51,...an An
is a derived

Conclusion

 

Conclusion [ yl x1....yn I xn

is a derived rule of U.

Proof. The proof is by induction on n. If n=o then there is nothing

 

to prove. If the result holds for n then it holds for n+1 as follows.

Suppose ‘xle A1,...xn+1& AM
I is a derived rule of U and suppose that

Conclusion

 

is a sequence of distinct variables. Then by lemma 2 the rule

5'1" ' "n+1

x16A1,...xne
An is a derived rule of {Luean £15 the inductive

A

hypothesis so to is the rule yle A1,...yneAnty1
\ 11....yn_1\xn_l¥

' .

___________
_____,—————

———-x

An+1[yl\x1,..
.yn\xn] is a type

 

n+1 is a type
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By applying CFl, the rule y16A1,...yn+1€ An+1[yl| Xlo-uyn ‘an

yie Ai[>'1\fiw-yi_1|xi-1]

 

is a derived rule of U, for each 1, IS is n+1. Therefore by the

substitution lemma and since xle-A1,...xn+1ea n+1 is a derived rule

Conclusion

Lyl‘xlqceeyn‘xn] 15of U we can conclude that yle’A1,...yn+1€ And.

 

Conclusion L yl\ x.‘|',...yn+1 I Xn+13

a derived rule of U. The result holds for n+1. Hence the result holds

for all n)o.

Lemma Every derived rule of a theory is Hellfomed.

 

Proof By induction on derivations in the theory U. We check each

 

principle in turn. showing that all rules derived from wellformed rules

are wellformed. LII-LI? and T1 are very easy to check. CFl. We must

show that if x1 6A1....xne An is a wellformed derived rule of U

An+1 is a type

and if xml is a variable distinct from x1....xn then for each i, 1s 15 n

the rule x1 6A1....xn+1€ And. is Hellformed. That is we must show

xie A1

.. ' ' f U.
that x1 6A1" xn+1 e An+l is a derived rule 0

A1 is a type

This is the case because, as above, for each 3'. 1S jS i, the rule

x1 5A1....xn+1£ Ann. is derivable and because by lemma 2. (11)

x

36 A3

the rule x1eA1,...xi_1e A i_1 is derived rule. USing the

A1 is a type

substitution lemma. the rule x16 A1,...xmle AMI is a derived rule.

A1 isatype
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CF’l(a). Follows innuediately from lemma 2. CF2(b), $11 and £2,

_____

Follow immediately
from the substitution

lemma. 5; and Ag. These

state that an axiom is a derived rule only if it is vellformed.

The Derivation Lemma. (a). Every derived T-rule of the theory U

is of the form yIEfllpuy
meflm for some sort symbol A of U

________
.——————-

—

A(tlgoootn)
15 a.

with introductory rule of the form x1e A1,...xne An
and for

_________
__———

A(x1,...
xn) 15 a type

some expressions
tl,...tn such that for each i, 15 is n, the rule

y1&fl1,...y
meflm

is derived rule of U. (1:) Every derived

’__________
_____'—-———

—

tie Ai[t1\ x1....ti_1\xi_1]

é-rule of U is either of the form ylefll....y
meflm for some

yjéfi.

isa

 

j, isj Sn, and for some A such that ylefl1,...yme
_flm

40.3' = A

derived rule of U, or else is of the form ylefll,...ym
eflm for

f(t1,...tn) 6 JL

  

some operator symbol f of U with introductory
rule of the form

C‘. A1, . . .xné. A
and for some expressions

t1. . . .tn, such

 

that for each i, isiSn, ylefll....ym
€_flm

is a derivad rule

_________
,_.__.———

4-

tie Ai[t1\ x1....ti_1lxi_1]

of U and such that y16fl1,...y
m€flm

is a derived rule of U.

A[t1\
xl,..

.tn\
Kn] =

(:1) Simply because the only principle of derivatio

e CF2(a).’ (b) The principes

(b).

 

Proof.

:1 that

enables us to derive T-r‘ules is principl

which allow us to derive E—rules are principles Tl, CH and CFZ
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If an Ei-rule is derived by CFl then it is immediately of the first of the

two forms stated above, if it is derived by CF2(b) then it is

immediately of the second form. It remains to consider the case of

an &.-ru1e derived by T1.

  

First suppose that a rule P is derived by T1 from P

   

t 6.9. 1: e57!

and P and also suppose that the-rule P is derived by T1

.11: 31’ t 6.9.,

from some P and P . In this situation the rule P

t‘ijly il'ajxu t 6 J1

could have been derived directly by T1 from P and P ,

tell“ 11:11“

thus missing out a double application of T1. It follows that if a rule

P is derivable by an application of T1 then it is derivable by

ten

       

an application of T1 to some rules P and P such that the

t efl.’ ' 31:93

rule P is derivable by CFl or CF2(a). It then follows that

t 631’

P is of one of the two forms stated above.

1:651

Corollarx. If P and P are both derived rules of U then

I t 651 t efl’

so to is P o

 

I

Sl=$1

The next lemma might indicate an alternative inductive

definition of the notion of generalised algebraic theory.

If we say that U’ is a theory extending U then it is meant that all
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the introductory rules and axioms of U are included among the

introductory rules and axioms of U’. In particular every symbol of

U is a symbol of 0'.

An extension U’ of U is said to be a single extension of U if!

all of the introductory rules and axioms of U’ are well formed wrt U.

For example, the rule x16 A1,...an A n of U' is wellformed wrt

 

Aisatype

U iff x16A1,...xne An
15 a context of U.

If U’ is a theory extending the theory U then there exists

Lemma 2.

a sequence of theories U0, U1, Dawn"... such that for each i7: 0 .

U. is a simple extension of U. and such that U = U and U U = U].

1+1
1 o are i

Proof. U0 is defined to be U. 111+]. is defined to be the simple 7

extension of U1 given by all those symbols of U’ whose indroductory

rules are wellformed wrt Ui and all those axioms of U1 which are

wellformed wrt Hi. The only problem is to show that every symbol and

axiom of U1 is eventually in Ui for some i. 'vle just have to show that

every introductory rule and axiom of U‘ is wellformed wrt .Ui for some 1.

Suppose then that R is an introductory rule or an axiom of U]. Because

R is wellformed wrt U‘. it must be wellformed wrt some finite number k of

introductory rules and axioms of U'. We show by induction on k that R

is wellformed wrt Uk.

If K=o then R is wellformed wrt U=U°.

If Do Suppose S is one of those k introductory rules and axioms

from which R can be shown to be eellformed. In any derivation we only use
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an axiom or an introductory rule after it has been shown to be well

forned; in particular since S is used in showing that R is wellformed

there must be rules capable of showing that S is wellformed among the k

rules that can be used to show R is wellformed. Thus it can be shown

that S is wellforned from some number p of rules and axioms of U'

where p is strictly smaller than 1!. By the inductive hypothesis S

is wellformed wrt Up. Thus S is an introductory rule or an axiom of Uk.

This is the case for any of those k introductory rules and axioms of

U' which can be used to show that R is wellformed. Thus R is well

formed wrt Uk.

Lemma k. If XIEA1,...xne An and xleA1,...an;A n.ylefl1....yme flm

 

Ais a type Conclusion

are both derived rules of U, if z is a variable distinct from

)c1,...3<n.yl.".3!In then xleA1,...xneAn,zc—;fl,ylefll,...ymeflm

 

Conclusion

is a derived rule of U.

Proof. By induction on m. If me then from xleA1,...anAn

A is a type

we can derive XIEAIVUXHEADJQA -

 

xiéai

for each i, 1$ i £ n. Since xleA1,...xneAn is a derived

Conclusion

rule by the substitution lemma so too is x16 A1,...xne An.ZéA .

Conclusion

If m),o. Then since xleA1,...xnsAn,yle.§11,...ymeflm is a

context, x1 EAl,...xn€An,ylefll,...ym_le_flm_1 is a derived rule.

flu is a type
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is a derived rule. Thus HEA1,...
xn€An '

iéién,
and xle

A

derived rules. By the substitut
ion lemma

x16 A1,...xne An.z eAJlefllun
ymeDm

Conclusio
n

is a derived rule.
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1.8 Informal Syntax

There is a discrepancy between the syntax adopted in the formal

definition of 31.6 and the syntax used in informally presenting theories

in other sections. We say that we have a formal syntax and an informal

syntax. The informal syntax is the syntax that is used in practice.

In a particular case it provides an adequate and unambiguous language

for the description of the structure involved. Since the informal

syntax varies non uniformly from one particular theory to another it is

impossible to give a direct description of the informal syntax. In this

section we classify the discrepancies that occur between formal and informal.

We also state a general problem and provide a partial solution. In this

section we have in mind a very practical approach to mathematical syntax.

In the first place, the actual forms of the rules are of no

consequence. Thus the form that is used in the formal syntax, that

is x1e A1,...xne A n , has the advantage of alienation and is not

 

Conclusion

significantly different from any of the other forms which have to some

extent the advantage of naturality, forms such as

x16 A1,...xne A n: Conclusion,

for xle A lwfor x2e A a.... and for xne A n: Conclusion,

Conclusmn, whenever xle A 1.x2eA 2,...andxn¢e A n,

and such that, wherever possible, repetitions of expressions in the

premise are avoided by writing xk,xk+1....xk+ce A instead of

xkéA ""xluc6A '

There are two significant differences between the formal and

the informal. The first of these is the omission of some of the
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variables which would formally have to appear in the term that

and the subsequent
omission of terms (:

introduces a symbol into a theory,

from the argument places of the symbol as it appears in the derivad

rules of the theory. Thus in the theory of categories the term o(f,g)

occurs in the introductory rule for 0 instead of the term o(x,y,z.f,g);

the axioms differ accordingly.

informally one symbol can be made to do the work that several symbols

would have to do formally. As examples of symbols that have to do the work

e symbols

of several we have the symbol S of the theory of trees and th

id,o,Hom and F of the theory of functors (with reference to the

presentations of these theories in g1.2).

If we arbitrarily rewrite a formal theory by these two methods, e: I

that is if we omit certain variables from certain introductory rules,

altering the derived rules accordingly, and if we replace certain collections

of symbols by single symbols, then ambiguities may or may not arise.

There is ambiguity just when two formally distinct derived rules are

0“

rewritten as indentical, for this would mean that there waslinformal

rule which had two meanings. was ambiguous. So the problem is - in

what ways can we rewrite a given formal theory without ambiguities arisisng?

The answer is that it depends on the theory in question. The best

n that the omission

general answer that we can give consists of a conditio

of variables must respect if ambiguities are not to arise. This

condition objectifdesthe
dropping of the variables x,y,z from the term

adedness

of dropping f or g or both from this same term. Intuitively, o(f,g) <:

depends explicitly on f and g, 2 depends explicitly on x and on y
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because feHom(x,y). g depends explicitly on y and on 2 because

geHom(y,z), thus o(f,g) depends implicitly on all of the variables

x,y,z,f and s that occur in the premise of the introductory rule,

so that although the variables x,y and 2 no longer appear explicitly in

o(f,g) there is still an implicit dependence of o(f.g) on each of

x,y, and z. The condition on an introductory rule which is necessary

if ambiguities are not to arise is that all variables occuring in the

premise must occur implicitly in the conclusion. This condition we can

call the condition of implicit occurence. It is necessary but not

sufficient, as we shall show.

The definition of implicit occurence must be given inductively.

Suppose that P is the premise x1e A1,...xne An, suppose C is a

conclusion and that 1< is n, then we say that the variable

xi occurs implicitly in the conclusion C wrt the premise P

 

iff either xi actually occurs in C (in which case we also say xi occurs

explicitly) or if for some j>i, xi appears in A3. and x.j occurs implicitly

in C wrt P.

Lemma If ambiguity is not to coaur in an informal theory then

 

whenever L is a symbol introduced by the rule xleAl,...xne Anzc then each

of x1....:ucn must occur implicitly in C (the condition of implicit occurence).

Proof. Assume that we have a theory and an informal presentation of

 

that theory in which there is a symbol L introduced by a rule that does not

satisfy the condition of implicit occurence. We shall suppose that L is

an Operator symbol for if otherwise and L is a sort symbol then the argument

is the same. Suppose that “)1 and that lSj'iQ 31mg jrsuppose that L

is introduced by the rule x16A1,...xflé;Am:L(JI:J1,...xj )EA. We are

I”
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assuming that not all of x1,...xn oceur implicitly in

Lb:j ,...x3 )eA wrt the premise x1e A1,...xneAn
. we show that there '-

1 ?

are two derived rules which are distinct in the more formal syntax. that

is when L is introduced by xle A1,...xne An:L(x1....xn)
C-,A, but which

are indistinct in the informal syntax.

Let xl' flux; be a sequence of variables each one of which is

distinct from each one of x1....xn. Let J: ij ‘1,$ 35 h and x3

)eA} . Let y1,...yn be the

does not occur implicitly in Mar. ,...x.

J1 Jr

sequence of variables given by yj=xj if jeJ, yj=x3 if jéJ.

Suppose that j¢J and j’eJ, then x3. occurs implicitly in

s not occur in A ..

L(x. \oooxj )éA whereas xj, does not, hence xi, doe
J

31

Thus if j*J then Ajty1\ 11,...yj_1 \ xj_1] is Aj. Also note that

s not occur in A .

Afiyl‘ x1....yn\xn] 13A, since if jEJ then xj doe

By the change of variables lemma the rule

y1 6" Al' ' "yné A n[y1\x1""yn-l
‘ xn-l) :

By the preceeding paragraph this

L(yl.eo
oyn)

\x1.eeo

yn‘ In] is a derived rule.

rule is

just the rule a1....an:L(y1,.
..yn)eA, where a3 is xjeA‘j

when j¢J and a:l is xj eAjiyl\ x1....yj_1\ xj_] when-jEJ. By

lemma it of ‘31.? if we extend the premise of this rule by inserting the

clause xj eAj after the clauseaj whenever jEJ then the new rule is

still derivable. If we call this extended premise Q then the rule

Q: L(y1....yn)éA
is a derived rule.

Since Q is a context extending the context xleA1,...x
neAn and

using lemma 1+ of §l.7 we deduce that Q: L(x1,...xn)efl
is a deriVed ruli:
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Now Q=L(ylgoooyn)eA and Q:L(X1....xn)EA are distinct

since we have assumed J to be non empty. In the informal syntax

both these rules become Q:L(xj1,...xj )éA.

l'

Hence informally the rule Q:L(x31,...x:j )EA is ambiguous.
r

smbol Introductory Rule

A
A is a tyPEO

B For x6A:B(x) is a type.

C For xEA, for yEB(x):C(x,y) is a type.

D For yéB(a1), for z eC(al,y): Dual) "5 <1 {1599"

a1 aleA'

a2 aZEA.

Axioms.

B(al)=B(a2).

See. that in this theory the rules yéB( ):C( y) is a type.
a1 8‘1'

and yeB(al):C(a2,y) is a type are both derivable.

The theory might be rewritten informally by introducing the symbol

C by the rule for xéA, for yéB(x):C(y) is a type, clearly the

condition of implicit occurence is respected. However the two rules

yGB(a1):C(a1y) is a type and yéB(al):C(a2,y) is a type are rewritten

as the rule y€:8(al):c(y) 13 a type in this informal syntax.



Thus though the condition of implicit occurence is respected ambiguitx:

1 still arises.

We have included the symbol D in the theory to illustrate that

an ambiguous rule in a theory easily leads to an ambiguous theory.

informally the symbol D is now introduced by the rule for y éB(al), for z e

‘ . C(y):D(y.z) is a type; the formal theory can no longer be recovered from

t its informal presentation since this presentation could equally, well be the

informal presentation of the theory that differs from the given theory

in that the symbol D is introduced by the rule

for 3758(31). for zeC(az,y):D(y.z) is a type.
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all the other elements. If 9 is a tree and if A is a node of the

tree then we say that A69 , so confusing the tree with its set of

nodes. If we wish to assert that B is a node of the tree 9 and that B

succeeds A then we just say that A48 in 9 . The least node of 9 is alwa}

denoted 1. Thus if A is any node of the tree 9 distinct from 1 then

there exists a unique n>,o. there exists uniquely A1,...Au such

that 14 AIGAL... An<lA me .

We are interested in trees because for any theory U, the set

of contexts of U is structured as a tree. The least element of

the tree is the empty context . For any n)l the predecessor

of the node <x1e A1,...xneAn> is the node (x19 Al....xn_lé An_l>.

We wish to identify a large tree of sets, families of sets.

families of families of sets and so on. It looks as if we should call

it the family tree. But we won't. Anyway it is first necessary to

consider the notation that we use for families.
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If A is a set and if for every element aEA, 3(a) is a set.

then the corresponding
A-indexed family of sets is denoted

a

[\aéA.B(a) or just as >\a.B(a). Now suppose that in this situation

we also have a set C(a.b) for every aGA and for every héB(a). Now

if a is an element of A then Xb€B(a) .C(a,b) is a 3(a) indexed family

of sets. Thus (\aEA.}\ bC-B(a).c(a,b)
is an A-indexed family of

families of sets. We can continue in this way. The whole collection

structured as a (large) tree. We call it the tree of families. The

next thing to do is to turn the notation about. If Al is a set and

if A is an Al-indexed family of sets then we write A2(al) for the value

2

of the family at an element ale A1. We do the same for families of

families and so on. In general if 14A14 A2...4An4 A in the tree of

families then for any e165,... for any ane An(al....an_1), A(a1,...afl)

z

is a set.

Lastly we wish to be precise about the term operator. If

14A,...4An4A in the tree of families and if for any elem)...”

forany ane An(al,...an_1),
f(a.1,...an) e A(a1,...an) then we say that

Kale A1... Aane An.f(a1,...an) is an operator at A. Thus for any node

A of the tree of families there is a set of operators at A. If we

turn the notation about then we aluays write g(al,...an) for the

value of the operator g at arguments a1....an. If 10A1... AnQA

in the tree of families, if g is an operator at A then the status of

the operator g is given by the rule for every aléA1,... for every

ane An(al....an_1),
g(al,...an)é A(al,...an). For example if g

is a real live category then id is an operator whose status is given

by for every 36: ‘, C Q , id(a)€:Homc(a,a).
Alternively id is an

operator at /\a€: I .Homg(a.a).
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Now we return to the question of models of a theory.

first place it is the- derived rules of a theory that are interpreted

in a model. not the expressions. If U is a theory with model M and if

R is a derived T-rule of the theory, say xleA1.---Xne A n
3R

Ais a type

if we let Ri be the rule XIEA1,...xi_l€Ai_l , whenever 1 $15“ ‘

rule superscripted bym.
m

Then R1 is a set, Ram is an le- indexed

family of sets and general 141311114 Ram... anmO Rmin the tree of

families.

Further if Rt is a derived rule. of U of the form :1 6A1”..an Ax

te'A

t by the model M is an

 

then the interpretation Rtm of the rule R

operator at Rm.

We note that if M and H, are both models of U and if f: M—>M’ is a

homomorphism then for every derived rule R of U

xl 6A1....xne An

\

A is a type

of the form

there is an operator fR whose status is given

by for aléle....for anEan

fR(a1‘,...'an,a) e Rm’(fR1(a),...f

 

it is the case that for all ale R1“.... for all ané an(al,...an_l).

m
m’fR(a-1,ooo‘n. (algoooin)) = (fR1(al),...fRn(al,-..an))- In

fact if this condition holds for all F(xl,...xn), 1“ an operator symbol 9

then it will hold for all t. The only requirement of a homomorphism that
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XleAlp.J
nEAni5

A=A' {*

n fR=fR, where R is the rule xlefllp
uxnefln

might appear unusual is the requirement
that whenever

 

a derived rule of U the

A is a type

d h R' ' h A: ,A

an were.
isterule

xle 1,.”an
n_

{sort symbols of 143.11 of operators
of the correct status and then

define the fR by induction ( in this notation fintrdductor
y rule

require just that the two conditions
mentioned

of L = {L}. And He

above are satisfied by the £12.

0 defined the notion reduces to the usual

With homomorphi
sm 5

universal conditiomé

model theoretic
notion in the special case of the

theories expressed as generalised
algebraic as in $1.3.
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1.10 A Short list of theories

theories of categories with finite products, cartesian closed

categories, categories with finite coproducts, monoidal categories,

closed categories, additive categories, U -categories for a given

algebraic theory I], groupoids, preorders, partial orders, lattices and

monads. Extending the theory of categories by just the_equality predicate

for morphisms, neW”operator symbols and new axioms are the theories of

categories with equalisers of pairs, categories with finite limits, abelian

categories and topoi.

Extending the theory of functors by just operator symbols and

axioms are the theories of natural transformations, adjoint pairs

and equivalences. In more diverse sort structures we have the theories

of n-categories for fixed a, multicategories, category valued presheaves

on an arbitrary category, category valued presheaves on a given category.

The theory of hyperdoctrines extends the theory of category valued

presheaves by operator symbols and axioms alone. Later we shall come

across the theory of contextual categories, a theory which extends the

theory of trees.



1.11 Interpretations 6:

The notion of an interpretation of one generalised algebraic theory in

another is defined in such a way that there is a category of

generalised algebraic theories and interpretations. It is worth noting

of the definition that the induction that occurs is on the expressions

of a language rather than on the derived rules and that as such the constr—

uction is very simple.

The alphabet in which a theory U is written we denote AU.

We assume throughout some fixed enumeration V , “é, V},..... of

the set V of variables. We do this because symbols Léflv are going to

be interpreted by expressions I(L) of a theory U'. We will wish to

know which free variables in the expression I(L) correspond to which é:f

argument places associated with L. The simplest way this can be done is

to assume the enumeration of V and then chose I(L) such that V1

corresponds to the first argument place of L. v2 to the second and so on.

We first define the notion of a preinterpretation and then go on to

eventually define an interpretation to be a well formed preinterpretation.

Definitions

A Preinterpretation I of the theory U in the theory U' consists just

of a function I: A‘f—-——>Expressions of U’.

If I is a preinterpretation of U in U' then define the function Izér

Expressions of U---€’Expressions of U' by induction (see the inductive”

definition of expression in §146) with the following clauses:
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If XEV the I(x) = x.

2, If LEAu then i(L) = I(L).

3, If LE Au and 91,... en are expressions then

i(L(el....°n)) = I<L>C i<e1)l v1....i(en) l vn].

.
A

If I is a preinterpretation of U in U' then define a function I:

Rules of U——>Ru1es of U' by:

1. xleI(A1)....xne imn)

H
>

  

(x16 A1,...xne An)

A is a type I(A) is a type

2.

 

xlEI(Bl),...xne HAD) .

i(t) e 1(1))

H
)

/
.
\

X
H

m D

H

§<
D

‘
1
‘

D

I
!

\
_
/ I
I

x16 I(Al)....xneI(An) .

1(1)) = 1(A')

  

x16 i(A1)....xne imn) .

 

I(t)=I(t')eI(A)

E
”

)

A

~5
1

D
D

I
l
l
:

9
.
:

3< m D

\
J

\
b
/ I

I

An interpretation I of U in U' is a preinterpretation I of U in

U' such that for all introductory rules and axioms r of U, I( r) is

a derived rule of U'.

If I is an interpretation of U in U' then for any derived rule

r ofU, I(r) is a derived rule of 0'. We prove this after proving a

preliminary lemma.

Lemma 1. If I is a preinterpretation of U in U' and if e and d1....d

are expressions of Au then
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I<e ylgeoodm‘
) =

ylgoooI(dm)
‘ ym] o

Proof. By induction on the length of the expression e.

1. If e = xEV then, if x = yi for some i. léiém, then

L.H.S = i(ei) = R.H.S., otherwise L.H.S. = x = R.H.S.

2. . If e = LEAU then L.H_.S. = I(L) = R.H.o.

3. If e = L(e1,...en) for some L EA“ and for some expressions

e].....en of Av then l(e[dl\ y1,...dm\ym] ) =

i(L(el[ dli yl,...dm tym] ,...en[.d1\ yl....dm\ ym] ) =

1<L)[i(eltdl\ y1,...dml ym'] )\ V1,...i(en[d1\y1,...dm } ym] > \, vn]

By the inductive hypothesis iCei[ dl\ yl,...dm\ ym] ) =

l(ei) [l(d1) \yl....l(dm) him] . Hence

i(e [d1\yl....dm\ym] ) = I(L)['I(e1) [ i(d1)\yl,...i(dm)\ym]
l ‘71....

i(en)[ m1) 1 yl,...i(dm)‘ym] | vn] = m)[i(e1)lvl,...i(en
)\vn]

[1(d1)\yl,...1(dm)‘ym
] = I(L(el,...en))[ i(d1)|y1....i(dm)\ym]

= fie”:i(d1)iyl,..
.i(dm)‘ym] . As' required.

Lemma 2. If I is an interpretatio
n of U in [1' then for every

 

derived rule r of U. £(r) is a derived rule of U'.

Proof. We wish to show that all derived rules 1' of U have the

 

property that’I‘(r) is derivable. We are given that the axioms have this

property so it suffices to show that the principles of derivation

transmit the property. That is we should check that each principle

of derivation when applied to rules with the property yields a rule

with the property. Principles LIL-7., T1. and CH. are incredibly
7’

easy to check. The principle CF2(b) is similar to the principle CF2(a)
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and also principle SR. is similar to principle $12.. In View

of this we just check CF2(a). and $12.

CF2(a). Suppose that A is a sort symbol of U introduced by the

rule xléA1,...xne An , and that for each i, l$i$n,\

A(xl....xn) is a type

ylefllu-oymeflm
is a derived rule of U. Also suppose that

’I‘
m

is a derivedrule of U'; We wish to show

\__

tie A1 [:11 x1....t _1|xi_1]

that ylefll,...ymeflm is a derived rule of U'.
~\

A( t1....tn) is a type

Since I is an interpretation, f (introductory rule for A) is a

derived rule of U'. That is » xle 1(A1)....xn€i(An)

x

i(A(x1,...xn)) is a type

is a derived

rule of U'.

I

mimxmi) (ml) I x1....I(tn) I xn]

This rule is a derived rule for each i,l$ iSn. Hence by the substitution

lemma the rule :116 i(fll),n-ym6 flflm)
is a derived rule of U

I(A(x1,...xn)) L I(tl)l x1....I(tn) ‘ xn]
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But i(A(xl,...xn)) = I(A)\-.x1\ qulolxn\ vn] , hence

i(A(xl,...xn))[1(t1)\x1,...i(tn)|xn] = an'mlH v1....I(tn)| v J

= i(A(t1,...tn)). So we have shown that (ylefll....ymeflm \)

A(t1,...tn) 15 a type

 

is a derived rule of U', as Lylefll,...ymeflm \) is by definition

A(t1,...tn) 15 a type

m) .oooym

I(A(t1,...tn)) 1.5 a type

  

_S_I_g. Suppose that xle A1,...xne An is a derived rule of U

t = t' e A

and that for each i,l$ is n, ylefll....ymeflm is a

ti=tieAiEti ‘x1"°'ti-1\xi-l] '

A

derived rule of U. Suppose that I applied to each of the rules yields a

derivable rule of U'.

\-_ -'I I\ \ _i( \

By definition Akxlefll’"°xn6An) xch‘L‘l”“‘xnC ‘An’

 

-

a

 

I

t = t' eA i(c)=i(t')e‘1<m

this latter rule then is a derived rule of U'.

By definition and Lemma 1., A yle'nl'°"ymeflm

I

 

= y16 I(S)’l)""ymemam)
. This latter rule

 

'I(ti) = I(ti)€-.I(Ai)[(ti) \x1,...I(ti:l)\xi_l-1

is derivable for each 1,1S ism.
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Hence using principle SIZ. (wrt.U'), the rule

yle I(fll),...ymE iUlm)

a
4 -

.
-

a -
n

-

I(t)[I(tl> \ x1....I(tn) l xnl = I(t') [1(t1') \x1,...I(tr'1\lxn] e I(A)[
R

I(tl') \ x1....I(tr'1) \ xn] is a derived rule of U'.

. and lemma 1.

By definition

this last rule is just

A ( ylefllpuymeflm
_

I\

‘t Ltll x1....tn i xn] = t'Eti ‘33....tr'1‘xn] e Attl' \xl,...tr'x{xn] .

A As required, this rule we have shown to be' derivable inU'.

If U,U' and U” are theories and I is a preinterpretation of U in U'

and I'is a preinterpretation of U' in U" then define I'oI to be the

preinterpretation of U in U" given by (I'oI) (L) = i'(I(L)), for all LEAU.

On the way to showing that there is a category of generalised algebraic

theories and interpretations we need the following lemma and corollaries.

 

Proof. By induction on the length of e.

1. . If e = er then (I'.oI)(e) = x =Ii'(l(e)).

‘2. If e = LEAUthen (I'oI)(L) = (I'oI)(L) = i-(Im) = mm».

3. If e = L(el,...en) then (Iv'ome) = (I'oI)(L)[ (Io'omelnvl.

...(I'oI)(en) I Vn] = I'(I(L))[ I'(I(el)) I V1,...I'(I(en)) ‘ Va] ,

by the inductive hypothesis, = i'(I(L)C l(e1)| V1,...i(en)l Vn] .

by lemma 1, = i'(f(L(el,...en)) = i'(i(e)). as required.
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Corollary 1* If I an I' are as above then for any derived rule r of(

(fins = him).

Corollary 5 If I is aninterpretation of U in U' and I' in an

interpretation of U' in U" then 101' is an interpretation of U in U".

We need some identity morphisms. _ If U is a theory define a

preinterpretation idU of U in U by:

1. If A is a sort symbol of U introduced by xlelll....xn'e An .

 

A(x1,...xn) is a type

then define idU(A) = A(vl,...Vn).

2. If f is an operator symbol of U introduced by le/fil,...xneA€ f,

 

f(xl,...xn) 6A

then = yes-v11).

l

ich is a preinterpretation of U in U which is quickly seen to

have the property that for all expressions e 05 AU idU(e) = e.

A.

Thus it has the property that for all rules r of U, idU(r) = r.

Hence id is an interpretation.

U

It is now clear that there is a category of generalised algebraic

theories and interpretations.

Any interpretation I:U——>U' induces a functor between the

>gilg. Any funct<

equivalent to I-alg, for some I, is said to be generalised algebraic.

 

categories of algebras, denoted I:alg: U'-alg
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m

l.

2.

If the theory U is included in the theory U'. that is if every

introductory rule and axiom of U is a derived rule of the theory 0'.

then there is a canonical interpretation of U in U'. The

corresponding algebraic functor for U'—alg to Hzglg is usually

called a forgetful functor.

If E and 2 are categories and F:§-—-——>2 is a functor then there

is an interpretation IP of the theory of category valued

presheaves on 2 into the theory of category valued presheaves on 2.

' r
I The induced generalised algebraic functor is the functor Cat :

:9 cf

Cat-I2 —9Cat9 .

The functor which takes an adjoint pair to the monad induced by

that adjoint pair is generalised algebraic. It is induced by

an interpretation of the theory of monads in the theory of adjoint

pairs.

The functor which takes a category valued presheaf on an

arbitrerjcategory to thgtotal category of its fibration is

generalised algebraic. However it is not induced by an interpretation

of the theory of categories into the theory of category valued

presheaves, as such. Rather it is induced by an interpretation

into the theory of category valued presheaves extended by

symbols for disjoint unions (one for objects, one for morphisms).

The extension of a theory by symbols for disjoint unions is

discussed in 51.2.
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1.12 Contexts amd Realisations
6:

Definition If <xleA1,...xneAn> and (ylefll....ymeflm >

 

are contexts of a theory U then arealisation of

<ylEJ-Llo0'0ymé 51m) "rt <x1e A1,...xneAn) is an m-tuple

<tl,...tm) such that for each j,l$j$m, xleAl....xneAn

 

tjefljit1\yl,...tj_1\ yj_13

is a derived rule of U.

If U is a generalised algebraic theory'then there is a category

R( U) of contexts and realisations of U. In R(U),

<tl,...tm) : (Heal....xne An‘)_><ylefll,...ymefim> iff

(t1,...tm) is a realisation of ylefll,...ymeflm> wrt

(x1e A1,...xneAn) . The identity morphism on an object t

<xleA1....xneAn> of
is the realisation (x1....xn) of i. V

(x1eA1,...xne=An> Hrt <x1e A1,...xnefln> . Composition in R_(\_))_

is defined by (t1....tm) o ($1,...SQ) =

(51(t1\ yr...th ym] ,...S [ tli yl....tm§ ym] ) , whenevar

(t1....tm§ : (x1e!) 1,...xneA?——-)<ylefll,...ymefl a? and

(31.000 3(ylefllwocymgflu?-——)<21€Al,...2QEAQ>in

The'set of objects of R(U). ie the set of contexts of U. is

structured as a tree with least element (the empty context) and with

(XIEAI,...xneAn) , n50. preceeded by <xleA1....xn_leAn_1) .

For any n,m)o and for any context

<X1EAlo-ooXnEAnlxn+leAn+looooxn+mEAnqqn> of U. <x1’...xn> is

\
. . - A A A;

a realisation of (x16 A1,...xneAn> vrt {x15 Lil,...xn+me[_\n+m) .

This map. <x1.---xn) = (x1 eAlunxmme/Amm) —————~—A>
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(xleAl,...xneAn‘) in R(U), is denoted p(<xleAl,...xn+me Anni).

 

<xle A1..-.xneAn> ). Thus for any A,B 6 RN) such that Aé B, the

morphism P(B,A) is defined and p(B,A): B—>A in R(U).

If A = <XIEA1,oooanAn> ‘ AI = <ylefll,...ymeflm>o

B = <ylefllwqm+qeflm+q> and if f = <tl,...tm> is a realisation

0f <yllell,-uymeflm>-wrt <xleAl....xneAn) . (in which case

B

i PULP“

9‘”H'

in R(W ) then-—

(L‘s-'3‘ >8

lpLBm')

H]

F '3

Pk P3,!“

 

XN
F

is a pullback diagram in R( ).
——

Where {'5 a (x16 A1,...xne A ngym+1€flm+1Etl ‘y1,...tm‘ y J

ym+QEflm+1Ltl| yl,...tm|ym] > and q(f,B) = <tl,...tm,ym+l,...ym+9>
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1.13 Intended identity of denotation
(:

We define an equivalence relation on the derived '1’ and é—rules of

a theory U which we call the equivalence relation of intended identity

The idea is that if r '-'- r' by this relation then any

of denotation.

kind of model of U should interpret r and r' as identical objects.

Semantically, we should not distinguish between the rule

I " c' l

xleA1,...xneAn
and the rule xl'e A1,...xn eAnL x1 \ :cl....xn__l\xn_1

___________
____.__————

——

A[x1'\x1,...xn' ‘an is a type

because the two rules only differ by the choice of variables. Neither

 

A is a type

‘ '

A I
I

should we distinguish between xle A1,...xne A n and x1691"..an An

  

A is a type A‘ is a type

if for each i,l< 1§ n, xlefll....xi_le Ai_1 is a derived rule and

I

131 ' Ai
é: ;

xleAl,...xneAn is a derived rule.

[Hy

  

The relation '5 , of intended identity of denotation, is defined

between T-rules of a theory U by xleA 1....xnefln ylefll,...ymeflm

Al

  

n+1 is a type flm+1 is a type

if! n = m and for each i,l$ i{n+1. xleA1,...xi_15Ai
_1 is a

Ai ylv"'xi_l\

 

derived rule of U.

N
i

Lemma 1. is a equivalence relation.

 

Proof.

 

l. ReflexiVeness follows from the principle of derivation L11.



1
-
-
A
“

a
.
-
1
.
“
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2. Symmetry. Suppose that x1e A1,...xneA n

A
fln+l is a type

we prOVe by induction on i that for all i.1s is n+1,

Ilefllu-qnefln

 

M
l

 

n+1 is a type

yleJtlIUOyi_l

If i = 1 then certainly J11 = A1 is derivable since A1 :51]. is.

Now if i)1 and if for all 3', 133(1, ylefll....yj_leflj_l

R
—

flj = |x1!°"yj_1‘ xj_l]

is derivable; then for all such J yIEfll....yj_leflj_l. yjejlj

x
x

x1!"'yj_l

is derivable. Hence for all such 3', ylefll,...yi_le_fli_l

x

yjeAJ-Lyl i xlv'OOyJ_l I xj_1]

is derivable. Since x

is derivable,

\

1": A 1"”"i—1e A1-1

A1 = fliEfi‘ ’1""“i-1‘ 1’1-1]

by the substitution lemma so is ylefl1,...yi_le_n_i_l

N

AiE y1l x1""3’1-1l xill] =11 i

is derivable as required. It

i-l]

follows by induction that yl e 311 , . . .ynEfl n Healungean

  

JLn+1 is a type Aml is a type



1.62

3. Transitivity. . Assume that x1 6A1....xne 0 n 3'1 Surly-“115617.,”

_fl_ ml is a type

  

And 18 a type

and ylenl'eeeymeflm

I1

216 [\1,...z
!é e

  

M
I

is a type [\Qd is a type

m+l

Suppose l S is n+1. 'w’e have seen above that for each j,l$j < i

x1e A 1""xi—le A i-l is a derived rule of U. From the

 

xjefljEXI‘ y1'l'°0xj_1\ Yj_l-)

substitution lemma and ylefllp ..yi_le S114
it follows that

 

‘Qi = Aii- y1 ‘ z1"“3’1-1l z1-1.}

x1e [31""xi—1e A 1-1

 

fliE-xl ‘ y1""xi-1 ‘ yi_l] =AiLy1| 21....yi_1 (214] L y1,...:<i_l\ yi_1:

15 a derived rule. That is xl 1....xi_l i_l

   

y1$"‘xi_1’ =A zl'.'.xi‘1ui';

is a derived rule. Since xléAl.-uxi_16 Ai_1

 

A1 = flav-"1‘ 3’1""xi-1 \ 31-1]

15 a derived rule it follows that xlefll,...xi_le Ai_l . 15 a

 

A1 =Ai[xl \ 21"”“1-1‘ 21-1]

derived rule. Since this is the case for each i.l£ i{n+1, it follmvs that

x16A 1"”anAn
zléAl'...zQ€AQ . "u‘hich completes the proof

-

.—

——

  

A is a type Ag”. is a type

n+1

that T: is a equivalence relation.

The equivalence relation '5 on T-rules can be used to define an

equivalence relation on contexts - simply by
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<X16Al'”.xnean> E <yle‘n‘1""ymefl'm> iff XleA1"°'xn-l€'An-l

 

An isatype

Hen 1"°‘-‘7m-1&flm-1 .

.0.

We define the equivalence relation 3.—l
H

 

m is a type

of intended identity of denotation on 6 -rules of a theory U by

XleA1""xneAn Ejllv-nYmEflm XléAlwnxneAn

   

l
l
l

   

tel) $6.31 disatype

yléfl 1"”yme'nm and xlie/31"")(nEAn is a derived rule

J1 is a type

of U. That 5 is an equivalence relation on 6 -rules of U is a

consequence of the following:

Lemma 2. If (Ll—E/lenxnefln) andl<ylefllnnymeflm> are

contexts of U and (x1eA1,...xne[_\n) E ylefll,...ymej-Lm> then for

all derived rules of U of the form yleJ21,...ym(:flm . the rule

 

Conclusion

x1e A1,...xneAn

a A is a derived rule of U.

Conclusion L x11 y1,...xn| ynJ

Proof. For each i,l€ ién, xleAl,...xi_leA i_l is a

 

(A = ‘ yll"'xi_ll

derived rule of U thus, by the substitution lemma, so is

XleAlgeooanAn

N

A1 =fliLxl| J’1"""i-1‘ J’1-13

. Since for each i.1< iSn ,

xleAl""xneL\-n is a derived rule of U then so is
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xléA 1"“anAn . Now by the substitution lemma, since

ff

yli‘°‘xi_ll

x1&A].‘”°xneAn
is a derived rule, lsi{n, and since

f—____.__——

xiéfliLxl‘ ’1'°”xi-1\ y1.1]

y15-5.)-1""ynej)'n is a derived rule then so is x1e A1,...xnefln

  

Conclusion
Conclusion [x1 \ yl. . . .xn \ x1] '

Corollarz E is an equivalence relation on the derived G-rules of U.

Proof.

 

1. Reflexiveneso follows from principle of derivation LI.2.

2. Symmetry. Suppose that xle-/_\l,...xnc_[)n ylefll....ynefl_n

  

tc—A sefl.

Then (x1913 1,...xneA n‘) '._':_< ylefll....ynefl_ n) so by lemma 2,

’3r‘5‘<11"°'yne;1 n is a derived rule of U.

tfyli xlm-yn I In] = SeAhll X-lwuyn l xn]

By wellformedness, since ylefllpuynefln and ylefllpnynejLn

 

S éfl- SEACyllxl,...yn\xn]

are derived rules of U so is yleJ’LlH-oynefln ' °

 

fl: yll x1....yn| xn]



Thus ylefll,...yn§_fln I is a derived rule of U and

 

s = t[_y1\x1,...yn\xn']é.n.

ylefllvoocynE-fln _: xleAl'...anAn

sefl
teA

  

3. Transitivity. Suppose that xléAl,...XnE/Jn ,_ ylefllnnyneil

.—

te[_\ sea

n

  

and ylefll....ynefln _ zleAl,...zneAn . Then

  

SefL r 6-.A

<X1€A1unxnéfln> E <3'lé4'11v-uynef2n‘) and

yléfl-l'"'yne Jln is a derived rule of U thus by lemma 2.

   

a derived rule of U. Since we also have that Xlé/lln..xnefln

 

t = SExl| y1,...;»:n\yn](;A

is a derived rule of U we can conclude that so to is

M

- . Thus fiéAlo-anEA

t=r[xl|zl,...xn‘zn]e[_\
teA

re/\

  

We define an equivalence relation E on realisations of U as follows.

If (131,...tm) 18 a realisation of ( yl efll,...ymgfl m>

wrt (xleAl,...xneA n) and if <ti,...tl;1) is a realisation of

<yl'efli.-uyr;lefll;>vrt {XiEAi....xééAé> then (t1,...tm> E

 



-
W
»
.
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<. ti,...tr;l> E < é'oooyéeflé > and

for each 3’, 15 34111, x1e A1,...xneAn

_____.___—_.
__—-————

y19"'tj_1

V I I l

xléJ’llyoe
eanfl n

 

l 1 ' I I

tjeflj Lt1|y1,...tj_1[yj_1]

Lemma 3. If <tl,...tm> is a realisation of (ylefll,...ymeflm>

wrt (x16 A1,...xneAn> and if (tiwutl; ) is a realisation of

(yieflipnyéeflé) wrt <xigAi....x£eA;1) and if (t1....tm) .3

(ti,...té) then (i) if ylefll....yme_flm and yiefli.u-y,;efl,;,

  

fl is a type J7; is a type

are derived rules of U 5J5. <y16fl1,...ymeflm.ye_fl>
g< yi 61%,."

yééflévy'ejl') then <x1eA1....xneAn.ye-_t
h1l yl....tm lym]> E

(xieAi,...xx'leA;l,y' 6
J1 ' [ti lyi,...tn'u HI; 3 . (ii) If

are derived rules of

y1e~'Q-1"":"me-Qm and yigfli....yéeflé

5 GJ). s'eJL'

 

U Sft. ylefllpuymeflm
is a derived rule of U then

 

s = s-[yl\ yi.---ym|y,;]€:fl

x'le‘nl'”'xneA n

#/
’d
‘

SEtll y1,...tm1ymv] = s'[ti\yi,...tl;| \y$][xl\xi,...xn\x;1
] C:

 

JIM: t1\ y1,...tm Him] is a derived rule of U.

  

Proof Since <tlv...tm> E (ti’°"t&1>i f°r eacb ‘1‘ 1‘ jsm'

xléAl,.nxneAn xiéai'°'.xneA£ '

tjeflj [t1\ y1,...tj_l\ yj_fl t3e QB [tii yl....tj_i [ yj_1'|
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That is for each j,l<jsm, xlefll....xneAn

t3. = t3[x11xi,...xn \xg] Eflj Ltllyfi...

tj_1} yj_l] is a derived rule of U. Now (i) follows immediately by

use of principle of derivation SIL. (ii) follows from 812. using

the fact that S' [yl l yl',...ym I ygljliti [x1 |xi,...xn ‘ iy1,...

tl;I[X1l xi,...xn|x£] ‘ ym] = S'Cti |y]'_,...tu'1|yl;l ][xl\ xi....xn\ x1; J .

Lemma 1+. (i) If (tl,...tm) is a realisation of (yledqlpnymefz m>

wrt <x1eAl,oocxneAn> (XleA1,...XneAn> E Ai’...

"mm
xr'leAX'I) and (ylejllpuymeflm> .3 (yiejlip..yglejlr;l >{there exists

a realisation <ti,...tx;l> of (yieflinuyéeflé) wrt (xi-6131,...

erAA‘) such that (tl,...tm> E < tinny).

(ii) If (xlefll,.uxneAn,xeA) iS a context of U and

(xlelll....xneA n) 5< xiedipnxl'leflr'i) then there exists /_\' 5,.t.

(xl'eAi,...x;1e 4;,x'eA'> is a context and <xiéfli,...xr'1eax'l,

X.éA'> E < IleAl.o-.Xn6An.xeA>o

 

Proof. For (i) take t3 = tj [xi] x1....xjil l xj_l] and then use

lemma 2. Similarly in (ii) take /_\' = ) X1....Xr'1 | xn] and use

lemma 2.

The following lemma follows directly from the 812 principle of

derivation.

Lemma .

‘ ' '

2 If (t1....tm+l) is a realisation of (ylefll,...ym+lefl mu



(ylé
51.1! ’ ° 'ymt

51. m)

on of

S l) is a realisat
i

<slfi
"'sm

> -_: (tlg
ooot

m> then
(51’.

.. m'tm+

"uxnelk
n) and (51,...s

m,tm+l)
E

(ylelew
-ymlefl m

1) wrt (xlebl

(t1....t
m+1~> .
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1.1h The Categorz GAT

We can define an equivalence relation 5 on the set of

interpretations of a. theory U in a theory U'. If I and J are

two such interpretations then define I E J iff for all

introductory rules R of U, I(R) E 3(R) in U'.

Lemma 1. If I an J are interpretations of U in U' and I E J then

A A

for all derived T and é-rules R of U, I(R) E J(R).

Proof. By induction on derivations in U. 'u'a‘e check that

 

principles Tl, CFl, CF2(a) and (b) preserve the property.

_’I_‘l_. Suppose that x16 A1,...xneAn and xleAl....xng- in

tefl A=A'

are derived rules of U and that A Heal....xnefln)

tea

(
.
1
) (xleAl,...xneAn .

t 60

Then x16 I(Al)....xne I(An) is a derived rule of U' and since

i(t) = J(t)e I'(/_\)

I is an interpretation, so is x1e i(/_\1),...xnei (An). Thus

im) = my)

x1e i<d1),...xn€ Mn) is a derived rule of U'. And as

in) = 3mg mm

<X16 i(Al),...xnei(An)> E (xle 3(A1),...xn€3(An)> is the case so

H
)

 

Hwy-mean E

tEA'
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CFl Suppose x1e A1,...xnefln is a derived rule of U and that

An”. 15 a type

c x1e A1,...xnefln K X1&A1,...xne An . Then

L .: I /

AN1 15 a type AMI is a type ‘

< x1e1(A1)....xn+lei(1§n+l)> E4 xlej(l31),...xn+1C—. 3mm» and

x16 MA l)""xn+lé I<An+l) is a derived rule of U', hence

 

Xi = XiC: i)

XIEA1'°'°xn+1e Ami xl€fl\l....x

l
H

 

CF2(b) (Principle CF2(a) will be similar). Suppose that f is

 

an operator symbol of U introduced by x16 A1,...xne An and

 

{(xl....xn)E (A

suppose that for each i,l$ién. y1€411....ymg5Lm
is a

 

tie [AiLtl \ xl,...ti_1\ acid]

derived rule of U. Suppose that for each i,1€is n,

/ -
, . q .q

yl€fl1,.o.ymen
m

2 jlb4_1.-ooymt4_
m

A

I

  

E J

\“ie A iL t1 l x1""‘1—1l x141) tie A iLtll x1"”t'1-1‘Xi—1

Using lemma 1 of 31.10 we see that for each i,l$ ién,

yIEILQ l\,. nymé ILflm)
.—

F.

 

1(ti)e 1(Ai) 1:1(t1) lxl,...I(ti_1)\ xi_l]

y1€J(Al)....ymC—_ 5mm) m L
.

. Also, since I

 

J(ti)eJ(Ai)LJ(tl)1x1....J(t1_1H xi_1]
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xlEi(A1).--oxnéi(/ln) x165(131)....xnej(lln) . In particular

 

i(f(x1....xn))C- im) 3(r(x1,...x1))egr(m

<i(t1),...i(tn)> is a realisation of (x16 i(Al),...xnei(An)>

wrt <y1e i(fl1),...yme I'(_$1m)) . <3(t1),...3(tn)) is a realisation of

<x1e J<A1),...xne 3mm» m <yle&(nl),...yme 3(flm)>ana

yle i<5Ll),;..yme imm)

I<f<x1,...xn))[1(tl)lxl,...r(tm;lxn] = J(f(x1,...xn))LJ(t1)\x1....

m

J(tn)lxn] €- J(A ) LJ(t1)\x1...J(tn)\xn] is derived rule of U'.

Using lemma 1 of €1.10, this rule is Just

1),...yme

n
u

. -
I(f(tl,...tm)) = J(f(tl,...tm))e I(A)Ltllxl,...tnlxn]

  

. Thus
:

'y en .n-y en1 1 m m
> E f ylefllw-Yméflm

) 3i
f(tlyuootm)e ALtllleOootn‘ xnj

f(t1,...tn)e.
x1....tn‘XT‘]

Corollarz 2 If I and J are interpretations of U in U' then I E J iff for

all derived e-rules R of U, f0?) 5 5‘02).

 

Proof. Use the fact that fiéAlnuxneAn is a derived rule of

 

A is a type

U iff xleA1,...xneAn.x EA is a derived rule of U. From

   

x EA

E<xlefll....xneAn.xe—A): 3 LleA 1,...xnefln,x 9A) we can deduce

x e A - x EA

 

that x1eA1,...xneA n) 53 (x1 9A1....xnc. An) .

A is a type
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3 If I and J are interpretati
ons of U in U' and I' and J'

Corollarz

are interpretati
ons of U' in U" then I E J and I' E J‘ implies

I'oI E J'oJ.

We denote the category of reneralised algebraic theories and

equivalence
classes of interpretati

ons by GAT. Composition
is defined

by [1'] o [I] =L'I'oI] . wen defined by corollary 3.
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CHAPTER 2 CONTEXTUAL CATEGORIES

2.1 Algebraic Semantics

In this chapter we show that there is a generalised algebraic

theory (the theory of contextual categories) whose category of models

(the category of contextual categories) is equivalent to the category.

952 of generalised algebraic theories and equivalence classes of

interpretations.

How do we interpret this result? Well, there are many other

examples of this very strong kind of relationship holding between an

algebraic notion of structure and a syntactic notion of theory. The

following list is by no means exhaustive:

Syntactic Notion
Algebraic Notion Reference

Propositional Theory

of classical logic. Boolean Algebra.

Propositional Theory

of Intuitionistic Logic. Heyting Algebra;

Single Sorted Algebraic _ Lauveres Notion of Lawvere [H]

or Equational Theory. an Algebraic Theory.

Equational Theory in the language Cartesian Closed

of the typed A-calculus. Category. Myers [it]

Theory of higher order

Intuitionistic Logic. Topos. Fourman Cl

Coherent Theory.
Grc thcndieck Site. Reyes C2?)



 

2.2

In all these cases there is definable the notion of a model of

a given theory in a given structure. In each case the category of

syntactic theories and equivalence classes of interpretations is

equivalent to the category of algebraic structures. This last

property is the important characterising property. It can lead to

the view that the theories in syntactic form should be dispensed with

entirely and the structures be given the title of theories.

This seems wasteful. It is to be preferred that we think of the

structures as providing a semantics for the theories, in fact, the

most general possible semantics. We shall call it the algebraic

semantics. Thus contextual categories are to provide us with the alf'

semantics of generalised algebraic theories.

In case it should be argued that what we have called the algebrai

semantics is really noneother than the interpretations of one theory i

considered as a notion of semantics; well we more or less agree, thong

perhaps it is only when such are considered as interpretations into

algebraic structures that they can be properly said to constitute a

notion of semantics. The important point here,though,is that struc+

do frequently appear quite independently of theories; thus the notion

of model is certainly enriched by the isomorphism between theories

and structures because theories which arise first as structures (being

defined by something like "the theory that corresponds to this here

structure") are usually theories which would not otherwise have occur:
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2.2 Definition and Examples

Definition. A contextual categorz consists of

l. A category 9 with terminal object 1.

2. A tree structure on the objects of 9 such that the

terminal object 1 is the unique least element of the tree.

3. For all A,B elg I such that A43 is morphism p(B):

B‘—€>A in g. This morphism will also be written just as

B———bA.

h. For all A,A' el 9! , for all f:A-—>A' in g, for all

B e|gl such that A'QB, an object PR of g and a morphism

q(f,B): f’B—>B such that A or'B and such that the

diagram

'PB cum) 8

\9 ’
E R

is a pullback diagram in 9.

Such that:

(I) For all A,B e l_c| such that A48, idA'B = a and

q(idA,B) = idB.

(II) Whenever

“T”? ”

in c; then (ff')‘B s f‘(f"B) and q(ff',B) = q(f,f"B)oq(f',B). 
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We shall see that the Objectsof a contextual category should be

thought of as contexts. Recall that a context is a sequence

<xle A1,...xne A n) such that the rule x16 A1,...xn_leAn_l :

An is a type is a derived rule and such that xn is a variable distinct

from each of x1....xn_1. The tree structure on the set of contexts of

a theory is easily seen. For n21, the predecessor of a context

< x1eA1,...xne An)
is the context (x19 A1,...xn_le And)

.

The empty context < > is the unique least element of the tree.

The morphisms of a contextual category should be thought of as

realisations.
Recall that a realisation of a context (ylefl1,...yme

:l m

with respect to the context (xleA 1,...xngA n) is just an m-tuple

(t1....tm> such that for each 3', 15:14 m. the rule xleAl,...xne
A n :

tjeflj [t1\ yl'.°°tj-l \ ’j-l] is a derived rule. Think of the morphism

f:A——)A' in a contextual category as being a realisation of the

context A' wrt the context A.

In i31.12 we defined the category 3311 of contexts and realisations

of a theory U, We could go on and show that for any theory U, the

category _R_(}_Jl with the pullback structure defined in 31.12 (actually

we defined more structure than was necessary) is a contextual category

But we do not need this construction. Rather we need the construction

of a contextual category (03) associated with a theory U as part of the

equivalence between contextual categories and generalised algebraic

theories. This category C(U) is a category of equivalence classes of

contexts and equivalence classes of realisations of 0. We shall describe

in some detail.

on

Recall that in 51.13 we defined an equivalence relation

derived T and Q-rules Of a theory U. This equivalence relation we call
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the equivalence relation of intended identity of denotation. We used

this equivalence relation in defining an equivalence relation E. on

contexts and realisations: (x16 A1.---Xne An> E {yleflluuym 64’2";

iff 3:16 A 1,...xn_le And

Ais a type
.0.

ylefll.--.ym_leflm_l . And if

 

I
”

m is a type

(1:1,...tm) is a realisation of (yleJQl,...ymeflm> wrt <x15 A1,...

An) and if (tl',...tm'> is a realisation of

(y 'efl' y -e "2 '> m < ’eA’ x -a' > then
1 l ’"' m J m x1 1"" 11C 11

(t1....tm> 7—; (tl',...tm'> iff for each j, :53 gm,

XIEAI..eeXne

-

L y1!"'tJ-_1 ‘

xl'e A1'9000xn'e An. @;
\
/

L
]

V N

{E<tlgoootm>] { <t19oootm> is a realisation of 1,00IymeJQmfi

Hrt < x1e A1,...xneA n>} . Hem is well defined just by lemma

4(1) of 31.13.

Whenever <t1,...tm) is a‘realisation of <ylefll,...ymefl m>

and whenever <81....SQ> is a realisation vrt (ylefll,...ymej2m>

then the composition in C(U) of C(tl....tm>] with [<Sl,...SQ )3

is defined by [01,...th o E<sl,...sq>] e [(slttll y1,-...tm[y

,...SQ[ tli y1,...tm \ me>J . Composition is Hell defined, this follows

from lemma 3(ii) of 31.13. The identity morphisms in C(U) are given

by id
= [<x1,...xn)] . Well definedness isC<x1eA1....xneA n>3

trivial.
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The objects of (C(U) are struCtured as a tree by taking the

predecessor of [<x1e A1,...xne An)] to be

[<x1e A1,...xn_1e /_\n_1)] . The tree structure is well defined

because by definition if (He A1,...xneA n) E. <X1'C- A1'9¢0~xn' 6: An':

_
_ u I I I

then A1,...Xn_1e An_1> :- < x1 6 1.0.xn_l é Arl-l)‘

[< >] is the least element of the tree.

-\:< >] is a terminal onject of (.(U) because by definition of

nomcw). Horn an) <c<x1eA1,...xne/3n‘>] . R >]) =

it< >1 \ < > is a realisation of <) wrt (xlefll,...xnefln)§

' < i? is a realisation of the

If A48 in (AU). say A = [< xle A1,...xneanfl and

B = [<X1G: A1,...an A 11,): (3A)] , then define p(B):B——>A by

x1’000xn)] e

If

A—fia’

in say A: Algeoox
neAn)~] ' A'=

t

B: Kylefllwuymeflm
qeflfl and f: [<tl....tm)] , then

define f‘B: C(xle A1,...xne/_\. nae 5?.[tll ylw-tm \ arm} >1 and

q(f,B)= [< t1....tm.y >] . f‘B is well defined, by lemma 3(1) of €1.13

Lemma. C (U) is a contextual category.

Proof. Firstly we must show that whenever
B
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in ((0) then the diagram

m cum» B

l l
R$

n,

f

is a pullback diagram in C(U).

So suppose that A: [< e A ,...x GA >] , B: [<y E5)."1 1 n n 1
10“'ym€“

. Suppose also that C is an

object of 6:(U) and that g:C—>A and g':C——->B in GNU) such

that the diagram

 

/

9%?"

1%}:?

commutes. Call this diagram (I). we can suppose that C: [< zle A

9 8: [<r1,-oorn)] ' 8': E<Sl,...Sm,S '

1.000

where

(1-1,...rn) is some realisation of (x1e [31,".an An > wrt

(zlEAIIOOOZQC‘. and <51,...Sm,3> is a realisation of

(Flefllm-ymeflm,yefl> wrt <zleA1..-.zqc—;AQ>.

We must show that there exists a unique h:C—>f‘B in GNU) such that

diagrams (II) and (III) both commute.

gag

'B\.——) B
(II)

W3” (III)

A

I claim that [<r1....rm,s )] is such anh.

commutes, [K t1 [I'll x

Since diagram (I)

1.00orn‘xnj ,oooterll x19‘00rn‘xn-J>.] —

[< $1....sm5] . Hence for all 3, ISjém,

  

is a derived r1“
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523,5) is a realisation of < ylefll....yme
flm,ye

S
x1....rn\

XII-l \yl....tm
[r1 (Kl....rn

\Xn-J‘ ym

is a derived rule of U. Hence (r1,...rn,S> is a realisation of

(xle Al.-.-xneAn.ye flit1\yl.u-tmlyml>
wrt

(zle1\l,...zqe[
\q> and thus [< r1....rn,S)J : c—->f'B in CLcU).

Setting h: [<r1,...rn,s
7] then (II) commutes because

[(rl,...rn,5 >1 0 [<x1....xn)]
= [(r1,...rn>]

and (III) commutes

because [<r1,...rn.S 7.] o L<t1....tm,y7] = [<tltr‘l\x1..urn
I

[< 51,...sm,s >3 . ' So

xn] ....tm[r;_ l x1....rn\ xn] ,S>

[4 r1....rm,S )1 is certainly such anh. To show that it is the unique

"’8 inL.
I‘iC

’;

 

suchk suppose now thath is an arbitrary morphism

(1(U) such that the diagrams(II) and (III) commute say h =

l:< rl'....rn',S' )] . Since (II) commutes,_ for each i, L<. ién, the

mile 2161\19000
3291\Q

is a derived rule of U. Since

 

_ v,

’

ri..ri C. r1! x1....ri_1 mid]

(III) commutes, the rule zlel\l,...z
qe [\Q

is a derived rule

,_________.___._

sas' e fllel 31....Sm \ ym]

of U. Hence k: t<r1‘,...rn',
s‘>] = [<rl,...rn,8 Z] . Which completes

the proof that

 

PB Cuffs) B

i 1

$ é
R_——F————)R’

is a pullback diagram in G. (U).

It remains to shew that the axioms (I) and (II) of the definition c

contextual category hold of the structure (1(U). ‘u‘en, it; is e343 to 5;
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1....xneAn,x eA>J then

n] =A . Similarly (III) holds because

‘ YI1"'tm

y19"'tml yml
SQ E t1 l yl,...tm| ymflzg], whenever (21$, [\1 ....zQEAQ.ze/\) is a

context and <51,...30 > is a realisation of (zleA

<yl€fllgoooymEflm> and

< y1€fl19-'°ym€.}2m> '

1.0.0206A2> “rt

1....tm > is a realisation of

collection of functions so it is that Pam is the structured collection

of operators. We must refer back to g 1.9 to the discussion of

operators and sets, families of sets, families of families of sets and so
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Composition in Pam is defined as follows. If ldAl...dAn 1

lasl... 48m and morn“!z in Egg and if < r1....fm):

An—-—>Bn. ( g1....gq3 zen—9
09 then the composition is given by

4 f1,..-fm)o<gl,.
..gg) =<h1,...\'\9), where for each R, 1$k$9,

kk is defined bykkhl,”.an)=gk(f
l(a.l,...an),...f

m(a1,...an)),

whenever ale A1,...ane An(a1,...an_l).

If 14A1.... QAnQA in Fan! then p(A):A‘——>An in Fan! is given by

p(A)= (hunkn)
, where for each i. [Sism ki is defined by

hi(al,...an,a) = ai, whenever aléA1,...aneAn(al
,...an__i) and

aeA(a1,...an). '

A '_Fm

If lQAl...(|An andlqnl...do
m<1u1 a... a“.

—

< f1....fm) :An-—-9Bm then (fl....fm) B 15 defined to be the famin

A Ala
A2(al)oo

oux fine An(al,o0
0an_1)la

fl(alglo
oan)glio

fm(a1'oc
oan:

In this situation q(<£l,...rm> ,B) = ($1,...fm, X). where 3’ is the

operator defined by X(a1,...an,b) = b, whenever ale A1,...ane An

(a1....a l) and b6 B(fl(a.l,...an)7,...
fm(a1,...an)).

The proof that Fam, so defined, is a contextual category is rather

simple. Because the statements asserting the status of operators and

families are so similar to the formal rules the proof is similar to the

proof that C(U) is always a contextual category, only easier.

Definition. If G. and (E' are contextual categories then a

contextual functor [J 1 L——> (13' is a functor F: Q—NE' such that:
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1. F(1)= 1 and if A43 in Q then F(A)<F(B) in ca '.

2. For all objects A of CC , F(p(A))=p(F<A)).

3. For all f and B such théi f'B is defined in 0:,

F(f'B)=F(f)‘F(B) and F(q(f..B))=q(F(f) .F(B) ) .

The category of contextual categories and contextual functors

is denoted Con.
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2.} Notation and Basic Lemmas

If A‘SB in the contextual category Kl then define the

morphism p(B,A):B-—-5A in ¢;, also written just as B-—-—% A, by

p(B,A)=p(B)op(Xn)o...op(Xl),
where X1,.t.Xn is the unique sequence

of objects of G.such that Ad X1...<aXn<:B in 6-. (in the case

A=B, p(B,A)=idA).

.'\ ' 3R
M an le mxfl x2 moxn H ) B

The contextual category structure supp11&.us with pullbacks for

any map of the form p(X), these given pullbacks can be pieced together to

obtain a pullback for any morphism of the form p(B,A) along any

morphism with condomain A. For we have the following very trivial lerma

about pullbacks in any category 9.

Lemma In any category 93(a) if f:A'—’—>B in C then

is a pullback diagram in g. (b) If

  

/\2.—-—tL———>B; raw—"$3 _"’Eg

m 31 m L31

Al—*—j:—~—9gl Qni lflr""'?"’-9BL

L

are pullback diagrams in 9, then so is
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This means, for example, that if A'd XGB in a contextual category (1‘. a

if f:A—->A' in Q then the diagram

QYG'XYBWXMEXSfi) B

i, L,
E >R

is a pullback diagram, since both of the two diagrams

 

MEX)

 

E‘X >x cui.xr3‘*w’> B

J, , _
H——es and gx———_,q’(c‘x) x

are pullback diagrams. So that gives us a canonical pullback for the

morphism B——2A' along any f:A—)A'.

In general, it means that whenever A'SB in 6: and

f:A——)A' in a; then we have a canonical pullback for the morphism

p(B,A’) along 1". For by iterating the method used when A'Q XQB we see

that if A'd )Ll...<xxn<13 in Q and if f:A——)A' then the diagram

5X“)QB‘

gm... q,(q,(E,X1)‘Xfl-"5Xn-1l,an'B'5—45

 

|

1
i, v,
RM)R’

t

is a pullback diagram in Q .

Since these constructed pullbacks form an important part of

contextual category structure we would like a simpler notation for them.

As no confusion is likely. we extend the ' and q notation to cover these

new pullback diagrams .



_
_
.
_
.
~
>
W

-
.
_
r
.
-
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1"‘I‘om now on if f:A——>A' ind; and A'S B in C then the diagram

Mffifl

PB ——-———‘B

. . W

/ .

fl —-——->§F"

is the cannonical pullback diagram defined above. The following observation

which follows from the way the new pullback diagrams are constructed

contains all the information we need to remember about that construction:

Lemma 1. If f:A——-) A' and A'gxg B in the contextual category 5 then

f‘B=q(f,X)'B and q(f,B) = q(q(f.X).B).

cw: Xygmg
5

If U is a generalised algebraic theory and if f:A——-—>A' and

A's B in the contextual category C(U) then supposing that

A= [< xlefl 1,...:»:ne A 11>] , A': C(ylefl1,...ymeflm)] ,

B= [< ylefllv-o-ymeflmwmle flmlw-quefl my] and

f: [<t1....tm>] then f'B: [< xlea 1,...xne An,ym+le_fl.m+1[

tll yl,...tm‘ ym] ,...ym+QeS)_m+Q[tl\ yl,...tml ym] and

q(f.B)= t1,oootm,ym+l'ooo
ym+9>] ‘-

For 6-. a contextual category and for A an object of G: we can define

a contextual category (LA whose tree of objects is the tree of those objects

of G; which appears above A. The construction is similar to the

C

construction of the comma category -/A of a category C at an object

A. The similarity is enhanced by the fact that it f:A-—-——)A' in (L

 

9d...
A

then pulling back along f induces a contextual functor (f : (LA,
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LA is defined by lQAl = {B eml at, Agra} , Hom (LA(B,B') =

{gm—)B' in G. I 3—)[5' commutes. }

\. / ‘a-

We show that (EA inherits the structure of a contextual category from

'1: . It suffices to show that CA is closed under the operations

t

p) and q of C and that these operations yield pullback diagrams in C A.

Lemma. (a). If A€B<LC in (L then p(C):C——->B in (LA.

(b). If g:B—>B' in (EA and 3'4 0 in 02A then yes IQAI and

q(g,C): g'C—eC in (EA.

(c). If g:B-——eB' in (LA and B'QC in (LA then

smfllc
. .

i

6: <7

B——\——>B’
U

is a pullback diagram in (CA

Proof. (a) Trivial - p(C)ep(B,A) = p(C,A).

(b) 3‘0 6 (Eu since A$B<g‘C. q(g,C):g'C—-5C in GA because

q(g,C):g'C————)C in C and q(g;C)°p(C,A)=q(g,C)op(C)°p(B',A) =

P(8.C)°gop(B'9A) = P(8‘c)°p(Bv-A) = P‘S'CvA)°

(c) _ Assume that De \ (11 A! and that hlzD——)B, k2:D——>C in GA

such that hlog=h2°p(c). We must show that there exists a unique

k:D-——>g‘C in CA such that kep(g'C)=k1and k°q(f,C)= k1. 
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is a pullback diagram in W. , it follows that there exists a unique

k:D-—-—93‘C
in (X. such that 1:<¢p(g'C)=\\l

and keq(g,C)=k2.
It suffices

to show that k is in Q1, ie.' that kep(g'C,A)=p(D
,A). Since kl is in (ER

we known that k1°p(B,A)=p
(D,A). Hence k¢p(g'C,A)=

kop(g'C)°p(
B,A)=hlop(B

,A)=

p(D'A)
o

Now if we suppose that

(11.: car—‘9 «LA by

F‘S
GI

B—LB‘ Pb f‘B—af'B',

in (I; ' f‘g is the unique morphism from f‘B to

where for any nge—aB'
A ,

f'B' in CA such that f'g°q(f..B')
= q(f,B)eg. Such a morphism exists

uniquely in (ilA because

am»,. ,
,

‘e fr—M a
Y

 

is a pullback diagram in (L , because q(f,B).goP(B'.
A‘) = q(f,B)ep(B,A)=

p(f'B,A)cf
and because f‘g is in (LA iff f’gap(f'B',A

) = p(f‘B,A).
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We must check that C.f, so defined, is a functor. So we

check that if g:B-—-—+B' and g':B"——;9B" in (CA then

f'(g°g') = f'gof’g'. Well. f‘(gog') is defined as the unique

morphism from f'B to f'B" in GLA such that f‘(g°g')°q(f,B") =

q(r,B)°g.g'. But f'gof‘g':f’Bf—9f‘B" in (LA and satisfies

f‘gof'g'oq(f,B”) = f‘g.q(f,B).g' = q(f,B)ogog'. So because

of the uniqueness of f’(g°g') we must have f‘(gcg') = f‘gof'g'.

In fact, (:f is a contextual functor:

Lemma. (a). If A'<BdC in (11 then f‘p(c) = p(f‘C).

(b). If g:B——->B' in GLA and a'gc then f'g‘C = (f'g)‘(f‘C) and

f'(q(g,C)) = q(f'g,f‘C).

Proof. (a). f‘(p(C)) is defined to be the unique map from

PC to PE in CA such that f‘p(C)°q(f,B) = q(f,c‘)3p(c). So

by uniqueness p(f‘C) = f‘p(C) since p(f‘C)oq(f,B) = q(f.C)op(C)

follows from lemma 1.

 

,3} QLt,L)_

gfi g;

! l
a f a:

(b). f'(g’C) q(f,B)‘g‘C, by lemma 1.

(q(f.B)og)‘C, by axiom (II).

(r‘g.q(r.s'>)'c, by def. of f‘g.

(f‘g)‘(q(f,B')‘C), by axiom (II).

(f’g)‘(f’C), by lemma 1. As required for the first part.
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Now f‘(q(g,C)) is the unique morphism from f‘g‘C to f‘C in¢EIA

such that f‘(q(g,C))
oq(f,C) = %(f98.C)OQ

(SgC)o That

q(f'g.f‘C)
= f‘(q(g,C))

followa from uniqueness
because

q(f‘g,f'C)
oq(f,C) = q(f‘g,q(f.

B')‘C).q(q
(f,B'),C)

by lemma 1.

q(f‘g.q(f,B'
),C). by axiom (II).

q(q(f,B).g
,C). by definition

of f‘g.

q(q(£,B),g
'C).q(g,c)

, by axiom (II).

I
I

- q(f,g‘C)oq
(g,C), by lemma 1.

Axiom (I) of the theory of contextual
categories

ensures that if A

tual category (L then {édA =id CA. AXiom (II)

f':A'———>A
" in C. then

Definitio
n. If F: €r-—9C)

is a contextua
l functor then if A is

.
. _____*

an obJect of 5. let FA. QA (INA)

a contextua
l functor.

be the restrict
ion of F to 61A.

FA is, in fact,

It is amusing to note that whenever
F:§;-—-——9

GJ is a

“ is a natural transform
ation.

contextua
l functor then F;_. _

Thus whenever F:Gl-———+Gj
is

diagram in the Z-category
of categories

.

0? Q—

Q“? a)-

section 0 o . _'

With referen
ce to the first of these

ions.

are not asking

We begin by giving two definit

the notati
on for we

two definitio
ns we must apologise

for
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that the morphism 'f' be thought of in. any way as a quotation of f, the

notation is merely convenient.

Definition. If A,B mm and f:A———~B then'f' is the unique

morphism from A to (fop(B))‘B such that 'f'ep((fep(B))‘B) = idA

and 'f'oq(fap(B).B) = f.

 

LPLB)

Definition. If A43 in Q“, then Arr¢ (B) = E rzA———>B I f.p(B) = idA f

Note that for all A,B e\CL\ , for all f:A—-)B, 'f'eArr¢((fcp(B))‘B).

Lemma 2. If U is a generalised algebraic theory and if ’1 6A1... dAn,

14 Bl... 43m in C07) are given by An = [<' xle A1,...xnefln51 and

Em = ylefll’oooymESlm>] then

(i) If f:An~——->Bm is given by r: [<t1,...tm>] then

. - 1
(fep(Bm)) Bm = [< x1eA1,...xne An,z 69m [tl\ yl,...tm-l \ ym-l] >j

and 'f' = [<x1,...xn,tm>] 0

(ii) If AnQA in (12(0) and A = [< xlefll....xnefln,x eA>J then

for any morphism g of (UH), géArernml 3H: 3 {S 0? \‘Le QOVMV

[< x1....xn,t)] for some t such that xle A1,...xne A n is a

teA

derived rule of U.

(iii) For any 1, 1S ién, p(An,Ai) = C< x1,...xi>] .

Proof. (1) amd (ii) follow directly from the definition of G.(U).

(iii) The proof is by induction. Certainly p(An,An) = [4 x1....xn>‘]
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by definition of film. If we assume that the result holds for i+1,

that is if we assume that mam). p(An.Ai+l) = C<X1v---Xi+1>3 ’

t ' ' M = -then he result follows for 1, smce p(An,Ai) p(An,A:.L ) p(Ai+ ) —
+1 ° 1

[<x1,...xi+l)] o [<x1,...xi)] [<xl....xi>] .

Hence the result holds for all i, is ié n.

Lemma 2 (i) If R_f2—)B,
\\ -

N,
81

is a commutative diagram in (a then for all x:X—)X' in CB ,

l

a _I 0. 0fax- f2 flx.

(ii) If A e\<L\ and 143 ...4Bm in a, and for each 3', 1Sjém
l

gj3A-——>Bj such that each triangle in the diagram commutes,

 

then for all x:X——*X' in (LB , 'gm"...‘gl“p(A,1)'x = gm'x .

m

(iii) If A elm and 16 131..<113m in (tend for each :5, 1Sj$m

0(j€Arr¢(dj_1‘...0(1‘p(A,l)'Bj) then there exists a unique sequence of

morphisms 31,...gm of (I: such that for each j,15j€ m, gjm—ij
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such that the diagram

 

commutes and such that for all j, 15 jSm, 'gj’ =o(j.

Proof. (1) fa‘x (’f2'°q(fl,32)'x, since f2 = 'fe'.q(f1,82).

u *
3 3

.
0

A £1,82)‘x, by axiom (II).

'f2"f1'x, by lemma 1.

(ii) The proof is by induction on m.

If m = 1 then we have 8

A—l—ual

mm 1

1

in 6;, thus by part (i) gl‘x = 'gl"p(A,l)'x.

If m>1 , if we assume that for all j, 1$j<m, gj'x = ’33."...

'gl"p(A,l)'x, for all x in Sng. Then since

HJL,Bm

Buh‘l

in 6; thus by part (i) gm‘x = 'gm“(gm_l'x) = 'gm”'gm_1"... gl

p(A,1)‘x, by inductive hypothesis.
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(iii) The proof is by induction on m.

If m = 1 then since 'gl' is required to be d1 so He must choose

31 such that 31 =0(loq(p(A,1),Bl).

If m) 1, and if we assume that 31,...gm_1 are such that

J

'33' =o(j, for each j,15 j<m. Then by part (ii) dmzA—agm_1‘B.

gj°p(B.) = Bj_1, for all j,1< jém-l and such that

So we can and must choose gm =dmuq(gm_1,8m).

Lemma 4. (i) If A_i__iB.£L_,c in C. then f"g' = 'fog'.

(ii) If A e\£\ and 14 B1... 43m in K, and for each 3', 15 3' sm,

Pje Arvc(flj_l‘...fl1‘p(A,1)‘Bj) then for each 3', 15 jém,

pm'...gl‘ p(A,i)"p(Bn,Bj)‘ =:bj. ’

(iii). If Add .14 131.0413“1 and _14C1...4CQ in G, , if for all

j. is jg m, 33.6ch (§j_l‘...fll‘p(A,1)'Bj) and for all k, is ks l ,

Xx eArr¢()’k_1' . . Xl'p(8m,1)‘ck), then for all x:X—5X' in (E ,

(gm.oocpl.P(A,1).X?)‘(Pm.ocofi.p(A'1).Xp_l).ooo(pm.ooo§1.p(Agl).X1).

p(A,1).X 1‘ Pm.ooopl.P(A91).X?.oco Xl‘P(Bm,1).Xc

Proof (i) 'feg' is the unique morphism from A to (fogop(C))‘C

 

such that 'fog'ep((fogop(C))'C) = idA and 'feg'eq(f.gep_(C),C) = fog.

It thus suffices to show that f"g' is such a morphism.

By definition of ‘g', 'g':E-——-)(gcp(C))'C such that 'g'cp((gc

p(C))’C) = id.B and ‘g'eq(gop(C),C) = 3. Thus f"g':A—-——)f‘(g p(C))‘C,

that is to say, £"g':A——>(r.g.p(c))'c. Also since

'g'°p((gop(C))'C = 1%, f"g'of‘p((g.p(C))'C) = idA. But

f'p((gep(C))'C) = p(r—<g°p(c>)~c) = p((fegep(C))'C). hence

f"g'.p((f.g°p(c))‘C) = idA. Which is one property of 'fog'.
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I As for the other. from 'g'gq(g°p(C).C) = g deduce that

fo'g'eq(gop(C),C) = fog. But fo'g' = f"g'eq(fe(gop(C))‘C)

and q(f,(g.p(C))‘C)oq(gep(C),C) = q(fo3op(C),C) hence we have

f"3'oq(fogop(C),C) = feg. As required. From the uniqueness of

'fog' we conclude that f"g' = 'fog'.

(ii). By lemma 3(iii), there corresponds to $1,...f3m a sequence of

morphisms 31 , . . 0 gm such that 3“ 8

“.5 m

 

commutes and such that 'gj' = $3..

By lemma 3(11) pm'...pl'p(A,1)*'p(Bm,Bj)' = gmnpamfij)‘. By part

(i) of this lemma gm"p(Bm,Bj)' = 'gm.p(Bm,Bj)' = flj as required.

(iii). Again we use lemma 3(iii). Corresponding to (fij) 15 jg m we

have (33.) 1 s jSm- such that 'gj' =pj. Corresponding to (Xk) 15 k5?

we have (hk) .15st such that 'hk' = ‘a’k.

(pm....gl-p(A,1)’~¥Q)' .. ...(Bm‘...pl'p(A,1)‘ xl)-p<A,.15'x

= (8m. 32).oeo(8m. Kl)'p(A,1)‘x, lemma _

= 'Sm.k¢"~oo'smek1"p(A,1)‘x, by this lemma part (i).

8m.h,‘X. by lemma 3(11).

= sm'kfX. by axiom (II).

'8m"ooo'81'.P(A,1)."NQ..ooo'h1"P(Bm91).x, lemma.

pm'...31‘p(A,1)' X“... b’l‘p(Bm,1)'x. As required.

Lemma 5. If f:A—>A' and A' B in C then 'q(f.,B)' =‘idrB'.

Proof. By definition of 'id§.B', '1df,B'.q(p(r'B),£'B) = idf‘B.

Hence 'idme'.q(p(f'B),f‘B)oq(f,B) = q(f,B), that is to say

'idf.B'°q(p(f’B) f,B) = q(f,B), that is

' ‘ V if [P ’\ .l'l’ " w’r‘q", ‘ ‘~ ') ' — .id ' f0“ o fT'r’": “I,
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2.1. Contextual Categories = Generalised Algebraic Theories

In this section we establish the equivalence
between the category

Con of contextual categories and the category GAT of generalised

algebraic theories. We split the section into subsections
as follows:

1. define a functor C: GAT——)Con, 2. define a functor

U ° Con——-? GAT, 3. prove that 00C: idGAT,

a
—-

lo.
2 ' .

prove that CoU ldcon

——

2.1+.1 Definition of K, : GAT——>Con.
G: has been-defined

on objects

in 62.2, if U is a theory then £01) is a contextual category.

If U and U' are theories and [I] : U——+U' in GAT the define

C(EII) : @(U)——)C(U')
by

c<x.ea.‘,...xneAn>]
3 he 1mm." Me mm]

Mm)

E4t\,mtm>]

mun 7.“ mm] :< ‘/.e may... 7M 9 imam

ThenQ is well defined on morphisms because by lemma 1 of 6 1.13

if I and J are interpretatio
ns of U in U' and if

A __ A

IEJ then for all derived '1‘ and e-rules R of U, HR) = J(R),

To see that (Bu: 1]) is well defined and takes objects and

(U) to objects respectivel
y morphisms of £(U') we

morphisms of C

require the following: -

Lemma.
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interpretation of U in 0' then

(i). If (x16 A1,...xne An) is a U— context then

(x19 1(A1),...xnei(An) is a U'-context. 7

(ii). If (xleAl,...xneA 11> and <x1’eA’1 ,...xn’e-A’n > are

U-contexts and (x1e A1,...xne An) 5-: <x1’e A1” ,...xge > then

(x1e i(A1>,...xne Juan» 5, (x; eI(A]’_ ),...xn’éI(/.1£)> .

(iii). If (t1,...tm> is a U-realisation of the context

(ylefll....ym(-,D.m> wrt the context (x16A1,...xne An> then

(I'(t1),...'I(tm)> is a U'—realisation of (ylei(£l),...ymei(fl m»

wrt < x1E1(A1),...xn6 i(An)> .

(iv). If (t1....tm) is a U—realisation of (ylefll,...ymejlm> wrt

{xleAl,...xngAn> and if (tl’ ...tn:> is a U-realisation of

(yl’efl’l ,...ym'eJZI;> wrt (xl’e IXl ,...xn’ eA'n> and if

(1:1,...tm) E (121’ ,...té) then <i(tl),...i(tm)> = <i(tl’ ),...1(tm' )>..—

Proof. (1) Follows immediately from lemma 2 of 31.11.

.. . ,‘ .<
.‘(11). For each 1, 1e 1-n, xleA1,...xi_leAi-l 13 a

 

_ ’ I
I

[Xl‘xl gnooxi-1‘xi_1]

derived rule of U, hence by lemma 2 of 1.11,

x 21(1) ) ...x. 911/1. )
-

1 l ’ 1-1 1-1 is a derived rule of 0'. But
' ‘ ' I I

=
X1 ,...Xi_l‘xi_1])

by lemma'l of $1.11, 1(Ai[ xl\ an; ,...xi_1‘ xi:l])E I(Ai)[xl| x1 ,...

xi_l‘ x111] . Thus for each i, 15 ién.

),...x. )

x1 1 1-1 1-1 is a derived rule of U'. That is
R

mi) = mimxlx xl' .---xi-1\*111'1

<x1ei(al>....xneimn)) : <x1'eim'1)....xne ms; )>.
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kiii) For each j, lsjsm' xleA1,...xneAn
is a

__'____.___.._
_———

yl....tj
_1 l

derived rule of U, thus by lemmas 1 and 2 of 3 1.11,

x EHA )....x ei(A ) is a derived rule of U'.

l 1 n n

 

I(tj)E I(Slj)Li(t1)\ y1,...I(tj_l) ‘53-’11

Thus < i(tl),...i(tm)> is a realisation of < yle i(fll),...ym€ 31(2 m)

(x1e 1&9"..an i<A n)> .

(iv) For each 3', 1S jém, LleAl,...xneA n

_______________
____——————————

tj = t3 [xll xi ....xn\ x; jEt;IY.,...t‘-r‘

is a derived rule of U, thus by lemmas 1 and 2 of 3 1.11,

Xlé i(Al\‘ooexne

—___—__
_______

___;———
——.—'-

' ‘ I
I

I - u
.

1(tj) = 1(1:j )[xll x1 ,...xn \xn 3e I613.) [1(tl) I yl,...I(tj_1) l yj_l

is a derived rule of U'. That is <i(t1),...i(tm)> 5 (fit; ),...-I(tm'

50 (X C I 3) is well defined. It remains to show that Q( [I 1) is

a contextual functor:

Lemma (i) If Ae \CWH then CL(EI1)(idA) = id¢(f_11)(A).

f g
.

(ii) If A——-)B——>C in 61(0) then cu EI])(rog) =

(L(£Il)(f)oC(Y_I])(g).

(iii) IfAE\(L\ and 1<A then £(EI))(p(A)) =p(d;(LI])(A)).

(iv) If

I

l
i
e
—
0
9

A-—————>

in (UH) then UEIJXPB) = £(LIJ )(r)°¢(£13)(s) and

C(CI])(q(£,B)) = q(C([Il)(r),C([I‘1)(B))
.
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Proof. (i) and (iii) are both remarkably trivial.

(ii) Suppose that A = [<xleA1....xneAn>] , B = d

[< ylefllnuymeflmfl and C = E< zlefll....zQe/\Q>3 .

f = [<tl....tm3] and g: [< $1,...sQ)] , where (tl,...tm) is

a realisation of < ylefll,...ymejzm> wrt (x1e A1,...xne An>

and ($1,...sg> is a realisation of {zleAl,...zQe/\.Q> wrt

( ylefl1,...ymefl m) . If we use the definition of (U E I 1), the

definition of composition in CW) and (AW), and lemma 1 of E31.11

then:

£(E11)(fog) = <11( CI 1)([< 51E t1\y1,...tm \ym'] ,...sQ\:t1 Iy1,...

cm.\ym'] >1 > = [<i(51[t1 |y1,...tm\ym] ),...i(SQ[tl Iy1,...tm\ ym] >1

= [< 1(31) Hal) l y1,...i<tm) | ym'l ....i(SQ)[i(tl) \ yl,...i(tm) \ ym—l >J

= [< f(tl),...i(tm)>] o [<i'<sl)....i<sm)‘>] =-C( [Inmou LI mg).

(iv) Suppose that A = [< xledl....xne 9

B = [< 316~fl1¢°nym€flmIYEfl>J and f = [< tlwntm >1 ' “he”

(tl,...tm> is a realisation of (ylefll,...yme52m> “rt

(XIEA1!"°anA n> .

C([I])(f‘B) = mum [<fi6fllpuxneAnJeJ2Etl‘ yr...

tml ym] >]) = [< x1ei(Al),...xnei(An),yei(fl)[i(tl) My...

mum ym1>J = [< 1(t1),...i(tm>>] ° [< y1€i(fll);...ymeiUlm),

yei<3l>>3 = C(EIJ)(£)‘CL(CIJ)(B).

¢(‘r_13)(q(r,B))= C(LI])([< t1....tm,y)] ) =

[< 1(t1),...i(tm),3>] = q((§,(LI3)(f), m [I])(B)).

Supposing that I is an interpretation of U in U' and that I' is

an interpretation of U' in U", then by lemma 3 of § 1.11 for any



2.28

expression e of U, (I"oI) (e) = i'(i(e)). Thus it follows that in this

section 5:“. 1'] )0 6((11) = €(EI'013)= (LU: I'] oCII). So for

sure @zGAT——9 Con is a functor.

2.1+.2 'Die definition of U:Con——->GAT. It is convenient to say that an

object A of a contextual category C is trivial just in case A is the least

 

element 1 of C. Similarly we say that a morphism of (l; is trivial just

in case its codomain is the trivial object.

We begin by describing the functor U:_C£g_——>G_A_'l‘_ on objects of 9%.

If 55 is a contextual category then UND) is the generalised algebraic

theory described as follows: UN?) has a sort symbol 3 for every

non-trivial object A ofC. MC) has an operator symbol 3: for every

non-trivial morphism f of C . If 1.4 A1... aAnd A in C thenthe

introductory rule for A in INC) is xlexl....xnezn(xl,...xn_1) .

 

A(x1....xn) is a type

If '14 A1... <1An in (L and szn——)B where 1.< B then the introductory rule

for f in is Jae-K1,...Xne-A-n(x1,...xn_1)
o

 

?(x-l’oooxn)€(fop(855.B(x1,o
noxn)

The axioms of U(¢) arise from three different situations. U(C'C) has

just the following axioms:

(i) For n30, 1117/1 and 020, if 14A1...4An, 1481... 48m and

1G C1...

has the axiom

in q, and if {mu—4m and g:Bm———>CQ in 6‘, then not)

x1e Al, on oxne An(xl‘oooxn_1)

fog(xl,...xn) = E(f°szmyBls(x1.-ooxn) ,o..f°p(Bm,Bm_lS(xl,. "1(a) ,—f.(x1.ooo

   

xn))€ (fogop(C ))‘C (x1....xn) .



 

2.29

(ii) For n>o, if 1M1...“n in (I: then for each i, 15 in, U(¢)r

the axiom ‘51,...an xn(x1,nooxn-l)

, an

pZAn,Ai5(X1,.-oxn) = xiéAi(Xl,...Xi_1)

(iii) For n10, mzl, if 14 Al...4An and 1481...4Bm<l B in i and if

szn—->Bm then [1(0) has the axioms

X16 Al'OOOXnE An(X1,...X )

n-l

 

F—B(x1,o ooxn) = (X1... .Xn) , .oofaszm,Bm_1)(X1,. ..Xn) '?()(1' o o o

and x1e$1,...xneKn(xl,...xn_1),ye f‘B(x1,...xn) . rI'his completes the

 

qu,B5(x1,...xn,y) = y€fi(x1,...xn)

definition of INC).

As for the action of the functor U on morphisms, if F: C ——NL' is

a contextual functor then define a preinterpretation U(F) of MC.) in UNI)

follows: If 14 A1... 4An4 A in G, then define “FM-5) = Whlpnvn),

if 14211... «An in S, and f:An-——-)B then define U(F)(?) = m7(v1,...vn)

vl,v2.... is supposed to be the standard ennumeration of the set V of

variables, see $1.11.

Lemma. U(F) is an interpretation of U(¢) in U( ‘3').

Proof. We have to check that for every introductory rule or axiom R of

/\

U(¢z), the rule U(F)(R) is a derived rule of U(¢'). But it happens that

/\

in each case U(F)(R) is actually an introductory rule or an axiom of U(¢

and thus a derived rule. Thus there is little work to be done.

For example. if 14 A1...4An<lA in (C. so that MC.) has the

a
c _ —

introductory rule x1- A1,...an An(xl,...xn-l) then

 

'.1,....v \ in 2.“



1
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A xleil....x eK( ,...x_>'

11F)
11 nfi. n1

 

1(xl,...xn) is a type

x1e uZF)(K1>,...xne u2F)(Kn(x1,...xn_l))

’_______’.____.

uEF)(X(x1,...xn)) is a type ‘

x1e u(F)<q)....xn u(F)<A_n)[x1\ v1....xn_1:vn_1]

F_______________________

U(F)(K)[xllvl,...xn‘vn] is a type

Xle ,- o'xne (xl‘oooxn-l)

 

FZA5(x1,...xn) is a type

which is of course the introductory rule for FM; in U(¢').

If F: a—ac' and F': c—->¢" in Con then U(F'oF) = u(:~")oU(F).

This is because for any symbol 3 of U(&) and for appropriate n,

= F.
= U(.F')(F(L5(Vl,..

an)) =
3

(U(F')0U(F))(f). Thus we have defined a functor from the category Con

to the category of generalised algebraic theories and interpretations.

By taking the value of U at F to be [MN] we get a functor U:Con-——»f

2.14.2 The proof that Uo‘L’l' idGAT. For every generalised algebraic theory

U we define an interpretation Qu of U in U( ¢(U)). We show that [@--

(ie AUG" .[Ou] ) is a natural transformation

[QJ :idGAT

interpretation q” of U(¢(U)) in U and show that EWoLWMV] =

idU(¢(U)) and that C%]o[4>u] = mu.

—onC:GAT ——%GAT. For every theory U we define an

If ' is a theory then the preinterpretation (Du of U in

u(G.(u)) is defined as follows: If A is a sort symbol of U introduced b:
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the rule x16 A1,...xneAn then define @(A)

A(x1,...xn) is a type

= [<xleA1,...xneAn,xeAZx1,...xn5) j (v1....vn). If f is an operator

symbol of U introduced by the rule xleAI,...xne An then define

 

f(x1,...xn)eA

Q4“): E<x1,...xn,f3x1,...xn5)[ (V1,...vn).

When it is unlikely to lead to misunderstanding then we drop

the subscript U from Qu . We wish to show that for any theory U,

the preinterpretation <9 of U in U(¢(U)) is actually an interpretation.

This requires a long string of lemmas. We do in fact show that for any

5&

  

derived rule of U of the form x15 A1,...xneAn AKXleAlq‘°'xne A n) _

A is a type [115 a type

""Vne X16A1.---Xne
(V1,...Vn_l)

C< 19"0xn6A n,XeA)] (V1,.oovn) is a type

  

and we show that for any derived rule of the form xlelll....xn€ An .

teA

m

 

a>
teA

v1 e’ [<x1eA1>j 5..an [<3LleA1,...Anean)](v1,...vn)

 

E<x1,...xn,t>3 (v1....vn)e C< x1eA1,...xneA n, xeA>J (V1,...Vn)

From which it follows of course that (P is an interpretation.

Lemma 1. If C. is a contextual category and if for some n)o and m 21.

14A ...4A“, 1431 ...4B and m ———>B in C then the rule
m n m1

3:16 K1, 0. .anIn(X1,. ..Xn_1)

-f-'(x1,...xn)6§m(EpZBm,Bl-)(x1 ,...:ru),. . .fcr~ .Bm,Bn__l)(x1,...xn))
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a derived rule of UN: ).

Proof. The rule can be derived by the principle 7.1 from the

introductory rule of -f- and the axiom of kind (iii) which is

x16 A1,oooxne An(xl,oooxn_])

__________________
__________.____———

—————-—

fopZBm5'BmUfi-‘a ..xn) = Bm(foPZBm,Bl) (xv. ..xn) , . . .fop(Bm,Bm_1) (x1, . . .xn))

Lemma 2. If (E is a contextual category and if for some n? 1, m7, 1 and

0..
CI. 4

.0. :
:

on, lmA:L GAE, qul 4133} B, 1<1Cl Cg, f An——--98m, 31

C -——-)An and gazc ———»B in Q such that the diagram

 

9
Q

C.) —————31'a8

“31 i

Fan_————»$ 8m

commutes, and if h:C?—-*f‘B is the unique morphism such that

C0 C? m

\\n‘ was
f‘B Mas)

gnd
- LC vmwute

Rn

then the rule 216 C1,...zge Cg(zl,...zq_l)

 

F(zl,...zo) = Eg(zl....zo)€ (31° f5‘B(zl,...zQ)

is a derived rule of UML).
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Proof. From Lemma 1 it follows that for each i, is 1511 the rule

C 0.. _ ...
Izle 1, zte 09(21, zq_l)

 

1,...ZQ)E I;(L°pzf'B,A1)(21....ZQ),o..hopi'B,Ai_l)(21,...29);

is a derived rule of U(£). By the same lemma so is

zleq’cooZQe-C—Q.(zl,oooz )

9-1 . Hence

 

“(21,...29 fi<kopzf'B,A1)(z]-,o..z?),...\wpzf'B,An) (21,...Z°))

we can substitute this n+l-tuple of terms into the axiom

x16 K1, . . .xne Kn(x1,. ..xn_1) ,ye f‘B(x1, ...xn)

 

q( (x1... E fi<x190 c .Xn)

Zle C1, 0 "zqe CQ(ZI,OOOZQ_1)

 

qu,B) (hapi‘B.A1)(zl,...zg) ,...k°pzf‘B,An) (zl....2Q),T‘(zl,...zo)=r\(zl,...2

is a derived rule of MC).

But since k...q(£,B) = 32 (and also using g2°p(B,Bm) = g or) the rule
l

216 Cl, c e ozqé CQ(Z1,ooOz?-l)

 

g(z1‘ocozq) = QZf9B)(Kap(f.B,A1)(zlgomon),oookcp(f.B'-qn)(zlgoo.20),

F (21, .. .zq))C-. Z810f5.B(z1.oooZQ)

is an axiom of U01). Thus by transitivity of =

 

)
zle C1’°'°2'QeCQ(zl""zQ-l is a derived rule of

 

:(Zl,ooozo) = 8—2(zl.oooz?)e (glof5.B(zl,ooon)

U(¢).

As a Special case of lemma 2 we have:

Corollary 3. If 5: is a contextual category and if for some n2 0,

14A1... 4An and sznh’B in (Y, then the rule
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xleq.o--Xne:\;(finnx
n‘_ll

is a derived rule

_#______________
__.__——————-————

-—

'f'( ,aocx ) = 'ooox B .B( ,...X)

*1 n x1 n z w x1 n

of

If we use the description lemma 2 of §2.3 of the contextual category

(11(0) associated with a theory U then corollary 3 can be rewritten as follows:

Corollary 1». If (xleAl,...xneAn) and (yledrll,...yme.flm,yefl
> are

contexts of a theory U and if (t1,...tn,t) is a realisation of

<y1efllpuymu’lmqefl
) wrt <x1(-_ A1,...xnc- An) then the rule

v16A1,...vneAn(vl,...\/n-1
) 18 a derived rule of U(¢LU)),

 

_ “

f(V1,--.Vn) = 8(V1’oonvn) UKVl...th)

where Ai = L< x1e A1,...xie [31>] , r = [< t1....tm,t >1 ,

g = L<)Ll,...xn,t>‘.\ and C = [< xle 01,...xneAn,yC-, fl[t1\ y1,...tm[ym])]

Lemma 5. If C is a contextual category and for some n>,o ad m),l,

...4Bm<xB and szn——)Bm in (L , then (i) the rule
14A dAn,l'~1}31

l

xle A1, . . .xne An(x1, . . .xn_1\

'foPZBm,B15'(X1,...
Xaxoun'faPEBmgBm_l§

'(¥lv°"

 

T7§(x1,aooxn) = E(

 

7—.
xn). f (x1....xn))

is a derived rule of U(C). (ii) If also geArrCUD then the rule

x16 A1,...an An(x1,...xn_l)

TET('fgszm,
Blj'(Xl,.o.

Xn),ueo'fqu
Bm,Bm_15'(X

l,...xn),

 

| U _

fag (X1,oooxn) —

 

-.—f—'.(Xl'oo-Xn))e
fi(x1,oooxn)

is a derived rule of U( C).



,
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Proof. Both (i) and (ii) follow from corollary 3. For example (ii)

follows from the axiom

x16‘KI,...xu€EK;(X1,...xn_l)

— .
_fog(Xl....Xn) = 3(foszm,Bl)(x1,...Xn),...foszm,Bm_1)(x1,...xn),f(xl,...x

 

I

since by corollary 3 we have as derived rules of U(¢) the rule

x1 6 2;, . . .xne K;(x1, ..xn_1)

._______________________________________________

'fog'(x19-Ooxn) = ?:E(xl,o-oxn)ea?7§(x1,oooxn)

(since fpgcpm) = fcidB = f) and for each j, 15 jSm, the rule

xléizgg...xne K;(X1...oxn_1)

__________________*____________________________________________________

'fop(Bm,Bj5 ' (xl,...xn) = ropKBm,BJS(xl,...xn)€ (f.szm,Bj_l55‘Bj(xl,. ..xn)

C]

In particular if C, = C(U) then we get the following:

Corollary 6. If U is a theory, if for some nzo, m>,1,

(xleAl,...xneAn>, (ylefllpuymeflm. Yéfi.) are contexts of U

and (t1....tm) is a realisation of < y1€fl1,...ymeflm> Wrt

(x16 A1,...xneAn) then (i) the rule

vle T1]...an E(vl,...vn_l)
M

C(vl’ooovn) = E(E;(vl’ooovn),oooE;(vlyooth) )

is a derived rule of U(¢(U)), where Ai =C< HEA1,...xieAi>J ,

C = [:< X16 £51,...Xné Aany'e Ilttll 31,...tml ym]:>] 1

B = E< Y16fl1v0-Oym6flm1y and SJ = x19--'xnstj)j ’

(ii). If ylefll..--ymeflm

tefl.

is a derived rule of U the the rule
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vleA VGA (v1....v )1.000 n n n-l

 

?(vl!0'ivn) = F(gl(vlgeoevn)‘IOUE;(V1’IO-vn))e
6(Vl,...Vn)

is a derived rule of U(¢(U)), where f: [<x1,...xn,t [tli yr...

tm '\ ym] >1 and k = [< y1,...ym,t )] .

Lemma 7. If U is a theory then (i) for every derived T-rule

Heal....xneAn of U the rule x16 A1,...xne An(x.l,...xn_l)

Ais a type K(xl,...xm) = 50(A)

is a derived rule of U(¢(U)), where Ai = [<: x1601....xieAi>] and

A = x1eA1,...xneA n,xeA)J . (ii) For every derived C1 -ru1e

xlebl,...x“e& “ of U the rule

teA

X1 eq,o uan oooxn_1)

__———_—_[<x1,...xn,t>3(1:1,...xn) = cb(t>ex(x1....xn)

is a derived rule of U(<£(U)).

Proof. The proof is by induction on derivations in U. We wish to show

that all the derived T and E-rules of U have a certain property so we

just show that any rule that is derived from rules 'that have the propert

must itself have the property. We must check the principles of

derivation Tl, CF]. and CF2.

_'I'_1_. Suppose that we derive the rule xle A1,...xneA n from the

t eA'

rules XIGA1,...xneAn and xleAl,...xneAn , and suppose also

teA A=A'

that XIEA. 1,...xnefln has the property, which is to say suppose that

teA
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x15 A1,...xne An(xl,...xn )
-1

 

'r_‘< x1,...xn,'t >3 (xi-"9:21) = @(t)e2\’(x1,...xn)

is a derived rule of U(C.(U)). We wish to show that x16 A1,...xne An

 

teb’

has the property i.e. that

’_ no. — no. . ‘ - dx1: A1. xne A1103, xn_1) is a derive rule

  

[<x1,.,.xn,t (x1,oooxn) = F(fi.oooxn)

of U(¢(U)), where A' = E< xleAl,...xn€A n,xeA'>] . But

of course it is,because xleA1,...xneA n is a derived rule implies A=A'.

A=A'

CFl. Suppose that He A 1,...xnefl n is a derived rule of U such that

A n+1 is a type

x16. Enuxne 7x;(x1,...xn_l) is a derived rule of U(C(U)). we

  

An+1(x1,...xn) = (9(Am1)

must show that for each i, 1$ iSn+l, the rule

 

X16. A1. a o .Xn+le An+1(xl, o o .Xn)

[<X1,...xn+1,xi>] (x1,.ooxn+1) = Ci(xl,...xn+l)

  

is a derived rule of U(7C(U)), where Ci = [< xleA1,...xn+le An+1,yEA i>J

This follows because < ed ,...x 9A ) and < 6A ,...x.eA .>
x1 1 n+1 n+1 x1 1 1 1

are contexts of U and (x1....xi§ is a realisation of < xleA 1,...xig A 11>

wrt (x16 A 1.....xn+1€A n+1) , thus by corollary 1+ the rule

xlG A1' ’ "xn+le An+1(xl""xn)

[< xl,...xi )] (x1,...xn+l) = [<x1,...xn+1,xi >] (fi,...xn+l)€ C(x1,...x

 

n+1
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is a derived rule of U( C (U)); and because, since p(An+1.Ai) in @(U)

just (x1....xi) (lemma 2 of 2.3), U(C(U)) has the axiom

 

x1eA'l’"'xn+leAn+l(x1"”xn)
.

L< figoooxi >] (x1....xn) .= xieqhipnxn)

 

CF2(a). Suppose that B is a sort symbol of U introduced by

ylefllnnymeflm

 

B(y1....ym) 15 a type.

Suppose that for each :1, 1S jém', the rule x16 A 1.”.an A n

is a derived rule of U with the property, i.e. such that the rule

x16 A1,. "an An(x1,...xn_1)

L<x1,...xn,tj>j (x1....xn) = @(tJJE Qj(x1,...xn)

  

is a derived rule of U(C(U)) where Q:j = E< xleAl,...xneA n.yj €413.

Etl| yl....tj_1\ yj_l] . We wish to show the rule

x1613‘1""xn6A n has the property, i.e that the rule

B(t1,...tm) is a type

X19 Arm-an An(xi,...xn_l) is a derived rule of U(C(U)), where

6(L-L....Xn) = $(Ntlgocotm))

C = [<x16A1,...anA n,ze B(t1’ooutm) 9

Let L = y16fl1,oooymefl mty€B(y19°"ym)>] .

By corollary 6(i), Lie-q"..an A—nbipuxnd)

 

Q—j-(Xl,..oxn) = B_j.(8i(xl,oo-xn)’o
oogj-l(x1,oo .Xn))
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is a derived rule of ':J( ¢(U)) for each 3', is j Sm, where

83' = ylefll!"'y:j O a‘nd = Xl,...xn,tj 0

Hence for each j, 15' jém, the rule

x1e A1,...an An(fi,...xn_1)

M

gijlp-oxn) = ‘9(tj)€§(E(x1,.uxn),u;§_l(xlp..xn))

is a derived rule of U(C (U)), and from the introductory rule for f

in u(¢‘(U)), which is yle 31....me 3—m(yl,...ym_l)

 

E(yl,...ym) is a type

we get x16 Ll"..an An(x1,...xn_l)
_
M

mafivnxn),...;(fi,...>> = f<®<t1>,...®<tm))

as a derived rule of U(¢ (UH. But again by 6(i), the rule

x1 €A1,...xnc- An(3L-L,...Xn_l)
M

3(2—1-(x19".xn)$OIIgI-(fiyoooxn)) = 5(xl,...xn)

is a derived rule of UN: (UN. Thus the rule

x16 Al'°"xne An(xl”"xn-l) is a derived rule of [MG—(UH.
R

5(xl....xn) = E(©(tl),...©(tn))

which is just whats wanted since $(C(t1,...tm)) = ZQXtflpuwiXtmN.

CF2(b). Very similar to CF2(a), uses corollary 6(1) and (ii).

Corollary 8. For every theory U, :PU is an interpretation of U in

u(<£(U)).
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Proof. It suffices 'to show that for any derived rule R of U,

A

MR) is a derived rule of MG: (UN. We check for each of the

four forms separately.

1. The T-rules. If x16 A‘l,...xneA n is a derived rule of U

A n+1 is a type

then by definition A fieAlpuxneA n) x16(b(A1),...xne©(A n)

is a type Q(Dn+l) is a type
A n+1

By lemma 7, for each i, ii i§n+1, the rule

x16: A1,...xi_l€ Ai_1(xl,...xi_l) is a derived rule of

"c ) = (bmAi.x1,---xi_1. ., .. i)

U(¢(U)). Hence for each i,.'1$ iS n+1. the rule

x16 4% A 1) ,...xi_1e (9(0 i_l) is a derived rule of

 

Ai(xl,...xi_l) = :pmi)

U(¢(U)) (argue by induction). In particular x16 @(Al),...xne @(An)

 

An+1(xl'oooxn) = dx An+l)

is a derived rule of U(C(U)). Thus because of wellformedness of

derived rules (see 31.7) we must have x16 @(Al),..;an£P(A n)

@(Arfll) is a type

as a derived rule of U(C(U)).

2. The E —rules. Suppose that x1e A1,...xne A n is a derived rule

tell

of U. By wellfomedness and by part 1. above,
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x16 @(A1>,...xne¢<u n> » and x16 ©<Al>....xi_le MAM)

(MA) = X(x1,...xn) “A 1-)" = Ai(xi’”°xi-1)

IS d4 n, are derived rules of U(C (UN.

By lemma 7, x16 7.‘._1-,...xne A—n'(x1,...xn_1)

W<xl,...xn) = {pme 1(x1,...xn)

is_a derived rule of u(¢(U)). Thus so is

xle Q(AI)""xneQ(0n) a derived rule of U(¢ (U)).

 

L< x1....xn,t>j (x1....xn) .=<b(t)€4’)(A)

Hence by wellformedness the rule XIE&J(A1)....xned.XAn)

d’umdvm) V

is a derived rule of U(C(U)).

3. The T=rules. If x16 A1,...xneA n is a derived rule of U then

A = A '

x16<b(A1),u.xne b(An) is a derived rule of U(C(U)) because by

43(A) =©(A')

lemma 7 and 1. above, the rules x1e©(A1)....xne 59mm) and

X(fi,...xn) Jam)

x16 ¢(A1),...xnec'p(An) are derived rules of U(C(U)), where of

Xv<x1,...xn) =ci><zm

course A = [< x1601....xneA n,x 613)) = E< xleA1,...xneA n.

we (3')] = A'.
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h. Similarly if 1:16 A 1,...xneAn is a derived rule of U then

 

t = t'

xledXAl),.nxn€(i)(An) is a derived rule of U“: (W).

cm) = (“mam

Recap: We are attempting to show that the functor .

idGAT : GAT —-)GAT is isomorphic to the functor Uod'. :GAT—e—iGAT.

So far we have defined an interpretation Quof U in U( C(UH for

every theory U. Thus for every U 6\ GAT \ , :U—->U(C\-.(U))

is a morphism of GAT. It remains to show that for every U GI GATI ,

Qu is an isomorphism and that is a natural transformation,

[(9.] :idGAT—auom. It is understood that we write for

what otherwise might be written as [\UE‘ Q52 LE Q41.

Lemma 9. is a natural transformation, :idGAT—iUofE.

Proof. We must show that whenever U and U' are theories and I is

an interpretation of U in U' then the diagram

Wu]
u woman

[Ill lumen»

u’————>u(¢(w\)

[@w]

commutes in GAT.

Suppose that we have such an I. By corollary 2 of §l.ll+ it

suffices to show that for any derived 6 -rule R of U,

fl

u<t<tx1n<$u<a>> = @uxifmn.
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Suppose then that x16 A1,...Xne A n is a derived rule of U. By

,tGA

lemma 7, (3x; leefllpuxnefln) ‘ xle 131,...an An(:&....xn_l)

u *— ; ———————-——-————-—

tea f(xl,...xn)eA(xl,...xn)

Where — xleAl’o-oxie ' A: XIEAII".XnGAn,XGA>]

and f = [<x1,...xn,t>] . Thus by definition of the functor U,

A

U(£(CIJ))(&{ xleA1""xn6An>

t e A

x1e ¢([13)zA15,...xnc-—C_m:11) An (fl....xn_l

C(EIJ5Zf5(x1,...xn)€ C" ZCIJ5zA5(xl,...xn)

 

—

o
.—

)

 

I

On the otherhand, a(x1eA1,...xneAn) xlc- i(Al),...xn 6. HI)

.L _ :

teA i(t)e 1(A)

   

Thus by lemma 7, ‘9 (ffixleAl,...xneAn‘)

u!

teA /

xle q....xne§:(xl,...x ) where
n-l

 

E(x1,...xn)€§(x1,...xn)

Bi = E<X1€i(Al).~-.xie 1min] ,s = [(1:16 flair...

xnC— i(An),xei(A)>] and g = [<x1,...xn,'1(t)>] But by definition

of CHIN, C(LIJMAi) = Bi, ¢.(LIJ)(A) = B and C(CI] )(r) = 5.

Hence UTE/(LEM @uUU) = $u1(/I\(R)), as required.

It remains to show that for any generalised algebraic theory U,

the morphism of the category GA'I' is an isomorphism. It suffices

to define an interpretation \I’u of U(¢ (U)) in U and to show that

Y/HOQM = idU and (Que ‘KA = idL,(¢(U)).
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Let U be a theory. 'u’e define a preinterpretation ‘l/u of

U(¢(U)) in U. The preinterpretation 4/“ is defined on sort symbols

I of U by choosing an element<V1€ A1,...vneb .vm_1eA) of the

equivalence class A and by defining \J’u (K) = A . To simplify

matters we can make the choices in such a way that if 14 A1...6An<i A

in (C(11) and if (Vle A1,...VneAn) is chosen to represent An then

a context of the form (V16 A1,...Vne An,vn+le is chosen to

represent A. This is always possible by virtue of corollary 2(b) of $1 2.2.

is

defined by choosing an element (t1,...tm,t) of the equivalence class

If rzAn———»B in flu) and B is non-trivial then

f and by defining = t. However we choose the representation

(t1,...tm,t) of f in such a way that if (V16 A1,...Vn6An‘) represent.

\

A and if <Vl €fl1,...vm6fl 6.0.) represents B then (t1,...tm,t ,

n m’ m+l

is a realisation of (Vlefl1,...vm eflmwmlefl) wrt (V16 A 1,...Vné Ad

This is possible by lemma Mi) of 51.13.

Moreover to simplify matters the choices are made in such a way that if

f:An—»B and if f°p(B) (assuming it is non-trivial) is represented by

<tl,...tm> then f is represented by (t1,...tm,t> , for some t.

This is possible by lemma 5 of §l.l}.

Lemma 10. \KA is an interpretation of U( C(U)) in U.

Proof. y'n'e must check that all the introductory rules and axioms of

U( mm” are mapped by 14; to derived rules of U. '.~'e just check two cases

the other cases are just as simple to check.
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1. Suppose I is a sort symbol of U(C(U)). Say 14A1... 4An<| A in

C(U), so that A has the introductory rule x1e A1,...xne An(xl,...xn )
—1

 

:(xlgooexn) is a type

Suppose that A has been represented by <vleA1.-nvne A noVn+1€ A)

then \1‘, < q'oooxne -A—n-(xlgoeoxn-1)>

u

K(x1'eoexn) is a type

!

 

xleA 1'xzeA2E V1J ""xnGA n[ 3‘1“, J.’”'xn-1‘Vn-1:l
M

_ Atxl‘ V1,...xnl‘vn] is a type

and this rule is a derived rule of U by the change of variable lemma of

81.? because the rule v16A1,...vne0n is a derived rule of U.

 

A is a type

2. If 1¢A1...<1An, 1481...qu<xB and fun—43m in (£01) so

that U( C(U” has the axiom R, where R :

x16 71', . . .xne EH1, . . .xn_1)

fi<figoeoxn) = E<f°PzBm'Bl)(xl'eeexn)‘eeefoszmme_1) (1:1,. eoxn) ,?(X1, - eoxn

 

Suppose that An has been represented by V1661....Vne A n) . B

has been represented by (vlefl1,...vmejlm.v 16 , {‘8 has been
m+

represented by (V 16 A 1, . . .Vne A n.\ln+1e A > and f has been

represented by (t1....tm> . Then V/(R) =

x1.6 A1"""né A ntfi' V1"°"‘n-1'Vn-1J

V1,...xnt Vn] = V1,...xn\ V1.000tmEXI‘V1,oee

xnwnjlvm]



\
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x1e A1""xne An[ “'1‘\’1""xx1-1‘Vn-l.J

_________________
_______.__———————

—-——

A[x1! V1'"°xn‘vn] = flttllvl’"°tml vm] [ x1‘ V1'°'°xn‘ V21.j

which is a derived rule of U by the changeof variable lemma since

V16 £31....vneAu

A = fl[tl‘ V11"°tm‘Vm] ‘

[<v1eAvo-ovneAnleeAfl
=

vn+le fl-[tl ‘ Vl""tm‘ Vin] >1 '

is a derived rule of U because

 

{-13 = [4 VieA 1,...vneA n,

Lemma. \fuo (RAE idu.

Proof. Use corollary 2 of § 1.14. Suppose that x1 6 A1 ,...xne A n

teA

is a derived rule of U. Let A1 = [< x1601....xie Ai)] and let

A = [4116 A1,...xne An,xefl)] . By lemma ‘7 of this section.

(IRAQ xleA 1....xneA n)

t e A

Therefore I\ A

\b u

x1€ q, o ..xn€ oooxn_l) )

U

E< H,...xn,t>] (21,...Xn)e A(x1'oooxn)

and it follows from the definition of \Pu that this rule is equivalent to

x16 A1,...xneAn(x1,...xn_1)

 

.—

_-

    

XleAl..oeanAn e

teA

 

Lemma. Que?“ '=' idu(_¢:(u)).
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Proof. Suppose that 14 A1... AnQA in C(U), so that I is a sort

symbol of U(¢ (0)) introduced by the rule

vle A1,...an An(Yl,...Vn_ )
1

 

K(V1,...Vn) is a type

l! A has been represented by (V16 A 1,...VneAn.Vn+1eA) then

  

& A A1,...Vne An(Vl,.ooVn.l) -A VleAl..anEAn

*4 \k.( _ ' ‘(Qu’

A(v1,...vn) is a type A is a type

\{16 Ego-ovne EWP... Vn_1) , by lemma 7.

 

K(V1,..ovn) is a type

If also 14 131.0413In 1n 61(0) and run—513m in can. If Bm

has been represented by (V1651 1,...Vmeflm) , if f has been

represented by (t1....tm) and if (f¢p(Bm))‘Bm has been represented

by G Al'eeovne A n.vn+l than

4’5 ( v1e§,~...vnefi;(v1....vn_1) 43 vleA1,...vneAr

u u 2: ___.._—_

?(V1,...Vn) G (fOPZBm55.Bm(V1,...Vn) u tn 6 J1.

 

V16. A1,...vne An(v1....vn__1)

=H

“ r. < v1...¢vn,tm)] (V1,...vn) e (fopZBm55‘8m(Vl,...Vn-)

 

by lemma 7 of this section,

vie A1,...vne An(vl,...vn_1)

  

E< t1....tm73(v1,...vn) e roptsTm03m(v1,...vn)

by corollary 1+ of this section.

This completes the proof that Quwk‘ and idmozwn agree up to

equivalence on the introductory rules of U( 41(0)).
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2.1.}. The proof that congidCCm. We define a natural transformation

“:idcon——>£OU.
That is we define for each contextual category

C , a contextual functor n£:(L-—-§¢(U(C)
), such that if F:(‘,——>Q‘_ '

is a contextual functor then the diagram

5, MULUC“

F fluCFH

¢’——“————» (DULCth
cl

Eventually we show that T\ is an isomorphism, that is that

commutes in Con.

for each contextual category C. .T\£ is an isomorphism.

Then T\ is the required isomorphism between idCon and C 00.

.

1716

If C is a contextual category then “6 is the

objects and on the trivial morphisms of (L in the trivial manner. that

is by Tlcu) = 1 and “ép(A,1)) = p(T\¢(A),1). nm is defined on the

non—trivial objects and morphisms of G— as follows:

If 14 A1...4An4 A in G, then “(501) = [mask—1....

Vne An(V1,oo.
Vn_1) ,Vn+1E, A(V1,...V

n) o

If 14A1...4An and 14131...<1Bm and waif—are!If m G, then

= fgszm,Bls(V
1,...Vn)p.o

foszm.Bm_15
(Vl,...Vn) '?(v1’000vn)

ooo4A

n

Proof. (i). “(L preserves identity morphisms because if 14A1

in G, then “didA ) =

L < pIAn,A15(v1....vn),...pZA
n,An_l$(v1,...vn), idA“(V1....Vn) N .by
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def. of ns = [< V1,...Vn>] . because of axioms of NC.) to that

= 1d [4v efi,...vne1:(v1....vn_l) )1 .

(ii). ml preserves composition because if 14:11... 4An. 14B1...4Bm,

14c 4c in C thenfiueg) =
1 9

[< faggpzcvflij(V1,...Vn),.e.?;§(\71,uevn))J ' def. of nae

= .015(fcszm,BlS(vlgooovn) ’00.?(V1.ooo vn)),ooo

and rue—es . 3:13 —»c
n m m 2

BWWIHHVII),...?(vl,...vn))DJ , because of axioms to that

effect in INCL).

= [< lepuvn),...?(v1,...vn)7] eL< WHVIHHVE)"

§(v1,...vm) >1 ='nc(t)e1\,cfg), as required.

(iii). If 14ml...“x3 in c then n¢(p(An)) e

[< WWIHHVB)"..m(vl....vn)>1 = [(vl....vn_1>]

p<n¢<An>).

(iv). If f:An—-'-—9Bm in a: where 1a fi...<\An and 1413 ...<\Bm<\B m<
1

then mime) = [<vle A1,...VneAn(V1,...\in_1).Vn+f t'B(v1....vn)>]

by def. of “c. _

= [(vleq,...\/neA-n(vl,...vn_1),vmle §(W(vl,...vn),...

?(v1,...vn))>J , because there is an axiom to that effect in U(¢).

= [< Whyuwn),...?(v1,...vn) >1 ' [(vleq,...vmei:(v1..

Vm_1).vmle §(v1,...vm)>] , by def. of (1201(6)).

= “6(0'1'1‘2’03), As required.
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Also in this situation, T\¢(q(f,B)) = [< qz{,85epZB‘315(V1,...'\/n+1

co. = . 9"(q {,3le, vml) >1 l'.< p2: Bier piBm.Bl)(Vl....vn+1),...

PZI.B50f(V1,ooovn+l).qu‘B)(v1'ooovn+l)
= fcszm,Blj(\/1,...Vn),

...-f-(Vl,...vn).vn+l>] =

Lemma. If F: ¢—%C' in Con then the diagram

 

cLMum»

F J (Hum)

G n0 Mow»

commutes.

Proof. If sz ——->B , where 14A1...4A ,1<\B ...<\B ind; , then
n m n m1

nan) = [< ropZBm,315(vl,...vn),...?(v1....vn) )1 . Thus

¢(U(F))(fl¢,(r)) =

C< FchpZBm,Bl)(V1.000Vn)goooFZf5 (V1,...Vn) =

F0315)(v1....vn),...FZr5(vl....vn) >] = 11g (Fm).

So we have a natural transformation R:idcon—-—’ (IOU. We wish to

show that for each C , TIC is an isomorphism in 90—11. Unfortunately

this turns out to be rather tricky. We have to define a contextual

functor gar: «AHMED—46: and show that Sauna = mm and

“PEQ = id «Rum». The procedure that we adopt in defining gm

is to define a function J from derived T and G-rules of 0(6) to

objects respectively morphisms of C . We show that J induces an

equivalence preserving map from contexts and realisations of U(@) to

)‘O
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objects respectively morphisms 'of C . Thus we get a map from objects

and morphisms of C(I'KCN to objects respectively morphisms of C, ,

we Show that this map is a left and right inverse to 71¢.

Initially J is defined just as a partial function from the derived

T and 6 -rules of 0(5) to the objects respectively morphisms of C, ,

though eventually we show that J is total.

Consider the forms that the derived T and 6 -rules of

11(6) can take. By the derivation lemma of $1.7 every derived T-rule

of U(¢) is of the form xlefll,...xmeA m

 

A(tl,...tn) is a type

for some object A of C- such that 14 A1... dAnd A in C and such

that for each i,l$i$n, xlebl,...xmeA m

 

tie Ai(tl....ti_ )
1

is a derived rule of U(¢). By the same lemma any derived G-rule of

UUL) is either of the form xleA 1,...xmeA m

 

1.39A

or else is of the form xlefll,...xmeA m

 

f(tl,..tm)& A

for some morphism szJ—eB where 14 A1... dAn in C , such that for

each i.16i$ n, the rule x1601....xm€Am

 

tie Ai(t1,...ti_ )
l

is a derived rule of MC) and such that xlefl 1,...xmeA m

 

§(tl,uootm) = A

is a derived rule of U011).
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Bearing this in mind the function J from derived T and

 

Jules of U(C) to the objects and morphisms of C is defined

6

inductively as follows:

/ XIEEA]}°"meEA!n
)

a K/———————,

A(tl....tn) 15 a type:

.102t )’...J(Rt1)’p(J(RAm).l)'A
h

J i1 xle £31.."me Am )

V\_f'(t1....tn)€A

J(Rtn)‘. ..J(Rt1)‘p(J(RA m).1)"r'.

  

'p(J(RAm),JZR 53.))5 Where for

3(x1efil,...xmel‘\m)

xj GA ,«‘

each i,l< iSn, Rtl is the derived rule x16 01,.“me Am

tie Ai(t1....ti_l)

and where for each 3.1 éjs m, Raj is the derived rule

X19 Alvu'xj-16 Aj_l

 

/_\j is a type

If R is a derivedT‘rule of 0(5) and if J(R) is defined then

HR) is an object of C . If R is a derived e-rule of MC) and if

JO?) is defined then J(R) is a morphism ofC .

J lxlefl 1,...xmeA m

can fail to be defined either because

A(t1,...tn) is a type

one or more of the J(Rt.)'s is not defined or else because the composite

is not defined in . For example, x16 A1,...XmeA m

T

u

A(t1,eeetn) 15 E type

Hill certainly not be defined unless J(R ) is a morphism of C whose codomai

t1
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occurs lower in the tree structure of C than the object

p(J(Rh Ill).1)‘A. for otherwise J(Rt1)‘ p(J(R¢ m),1)'A will not be defined

and thus J(Rtfi)‘...J(Rt1)‘p(J(RAm),1)‘A will not be defined.

We wish to show that HR) is defined for all derived T and 6 -ru1es R

of UHE). This is going to require a proof by induction on derivations

'm U(¢). It turns out that the inductive hypothesis that we must

use is rather complicated. This is because as we proceed to prove

that J is defined on the derived rules R of U(€) we must keep an eye on

the behaviour of J on substitution instances of R, otherwise

the induction does not go through. If we call the inductive hypothesis K

then H is a possible property of derived rules of U(C ). That is for

H is defined inductively. The definition of 11(R) depends on

which kind of rule R is, thus there are four cases to consider:

Casel. T-rules. If RA is a derived T-rule of U(C\L) of the form

1:16 A 1.“.an A n then NRA) is equivalent to 1(a) and 1(b) and 1(c).\
_

A is a type

which are as follows:

1(a). If n>,1, that is if the premise of RA is not the empty

premise, thenH(RA n), where RAn is the rule x1e A 1,...xn_le A n_1

\‘

An is a type

1(b). NRA) is defined and 1t n),l the John) <1 J(RA) in C . If

n othen14J(RA) in (L.
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1(°)- 3(ylefl1....ymeflm )
\

A[t1\ x1....tn‘ an is a type

is defined and is equal to J(Rtn)'...J(Rt1)'P(J(an)yl)'J(RA) . When!

(ylefll....yme51m) is a context of INC.) and whenever (t1....tn)

a realisation of (xlebl....xneAn> "rt <y1€fl11-°°ym€jz m >

with the property that for each i.l$ is n,

ylefl1.n-ymeflm
J\

 

m ..

Hm is a type

Ftt denotes a rule of the form -E-,...-e- .

te-

not have to mention it. Similarly;

the MIC
A‘19'00x1_1 e A 1-1 )
\

.

A1 is a type

Case 2. E—rules. If Rt .15 a derived e-rule of INC) of the form

x1eA1,...xneA n then amt) is equivalent to 2(a) and 2(b) and 2(c)\

teA

which are as follows:
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2(a). MBA). (it is hopedthat it is understood that RA is

)
r the rule x16 A1,...xneAn

Ais a type

2(b). J(Rt), is defined and J(Rt)e ArtCC (J(RA)).

2(c). ( yl-efl1.mymeflm

a )
t[t1| x1....tn\ xn] e ACtll x1,...tnl xn]

. . . . t Itis defined and is equal to J(Rt ) ...J(Rt ) p(J(an),1_) J(Rt),

‘\ '1

whenever (ylefl1,...ym eflm) is a context of U011) and whenever

(t1....tn) is a. realisation of (xleAl,...xneAn> wrt (3119111,...

y e 9, > with the property that for all 1,16 is n,
m f“

316.311.190.03,“ eflm )

AiEtll x1,...ti_1|xi_1] is a type

3'

is defined and J(Rt_) is defined and J(Rt_) E

A A

ylefl lunarfieflm

m ( : ——_————————— ) .
AiL t1\x1,...ti_1'\xi_1] is a type

Case 3. T=ru1es. If xleA 1,...xneAn is a derived rule of UUL)

 

A=A’

0

then (He A1,...xneA n) is equivalent to H(RA) and H(RAI )

A= A '

and J(RA) = .1025 ).

 

[Case 1+. €=rules. If 6A ,...x 6A is a derived rule of U(<E)
x1 1 n n

 

t = t' e A

then H (x16 A 1,.”an A n) is equivalent to mt) and H(Rt,)

t = t' e A

and J(Rt) -.: J(Rt,).



 

.1

§

3

«
K
b
-
v

>
»
-

This completes the definition of the inductive hypothesis H.

We still need two lemmas before we can proceed with the induction.

Lemma 11. If R is a derived rule‘of U(¢) of the form

x16A1,...xneAn such that H(R), If <tl,...tn) 18 a

 

Conclusion

realisation of < x16 A1,...xneA n) wrt (ylefl1,...ymefl m) I such

that for each i,1$ ié n, H(Rt.) then also

A

yl li'O'ymEJq. m

 

H

Conc1u51on Y, tll >LIL,...tn i xn]

Proof. By induction on n. We suppose that the result holds for all

I - I

rules R. of the for!!! fit ,oooxlnle A’n, for 11.4 no

 

Conclusion'

We show that the result holds of R, we must treat each of the four kinds

0 1‘ rules separately.

Case 1. R is a T-rule, say R = RA: xleA1,...xneAn . We

 

A is a type

must show that H holds of the rule yl€fl1,...ymeflm

 

AEt1\ x1....tn|xn] is a type

that is we must show that 1(a), 1(b) and 1(a) hold of this rule.

 

1(a). H(Rflm) is the case because H (ylefl1,...ymeflm)

HEAI

is the case.
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10;). Since for each i,1$i‘$n H(Rt,), so for each i,1 $i< n,

A

J(R J is defined and ‘y €31 .“y e

t —- ~ 1 1' v

* o (Rag.ch J' ———-1—m————————,——
Xli’oooti_l‘ is a typ‘

i

3
g

r

1

Since H(RA), so RA has property 1(c). Thus

 

g 3. y1 e37'1""3’1216'9-m ) is defined and is equal to

Alt1\x1,...tn\xn] is a type

J(Rtn)'...J(Rt1)’p(J(R_n_m),1)‘J(RA ). We wish to show-that J(R_Q_m) 4'

 

J- ( y1E‘D~1"'t'yme~nm ‘ ) thus we must show that

Attll x1....tn|xn] is a type

J(Rflm)<)J<Rtn)'...J(Rt1)‘p(J(an),1)-J(RA),

H(R/_\) implies that for each 1,15 is n, H(RAA). Thus, just as

' \T

 

above, for each 1,15 14 n, ylefllpuym eflm

Ail: t1 [ x1,...ti_1| xi_1] 18 a type)

is defined and is equal to J(R )‘...J(Rt1)‘p(J(R;lm),1)"J(RA i).

ti-t

The situation in 4: then is that 1<1J(RA1)...4J(RAn)<1J(RA)

and for each i,1€i$n, J(RtA)€Arrdzflgtkd)....J(Rt1).p(d(R_n_m),1)'J(R(31)).

Hence in d: o The

situation, is asin lemma 3 of 32.3..

No). Suppose that (51,...sm) is a realisation of

< ¥1€fl1oonymefl m) “rt (216A1,...295AQ) and suppose that for

each 3.1531 111, J(RS ) is defined and J(RS.)€

3 J

M(aeAv-uweW)

flit Sl‘ y1,...Sj_1\yj_1] is a type) .



 

i

m
.
.
-
”

M
.
»

 

We must show that J( 216A1,...z9eAQ
)

AEt1\x1....tnlxn][SlI y1,...3m|ym]

is defined and is equal to J(Rsm)‘...J(RS1)'p(J(RAQ ),1)‘

3(3'165119-H3'm651m
.\ '.

Attl‘ x1,...tn\xn] isatype

 

By the induction we can assume the -corresponding result for the rule

x1e A1'°"xzi.-'.I.e A i—l , whenever 5.51:. That is we can assume that fo

 

A1 is a type

each i,15 i5 :1, z1 19"0296AQ

 

3

\ Aitt1\ x1....ti_1\ xi_le 51‘ yl,...Sm} ymjis

is defined and is equal to J(R%)‘...J(Rst)'p(J(RAi),1)’

 

J y16fl1'”°ymeflm ) Call this the inductive

Ai‘; 121‘ x1....ti_1‘ xi_l] is a type

assumption.

Since for each i,1$i€ 11, MR), so for each i,15 1511,

A

216/11,...ZQGA9
.

3 ___..___——————-
—-————-——-—————

————"_

ti[31\ y1,...sm \meQ AiL t1! x1,l...ti_1| xi_l] L 311 yl....Sm \

is defined and isequal to J(R )’...J(Rs1)‘p(J(RAQ),1)‘J(Rt.).
Since

 

Sm «

y 69- i-‘IymEflm
so

JmtJe chfi( 1 1 j '

A iEtll x1....ti_1\xi_l] is a type

ZleA1,ooozoeA9

I‘- ________________
_____________———

—————-—

tiE sll yl,...Sm\ ym]e Ai[t1\ x1....ti_l\ 2:14] [sl\ yl,...Sml

 

e AVr¢(J(RS )'...J(RS )‘p(J(R ),1)' 3' ylefll....ymeflm

AiCtl\ x1....ti_11xi_1 i



w
w
w
-
m
m
m

.
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Now we use the inductive assumption to get, for each i,1£ is n,

  

3(ZlefilgocozquQ

ti[ Sl\ y1,...Sm\ ym] 6 l) i[ t1 \ x1....ti_l\ xi_1][ 81 l y1,...Sm\ ,71

2 6A ,...z eA

€ And} I( 1 1 Q q )

Ai[t1| x1....ti_1\ xi_1][ 51131,...smtym]

Let 0'1 = ti[51\ y1,...Sm\ ym] . We have shown that (0‘1"...0‘n) i:

a realisation of (x16 A1,...xne A n) wrt <21€_A1,..Tzqef\2)

such that for each 1,13 is n, “Ru-i) is defined and J(R;—i) e

(ZIEAli"‘zQ€AQ - )3,

Ai[6'1\ 11,...G’i_1| xi_l] is a type

Since MBA) we can conclude that z 6A1,...z EA

Ate—ll 1:1,...0'n \xn] is a type

is defined and is equal to J(Rg-n)‘...J(R o‘l)‘p(J(RAQ).1)’J(RA).

Since m“), so magi) = «REM».HamsfgwwmtAmman} .

Hence 3(z15A1....zquo )= (J(Rsm)....J(Rsi).

Atcl‘ 11,...G'n\ xn] is a type

p(J(RAv ),1)‘J(Rt ))‘...(J(Rsm)‘...J(R31)'p(J(RAq),1')3(Rt1)‘p(J(RAQ ).1)'

n

NRA) = J(Rsm)‘...J(Hsi)’p(J(R_/\v ),1)‘J(Rtn)'u.J(Rt1)’p(J(Rfl_m) ,1)‘J(RA

by lemma #(iii) of 52.3. Thus 216A1,...zve1\9

3

ACtll x1....tn\xn][ sl\ y1,...sm[

.— .-

_. .—

(ZIEA1,-..ZQEAQ
)

' AEG—I\x190006—n‘xn'] is a type

J(Rsm)'...J(RSS)‘p(J(RA9 ).1)'J(Rtn)'...J(Rt1)‘p(J(an),1)‘J(RA) =

J(RSM)’...J(R51)'p(J(RAQ).1)‘ a (rylefl luuymeSL m > ,

‘ Xl,...tn‘ Kn] is a
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as required, since H(RA)..

 

Case 2. R 18 an E -ru1e, say R = Rt = XIEA 1,...xneA n

‘ t e A

We assume H(Rt) and we must show that

H (ylefl1.---ymeflm

t[t1\ x1,...tn\xnj e Attll x1....tn\xn'] I

 

that is He must show that 2(a), 2(b) and 2(a) hold of the rule I

ylefllo‘udmeflm

 

t[t1\ x1....tn1xn] e Afitfl x1,...tn\ xn]

E

§

I

2(a). It follows from Case 1 that ( ylefll,...y ejl

H ____"'___‘“______

AC?“ 3:1,...1:n inch] is a type

2(b). Because H(Rt) it follows that

ylefllmoymefl m

J

t Etll x1....tn \ xn] e A[t1\ x1,...tnl xn]

is defined and is equal to J(Rtn)“ , _ (“Rt‘vPKK Rfl‘lsfl‘magbecause

 

H(Rt) it follows that J(Rt)6Arr¢ (J(RA)). Hence

t[ xlgaoptn\ e A [ xlgoootn\ 3n]

ArV¢(J(Rt“)‘...J(Rt1)*p(J(Rn_m),1)‘J(RA)).
But since H(RA),

J(Rt)= lgoooymEflm

Attll x1,...tn\ xn] is a typl

 

thus y e5). 1'00y efl ‘
JL 1 1 1s m ) e

t[t1\ fi‘oootn‘xn] E Attl\ x1....tn\ xn]
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3V1 Efll..'..ymefl m

 

) ) as required.

And I <

11,...tnlxn] i5 type

2(c). Suppose that < $1,...Sm> is a realisation of < yleflluuyme.

wrt (ZIEAI..o.ZoC-LA°) such that for eech j,l£ jSm, J(Rs:|) 15

 

defined and MRS.) e Mfg} 3 zleA1,...zQeAQ )

4“ _ .

fij ._Sl |y1,...Sj_1 | yj_1_] is a type

If we let 0'1: tlleI y1,...Sm l ym] for each i,1$i{n, then

t xlyoootni an 31,...Sml me= t ‘xlgoocq'n| xn] and

AH“ xlm-tn \xn] [31$ y1.---Sm\ym] = A [61! :5..." 031 \xn] -

Thus we just have to show that zleAl,...zer\Q

u.-

J —_._..—————-
———————

t [61‘ x1....o—n‘ xn] e Alla-.lx”... o

is defined and is eqeal to J(Rsm)‘. . . 3813‘)" P(I(RA9)1Y*

3(Y16fl11-00ym6flm )

t[t1\x1,...ltnlxn] 6 Atti‘xl100'tn‘xn] .

 

As in case 1, (6" ,...Gn> is a realisation of <xleAl,...xne1

1

wrt (zleAl,...zQel[\_q> such that for each 1,15 ign, “RC-i) is

.defined and J(Rcri)E:Arr( zleAl,...zQeAQ )

Ai fi'oovd‘i_l\
is a. type

Thus since H(Rt), 216AlgoooneA9
)

I —————,-—-————————
—-

t[0'1\ 5,...cn\ xn] g Afic1\x1,...c~n\ xn]

is defined and is equal to J(Rg-n)‘...J(R5-1)‘p(J(RAQ),1)‘J(Rt). But

as H(Rt_) it follows that J(R¢i) = J(Rsm)'..;J_(RSi)'p(J(RAI),1)*J(Rt_.

A
A
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Hence I(2.15‘AINHZQE‘A“z
) =

tC51\ x1....c'n1.xn] e ACO’l\x1,...crn\xn]

(J(Rsm)'...J(Rsi)‘p(J(RAQ),1)'J(Rtfi))'...(J(Rs~2‘...J(Rsi)'p(J(RAQ ).1)‘

J(Rt1))'p(J(RAQ).l)'J(Rt) = J(Rsm)’...J(RSi)‘p(J(RA° ),1)’J(Rtn)‘...J(Rt1)‘

p(J(Rg_m),1)*J(Rt), by lemma 1+(iii) of 52.3.

But since Mat), J(Rtn)‘....J(Rt1)‘p(J(R_fl'm),l)'J(Rt‘) =

( 5'1 efllsu-b'meflm A

3 .______._______.___) , Thus

t[t1[ fi,...tn\ xn'] eAEtl‘ x1....tn\xn]

zleAl..-.zQeA9 \=

'\ t[cli 1:1,...Gnlxn] e A[c51|x1.-..Un§xnll

3. ( yle-n-1""yrne-Qm ) , as required.

tLtll x1....tn\ xn] e A[t11x1,...tn\ xn]

Case 3. RisaT=ru1e, savR=x1eA1,...xneAn .

A= [3'

We assume H(R) and we must show that r ( ylefl1,...yméflm

A lxtrntn‘K-s] : AiCkJXI“ -th‘x‘w\]

 

H(R) implies that ERA) and by case 1 that implies

ylefllwoymeflm

H<————————3.A[t1\ x1....tn\xn] is a typ

 

Similarly we must have (ylejl 1 g . . .ymefl m )

A'Etl ‘x1,...tn\xn] is a.type
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I

 

HUI/3) also implies that ' ylefllnuymeflm B

A[t1\ 11,...tnkxn] is a type

J(Rtn)‘...J(Rt1)‘p(J(Rfi_m),1)‘J(RA). H(RAI )- implies that

 

' y €41 ‘Ooy ‘ _ I tJ( 1 1. meflm ) - J02“) ...J(Rt1)p(J(an

AICtl ‘fi’oootn 1 xn]-is a type

J(RAI ). But H(R) implies that NRA) = J(RA’ ), hence

  

j ylell l.--oymeflm ) _ I ylen1.-nymeflm.

xlgoootn‘ Kn] ‘iS type A. \ x1...-tn \ xnlis

This completes the proof that ylefl1,...ymefl m

H

 

A Etlfi x1..--tn!xn] = A'Etfixh...tnl

Case 1+. R is an ezrule. Very similar to case 3.

Lemma 12. (i). For every nkl, if 14A ... 4An in C then (a)

‘ x16 Kl-goooxn-le An_1(x1,.. .xn_2)

1-;(figooexn_l) is a type

 

3

 

is defined and is equal to An. (b) for any 1,15 is n,

I fig"..an E<xlgoooxn-l)

x1e Ai (x1,...xi_1)

 

is defined and is equal to 'p(An,Ai)'.

(ii). For every 117/1, if 1‘<IA1...<3An in C and if f:An——-)B is a

non-trivial morphism of (C then 



 

2.6L}

'xl e X; ".an 13x1, . . .xn_l)

3 ____________—_—

?(fi,nooxn) e 5.B(x].3000xn)

is defined and is equal to 'f'.

Proof. (1). The proof is by induction on 11. If n 1 then (a)

JCA; is a type) is by definition A1. (b) _( fie}; >15 by definition

d -——f::

x191

op(A1,A1)O. 1f n>1 then (a) x19 A1,...xn_le 3:1(x1,...x'n_2)

An(x1,...xn_1) 15 a type

I?!“ \ ‘\

' wuufl 2 u
p 1.1-1 9

I ..L_.__ n .1__ _ .

H ' "118 e n. Lb hue 2""

\
l

is defined to be J(Rn‘1)’...J(R1

 

xle A1,...xn_leAn_l(xl,...xn_2) . and Mn 15 the rule

 

xle A1, . . .xn_2e An_2(x1. . . .xn_2) . By the 1ndgct1ve hypothesm

  

An_1(x1....xn_2) 15 a type

' __ I I -
_J(Ri) _ p(An_l,Ai) and J(RAn_1) _ An_l. Thus

x1e E;....xn_le An_1(x1,...xn_2) is defined and is equal to A
J -

An(x1,...xn_l) 18 a type

_ by lemma 3(ii) of §2.3. (b) In view of (ya),

._ xleA1’°"xne An(xl"°'xn-1) is just defined‘to be 'p(An.Ai)'

\l —-—————————————

xieAi(xl,...xi_1)

(ii). By definition of J, xle‘A1,...xnéaAn(x1,...xn_1) =

I __________.__

?(figoocxn)e (fOPEBj)‘B(H1'0'xn) I
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X16 A1,.00xneAn(xi’.ooxn-l)

J .0003-

xne K’;(xlgoooxn ) x16 A1

-1

xle A1,...Xn_le An-l(3cl.oooxn_2)

An(x1,...xn_1) 15 a type

51)
‘lfD.

pH

this lemma, this equals fp(An,An)"...'p(An,A1)"p(An,l)‘ ‘f', which

equals '1” by lemma 3(ii) of §2c3.

Corollary 13. (i) For every sort symbol -A- of U( C), if 14111...

3‘16 rig-ooan i:(x1,oooxn_l)

-A-(x1’ocoxn) is a type

QADQ A in (I. then

H

 

(ii) For every sort symbol .5 of ME), if 1414]....An in C and

x1qu 0 o oxne .A—n-(xlgoooxn_1)szn——>B in c then H(

Ebfinnxn)E(fcpiB§5‘B(xl,...xn) )

Proof. In View of lemma 12 it only remains to show that J behaves

correctly on all substitution instances of the given rules. But the

definition of J ensures exactly this.

Lemma. For every derived rule R of U((;), H(R).

Proof. By induction on the derivations in U(¢ ). We must .check that

every principle of derivation preserves the property H.

The principles Lil-7 preserve property H. This can be seen at a

We go on to the other principles.glance .

LetRT1. t be a derived rule of U013) of the form x1e A1,...xneA n

teA

fiefi'---xnefi_n(x1w-xn-1c

4

So by part (i:
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let R be a derived rule of UML) of the form x16 A1,...xneAn

A=A'

 

Let R' t be the rule fieA1,...xneA n . We must show that

teA'

H(Rt) and H(R) implies that H(R't).

 

3K P ) is always defined independently of A so since

teA

J(Et) is defined and belongs to Arr¢}J(RA)) it follows that J(Ré)

is defined and belings to Arrq; (NRA )). Since H(R) it follows

that: J(RA) = J(RAI ), hence J(R't) is defined and belongs. to

Arrr®(J(R A’ D. That is 2(b) holds of R't. 2(a) holds of R't because

H(R) implies H(RA’ ). 2(c) holds of R't because 2(0) holds of Rt and

because it P y is defined independently of A .

teA

 

CFl. Suppose that H holds of the derived rule x1e A 1,...xneA n

An+l 15 a type

of U(C). We wish to show that for all i,151$n+1,

H x1e A1’°”xn+le A n+1

fiefli

The proof is by induction on 1. Fix an his n+1, assume

mm mraD.LlSj<L fieAlu-JMJEAnfl

H

Xje

xle Al'°'°xn+le A n+l

xieAi

we can now show that

 

is the case as follows:
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H(Ran+l) implies that for all k,l$k£n+l, H(RAk). In

 

particular H(RAi). Also, (x1....xi_1) is a realisation of

' < xle A15..;xi_le Ai_l) vrt (x16 A1,...xn+le And.) such that

for each j,l$j$i-1, (3901....xmleAml) I

H —.——___ c

xj E

Thus by lemma 11 it follows that ' x1 5- A 1, . . .xn+1 Q. A n+1

H

 

Aiisatype

Which is to say that 2(a) holds of xleA 1,...xn+1€A n+1

xiC—Ai

By definition of J, L x16 A 1,...xn+le A n+1

_.-

J H

 

xje/lj

Aj))'. Thus Since 3' A 1,...Xn+16 A n+1

A1 is a type /

'p(J(RA n+1),J(R Ai_1)) "...'p(J(RAn+1),J(RA1))"p(J(RA
n+1).1)‘J(RL\ i:

Thus, by lemma 3(ii) of $2.3, A 1,...xn+le A n+1\ =

3 i

[Si is a type /

p(J(RQ-n+l),J(RAi_l))‘J(RAi). By definition .( xle A 1,...xn+le A n+3

 

d l

.-. 'p(J(RAn+1) ,J(Roi) ' . Hence

6 Rrrfi [ 3.( xleA 1....xn+1eAn+1))'

[Xi is a type

 

ZS<IX16A1"""‘21+16A n+1

x1e!)i

 

Which is to say 2(b) holds of :15 A1,...xn+leAn+l

xieAi
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Now suppose that <tl_,...tn+1> 18 a realisation of

<11€Alp.dtn+leA n+1) “rt <ylefll,eooymenm> and

for each k,lék $n+1, J02t ) is defined ,belongs to

K

AW zr< ylefllm-ymeflm >

Q ..

ARE 1:11 x1....tk_l \ xk_l] is a type

We must show that J(Rt_) = J(R )’...J(Rt )'p(J(Rh_ ),l)‘

A i “1tng‘,

xie A1 /

But that is immediate from lemma 1+(i) of 52.3, since

:r

3- (fie Al’”'xn+le An+1\ = 'p(J(RAn+l),J(RAi)'.

\ xie Ai /

Thus 2(c) holds of x1GA1,...xn+leA n+1

.xiEAi

CF2(a). Suppose that K is a sort symbol of U(¢) introduced by the rule

 

xle A1,...an An(x19.'.ixn_1) . Suppose that for each 1,15 1‘ n,

A(x1,...xn) is a type

3716511,...yme5lm _ is a derived rule of U(¢) of which H holds.

We must show that < ylefl1,...ymefl m

A(tl,...tn) 15 a type

This is an immediate consequence of lemma 11 and corollaryB.

CF2(b). Similar to CF2(a).
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511. Suppose that R is a derived rule of U( C) of the form

6A1....xneA n' and that for each i,J.S lg n, Ri is at

 

derived rule of U((\'.) of the form ylefl‘lnuymeflm

t' = tl'eAiE tlh‘l’mti-l‘ xi—l]1

Suppose also that H00 and that for each i,l< is n, H(Ri). We must show

H

 

1,..‘uymefl'm

A [ t1! x1....tn\ xn] = [y [t1'\x1....tn'\‘xn]

From HG?) we deduce 11020) and from each H(Ri) we deduce HCRt-i).

By lemma 11 it follows that 4 y16fl1,001ym€flm >

Attll x1....tn\ xn] ls a type

Similarly it follows that” ylefl1,...ymeflm

 

H
A'ttlfl x1....tn' I xn] is a type

Finally, 3 ylefl1,...ymeflm = J(Rtn)‘...J(Rt1)’p(J(R5)_n

 

A [t1] x1....tn{ In] is a type

J(R ) = J(R . )-...-J<R . )'p(J(R ).1>‘J(R -) =A t t 1 an, A
n

a. FIEQIa-Hb'meflm )

A'l: tl'l x1,...tn'| :11] is a type

So ylefllnuymeflm

H ______
__—_

AEtll x1,-..tn| xn] = A.
)3"..th xn]

as required.

£113. Similar to 511.
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Al and A2. We wish to show that these principles preserve property E

  

We must show that whenever P is an axiom of U(¢) such that

A = A '

P and then

H ____ H _.______ H _
Aisatype A'isatype A=A'

and we must show that whenever P is an axiom of U(¢) such

t = t'e A

that H P ' and ' p then p . In the fi
H H —-—— -

t e A well t = t'eA

case this amounts to showing that J( P ) _ P

Alsatype A'isat

 

so we go through all of the axioms of U(¢) checking that one or the

other holds as appropriate.

(i) For 212.0, m'>/1. Q>,. 1, if laAl...<xAn, 10B ...<iBm and
1

14 cl... <ch and r:An-——>Bm, yam—)0? in <1: thenU(¢) has the axior

A1,...an AD(X1,...xn_l)

fog(x11...xn) = E(fbszm,B1)(x]-'oloxn)'00.?(xl'oéoxn))

 

'fog o

By lemma 12, _ ‘ xle'AI,”.xneE(xJ-,...xn_l

J

Ké(xl,...xn)€ (X1....Xn)

 

On the other hand, by definition
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J (x19 371""an 7&;(xl"'°xn--l)
)

E(£OP('BmgB1)(33,00311‘)gooo?(xlgoooxn))e (fogopzcojj‘cofifinnxn)

.. (X16 Ev-"xneK‘fiH-d‘na’ )‘
J —_________.,________

____—

?(x1,...xn)€ EMOpZBWBlXxlpuxn)"..fepZBm,B1)(xl,...xn))

6—,...xneE( ,’...x _) ‘ e;,'...xn_ GE_ (x ,...:3( A1 X1 111) PIJ("1A1 1_ 11

(figoooxn)e-§l An(x1.oo-xn) 5.5 a.

I . . '1)” 3’ which by lemma 12 equals '13? ....'fop(Bm,Bl)"

p(An,1)"g'. By lemma 3(ii) of 32.} this equals f“g', which by lemma

l+(i) of $2.3 equals 'feg'. Which is just whats required.

(ii). For n);1, if 14 A1... 4An 11141 and 1s i5 11 then INC) has the

axiom Ti}...an K;(fi,oonxn-1)

(£90 0 oxn) = Ki(x1,oooxi_

 

l)

 

J< x16 A1,...an An(x'l_,...xn_l > is defined and is equal to

p(An,Ai) (x1, . . .xn)€ T;(fi,...xi_l)

'p(An,Ai)' by lemma 12(ii). 3&6 A_1',...xne K;(x1-....xn_1)

3'

 

xieK;(x1....xi_ )
l

is defined and eqal to 'p(An,Ai)' by virtue of lemma 12(i). Thus

3'

 

x16 7AI,.nine-713x?...xn_1) )

(fig oooxn)e 1—;(fi‘oooxi_1)

 

3 x16 7.4:"..an E(xl,...xn_l) ) as required.

xi 6 Ai(xl, . . .xi_l)
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(iii). For n>,o, m>,1, 1114 A1... 4An, 1413 ,...4Bm<B and
l

f:An———>Bm in Q: then 0(6) has the axioms

xle A1,...xne An(xl,...xn_l) -

fihl, . . .xn) = E( fonBm,Bl) (xi, . ..xn) , . . .?(x1, .. .xn))

and X16 EwancneA—nklpnxmlhy efiflxl, ...xn)

 

q? f,B5()Li,...xn,y) 5 ye fi(fi,. ..xn)

By virtue of lemma 12, x1611....xnea(fi,n.xn_l)

J

 

BzfopZBm'.B1)(fi-goooxn) ,oco-f-(x1’000x‘n) is a

is defined to be 'f"...'fcp(Bm,Bl)"p(An,l)‘B, which by lemma 3(i) of

in ‘5...Ca -y _- _-..1_ .BV - v1. .2__

Ufi.) 15 Just 1 D, W 1911 lb

3 JLle A1"”xne An(x1"”xi-l) ' as required.

. .
f B(xl,...xn) 15 a type

By defuntxon of J, a xle A1,...an An(x1,...xn_1))y€f B(x1,...xn)

-t—.

B(X1,...Xn)

- . — — —;-
'J.df,}3 . By lemma 12, x1eA1,...xne An(x1,...xn_l),yef B(x1,...xn)

J

(x1,...xn,y)e f‘Bzfi, 0.. .Xn)

'q(f,B)'. But by lemma 5 of $2.3, 'idf.B' = 'q(f,B)'.

We can collect together the information about J that we really

want in the following:

Corollarz 11+ (1) If (KleAl,-nxneA I? is a context of U(¢) then

14in C ' Where = xleA1,...xi_16A 1-1

Ai is a type



  

2.73

(ii). If <tl,...tm) is a realisation of < ylefl1,...ymeflm§

wrt {x1 eA1,...xne A n) in Mg? then for each j,1s fish, J(Rtj) e

Arv¢(J(Rtj_l)‘...J(Rt1)‘p(J(RAn),1)‘J(R_Qj). Where Rtj is the

rule x1e A 1,...xneAn

l yl!°'°tj-1| iii-11'

(iii). If (x16 A1,...xneAn§ 5 (scl'eAlv,...xn'eAn'> then

mean) = J(RAIn).

(iv). If (1:1,...tm) = <tl',...tm'> then for each 3",1-53'5m,

By corollary 11+(ii) and by lemma 3(iii) of 52.3, whenever

<tl,...tm) is a realisation of < yIEfllgoonyEEflm> wrt

< x16 A1,...xne A!» in 11(5) then there exists a unique m-tuple

( Xv... Km) of morphisms of C such that for each j,1 Sjsm,

Xj:J(RA n)—->J(an) and ' yj' = J(Rtj), and such that for each

j,1$ 34m, Xj+1.p(J(R51j+l),J(Rflj)) = Xj. This last condition impli

that the m-tuple . (Xv... aim) is determined by Xm:J(RAn) «44(11ler

So the statement can be reworded: for each such realisation there exis

a unique X :J(RAn)———>J(Rn_m) such that for each '3', 1s jgm,

- (J(R ),J(R .))v = J(R .). Thus we can define a function §

from objects and morphisms of C(UULD to objects and morphisms of (I,

by

[< x.ea.,...xnean>:1 (3 3mm

1 Btu—"£91 ‘ F.) 1X

E<Yuefl.,...ymeflm>3 3mg 3
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x is the unique map such that for all 3.1 <35 m, 'x °p(J(R_n m),

where

Jami»: = JCRtj).

Then X is well defined by corollary 11+(iii) and (iv).

we show that is an inverse to (L——>€(U(t£ )). We need

one last lemma.

-
.
.
.
.
.
.
~
r
.
:
~
.

Lemma. 15. If xle A l,...xm_1e Arkl is a derived rule of U(¢)

 

An is atype

then for alIi,ZLS is n, xleAl,...xi_.|e
A i_1

A1 = JZRA15(x1,...xi_l)

 

is a derived rule of MC).

 

If x1e A1,...xneAn
1s a derived rule of U01.) then

t e A

xleAl....xnepA n is a derived rule of 11(51):

 

t = JZRtl(x1goooxn)

Proof. By induction on derivations in UN: ). ‘a’e show that each

principle of derivation preserves the property. We have only to check

those principles by which T and e-rules are derived. These are T1.

on, CF2(a) and CF2(b). If fact the checking of T1 is trivial.

CF2(b) is very similar to CF2(a), so that leaves us to check CH and CF2(a).

 



 

r

l

i
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cm. Suppose that for all j,1$ js n+1,

x1e A1,...xj_1e A j_1 is a derived rule of U(¢) and suppose that

Aj = JZRAj5(x1,...xj_1)

have some 5L ,lé is n+1. We must show that

xle A1" ”xn+le A n+1

. = . coo .x1 'pZJZRA SJZRA 55'(x1, xn+1)EA
n+1 ’ :L 1

 

is a derived rule Iof U(¢). But this easily follows from corollary

of this section and the axiom

X16 ,0. uxn+1er n+1) (xlgqoexn)

,J )(x1,...xn+l)

CF2(a). Suppose that 1-3- is a sort symbol of 0(a) introduced by the rule

yle q,oooyme§;(ylgoooym-l) and suppose that for each j,l$j$ m,

B(yl,...ym) 18 a type

is a derived rule 01‘ UN: ).

We must show that the rule x16 A1,...xne A n

B(t1,oootm) = fiR)(xl,...xn)

is a derived rule of MC). where R is the rule

Xle A lgooeanAn

B(t1....tm) 18 a type

Let X:J(RAn) --—>Bm be the unique map such that for all

‘j,1< 3‘ 5m, 'Y°p(Bm,Bj)' = J(Rtj). By lemme. 5(1) of this section
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Xle(IUQAISOOOXDSllhian5(x1,ovnxn-l)

X‘B(xl,...xn) = 3(J37Rt15(x1,.ooxn),...JZRtm5(xl,...xn))

 

is a derived rule of UUSL). Thus so to is

xle A 1,”.an An 0‘ But by lemma 3(ii) of S 2.3,

X’B(x1,..oxn) = B(tl,oootm)

X‘B = J(Rtm)‘...J(Rtl)‘p(J(RAn) ,1)‘B, which by definition of J is

  

:3— X16A1,.ooxneAn o ThUS' 01,...XneAn

B(t1,oo.tm) is a type I B(tlgoootm) = JER5(x1,...Xn)

is a derived rule of UNI), as required.

 

Corollary. (i) gonv idc- (ii) n¢°§ = “New”.

Proof. (i) Follows directly from lemma 12. (ii) Follows from

lemma 15 and corollary 3.

It now follows from quite general considerations that

g :C(U(¢))—->£ is a contextual functor. For example ‘3 preserves:

composition because E(fog) = s (n d %(f))oT\£( 3(3)) = '

’3de mogoom,= s; (f)o 2(5). '

So that completes the proof that T‘Q: CL—-—)(U(¢))

is an isomorphism for every contextual category C. . So completing the

proof that the category Con is equivalent to the category GAT.
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2.5 Functorial Semantics, Univarsal Algebra

2.5.1 Functorial Semantics

An algebraic semantics is an equivalence between a category of

theories amd a category of structures. We referred to several such in

3 2.1. In all cases so far considered there is a further

equivalence. In all cases the usual definition of model of a theory can

be replaced by a new definition which uses only the notion of structure.

Lawvere has used the term functorial semantics in describing this kind 0.

semantics. Functorial semantics depends on an equivalence between the

category of models of a theory U and the category of structure preservin;

morphisms from the structure 6:(U) corresponding to U to a special

canonical structure (the world structure?). For example the canonical

structure is taken to be the category with products §g£ in the case of

algebraic theories (Lawvereflfl ). Or in the case of classical

propositional theories the canonical structure is taken to be the

Boolean Algebra 5 0,1} .

The present situation is as well behaved as any if the canonical

structure is taken to be the contextual category Fame

If U is a generalised algebraic theory then the category of models <

U is equivalent to the category which has contextual functors G;(U) to f}

as objects and natural transformations as morphisms. Thus we can assert

U-alg E ConFunc( (4(0) @112) .



 

i
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It has turned out that the inductive construction of CW)

from U has enabled us to replace the usual inductive definition of

| ‘

model of U by the definition 'a model of U is a contextual functor

M : ¢(U)—',_F‘£n;“o

Every interpretation I : U——>U" induces a contextual functor

d: (I) : $(U)—-—*¢(U'). Composition with £(I) is a functor from

ConFunc (£010.93) to ConFunc( C(Ii)y§92). It is the functor

I-alg : U'-alg—;—>U-alg. Those functors between categories of'models

which are induced in this way are called generalised algebraic functors.

we can show that all such functors have left adjoints. But anyhow

this is equivalent to a known generalisation of Lawvere [11] 's theorem

all algebraic functors have left adjoint.

2.5.2 Universal Algebra

We'have been able to prove a generalisation of Birkhofis theorem.

Previously this theorem has been proved for many sorted algebraic theori

see Birkhofi" and Lipson [3] . Birkhefi‘s theorem classifies those

subcategories of a category U-_alg that arise as the category of models 0

equational extension of U. The result that we describe characterises

subcategories U'~alg of y;_a_l_g in cases where U is any generalised

algebraic theory and U' is any 8 -equational extension of U.

By an e-equaltional extension U' of U we mean an extension by

axioms all of which are E=rules. Thus U' is not permitted to have any

=axioms which are not already in U.
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If we state the result then we can explain the terms afterwards.

Theorem If U is a generalised algebraic theory and if P is a

subcategory of U-alg then equivalent are:'

i. P is the subcategory determined by some €-—equational

extension U' of U.

ii. P is a full subcategory of U closed under products,

homomorphic images and subalgebras and having the property that if M

is a U-algebra and if all the finitely generated subalgebras of M belong

to P then M belongs to P .‘

The U-algebra H' is said to be a homomorphic image of the U-algebra

M iff there exists a homomorphism f : M——-—%M' having the property

that for all chlc an in Cm, for all a'le M'(A1), for all

I I I I I I I I

a 1),... for a ne M (An)(a 1,...a 190-08. 11-1), there

eXists 31,...an such that aIE-H(a1),...ape M(An)(a1,...an 1) and such

-0 '._I
that f(a1) - a l,...f(an) — a n.

A U-algebra M is to be finitely generated U—algebra iff it is

the homomorphic image of some finitely generalted free algebra.

Consider for a moment. Every theory U has a minimal model denoted

KU and built out of closed terms. Alternatively this minimal model

is described just in terms of the structure G;(U). For example if

14A in C(U) then KU(A) = Hom(1,A). otherwise if

1c A1... Anc A in Cm). then if eleKU(A1),... if an€ Ku(An)(al,...an_l)

then KU(A)(a1,...an) = g aefiom C(U)(1,A)‘ aep(A) = an} .
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Now, the free U-algebras are the algebras

I-slg(KU') for I : U-—>U' an extension of U by constants alone. The

finitely generated free U-algebras are these algebras where U' in an

extension by just finitely many constants.

For example, take U to be the theory of categories. Take U' to

be the theory of categories +

smbol Introductorz Rule

8.1 «516 Ob

a2 a2e0b

b bc—Hom’n a ‘-\. \u-l' 2a-

In this case I-alg(KU') is the category ---——>- . It is the free

category with one morphism. It is a finitely generated free category.
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We say what it is for a contextual category to have disjoint

unions and a singleton object (comparable with category with finite products

and terminal object). The category of these structures is denoted

2 -Con.

We then introduce a new notion cf structure - the notion of a

category with attributes. The category of these structures is denoted

Attcat. We show' that the category I -Con and the category Attcat are

equivalent categories.

Ln 81,5 we alluded to a contextual category of categories, category

indexed families of'categories and so on. The well known fibration

construction induces a structure of disjoint unions on this contextual

category. We use the Attcat,IZ-Con equivalence to give a fairly brief

 

description of this structure. This is in E 3.3.

S 3.h contains the definition of M-L structure intended as the model

theory of a strengthened N-L type theory.

Also in §3.# an equivalent notion of structure, based on the Attcat,

 

2 -Con equivalence, is put forward. Then in S 3.5 we can briefly describe

a new model of M-L type theory, we refer to it as the limit space model.
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3.1 Disjoint Unions and Singleton Objects

A contextual cats or with dis 'oint unions (63 , 2,4} consists

 

of a contextual category (I: and for every Q4A4 B in &, an object

2B of C and a morphism ONE) of C such that Q<ZB in (I: , such

that ONE) is an isomorphism in 6;, 0((8): B——>ZB such that the-

\‘Z

V

diagram

I
n
c
—
G
U

S

commutes9

subject to the condition: If r:Q—'—>Q' in (L and if Q'dAdB then

r' :13 = if‘B and f’O((B) = ours).

The category of contextual categories with disjoint unions has

as morphisms F: (C ,2 ,°(>—> (a; ' , 2' , 94' > those contextual

functors F: ¢——>¢' such that for all (241143 in C. ,

HEB) = z'F(B) and F(o<(B)) = 9(‘(F(B)).

It follows that if <C,Z,D(> is a contextual category with

disjoint unions and if f : A—-—>A' 'in C- then

6f: <¢AHZ .0<>—>< QA,Z.0<> is a morphism of contextual

categories with disjoint unions.

Actual disjoint unions of families of sets induce the structure of

contextual category with disjoint unions on the contextual category Pam
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of sets, families of sets and so on. This is as follows.

If 14Q1...4Qn4A<lB in Fan then define EB, such that Qn<l EB in Fan,

by defining ZB(r1,...rn) = l<a,b> a €A(r1,...rn) and

beB(r1,...rn,a)} whenever r15 Q1....rne0h(r1.;..rn 1). Define

OMB) : B---’ZB in m by defining 0((8) = (fl....fn,g) where

fi,l$ is n is defined by fi(r1,...rn,a,b) = :1 whenever r16 Q1..."

rue Qn(r1,...rn_l), aEA(rl,...rn) and b€BJ(rl,...rn,a), and

where g is defined by g(r1,...rn,a,b) = < a,b> o

It is easy to see that CUB) has inverse Ok-l(B) 'given by

<L1,...Ln,k1,k2> where Li,l< is n, is the operator given by

Li(rl,.‘..rn,c) = ri whenever r16 Q1....rne Qn(rl,...r 1) and
n-

CGZB(r1,...rn), and where 1:1 and k2 are given by

ki(r1,...rn,c) = the 1th component of the ordered pair C. The

conditions f‘ZB = um and News» = o<(£*B) .are

automatically satisfied. Even without these conditions it is clear

that the definition characterises disjoint unions in Fam uptibo

isomorphism.

Lemma 1 If <C,Z .d) is a contextual category with disjoint

unions then Base (G) is a category with products of pairs (and hence h

finite products).

Proof ' Suppose that A and A' are objects of Base (C).

 

That is to say suppose 14A and 14 A' in G‘. .

In any category, pulling back over the terminal object yields a

product diagram. Since

(MamyA’.

pm)" 3' \‘ 1

\A/

is a pullback diagram inK, 



 

.
-
N
“

y
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emu“, a’)

A a“ Pm *R'———-———> R’

is a product diagram in G— 0

Since 0((p(A)‘A') : p(A)‘A'—*zp(A)‘A' is an isomorphism

051(p(A)'A')°p(p(A)‘A') «dowry», q(p(A),A')

A<—————-——————Zp(A)‘A' ———————————————+A'

is a product diagram inC. l <Zp(A)‘A' in C and‘so this diagram

is a product diagram in Base (CE).

If this proof is interpreted in C = Q then we have Base (C) =

S_e_t_, the category of sets and functions. If A and A' are sets then

p(A)‘A' is the constant A-indexed family with value A'. Thus

AxA' in E is given by Zp(A)’A' in F3 which in turn is just

i<a,a'> \ aEA ad a'E A'} . All is as it should be.

A singleton object of the contextual category C is defined to be

an object of Base (C) that is terminal ind; . Equivalently it is

an object of Base (C) that is isomorphic in a: to the terminal object 1.

The singleton object, if there is one,will usually be-denoted 31-} .

The unique morphism : 1—53.33 in <1: will. be denoted e.

Thus a contextual categorz with singleton object (6:, ,e.) consists of

a contextual category (f. , an object of G. such that ls") 51-} in G:

and a morphism e : 1—)?} such that p(i-‘3 )oe = my): . The morphisms

between contextual categories with singleton objects are taken to be those

contextual functors which preserve the singleton object.

It is not difficult to see that if U is a. generalised algebraic

theory then the contextual category £01) has a singleton object iff there
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exists expressions t and A of U such that x EA : t = x GA is a deriva

rule of U.

Lemma 2 If C. is a contextual category with singleton object i'} a:

 

if F : ¢—->(D is a contextual functor then F( {*3 ) is a- singleton

object of {D . Proof F is a functor, hence F preserVes isomorphisms.

 

Thus MFG-3) and F(§_'3 )21 in {D .

Lemma If (Gust-3) is a contextual category with singleton

object and if A is an object of C then ' (CA, p(A,1)‘ {-23} is a

contextual category with singleton object. If f:A-———->A' in 61 then

(Cf: (CA,,p(A',1)‘§_-}>—> <£Asp(A,1)’{-3> is a

morphism of contextual categories with singleton objects.

Proof If A is an object of C, then p(A,1) : A——»1 in G. .

 

Hence (12 :C—HCA. Thus by lemma'l <CA, p(A,1)’{' } > is
p(A,l)

a contextual category with singleton object. Now if

r : A—aA' in (S then (if : CA,———>CA and

Ef(p(A',l)“{f} ) = f‘p(A',1)‘ m = (fop(A'.l)‘ $3 =ip(A,1)‘i-} .

Thus Cf : QA,———) CA and preserves the singleton object.

The category of contextual categories with disjoint unions and

singleton objects is denoted 2 -Con.

The point is that in a contextual category with disjoint unions

and singleton object there is a lot of repetition of structure. For

example if in such a structure Q<\A <13 then Co‘m) is an isomorphism of



 

i
i

i
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of QB with C23. Thus the structure of above B is isomorphic

to the structure of 6; above 223 and because EB is at a lower level

than B it turns out that the whole structure of C, is coded up as

structure at a very low level. This leads to the notion of a

category with attributes. We must first introduce some new notation.

For the remainder of this section we suppose

<<£,z,o<,1.}> to be a contextual category with disjoint unions

and singleton object.

Lemma 1+ ‘If f : A—aA' in Basem) and if A'd B<1D in ct then the diag]

 

up»)
vo‘eo

0((P‘b) J am

i'
D

“D w.sz ’2

 

commutes.

 

Proof. Since f : A————+A' and A'< B<1D we have by definition that

f‘ZD = Zf‘D and r*o<(D) = «(913). But Pam) is defined to be the

unique map : f‘D——->f‘£ D such that the diagrams

  

F‘D (MED)
' F’D-———-)D

.
v

ND (w:qu 2D

commute. Thus the statement of the lemma is a restatement of the condition

roan) = 0((f‘D).
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1 If 14A<xB in Fan: then we let ,0(B) : ZB—9A be the

let projection function from {<a,b> I aeA.b€B(A)} to A.

§ More generally if Q<A<1B in (i then define p03) : Z B~>A to be

0(_1(B)op(B).

. B

1;
28 R

Now suppose f : A—>A' in Base (C) and A‘4 E inc. , define

§(f.B) : z f‘B-—> z B to be the morphism et-1(f‘B)oq(f,B)oo((B).‘

Lemma 5 If f : A———)A' in Base (6,) and if A'4B in C then

3 .
Egg

P(B\ 1R8)

H ————7Fj R’

is a pullback diagram in Base ((11).

Proof Just because

 

41144.6)

. me———ee

J, l
R _____.>,p(

-$

is a pullback diagram in 5: and 0((f‘B) and DUB) are isomorphisms.

Note that these pullback diagrams fit together in the sense that

f f' , ‘
if A__._)A'—-——>A" 1n 5: then f‘f"B = (ff')'B and
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%(£,r"B)o%(f',B) = €(rf',B). We are at this moment collapsing the

structure of G) into Base (C).

We now introduce the# ,b’ notation. We have to think of this

as a reflection at a low level of C , structure at higher levels.

Lemma 6 If f : A——9A' is an isomorphism inc’ and

If A'< B then q(f,B) : f'B—éB is an isomorphism with inverse

-1

 

q(f ,f‘B) : B————%f‘B in (13 .

Proof q(£'1,r'B) : B-—-+f‘B in 63 because f-l‘f‘B = B.

q(r’l,r'B3 ems) e q(f—lf-B) = "(1d .3) e id e
’ I ‘1 Al! "B

-1 t '1. t '1 s ‘1 t v
q(f,B) q(f ,r B) = q(f r f B) q(f ,i‘ B) = q(ff ,f B) = 1df.Bo

In future if 14MB 11:62 and 2340 then the object

Zo<(B)*c will be denoted #6. Thus A<#c in CL. By lemma 6

0((B)"C x C. The composite isomorphism CL)0<'(B)‘C—‘—‘—’—>Zo((B)'C

will be denoted 5(0). Thus (7(0) = <1.(C>('(I3>)"-| ,O<(B)‘C)oo((0((B)‘C)o

Finally we 'Vdefine 5' (C) 2 ZC—-—&2#C to be the isomorphism

OK-1(C)06'(C)o'-X(‘# c).

ol(rs)*c

l ououch)

' B

0((8) /

a

   

$(dk3\“,o((m‘c)

20483 "C 5 #0

‘91:)

Z#c
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Lemma 7 If 14A<B and 2B4C in Q1 then the diagram.

ZC

[4:31 \“C?

Z#C28

Hex;A“)

 

commutes in Base (C).

Proof

 

Use the definition of p and X plus the commutivity’ of

the diagrams

. o<(m'*c . '
, -. .‘ ' odoum‘o) .

l B ‘ 20((m*c=#c

v ' l
B one A

(The first diagram commutes because it is a pullback diagram, the

second he definition of disjoint unions).

 

Lemma 8 If f: A—3A' in Base (C) and if A'4B, ZBQC in

G: then #(‘3 (f,B)‘C) = f‘# C and the diagram

2wan{o

X(S(f,erc I [no

1*“Wm

commutes.

 



 

J

e

H
.
“
-
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Proof ' The situation:

oLT‘C

w,8W: f‘gwigB c

1V 1 J J,
\\:fi//

XF'B. 9 ——-—-——>H’ 13

The identity #( g (f,B)’C) = f‘B holds as follows:

#(3 (f,B)'C) = Z(°((f‘B)‘ S(f,B)*c)

= 20x(r*B)‘(o(’l(f‘B)oq(f,B)oo((B))‘C)

= Z(q(f,B)‘oL(B)‘c)

= i(r*o<(B)‘c) .g.

= f‘2(o((B)‘C)

by def. of# .

by def. of S .

notation - see lemma 1 of 2

Since A'Q B4 C‘k(B)'

and f :_ A—>A' infil.

r*# c by def. of # .

Now if we take the diagram that we wish to show commutes and use

the defihitions of X and Q we see that we wish to show that the outer

rectangle of the diagram

   

«:«m‘rcmmm‘
cWC 04W) ' 2C

oé‘KEL¥.a"c)J /
\ ..

meme
7 C

«(maxi
G

#§($,B)*c
#6:

mm) \ v

2W°W' "

commutes.
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Thus it suffices to‘show that the diagram

w Em: <L(§(¥,B)‘0 C

«($331) 1 MC)

commutes. “

Now 6(0) is defined to be q(0(-1(B),o((B)‘C)oo((Io<(B)‘C)I

and 0'(§(£,B)'C) = q(o£‘1(f‘B),o<(f‘B)* §(f,B)‘C)oo((ol(f‘B.)‘§(f,B)‘C) =

q(ol-l(f’B),f‘°( (B)’C)o o< (rdwrc), by definition of 3 . Thus

We wish to show that the outer rectangle of the diagram

_ as .,c.

mom? *3) , F «(vol J CLM‘KB‘LJLBPCX

i-F*0<(B‘)‘CM99 oLLs'rc

o<(£'o<(8‘)*o J 1 «(0mm

CL(¥)#C)
F*#c

commutes.

Well the lower rectangle commutes by lemma # of this section.

To show that the upper rectangle commutes we‘replace the extended ',q

notation (i.e. use lemma 1 of S 2.3), use the fact that pullbacks

fit together and use the definition of S . This is as fOIIOWS

q(°( '1(f‘B),f‘o( (B)‘C)oq(f,0( (B)'c) =

q.(o<'1(fts),q(f,3)*o< (B)‘C)oq(q(f,B).o-((B)‘C) =

q((>(-1(f“B)oq(f,B),0<(B)’C) = q(§(r,B)o oz'l(a>,o<(B)-c) =

q(§ (f,B),ot-l(B)‘o((B)*C)oq(o( _1(B),o<(B)*C) =

q(§ (f,B),C)oq(O£'1(B),04(B)‘C), as required. 
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If A 6 \Base (CH then p(3.' } )‘A e: A because p(i°.} ) : 2-3—91

is an isomorphism. 1ienc‘e Zp( { ‘} ) 1’ A. We denote p( {Q )‘A by

L(A) and the isomorphism of 2 LA with A by 900. Thus 9(A) : zLA~————>A

is defined by 6(A) = d_1(p( {-3 )’A)oq(p( 1'3 ),A).

Lemma 2 If 1415.48 in 0; then L(ZB) = #(9(A),‘B) and the diagram

ZAB(QB)

ecm Zem‘B

 

commutes.

Proof #((0("1(p(i'} )‘A)‘q(P( 1'} ).A)‘B = Zq(p( 5. '§ .A)‘3

by defintion of# , = Zp(§'} )‘B, by replacing extended

 

‘,q notation, = p(i '} )‘ZB. That is #9(A)‘B = L(ZB).

I _ I

As for the commuting triangle, if we cancel out the p('s and {X 1 s,

after substituting in for' 6 ,a’ and S . then we see that we want to show

that the diagram

23 W’kk
a)

C1,(PKE"S‘),ZB) I emY‘B

Pt i v} )iW/‘T‘e‘m‘g’
//

# awe

commutes. Now q( 9(A),B)00((B) = q(oL-1(p( f"; )‘A)oq(p( 3‘ f ,A) ,B)o “'(B)

q(0{-l(p(i'} )*A),p(f‘} )‘B)oq(p(€'} ).B)o 0((13). Whereas
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Ham‘s) = q<o<'1<p( H mam-3 ),‘B)oO((p(§-k ms). Thus

we must just show that the diagram

o<(p(i-1)‘B)J _ l cues)

Zp(i-i)*B ————->%(MJ)ZB) ZB

commutes. But this commutes by lemma h.

 



 

3.2 Categories with attributes

A category with attributes <§,Att,lc, ‘2 your, {#5 , 25’ , L , 9)

consists of

L

i
:

i. A category _C_ with terminal object lc. Said to be the base

category.

ii. For every object A of g, a set Att(A). The set of attributes of

type A.

“
m
a
-
W
u
.
“

“
A
.
”

.

anu an
.mu

m..." nr: A++(A\
VISA: UL—nub\fl

an aLJA—‘J-

1. cu; vudcuu

f E. and a morphism P(B) : Z B——>M w o > mg.

iv. For every morphism f :_ A—AA' in E, for every

BeAtt(A'), an attribute f‘BEAtt(A) and a morphism

S (f,B) : z f‘B—tSB in 9 such that the diagram

NB film .2?)

m; («m _
r

V

 

HEW
f

is a pullback diagram in 9.

v. For every object A of Q, for every BeAtt(A), for every

CEAtHZ B), an attribute RCEAtHA) and an isomorphism 3(C) :

Z C——->Z#C in 9 such that the diagram
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1C.

mt
t 15 ' Z#C

pm\‘ flaw)

R

commutes.

vi. For every object A of 9, an attE‘ibut L(A)E

Att(1c) and an isomorphism 9(A) : ZLA—aA in 9.

Such that L as a function L : I§;{-———9Att(lc) is an

isomorphism of sets.

Subject to the conditions:

I. If A is an object-of g and if BGAtt(A) then

idA’B = B and €(idA,B) = id EB.

I

II. If ALAN *1 'A" in g and if BEAtt(A") then

f‘f"B = B and §(f,f”B)o§(f',B) = §(£r'.B).

 

III. If f : A—aA' in g and if BGAtt(A') and CeAtt(ZB) then

‘7“ 8(f,B)'C) = f‘fFVC and the diagram

X£§<¥.B)t)l l MC)

“WWW

commutes. »

 



i
2
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IV. If A is an object of g and if B €Att(A) then

L ZB = W: 8(A)’B and the diagram

Z 8

exams)

6&8) , zemvs

X (BLAVH

z #amus

commtes.

The category of categories with attributes is denoted Attcat.

 

A morphism F : <£,Att,......)—-><§'.Att',......> consists of a functo:

F : g—tg' preserving the terminal object and for each object A of g

a function, also called F, F : Att(A)—+ Att'(F(A)) such that F, as

a whole, preserves all the structure - 2',P,’,§,# ,8 ,L ande .

In this section we prove that the category Attcat is equivalent to the

category 2 -con of contextual categories withIdisjoint unions and

singleton object. Part of this work has been done in 53.1 where

we did, in effect, prove that every DE\ 2 ~con\ induces a category with

 

attributes now to be called (Kb). 42(9) has. as base category the

category Base (10 ). If A 6 Base (TD) then AttqD)(A) is taken to be the

iBG‘ i151 \ A<1B in . E,P,',§ ,#,L ends are then defined in

Lemmas of that section then ensure that
am) as defined in $3.1.

(907D) so defined is a category with attributes.

Since any morphism F : YD—+fi)' in -con completely

preserves the disjoint union and singleton object structure as well as



m
c
‘
v
u
-
h
a
-
u
n
w
m
-
.

-
.
.
.
.
.
.
.
W
m
a
w
m
l
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contextual structure and since (FUD) and 4X E') are defined entirely

in terms of this structure it follows that such an F induces a morphism

4X1?) = £903 )——-—) Q(& ') in Attcat. The functoriality of

Q :2 -con———. Attcat is immediate. We wish to show that O is an

 

equivalence of categories. This involves the definition of a functor

 

Y): Attcat————>E-con. -

Then we show that for all [336‘ E ~con\ . WWUDD

is, upto isomorphism of structures; the structure U) recovered from (DUB).

If E is a category with attributes write Base (E) for the

base category of E and write AttE(A) for attributes of A when A e 1 -Base(

P
f
!

Construction If

 

is a category with attributes then define a

contextual category ‘44 E) as follows:

Step 1 The objects of \KE) will be defined in such a way that each ob,

is an ordered pair <n,A> where n is a natural number and ~A is an

attribute in E.

The tree of objects of \HE) is defined inductively. The least

element of the tree is taken to be the ordered pair <0,L(1 E)> , where 1};

the terminal object of Base (if). Then if <n,A> is an object of

YUE) define the set of objects of Y’Ufi) succeeding <n,A> to be the

set {<n+1,B> [ BEAttE(ZA)} .

Thus an arbitrary path up through 44E) is a path of the form

<o,L(lE)> <1 < 1,A1) ......<1< n,An> where AfAttE(Z L1,; ) and

for each 1,15 is n, AiEAttE(2A ).
i-l
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Step 2. The morphisms of \YGE )r Define Ham wag )( <n.A> , <m,A' >) =

{<n,m,f>\ f : ZA——>ZA' in Base (53)}. Define.

<n,m,f)o<m,0,g) = (21,9,1‘3).

Stag Q. Projections. If <n,A> <1 < n+1,B> in VINE) then

B EAttE(ZA) so we can define p(<n+1,B>) = < n+l,n.f(B)> .

Steg 1+. Pullbacks.‘ If <n,m,f> : (n,A>——> <m,A'> in

\i/(E) and if <m,A'> <1 < m+1,B> then BeAttE(ZA') and

f : ZA———>ZA' in E so define <n,m,f>’< m+1,B> = <.n+l,f‘B> and

define q(<n,m,f) ,< m+l,B)) = <n+1.m+1, §(f,B)> . We must check-that

<M1, md ,%L¥,B)>

<fl+l,F*B>-—-—“——» (Wu-1 ,3)

<n,F\>

 

.<m R'

<n)M)'$> ) >

is a pullback diagram in \l/(E). This is easily checked using the fact

that

zva—————> is

R‘P‘B) 1 1m»

2R————>zn'
g

 

is a pullback diagram in Base (E ).

Similar}; the pullbacks in ME) fit together because the

corresponding pullbacks in Base (E) fit together.
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m E amid . Suppose that <n,A> <2 < t1+1,B>4 < n+2,c> in

\HE). Then' CEAttE(ZB) and BeAttE(Z A) hencefi CGAttE(ZA) and

X(c) : zc—-——>2#c in Base (E). Thus we can define z<n+2,c> = <

#c) and a<(<n+2,c>) = <n+2,n+1,x<c)> . Then o<(<n+2.c>) is an

isomorphism because 3(0) is an isomorphism.

The diagram

<n+11C§'

1, \
<n+1.C> z<n+1,q>

\/
<n,R>

commutes in 94E) because the diagram

commutes in Base (E ).

Finally we must show that if <n,m,f> : <n,A>———$<m,A'> in G

“
W

and if <m,A'> <1 <‘m+1,B> <2 <m+2,c> then

<n,m,f>"i<n+2,C> = 2<n,m,f>‘<m+2,C> and <n,m,f>‘o((<m+2,C>

d(< n,_m,f>’<m+2,C> ).



 

E

3

J

3.295

The first identity holds as follows:

<n,m,f>‘f<m+2,C> = <n,m,f>‘<m+l,#C) = (n+l,f‘#C>.

 

Now by condition III of the definition of Attcat, r‘qz‘r'c = # €(f,B)‘C.

Z< n+2. S(f,B)‘C > =
Hence <n+l,f"#C> <n+1,T'-T§ f,B)‘C5

Z< n+l.m+1, §(f,B)> ’<m+2,C> = q(<n,m,f>,<m+l,B>)‘<m+2,C> =

Z< n,m,f)‘<m+2,C> in the extended " notation.

By lemma ’4 of § 3.1 the second identity is equivalent to the

commativity o f

k I q,(<n,m,§'>,<m+1,c>

<n,m\$) <nu‘1,C> .<w\+2,C>

 

0((<r\,m,§.>"<m\»1)o)
o<(<nml,c

(fl.M,$>‘Z<m+l,c> Iz<ma.c>

w<<n,m,$>,z<m+2,c>)

If in this diagram the extended ',q notation is replaced, thus

q(<n,m,f> ,< m+2,C>) = q(q(< n,m,f.'> , <m+l,B>), <m+2,C >) and

< n,m,f>‘<m+2,C> = q(<n,m,f> ,<m+1,B> )*<m+2,c> . If ',q,zand

are evaluated then the diagram required to commute is

<n+1,m~r1 \Qk‘gti‘g’fiw <m+2,c>

 

< Mrgwfira

<m1,m1,x(§\$,
m’q>

<m+2,m+1, g.

(as. #7: H3)" >-——————————————> <m\ c)

' ‘ Sl’ C’ <mt,m+\,gfi,fi~c)> "at?

The commutuvuty of this diagram follows from the commutivity of the

corresponding diagram in 5856 (E) which commutes by condition III of

the definition of Attcat.

 



.
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£512. Singleton object. Recall that in E we hate

L(1E)EAttE(1E) and an isomorphism 9(15') : muggy—41E in

Base (E). It rouon that 9(1E)'L(1E)€ 'Att E(2L(1E)) and thus th

<0,L(1E)>4 <1,e(1E)- (1K)) in WE). Also since 9mg) is

an isomorphism in Base (E) it follows that Z9(lg)’L(1E) is

isomorphic to 2mg). .Thus 29(1 E)'L(1E) ZZL(1E)~Z 15.

Thus ZQUEVLQE) is a terminal object of Base (E).

It now follows that (1,9 (IE)“L(1 55)) is a terminal object of \}/(E ).

We can define the singleton object of q/(E) to be <1. 9(15)‘L(l

This completes the description of the contextual category with

disjoint unions and singleton object induced by a category with

attributes E. Because the morphisms of the categories Attcat and

 

Z -con are in both cases just the structure preserving functions it

 

follows that the above construction is just the object part of a functor

 

V7: Attcat ——-—> 2 -Con.

 

Lemma 1. If YD is a contextual category with disjoint unions

and singleton object then “(PUD )) :5 YD .

Proof. Let S = i Be‘b‘ ‘ there is a D such that

 

149413 in to} . Now define a function K : \Col —-—>s and simultane

define a morphism BM) : KOO-€11 in ‘D , for each object A of U) .

K(A) and [3(A) are defined by induction on the height of A in 1D .

Define x(1) = 1361'} )* 3-} and define 3(1) = p(K(1),1).
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in W for some n>,o and if K(An)If 14A ...QA 4A

11 11+1 l

and fl(An) have 'already been defined then define K(An+1) =

-1 . _ -1 '
cl (K(An))‘;3(An) An+1 and define fi(An+1) - q(o( (K(An))ofi(An),An+1).

Thus ZK(An)<1 K(An+l) and 5(A‘nfl) '-K( Am.)——> Rnu in D.

/R‘(\ H

m... 1

/Qn

Kmm HM mm

‘W 1
idea) 2 uh“)

i
1

It is easy to prove by induction that for each n,B(An) is an

. . . -l -1

lsomorphlsm (usmg lemma 6 of 83.1, g (And) = q(fi (An)00((K(An)),

K(An+l)) J.

Nov define a functor M : \D—e‘Base (D) by

R M ZKR

i F——* J * .1"ka CBLA)C-¥e‘;§"‘(fi’koHKR‘)

A]

Finally define a would be contextual functor : TD——> (iD)) a:

follows:

If 14A1...<1An in D then $(An) = <n,K(An)>

If 14 A1,“: An and 14131...<: 13m in. ID and if

r : An———>Bm in 11> then Mr) = <n,m,M(f)> .
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The result follovts when we show that 5" ' is a contextual functor,

serves disjoint unions and singleton object and is 1-1 and onto from

objects and morphisms of [D to objects and morphisms of Y’UXNB D.

We content ourselves with checking the bit about disjoint unions.

If anything the other stuff is a bit easier to check.

we show that whenever 1<1Ql... 4Qn4A4B40 in D then

Mic) s 263(0) and @(Mcn = o<(63(c)).

5(a) = <n+2. K(C)> hence by definition of )V,

263(0) = <n+l,#K(c)> where#K(c) is calculated in 00> ).

But by definition of QUD ), side) is calculated in [b' , as in 83.1,

and is given by #K(c) = Z(‘X(K(B))‘K(C)). Thus to show that

Mic) = 2W0) we must show just 20((K(h))*K(c) = K(ZC). This is

as follows:

ZO<(K(B))‘K(C) = z 0((K(B))‘(D('I(K(B))ofl(B))’C) by def. of x

= more

= Zq( &-1(K(A))of3(A) ,B)‘C by def. of B

= Z(O(-1(K(A))o}3(A))'C replacing extenc

‘ notation

= (oz‘lmunopsuwz c Since od-]T(K(A):

:2 KA——>A and

= K(Zc) by def. of K

It remains to show that €W0£(C)) = 0“ 53(0)). Well

02(OL(C)) is just <n+2,n+1.M(0<(C))> and 0((5’ (C)) = 0((<n+2,K(C):

a4(<n+2,K(C)>) = <n+2,n+l.X(le)> where V(K(C)) is calculated in as
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0('1(K(C))oU(K(C))00((#K(C)). Thus we must just show that in a) ,

“(x (c)) = °<-1(K(C))oV(K(C))o «mm».

wen we have el_1(K(C))o macho «(#m» = o<'1<x(c))oq(d '1<x<B>

9((K(B))‘K(c))o«(d’1(x(B))‘x(c))oo<(#x(c)),(by definition 01"? ), =

0(f1(K(C))Oq(°<-1(K(B)),[B(B)‘C)od(B(B)‘C)00C(K( EC», since as above

0((K(B)‘K(C)) = [3(B)*c and #x(0) = Mic).

And “(a (0)) = d-1(K(C))0F9(C)00((C)o}3_l(ZC)O v<(x<>:c>> ‘so we must

check that [5(C)OO((C)0P>_1(£C) = q(o(’l(K(B)),;3(B)‘c)o Misfire). This

is as follows:

;3<c>o 0((C)o}3-l(ZC) = fs<c>o 0((C)oq(fi-1(A)00( (mm,

(04'1(K(A))o/3(A))*Zc), by definition of p'l, = b(c)ool((;3'1<A)o

-3((K(A)))’((o(-1(K(A)o]3(A))‘C)oq(f5-1(A)o «mm, 2( o<‘1<x(A)>op<A)>~c =

§(C)oq(§-1(A)00l(K(A)),(0(—1(K(A).)ofl(A))‘C)o0(((0(—1(K(A))of$(A))’C,

by lemma 1+ of «33.1, = [5(C)oq(P-1(A)o mm).q(o<‘1(x<A>>o;3<A),B)-c)o

o< (q(0(—1(KA)0§(A),I_3)‘C)= muggy-lab o<<x<A)),;3<B)-c>o mum-c) =

)3<c)oq<q(p'1(n)o 0((K(A>),K(B)),fis(B)'c) = is<c>oqga‘1<s),gmrcmamm-s

qcx _1(K(B))o]B(B),C)oq()3‘1(B),p(B)‘C)o d(,B(B)'c) = q(o< '1<K<B)>,n(a)-c)o o

B)‘C) as required. -

 

Lemma 2. If G. : ID—ab' is a morphism in 2-001: then the

diagram

U) —”—+ 94MB»)

61 j q/(cpm')

l

n ———-——+~WP (M)

commutes in £93.



Proof 1 Reduces to showing that if AG NH “ken QiKmnl'kW—(MW and tr

 

f : A——>A' in [D then e:\(M(f)) = M(¢\(f)).. But 5‘ preserves the structux

that K and M are defined in terms of .

This completes the demonstation that Qo‘y 1: idz_con.

For the remainder of this section we aim at proving that Yocp -"—’ idAttC'

 

and thus that 2 -Con and Attcat are equivalent categories. Throughout

 

we suppose that E is a category with attributes. Eventually we show

that QUFUE )) 2E .

If A e\Base<E>>\then 9(1E)‘L(A)6AttE(ZL(-1g)) and

%(e(1i; ),L(A)) o 9(A) : Z 9(15)’L(A)-——A.A is an isomorphism.

We define J(A) = 9(1&)'L(A) and NA) = §(9(1&-),L(A))09(A) then

for each A elhaseUEH , J(A)EAttE(ZL(lE)) and NA) : ZJA—aA

is an isomorphism in Base (E). We can then define a functor M : Base (

—.\Base (E) by

a

i l t“? l mmshn‘m')

R 3

We shall eventually define an isorphism

(:7 e— .v s" . .

e) : L: -—-—)\9( \'V( It» in terms of M and R but we W111 come back to that

later. Lemmas 3-9 just function to show that 3 once defined, is a

morphism.
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Proof J(ZB) = 9(1E)'L(ZB)
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Lemma 2. If A is an object of Base (E) and if BeAtt EM) then

#(§(9(1E),'LA)f 9(A)‘B) = 9(1E)‘#(9(A)‘B) and r

XO’x(A)'B)o §(9(1E),L28) = §( %( 9(1E ),LA), 9(A)‘B)o b’( 9(A)‘B) 1:

Base (IE).

   

Proof This is just condition III of the defintion of Attcat

f'
9(lg)

where A-———AA',B and C are taken to be ZLL(1‘E) . 1E , LA and QKA:

 

Lemma 1+. If A is an object of Base (1E) and if B'eAttEu) then

X(R(A)'B)0R(ZB) = §(T\(A),B).

Proof

 

unarmomz B) = mums); §(9(1E),L£B)o 9(23) by def of n

= ( %(9 (1E),LA), 9(A)‘B)o 3’( 9(A)‘B)o 9( EB) by lemma 1.

= S( §( 9(1E),LA). 9(A)‘B)o §( 9(A),B) by condition

of def of ii

= §( g<e<1fi),Lmoe<A>.B)

E(9(A),B) ' - by def of AL

Lemma 5. If A is an object of Base (SE) and Bc-Ait EM) then

 

«23) = #(nmraj

and Rumpus)» 400 = X—l(?\(A)‘B)af(fl(A)‘B).

by def of J

9(1E)*#9(A)'B

"M €s(e(1 ELLA)‘ 9(A)‘B) by lemma 1

#(TI(A)*B) by definition

by condition
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which is the first identity. As for the second:

“(ZB)of(B)01\'1(A) = X'1(T\(A)‘B)o g<r\(A),B)op<B)orr1(A) by lemma ;

= X'lmm‘B)op<n<A)-B>OI\<A)ofr1<A) because 01

commutivit

the pullbs

diagram f(

B along R(

X'lmmran/xcmm's) as require

Lemma 6. If f : A———»A' in Base (E) and BEAtt Ew) then ‘

T1(zr’B)o €(f,B)oI\'1(ZB) = X'1(71(A)'f'B)o 3(11(A)oroT\'l(A'),fl(A')*B)o

b’(1\(A)‘B).

Proof. numb §(r,B)oI\‘1(zB) = g<euE),L(er))oe<m)o§ (f

 

09‘1(za)o %(9‘1(1E),e(1E)—L( 213)). by def of n.

= %(9(1E),L(Z.f’B))o X‘1( 9(A)‘f‘B)o §( 9(A),f‘B)o §(f,B)o

€<e'1<A-),9<A')'B)o Hem-r €(e’1(1E>,9(1E)'L<zs>), using

condition IV of attcat.

= X‘lmmwsm €(§(9<1E),LA), 9(A)’f‘B)o gamma» tau-,3»:

§(e'1<m, gums»; §( g(9-1(1E),9(1E)‘A'),7\(A')‘B)o flcnmm,

 

by lemma 1.

= X-1(T\(A)‘I'B)o E(T\(A)ofo71(A'),7\(A')‘B)o b’(Tl(A')‘B), by fitting the

pullbacké‘together.

Lemma 7. If A is an object of Base (E) and if 'BeAttE (A) and

c eAttEQB) then 71(A)“h‘C ‘= # X (71(A)‘B)‘TI(ZB)‘C and

Mick 3(c)on'1( we) .-. X‘1(r1(za)—c)o gc Xmarmmmmvfiv mst

o b’( XOUAYPNZ B)‘C)o b’( #( 'b’(T\(A)'B)‘7\( ZB)'C).



 

i
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Proof Use condition III of attcat at TKA) : ZJA———>A and

 

BEAttE(A),CeAttE(Z B). We get n(A)'#c sm §M(A),B)‘c) and

g(ggmmxxg)

X( §(T\m\,%)*©l ‘ _ J 2K0

.__..__—___,

@(nm\,ec3

commutes.

The first identity follows from lemma 2 which says that

8(“(A)’B)on\( 2B) ; Emu.) iB)=

The R.H.S. of the second identity is simplified by the same, lemma

It becomes X'lcmznrcn §(K'1<A<A>*B>, §(T\(A),B)‘C)o X(§ (mum‘s

b’(# §(f\(A),B)'c). Using both the above identities from condition

III the ms. becomes x‘lszrmo §(X'l(TI(A)‘B)o §<mA>,B>c)o

X<c>o §(Tl-1(A),R(A),R(A)‘#C)o mum-so) .

Use lemma 2 twice and we get the L.H.S.

Lemma 8. If A is an object of Base (E) then

 

m2 LA)o 9(A)ow\‘1<—A> = X '1((,o< eugrmfinmmno g (,4 9(1 Er

Proof Both p<e<1E)*L<1E)) and §(9(1E),L(1E)) :

 

ZJ(1E)—-—->Z L(1E) in Base (E). Since ZL(1IE) is terminal,

fr( 9(1E )'L(1E)) = g(e(lE),L(lE-)). Now the R.H.S. of required

identity becomes Vlmufirmmo S<§<e<1E),L(1E)>. Sukarno).
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Using lemma 1 on LHS we get %( 9(1E ),LZLA)09(ZLA)09(A)O

.e‘1(A)o g(e‘1<1-E'), 9(15‘)‘LA).

Using the same lemma 1 on R.H.S. we get

§< 3(1E),LZLA)0 X'1(e(1\; rm).

Now LES = RHS follows from the case of condition IV :

'5‘1(e(15)-m> = e<zLA>o §(e'1<1E), 9(1E)‘LA).'

Before we can define S : E—eQW/(ED we must know what

(P( V4 {5)} looks like. We know what the *,q,Z ,0( structure of \J/( IE) is l

The $.17", X,L)e structure is defined in terms of this and induces the

category with attributes @0145». The next lemma calculates the

effects of the definition of 9?, H’,5,L,9 in ME).

Lemma . If B: is a category with attributes then

i. If <1,1,£> : <1,A>-—> <1,A'> and (1,A'><l<?,B> in

\J/(E) then §(<1,1,£> , <2 .13) ) = <1,1,K'1(£‘B)o§(r,s)o 6(a)) .

ii. _If 1<<l,A> <1 <2,B> and z<z,B><1 <2,c> in AWE) then

-4=;<2,c‘> = <2, were) and

6<<2,c>> = <1,1, X‘1(c)o §(X-1(B),X(B)’C)o IR b’(B)'c)o m: 303

iii. If 1<1 <1,A> in y/(E) then L(<1,A>) = <2,//(9'1(IE)'L(1E))'A>

and 9((1,A>) = (1,1,X'l(f(9(llg)‘L(1E))‘A)o §(f(9(1E)),A) .

Proof 1. §(<1,-1,r> ,<1,B>) = o('1(<1,1,r>'<2,3>)o

 

q( <1,1,f> , <2,B>)oo((<2,B>), by definition of 4) .

= o<-1<<2,ma> >0 <2,1, §(f,B)) oo((<2,B >) by def of y.

= <1,2, X'1(£'B)> o «,2, ‘s’(r,s)> o<2,1, X(B)> , by def. of 3V .

<1,1, K'1(t‘B)o E(r,B)o 5(a)) .l
l
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Cases ii. and iii. are just as straightforward.

Given the definition of (S? we can now give a complete

description of Q(‘+’( E )) as follows:

[Baee(<$>(\y(tz)>| = {'<1,A> ] aEAttE(ZL(1E))}

Hom ,(1,A'>)={ <1,1,f>'f: ZAAEAI in Base

Att r9(\1-V(E))(<1,A>) = {<2,B>l BGAttE (ZA)}

-1 t -

If (2..B) e Att “WE ))(<1,A>) then 31,3) = <1,#B> and-

(<2,B>) = <1,1, $103» (13» . 'P 1’

If <1,B) €Att q>(Y,(E))(<1,A>) and if <2,C>€Attcp(V(E))(z<l’B.

then #04:) = <2.-# aware) and m <1,c>> = <1,1,

X ‘1(c)o §( 25"(B), march, x< X(B)‘C)o m: flare) > .

If <1,1,r> : <1,A>———> <1,A'> in Base (E) and if (1,8)

eAtt Q(WE))(<1,A'>) then <l,l,f>" <2,B> = <21r'B> and

%(<1,1,r> , (2.13)) = <1,1, b’“(r-B)o §(r,B)o 3(3)) .

If <1,A'>€ IBesewwmm then L(<1,A>) —_. <2.,o<e<1E>-

L(1E))'A> and e(<1,A>) = <1,2,X'1(/J(9(1E)'L(1E))*A)o

§(p(e(1E)'L(1E)),A) > .

Define 3 : E—ng/(ED "by i. if A is an object of Base (E)

then ‘30:) = <1, 9(1E)*L(A)>. ii. If r : A——-‘~A' in Base (E)

then (r) = <1,1,R(A)ofoT{l(A)> . ‘iii. If BEAtt E (a) then

3(5): <2,'I\(A)'B) .
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3 is easily seen to be 1-1 and onto from objects, morphisms and

attributes of ‘ to objects, morphisms, respectively attributes of

QWN E». S preserves Z and}? by virtue of lemma 3. ' is easily

seen to be preserved. S is preserved by 3 , use lemma 1+.

and X are preserved, use lemma 5.

Terminal object easily seen to be preserved. L preserved because

1E terminal implies (9(1E)‘L(1E))09(1E) =71(1E).

9 preserved - use lemma 6.

Finally, the collection of isomorphism ‘ E e 'Attcatpl}

cannot help but be natural in E. Thus we have a natural

isomorphism (Pay/’2 idmct‘:at , completing the proof that

2 -Con Attcatom
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3.3 Categories and Fibrations

In $1.5 we alluded to the contextual category of categories,

Category indexed families of categories, category indexed families

of category indexed families of categories and so on. In fact this

contextual category has disjoint unions and singleton object.

By far the easiest way of describing the structure is by describing

the corresponding category with attributes which is to be called 2:2

The significance of this structure is twofold. In the first place the

most attractive notion of a category indexed family of categories does lead

to a contextual category and thus generalised algebraic theories can be

interpreted in this manner.

Further more this notion is not reducible to any morphism with

codomain notion and so there is no parallel interpretation of essentially

algebraic theories.

This was discussed in 51.5. on the otherhand disjoint unions in

this structure are calculated by taking fibrations. Thus we have a new

way of looking at the fibration construction. This compares with

the interpretation of Gray [7] .

The category with attributes Fib of categories indexing categories

is described as follows:

1. Base (Fib) = Cat, the category of all (small) categories.

ii. If A is a category then an attribute of type A is an é-indexed

family of categories, m :3 a {undoc- 3 :flficafl
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iii. If BEAttFib (A), ie if B : _A_——+Cat is ahnctor, then 213 is

the category defined as follows:

‘221 = {ze,b>\ eelgl andb‘elB(a)\}.

 

HoszC<a,b> , <a',b'> ) = izf,g> I f : a——>a' in g and

 

g ‘ B(f)(b)———)b' in B(a')} .

If {a,b) e |§__B_| then id (8,1)) = <1da,idb).

(f ) <' '

If <a,b>—1'i><a',b‘>f—L)b<a",b"> in ZB 'then‘

<f,g> o <f',g'> = < ff',B(f')(g)og') .

)O(B) : Z B—AA is defined to be the let projection functor.

I It

(A ) then F BeAttFibM)iv. If F : A—§_A_'. in Cat and if BEAttFib

is defined to be the functor F013 : A—ficat. §(F,B) : ZF’B __.>g

 

is defined to be the functor "Apply F to the lst component leave

For example, if <a,b>€ \ iF‘B \ then

 

other component unchanged".

ae IA! and b elB(F(a))l , hence <Fa,b>€ l g 1. Similarly on

 

morphisms of Z F’B.

v. If B : 5—) Cat and C': ZB——aCat then define #C : 5—Cat

as follows :

If a e \A\ then '£C(a) is the category such that

|fi'c(a)| = {<b,c>'\ b el B(a)| and c. e|c(<a,b>)|}

Hom -!C(a)(<b,<‘.), <b',c'> ) = 3%.» X g : b-flb' in 8(a) and

h : c(<a,g>)(c)——->c' in c(<a,b'> ) ‘3.
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If f : a-——>a' in A then #CU) is the functor

 

fic(a)ffi fiC(a') given by

(E ,c) < BURKE) , C(< it, “ d gunk»)

. mm ‘<3,» F—a «swan CW?» '-‘\B($)(U9X m

(U ,c> ‘ < mow), owe . :&WWW»

Check that EC and {#0 are isomorphic. In fact the isomorphism

XCC) : ZC —-¥ Z75? C is given be

<<Q,Ls>,c> ( <a_,<%,c>>

<<¥,g>,\n> <¥,<3.Ls>

<<ot,§;‘>,c’> <ol,<t‘,c'>>

vi. Chose 1Fib to be any terminal object of Cat. If A is a category

then MA) GAttFibQ) is taken to be the functor : _1_'—-> Cat

whose value at the unique object of i is A. Then

2L(A)=;x_A.

Define 9(A) :lxfl—AA to be the projection functor.

That completes the description of Fib. Checking that Fib is a category

with attributes is very straightforward and rather tedious.
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3.“ Hartin-Lof Type Theory

Martin-Lof type theory is a generalisation of the typed

A-calculus. It is more general in that in the syntax there are

variable types - the structure of substitution is of the general form.

The algebraic semantics of Martin-Lof type theory is thus provided for by a

extension of the theory of contextual categories.' This extension

we call the theory of weak M-L structures. Every weak M-L structure is a

model of martin-Lof type theory. In fact the definition of weak M-L

structure is a set theoretic definition of the notion 'model of Martin-Lof

type theory'. It is the most general possible such definition.

We need to explain that Martin-Lof type theory generalises a weak

version of the typed JK-calculus. The R-rule of }\-calculus,

s = Ax. Ap(x,S), corresponding?» the uniqueness of the term Amt subject

to the condition Ap(x,)\x.t) = t, is not assumed. Neither is the rule

pr(pl(z),p2(z)) = z assumed where pr is the pairing function and p1 and p2

are the projections. On the other hand cartesian closed categories

correspond to a strong version of the typed X -calculus which includes

these two rules. The effect of all this is that whereas cartesian closedn

is defnable in terms of universal arrows, weak M-L structure is defined

in terms of weak universal arrows (the definition of weak universal arrow i

like the definition of universal arrow except that the uniqueness

condition is dropped). If we strengthen the definition of weak

M-L structure by replacing weak universality' by universalits, then we

can drop the adjective weak and call the structures strong M-L structures.

The Strong M-L structures provide us with the algebraic semantics of a

strengthened version of M-L type theory, stronger just by the inclusion of
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a rule expressing the uniqueness of Xx.t subject to the condition

Ap(x, Xx.t) = t and similar uniqueness conditions, one for each logical

scheme.

In the following defintion of strong M-L structure we use the

same notation as Martin-Lof uses except in the case of notation for the

type with precisely one element - Martin--Lof uses the notation N1

for this type but we use the notation}: ' 13 . Our use of f 7 and

notation in this section will be consistent with our use of the same

notation for disjoint unions and singleton object in previous sections.

A strong M-L structure (C ,2 ,prJT ,Ap,Id,r,+,i,j, gegNgogS >

consists of a contextual category Q: and the following. additional

structure:

1. Whenever Q‘4A4B ’in Q , an object EB of C and a morphism pr(B) or

C such that Q4213 in C and pr(B) : B “4213 such that the

diagram

commutes and such that EB and prCB) have the following property:

for every object C of C such that £B<C, for every morphism

h : B——>c such that the diagram

B——>" c“kill-B...



ii.

iii.
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*’

commutes, there exists a unique morphism geAerW) such that

the diagram

B—L‘HC

wk“
2%

commutes. _

whenever Q4A< B in C , an object ‘TrB of C such that

Q4TYB in (L and a morphism Ap(B) : p(A)“T§B—-—->B in such

that the diagram

VLP‘O "U B L“) B

\/

commutes and such that TFB and Ap(B) have the following property:

for every morphism he Arr CKB), there exists a unique morphism

r e Arr ¢('\TB) such that the diagram

m\*3\ / . a
H

commutes. In future the unique morphism corresponding to

k : A———3B will be denoted Mi . Thus Ake AH“: (VB) when

k: A‘_—)Bo

Whenever QdA in C, , an object IdA of C such that p(A)‘A4IdA and

a morphism r(A) : A—-—-—>IdA in C such that the diagram

* The Jag'ufitiom (L? HYPE B an P032. ,
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Liam

m» 1
{RPM R

Am

R

commutes and such that EA and 1-00 have the following property:

for every object A of CL such that IdA<1 C, for every morphism

h: A————>C such that the diagram

commutes, there exists a unique morphism geArrc (C) such that

the diagram.

C

/h
14%

' Am

R

commutes.

iv. Whenever QdA and QGB in C , an object A+B of C such that

Q <A+B and morphisms i :A—4A+B and jA B : B ———-xA+B such

iA,B

that the. diagrams

R\'—EA§—al/R?E) gm?2+5

Q 0AM). Q "

commute and such that A+B, iA B, jA B have the following property:

I O .
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for every object C of CD such that A+B<C, for all pairs of

morphisms kl ‘ A.—»c and k2 : B——>C such that the diagrams

» c c

V1 V1
H—_--)R+B Eda-+3

“Ma . ~33fi3

commute, there exists a unique g €Arr¢(C) such that

in the diagram

C

h k1 [a 1

R _._.__, mas—— 9,

AA‘8

both triangles commute.

v. An object {o} of 6 such that 1 4 i-} and a morphism

e : 1‘-—>§_'} in C1" having the following property:

for all objects Q of C , for all objects A of C. such that

p(Q,1)" i-k < A in (L. for all morphisms £:Q—>A in (L such

that the diagram

commutes, there exists a unique geArrCU.) such that the diagram

? 8

‘° mow-1

Q/?Lc;,1\*e

commutes.



5.495

vi. An object N of C such that 14N'and morphisms o : 1—9N

and S : N —-—+N in (I having the following property:

for all objects Q of C , for all objects A of ¢rsuch that

p(A,l)‘N4 A, for all morphisms a : Q—ux and b : A————>A such

that the diagrams

 

if
. ,‘ 0

pLa,1\(N

(cam

P Q

and

a b , R

[mam gmm'cs p(&.1) N

commute, there exists a unique 1‘ €Arr¢(A) such that the diagrams

 

R
Q __%____,R

1: T a
¥ T I f(12:,- *

.V D N - MAY-N ' imamw

&
en‘s

?(C~;i\x
' P‘

Q

commute.



Subject to the following conditions. If. f : Q-—-—?Q'

is a morphism in G; then

if Q'4 A43 then r23 = Zf‘B and f‘pr(B) = pr(f‘B),

if Q'4 A4 B then 91113 = “firs and f‘Ap(B) = Ap(f‘B),

if Q'd A then f‘IdA = Idf'A and f’r(A) = r(f"'A),

if Q'4A and Q'4B then f'(A+B) = f‘A+f‘B,f‘iA B =

9

imam and 93m, = 39*A,$‘B°

Clauses i. ... vi. in the definition of strong M-L structure

correspond to the schemes for E:;TT,Id,+,Nl and N in Martin-Lof type

theory. If the word unique is dropped from any of these clauses then

what remains is an exact rewriting of the corresponding Martin-Lof

scheme within the language of contextual categories.

The final condition says that f' always preserves 2:,pr, ,Ap etc..

Thus it says that the contextual functor 6:;3 6:8r‘—‘—*G;3 is a structure

preserving morphism whenever f : Q‘———>Q' in 5;. It is, then, the

'substitution is a homomorphism between algebras of terms' condition.

This is an implicit property of syntactical substitution which must always

be stated explicitly in any algebraic semantics. That this is a property

of syntactical substitution is because if we substitute into any expression

that is the result of binding simpler expressions by a logical symbol

then the result is identical with the result of first substituting into

the simpler expressions and then binding by the logical symbol.
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This is work which syntax always does for us and which algebra has got to 13¢

made to do. Hence the condition.

Not surprisingly the contextual category Egg I of sets, families

of sets and so on is in a natural way a strong M-L structure.

a Z is calculated by taking actual disjoint unions of families of sets, Tr

calculated by taking cartesian products of families of sets. Id(A), when A

Q set, is the characteristic family of the identity predicate on A.

+ is interpreted by coproducts and N is taken to he the set of natural

_‘ numbers.

"‘
— M

'L‘ne definition of strong n-L structure can he - i n ified:__b
1

I
3

considerably. In the first place those parts of the definition that

are about if,pr, and e are equivalent to <0: ,2 ,pr, ,e) being

a contextual category with disjoint unions and singleton object. This

leads to simplifications of the other clauses. Clause ii. can he used

to simplify clause vi. It turns out, then, that the definition that

we have given is equivalent to the following definition.

A strong H-L structure (Q , '2: ,pr,Tr,Ap,Id,r,+,i,j, é ,e,N,o,S>

consists of a contextual category with disjoint unions and singleton

object (£32 ,pr, 33 } ,e) and the following additional structure.

ii'. For all 1<xQoA<xB in 62 , an object ([13 of G: such that

Q4 T|'B and a morphism Ap(B) : p(A)‘fiB—->B such that the diagram

Mk?)

Hm‘ 1TB ——~——a B

\/
R

commutes and having the property: for all kGArrc (B), th-‘re



«
N
J

iii'.

exists a unique 3 €Arr¢('-T\' B) such that the diagram

PM?»

Pm)" VB -——-) B

\RA

commutes.

For all 141 QdA in C , an object Id(A) of C such that

p(A)‘AdIdA and a morphism r(A) : A—eldA in a: such that

the diagram

EMA)

rm 1

HRV'R

[21%y

commutes and having the property: for every object C of C such

that p(A)’A<C. for every morphism h: A—-®C such that the

diagram

10W!)

“ l
pcmm

nfl -

commutes,.there exists a unique g :‘ IAA———->C such that

ICU?“ C

/
PthR



iV'o

vi'.
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and

mm ———+‘3 c

NPR /\

R

commute.

For all 14Q< A and 14 Q4 B in (L , an object A+B of (C such

that Q4 A+B and morphlsms 11MB and jA'B suck

iR;B 3R}B

that the diagram A——>A+B €—————B is a coproduct diagram

in Base (CQ).

An object N of 6} such that 14N and merphisms o : 1—»N,

S : N-—-9N such that < N 0,5) is a natural number object in

AugBase (Ga). (‘<N,o,$> is a natural number object in the

categoryg with terminal object 1 if! 0 : 1———> N and

s : N~—-—>N and for all objects A of g. for all morphisms

1—H and b : N—AN, there exists a unique morphisma

f : N——»A such that

N\———+¥ R R __‘*E R

1 T I
N ——é——> N

commute.)
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Subject to the condition : If f : Q—éQ' in C. , where ldQ and

14Q' in¢ , then

if Q'a 1103 then f‘TTB = TTf‘B and f’Ap(B) = Ap(f‘B),

.1: Q'4 A then f‘IdA = Idf‘A and f‘r(A) = r(f‘A),

it Q" A and Q'c B then f‘(A+B) = f’mf‘B. f’inm =

14)“)?LB and f'jfi,“ = jgsnfikao

Finally, the definition of strong M-L structure can be rewritten

in terms of categories with attributes :

An M-L Hmerdoctrine <E, E ,T. ,Id,r,+,i,j,N,o,S > consists

of a category withtattributes with the following additional structure:

1. For every object A of Basefif), for every BeAttEUX). for every

CGAttEUi B), an attribute ECGAtt EM) and a morphism “(3(0) :

i P(B)‘E C——> 20 in Base such that the diagram

_ Etc.)

Zflm‘fifi ——> zc

pgpuwmck ,/Pco

EB

commutes and having the property that for morphisms

f : ZB————>ZC in Base(E) such that foP(C) = id EB, there exists

a unique g : A—-> ZBC in Base 5-: ‘such that gofx INC) =

idA and such that the diagram

Spare—19$ zc

Havc.\ /;

EB
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commutes. (Where P(B)‘g is defined to be the unique

' o
3

-
morphism h . ZB —*ZP(B) EC? such that konMBVE C) = 1d EB

and Ac §(f»(B),Ec) =p<B>og .)

For all objects A of Basem), for all B EAttfh-(A), an

attribute IdBeAttE(ZP(B)‘B) and a morphism

r(B) : ZBQZIdB in Base E such that the diagram

2%

ALB) Jm

2‘ PQBV‘B 4—— 2 113

pads)

commutes (where A(B) is the unique morphism such that A(B)of(

P(B)‘B) = id and A(B)o§(PU§),B) = id) and having the property

that for all attributesCGAttE(Zf(B)‘B) and for all

morphisms h: 2 B——)Z C such that the diagram

:8

ml “

ZPLWB :—— ins
f’LIdB)

commutes. there exists a unique morphism g :ZIdB"—;Z C such that

the diagrams

‘\
Pm) ZIAB zstnB

~. / a S
2 m): B k

H0 {c and 2°

commute.
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2

object BlfBaeAttUt) and morphlsms 131’81 : 7381—9 {(81+B2)

iii. For all objects A of Base (E ), for all 31,3 EAtt(A). an

and .181qu {Ba—HIKE +B ) such' that the diagrams
l 2

281%Maren) m;we mayan

[0‘31\\\ /P(8118).\ [0(82)\ /P(Bl+813

commute and having the property that for all 0% Att EU), for--

all pairs of morphisms kl : ZBl——>£C and

k2 : ZBa—->ZC such that the diagrams

k1.
- k2.-

Zfil—an‘. - 2-31-—-5 EC

flax /(>(c) FLEX /P(c3

n Rand

commute, there exists a unique morphism g : ‘Z(Bl+Ba)—-> Z G

such that

commutes and such that in the diagram

2%: LEE—w imp Blvilfil— 28;

Ni/
Z0
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both triangles commute.

An object N of Base (E.), morphisms o : 1——————5N and

S: N——>N such that <N,o,S>. is a natural number object in

Base).

Subject to the conditions:

If r : A—>A' in BaseE , if BGAttEW) and

ceAttE(ZB) then f‘E‘C = m §(f,B)‘C and the diagram

_ §( €(9,8‘\,y<8‘>*®c)

ZP(‘F'BV¥* NC ———
———-———> z F(Byrmc

Z 9%,?“ ‘6 ————————~———4 “2C,

§(§L¥,B),c3

commutes.

If r A—éA' in Base (E) and if BeAtt Eu') then

n
o

and the diagram‘3 ( " (ms) ,fJ‘(B)‘B)‘IdB = Id 9‘s;

flames) ,)>L\>5)*B\, me) :

XIdPB —-——————————> }_ “if;

we 4 rm

2: *8 -————-——__)‘E aw” Z8

commutes.
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‘vii. If r : A—>A' in Base(E) and B1,B26 AttE(A') then

s _ I: t ‘
f (81+BZ) - 1‘ 31+: Ba and the diagrams

H‘s; mm EB; 2%‘Bl—————>g(‘°‘w 2E5:

k¥‘81)¥*8z ism, “‘51” 331.3;

E $‘(BHEQ 1—413p'81) anti Z‘F’YBifBQ Wztgifi-Bfl

Sfiai‘nfi-Bfl Sfifififiz)

commute.

We are claiming, then, that the category of H—L structures and the

category of M-L hyper-doctrines are equivalent. The proof of this result

is an extension of the proof_that Z -con and Attcat are equivalent

 

categories.
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3.5. Limit Spaces - a model of Martin—Lof type theory.

We wish to describe a model of Martin-Lof type theory in

which types are interpreted as limit spaces and in which families of

types indexed by a type are, roughly speaking, interpreted as

'morphisms with codomain' in the category of limit spaces. The model

is described as an MAL hyperdoctrine with base category the category

of limit spaces. If we first describe the MdL hyperdoctrine of sets

and families of sets then the M-L hyperdoctrine of limit spaces can be

described without much trouble.

But first, two very useful and tr1v1al lemmas:

Lemma 1. If E is a category with attributes, if A is an

 

object of Base (E ), If BeAttEU). if DeAtt(Zf(B)‘B) and I:

r z E B”—’ZD is an isomorphism in Base (E) such that the diagram

commutes then <:D,r> satisfies clause ii. of the definition of M-L

hyperdoctrine. That is clause ii. is satisfied if Id(B) is

taken to D and if r(B) is taken to be r.

Lemma 2. If {E is a category with attributes, if A is an object of E , If

 

131,132 eAttEu), If CEAtt EM) and if 1 : 2 81—9 2c, 3 :EBZ—é’ c
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in Base (E) such that the diagrams

commute and if 231—4209—23

X81 #XC

/3{3:\\ flu)

R

281;»zc

I431)\\\N Z/1g(C)

R mi

1 j

1 2 15's coproduct diagram

in Base (E) then <C,i,j> satisfy clause iii. of the defifiition of

M-L hyperdoctrine. That is if Bl+B2 is taken to be C and if

iBhB1 is taken to be i and similarly if jBi,B1 is taken to be

j then clause iii. is satisfied.

The M-L hyperdoctrine Fan of sets and families of sets is as

follows:

1. Base (F_a_m) = §_e_t.

2. If A E ' Base(§§g)| , ie if A is‘a set, then

Atty—za3 (A) = A-indexed families of sets} .

3. If A e IBasngH and if BeAtt(A) then :13 = B(a) =

aeiA

{<a,b> I a€A and beB(a)} .

1+. If r : A—-——>A- in Base (gag) if BeAtt(A') then f'B = AaeA.

B(f(a)). €(:,B) : f‘B—-—>B is given by

€(r,B)( <a.b> ) = <£(a),b> .

5. If Ae IBase(_F§£)| , if BeAtt(A), if c eAtt(ZB) than

#c €Att(A) is given by #c(a) = i <b,c> \ bEB(a) and c ec(<a,b>

X(C) : {VG—+20 is given by U(C)(<a.<b,c>> ) = <<a,b> ,c?



6.

7.

8.

10.

3.52

If A e \ Base(F_an)\ then L(A) = A x e 1-} .A. Then

9(A) : ZLA A is given by '9(A)(<-,a>) = a.

If as lBase(Ffl)l , If BeAtt(A), if ceAtt(zB) then define

ECGAttU.) by 7

(Same) e ‘fixen(e).'c(<e,x>).

If he is so defined then zp(B)'wc'=

{<<e,b>,g> \ ee A,b eB(a) and 8e meme). c<<e,x»)} .

Define Ap(C) : Zf(B)‘EC ——>iC-by defining

Ap(C)( << a,b'> ,g>) = <<a,b> ,Ap(b,g)> .

If Ae \ Bese(Fam)\ and if B €Att(A) then ZP(B)’B = { << a,b> ,b' >|

36A and b,b'€ 3(a)} . Define Id(B), r(B) by
\ .

TA
A“ z

\

I2
11

)(<< b> b' )= {e} , if‘o:‘o’,=¢otherwise,fl
!

r(B)(<a,b>) = <<<a,b> ,b> .-> .

If AejBase (Fam)!, If B , BaeAtHA) then define
1

B1432 by (Bl+Ba)(a) eBl(a) + 132(a). Then Z(Bl+Ba) = 2314-232.

Define i and accordin 1 .81,31 fighaz 3 y

As is well known the set of natural numbers is a natural number object

in the category Set.

Completing the description of Fan as an H-L hyperdoctrine.

‘The set of all filters on a set A ordered by inclusion is a

lattice. The meets in this lattice are given by intersection of filters.

If 9 and are filters on A then =3. unv’uetp and v6?} .

If A is a set then the ordered set of all filters on A will be

denoted WA).

If f : A‘——)A' is a function then define

Mr): ¥(A)-—>¥(A') by THme = {ug'l aueesde.

v'2 1°00} . Then :Hf) is an order preserving map and it is easy to
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see that ? is functorial:

1(fof') = ECU") and ¥V(idA) = idRA). can be considered to be a

functor from Set to the category of ordered sets.

A limit §2ace <R,C> consists of a set A and for each

aEA, a set C(a). 9. RA), said to be the set of ,filters converging to

a, and subject to the conditions:

i. If aEA then <a> G C(a), where < a) is the principle Afilter

generated by 8..

ii. If aeA and Q, y/ec(a) then (PA e C(a).

iii. If each and «Pe 0(a) and 1: cpsy/ in ¥(A) then ‘f/ECG).

We usually say that Qconv a in preferencevto (QC-.Ma).

A morghism of limit ggaces f : <A,C> ~—> <A',C'> is a function

f : A—eA' such that whenever (Peonv a in <A,C> then :P-(fMCp) conv f(a)

in <A',C'> .

The category of limit spaces will be denoted

Limsg ,‘

We shall make use of the fact that for every f : A——)A' in Set,

the morphism ¥(£) ; -T(A)—-* HIV) has a left adjoint. We define
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an order preserving morphism 2{1(1) : -¥(A')——>¥(A) by

-i(f)(0) = SwsA HH'GC'Q s.t. wa-lhv'); e

That i(f) adj #(r) is expressed by Lemma 2 If 9&7“) and if (.Pé ""7 (A'

and 1: r : A———->A' then imapxe m cpsnrxe).

Proof 1. ‘1an > g e ==> Qamce ). Assume that

imwxe . Then had? $r‘1(u)e {Famine {1m ee =>

_:(r‘1(u>)e fume). Hence nape u e¥(r>(e) because

:(r'ltuneu. Thus 3%er )59 => oszuxo ).

 

2. The converse. Suppose <95 ¥(f)(9). Suppose

V .

v e Hang»: Then 5! uéQ such that f-J'CuE-Ve

Q5 ue¥(f)(9). Henceuafiw), for somevee. But

S m
V

11 at“) iff f'1(u)2 w. fiance 76:9 . As required,

4) s¥(r)(e ) e ¥(f>(<s>)se .

V

Corollarx 1+ (a) 1 : SetOP———)the category of ordered sets,is a functore

(b) For each 1 : A——>A', 1m : HA) ———>¥(A')

preserves meets.

The base category of the M-L hyperdoctrine of limit spaces is taken

to be the category gasp. Then if Ciel ml and 1:0 has

underlying set A then define Att(CD = i <B,c> l B is an A—index'ed family

of sets and C is such that (18,0) is a limit space such that fl(B) :

<13,c>—90. is continuous } e

IfBeAtt(A) then define 233: <EB.c> , where B is the underlying

family of sets associated with B. Define p(B) = P(B). Thus every BE

Att(CD is determined by an A-indexed family of sets B and a limit space
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EB which has underlying setZB and which is such that flB) :

2B-—¥(l is continuous.

Fullback: If r : (x—ecr and if BeAttm) then the underlying

family of sets of P8 is taken to be f’B. Then :93 is taken to be

the unique limit space ‘with underlying set Zf‘B such that

g¥*I3 §<£,an Ezis

, pm I [rm

(1 O.‘

 

g

is a pullback diagram in Iii-£2.

Convergence in f‘B is given by 9conv‘x iff ¥(P(f’B))(9)

conv flf‘BXx) and #(gf,B))(9)conv §(f,B)(x). Then that the

diagram is a pullback diagram follows immediately from the fact that

the underlying diagram in SL1; is a pullback diagram. Uniqueness of

this convergence relation subject to the diagram being a pullback

diagram is the case because if X is a. new limit space with underlying

set Zf‘B and such that

 

X 502,31 2 B

H?” l _ fls)

(1 ‘1 (1’

is a pullback diagram then there exists an isomorphism

g : it's—4x such that goflf‘B) =f(f‘B) and go§(r,B) = €(r.B).



But then since the corresponding diagrams in §_e_t are pullback

6

diagrams so 3 = id 2f.B. So idzf.B is morphism of limit spaces

id “.8 : Zf‘B—+ X and also id 3.13 :x ——> if’B. Hence

Qconvx in {PB implies :f-(idzf.B) (CP) conv x in X ie (P conv x in X.

And vice versa. Thus Zf‘B is unique.

' That pullbacks fit together follows from the fact that they fit

together at the level of underlying sets and from the uniqueness of the

pullbacks once underlying sets are decided.

fl andb’. I: CLEILimfli , If BeAtt(Cl) and If GemdzB) then

the underlying family of 135 is taken to be #C. The limit space

2# 6 is then uniquely determined by the requirement that

3(C) : Z é———>Z#é be an isomorphism of limit spaces.

L and 9 . Limsp has a terminal object 1. If (lie

[Limspl then MO) is taken to have underlying family of sets L(A) and

ZLQ is then determined by the requirement that 9(A) : ZL(OJ -——-«) 0

be an isomorphism of limit- spacese

IdI + and N are all trivial to define. For Id and + lemmas 1 and 2 of this

section can be used.

‘3 and A2 The slightly non trivial bit. If C12} mg ,

If BEAtt(Q) and if @éAtHZB) then define mace) =‘ i :66 fixema).

c(<a,x>) l the corresponding 1: : a’B—-——>§(a,B)‘C is continuous.

Ap is taken to be application. 2&6 is topologised by

(9 conv y in 2E6 iff mane ))(c(>)convy(®€e )(y) and

V): e §< pt B), ®%)-1(‘{y§). We #(2 B)s.t. Y’conv/Xfm)’ me )(x).

¥<Apl<i<<a€<anse mew $914.43)- Be my!) convA l..\
\Ale
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