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UQÀM

MIT Topology Seminar, March 17, 2014



Warning

The present slides include corrections and modifications that were
made during the week following my talk. Thanks to Steve Awodey,
David Spivak, Thierry Coquand, Nicola Gambino, and Michael
Shulman.
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The emergence of Homotopy Type Theory

Gestation:

I Russell: Mathematical logic based on the theory of types
(1908)

I Church: A formulation of the simple theory of types (1940)

I Lawvere: Equality in hyperdoctrines and comprehension
schema as an adjoint functor (1968)

I Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)

I Hofmann, Streicher: The groupoid interpretation of type
theory (1995)

Birth:

I Awodey, Warren: Homotopy theoretic models of identity
types (2006∼2007)

I Voevodsky: Notes on type systems (2006∼2009)
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Suggested readings

Recent work in homotopy type theory
Slides of a talk by Steve Awodey at the AMS meeting January 2014

Notes on homotopy λ-calculus
Vladimir Voevodsky

Homotopy Type Theory
A book by the participants to the Univalent Foundation Program
held at the IAS in 2012-13
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Axiomatic Homotopy Theory

Henry Whitehead (1950):
The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

Examples of axiomatic systems

I Triangulated categories (Verdier 1963);

I Homotopical algebra (Quillen 1967);

I Homotopy theories (Heller 1988)

I Theory of derivators (Grothendieck 198?)

I Homotopy type theory

I Elementary higher topos?
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Some features of Hott

Hott replaces

I sets by spaces,

I isomorphisms by equivalences,

I proofs of equality x = y by paths x  y ,

I the relation x = y by the homotopy relation x ∼ y ,

I equivalences X ' Y by paths X  Y .

The formal system of Hott is decidable in a precise way.
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Potential applications

I to constructive mathematics,

I to proof verification and proof assistant,

I to homotopy theory.

A wish list:

I to higher topos theory,

I higher category theory,

I derived algebraic geometry.
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Category theory as a bridge

Category theory

��

pp ,,Type theory

22

$$

Homotopy theory

mm

yy
Hott
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Overview of the talk

tribe

**tt
π − tribe

**

h − tribe

tt
Martin-Löf tribe

��
Voevodsky tribe

��
Elementary higher topos?
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Quadrable objects and maps

An object X of a category C is quadrable if the cartesian product
A× X exists for every object A ∈ C.

A map p : X → B is quadrable if the object (X , p) of the
category C/B is quadrable. This means that the pullback square

A×B X

p1

��

p2 // X

p

��
A

f // B

exists for every map f : A→ B.

The projection p1 is called the base change of p : X → B along
f : A→ B.
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Tribes

Let C be a category with terminal object ?.

Definition
A tribe structure on C is a class of maps F ⊆ C satisfying the
following conditions:

I F contains the isomorphisms and is closed under composition;

I every map in F is quadrable and F is closed under base
changes;

I the map X → ? belongs to F for every object X ∈ C.

A tribe is a category C with terminal object equipped with a tribe
structure F . A map in F is called a fibration.
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Examples of tribes

I A category with finite products, if the fibrations are the
projections;

I The category of small groupoids Grpd if the fibrations are the
iso-fibrations;

I The category of Kan complexes Kan if the fibrations are the
Kan fibrations;

I The category of fibrant objects of a Quillen model category.
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Types and terms

An object E of a tribe C is called a type. Notation:

` E : Type

A map t : ?→ E in C is called a term of type E . Notation:

` t : E
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Fibrations and families

The fiber E (a) of a fibration p : E → A at a point a : A is defined
by the pullback square

E (a)

��

// E

p

��
?

a // A.

A fibration p : E → A is a family (E (x) : x ∈ A) of objects of C
parametrized by a variable element x ∈ A.

A tribe is a collection of families closed under certain operations.
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The local tribe C(A)

For an object A of a tribe C.

The local tribe C(A) is the full sub-category of C/A whose objects
(E , p) are the fibrations p : E → A with codomain A.

A map f : (E , p)→ (F , q) in C(A) is a fibration if the map
f : E → F is a fibration in C.

An object (E , p) of C(A) is a dependent type in context x : A.

x : A ` E (x) : Type

A section t of p : E → A is called a dependent term t(x) : E (x)

x : A ` t(x) : E (x)
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General contexts

Type declarations can be iterated:

A : Type

x : A ` B(x) : Type

x : A, y : B(x) ` C (x , y) : Type

x : A, y : B(x), z : C (x , y) ` E (x , y , z) : Type

E

��
A Boo Coo

Γ = (x : A, y : B(x), z : C (x , y)) is an example of general context.
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The syntactic category

An object of the syntactic category is a formal expression [Γ] where
Γ is a (general) context.

A map f : [x : A]→ [y : B] is a term

x : A ` f (x) : B

Two maps f , g : [x : A]→ [y : B] are equal if f (x) = g(x) can be
proved in context x : A,

x : A ` f (x) = g(x) : B

Composition of maps is defined by substituting:

x : A ` f (x) : B, y : B ` g(y) : C

x : A ` g(f (x)) : C
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Homomorphism of tribes

A homomorphism of tribes is a functor F : C → D which

I takes fibrations to fibrations;

I preserves base changes of fibrations;

I preserves terminal objects.

Remark: The category of tribes is a 2-category, where a 1-cell is a
homomorphism and 2-cell is a natural transformation.
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Base change=change of parameters

If f : A→ B is a map in a tribe C, then the base change functor

f ? : C(B)→ C(A)

is a homomorphism of tribes.

In type theory, it is expressed by the following deduction rule

y : B ` E (y) : Type

x : A ` E (f (x)) : Type.
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Restriction of context

Let A be an object of a tribe C.

The base change functor iA : C → C(A) along the map A→ ? is a
homomorphism of tribes.

By definition iA(E ) = (E × A, p2).

The functor iA : C → C(A) is expressed in type theory by a
deduction rule called context weakening:

` E : Type

x : A ` E : Type.
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Free extension

The extension iA : C → C(A) is freely generated by a term xA of
type A.

An analogy:

Recall that if R is a commutative ring, then the polynomial
extension i : R → R[x ] is freely generated by the element x . The
freeness means that for every homomorphism f : R → S and every
element s ∈ S , there exists a unique homomorphism h : R[x ]→ S
such that hi = f and h(x) = s,

R
i //

f
''

R[x ]

h
��

S

The element x ∈ R[x ] can be assigned any value. It is generic.
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Generic terms

The functor i = iA : C → C(A) takes the object A to the object
i(A) = (A× A, p2).

The diagonal δA : A→ A× A is a map δA : ?A → i(A) in C(A); it
is thus a term δA : i(A).

Theorem
The extension i : C → C(A) is freely generated by the term
δA : i(A). Thus, C(A) = C[xA] with xA = δA.

Hence the diagonal δA : i(A) is a generic term.
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Total space and summation

The forgetful functor C(A)→ C associates to a fibration p : E → A
its total space E =

∑
x :A E (x). It is thus a summation operation,

ΣA : C(A)→ C.

It leads to the Σ-formation rule,

x : A ` E (x) : Type

`
∑
x :A

E (x) : Type

A term t :
∑

x :A E (x) is a pair t = (a, u), where a : A and u : E (a).
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Display maps

The projection

pr1 :
∑
x :A

E (x)→ A

is called a display map.

The syntactic category of type theory is a tribe, where a fibration
is a map isomorphic to a display map
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Push-forward

If f : A→ B is a fibration in a tribe C, then the push-forward
functor

f! : C(A)→ C(B)

is defined by putting f!(E , p) = (E , fp).

The functor f! is left adjoint to the pullback functor
f ? : C(B)→ C(A).

Formally, we have

f!(E )(y) =
∑

f (x)=y

E (x).

for a term y : B.
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Function space [A,B]

Our goal is now to introduce the notion of π-tribe.

Let A be a quadrable object in a category C.

Recall that the exponential of an object B ∈ C by A is an object
[A,B] equipped with a map ε : [A,B]× A→ B called the
evaluation such that for every object C ∈ C and every map
u : C × A→ B, there exists a unique map v : C → [A,B] such
that ε(v × A) = u.

[A,B]× A

ε

��
C × A

v×A
88

u // B

We write v = λA(u).
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Space of sections

Let A be a quadrable object in a category C.

The space of sections of an object E = (E , p) ∈ C/A is an object
ΠA(E ) ∈ C equipped with a map ε : ΠA(E )× A→ E called the
evaluation such that:

I pε = p2

I for every object C ∈ C and every map u : C × A→ E in C/A
there exists a unique map v : C → ΠA(E ) such that
ε(v × A) = u.

ΠA(E )× A

ε

��
C × A

v×A
88

u // E

We write v = λA(u).
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Products along a map

Let f : A→ B be a quadrable map in a category C.

The product Πf (E ) of an object E = (E , p) ∈ C/A along a map
f : A→ B is the space of sections of the map (E , fp)→ (A, f ) in
the category C/B,

E

p

��

Πf (E )

��
A

f //// B

For every y : B we have

Πf (E )(y) =
∏

f (x)=y

E (x)
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π-tribes

Definition
We say that a tribe C is π-closed, and that it is a π-tribe, if every
fibration E → A has a product along any fibration f : A→ B and
if the structure map Πf (E )→ B is a fibration,

The functor Πf : C(A)→ C(B) is right adjoint to the functor
f ? : C(B)→ C(A).
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Examples of π-tribes

I A cartesian closed category, where a fibration is a projection;

I A locally cartesian category is a Π-tribe in which every map is
a fibration;

I The category of small groupoids Grpd, where a fibration is an
iso-fibration (Hofmann, Streicher);

I The category of Kan complexes Kan, where a fibrations is a
Kan fibration (Streicher, Voevodsky);

If C is a π-tribe, then so is the tribe C(A) for every object A ∈ C.
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Π-formation rule

In a Π-tribe, we have the following Π-formation rule:

x : A ` E (x) : Type

`
∏
x :A

E (x) : Type.

There is also a rule for the introduction of λ-terms:

x : A ` t(x) : E (x)

` (λx)t(x) :
∏
x :A

E (x)
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Homotopical tribes

Definition
We say that a map u : A→ B in a tribe C is anodyne if it has the
left lifting property with respect to every fibration f : X → Y .

This means that every commutative square

A

u
��

a // X

f
��

B
b // Y

has a diagonal filler d : B → X ( du = a and fd = b).
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Homotopical tribes

Definition
We say that a tribe C is homotopical, or a h-tribe, if the
following two conditions are satisfied

I every map f : A→ B admits a factorization f = pu with u an
anodyne map and p a fibration;

I the base change of an anodyne map along a fibration is
anodyne.
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Examples of h-tribes

I The category of groupoids Grpd, where a functor is anodyne
if it is a monic equivalence (Hofmann, Streicher);

I The category of Kan complexes Kan, where a map is anodyne
if it is a monic homotopy equivalence (Streicher, Awodey and
Warren, Voevodsky);

I The syntactic category of Martin-Löf type theory, where a
fibration is a map isomorphic to a display map (Gambino and
Garner).

If C is a h-tribe, then so is the tribe C(A) for every object A ∈ C.
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Path object

A path object for an object A ∈ C is a factorisation of the
diagonal ∆ : A→ A× A as an anodyne map r : A→ PA followed
by a fibration (s, t) : PA→ A× A,

PA

(s,t)

��
A

r

==

∆ // A× A.
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Identity type

In Martin-Löf type theory, there is a type constructor which
associates to every type A a dependent type

x :A, y :A ` IdA(x , y) : Type

called the identity type of A,

A term p : IdA(x , y) is regarded as a proof that x = y .

There is a term
x :A ` r(x) : IdA(x , x)

called the reflexivity term. It is a proof that x = x .
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The J-rule
The identity type IdA is defined by putting

IdA =
∑

(x ,y):A×A

IdA(x , y).

In type theory, there is an operation J which takes a commutative
square

A

r
��

u // E

p

��
IdA IdA

with p a fibration, to a diagonal filler d = J(u, p)

A

r
��

u // E

p

��
IdA

d

==

IdA
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Identity type as a path object

Awodey and Warren: The J-rule shows that the reflexivity term
r : A→ IdA is anodyne! Hence the identity type

IdA =
∑

(x ,y):A×A

IdA(x , y)

is a path object for A,

IdA

〈s,t〉

��
A

r

==

∆ // A× A
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Mapping path space

The mapping path space P(f ) of a map f : A→ B is defined by
the pullback square

P(f )

p1

��

p2 // PB

s
��

A
f // B.

This gives a factorization f = pu : A→ P(f )→ B with
u = 〈1A, rf 〉 an anodyne map and p = tp2 a fibration.

The homotopy fiber of a map f : A→ B at a point y : B is the
fiber of the fibration p : P(f )→ B at the same point,

fibf (y) =
∑
x :A

IdB(f (x), y).
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Homotopic maps
Let C be a h-tribe.

A homotopy h : f  g between two maps f , g : A→ B in C
is a map h : A→ PB

B

A

g //

f
//

h // PB

s

==

t

!!
B

such that sh = f and th = g .

In type theory, h is regarded as a proof that f = g ,

x : A ` h(x) : IdB(f (x), g(x)).
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The homotopy category

Let C be a h-tribe.

Theorem
The homotopy relation f ∼ g is a congruence on the arrows of C.

The homotopy category Ho(C) is the quotient category C/ ∼.

A map f : X → Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X → ? is a homotopy
equivalence.
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Local homotopy categories

A map f : (E , p)→ (F , q) in C/A is called a weak equivalence if
the map f : E → F is a homotopy equivalence in C.

The local homotopy category Ho(C/A) is defined to be the
category of fraction

Ho(C/A) = W−1
A (C/A)

where WA is the class of weak equivalences in C/A.

The inclusion C(A)→ C/A induces an equivalence of categories:

Ho(C(A)) = Ho(C/A)
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Homotopy pullback

Recall that a square
A //

��

C

��
B // D

is called a homotopy pullback if the canonical map A→ B ×h
D C is

a homotopy equivalence, where B ×h
D C = (f × g)?(PD)

B ×h
D C //

��

PD

��
B × C

f×g // D × D
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h-propositions

A map u : A→ B is homotopy monic if the square

A
1A //

1A
��

A

u
��

A
u // B

is homotopy pullback.

Definition
An object A ∈ C is a h-proposition if the map A→ ? is homotopy
monic.

An object A is a h-proposition if and only if the diagonal
A→ A× A is a homotopy equivalence.
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n-types

The fibration 〈s, t〉 : PA→ A× A defines an object P(A) of the
local tribe C(A× A).

An object A is

I a 0-type if P(A) is a h-proposition in C(A× A);

I a (n + 1)-type if P(A) is a n-type in C(A× A).

A 0-type is also called a h-set.

An object A is a h-set if the diagonal A→ A× A is homotopy
monic.
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Homotopy initial objects

Let C be a h-tribe.

An object ⊥ ∈ C is homotopy initial if every fibration p : E → ⊥
has a section σ : ⊥ → E ,

E

p
��
⊥.

σ

]]

A homotopy initial object remains initial in the homotopy category
Ho(C).
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Homotopy coproducts

An object A t B equipped with a pair of maps i , j : A,B → A t B

such that for every fibration p : E → A t B and every pair of maps
f , g : A,B → E such that pf = i and pg = j ,

E

p
��

A
i
//

f

<<

A t B B
j

oo

g
bb

there exists a section σ : AtB → E such that σi = f and σj = g .

A homotopy coproduct remains a coproduct in the homotopy
category Ho(C).
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Homotopy natural number object

It is a homotopy initial object (N, s, 0) in the category of triples
(X , f , a), for X ∈ C, f : X → X and a : X .

For every fibration p : X → N, such that pf = sp and p(a) = 0

?
a // X

f //

p
��

X

p
��

?
0 // N s // N

there exists a section σ : N→ X such that σs = f σ and σ(0) = a.

A homotopy natural number object (N, s, 0) is not necessarily a
natural number object in the homotopy category Ho(C).
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Martin-Löf tribes

Definition
A tribe is a πh-tribe if it is both a π-tribe and a h-tribe.

A πh-tribe C satisfies the axiom of function extensionality if the
product functor

Πf : C(A)→ C(B)

preserves the homotopy relation for every fibration f : A→ B.

Definition
A ML-tribe is a πh-tribe which satisfies the axiom of function
extensionality.
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Examples of ML-tribes

I The category of groupoids Grpd (Hofmann and Streicher);

I The category of Kan complexes Kan (Awodey and Warren,
Voevodsky);

I The syntactic category of type theory with function
extensionality (Gambino and Garner).

If C is a ML-tribe, then so is the tribe C(A) for every A ∈ C.
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Elementary toposes

Let E be a category with finite limits

Recall that a monomorphism t : 1→ Ω in E is said to be universal
if for every monomorphism S → A there exists a unique map
f : A→ Ω, such that f −1(t) = S ,

S //

��

1

t
��

A
f // Ω

The pair (Ω, t) is called a sub-object classifier.

Lawvere and Tierney: An elementary topos is a locally cartesian
category with a sub-object classifier (Ω, t).
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Small fibrations and universes

A class of small fibrations in a tribe C = (C,F) is a class of maps
F ′ ⊆ F which contains the isomorphisms and is closed under
composition and base changes.

A small fibration q : U ′ → U is universal if for every small
fibration p : E → A there exists a cartesian square:

E //

p

��

U ′

q

��
A // U.

A universe is the codomain of a universal small fibration U ′ → U.
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Martin-Löf universes

A universe U ′ → U in a π-tribe C is π-closed if the product of a
small fibration along a small fibration is small.

A universe U ′ → U in a h-tribe C is h-closed if the path fibration
PA→ A× A can be chosen small for each object A.

A universe U ′ → U in πh-tribe C is a πh-closed if it is both
π-closed and h-closed.

We may also say that πh-closed universe is a ML-universe.

53 / 1



Decidability

A set S is decidable if the relations x ∈ S and the equality relation
x = y for x , y ∈ S can be decided recursively.

I The set of natural numbers N is decidable;

I Not every finitely presented group is decidable (Post).

Martin-Löf’s theorem :The relations ` t : A and ` s = t : A are
decidable in type theory without function extensionality, but with a
ML-universe, with finite (homotopy) coproducts and (homotopy)
natural numbers. Moreover, every globally defined term ` t : N is
definitionaly equal to a numeral sn(0) : N.
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Homotopical pre-sheaves

Let C be a ML-tribe.

Definition
A presheaf F : Cop → Set homotopical if it respects the
homotopy relation: f ∼ g ⇒ F (f ) = F (g).

A homotopical presheaf is the same thing as a functor
F : Ho(C)op → Set.

A homotopical presheaf F is representable if the functor
F : Ho(C)op → Set is representable.
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IsContr(X )

Let C be a ML-tribe.

If E ∈ C, then the presheaf F : Cop → Set defined by putting

F (A) =

{
1, if EA is contractible in C(A)

∅ otherwise

is homotopical.

It is represented by the h-proposition

IsContr(E ) =def

∑
x :E

∏
y :E

IdE (x , y)

Compare with
(∃x ∈ E ) (∀y ∈ E ) x = y
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IsEq(f )

Let C be a ML-tribe.

If f : X → Y is a map in C, then the presheaf F : Cop → Set
defined by putting

F (A) =

{
1, if fA : XA → XA is an equivalence

∅ otherwise

is homotopical.

It is represented by the h-proposition

IsEq(f ) =def

∏
y :Y

IsCont(fibf (y)),

where fibf (y) is the homotopy fiber of f at y : Y .
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Eq(X ,Y )

Let C be a ML-tribe.

If X ,Y ∈ C, let us put

Eq(X ,Y ) =def

∑
f :X→Y

IsEq(f )

For every object A ∈ C, there is a bijection between the maps

A→ Eq(X ,Y )

in Ho(C) and the isomorphism XA ' YA in Ho(C(A))
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EqA(E )

Let C be a ML-tribe.

For every fibration p : E → A let us put

EqA(E ) =
∑
x :A

∑
y :A

Eq(E (x),E (y))

This defines a fibration EqA(E )→ A× A.

The identity of E (x) is represented by a term

x : A ` u(x) : Eq(E (x),E (x))

which defines the unit map u : A→ EqA(E ),
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Univalent fibrations

Voevodsky:

Definition
A fibration E → A is univalent if the unit map u : A→ EqA(E ) is
a homotopy equivalence.

In which case the fibration EqA(E )→ A× A is equivalent to the
path fibration PA→ A× A.

PA

〈s,t〉 ""

' // EqA(E )

(s,t)yy
A× A

Remark: The notion of univalent fibration can be defined in any
πh-tribe.
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Uncompressible fibrations

A Kan fibration is univalent if and only if it is uncompressible.

To compress a Kan fibration p : X → A is to find a homotopy
pullback square

X //

��

Y

��
A

f // B

in which f is homotopy surjective but not homotopy monic.

Every Kan fibration X → A is the pullback of an uncompressible
fibration X ′ → A′ along a homotopy surjection A→ A′. Moreover,
the fibration X ′ → A′ is homotopy unique.

61 / 1



Voevodsky tribes

Voevodsky: The tribe of Kan complexes Kan admits a univalent
ML-universe U ′ → U.

Definition
A V-tribe is a πh-tribe C equipped with a univalent ML-universe
U ′ → U.

Voevodsky’s theorem: A V -tribe satisfies function extensionality, it
is thus a ML-tribe.

Voevodsky’s conjecture : The relations ` t : A and ` s = t : A are
decidable in V-type theory. Moreover, every globally defined term
` t : N is definitionaly equal to a numeral sn(0) : N.
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What is an elementary higher topos?

Grothendieck topos Elementary topos

Higher topos EH-topos?

Rezk and Lurie:

Definition
A higher topos is a locally presentable (∞, 1)-category with a
classifying universe U ′k → Uk for k-compact morphisms for each
regular cardinal k .
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What is an elementary higher topos?

We hope that the notion of elementary higher topos will emerge
after a period of experimentations with the axioms.

In principle, the notion could be formalized with any notion of
(∞, 1)-category:

I a quasi-category;

I a complete Segal space;

I a Segal category;

I a simplicial category;

I a model category;

I a relative category.

A formalization may emerge from homotopy type theory.

Here we propose an axiomatization using the notion of generalized
model category (to be defined next).
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Generalised model categories

Let E be a category with terminal object > and initial object ⊥.

Definition
A generalized model structure on E is a triple (C,W,F) of classes
maps in E such that

I every map in F is quadrable and every map in C is
co-quadrable.

I W satisfies 3-for-2;

I the pairs (C ∩W,F) and (C,W ∩F) are weak factorization
systems;

A generalized model category is a category E equipped with a
generalised model structure (C,W,F).
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A map in C is called a cofibration, a map in W is acyclic and a map
in F a fibration. An object A is cofibrant if the map ⊥ → A is a
cofibration, an object X is fibrant if the map X → > is a fibration.

A generalized model structure is right proper (resp. left proper) if
the base (resp. cobase) change of a weak equivalence along a
fibration (resp. a cofibation) is a weak equivalence. A generalized
model structure is proper if it is both left and right proper.

A generalized model structure is smooth if every object is
cofibrant, if it is right proper, if the base change of a cofibration
along a fibration is a cofibration and if the product of a fibration
along a fibration exists.

Remark: A smooth generalized model structure is proper and the
product of a fibration along a fibration is a fibration.
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EH-topos?

Definition (β-version):
An EH-topos is a smooth generalised model category E equipped
a univalent ML-universe U ′ → U.

Examples:

I The category of simplicial sets sSet (Voevodsky);

I The category of simplicial presheaves over any elegant Reedy
category (Shulman).

I The category of symmetric cubical sets (Coquand).

I The category of presheaves over any elegant (local) test
category (Cisinski).
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Critics

Critic 1: We may want a hierarchy of universes U0 : U1 : U2 : · · · .

Critic 2: We may want a fibrant-cofibrant natural number object N.

Critic 3: Every fibration should factor as a homotopy surjection
followed by a monic fibration.

Critic 4: The initial object should be strict.

Critic 5: The inclusions i1 : X → X t Y and i2 : Y → X t Y
should be fibration for every pair of objects (X ,Y ).

Critic 5’: The functor (i?1 , i
?
2 ) : E/(X t Y )→ E/X × E/Y should

be an equivalence of generalized model categories.
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More critics

Critic 6: If u : A→ B is a cofibration between fibrant objects and
p : E → B is a fibration, then the map

u? : ΠB(E )→ ΠA(u?(E ))

induced by u should be a fibration. Moreover, u? should be acyclic
when u is acyclic.

Critic 6’: Condition 6 should be true in every slice category E/C .
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Epilogue

What is mathematics?

Georg Cantor:
”The essence of mathematics lies in its freedom”

Bertrand Russell:
”Mathematics is the subject in which we never know what we are
talking about, nor whether what we are saying is true”

Godfrey H. Hardy:
”Beauty is the first test; there is no permanent place in the world
for ugly mathematics”

John von Neumann:
”In mathematics you don’t understand things. You just get used to
them”
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THANK YOU FOR YOUR ATTENTION!
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