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CHAPTER IIL.7
SUPERGRAVITY IN 6 DIMENSIONS
IEI.7,1 = Introduction

In this chapter, we discuss chiral supergravity in six space-time
dimensions. A Lagrangizn for the theory can be derived utilizing the
building reles A)-E). In this example, however, such a Lagrangian is
inconsistent because it does not incorporate the additional requirement
F) of completeness of the equations of motion, Indeed without F) the
rheonomy framework for the construction of the Lagrangian fails, in the
sense that the extension of the field equations from x-space to super-
space involves new comstraints on the-x-space fietds. As a result of
this, we show thét the spaCE"tiﬁe restriction of the action is not
supersymretric. _

We stress, however, that the theory could be constructed using
only the rheoncmic Bianchi identities approach, without any reference
to the Laprangian. In this approach one retrieves the complete set of
space~time field equations, including Ehe constraint necessary to extend

them to superspace.
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Of course, the knowledge of the correct action is necessary for
global or quantum considerations. At the end of the chapter we discuss
how the building rule F) might be implemented to find a supersymmetric

space-time action by adding a Lagrangian multipilier term to the action

constructed using the building rules A)-E}.

if one counts the bosonic and fermionic degrees of freedom accord-
ing to the formula (II1.5.12) one finds that in D=6 the supergravity

muitiplet is given by

a
(V0 ¥y B

vhere Vau is the gravitan (§ 6{6-3) =9 Bose states}, ¢ﬂ a complex
chiral gravitine (} (6-3)+8=12 Fermi states) and Buv a 2-index photon
whose field strength Fuvp wa[ﬁ Bup] is self-dual {} (6-2)(6-3}/2) =3
Boge stateg), This suggests that for D=6 supergravity we could write a
complete geometrical action based on a 2-~form F.D.A. extension of the
D=6 super Peincard group. This is almost true except for the essential
self-duality constraint on the Fﬂvp~field, vhich is the source of

troubles.

Calling F: and F; the self-dval and antiseif-dual parts

be be
of the inner curvature components of the 2-form B, we shall be able to:

i) write a rheonomic parametrization of all the curvatures,

consistent with the Bianchis and involving only Bt (F. =0 is
abe abe
enforced by the closure of the algebra).

ii) write a geometrical action whose equations of motion in the
outer sectors yields the previcus rhecnomic parametrization (including

the constraint F = 0).
abe

b

However the constraint ?; =( is not a yield of the inner equa-

be
tions of motion of our actiom. This means that principle F) is violated.

As a result our equations of motion do not have a smooth extension from
%-space to superspace and, correspondingly, the action is not invariant,

The non vanishing variation of the action is proportional to Fa as

be
we prove by explicit calculations,



At this point the therapy for this pathological theory is almost
evident. What we should do is to add a Lagrangian multiplier A:bc
whose variation yields Fabc={) as an inmer equation. The terms that
do the job are ail Va] PPN .Va6 termg and can be fixed by requiring
explicit supersymmetry imvariance of the action. Although we shall not
discuss these last steps explicitly the sbove discussion should convince

the reader that yule F} is indeed equivalent to action invariance.

Let us nmow turn to the construction of our example.

111.7.2 - D=6 Weyl spinors and selfdual tensors

Before proceeding to the explicit construction of our model it is
worth establishing the main properties of the Weyl spimor algebra in
D=6 which are essential in the sequel., Together with Weyl (or chiral)
spinors we shall deal in this theory with 3-index antisymmetric tensors
satisfying selfduality or antiselfduality relations. These objects obey
a number of identities and relations which play 2 role analogous to the
Fierz identities for Weyl spinors and are of utmost importance in some
algebraic manipulations used later on. Therefore in the second part of
this section we will establish a number of relations fulfilled by self-
dual and/or antiselfdual 3-index temsors. Let us begin with Fierz

identities.

In Part Il we gave the group theoretical construetion of Fierz
identities in D=4, 5, 10 and 11, but not in D=6. In this case they are
so easily obtained from the 20 expansion that it does not pay to set up
a group-theoretical machinery. We begin by recalling that from the
discussion of Chapter II.7 it follows that in D=6 we may impose on the

generic 8-dimensional spinors XA a Weyl condition, namely

7 =+ (111.7.1)

where T7 hes been defined in Chapter II.7, together with the other
conventions for I'matrix algebra. Equation (III.7.1) reduces the dimen-

sionality of the spinor representaztion down to 4 and since no Majorana
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(reality) condition can be imposed on A we are left with 4 complex (8
real) indepéndent components. From Eq. {III.7.1) it essily follows
that the only mon-vanishing currents one may construct out of the chiral

gravitino are those written below:

A (111.7.2)
while we have:

Fou=9.1%=0. (111.7.3)

Tndeed the chirality can be changed only by an odd number of T-matrices

and, since ﬁ E¢*PO, the identities (II11.7.3) foliow.

Using now the dualization formula for I-matrices

21
by.oob, j’:.ﬁ._z__) s

£ r =N * 7 a, ...
Byeeedy bl...bz 1R

(I11.7.4)

one finds for Weyl gravirini (plus sign in (IIL.7.1)):

- b - agbe, _ 1 _abepor o 111.7.5
S R RS S AT P Toge? ( )

that is, the 3-index current is selfdual.

For an anti-Weyl gravitino (minus sign in (II1.7.1)) we would of
course have an amtiselfdual 3-index current. BSince choosing Weyl or
anti-Weyl gravitini is just a matter of conventions in the following we
shall use only Weyl gravitini, namely:
= (111.7.6}

r']‘b"'ff
so that {If1.7.5) holds. It is nov easy deduce the 3y and 4y Fierz

identities relevant to our subsequent discussion.

One first establishes the D=6 2y-Fierzing formula:

. 1= a 1 - abc .t (I11.7.7)
Y= (Z VT T b T ) 2
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To prove it lat us start from the general expansion:

- a a ab ; pab
o= A A’f7 + AaF + A;F F7 + Aabr * Aabr F7 +

abe | 41 pEbC (111.7.8)
* Aabcr * Aabc? ?7

where 4, A', A, A' , ... are temsorial structures to be determined.
Multiplying both sides of (IXL.7.7) by B or rpq and tracing, using
(1¥1.7.3) and (II1.7.6) one finds: A=A’ =Aab“A'ahW0.

Utitizing then the relation:

H
1 IR I (111.7.9)
2
one also finds A'a=- As A’abc==— Apet Finally multiplying both

sides of Eq. (II1.7.7) by F? or rpqr one respectively obtains:

ML (111.7.10)
Agmy BT
N ) (IT1.7.11)
abc 48 v Tahc"b

so that (II1.7.7) holds true.

The 39 (and 4)) Fierz identities can now be establighed. Using

formula (III.7.7} we successively get:

m

=21

& b & .
To VLT .Y

r l~r7 a ] = pgT It l—f7 Ta¢
n L - T . -
Ty > T 48 L ¥ a'par 7,

=T, v .. (111.7.12)

£ fee

where we used Eq. (I1I.7.6) and the Prmatrix relations in D=6:
rrTr=-4r (T11.7.13a)
ar T

r’r =9 {1I1.7.13b)

pqr a

837

It follows that

0. ry=0. (111.7.14)

In an analogous way we canm prove!
P 3. Ty =0 ' 1.7
abe? ~ ¥ - ¥ = . (II1.7.15)

but it is more instructive to see how this relation follows From the
selfduality velation (1I1.7.5). Indeed one has:

abe

abcw SRR B I13’I‘abc‘b ST s

- b
31 Eabcpqrrpqrw I S

= 1 _abepqr "
rpqrw V- {33 € Tabe?¥ =

Rl 3.y =0, (I11.7.16)

Other useful relations may derived from Eq. (TII.7.14). Using

rabc = Tbcra" 2 na{b I‘c] one finds:
S TS e I VRS (111.7.17)
abc

and therefore

Ve Tope¥ s Va9 T{a NN Fb]w =0. (I11.7.18)

Finally from the Fierzing formula-(III.7.7) ome can also derive the

following identity

re bty 2rly g ey

- T Ty (1I1.7.19)

We now congider selfdual tensors,



First of all we note that a real antisymmetric self-dual or
antiself-dual tensor exists in Minkowski space only if D/2 is an odd

number just as it happens for Weyl spinors. Indeed from the constraint

AL, mae, T S (111.7.20)
17 %f2 1" +%ps2 "t Pay2 '
we obtain, taking the dual of both sides:
o = - -2 p2n? . (111.7.21)
Therefore for z real temsor D/2 is odd and
o=t —2 . (111.7.22)

) (D/2)!

A temsor satisfying (I1X.7.20) with a=+ 1/(D/2)! is sald to be self-
dual and we will append to it a (+)~subscript. In the opposite case

it is anti-selfdual and we will append to it a (=)-subscript. Thus if
in =6 A®¢ mg P

definition we have:

are selfdual and anti-selfdual teamsors, by

abe _ 1 sbepqr

sPe L Arpgr (111.7.23)
gabe _ . | abepgr . {(I11.7.24)
- 3 TP

Let us now establish 2 number of useful relations satisfied by selfdual

orfand anti-selfdual tensors.

Let us compute the product:

abm N I abmpgr iik
A+ Bzahn £ (3|)2 € Eabnijk A+pqr Bt
o 7 L&D mpqr Bijk
(3!)2 nijk “+pqr Tt
szl ijk " i
+ 3 (6n A+ B:tijk 3A By . (111.7.25)

mij
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It follows that:
N Bty 7 r i = :;% ) aliE By - (117.7.26)
Symmetrizing or anti-symmetrizing in m, n ?e obtain
a) Aijk Bk 0 {I11.7.27)
by A [ 32:!]._3. - 0 (111.7.28)
o al® B‘_‘?ij - % pliw I (111.7.29)
Exchanging + and - we alsc get:
a1y alE Bipy =0 (111.7.308)
pry  abilm B‘;‘}_ij =0 (1I1.7.30b)
Other relations can be obtained by considering the product:
pga oI8. 1 ,pqa rsaijk -
TR, pqraim : ET'A+ Biijk € €pqrsim
=12 8% Bypgs ¥ 2 BY by (111.7.31)
It follows that:
E N Ve oqrsin ™ ¢ (111.7.32)
e) AP Eaqesim = Aﬁ?; B alpq (111.7.33)
and exchanging (+} md (=)
(111.7.34)

pya ,TE. =
ah) AT A a qursZm

B e T e e S N

P

ST T e T T

ram,
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Lastly we consider the product

ijk .pga bem _
Ay Bi Eijabcs quk...
P 5 pyarst bem _
= E 31 4 Bt © €ijabes “pqk...
o= ij.bes [a rut] ijk _
=4 8¢ 2 6k Gbcm A Bir{zt
- ija  mbe ijk cbe.
=+ 2 A4 Bi Eijabbs t 2 A+ Bi % Eijmbcs (111.7.35)
Bsing d) and e) we deduce:
gy Ak gpaa e DL pp APy (L1£.7.36)
+ + “ijabes pgk... + +bem
ijk pqa bem ik 8 ij.
8) A+ k. €ijabcs quk... 2 A+ B-ijk Gm £ A+{m Bms]ij
(111.7.37)
and exchanging (+) and {-):
' ijk ,pga bem _ bes
£1) AT AT €itabes Spak... 1A A, (1II.7.38)

Finally we note that every anti-symmetric 3-tensor Fabc can be

uniquely decomposed inte a selfdual and an antiselfdual part, namely:

F, =F (1IT.7.39)

ELT +abe * ?~abc'

The proof is almost evideat and is left to the reader.

After this excursion in the D=6 spinor and tensor algebra we turn

to the explicit construction of the model,

1IE.7.3 =~ The free differential algebra of D=6 supergravity

The supergravity model we are going to discuss is based on rhe

following free differential algebra:

BT 2 dw" -~ w cru = 0 (I11.7.40a)

R®z @v® - %Iu Y =0 (111.7.40b)

pEPyYy=0 (111.7.40¢2)

R® = dB - %@ LTV, =0 (111.7.40d)
ab

where the connection w  , the vielbein v® and the Weyl gravitino ¢
are the gauge field one-forms of the super Poincaré group in six dimen~
sions and B is a two~form which is a scalar under six dimensional
Lorentz-transformations, The left-hand side of Eqs. {IIT,7.40) defines
the curvatﬁre two-forms Rab, Ra, p and the generalized curvature
three-form R° of the free differential algebra. As usual @ means
the Loreatz covariant exterior devivative:

a b

gyt = dvawb .Y (111.7.41a)

&b, (1I1.7.6411)

Dy = Ay ~ —
Dymap - TV

To arrive at the F,D.A. (III,5,20) one follows the iterative constiuc-
tion explained in Theorem 2 of Sect, III.4, Ove starts with the super
Poincaré group in D=6 whose M.C. equations are the first three Egs.
{(311.7.40a,b,¢). One then considers the cohomology classes of the Lie
super-algebra which can be built out of the i-forms Va, P, wab.
Censidering the identity representation D(O) in which V(nfo) coin-
cides with the ordinary d-operator, one finds that in this representa-

tion there is a non-trivial cohomology class of order 3, namely

[T I S (I11.7.42)
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‘+
Indeed using Egs, (III.ﬁ.&Ob,c) we have:

—gd: B ogdy 2y
@=aGd. Ty 9Ty
TSRS LY (II1.7.43)

The last equality is nothing else but the Fierz identity (I11.7.14).
Hence, following the prescription of Theorem 2 of Sect. I1I1.6.3, we

can introduce a new 2-form B which satisfies:

2

BTV =0, (111.7.44)

[ SRR

Adding {III.7.44) to the M.C. equations of the super Poincaré group we
obtzin the F.D.A4. (II1.7.40), It can be easily verified that no other
non-trivial extension of the F.D.A. (III1.7.40) can be found.

We assume therefore the given ¥.D.A. as the fundamental algebraic
structure of the theory, The configuration of fields described by
Egs. (I1I.7.40G) corresponds to the physical vacuum with vanishing
curvatures. Deviations from the vacuum imply the nonvanishing curva~

tures:

R = dw™ - T (1I1.7.45a)
8% = 97 - é—@ T8y (I11.7.45b)
p =By (111.7.45¢)
R% = 4B - %ﬁ N (111.7.45d)

We have used the same notation for the soft fields (wab, Va, Y, B}
satisfying (I1I.7.45) as for the left-invariant ones satisfying
(II1.7.40}. By d-differentiation of (III.7.45) cne obtains the

(generalized) Bianchi ifdentities:

a5 = 0 (FI1I1.7.46a)

the gauge invariance under the subgroup H = 80(1,5) &U(1}
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a, géb L Pp-3.1%) =0 (111.7.46b)
2R +R Avb*fz{pn v -0
J7.46
Gp o+ % Ty Rab\b =0 e (ITT.7.46¢)
i - a
SR R P I A
i a - (111.7.46d)
+ 5 g T Y. Ra 0

The combined set of equations (I1I.7.45)e {1I1.7.46) exhibits explicitly

of G E

180{1,5), $0(1,5) being the Loreatz group in D=6 and U(1) being

associated to the gauge transformations of the B flg}d

BB +a® r® + &% (111.7.47)

where ¢% is a generic I-form.

Moreover the system (IIL.7.45) ® (I1I1.7.46) is invariant under the

rigid scale transformations

wab - mab H Rab > Rab (11%.7.48a)
W LT (111.7.48b)
R © (II1.7.480)
B - w'B . e r® (111.7.484)

To see whether {(IIT.7.45,46) can give rise to a consistent physical

we first check the matching of the on-shell bosenic and
s of freedom. As we pointed out in the intreduction,
has D{D-3)/2) £ 9 and

theory,
fermionic degree ‘
using formula 1II.5.12, one finds that Vn

¥ has 2D/2(B~3)/2 = 12 degrees of freedom. Since Buu has

(b-2) {D-3}/1,2 =% degrees of freedom we see that we do not have the

The caly way to obtais it is to impose a self-duality

desired matching. oty

(or anti-selfduality) constraint om the field stremgth of B .

1 3 ¥ h : H H f .

R® q :
1 the 1 ing €O neats © ’ we require:
ca 1 ng Y ntr 1c o1

_— N T T —

s

p——

N



! P (1I1.7.49)

=k —

F T 31 abepqr

abe

or, by using the notation introduced in the previocus section:

= (I11.7.50)
Fabc Ftabc

When (I3I.7.50) is satisfied fermions and bosons do match, since the .
aumber of on-shell degrees of freedoem of Bu is reduced by a factor 2.
4s we shail see in the following, the comstraint (I11.7,50) can be

retrieved as a result of projecting the superspace equations of motion
in the outer directionms or, equivalently, by analyzing Bianchi identi-
ties in superspace; instead, space-time equations do not yield this

constraint. This is the announced vielation of principle F). It will
lead to the action mon-invariance which can be cured only by the addi~

tion of a Lagrangian multiplier (Siegel method: see references at the

end of this part).

ITI.7.4 - Construction of the model

hecording to building rules A)-E) the action can be written as

follows:

{II1.7.51)

where RA E(Rab, 8, o, Re} is the "adjoint" multiplet of the curvatures
a

ab
(111.7.45) and A, Vgr Vap are polynomials in the soft forms w -, v,

%, B of degree 6, 4 and 2 respactively.
The requirements of homogeneous scaling of the Lagrangian ¥
under (IIT.7.48) and of 50(1,3)-gauge invariance enable us to write

the following general ansatz:
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2=+ Ayt R v + @ .n-5.p)+
@ A )
+ R, Vg ¥ R™ .k . Vap (I11.7.52)
where
A=0 . (TI1.7.53a)
¢ c
_1 1 4 a b

Vop T i Eabcl-ca Voo WV s &, vV .V . B (I11.7.53h)

. - . - b
v, =i, ¥ . Fa$ ~B+i a3 g Ty, Vb o Va +

a
Fia §.r. g,V ¥ {II1.7.53c)
4 "~ Tape’ - o
= a b c a
n= us Fahcw UL AR A A aﬁ Taw Y LB (I71,7.53d)
. = a
Vg = ios ¥ . Pa¢ . ¥ (IT1.7.53e)
and
A B [:] a a
R . R ., “AB nk” ., R . Va + v R Ra . B+
+§8% . R® . B (I11.7.53f)

where all the numerical constaats are real, except ey O which may

be complex.

To justify Egqs. {(II1.7.53) we merely observe that the correspond-
ing terms of the Lagrangian all scale under (II1.7.48) homogeneously
with the Einstein term 1/4 Rabvcl...vc4 € be ¢,» mamely as [wé}
(the 1/4 factor is just a normalization), and-;%e SG(},5)~gauge invari-
ant since no term contains the bare gauge field waﬁ. Moreover
(IT1.7.532) holds since the only twe terms which are allowed, namely
N ¥ .V, .V, and 3. Fapod - ¥ F ot - v v are
identically zero because of the Fierz identities (III.7.16 and 18).
Before imposing the further U(l) gauge invariance, namely invariance
mder (II1.7.47), let us utilize the freedom of adding an exact differ-

ential to % in order to eliminate some of the terms appearing is



‘The quickest way to arrive at the determination of I and at the
explicit parametrization of the rheonomic curvatures is to combine the
information given by the equations of motion with the Bianchi identities
in the outer directions, We can write down the following ansatz for the
rheonomic parametrization of the remaining curvatures:

ab ab

c é =ab ¢
R e R VLV (87 4.V +hee) +

: mab mab, -
* 1(&1 Fooo+ a, Fooov . rm$ "

[a la,=  blpa
+ {a3 F+pq. *a, F—pq. oo T b (II1.7.72a)

v, v (®, 72 b, FPeyp (111.7.72h)

P = P abw . vc
where Babc is 4 spinor constructed out of Pap The parameters
pseendy; bl’ b2 are real and complex, respectively, tc be fixed by
equations of motion and/or Bianchi's. Fabc is decomposed into its
self~dual and anti-seif-dual compoments, according to (I1I.7.39).

These AnsHtze are the most general expressions we may write which are
rheonomic, S0(1,5) xU(1) gauge invariant and homogeneous in the scaling

and F scale as [W_B/z] and

parameter w (cbserve that Pab abe

EW-Z] respectively).

To determine the values of b], b2 apd £, we coliect the
information given by the 1y -4V's projection of the gravitino equation
(711.7.70) and the 2¢-2V's projection of the Maxwell-Bianchi identity
(111.7.464).

The 1§ -4V projection of gravitine eguation (I¥I.7.70) is given

by:
{-(-3+ -;-g} % (¥, 4pq ~Foapg ~ 3 -;:-) F,ang +F"'apq)}sabpqm -
-2(b, ?+qu-+b2 F“pqr)rabcrpq¢ g rabemn "'%E(Ff.pq -
—Ff’?q)rabcw Pabem g (111,7.73)
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i jon it i i ers. Usin
From this equation it is evident that bl’ b2 are real numb £

rhis information we can write the 29~ 2V's projection of Maxwell-Bianchi

equation (I11.7.464) as follows: i

}

i b c
7 -2 - LV -
ST et P T3 FFaane Fpdd - Y

+abe -abe
i- b c _
RS AR LS MUV SR F

= b c
5. T yLv L vt =0, (111.7.74)

i
P ]

+abe F-~a‘<>c:
Using {rpq’ ?b] = =4 d[g Pq] we obtain the following constraint:

L 0. 101.7.75)
+ {3+ 5 £+ 4bF_ 0 {

1
3 - 3 £ - 4b1)F c

+abec

Performing now the T-matrix product in (I11.7.73) (namely rabc'rpq)

ihilati ici - e we obtain
and amnihilating the coefficient of the rabc P-structur

bers
3 2 a a P T4 Fd -0.
{wé- (S pq F_‘pq} 1200, By o+ by *.pq)} abe

(111.7.76)

Now since T 5 ¢ behaves like a selfdual tensor, the identity {Iil.7.32)
abe

implies
abe, .Pg - (I11.7.77)
F+apq T €. .bers ¢
and therefore Eq. (III.7.76) implies
{111.7.78}

0.

3 o
e b e

The annihilation of the Ta$ copfficient in Egq. (I11.7.73) gives:

Y -0 .
@b, 46 =L Eh - DE ¢ (6 by + g E Dy

(111.7.79)

—

T T R e N N T
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It is now easy to verify that the three equations (1I1.7.75), (ILL.7.78)
and (II1.7.79) admit a non-trivial solution if and only if

Fope =0+ (111.7.80)

In that case we also get

by = g=2731 {111.7.8%a)

=~

.
(1 i/.-—j)

where

n==*1, (II1.7.81b)

The reversed situation where Fibc: 0 gives instead an inconsistency
due to the identity (III.7,33). If we had chosen from the beginning te
work with anti-Weyl gravitinoes then we would have obtained ?ibc= 0;
indeed T . ¥ would have been anti-selfdual so that the idemtity
(111.7.34) would now apply. 7The important thing to styess is that we
have obtalmed a space-time equation of motion for B, mnamely the self
duality constraint, by analyzing the theory only in the outer directions
of superspace. This space time equation of motion (Ffbc==0) does not
ay a2 a3 ay
foliow §rom the V= V75 .V v oo,
(¥I1.7.69). This is the anpounced violation of principle ¥) which makes,

a5 _—
N v projection of Eq.
at the very end, the Lagrangiamm formulation of the thecry inconsistent

as it stands and the mechanism of rheonomy meaningless.

The theory can of course be cured by introducing a new field (a
Lagrangian multiplier) which enforces Ffbc= 0 as a space-time

equation.

Let us forget about this, however, and go on with the analysis
of the remaining sectors of the field equations, All the other outer
projections of Egs. (I11.7.68-70) are consistent with the results
(IﬁI.?.BO) and (111.7.81}. Furthermore they determine uniquely the
values of aps 2y, and the explicit form of eabc. Let ug briefly see
how these informations are obtained also from the Bianchi identities
the rheonomic ansatz (II1.7.71-72), From the 1y ~2V projection of the

torsion-Bianchi ome finds

=abc —abi c 1. o
5 i e
wnvb,vc+a c!i;,.V.\Vb+2pbci‘az])AVAV
+ h.e, w0 (111,7.82)
vhere zabc is a spinor defined by
abe abe 4 | =abe
@F+ = '@ﬂ F+ vV o+rre . {II1.7.83)
Eabc can be determined in turn from the 3V - [y projection of the
Maxwell-Bianchi (III.7.46d):
G oovis reenc) v v v .0 7
abe 7 Pab Lo LT} o " " = (ITI.7.84)
from which it follows:
i os-Llg ¢
abe 5 p{ab C] . (121.7.85)
Inserting this result into (III.7.82) we find
NG R« I T
. > pc[a b] n p{bc a]) . (111.7.86)
Fiaally the value of a, can be easily calculated from the 2¢ -1V
projection of (III.7.46b}. After some spinor algebra one finds
2.2 /3
a =-2 (¢ 3y, (111.7.87)

The final result for the rheonomic parametrization of the curvature is

the following

. g® E e % icsc{a I 5[ca Fb]) s

Wit
shee] LV =200 4§ LTy 0" (I11.7.88a)
A A7 . Ty E 7.
Y ab
R = - /30000, .V, (111.7.88b)
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Fape VAV AT (¥11.7.88c)

b n ., .abe

- & 3 -
N A Ui oL SN (111.7.884)

In conclusion, we have found that the equations of motion on the
whole superspace imply the self-duality of Fabc: Fabc” Fab;. Vice~
versa, the set of purely space-time equations of motion {V P
projection of Egs. (III.?.GB*?D)}:

'q - i £ Pq = far far _
R mq(w) 2 & o R (w) B{F+ F?mqr + F ¥

Pq - ~-mqr
- % st #Ur Py (111.7.89a)
€ pqabrs RIS 4 g Ff‘“{" Ff{] o (III.?.S%).
pabe Pape = 0 (111.7.85c¢)
do not imply any restriction on Fabc: F?E?-FF?E?; therefore, for a

purely space-time observer, all the configurations described by
(111.7.89) are on-shell, while for a superspace obgerver the shell is

described by (II1.7.89}, plus the extra condition F?E§= 0.

Consequently, only the self-dual on-shell configurations can be
lifted from space-time to the whole superspace through the Lie deriva-
tive lifring (or supersymmetry transformstions}, along the tangent
vector & D with f)«"«*supersyuxnetry generatoy. This discrimination
among configurations which, from the space-time point of view, are
equally good on~shell states deprives the rheonomy mechanism of its
very justification. Indeed all what this means is just that the space-
time Eqs. (1T1.7.89) are not supersymmetric. The supersymmetric set of

field equations is givem by (II1.7.89) % F;bc = {,

If we want a good action functional what we have to do is te
introduce a Lagrangian muitiplier whose variation vields the missing
field equation. Indeed, in the mext section we show that the space~

time restriction of the Lagrangian in (III.7.66) is net invariant under
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ions on the
supersymmetry. We give here the supersymmetry transformatlon

fields:

LI % i(gc[a rb] s /3 E[ca ?b]) v, -

ﬁs w . w =

S35a e Dy B er™ 4 nec, (111.7.90a)
2 V3 ¢

m .7.90b
L s 6 Ve LGy - b %) (111.7.90b)

£ £ 2
i(E ¥ (II1.7.%0c)

RER B=%1(E]‘a\b-¢al‘a£) Y,

@b e (1I1.7.904)

3 N aut
x5 y=De+>Q -2 %
is vE ae g=De s 2 { /37 abe

i i ic parametri-
obtained with the Lie derivative formula, using the rheonomic P

abe
zation (I131.7.88) and F_ =0,

111.7.5 - Won-invariance of the space-time action and

hew to cure it
how Lo CUTE 1-

ism that is
W i formall »

i § o e work in second order

i computmg

we assume Egs, (II1.7.71a) to hold.

i jati ian
Recallipg that the space-time varlation of the Lagrang

R : fva-
e~time restriction of the Lie deriv

inci ith the spac
(111.7.66) coincides w 1 d¥. Trading d

tive we begin to compute the exterior differentia

for @ and using several times Eqs, (III.7.46) ome finds:

& b
-idg= - BnE LV H R LR LY LT

a -
s [Een/DE s G -nVBR V] L 6Ty
S VR LG

- b e
. e
+ Y o. ?abcp) -V

N e L N

e

—

AT

R N
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P . 1 Poa ~ ~ ~ IS ~ by ~

+2in/3 8% . R . r® . (111.7.90)

In simplifying (I11.7.91) one makes use of the torsion equation
(I11.7.71) and of the fact that all the terms with 3 or 4 ¢'s are
zero by the Fierz identities (ITI.7.17-18-19). Notice that the Rab-

curvature does not appear in (IIL.7.91).

Contracting with € £f D and taking into account that the Znd-

order equations (III.7.71} contain only inner components, we obtain:

. . _ a L b -
-1_&_Jd.?w (3_nf3-)(R AVa*'R)hR er‘bﬁ‘i’

3

(B3 -n/BR* v+

3+ n/DR% LWL (elF LTt

+

b,

+

a -
Pl - 3E LRE DYV

f3R LV LV (el LTt

+F FaEcE) -2 g}ﬁ . Pabcp . v . Vb . v [h.c.} .

(111.7.92}

This expression must be restricted to space-time ¥, if it is to

represent the space-time variatiom 6£f|M : this means that the curva-
6
tures p and Ejp have to be restricted to their inner components

only. Let us now observe that, since the Lie derivatives (TIF.7.90)
are already an exact symmetry of the selidual on-shell configurations,
a possible symmetzy of the action must differ from (II1.7.90) by terms
which are proportional to the space-time equations of motion namely

£qs. (IIL.7.89) and F2°°=0).

In second order formalism the only possible change in Egs.
(I11.7.90) cen occur in Eq. (III1.7.90d). Indeed &v® and 6B camot

4
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. @ a . .
change since R° and R~ have just inmer components, while éwab is

not independent being given in terms of 6&V°, 6B and 8% by the chain
rule. This is confirmed by the explicit expression (III.7.92) where
the only unknown object is gjp. Therefore we modify Eq. (III.7.904)
as follows:

- a
1@;}1:95 +§Jp()+@a+ep=95 +_§Jp(0)+k€. (I17.7.93)

where

© _3 n ., .abe
fjp = .Z {4 - 7_;)1:+ rab vcg {II1.7,94)

and %k represents the modification from the on-shell to the off-shell
transformation law of the gravitino. Taking into account the scaling
properties and the fact that it must be a bosenic |-form, we see that
k can be only proportional fo the l.h.s. of the gelfduality equation.
Therefore we write

abe

k= BET T,V (ITI.7.95)

where £ is g parameter to be fixed by the requirement of action

invariance. Let us now make the substitution

EJP =t p(ﬂ} 4+ ke =

- 3 __h  qabe abe
{4 (1 ﬁ)F+ +BEI L Ve (I11.7.96)

into Eq. (I%1.7.91) and let us separately annihilate the terms propor-
tional to 6~V's and those proportional to iy =-5V's. One finds the

following two equations respectively:

G- n/DE v - eI L 50 evt s

+ [38% . v 5O .

abe

m2gkry, 2P v W e =0 L7
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[~n/”§Rm.vm+(3-n/§)R®}Aaahzraw
m & a -
+ [(3-n VR LU+ @ YRR L ~ERT Y
+38% VW L vCERT. g+he =0 (111.7.978)
abe
where
ket it A T (111.7.98)

Let us first comsider Eq. (IIT.7.978): using (I11.7.71), the expiicit
form of k and remembering that the Eas. (111.7.97) are restricted to
space time so that:

L (11%.7.99)

one finds that the annihilation of the terms proportional to the two
structures

apy - (0} ] apq ~{0)
¥ Pet Pba : ¥ Pet Pbe (111,7,100)

gives a single condition on the parameter B, namely:

£l
Begne (III.7.101)

With the cholee (111.7.101} alse the coefficients of the structures
Par . P .. ,
Ft 5 Pabce vanish identically,

Coming now to Eq. {III1.7.97b} and performing the same substitutions
as in (II1.7.97a) onme finds several terms containing the following
different kinds of structures

859
¥, F, H ?aw H F+ FE Fabc$
E :E {I11.7.102)
F F. ¢ Pa¢ 3 B F_ﬁe rabc¢
F_F_E Ta$ H F_F_ £ rabc¢
P
i d
Let us concentrate on the cancellation of the Fé F+ £y an

F F &I ¢ structures. After some lengthy tensor algebra one finds
-7 a

that they all cancel except for the two ferms:

aij ijdy
a pga +665°)
const X {FI:_(E F+ijk +FL F_ijk} (€ " abe abe

bkm -
pgd... € {_‘ml}J ’

(111.7.193)
X £

i hile
Using now the identities (III.5.36) and (I11.5.38) one finds that whi

i i i the
the term containing the purely self duel part vanishes identically

i { not.
corresponding term containing the anti-self dual part does

Therefore the conclusion is that

(II1.7.104)
de&f 90

-as anticipated.

We leave to the reader to verify that the othex purely self dual

ish i i : this
structures occurring in (I11.7.97) also vanish jdentically

i i iant.

implies that if we put Fabc= 0 the Lagrangian becomes lnvarla
) ] ] I3 or

At this point it should be clear how an ipvariant Lagrangian f

i i Lagran~
the above theory could be devised, It suffices to introduce a Lag

abe ich i ntisymmetric 3~
gian multiplier O-form A, which is a self dual a S

tensor.

ing term
Adding to the action & of Eq. (111.7.66) the following te

abe @ (I11.7.105)

A.ﬂ’ﬂj A+ R,.Va,Vb_,Vc
Mg

P

Pt

N N

e e
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abe .
i i iati which
we gain a new equation of motiom, namely the variation 6A+

yields

F =0 (T11.7.106)

after projecting on six vielbeins. Devising a suitable supersymmetry

i abe rme which previously
transformation for A"~ onme can cancel the F_ te P

did not cancel and in this way the action #' = &+ b becomes

supersymmetric.
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CHAPTER 1II.8

D=1 SUPERCRAVITY

IIE.8.1 - Introduction

Since the beginning of Supergravity it was realized that its
framework naturally leads to the idea of a multidimensionsl space~time
with D=4+n dimensions. This is so because the Lagrangiarn can be
constructed only in certain dimensions and has specific properties
depending on D: in particular various arguments, already advocated
in Part 13, iadicate that only Ds1l is allowed. Therefore the D=1]
case is of specizl interest since, in suck a field theory, the number
of space~time dimensions is not a "fitted" parameter, rather it has an
intrinsic justification (it is the maximum one allowed by local super-
symmetry}. On the other hand higher space-time dimensions is mot a
new idea. Since the classical work of Kaluza-Klein it iz known that

gravity on & higher dimensional manifold HD which splits into

Th. Raluza, Sitzungsber. Prens. &kad. Wis. Berlin, KI (1921} 966
0. Klein, Z. Phys. 37 (1926} 895,



