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CHAPTER I.6

DIFFERENTTAL GEOMETRY OF COSET MANIFOLDS

1.6.1 - Introduction

Coset manifelds are a natural generalization of group manifolds
(see I.3), and play an important role in Kaluza-Klein (super) gravity
theories, to be discussed.later {Part V}.

We begin by defining homogenepus spaces.

Def. A metric space is said to be homogeneous if it admits as an
isometry the transitive action of a group 6. A group acts transi-

tively if any point of the space can be reached from any other by the
group action.

Example. The unit sphere in RS is isometric under the tramsitive
action of 80(3): any point ({x,v,z} on the sphere can be carried into
any other point (x',y',2') by a three dimensional rotation R

4,
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2
X x! x2 + y2 + zz = X,Z + y‘2 + 11" = 12

Riyl =1y )
.t R ¢ 50(3 (I.6.1)
Def. The subgroup H of G which leaves a point X fixed is called
;g;-isotxngy subgroup. Because of the transitive action of G, any .
other point Xt=gX (geG, g¢H) is invariant under a subgroup gHg
of G, isomorphic to H.

In cur example, the North pole {0,0,1) is invariant under that S0(2)
subgroup of 56(3) which rotates the sphere around the z-axis.

It is natural to label the point X of a homogeneous space by the
parameters describing the G-group element which carries a conventional
)
of H-isotropy

(origin} into X. However these pavameters are redundant: because

oo x (1.6.2)

there are infinitely many ways to reach X from XO‘ Indeed, if g
carries Xa into X, any other G-element of the form gH does the
same and one is led to characterize the points of a homogenecus space
by the coset gH.

A_;;;;éeneous space is therefore a coset space G/H, i.e. the .
set of equivalence classes of elements of G, whexe the equivalence is
defined by right H multiplication (g~g' if g=g'h, with g,
g'ed and heH).

The two-sphere 2 can be written as the coset space S0(3)/S0(2).

In general, for a n-sphere

g . S 1) . (1.6.3)
SG(n)

Taking 6 to be a Lie group we cbtain coset manifolds (endowed with a
i inates
Riemannian structure, see Chapter I1.2), parvametrized by D coordinate
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D=dimG - din H (1.6.4)

{Cfr. (1.6.17} below)
In each coset, corresponding te a D-plet of coordinates y= (yl,...,yD)
we can choose a representative group element L{y)eG. uUnder left

multiplication by geG, L{y} is in gemeral carried into another

coset, with representative element L(y'). Thus

ghly) = Ly")h . hed (1.6.5)

where y' and h are functions of y and g, and depend on the way
of choosing coset representatives. Pictorially:

{1.6.6)

In the case of 82= $0(3)/50{2), we assign to each point y, i.e.
each coset, an element of S0{3) {the coset representative L(y)) which

maps the North pole Yor chosen as origin, into y.

* o= (0,0,1)

1.2
Y=,y ,ys)

407
Fdd

Denoting by L(y]hZ (A, I=1,...,3) the S0(3) matrix element, we must
have

L(YJAE L(Y)nz = 62 {orthogonality)

A b A :

L(y) ¥ =Y (L(y} maps the North pole into y} (I.6.8}

Using the stereographic coordinates zl,zz, it is easy to prove
that(*)

L(z)’\c L’

Lt -
3 3
L(z) . L{z)} 3 (1.6.9)
with
22"z A

A A o4 A 4z
)" =& - , L)%, =

¢ ¢ z244 5 zz+4

4z 2

3 o 3 2" -4
L(z}" _ = . L{z)", = (I.6.10)

o 22+4 3 z2+4

satisfies {I.6.8).
Notice that any

AZXZ(Z} 0
L'{z) = L{z)
0 1 (I.6.1%)
A A 2 A
) prom 2= & one derives ys - 22"4 , and y)‘ = _%z__
2 1-y° -+ 4 2%+ 4
(zz =z zAzA}.
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with A2 %2 €80{2) still satisfies (I.6.8). The coset representative

is chosen to have Ay vy =ﬂ2 xp+ Under left multiplication by a general
50{3) matrix S we have:

HzXz(Z,S) 4
8 L{z) = L(z")

0 1 (1.6.12)
where Hzx 5 € 50(2), Eq. (1.6.12) is an illustration of the general
formula (1.6.5). We leave as an exercise to compute Hzx 2(z,s) and
z'. The general method to obtain y' and h of Eq. (1.6.5) is
discussed in Sect, (I.6.4).

The Lie algebra of G can be spiit as
L=XeH {1.6.13)

where H is the Lie algebra of H. K contains the remaining genera-
tors, henceforth referred to as "coset generstors'.
The structure constants of 6 are defined by

] k

In H.=Cijﬂk H, eH ,

i

J b
[Hi,l(a} G v CLK K ek

3

j c
c aij + C ach (I.6.14)

[k, . K]

and we use the index conventions

a, b, c... flat coset indices

o, B, ¥ ... curved coset indices

i, §, k... B-indices

A, B, C ... G-indices . {1.6.15)

A L e T I e T NSNS SRR
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*
Any g is expressible in the form )
', R

g= e e Hi € H, Ka ¢ K (1.6.16)
which is just a particular way to exponentiate § to obtain finite
elements of 6. Eq. (1.6.16) suggests a matural parametrization of
coset spaces by the representative choice

YK
Ly} =e ° (1.6.17)

corresponding to X =0,
An explicit matrix representation of L(y) is given in Secticn
1.6.3,

£.6.2 - Classification of coset manifolds

The simple Lie algebras (L.A.) ave classified in the A, B, C, D
series, corresponding to the classical matrix groups, and in the five
exceptional G2, Fd’ Eﬁ, E7, ES algebras. Any semisimple L.A, is
the direct sum of simple L.A., and any L.A. is the semidirect sum of a
semisinple and a sclvable L.A.

In what follows we shall consider G/H spaces with & semi-
simple, or at most semisimple e abelian algebras (a particular case of
the general decomposition semisimple € solvable). These cover most of
the G/H spaces used in the course of this book. There are, however,
some physically intevesting G/H spaces with nonsemisimple & that do
not admit the semisimple abelian decompositionm, e.g. &=Poincaré and
super Poincaré algebras.

To completely specify a coset space G/H, both topologically and

metrically, two informations are necessary:

i) The particular embedding of H in G. This determines the

topology.

) this nolds true for g € compact G. For noncompact G, g must be
"ot toe far' from the origin.
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ii) The particular invariant metric on G/H. In general there
ave infinitely many, labelied by a finite number of rescaling parameters

(see Sectiom I.6.10).

The G isometry is realized or G/H in the most economical way, i.e.
G/H has the lowest dimension, when H is a maximal subgroup of G.

There exist tables listing all the maximal subgroups of a given
(simple) G (see¢ for example ref. [7]); these provide, therefore, also &
classification of GSIMPLE/HMAXIMAL coset spaces. The same tables can
be used to find maximal subgroups of semisimple G, and also, more
generally, to find any subgroup of a semisimple G (since ome can find
the maximal subgroups of HMAXIMAL and so on). Thus, for a given G,
or for & given dim G/H, all G/H sre in principle known. An exampie
of such a classification is provided by Table V.6.1, which lists ail

the coset spaces of dimension 7.

Reductive G/H

We can in general perform a tensor transformation
(1.6.18)

on the generators TB of a semisimple group so that its Cartan-Killiag
metric [see (I.3.95)]

CC = structure const, of G

a © Be AD (1.6.19)

B ™

*
becomes diagonal. On that basis, G/H (for any subgrowp H) is
reductive, i.e. the decompesition {1.6.13) satisfies

[B,K} c K (1.6.20)

* xR is a real symmetric matrix, transforming as g'-= érg $ under
(1.6.18). Then g can always be djagonalized with a particular

(orthogonal} S.
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S B ; eC =
Proof: (. = is proportional to Cjia“C ., =0 (because [H,H]cH).

a)
Indices are lowered with the Killing metric, and we recall that

CABC is totally antisymmetric because of Jacobi identities,

It is straightforwsrd to prove the existence of z reductive decom-
position (I.6.13} also for semisimple @ abelian L.A. In the following
we shall always consider diagonal 8an (unless otherwise specified) and
hence reductive G/H spaces.

Symmetric G/H: when

(K, %] = H (1.6.21)
G/H is said to be symmetric. This typically happens when G is simple
and H is maximal (for a proof see Ref. [7], Chapter 9).

For a discussion on the freedom in choosing bases of generators
in M and K (preserving reductivity) see P. van Nieuwenhuizen in
Ref. [16].

1.6.3 ~ Coordinates on G/H and finite G-transformation

Compact G/H

When the decomposition E=M+X is yeductive, the regular
representation (TA}BC”CBAC has a simple block diagonal structure:

din¥E diasK

reguiar Ay 0 0 B } dimH
g Iepres. o
0 A, B 0/ ) dinx
H K {1.6.22}
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since only Caib’ C3ik and Clah’ Cbai are nonvanishing. They corres-
pond to the real matrices Al' AZ, B, ~BT respectively(ﬂ.
If & is a simple classical Lie algebra, the defining matrix

representation reduces in all but two cases to the block diagonal
structure

defining Al 0 0 B
repres.
B —— @
.’.
0 A, -B 0 (1.6.23)

similar to {§,6.22)(“). Note that here the submatrices Al, A2, B
are in general complex.

The coset representatives are obtained by exponentiating the
caset generators:

oo St
cos BB+ B sin/B B
0 B /'y
L(B) = exp =
T A
B0 JEnrB BT os /BB

5

(1.6.24)
With the substitution
A
x-pnr/B3s (1.6.25)

/i

(*} G is compact by assumption, implying 4y negative definite.
Then Clab=~C ai and Ar» Ay are antisymmetric.

(**) The two cosets G/H whose defining matrix representatives do not
have the form (1.6.23) are SL(n}/S0(n) and SU*(2n)/Usp(2n).
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Eq. (1.6.24) becomes
| dim H dim X
(1-xh ’ Y’ din H
LX) =
X } a-x0% | dmk (1.6.26)

The range of the parameters describing the submatrix X is limited by

the requirsment

by
it

dim¥ ,

0 ¢ x*x s 1 (1.6.27)
k xk identity matrix

—
1

where the inequality refers to the k positive real eigenvalues of the
kxk hermitian metrix X"'X. Since X?)( and XX+ have the same non-

zero set of eigenvalues,

0 XX < L ® 0% U I, (hEdieH . (I.6.28)

Conditions (I.6.28) are necessary for L{X; to be a group element.
The coset coordinates X ave bounded by (1.6.27), and therefore describe

a compact coset space.

Example: § = 50(n+1) , where SO{n) leaves the {n+l)-direction fixed.

50(m)

generators of SO(n+1) : TAB AB=1,...,n+1
1

JUUI

generators of SO(n) @ Tab a,b

T

coset generators : Ta 2 n+l

. ch (Ch
In the vector (defining) representation (Typ)™ =6, . Hence the n

coset generators (Ta)cD take the off-diagonal form:

P S T T e

—_

P e

D T e T e

P

P
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+ a-th row

column (I.6.29)

1 0 b
0
K : bn =
BT g
by b 0 (1.6.30)
Coset representatives:
0 b (- xxT);i X
n
exp K:exp u
1,
S %" (1-xx)? (1.6.31)
1
, sin(Zb2)
with x = b J

a a e b?)!:' -

The range of the parameters X, is defined by

1 5
I xos1 . p (1.6.32)
a= 1 o

201

Setting X" Y lng x2 , the X, satisfy:

1 a
i+x§+...x2+x

and the coset S0{n+1)/80{n) "can be identified with the n-dimensional

sphere embedded in R

S0(m+m)

E le: .
—ERE 80(n) xS0(m)

generators of SO0(n+m) : TAB AB=1,,..,n%m

generaters of S0(n} : Tij i,j=1,...,n
generators of SO(m} : Taﬁ a,B=1,...,m
coset generators : ?im c K

In the vector representation

n+ d-th colum

0 oo
i anﬂ ..... 1 ..... i-th row
. D 0o T 90
K: (T:E.a) z : (1.6.33)
g 0
-'2 . Gg;Xm
] ]

(I.6.34)

b is now an nxm matrix, and one can use formulas (1.6.24-26) with
b=B8,
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Noncompact  G/H

Given a compact G/H, the "Weyl unitary trick”

K ey 3 K (1.6.35)

yields the noncompact coset space G*/H, provided it is consistent
with the commutation relations

(H,K] = K

[K,K] = X+ H {1.6.36)
While the first trivially becomes

[H,ik] = i X (1.6.37)
in the second one we must have Cabc= 0:

[K,Kj s H» [i K, :K] = - B {1.6.38)

i.e. G/H must be symmetric.

The structure constants Caib are unchanged, whereas Clab do
change sign, and the metric Ean becomes:

K+iK

(1.6.39)
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The regular and defiring representations have the same block diagonal

structure as in (1.6.22), with -BT, —B.lL respectively replaced by
T .t i

: Fres i
+B°, +B  in the coset generators¥(since C ab"c ai]
regular A1 0 0 B
g _Tepr. @
T
o A, B 0
defining | M1 ! o B
g Tepz @
+
0 A0 B 0]
H K (1.6.40)

The coset representative exp (1K}, with hermitian generators 1K, is

now "unbounded". Indeed

+ 8 sinh v B‘?B

cash v BB

0 n /5

»f.
B 0
A
+51nhA B'B B? cosh'/g?g

L /T ]
(1.6.41)
and after substitution:
A
X=3 sinh v B'B {1.6,42}
B+B
we find
[1+xx7]2 X
LX) =
xt [1+17%)* (1.6.43)

without bounds om X*X or XXT.

T U T

p—

P

e

T T e N

L~



In the previous examples, the "Weyl wunitary trick" brings G/H
into G/H as follows:

50(n+1} 50{n,1)
8¢(n) X+iX 80(n}

50(n+m) \ 50(n,m) (1.6.44)
S0(n) xS0(m) K-+iK S0(n) xS0(m)

1.6.4 - Finite transformations on G/H

We now derive an explicit expression for y' in the transforma-

tion law
gLy} = L{y")h (1.6.45)

giving the mapping of G/H into itself under the (left) action of G

gy yl . {1.6.46)

An arbitrary element of G has the structure

A ] $
ge 6= ¥
C b g
¥
+m*  Fn> (I.6.47)

If g 4is in the adjoint represeatation, m=dim H, n=dim K.
Depending on which classical G we consider, there are various

relations between the submatrices A, B, C, D. Using the parametriza-

tion (I.6.26) of coset representativeé‘f, the abstract formula (I.6.45)

becomes

Ic ol -] xF (Inux'?x-}’ﬁi ) ann}
(1.6.48)
i.e,

MBI -X0T X (1.6.492)
o+ 00 - X0t e - xT)Te (1.6.45b)
A, - xh - . (1, - X'ty Moo (1.6.49¢)
ca -xhEoo ety (L.6.494)

From these equations ome finds X', B vn and H m in terms of X

and A, B, C, D.
Notice that multiplying (I.6.492) by the inverse of (I.6.45%h)
yields:

[+ B0 - XT0%]fex v o - X0 xa -

or
AX{T - )(‘LX}';i + BI{CX(L - x’hx}"lﬁ N RS {1 - x"‘x')"l”*
n n n
{1.6.49%)}

This last equation suggests the use of new coordinates I:
- wl
XL - xtx; Hox - 2L+ z+2} E (1.6.50)

'z and X are i-1 related (projectively}. For compact cosets G/H,

¥ is bounded and Z is unbounded:

0extxetr o 0¢zlzea . (1.6.51)
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The Z's are called projective coordinates on G/H, and have simple
transformetion properties under left action of G (efr. (1.6.4%e)):

2= gz e BCZe) (1.6.52)

Thus, the group action is realized om the projective coset repre-

sentatives by a fractional linear transformation.

Exercise: prove {I.6.52}.
Example - §0(3)/50(2) = §°

. 2
The coset representatives of the sphere 8§ ¢ R are

b X1 %
0 th - Ghea® 1y
exp b2 = *2
-by,-by | 0 P (1.6.53)
with x2+x2+x2=1 %, >0 (see (I.6.31))
172777 73 T ’

The projective coordinates of the upper hemisphere are

(1.6.54)

projective plane PIR2

(1.6.55)
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The figure illustrates three different parametrizations of the upper
hemispheré of 80{3)/S80{2). A fourth one was given in Eq. (1.6.7)

(stereographic coordinates). #

2

Example - 50{2,1)/80(2) = H" (hyperboloid}

H is obtained from $0(3)/80(2) via K~ik.

The coset representatives are

Xi X

. 1 12 + (xz}(xi,xz} 1

exp b |- *2
+b1,+b2 0 X X, Xq (I.6.56)

with x%—xg—x:‘;wl, o g Xy x2<_:_+w,
Projective coordinates:
X,
1<z = — e < 41 . (1.6.57)
v 1+x§+x§

Example - SU(n+1}/8U(n) xU{1) = ti:P},l
The generators of SU(n+l) are antihermitian traceless complex
matrices AlJ, d,i=1,...,n¢1),

Ao ldhy Ao (1.6.58)

There are (n+1)2«1 independent matrices satisfying (1.6.58). These can
be decomposed im a veal and an imaginary part:

At gty g B9 - gt e v
dogier . (1.6.59)

Note: the antisymmetric gh generate the maximal SO(n+l} subgroup of
SU(n+1).

N

R

Ean

B T T T

—— e,

N
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A convenient basis for the SU{n+1) Lie algebra is provided by the ;
. ‘ . { g p Y - i=1,...n (1.6.62)
(n+1)n/2 antisymmetric matrices
ioiieed
and an arbitrary element of K takes the form
— PR U crenanl
Byy1™ = 855 = By = : by
j F R
. . (1.6.60} K- 0 i
(n+1) (n+2) ; n
and by the e 1 symmetric traceless matrices:
by b e :
o -1 noe (1.6.63}
iand j
{Fi].}“ - i[(éi&?-&ﬁi’ﬁ?)ﬂ - 6.1].6};%1531“1] not both
?1?1]31 to Coset representatives are cbtained by expenentiating
b R 3
. X X
. 1 1
Licuian AR Il/?]‘:... I [}(*.,.X*) :
s gz . . n . 1 ol :
- Fyy (#3) = : X X
(R TR exp K = T n
: *
| -x]es A | T (1.6.64)
}
r . : 1 ; _ Tk
[ 2SS W P with v = (1-x%)%
Fij (i=73) = : : The representatives (I.6.64} are bounded by 0$x+x<_1 whereas the
nel | oaen, R s W projective coordinates
L : ] (1.6.61)
n+l X.
i
2y = S (1.6.65)
The SU(n) xU(1) =U(n) wmaximal subgroup of SU{n+1) is generated by 1- xfx

the Ei' and Fij matrices with i,j=1,...,n. {(Note: the extra
G(1) can be thought of as generated by F . It is easy to check that
an commutes with all the Eij and Fij’ i,j=1,...,8).

SU(n+1)

s gre therefore given
Su(n) xU(3}

The generators of the coset K=

by the 2n matrices

are unbounded.

The projective coset representatives are points in the complex

projective space ﬁ?n.
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1.6.5 - Infinitesimal transformations and Killing vectors

¥We consider the transformation law

gLiy) = L(y*)h {1.6.66)

for infinitesimal g:

g=1+ E:ATA . T, e (1.6.67)
) H

h=1-¢hy AT, TeH (1.6.68)
'a & A, a

yoEy r ek (1.6.69)

The induced h transformation depends in general on the imfinite-
simal G-parameters sA and on y, as shown in Eg. (I.6.68). The y-
dependent matrix Wi(y), defined by (1.6.68), is sometimes calied the
H-compensator. The shift in the coordinates {y} is also proportional
to EA, and the y-dependent differential operator

K 0) 2 (1.6.70)

3y

is the Killing vector on G/H associated to the G-generator Ty

The variation of L(y) is then expressed as
L") - L) = €'y L) (1.6.71)
and Eq. (1.6.66)}, after insertion of (!.6.67-69}, becomes

T = KOLE) - LTI (1.6.72)

21

Consider now the commutator gél gil g, g acting on L(y}. If

B
rlee Ty polieg Ty P

=1+¢g
-1 -1 A B
g5 8 B8R0 v (1 - e [T, T DL (1.6.73)

Let us compute [TA,TB]L{y}:

[T Telt ) = T, (1L )] - TplT,itn] =

i -
= TA[KBL - LT, Wy ] - (A+rB) =

J =
KB{TAL} - (TAL)Tij - (A+B) =

It

i i j -
- - CIEW DT - (Ao B) =
Ky(KL - LT H,5) - (KL - LT W 5T My ( )

i ; iy iy X
= [ky L - LTi[(KBwAl) - [KAWBI) + 20 0, Ty ].

(1.6.74)
On the other hand:
= C° -t . i 1.6.75
[TA,TB]L = Cpplcl = € AB[KCL LT, W, I . ( )
Equating the r.h.s. of {I.6.74) and (I.6.75) yields
- (1.8,76)
Ky Kgh = - ke
i i i ik, &L i (I.6.77}
KBWA - KAWB + 2C jkwA WB = - ABWC

where we have separately compared terms with and terms without W's,

since the decomposition of a group element into L{y)h is unique, i.e.

L(y}h = L' (y3h' {1.6.78)

S S N TP

e e T

o

o

ST T ey e T

ST ST e T

e
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implies L{y)=L'(y), h=h"'.
Eg. {I.6.76) shows that the Killing vectors 'KA satisfy the
G-Lie algebra. EBq. {I.6.77} is the integrability condition for the

H-covariant Lie derivatives (see later).

1.6.6 - Vielbeins and metric on G/H

Consider the 1-form

Viy) = L (y) dL(y) (1.6.79}

generalizing the left-invariant 1-form g“ldg defined on group mani-
folds (see Chapter I.3), V(y) is Lie algebra-valued and may be expanded
on the E penerators:

V) = VT, - 2T (1.6.80)

Va(y] =V'a{y}dya is a covariant frame {vielbein) on G/H and ﬂi{y)=

ﬂ {y}dy is called the H-connection,
Under left multiplication by a constant geG, L™ dL is not

invariant, but transforms as

Vo) = ) g dieloonh) =
B -1 -1
= h¥(y)h"* + hdh (1.6.81)
Projecting on the coset generators:
i) = avn = P e (1.6.82)

]
17+

where DAB{g] is the adjoint representation defined by

S T
g Tg=0, @7 . (1.6.83)

The infinitesimal form of {I.6.82) reads

1]

Viy+sy) - v = - eAwAi(chaibv"(y}

1l

&2 eAan{y) (1.6.34)

easily derived by observing that C?A are the generators of the adjoint

representation of H, and ¢, i =0, Eq, (1.6.84) implies that the left

action of G on V° (¥} is equivalent to an SO(N) rotatien on vy

(N=dim G/H), since c@ ib for semisimple G is antisymmetric in a,b.
Prejecting (1.6.81) on the H generators yields:

avph ™ - pah =

ﬂi(y'}

¥

o) (y)Dji(h”l} + e Ht (Dal[h'i} = 0) (1.6.85)
whose infinitesime! version is

i i i kA AL
Wy + 8y) - W) = - Oy e @ - chaw,’ . (1.6.86)
From Eq. (1.6.72), and using the definition in {I.6,79), we derive an
explicxt expression for the Killing vector K (y) and the H compensa-
tor WA (y). Multiplying (1.6.72) by L (y] from the left yields:

i maifg} L) - Ty, 00 -
Y

i

B
D, LN

a, o i, o i
Va KA Ta + Qa KA Ti - WA Ti . (1.6.87)
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Projecting on the K and H generators gives respectively

%, ()

13

DALV (1.6.86)

WAity} Vui(y)KA“{y) - BAi(L(YJ) ) (1.6.89)

A G-left invariant metric on G/H is given by
& b
g (1) = vV )V () (1.6.90)

where Yap is the Cartan-Killing group metric (1.6.19) restricted to
G/H. The invariance of gaﬁ(y}dyadyB under the infinitesimal trans-
formations {1.6.84) is easy to prove:

N a ,co.ob ab e
g = v L YV 4 YV € sV =

" b, b.e _
= ccibv Voo+ Cbicv Vi=10

since Cbic L Ccib . (1.6.91)

To show that 8y5 is invariant wmder the fimite transformations
{1.6.82), it is sufficient to prove the foilowing identity:

Ty Dac(h)Dbé[h)ch heH (1.6.92)

which can be obtained by squaring the definition

“l.. . B b
WA = D )T, = D ()T, . (1.6.93)

The last equality is due to Dal(h)= 0.
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Indeed

“ .

i K 1
Th=e T, e ST+ x [7,,1,] +

i
rx v {1.6.94
+ 2| [[Ta-‘Ti] ’Tj] + {I }
produces only K generators (CJaix 0}.

Sguaring (I1.6.93) gives

-1
%

- = p_“myp, 1.6.95
h Tah h "ILh= Ba (h}Db (h)Tch . { )
The trace of (1.6.95), with the K generators in the adjoint represen-
tation, vields the identity in (I.6.92). G-invariance of 48 easily

follows:

gaﬁ(y')dy‘ady’B = gas(y]dyadys . (1.6.96)

Exercise: show that guﬁ{y) is insensitive to the particular cheice

of coset representative L(y).

Exercise: prove that

a a &, sk oy % K,
ey K, eﬁy X _ e(y + YT, . yv, u, K (1.6.57)

LyJL(8y) = L(y + y}h

with

-6y 2ty K

e (1.6.98)

P

A e ey

B T o S

o~

o,
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Vaa{)’) is defined as the inverse of V&a(y};

8 _ B
v, (y)v Py) = R vaava = 8y (1.6.99)

(1.6.97) is a particular case of (I1.6.66), and expresses the transforma-
tion of an infinitesimal displacement dx (at the origin} under left

multiplication by a coset Tepresentative.
Curved and flat coset indices are coanected in V {y)

(vector)a = Vaa {\.rec:tur}at (1.6.100)

Example: vielbein, H-connection and metric on S

Wie use the stereographic coordinates (1.6.10).

67\ ) 2z Zs 42;\
o 22+4 22+4
L l(z) = LT(z) =
420 12-4
zz+4 z2+4

g o G, ..
-27 dzp~ 22 zp ) 4z zpz dz 4dzo ) 8zcz-dz
zz+4 {zz¢4}2 z2+4 (z?‘+4)2
dL(z} =
4dzp ) Szpz'éz 167 +dz
z?‘+4 (z2+4)2 (22+4)2
A A
2(z dzg—zpdz ) 4ézl
z2+4 22 +4
L @)Lz =
-4dz
E B 0 (1.6.101)
27+ 4 s

oy 8 o i a
= Vu (z)Tadz * 9& {y)Tidz

35
v
~J

Vielbein:
a, . %y
V “{z} = . {1.6.102)
o z2 +d
H-connection:
: " zw%b-az%
Qa (2} = ﬂa (z2) = BV A . (I.6.103)
(2% + 4)
since
AB _ AB B.A
(Ta) ( a n+1) éaaml 6361”1
AB AB < [AB]
(Ti) = (Tab) = Sa (5b . (1.6.104)
Metric:
16 &
2 b af
£.02) = Y VWV, (2) = - —— (1.6.105)
of ab o B (12 +4)2

{Yab = Tr[CaCb] = - Gah)

As a check, we compute the length of half a meridian on s

South pole 2 1
f ds = J./ g de dzB J dzy I ! 2dt
equator ] z§+4 : (Z— 2t} i t 21
1z
=23rctg{ = = 0<2z,¢2,2,20).
o 2 1 2
(I.6.106}

The metric tensor at the origin of G/H is just the Cartan-Killing

metric of ¢ restricted to G/H:

2 b
£,g(0) = ¥y (Vg () = Wyg (1.6.107)
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since

a 1
Yy @ = 8 0T dLy) . Ty . (1.6.108)
yu

Invariance of the metric means

2
3" = g, Moy - g ¢ ey (0) (1.6.109)
ar

ay%0)  ayf(0)

gYG(Y) * Yop » 5 {1.6.110)
ey (Y) By (V)
Comparing (I.6.110) with the definition:
M) = v, VAV M)
gyd Yap y s (I.6.111)

we arrive at the following expression for the vielbein Vaa{Y):

v 3y) = aya{ﬂ)

a N {1.6,112)

and we can interpret the vielbein at a point Y as the matrix connect-
ing the two infinitesimal displacements dya(O) and dya(YJ:

dy®(0) = vaa{y)dy"‘(y) . (1.6.113)
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1.6,7 - Covariant Lie derivative

For an arbitrary tensor T the {ordinary) Lie derivative

oyt
along a vector v is defined by {(cfr. Section 1.1.7)

Y
+ EBBv )Ta--.Y {1.6.114)

so that &, generates a general coordinate transformation with (in-
v
finitesimal} parameter vl. For example, the Lie derivatives along the

Killing vectors of the vielbein and the H-connection are:

a.xyv? By 2 1.6.115
E‘KAVa = Ky2 e (3K,N, (1.6.115)
it By, i ¢
JLKAQQ = R8T+ (3K (1.6.116)

Note that %_ only acts om curved indices.
v

The Lie derivative on p-forms is defined by
S0 = ¥]dw + d V]w (1.6.117)
v

(cfr. Section I.1.7}),
Writing (£.6.117) in components one retrieves the defimition

{1.6.114) in the case of antisymmetric tensors.

Exercise: prove this.

- o R4
Since %, generates coordinate transformations y»y+ev, we have
v

Luwly) = lim oG+ -ul) (1.6.118)
v g+0 £

e e e

Ko

N
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and the transformation laws of the vielbein and H-connection (Eqs.

(1.6.84) and (I.6.86)) can be written as

a i a

ﬁgAV (v} = W, (y)C ibvb(y} (1.6.119)
Lo b Ko i

zKAﬂ W) = O R - diT ) (1.6.120}

The H-comnection transforms as a gauge-field, but note that the fune-
tions WAi(y} are not arbitrary, but arve fixed by (1.6.89). Egs,
(1.6.119) and (I.6.120) can be combined into a single formula for the
infinitesimal variation of V(y) = L"l{y) dLiy):

By VO = W) - W, vl . (1.6.121)

We recall some properties of Lie derivatives:

i) [, ,d] =0 i.e. the Lie derivative commutes with the
v
exterior derivative.

ii Lo,8 4 =24 . Hence
D Uil

c
8, .8, ]==-C ¢
KKy AB Ky

with KA’ KB, Kc: Killing vectors (1.6.1223

. C )
since 1K K. |=-¢" K, and const. L,=%
{ A B] ABC ¥ comst. ¥

The integrability condition for (I.6.118) yields

v

L
By Wg = &y W, - [Wy ] = - e {1.6.123)

A Ky A

- ab., i
with {WA) W Ci

ab
A .

This formula was already derived in (1.6.77).

The transformation laws (I.6.119}, (I.6.120) suggest the defini-

tion of an H-covariant Lie derivative LK :
A

Ly Ay - WAl{y)Ti (1.6.124)
A A
b_b k_ .k
where Ti acts as (Ci)a =C ia on X and as {Ci}j =C i on H,
Then
Ly Vy) =0 (1.6.125)
A
L ) = AT (1.6.126)
A

For later use we define the action of L, on the coset representative
L) s !

L L) = RO - LT ) e

with Ti in the same G-representation as L{y). Eq. (I1.6.72) implies

LKAL[y) =T, 1Y) (1,6.128)

so that

. .
g s JE0) = - gl L) =L ¢ L) =
A B C -C ABKC

i

L[KA'KE}L(y) . (1.6.129})
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Exercise: prove that

L, ,L, =1 (1.6.130)
R A _

also on the vielbein V® and on the H-connection 0%,

I1.6.8 - Geodesics

Geodesics through the origin of G/E are cbtained by exponentiat-
ing straight lines through the origin of K (the "coset algebra™:

exp (tA) Ag K . (1.6.13%1)

In the off-diagonal representation of K (cfr. (I.6.23))

i ‘ 1
cost/B'B psintr2B

0 B :/B-!’B
exp (tA) = exp t =
t e
B ol Rt BBt /aTs
/B'B

(1.6.132)
for compact G/H.
The geodesic coordinates are then given by:
AN |
Xty - p BALEE (1.6.133)
v BJrB
Theorem:

The length of the pecdesic commecting the origin t=0 and the point
t=1 (i.e. the element eA) is equal to the length of the vector
AeX, i.e.
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d(ﬂ‘,e“) = ||al} = ¥ - YabAaAb (1.6.134)

with A= Aaxa s {Xa} =basis for X and v, =Cartan Killing metric

restricted on G/H.

Proof: 4d(t, eA) =

=1
[ /. -g madmab e =
120 of

t=1
a b o &
) Jtzo ‘/_Yabva{t)vﬁtt)dx {t)ex (t}

1=1
=J /-yab[L‘lct)dL{t}]a[L‘i(t)aL(c)]b
t=0

t=1

- - b
/ “Yab (e t‘E‘AdtetA}"’l (e tAAdtetA)

i

t

Lo
=1

= J /~yahA3Ab at = /-YabAaAb = Al . (1.6.135)
=0

. A .
Any ‘other line connecting the origin and e has greater length, since

in the K linear vector space it would correspond to a curved line

connecting 0 with A

K-vector space

{1.6.136)

e

.

L o

e N T T e

N et
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Hence etA {0ct<l) is really the coset representative of a geodesic
between 1 and the point represented by " on G/H.
Example: s"
bl
0 .
A baTa,n+1 bn
. e
XI bl sin tb b= bTL
b
oo
cos t/ byt ' ns i2
exp (tA) = n_.nsinth Z ) =1
X =h i=1
b
—xl. -« xn+i = gos th ]

(1.6.137)

A vector AeXK such that & represents a point on the equator

(*}

must have

lall = —Yabbab =b=7/2 (1.6.138}

so that x1=x2= ...xnzO, xm'l
Thus: #/2= length of & geodesic commecting the pole and equator of an

n-sphere of unit radius.

Def: the distance of a point y¢ G/ and the origin 0 is the length
of the shortest geodesic connecting ¢ and ¥:

d(0,y) (= A%, Liy)) {1.6.139)

As entries of the distance function d, we use indifferently coordinates

y of points in G/H or their coset representatives L{y),

(*Y We take here the "matural" metrlc Y -& rather than the
ab” Yab

Cartan-Killing metric restricted to 5"  (proportional to "Sab’
see the exampie at the end of Section I1.6.10).

=cos b=1 (coordimates of the equator}.

fedar)
Theorem:

The length of a curve on G/H is group invariant. This is intuitively

obvious since the infinitesimal lengths are G-invariant
ds(y') = ds{y) (1.6.140)

A corollary of (I.6.140) is that geodesics through the origin are mapped
into geodesics through y via (left) multiplication by L{y):

tA

e »  L{y} etA

geodesics through y

geodesics through 0 (I.6.141})

We can therefore compute the lemgth of a geodesic connecting any two
points x, ¥y on G/H:

= a(1, L oLy (1.6.142)

d{L{x), L{y})

and define the distance between x and y as the length d{i{x}, L{y}}
of the shortest geodesic x-vy.

1,6,9 - Invariant measure

An element of volume at the origin

VO = dx () A AxP(0) n ... dX(0) (1.6.143)

can be moved from © to y by the group operation L(y), and becomes:

W) = dt @)~ d ). () =

ax (0} o ... X (0) (1.6.144)

n

det v 20|
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An invariant measure can therefore be defined:

duly) = det]V 2} |avly)  duly) = du(0) . (1.6.145)
Theoren:
dulg) = du(Idu(h) if g6
y & G/H
heid . {1.6.146)

Proof: det|v,”(g)| - aet |V 2y | det|v. (n)
since b %dh has no components along the K generators.

Integration of (1.6.3146) yislds

L3

vol G = J du(g)

J du {Y)J du(h) =
gef ve G/H

heH

[}

vel {G/H) » vel (H) . (1.6.147)

so that the volume of coset spaces G/H is just wvol G/vol H,

Exercise: find the volume of §°.

1.6,10 - Connection and curvature

The differential properties of V=1"ldL are expressed by the
Mzurer-Cartan equation:

&V +V V=0 , (I.6.150)

an immediate consequence of the definition of V:

1

v=alt a1t Ay L (1.6.151)

27
In components (see (1.6.80)) we have:
av® + ";“Cazm"b AVE cab;;}*’ aateo (1.6.152)
act + ,2£ A -;-cijkszj L =0 (1.6.153)
The Egggégg_Z»forﬁ is defined by
L (1.6.154)

where the i-form Bab is the spin connection (see Chapter 1.2).

The spin connection defines parallel transport on the manifold.

The simplest choice for Bab corresponds to vanishing torsion on G/H
b_g (1.6.155)

a
b *
Combining Eqs. (1.6.152) and (I1.6.155) yields

and B is then calied a Riemannian connection,

ool .t ot (1.6.156)
2
For symmetric G/H spaces, Bab takes the simple form

g .t gl (1.6.157)

RE = 0 - B .80 = R v (1.6.158)

Substituting (I.6.156} into {I.6.158), using the Maurer-Cartan Eqs.
(1.6.152-153) for V@ and ', and using Jacobi identities for

—

P T T N

T T NN

o
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products of structure constants, one derives the following formila for
the curvature tensor:

e 1

¢ cd " 7

R3 m-}-C

a lea & 1 c®
bed 4 be 8

a i
CpiCed "5 ec bd od® be

{1.6.159)

Exercige: derive (I.6.159).

Exercise: prove the symmetry of (I.6,159) under (ab) ¢ (cd) inter-

change.

The Riceli tensor

z R (1.6.160)
Rpa = ® bad
is easily obtained from {1.6.158) by contracting a and c.
Notice that for symmetric algebras
- (1.6.161)
Rab = 7 % Yab
because
A D did o dd _L,d
Yo - Cafpa= " Cad i~ Cailoa " b
(f.6.162}
Exercise: prove that for symmetric G/H
0 (1.6.163)

a =
DeR bed

i ivative B is constructed via the Riemannian
where the covariant deriva A

a )
connection B, in (1.6.156): ¢

223

. i
D, = 3, + 8, (1.6.164)
Example: the round "
30(n+1) algebra:
1 1 1 1
[TapsTepl = 5 SanTae * 5 O8cTap = 3 %acTe0 ~ 3 Sanfac
A, Ber. = 1,...,m1 (I.6.165)
Structure constants
[AB] 1. oA B 1 (A 3]
oo [ze] 7 % %5t 7 %oebc Ok -
JLlg o glhgBl DLy gla Bl (1.6.166)

S0(n) gemerators: ?ab’ a,b=1,...,n

coset generators: T =T
a, n+l a

30(n+1)/50{n) is az symmetric coset, so that structure constants with
all three indices in X directions vanish. This greatly simplifies the

expressions for the connection and the curvature.

metric:

) C[EF} C{CB} .
[a, n+1}[cD] [b, n+1]{EF]

[H

Tab = Y[a, n+1] [b, ne1]

- . 4C[e, n+1] C[cd] .

(I.6.167)
[a, 2+1] [ed] [e, ne1][b, ne1]
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d 1
6851 = - 5 [né

:3

1 e ¢ d
’ E'Gcada[6e6b ) ab "

1

i
- ~2~ {n- l)ﬁab

Riemann connection:

2, b runon K= gt

i runs on H = 50(n)

g3 .2 gl fed] | 1.a
ab” Cpi%a T Cplea)’a > %1c Salb

&

ab1 =

(1.6.168)

We have used the stereographic coordinates 23 (cfr. (1.6.7)) and the
explicit expression (I.6.103) for QQCd. Notice that for S the H-

connection coincides with the Riemann connection.

Curvature:
Ra =____J:Ca Ci =__J;536 a[e{sf}—
bed "7 bi"ed” "7 e “f]b % % T
= . Llsd . a
- -3 [dfc Gdfb 6b|c 5d!] (1.6.169)
and
ab _ bb'.a 2 bb!
ea® ¥ Ry 58 SR Wy L) PP

b'ed © 4(n-1) [cd]
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1.6.11 - Rgscalings
In general the metric: he
2,500} = NN (1.6.172)

is not the only G-invariant metric on G/H. Let us study the extent
of this non-uniqueness.

First, consider the tensor Yab? i.e. minus the Killing metric
restricted to G/H. By an appropriate choice of basis in G, Yo
can always be brought to the form:

(1.6.173)

The tangent group, i.e. the group of local rotations om the vielbeins
leaving 848 unchanged, is SO(p,n). If either n of p vanish, G/H
is compact.

We can choose the basis of G generators once for all: as far
as the metric {1.6.172) is concerned, tensor transformations on Yo
are equivalent to the same transformations on the vielbeins. We there-
fore assume Yup 35 in {1.6.173), and consider the invertible linear
mappings

2 _ yaby'P det M £ 0

¥ ¢ » . (1.6.174)

Now we ask ourselves under which conditions the new metric

' ac.,'c ,bd,'d
= 1.6.175
EaR YabM cvu M de ( !

is still z G-invariant one,

P

e,

e

T T T TN

e Y T e e

7

=
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*)

A real nonsingular matrix M always admits the decomposition
¢ : {pseude) orthogonal matrix

M=0D . sl diagomal matrix (1.6.176)

The {pseudo) orthogonal part of M has a trivial action on g by

construction the metric is insemsitive to $0(p,n) rotations of the

vielbeins, The interesting part of (1.6.176) is D, and essentizlly

different metrics are obtained by rescaling the vielbeins with D:

1
0 = . R V:D\”=->‘vu’a=r‘a'\/€l
) . {no sum on a)
atp {1.6.177)

Ain arbitrary rescaling [(I.6.177) will in general destrey the G-
isometry of G/H. For example, on s* only the umiform dilatation of
all directions maintains the $0{n+l) isometry. If some directions
expand differently from others, the resulting "squashed" s" has a lower
symmetry (see next section).

The rescaled vielbeins v*'  transform under left multiplication

by G
a,. 'a Ay iy b o' L6.178)
Viy+dy) -V} = € A{y);&-CibV v - 6.
‘The new metric

1 tg o th
Bog ) = Yyply 0DV ) (1.6.179)

) 4 particular case of the Iwasawa Q?composition
M= ODN °
with N=nilpotent matrix. When det M#0, N is absent.
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is invarisnt under (1.6.178) enly if rb/ra= 1, for a,b such that
P to.
ia b
If C ia 1,52.“ of X,
we can satisfy rb/ra= 1 by choosing a common rescaling b, for all
the vielbeins within the same block SI‘ Ther &g'=90 under the

is block-diagonal in some subspaces §

variation {I1.6.178), and we have a G-symmetric rescaling.

We summarize this result in the following

Theorem: a rescaling

1 + T Val a
4

ay a7
v ” raZV a, labels the subspace 5,

v ; lsbels the subspace S,

: : (1.6.180)

is a G-symmetric rescaling if and only if

b _ b
©), G

a a
is block-diagonal in the spaces spanned by V 1, v 2,....

The number N of rescaling parameters, i.e. the mumber of para-
meters necessary to specify the particular G-invariant metric, is equal
to the number of irreducible blocks of (Ci)ab. This matrix describes
how H acts on the subspace ¥, If H acts irreducibly, the coset is

called isotropy irreducible, and only the trivial rescaling vVarv?

(same v for gll a) is G-symmetric. If G/H 1is isotropy reducible,
we have an independent rescaling parameter for each irreducible sub-
space.

The rescalings must be non singular (r=0, r=+* are excluded),
but are otherwise unconstrained. We now derive the rescaled expressions
for the connection and the curvature.

The Cartan Maurer eqs. become (*}

{

&
) dropping primes on vielbeins.
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LT T,
a,1beca b o Tba b i
av *2";““Cbc" Y *;‘Cbi" =0 (1.6.181a)
a a
i1 i bo1i i .k
@'+ Srnc abv*‘Av P2C 0 a0 (1.6,181b)

The zero-torsion condition (I.6.155) determines Bab up to a tensor

a .
Kes symmetric in b,e:

1% 2 ¢ b i
P | ba i g ,C
b3 —;;m ¢ ch + I, C big + K bcv . (1.6.182)
k% is determined by the require B2 4. i @
be quirement b‘*Bb =0 (i.e. B p it

Riemann comnection. Indices are raised and lowered with vy b}. Then:
al

r R
& a.a c b
K & — — . ——
be 7 “be [rb rc] : (1.6.183)
and
a _,1.a .c.ab a b o
Bo =ty bnd (o) vy -0 (1.6.184)
a
with
ab, . Ta'c "¢ Ta¥b
G = re—m e (1.6.185)
T. r T
b a C
The Riemann curvature, defined by {I.6.158), is now:
a 1 2 e .ab. %c%d 1 .a i
R = .= o2
bed =7 7 O bl cale) t, 7 C b1 ca Tefa
Llea & oae be 1 o2 e ae be
5 Ceclpale () * 3 CeaCpe (g0 (R) - (.6.186)

P
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The Ricci tensor for symmetric G/H is
¥ 2 1 2
“ Z Yab(ra) "o Z Yab(rb)
(1.6.187)

(cfr. (1.6.161). Note thst C. is block diagonal).
ib &

1.6.12 - A note on the isometries of G/H

The 'matural" isometry group of the coset space G/H is G, and
we have seen in Section 1.6.6 how to constyuct a G-invariant metric.

Our analysis, however, has been restricted to the left action of
¢ on G/H. For example, the metric {I.6.172) is a left invariant
metric, and the transformation law considered in (I.6.5) expresses how
L{y) changes under left multiplication by ge&.

One cen also examine what happens to L(y) under right action of
G. The left action of G induces SO(N) votations on the vielbein, thus
leaving gaB(Y) invariant. What will be the vielbein transformation
law under right action of 67 Is there a subgroup of G such that its
right action on G/H only rotates the vielbein? This subgroup would be
an additional isometry of G/H.

We start by studying the behaviour of the coset representative

L{y):

L{y)g = L(y"}h: right action of geG on L{y) . (1.5.188)

For the expression L{y)g to make sense, it should not depend on the
choice of coset representatives. This happens if and only if g belongs
to the normalizer of M in G, denoted N(H), and defined by

gHg ' s H o g e N(H) (1.6.189)
Indeed one can easily verify that L(yY)~™L0y)' (i.e. L{y) and L(y)'
belong to the same coset) implies L{y)gvily)tg if and enly if
geN(H).

o~

i

P

ST TN S T T

ey

TN TN ey

=

B T e N
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This discussien was not necessary for left multiplication since

glL(y) is well defined for every g¢ 6.

It is clear that if geH, its right action on L(y} is trivial:

it does mot move the point y on the coset space. Thus we need to

consider only elements of N(#)/H, which has a natural group structure.

We proceed to prove that N{H)/H is the right isometry group of

G/H.
Consider the transformation law of the I-form V(y) under right

multiplication by geN(H}/H:

V) = L) = hele i et L (1.6.190)

Projecting on the coset generators ?a we find:

mg g h® = P2 -

13

VR

H

P fenteh = oo teh . e

where we have used Dia(h“lJ = 0.
Infinitesimally, taking g end h as in (1.6.67-68):

B A, i b
iy 6y) - V30 = - V0T« WV IICY, -

A, & Lpoa-2 4b ba i
= £ ("C Ab + wA EYJC ib)V f)f) - eC biw {Y} .
(I.6.192)

Thus, the right action of g on the vielbein induces an SO(N) rotation

of Vy) if and only if ebcabi=o for every a,i. This happens if

the generators Kbc N(H)/H commute with H, since this implies

b+ N{H}/H
¢ =0 if i+H . (1.6.193)
bi
a+ G/H !

237,
LT

Now, the generators of N(H)/H are defined to act on H as
[Kb, H] ¢ H X, & N(H)/H (1.6.194)

which is just the infinitesimal form of gHg—1= H. Reductivity of G,

however, requires

x, # <x . (1.6.195)
Bqs. (1.6.194) and {I.6.195) together imply

[k, H} = 0 . (1.6.196)

Therefore the generators Kb of N(H)/H commute with H, and conse-
quently N(H)/H is an isometry of G/H.

The Killing Yectors KA{y} of N(H}/H and the corresponding
H-compensators WAlty} can be derived as in Section I.6.6, Eqs.
(I1.6.88-89). Consider first the infinitesimal form of L(yJg=1L(y')h,

i.e.:

LT, = K (L) - L(y}WAi wmT . (1.6.197)

Multiplying by L_l(y] on the left:

-l aL o i _
Ty= L) —5 OIK ) - W70 =
[
oy A O fron i
S VUKT, £ QKT - W (1.6.198)

‘Projecting on the K generators Ta yields:

4 o
K (¥) = v, (¥ (I.6.199)
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xi“(y) =0 (1.6.200)

Eq. {I.6,200) is comsistent with the fzct that the right action of H
is trivial on G/H. Eq. (I.6.199) gives the Killing vectors correspond-

ing to the right action of N(H)/H: they are just the inverse vielbeins

v i)
Projecting Bq. (1.6.198} on the H generators T.l vields

nlo) = oy - otk o) (1.6.201)

It is evident from Egs. (I.6.66) and {I.6.188) that left- and right-
isometries on G/H commute.

Exercise: check that left and right XKilling vectors commute.

From the preceding discussion, the reader could infer that the
isometries of a coset space &/H are at least

¢ « NGO

(1.6.202)
H

In most cases this is indeed correct. However, there are two instances
in which (I1.6.202) fails to give the actual isometry group:

1) Some of the right Killing vectors coincide with left Killing
vectors. As each xight isometry commutes with each left isometry,
these common Killing vecters can only corrvespond to explicit U(1)
factors occurring in G and N(H)/H. The isometry of G/H is there-
fore reduced to

G' x NH)/H (1.6.203)

where G=G'x (common U(1} factors). This happens whenever G contains
explicit U(1) factors: their right and left actions clearly coincide,
as they commute with all of 6. An example if provided by the coset
spaces M giscussed in Chapter V.6.
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2) The symnetry may be larger than {I.6.202). This happens when the
coset manifold can be described by more than one quotient G/H, If
G/H= E/ﬁ, with G656 the maximal?group for which this is possible,
the true isometyy group of the coset manifold will be

& x N(H) /B (1.6.204)

modulo the consideratiens in 1), A classic example is given by the 7-

sphere 57: as & coset space, S7 can be written in many ways:

so(s)  su(4) . s0(7) _ S0(8) . {1.6.205)

80(3} 8U(3) G2 50(7)

In the first two cases, the isometry group is in gemeral G¥ N{H)}/H,
but is increased to S0(8) by a particular rescaliag of the vieibeins
{see later the example of SO(5)/S0(3}).

on SO(?}/GZ, the unique SG(?)-invariant?metric is glso S0(8}
invariant, so that SO[?}/62 is the round S'.

Symmetric rescalings

We now discuss rescalings preserving the full GxN{H)/H iso-

metry. Recall the transformation laws of the coset vielbeins:

left action of G:
a 4
Viyrby) - V) =
. . ,
Sl - ol m] e (1.6.206)

(A Tuns on &}

P o~ P T o~

P AT T

11

e S e o e

N T T e T T T T R
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right action of N(H)/H: ‘)
iy s dy) - V2O = .
(short roots)” = <
ol Bt (e, IV 1.6.207)
S ePeR v e T V) (L6,
e (¢, + Yy Olug (0, n% (long roots)? = é
W, %
(b rtuns on N(H)/H} o
By the same argument used in Section 1.6.11, it is clear that if
(Cb)ca and (C ] are block diagonal in the same subspaces Sl,S
of K, the vzelbems of these subspaces can be independently rescaled EZ Qg \, e

without loss of GxN{H)/H symsetry.
We have therefore the following extension of Theorem {I.6. 180):

Theorem: A rescaling

a1 ai

{1.6.208)
ts a GxN{H)/H symmetric rescaling if and only if

{cD}ba D runs on N(H)

2 =
is block-diagonal in the spaces spanned by V5,V 7,...

1.6.13 Some examples

S0(5)
so(3!

; ™ .
The root diagram of S0(5) is:
{*} We recall that in the Cartan basis (H E}\), theAcommu‘cators are
1 ,EB]-= rAE}\ r}t-a-cozxspcnent of the root 1 corresponding
Y a v
to E :
A

A
[yt ) =1 s

The S{)(?s}I XSO{SJJ subalgebra is associated to the generators El’ Ez,

Fl’ I~‘2, %{1, }{2. More precisely, it is generated by the combinations
I Ui Ve N /6
s0(3) " ]El--z—-.{E +E) EZ-T[EI—Ez),
E, = - lli: (H, +H,) (1.6,210)
_ive _ /e
50(3} 3"1-7—{!" *'?}, FZ_T[FIWFZJ’
Fq = —€§: (H, - Hy) {1.6.211)

Note that we are forced to introduce complex combinations of E, F and
H generators in order to have a compact S0(3)x80(3). If the i fac~
tors were omitted in IE £3’ F ]FS’ the resulting algebra would be

footnete cont'd...

?\'-39\

- 3 2 -
{E)\’Eu] = NRUE}WH with N)qi = n)‘(1+ml)
where Ny, W ave defined by the following conditions:

P +nr}\ is a root and "+ [m-l}r)\ is not a root

ru-nr;\ is a root and V- (m+1}r}\ is not a root

Furthermore note that ¥ = 2



242
50(2,1) x80(2,1). In a compact coset space, the coset generators must

be antihermitian (see Section {I.6.3}). Since @“%,@=%,we

consider the four antihermitian combinations:

G = 10 + Q)

=0 -G
=i+ Q)
G=%-0 . (1.6.212)

The SO(5} structure constants in the E, F, { basis are

T

Cga - é“aai ’ C?O o %uéai : C;G = % 8a

Cga c - %'aaf ? C?D = %'Gaf : CEO s %'saf

Cga - %'Eiab ’ C;b ® % fiab

@, - %'Efab , cib “len (1.6.213)
with the index conventions:

§, f, ¥ yun on 50(3)I

i, 3, k runon S0(3)7

a,.b, c correspond to ml’ Qz, ms coset indices

0 corresponds to g,
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The Killing metric

boC .
. ¥ 50(5
Tsn C ACC 8D A, B..# run on SO(5)
is given by
. e w - 3an .- -2
Yig = - 3y5 55 m - Bpns Yo 7 - Bgpe Yoo

with vanishing off-diagonal parts.

We examine nmext the possible S0(5)-symmetric rescalings of the
coset vielbeins Vi, Va, VO.

From the root diagram, it appesrs that the 7-dimensional coset
space SG(S)/SO(S}I spiits into 5 irreducible subspaces under the
action of SO(S}I, namely the three singlets Pl’ F,, FS and the two
doublets (QG’Q7) and (QS,QSJ. However, becazuse of the change of
basis (1.6.212) necessary to obtain a compact coset, the matrix (Ci)
is not reducible any more in the @ subspace via a real ftemsor trans-
formation on the Q's, and mixes the 0,a directions {C?O, C?h are
nonvenishing). According to Theozem (I.6.180), the rescalings that
preserve the 50(5) isometry involve four independent parameters

P (E=1,2,3, 1

L ,
A T T (1.6.214)

Before proceeding to compute the rescaled curvature, we observe
that the symmetry of SO{S]/SO(S)E is actually greater than SG(5]).
Indeed the normalizer N of S0(3)% in SO(5) is

so(3) ! % s0(3)” (1.6.215)

and N/H is therefore SO(E)J. According to Theorem (1.6.208), the
I . :
fuil isometry of SG(5}/S0{3)" is

e Tt S S}

R e N T

EN

Pt

P

—

T e N T T e N T
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G x N/H = SO(5) x s0(3)° (1.6.216) ; The corresponding Ricei tensor is
1 115,2
and the rescaling preserving this isometry involves only two parameters, : Rab = SabGE - E._Egb
since ) a .
Ry = - By v Lb,
%y %88, i, 06 i 482
p: i, i N {1.6.217) -
Ry = - {(=-=Jb (1.6.220}
00 g,

ts block diagonal in the spaces {i} and [{a,0}.
We therefore consider the rescalings
il

3 !
ot v sy

Wew® (1.6.218)

Applying formsia {I.6,186}, the rescaled Riemann curvature reads:

a i 2 2

Rped ™ " 3% @aedpa 8yabpd (B - 22 )
2

a 1 . By?
Roobo * ™ 73 5ab{s az)b

030~ 48 43 g2

4 b2

a _ 1 B 1 2
Rips =~ %7 %30 2 R (35 = Sai%s? ¢ - 32}
i . 1,45 2
R ™ 7 7 6 2

4

i1 i pt 2
Rjap * 35 Qialip ~ Ou’ay)C3 267

i 1 b2 2
w4 (2 - ZI° . (1.6,219}

. €.,
jla 24 "1ja a2

[5:%

Let us now look for rescalings a,b such that the vesulting space

becomes an Einstein space, i.e. a space for which the Ricci tensor

Raa

Einstein spaces are of special relevance in Keluza-Klein supergravity.

is proportional to the metric g As discussed in Part V,

It is an easy exercises to.check that if

2
l3-2~= 2 (1.6.221)

(*)

the Riemann curvature becomes that of the round 7-sphere

P L (1.6.222)

¥6 74 ¥8

This is an interesting iliustration of how the symmetry GXN/H of a
coset G/H can be increased by a rescaling that brings G/H to be
equivalent to G/, with GcG. Here the 80(5) X SO(S) symmetry of
SD(S)/SG(S] becomes the full SO0(8) of the round S

Another Einstein space can be reached continuously from S at the

value

(1.6.223)

#ool oo
[LR1S]

of the rescalings.

) Cfr. the example of s" 4t the end of Section 1.6.10, with n=7.
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This space has only the “canonical® symmetry of 50(5}/50(3)1,

S0(5) % S0(%)7 (1.6.224)

and is called the "squashed" seven-sphere; it is the only other Einstein

space with the topology of ST. Its use in ll-dimensional supergravity
is discussed in Chapter V.6,

The MPYT spaces

Topelogy and symmetries

Consider the 7-dimensional coset wanifolds

G, SU(3) x8U(2) xU(1) {1.6.225)
H o 80(2y »U{1) x U{1) N

vhere SU{2) is embedded as an Yisospin" subgroup of SU{3}, i.e. the
triplet 3 of SU(3) decomposes as 2+1 wunder SU(2). SU(3) xSU(2) x
U{1) has three commuting U(1) generators:

g ¢ hypercharge of SU{3), commutes with the “isospin" subgroup
SU(2) € SU(3)

Ty the isospin of SU(2)

Y : the U(1) charge

The surviving U(1) generator Z in the "coset algebra" is in general

& linear combination of Ag, Tz and Y:
—;~ /By +——-qT * irY . (1.6.226)

e e I i+ e L e e e e
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The embedding of the two U(1) factors of H is thus chagracterized by
the three integers p,q,r, and the corresponding spaces are denoted by
Tl

For 2 to be a compact gemerator, p,q and T must be rational
numbers. Since an overall rescaling is inessential, we can always
choose p,q,r to be coprime integers.

The topology of the MPar spaces can be understood by cons1der1ng
the quotient in separate pieces: SU(3}/5U(2) 1is topologically S
su(2) is §°, and thus

WPaT . $ xs® x v , (1.6.227)
Y1) % U(1)

For simplicity, consider first MpqO' In this case the generator of
one of the U(1} factors of H is mapped into Y. Then
5

Mqu _ 5 x5
(1)

3 (1.6.228)

)
Next observe that S2n 1 may be considered as a U(1) bundle over EP,

since

g2+l | Su(n+1) * U(1) (1.6.229)
SU¢n) x U{1)

SU(n+1)
SU{n) x U{1)

(remember that €P" = see Section 1.6.3).
3 .
Then S5 is a U(1) bundle over EP2, and $° is a U(1} bundle
over E?Iz 52. The £actoring by U{1) in (I.6.228} causes the identifi-
0 .
cation of the two fibers, and therefore MPS" can be considered as a
U(1) bundle over EP >fS The identification of the two flbers is done

in such a way that going g times arcund the U(1) fiber of S is
equivalent to going -3/2p times arouné the fiber in S (see Eq.

(1.6.231)}); this implies that the topology of Mpq only depends on
the ratio p/q.

o~ B

Fans

o~

TN PN S TN

N T

o

AN e
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The isometry group of Mpqo is at least SU(3) xSU(2)xU(1}.
Indeed Mpqﬂ may also be writtea as

SUCS) x SUE)
SU(2) x U1}

(1.6.230)

with the SU(3) xSU{2) symmetry generated by the left action of the
group on the coset space. However, the metric is also invariant under
right multiplication by the U{l) generated by Z, i.e. the extra
generator (outside SU{2}=U(1) itself) in the normalizer of 8UG(2) x
Y1) in SU(3) xSu(2).

In certain cases the symmetry of MpqO may be even larger. For
example, in w010 ol x $* or MIOO 2§ x s
SU(3) % SU(2) x3U{2} and S0({6) x80(3) respectively.

Returning to the general case of Mpqr’ we may choose one of the

the symmetries are

U(1) factors in H to be generated by

no_ i 3%
Z = - Eqﬁls ES ..2._P "f3 (f.6.231)
and consequently
5. 3
5 X5 «un) 200
WPar o U M x G (1.6.232)
L(1) y)

The last quotient by U(%} is almost trivial: it has the effect of
cancelling the U(1) in the numerator, and factoring the space Mpq()
by a finite cyclic group. If p and q are mot both zero, the

enbedding of U(1)+M90 xU(L) may be defined by
g

(1.6.233)

-+

3 1
el@ esz /K

where

D40
P

7 = Zr[i;p' T ag ¢ %q 1] - 3" + )Y (1.6.234)
and % is the highest comsmon factor of 2rp, vq and [?sp2 -I-qz).
Dividing by k ensures that (I.6.233) is a one-to-cne embedding. If

¢ changes by 21ri</(3p2 +q2)_, then one has returned to the idemtity in
the U(1) generated by Y: it follows that points in W' which differ
by an integer power of

exp A (}«pff Ag * %»q TS)} (I.6.235)
(3p?+qd) 2
pust be identified with each other. Thus
qd
P - Wt (1.6.236)
Z

with 2= (3p2 +q2)/k and Z, % {1}, and the spaces M'I" have funda-
mental group {see Section 1.6.14):
1, (P) = z* (1.6.237}

Their universal covering space is Mqu‘

Rescaled curvatures

We now turn to study the geometry of W spaces. As for any
G/H spacé, this involves three steps:

i} to determine the G structure comstants in a suitable generator
basis for E=HOK

ii) to determine how the coset vector space K decomposes under
ad (), the adjoint representation of H whose matrix elements are
[CH)KK. A rescaling parameter is assigned to each irreducible subspace
of K.
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iii) to compute the rescaled curvature of G/H.

0f particular relevance for d=11 supergravity are the Einstein
metries, for which

RaB = const, Bug . (1.6.238)

Condition (I.6.238) transiates into algebraic equations for the rescal-
ing parameters. If these can be solved, G/H can be rescaled to an
Einstein space,

A suitable basis for (= SU3X Sﬂzx U1 generators is given by”

{Al Ay dg o dy kg A ]

a8

(1.6.239)

where Z, Z' and Z" ave the generators of the three commuting U(1}1s
(see Eqs. (I.6.226-231-234)} in G. The subgroup H=S$U{2} xU(1) x U{1)
is generated by

i .
5 [)\i, Ay Agl s SU@

AR ARSI R {1.6.240)

50 that the coset directions correspond to

i . .
5[14, Aev Aga Ay 5T, 12} iz . (1.6.241)

* In the following Al,...,lg “are the standard Gell-Mann matrices
satisfying [Ai,hj] = 21 fijk Ak where the non vanishing component s

of the SU(3} structure constants fijk are f123= 1; f147= f246=
£257 345 " £367= ~F156 < 1/25 £455=F¢=3/2. 1, ad T, are the
first two Pauli matrices.
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On the basis (1.6.239), the non vanishing structure constants read:c*)
'z ” % m s i
ﬁzmn . % m CAZ'B =273 fp
¢ = igi P fonp Cug = /3 4 figyy
'y = fgg P foup g = 2 e
cﬁ‘z,,n =%pe. - (1.6.242)

k see that the
By inspection of the ¢ HE! structure constants, we

coset linear space K splits into three irreducibie subspaces spanned
therefore
respectively by [A4, ks, Aé, 17], [Tl, 12] and Z. ¥e can

introduce 3 rescaling parameters a, b, ¢:
1
Pt
1
VYV oep V"

(1.6.243)
vi=¢ VZ‘

i ar charac-
and the Sljsx SIJ2 X U1 - invariant metrics on '3 spaces are

terized by the velues of a, b, c. -
The vescaled MPAT curvatures are easily derived from the general

formula (I.6.186):

2
. _ 2, 3B 2
R s =070 - 35 4%
[
22
b* _mn
Mo JFpq
R = P9 8AB
AB 4c?
2
Im _ 2%
R in 4 2

dc

. - . = 1,2,
™ The indices have the following ranges: AB=4,5,6,7; m,n

g

T

.

-
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4 . axde , b=4y/3e , c=2qe (1.6.246)
REA L9 2 g
[2: 3T 5 B
c
- i ]
bring the Ricci tensor R to be
RmA =»/3pqib—f ™ B
nB 8AB
4c “ 2
22 j R =12e" &5 (1.6.247)
R NPT SN AP § WU JE-NC N S, g
(I 1ABT1CD 2e2 | BAB'8CD
3 232 : iii) p#0, q=0. The topology is $oxs% and
T3P T
P - : a=2/6e , b=2V/6e , c=3/Bpe (1.6.248)
R = /T ‘"‘-—b?e'““ For (1.6.248) j
de E are the rescelings for condition (I.6.247} to hold.
and the Ricci tensor is block diagonal in the A,m,2 indices: iv) p#0, qf0. The topology is no longer that of a direct
4 5 product of spaces, and is different for different ratios q/fp. For each
Rmﬂ = -~ 6: [b2 - E-E—-qz] s RAB = E—azﬁg (2 - Ja pz) i q/p there exists an Fimstein metric, corresponding to the rescalings
2 2 cé 8 2 e
R%, = 1 §b4 2,22 ad] (I.6.245) asly /2 b o=y /IR ¢ = qy (1.6.249)
il el - —_ M 0. = - 3 - e
277 TP 2 po 3

Einstein metrics on MPOL

In view of the later applications to Kaluza-Klein supergravity,
we investigate here the possibility of having Einstein metrics on
WP

The question is whether there exists a triplet a,b,¢ such that
the components of the diagonal Ricci tenmsor (1.6.245) are all equal.

We distinguish 4 cases:

i) g=p=0. The topology is that of GJszﬂlPixsl, which
obviously cannot be rescaled to an Einstein space, since S has

vanishing curvature.

ii} p=9, q#0. In this case the topology is that of ep, XSE,
and the rescalings

where £ is a real positive root of the following cubic equation:

2 2
a8 - egt « 2 L8 - 1d .y (1.6.250)
4

3
P Zp

@ and y are linked to B by the relations:

7
36 -4 L oye [EE (1.6.251)

B(1-8)

o=

ool

Equation (I.6.250) has always (for all values of q/p) one and only

one positive real root B whose range is

0 <B < % ) (1.6.252)
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We can conclude that for all values 4,p (except p=q=0) there is

always one (and only one) SU{3} xSU(2}x#{1) Einstein metric on M.

1.6,14 - Elements of algebraic topolegy

This Section contains a micro-review of homotopy and homology,
and is quite nen-rigorous. Its purpose is to recall some definmitions
and theorems that will be useful in Section 1.6.15, and in later parts
of this book.

A path in a topological space X 1is a continucus nap of some
closed interval I into X. Two paths, with the sams end points, are
said to be equivalent if they can be continuously deformed into one
another.

The twe paths fZ’ f2 on the two-dimensional
¢ylinder are inequivalent: f1 % fz.

{1.6.253)

The product of two paths AB and BC, defined when the temminal
point of the first path coincides with the initial point of the second
path, is just the path ABC.

+f two paths fl, f2 are respectively equivalent to 11 Eps
their product fl'fz is equivalent to 818, (the simple proof is
left to the reader), and we can consider the aultiplication of equiva-
lence classes. This muitiplication is associative.

A path, or path class, is a loop if the initial and terminal
points are the same. The loop is said to be based at the common end
point.
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The set of all loop classes based at any point x of X isa
group, with the above-defined multiplication. The identity is the
trivial loop, and the inverse of i loop is just the same loop traversed
in the opposite direction.

This group is called the fundamentsl group of X at the base
point x, denoted by w(X,x). If x and y are two points of X
connected by a path vy, we can define an isomorphism u: w(X,x)~w{X,y)
induced by ¢->y'1¢v {we use Greek letters to demcte path classes).

Exercise: prove that u really is an isomorphism.

The group structure of w{X,x) is therefore independent of the particu-

lar point xeX.

Example: the fundamentzl group of a circle is 2 {infinite cyclic).
Class representatives are paths wrapping around the circle 0,1,2...«
times both in clockwise and anticlockwise directions.

6,1,2... are called the winding numbers of the loop classes.
Opposite winding numbers conventionally refer to the same loop traversed

in opposite directions.

Example: the fundamental group of & n-torus is ZxIx...xZ (a-times).

This is immediately proved by using the

Theorem: the fundamental group of a product spsce is isomorphic to the

preduct of the fundamental groups, i.e.

TARY, (%,¥)) = B(X,%) * w(Y,¥) (1.6.254)

The fundamental group of a 2-torus
is generated by the paths o and 8.

(1.6.255)

o~

iz

P

o~
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The isomorphism between w{XxY,(x,y}) and 7(X,x)xm{¥,y) is defined
by assigning to each element aew(XxY,(x,y)) the ordered pair
(pa,50), where p: XxY+X and q: XxY+Y dencte the projections of
the product space into its factors.

Higher homotopy groups can be introduced via a generalization of
the mapping defining a loop, and are essentially sets of equivalence

classes of closed hypersurfaces. Consider the continuous map

£: 00+ X (1.6.256) .
where I is the n-dimensional unit hypercube, satisfying: Ly
£(31" = boundary of I') = x;eX . (1.6.257)

If the images of two maps £, fz can be continuously deformed inte
each othex, fl is equivalent to f2. The set of equivalence classes
of mappings {I.6.256) is easily seen to form & group, the n-th homotopy

group of X about the point X4:

ﬁn(X, xo)

As for the fundamental group, the particular point Xq is inessential
up to isomorphisms. Examples of higher homotopy groups &re provided
in the next section.

From their definition, it is clear that homotopy groups are
topelogical invariants: if two spaces are homeomorphic, their homo-
topy groups are isomorphic.

The converse is not true: see the examplie of @sz 53 and
Ss xS2 of next section. These spaces have isomorphic n for all n,
but are topologically inequivalent,

For a more complete information on topological differences between
two spaces, it is necessary to study their homology or cochomology groups.

These also provide a powerful link between the topological aséects

of manifolds and their differentiable structure.
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Let M be a smooth connected menifold. A p-chain ap is
defined by the formal sum:

(1.6.258)

where the N, are smooth p-dimensional oriented submanifolds of M.

The coefficients c can be taken complex, rezl, integers, 2,...;

2
for present purposes ;€ R.

Let us denote by & the operation of taking the criented boundary.
Then

Bap z g ¢, 8N, {1.6.259)
is a (p-1)-chain. Cycles are defined to be p-chains without boundary.
Boundaries are those chains which can be written as a_=3a 1 for
some aP*l' Since the bowndary of a boundary is always empty {38ap= 03,
the set of boundaries is contained in the set of cycles.

The set of equivalence classes of cycles of M differing cnly by

boundaries is called the simplicial homology of M:

set of p-cycles

b " {1.6.260)
set of p-boundaries
and twe p-cycles zp, zé are equivalent if
z! = zp + Bap+1 for some ap+i . (1.6.261)

The curves a and b belong to the same
homology c¢lass, since they bound the
two-dimensional strip o (a+b=30).

The curves a and ¢ are not in the

same homology class.
(I.6.262}
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Example: the homology groups of the 2Z-torus are

Hy = R
H = ReR
H) = R (1.6.263)

De Rahm cohomology

We define the De Rahm cohomelogy proups as the set of equivalence

ciasses of closed forms which differ only by exsct forms

set of clesed p-forms
(M) = 4

(1.6.264)
set of exact p-forms
Two forms mp and wﬁ are equivalent if
wh = w o+ do 1.6.265
PP p-1 { }
for some o ..
p-1
Note: since the exterior derivative of a constant is zero
HgR(M) = {space of constant functions} (1.6.266)
and
dim HgRGW) = number of connected pieces of M, (1.6.267}

Poincaré's lepma: The De Rahm cohomology of R' is trivial, since any
closed p-form can be expressed as the exterior derivative of a p-1 form
in B (for p>0).
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Hence for any manifold M, the De Rahm cohomology is locally trivial,
in the sen;;—Ehat it is trivial in any local %" coordinate patch,

Only when local coordinate neighb%urhoods are patched together in a
globally non-trivial way, the resulting manifold has non-trivial De Rahm

cohomelogy.
Inner product: the immer product of a cycle Cp and a closed form wp

is defined as

= £ R {1.6.268)
{cp,wp) {c wp
P

By Stokes' theorem:

= 3c_=0) (1.6.269)
+da = J w o+ J o J wo
Jc CwP P“l) e Py Pt o P P

= du =0) (I1.6.270)
mem%f di IUJP {p
Jc +3a P ¢ P a P ¢

The inner product is therefore independent of the choice of representa-

tives in the equivalence classes.
When M is a compact manifold without boundary, the following

theorem (De Rahm} holds:

Let f{c.} be a set of independent p-cycles forming a basis for
i

HP(M}; let {“ﬁ} be a basis for HDR(M)'

Then the matrix (c;, ug} is invertible:
det {ci, wj) #0 . (1.6.271)

Hence H%R(M) i3 dual to H_(M) with respect to the inner product:
simplicial homology and De Rahm cohomology are naturally isomorphic.

e

N,

P
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The p-th Bettl number {bp] of M is defined to be the dimension
of the p-th homology (or cohomelogy) group:

by = din H 0D = din HBR[M) (1.6.272)

The alternating sum of the Betti numbers is the Euler characteris-

n
X = § -nFb (1.6.273)

p=0 P

Poincaré duality: W) is dual to P (n=din M) with

respect to the inner product

H ~ 1.6.274}
{w?, wn-p) 2 !M mp wn_p (

Hp(M) and HB'P(M} are therefore isemorphic vector spaces, and

dim 00 = din H (M) (1.6.275)
As a consequence the Betti numbers are related by
b =b . {1.6.276)
P n-p
Product formula (Xunneth}
o, x M) = @ W) x HIM,) (1.6.277)
1 2 1 i
pa=k
For Betti numbews:
= ES 1.6.278
= ] b, (4) b (i) ¢ ( J

by * M)
: prqzk

R

Hence the Euler characteristic satisfies:

XMy X My) = () XM {1.6.279)

Using Hodge's decomposition theorem on compact manifolds without
boundary :

(1.6.280)

= d
U.)p (Ep

1t 6Bp+1 + Yp {Yp harmonic}
de Rahm cohomology classes are seen to be isomorphic to the set of
harmonic forms. Indeed dw=0 implies d&f=0 so that &B8=0, and
w=de+y is in the same cohomology class of the harmonic form .
Conversely, if w is hammonic, w=y, and w is closed but not exact
{glso: w 1is co-closed but not coexact).

Thus { set of harmonic p-forms on M l = HP(M} (1.6.281})

Examples: R

All closed forms are exact except O-forms cH’.  Hence
dim HO(]RH) = 1 {space of constant functions) and dim HO(iRnJ = 0 for
k#06.

dim HO[SH) 1 : space of constant functions
dim Hn(Sn) = 1 : constant multiples of volume element

all othex Hk(Sn) vanish.
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1.6.15 - Homotopy and {co}homclogy of coset spaces

Homotopy

It is surprisingly easy to obtain detailed information concerning

the homotopy group of a coset space §/H. While knowledge of the funda--

mental group of a coset space is particularly valuable, one finds that
the higher homotopy groups yield only very basic details of the topo-
logy. More precisely, the higher homotopy groups tell one about how the
topology is changed under varicus embeddings of the non-abelian factors
of H, such as 5U(2) and SU(3}. Since there are only very few ways
in which such factors may be embedded, and because such embeddings cam
usually be understood quite directly, the infermation gleaned from
higher homotopy is not great. The more subtle variations in topology
occur through the embeddings of the U{1) factors, and essentially since
ﬁn[Ufl)] =0 for n22, the higher homotopy groups do not measure these
differences in topology.

For these reasons we will concentrate principally on the funda-
mental group, and return to the question of the other homotopy groups
later,

There are two reasons why one can easily calculate the homotopy
of the coset space G/H. First, the homotopy groups of Lie groups are
known, at least up to L (See for ex. Encyclopedic dictionsry of
mathematics, ref. [10}}. Furthermore, for products of spaces one has
nn(AixB} =ﬂn{A} xnn(B}. The second reason is the homotopy exact
sequence for fiber spaces. This says that if (E,p,B} is a fiber space
with fiber F, then there is an exsct sequence

A i Px
P g B (B) m (B) o (B) L (1.6.282)

where the maps i, and p, are induced by the inclusion i: F»E and
the projection p: E+B. The definition of the map A is somewhat
complicated, and will not concern us here. Knowledge that such a map
exists is usually sufficient. It should be recalled that the notation
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(E,p,B} means that E 1is the total space, B is the base manifold
and p is the projection map of E onto B, The fiber ¥ is iso-
morphic to pul(x) where x is ghy point in the base space B.
Furthermore an exact sequence
£ ¢
> A+B+C [I.6.283)

by definition means that Image f=Kernel g at each point in the
sequence.

The relevance to coset spaces is that (G,p,G/H} is a fiber space
with fiber H, where p is the projection which takes geG to the

coset  gH. Thus we have an exact sequence:

A i, P
> m o B > ) > (6) v (G L {1.6.284)

where i, is induced by the embedding i: H+G. It is important to
stress that the map 1 must be one to ome for the sequence (I.6.284)
to be exact. When considering U(1) factors, 1 may be written in many
ways, but for (1.6.284) to be applicable, i must be written in its
unique one to one form.

In order to caleulste the fundamental group of G/H, consider the
last part of the sequence. For any Lie group, one has ﬂ2(5}= 0, and

so one obtains
A i, P A i,
0+ my(G/H) > m (H) +m(G) > ﬂl(G/H} > T () > my(6)
(1.6.285)

For any connected space M, ﬁU(M)= Z (the dimension of Ty over Z
neasures the number of components), and the fact that the only compe-
nent of H meps into the only component of G, means that i,: ﬂo{H)*
ﬁO{G] is an isomorphism. {We are assuming that G and H are both

cornected). Consequently Im 4| =Xer i,] =0. Hence we may
o () *iy ()

replace the sequence with the exact sequence
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0 7, (G/H) ﬁnz(x) E m,(6) g ™ (6/H) Yo . (1.6.286)
Since Ker ﬁiﬂl{G/H)m m (G/H) one has
7, (G/H) = Inp, = Por i ﬂl(ﬁ;) (1.6.287)
Ker p, Im1i,
Furthermore Ker A‘“z(G/H} =0, and hence
ﬁz(G/H} = Imh = Key i, in nl(H) . {1.6.288)

Therefore the properties of the mep i, completely determine nl(G/H)
and ﬁz{GfH). The map 1, is readily understood: it simply takes a
noncontractible loop with a particular set of winding numbers in H,
and gives its winding numbers as a loop in G.

Consider the example of MPI¥ (see the previous section). The

fundamental groups of G and H are given by
= ,6.288
ﬁi{ﬁ) =Z®L , ﬁi{G} = Z . {1 )

These groups measure the winding mumbers of a closed loop around the

U(1) factors of the group. Since one of the U{1) factors of H 1is
mapped directly inte SU(3) x SU(2), and because ﬂz[SU{3} x8U(2)) =10,
one sees that i, maps one of the Z's in nl(H) to zero. If p=g=0,
then both U(1) factors of H are mapped into 8U{3) x8U(2} and con-
sequently

Ker i, = ﬂl(H} = Lei N Imi, =0 . (1.6.260)

P

Hence, from (1.6.287) and {1.6.288):

HI(G/H) ﬁl(ﬁ) = Z (1.6.201}

H

ﬁztG/H) Ker i, =Z @ Z . (1.6,292)

This is consistent with the earlier observation that MOOr ﬂtP2><82 XSE,
when one recalls that ﬁl(EP2)=‘nl{Sz}m 9 and wz{EP2)= ﬁZ{SZ} =Z,

If p#0 or q#0 then the generator Z' in (1.6.234) defines
the embedding, 1. In particular this shows that a loop which goes once
ground the second U(1) factor of H, poes around the U{l) factor of ¢

precisely £=(3pz +q2)/k times. Therefore, on the fundamental groups,
the map

i, ﬂifﬂ} =L 8L nl(G} = Z {1.6.293)
takes (a,b) into bl and so
KZ{G/H] = Ker i, =2

ﬁl{G/H) B e = e = Zl . (1.6.294}

One now sees the importance of using the one to one map, i, which
defines the embedding of H imto 6. If one had used an "m to one”

embedding, one would have obtained KI{G/H)= zmi'

Having classified 7, and m, of W let us now consider the
higher homotopy groups. To do this, we have to refime our techniques
a little. Recall that M'¥ may be considered as the quotient space
¢S xgd gl

{I.6.295)
U1y x u(1)
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Clearly this is alsc a fiber space, That is, SSX 53><Sl is an

Sl><S1 fibration over MO, Applying the homotopy exact sequence

one obtains

s F%) - vrn(sl xshy » 1 (°xsPxgh)

1+l

1, .1
» 5, () > (87 x8T) > : (1.6.296)

However for n22, ﬁE{Slx Sl)m 0 and so ocne has

0~ nn(ssxsz‘xsl) sm P a0 (1.6.297)

Hence

n
L]

0Py = (xsdxshy , a (1.6.298}
In other words, the higher hometopy groups give no further information,
in particular they do not tell anything about the role of the ratio p/g
in deternining the topology of MPUT,

A direct consequence of the foregoing is that if p and q are
not both zero, then ﬂn(Mpqg} is the same for all p and gq. That is,
homotopy cannet tell the difference between any of the spaces w0,
particular

7 (€% x5 - ?i‘n{SSXSZ} . (1.6.299)

Thus one sees both the power, and the limitations of the homotopy groups.

The caiculation of nl(Mpqr) and ﬂZ(Mpqr} can be generalized to
arbitrary G/H.

Suppose that G=G'xU(1} and H=H'xU(1) where G' is simply con-
rected, and H' is mapped by the embedding, i, into G'. Then
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i) If i maps all of H inte G,
ﬁl(G/H) ® ﬁl(G) =Z ;
ﬁz(G/H) = wz(H) =Z @ ﬁl(H‘) . (1.6.300G)

ii) If i wmaps the explicit U(1) factor of H'xU(1) so0 that a
simple loop in this U(1) winds £ times around the U{1) of G' xU(1)},
then

|
b~

ﬁl{G/H) =

8

ﬁz[G/H) ﬁl(H’) . (1.6.301)

This theorem enables one to calculate the ﬂl(G/H) and ﬂz(G/H}
for every coset space in the TABLE V.6.1 of Chapter V.6.
A word of caution is advissble concerning cosets with nontrivial

fundamental groups. Let M be z manifold with ﬂltM}#O, and let M

be its universal covering space (for example M= M and ﬁ:MPqO).

If we solve Killing's equation in M, or solve the Killing spinor
equation to determine the surviving supersymmetry (see Section V.4.3),
then these calculations are performed locally, that is, in some coordi-
nate patch. 1If one is not careful one might conclude that solutions to
these equations exist in M if and only if they exist in M, since
these equations are only expressed in local terms. However, for the
existence of a supersymmetry, or a global Lie group symmetry, these
Killing spinors and Killing vectors must exist globaily. When the mani-
fold is simply comnected, the solutions which exist locally may be
consistently patched together to produce a global solution, and sowthere
is no problem on M. However, the manifold M is isomorphic to W/X,
where % is some discrete group, and the condition that Killing vectors
or Killing spinors exist on M is that they exist on fi, and are con-

sistent with the factoring by the discrete group X. As a simple example

e
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of this, consider the harmonics(*) cos (md) and sin (md) on the unit
circle, If one divides the circle by the finite group Zi, then the
only well defined harmonics are those where m=ki for some integer k.
The conclusion is that a coset space G/H will aiways have a Lie
group symmetry G, however it may appear locally to have more Killing
vectors than those obtained from G. These extra Killing vectors may
not be globally well defined on G/H, and thus one mey not have a larger
Lie group symsetry. If the space G/H is simply connected, then the
extra local Killing symmetries can be made into plobal ones; but if the
space is not simply comnected, the possibility of extending to giobal
symetries depends on the details of the particular situatien, and it

will usually be impossible.

Homo logy

it is interesting to mote at this juncture that there are also
exact sequences on the homology and cohomology of fiber spaces, and
that the complete homology and cohomology of Lie groups is known (cfr.
Encyclopedic Dictionary of Mathematics, Ref. [10]). Thus one can, in
principle,‘determine the homology and cohomology modules of G/H. It
turns out that these modules are considerably more informative about
the structure of G/H. The difficulty is that it is no longer gquite
so straightforward to determine the behavior of the induced maps 1,
ané p, on the homology. Furthermore, the homology of a product space
is not the product of the homologies. Instead one has to apply the
inmeth formula (I.5.277) to find the homelogy of a product, and to
trace the action of i, and p, through these formulae is somewhat
complicated,

However, for a large class of cosets G/H there exists a
straightforward way to obtain the Betti numbers, based on the Poincaré

polynomials. These are defined as follows:

*
™ harmenic snalysis on G/H is discussed in Chapter V.3.

e

2

PM{t) s bo + blt + bzt ot bnt

M

b

n-dim. manifold

Betti numbers . {I.6,302)

For the classical groups, the Poincaré polynomials are given by (see
for example, Ref. {8]):

PU[I) =1+t
P ettty el « sUe1)
Pagey © astdyaeey . e h « 50028+ 1)
Py = Geth et e sp(24)
Poct) * etdyety ... @+t 00 wsop
(1.6.303)

3 ;
PSU(Z) = PSO(S} =1+t". The Betti numbers of S0(3)= $° are therefore

1
by=1, b0, by=0, b,=1 and the Euler characteristic ¥ = kZI(-)kbk

is zero. This geneyalizes to all odd spheres, while all even spheres
have Y¥=2; also, for all lie group manifolds x=0.

P o= (et et =1stSeti et ye0

SU{3;

2P =1t ety 1eto et 4D
PSOG)'p&ﬂ4)“(1+t)(1+t y=l+t et +t™ , x=0

- _ 3 3, _ 3
PSD(GJ-«PSU(Z)MSUW)-(U-%:}(1+t)-1+2t +t° , x=0
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Some useful theorems are:
i} P

P, xP {Cfr. the example of P

s1x62 - 6l T fae SU(Q)XSU(Z})

i1} Xg = 0 for 6= Lie group manifold.

This can be easily inferred from the structure

{even power of t + odd power) (even power + odd power) ...
of the G-Poincaré polynomials in (1.6,303).

The beauty of (1.6.303} is that it can also be applied to coset
manifolds G/H when G and H are of equal rank. The theorem is:

pG/H = Pé/?ﬁ {I.6.304)

where P' is the polynomial obtained from P im (I.6.303) by changing
all + signs into - signs and raising all powers of t by 1 wnit.

Examples:
Pl 4
i) P =p w8003} _1-t 1. tz
Cal i RS 1-¢¢

so that the Betti numbers of 52 are b0= 1, b§= 0, b2= 1, yielding
X=12

. 4 8 4n
y Po@neny (RISt (-t
11) P 2?1 = = =
s Psocany  -thoa-db Lo dmha s o
2n
=1+t

iii) in general P n= 1+ t" for any &,
§

n

ivy P =P %P, =P XP =
2,037 2 3 su(s) 3
rxs S Eay i

X P E
S3

_ Paig
Pt
SuU{2) x Y{1)
4 &
J-tha-e® s
a-tha-th

1stfetdetta®ed! L =0

1

7
vy P Sp o xP L= (1t (etD) = 1etet®at
2 277

The last two examples show that homology indeed distinguishes between
EPZ X83 and 52 XS5 (whereas homotopy does not, cfr, (1.6.299)}.

Tables of Poincaré polynomials for more general G/H coset spaces
can be found in Ref. [8], Vol. III1, pp. 492-497.
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