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Topos	Theory

geometry of physics -- categories and
toposes

This entry is one chapter of geometry	of	physics.

next chapters: smooth	sets, supergeometry

Category theory and topos theory concern the general abstract
structure  underlying  algebra,  geometry  and  logic.  They  are
ubiquituous  in  and  indispensible  for  organizing  conceptual
mathematical frameworks.

We give here an introduction to the basic concepts and results,
aimed  at  providing  background  for  the  synthetic higher supergeometry  of  relevance  in
formulations of fundamental physics, such as used in the chapters on	perturbative	quantum
�ield	theory and on	fundamental	super	p-branes. For quick informal survey see Introduction
to	Higher	Supergeometry.

This makes use of the following curious dictionary between category theory/topos theory
and  the  geometry  of  generalized  spaces,  which  we  will  explain  in  detail  (following
Grothendieck 65, Lawvere 86, p. 17, Lawvere 91):

category	theory Rmk.	1.28 geometry	of	generalized	spaces

presheaf Expl. 1.26 generalized space

representable
presheaf

Expl. 1.27
model space
regarded as generalized space

Yoneda lemma
Prop.
1.29

sets of probes of generalized spaces
are indeed
sets of maps from model spaces
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category	theory Rmk.	1.28 geometry	of	generalized	spaces

Yoneda embedding
Prop.
1.30

nature of model spaces is preserved when
regarding them as generalized spaces

Yoneda embedding is
free co-completion

Prop. 3.20
generalized spaces really are
glued from ordinary spaces

topos	theory Rmk.	4.1
local-global	principle	for	generalized
spaces

coverage Defn. 4.3 notion of locality

sheaf condition
Defn. 4.8
Prop. 4.29

plots of generalized spaces
satisfy local-to-global principle

comparison lemma Prop. 4.20
notion of generalized spaces
independent under change of model space

gros	topos	theory Rmk.	5.1 generalized	spaces	at	the	foundations

cohesion Defn. 5.2
generalized spaces obey
principles of differential topology

differential cohesion Defn. 5.10
generalized spaces obey
principles of differential geometry

super cohesion Defn. 5.14
generalized spaces obey
principles of supergeometry

The perspective is that of functorial	geometry (Grothendieck 65). (For more exposition of
this point see also at motivation	for	sheaves,	cohomology	and	higher	stacks.) This dictionary
implies a wealth of useful tools for handling and reasoning about geometry:

We discuss below that sheaf toposes, regarded as categories of generalized spaces via the
above  disctionary,  are  “convenient  contexts”  for  geometry  (Prop.  4.23  below),  in  the
technical  sense  that  they  provide  just  the  right  kind  of  generalization  that  makes  all
desireable constructions on spaces actually exist:

sheaf	topos as	category	of	generalized	spaces

Yoneda embedding: contains and generalizes ordinary spaces

has all limits: contains all Cartesian products and intersections
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sheaf	topos as	category	of	generalized	spaces

has all colimits: contains all disjoint unions and quotients

cartesian closure: contains all mapping spaces

local cartesian closure: contains all �iber-wise mapping spaces

Notably  mapping  spaces  play  a  pivotal  role  in  physics,  in  the  guise  of  spaces  of  �ield
histories, but fall outside the applicability of traditional formulations of geometry based on
just manifolds. Topos theory provides their existence (Prop. 4.23 below) and the relevant
infrastructure,  for  example for  the construction of  transgression of  differential  forms  to
mapping spaces of  smooth sets,  that  is  the basis  for  sigma-model-�ield theories.  This  is
discussed in the following chapters on	smooth	sets and on	supergeometry.

In conclusion,  one motivation for category theory and topos theory is  a 	posteriori:  As  a
matter of experience, there is just no other toolbox that allows to deeply understand and
handle  the geometry of  physics.  Similar  comments  apply  to  a  wealth  of  other  topics  of
mathematics.

But we may offer also an a	priori motivation:

Category	theory	is	the	theory	of	duality.

Duality is of course an ancient notion in philosophy. At least as
a  term,  it  makes  a  curious  re-appearance  in  the  conjectural
theory of fundamental physics formerly known as string	theory,
in  the  guise  of  duality 	 in 	 string 	 theory.  In  both  cases,  the
literature  left  some  room  in  delineating  what  precisely  is
meant.  But  the  philosophically  inclined mathematician  could
notice (see Lambek 82)  that  an  excellent  candidate  to  make
precise  the  idea  of  duality  is  the  mathematical  concept  of
adjunction,  from  category  theory.  This  is  particularly
pronounced for adjoint	triples (Remark 1.34 below) and their
induced adjoint modalities (Lawvere 91, see Def. 1.66 below),
which  exhibit  a  given  “mode  of  being”  of  any  object  �  as
intermediate between two dual opposite extremes (Prop. 1.69 below):

□� →⎯⎯⎯⎯ � →⎯⎯⎯⎯ ◯ �

For example, cohesive geometric structure on generalized spaces is captured, this way, as
modality in between the discrete and the codiscrete (Example 1.36, and Def. 5.2 below).

Historically,  category  theory  was  introduced  in
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order  to  make  precise  the  concept  of  natural
transformation:  The  concept  of  functors  was
introduced just  so  as  to  support  that  of  natural
transformations,  and  the  concept  of  categories
only served that of functors (see Freyd 1964,, p 1).

But  natural  transformations  are,  in  turn,  exactly
the basis for the concept of adjoint	functors (Def.
1.32  below),  equivalently  adjunctions 	 between
categories (Prop. 1.39 below).

Shown below is the “Yin-Yang identity” (the triangle	identity, cf. Prop. below) characterizing
adjunctions.

All universal	constructions  —
the heart  of  category theory
— are special cases of adjoint
functors, hence of dualities, if
we  follow  Lambek  82:  This
includes  the  concepts  of
limits  and  colimits  (Def.  3.1
below),  ends  and  coends
(Def.  3.13  below)  Kan
extensions  (Prop.  3.29
below), and the behaviour of
these  constructions,  such  as
for  instance  the  free  co-
completion  nature  of  the
Yoneda  embedding  (Prop.
3.20 below).

Therefore it makes sense to regard category theory as the theory	of	adjunctions,
hence the theory	of	duality:

hierarchy	of	concepts category	theory enriched homotopical

adjunction of adjunctions
duality of dualities

Def. 1.52 Def. 6.59
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hierarchy	of	concepts category	theory enriched homotopical

adjoint equivalence
dual equivalence

 Def. 1.56  Def. 2.53 Def. 6.55

adjunction
duality

 Def. 1.32  Def. 2.52 Def. 6.44

natural transformation  Def. 1.23  Def. 2.50

functor  Def. 1.15  Def. 2.46

category  Def. 1.1  Def. 2.40  Def. 6.1

The pivotal role of adjunctions in category theory (Lawvere 08) and in the foundations of
mathematics  (Lawvere  69,  Lawvere  94  )  was  particularly  ampli�ied  by  F.  W.  Lawvere1.
Moreover,  Lawvere  saw  the  future  of  category  theory  (Lawvere  91)  as  concerned  with
adjunctions  expressing  systems  of  archetypical  dualities  that  reveal  foundations  for
geometry (Lawvere 07) and physics (Lawvere 97,  see Def.  5.2 and Def.  5.10  below).  He
suggested  (Lawvere  94)  this  as  a  precise  formulation  of  core  aspects  of  the  theory 	 of
everything of early 19th century philosophy: Hegel‘s Science	of	Logic.

These days,  of  course,  theories 	of 	everything,  such as  string theory,  are  understood  less
ambitiously than Hegel’s ontological process, as mathematical formulations of fundamental
theories of  physics,  that could conceptually unify the hodge-podge of  currently available
“standard models” of particle physics and of cosmology to a more coherent whole.

The idea of duality	in	string	theory refers to different perspectives on physics that appear
dual to each other while being equivalent.  But one of the basic results of category theory
(Prop. 1.58, below) is that equivalence is indeed a special case of adjunction. This allows to
explore the possibility that there is more than a coincidence of terms.

Of course the usage of the term duality	in	string	theory is too loose for one to expect to be
able to re�ine each occurrence of the term in the literature to a mathematical adjunction.
However, we will  see mathematical formalizations of core aspects of key string-theoretic
dualities, such as topological	T-duality and the duality	between	M-theory	and	type	IIA	string
theory, in terms of adjunctions. Indeed, at the heart of these dualities	in	string	theory is the
phenomenon of double	dimensional	reduction, which turns out to be formalized by one of the
most  fundamental  adjunctions in  (higher)  category theory:  base 	change  along  the  point
inclusion into a classifying space. All this is discussed in the chapter on fundamental	super	p-
branes.

This suggests that there may be a deeper relation here between the super�icially alien uses
of the word “duality”, that is worth exploring.
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In this respect it is worth noticing that core structure of string/M-theory arises via universal
constructions from the superpoint (as explained in the chapter on 	 fundamental 	super 	p-
branes), while the superpoint itself arises, in a sense made precise by category theory, “from
nothing”, by a system of twelve adjunctions (explained in the chapter on supergeometry).

Here we introduce the requisites for understanding these statements.

Contents

1. Basic notions of Category theory

Categories and Functors

Natural transformations and presheaves

Adjunctions

Equivalences

Modalities

2. Basic notions of Categorical algebra

Monoidal categories

Algebras and modules

Enriched categories

3. Universal constructions

Limits and colimits

Ends and coends

Tensoring and cotensoring

Kan extensions

Further properties

4. Basic notions of Topos theory

Descent

Codescent

Local presentation
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5. Gros toposes

Cohesive toposes

Elastic toposes

Solid toposes

6. Basic notions of homotopy theory

Factorization systems

Homotopy

The homotopy category

Derived functors

Quillen adjunctions

Poposition

Mapping cones

Categories of �ibrant objects

Homotopy �ibers

Homotopy pullbacks

Long �iber sequences

7. ∞-Groupoids I): Topological homotopy theory

Universal constructions

Homotopy

Cell complexes

Fibrations

The classical model structure on topological spaces

The classical homotopy category

Model structure on pointed spaces

Model structure on compactly generated spaces

Topological enrichment

Model structure on topological functors

8. ∞-Groupoids II): Simplicial homotopy theory

Simplicial sets
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Simplicial homotopy

Kan complexes

Groupoids as Kan complexes

Chain complexes as Kan complexes

Theorem (Eilenberg-MacLane)

Theorem (Kan)

Theorem (J. C. Moore)

Geometric realization

The classical model structure on simplicial sets

9. Basic notions of higher topos theory

Locally presentable ∞-Categories

∞-Modalities

∞-Toposes

10. Gros ∞-Toposes

Cohesive ∞-Toposes

Elastic ∞-Toposes

Solid ∞-Toposes

1. Basic notions of Category theory

We introduce here the basic notions of category theory, along with examples and motivation
from geometry:

1. Categories	and	functors

2. Natural	transformations	and	presheaves

3. Adjunctions

4. Equivalences

5. Modalities

This constitutes what is sometimes called the language 	of 	categories.  While we state and
prove some basic facts here, notably the notorious Yoneda	lemma (Prop. 1.29 below), what
makes category theory be a mathematical 	theory  in the sense of a coherent collection of
non-trivial theorems is all concerned with the topic of universal	constructions, which may be
formulated (only) in this language. This we turn to further below.
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Categories	and	Functors

The notion of a category  (Def.  1.1 below) embodies the idea of structuralism applied  to
concepts in mathematics: it collects, on top of the set (or generally: class) of mathematical
objects that belong to it,  also all  the structure-preserving 	maps  between them, hence the
homomorphisms in the case of Bourbaki-style mathematical structures.

The �irst achievement of the notion of a category is to abstract away from such manifestly
concrete 	categories  (Examples  1.3,  1.21  below)  to  more  indirectly  de�ined  mathematical
objects whose “structure” is only de�ined,  after the fact,  by which maps,  now just called
morphisms, there are between them.

This  structuralism-principle  bootstraps  itself  to  life  by  considering  morphisms  between
categories  themselves  to  be  those  “maps”  that  respect  their  structuralism,  namely  the
connectivity  and  composition  of  the  morphisms  between  their  objects:  These  are  the
functors (Def. 1.15 below).

For the purpose of geometry, a key class of examples of functors are the assignments of
algebras	of	functions	to	spaces, this is Example 1.22 below.

De�inition	1.1. (category)

A category � is

1. a class Obj
�

, called the class	of	objects;

2. for each pair �,� ∈ Obj
�

 of objects, a set Hom�(�,�),  called the set 	of 	morphisms

from	�	to	�, or the hom-set, for short.
We denote the elements of this set by arrows like this:

� ⟶
�

� ∈ Hom�(�,�) .

3. for each object � ∈ Obj
�

 a morphism

� ��⎯
���

� ∈ Hom�(�,�)

called the identity	morphism on �;

4. for each triple ��,��,�� ∈ Obj of objects, a function
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Hom�(��,��) × Hom�(��,��) →⎯⎯⎯⎯⎯⎯
∘�� ,�� ,��

Hom�(��,��)

�� →
�

�� , �� →
�

�� ↦ �� →⎯⎯
�∘�

��

called composition;

such that:

1. for all pairs of objects �,� ∈ Obj
�

unitality holds: given

� →
�

� ∈ Hom�(�,�)

then

� →⎯⎯⎯⎯
��� ∘�

� = � ⟶
�

� = � →⎯⎯⎯⎯
�∘���

� ;

2. for all quadruples of objects ��,��,��,�� ∈ Obj� composition sati�ies associativity:

given

�� ��⎯
���

�� ��⎯
���

�� ��⎯
���

��

then

�� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
��� ∘(��� ∘���)

�� = �� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(��� ∘���)∘���

�� .

The archetypical example of a category is the category of sets:

Example	1.2. (category	of	all	sets)

The class of all sets with functions between them is a category (Def. 1.1), to be denoted
Set:

• Obj
���

= class of all sets;

• Hom���(�,�) = set of functions from set X to set Y;

• id� ∈ Hom���(�,�) = identity function on set �;

• ∘�� ,�� ,�� = ordinary composition of functions.

More generally all  kind of sets 	with 	structure,  in the sense going back to Bourbaki,  form
categories, where the morphisms are the homomorphisms (whence the name “morphism”!).
These  are  called  concrete 	 categories  (we  characterize  them  precisely  in  Example  1.21,
further below):
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Example	1.3. (basic	examples	of	concrete	categories)

For � a kind of mathematical structure, there is the category (Def. 1.1) � Set whose objects
are  the  corresponding  structured  sets,  and  whose  morphisms  are  the  corresponding
structure  homomorphisms,  hence  the  functions  of  underlying  sets  which  respect  the
given structure.

Basic examples of concrete categories include the following:

concrete	category objects morphisms

Set sets functions

Top topological spaces continuous functions

Mfd� differentiable manifolds differentiable functions

Vect vector spaces linear functions

Grp groups group homomorphisms

Alg algebras algebra homomorphism

This is the motivation for the terminology “categories”, as the examples in Example 1.3 are
literally categories	of	mathematical	structures. But not all categories are “concrete” in this
way.

Some terminology:

De�inition	1.4. (commuting	diagram)

Let � be a category (Def. 1.1), then a directed graph with edges labeled by morphisms of
the  category  is  called  a  commuting 	diagram  if  for  any  two  vertices  any  two  ways  of
passing  along  edges  from  one  to  the  other  yields  the  same  composition  of  the
corresponding morphisms.

For example, a commuting	triangle is

� = ℎ ∘ �

�

� ↙ ↘�

� →⎯⎯
�

�

while a commuting	square is
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�
�
∘ �

�
= �

�
∘ �

�

� →⎯⎯⎯
��

��

�� ↓
�
� ↓

�
�
��

�� →⎯⎯⎯
��

�

De�inition	1.5. (initial	object	and	terminal	object)

Let � be a category (Def. 1.1). Then

1. an object * ∈ � is called a terminal	object if for every other object � ∈ �, there is a
unique morphism from � to *

� ⟶
∃!

*

hence if the hom-set is a singleton * ∈ Set:

Hom�(�, * ) ≃ * .

2. an object ∅ ∈ � is called an initial 	object  if for every other object � ∈ �,  there is a
unique morphism from ∅ to �

∅ ⟶
∃!

�

hence if the hom-set is a singleton * ∈ Set:

Hom�(∅, �) ≃ * .

De�inition	1.6. (small	category)

If a category � (Def. 1.1) happens to have as class Obj
�

 of objects an actual set (i.e. a small

set instead of a proper class), then � is called a small	category.

As usual, there are some trivial examples, that are however usefully made explicit for the
development of the theory:

Example	1.7. (initial	category	and	terminal	category)

1. The  terminal 	category *  is  the category  (Def.  1.1)  whose  class  of  objects  is  the
singleton set,  and  which  has  a  single  morphism  on  this  object,  necessarily  the
identity morphism.

2. The initial 	category  or empty 	category ∅  is the category (Def.  1.1) whose class of
objects is the empty set, and which, hence, has no morphism whatsoever.
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(1)

Clearly, these are small categories (Def. 1.6).

Example	1.8. (preordered	sets	as	thin	categories)

Let (�, ≤ ) be a preordered set. Then this induces a small category whose set of objects is
�, and which has precisely one morphism � → � whenever � ≤ �, and no such morphism
otherwise:

� →
∃!

� precisely if � ≤ �

Conversely, every small category with at most one morphism from any object to any other,
called a thin	category, induces on its set of objects the structure of a partially ordered set
via (1).

Here the axioms for preordered sets and for categories match as follows:

re�lexivity transitivity

partially ordered sets � ≤ � (� ≤ � ≤ �) ⇒ (� ≤ �)

thin categories identity morphisms composition

De�inition	1.9. (isomorphism)

For � a category (Def. 1.1), a morphism

� →
�

� ∈ Hom�(�,�)

is called an isomorphism if there exists an inverse morphism

� →⎯⎯
���

� ∈ Hom�(�,�)

namely  a  morphism  such  that  the  compositions  with  �  are  equal  to  the  identity
morphisms on � and �, respectively

��� ∘ � = id� � ∘ ��� = id�

De�inition	1.10. (groupoid)

If � is a category in which every morphism is an isomorphism (Def. 1.9), then � is called a
groupoid.

Example	1.11. (delooping groupoid)
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For � a group, there is a groupoid (Def. 1.10) �� with a single object, whose single hom-
set is �, with identity morphism the neutral element and composition the group operation
in �:

• Obj
��

= *

• Hom�( * , * ) = �

In fact every groupoid with precisely one object is of the form.

Remark	1.12. (groupoids	and	homotopy	theory)

Even though groupoids (Def. 1.10) are special cases of categories (Def. 1.1), the theory of
groupoids in itself has a rather different �lavour than that of category theory: Part of the
homotopy hypothesis-theorem is that the theory of groupoids is really homotopy	theory
for the special case of homotopy 1-types.

(In applications in homotopy theory, groupoids are considered mostly in the case that the
class Obj

�
 of objects is in fact a set: small	groupoids, Def. 1.6).

For this reason we will not have more to say about groupoids here, and instead relegate
their discussion to the section on homotopy theory, further below.

There is a range of constructions that provide new categories from given ones:

Example	1.13. (opposite	category	and	formal	duality)

Let �  be a category. Then its opposite 	category ���  has the same objects as �,  but the
direction of the morphisms is reversed. Accordingly, composition in the opposite category
��� is that in �, but with the order of the arguments reversed:

• Obj
���

≔ Obj
�

;

• Hom���(�,�) ≔ Hom�(�,�).

Hence  for  every  statementa  about  some  category �  there  is  a  corresponding  “dual”
statement about its opposite category, which is “the same but with the direction of all
morphisms reversed”. This relation is known as formal	duality.

Example	1.14. (product	category)

Let � and � be two categories (Def. 1.1). Then their product	category �×� has as objects
pairs (�,�)  with  � ∈ Obj

�
 and  � ∈ Obj

�
,  and  as  morphisms  pairs

(�� →
�
��) ∈ Hom�(��, ��),  (�� →

�
��) ∈ Hom�(��,��),  and  composition  is  de�ined  by

composition in each entry:
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• Obj
�×�

≔ Obj
�
×Obj

�
;

• Hom�×�((��,��), (��,��))≔ Hom�(��, ��)×Hom�(��,��)

• (�
�
,�

�
) ∘ (�

�
,�

�
) ≔ (�

�
∘ �

�
,�

�
∘ �

�
)

De�inition	1.15. (functor)

Let � and � be two categories (Def. 1.1). A functor	from	�	to	�, to be denoted

� ⟶
�

�

is

1. a function between the classes of objects:

���� : Obj� ⟶ Obj
�

2. for each pair �,� ∈ Obj
�

 of objects a function

��,� : Hom�(�,�)⟶ Hom�(����(�),����(�))

such that

1. For each object � ∈ Obj
�

 the identity morphism is respected:

��,�(id�) = id����(�) ;

2. for each triple ��,��,�� ∈ Obj� of objects, composition is respected: given

�� ⟶
�

�� ⟶
�

��

we have

��� ,��
(� ∘ �) = ��� ,��

(�) ∘ ��� ,��
(�) .

Example	1.16. (categories	of	small	categories	and	of	small	groupoids)

It is clear that functors (Def. 1.15) have a composition operation given componentwise by
the composition of their component functions. Accordingly, this composition is unital and
associative. This means that there is

1. the category (Def. 1.1) Cat whose objects are small categories (Def. 1.6) and whose
morphisms are functors (Def. 1.15) between these

2. the  category  (Def.  1.1)  Grpd  whose  objects  are  small groupoids  (Def.  1.10)  and
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whose morphisms are functors (Def. 1.15) between these.

Example	1.17. (hom-functor)

Let � be a category (Def. 1.1). Then its hom-functor

Hom� : �
��×� ⟶ Set

is the functor (Def. 1.15) out of the product category (Def. 1.14) of � with its opposite
category to the category of sets, which sends a pair �,� ∈ �  of objects to the hom-set
Hom�(�,�) between them, and which sends a pair of morphisms, with one of them into �
and the other out of �, to the operation of composition with these morphisms:

Hom� :

�� ��

� ↑�
� ↓

�
�
�

�� ��

↦

Hom�(��,��)

↓
�
�
�↦�∘�∘�

Hom�(��,��)

De�inition	1.18. (monomorphism	and	epimorphism)

Let � be a category (Def. 1.1). Then a morphism � →
�
� in � is called

• a monomorphism if for every object � ∈ � the hom-functor (Example 1.17) out of �
takes � to an injective function of hom-sets:

Hom�(�, �) : Hom�(�,�) � �⎯⎯⎯ Hom�(�,�) ;

• an epimorphism  if  for every object � ∈ �  the hom-functor (Example 1.17) into �
takes � to an injective function:

Hom�(�,�) : Hom�(�,�) � �⎯⎯⎯ Hom�(�,�) .

De�inition	1.19. (full,	faithful	and	fully	faithful	functors)

A functor � : � → � (Def. 1.15) is called

• a full	functor if all its hom-functions are surjective functions

Hom�(�,�) →⎯⎯⎯
����

��,�
Hom�(�(�),�(�))

• a faithful	functor if all its hom-functions are injective functions

Hom�(�,�) →⎯⎯⎯
���

��,�
Hom�(�(�),�(�))
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• a fully	faithful	functor if all its hom-functions are bijective functions

Hom�(�,�) →⎯⎯⎯
���

��,�
Hom�(�(�),�(�))

A  fully  faithful  functor  is  also  called  a  full 	 subcategory-inclusion.  We  will  denote  this
situation by

� � �⎯⎯
�

� .

Example	1.20. (full	subcategory	on	a	sub-class	of	objects)

Let � be a category (Def. 1.1) and let � ⊂ Obj
�

 be a sub-class of its class of objects. The

there is a category ��  whose class of objects is �, and whose morphisms are precisely the
morphisms of �, between these given objects:

Hom��(��, ��) ≔ Hom�(��, ��)

with identity morphisms and composition de�ined as in �. Then there is a fully faithful
functor (Def. 1.19)

�� � �⎯⎯⎯ �

which is the evident inclsuion on objects, and the identity function on all hom-sets.

This is called the full	subcategory	of	�	on	the	objects	in	�.

Beware that not every fully faithful functor is, in components, exactly of this form, but,
assuming  the  axiom  of  choice,  every  fully  faithful  functor  is  so  up  to  equivalence 	 of
categories (Def. 1.57).

The concept of faithful	functor from Def. 1.19 allows to make precise the idea of concrete
category from Example 1.3:

Example	1.21. (structured	sets	and	faithful	functors)

Let � be a kind of mathematical structure and let � Set  be the category of �-structured
sets. Then there is the forgetful functor

� Set ⟶ Set

which sends each structured set to the underlying set (“forgetting” the structure that it
carries),  and  which  sends  functions  of  sets  to  themselves.  That  a  homomorphism  of
structured sets is a function between the underlying sets satisfying a special 	condition
implies that this is a faithful	functor (Def. 1.19).
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Conversely,  it  makes  sense  to  de�ine structured sets  in  general  to  be  the  objects  of  a

category � which is equipped with a faithful functor � →⎯⎯⎯⎯⎯
��������

Set to the category of sets.
See at structure for more on this.

Example	1.22. (spaces	seen	via	their	algebras	of	functions)

In any given context of geometry, there is typically a functor which sends any space of the
given  kind  to  its  algebra  of  functions,  and  which  sends  a  map  (i.e.  homomorphism)
between the given spaces to the algebra homomorphism given by precomposition with
that map (a hom-functor, Def. 1.17). Schematically:

�geometric spaces� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
algebra of functions

�algebras�
��

�� ↦ FunctionsOn(��)

� ↓
�
� ↑�

�

�↦�∘�

�� ↦ FunctionsOn(��)

Since the precomposition operation reverses the direction of morphisms, as shown, these
are functors  from the given category of  spaces  to  the opposite  (Example 1.13)  of  the
relevant category of algebras.

In broad generality,  there is  a  duality (“Isbell  duality”)  between geometry/spaces and
algebra/algebras of functions) (“space and quantity”, Lawvere 86).

We now mention some concrete examples of this general pattern:

topological	spaces	and	C*-algebras

Consider

1. the  category Top���  of  compact topological Hausdorff  spaces  with  continuous
functions between them;

2. the category C*Alg of unital C*-algebras over the complex numbers

from Example 1.3.

Then there is a functor (Def. 1.15)

�(−) : Top
�,���

⟶ �*Alg��

from the former to the opposite category of the latter (Example 1.13) which sends any
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(2)

compact topological space � to its C*-algebra �(�) of continuous functions � →
�
ℂ  with

values in  the complex numbers,  and which sends every continuous function  between
compact spaces to the C*-algebra-homomorphism that is given by precomposition:

�(−) :

� ↦ �(�)

� ↓
�
� ↑�

�

�*:�↦�∘�

� ↦ �(�)

Part  of  the  statement  of  Gelfand 	duality  is  that  this  is  a  fully  faithful  functor,  hence
exhibiting  a  full  subcategory-inclusion  (Def.  1.19),  namely  that  of  commutative  C*-
algebras:

Top
�,���

� �⎯⎯⎯ �*Alg�� .

af�ine	schemes	and	commutative	algebras

The starting point of algebraic geometry is to consider af�ine	schemes as the formal duals
(Example 1.13) of �initely generated commutative algebras over some algebraically closed
ground �ield �:

Aff� ≔ CAlg
�
����� .

Beware that the immediate identi�ication (2) is often obscured by the de�inition of af�ine
schemes as locally ringed spaces. While the latter is much more complicated, at face value,
in  the  end  it  yields  an  equivalent category  (Def.  1.57  below)  to  the  simple  formal
dualization (Example 1.13) in (2), see here. Already in 1973 Alexander Grothendieck had
urged to abandon, as a foundational concept, the more complicated de�inition in favor of
the simpler one in (2), see Lawvere 03.

smooth	manifolds	and	real associative	algebras

Consider

1. the category SmthMfd of smooth manifolds with smooth functions between them;

2. the category Algℝ of associative algebras over the real numbers

from Example 1.3.

Then there is a functor (Def. 1.15)
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��(−) : SmthMfd⟶ Algℝ
��

from the former to the opposite category of the latter (Def. 1.13), which sends any smooth

manifold �  to its associative algebra ��(�)  of continuous functions � →
�
ℝ  to the real

numbers,  and  which  sends  every  smooth  function  between  smooth  manifolds  to  the
algebra homomorphism that is given by precomposition:

��(−) :

� ↦ ��(�)

� ↓
�
� ↑�

�

�*:�↦�∘�

� ↦ ��(�)

The  statement  of  Milnor's 	 exercise  is  that  this  this  is  a  fully  faithful  functor,  hence
exhibiting a full subcategory-inclusion (Def. 1.19):

SmthMfd � �⎯⎯⎯ Algℝ
��
.

These two statements, expressing categories of spaces as full subcategories of opposite
categories  of  categories  of  algebras,  are  the  starting  point  for  many developments  in
geometry,  such  as  algebraic 	geometry,  supergeometry,  noncommutative 	geometry  and
noncommutative	topology.

Since a fully faithful functor/full subcategory-embedding � ↪ � exhibits the objects of �
as a consistent generalization of the objects of �,  one may turn these examples around
and  de�ine  more  general  kinds  of  spaces  as  formal 	duals  (Example  1.13)  to  certain
algebras:

in�initesimally	thickened	points	and	formal	Cartesian	spaces

The  category  of  in�initesimally 	 thickened 	points  is,  by  de�inition,  the  full  subcategory
(Example 1.20) of the opposite category (Example 1.13) of that of commutative algebras
(Example 1.3) over the real numbers

InfThckPoint � �⎯⎯⎯ Algℝ
��

� ↦ ��(�)

≔ ℝ⊕�

on those with a unique maximal ideal � which is a �inite-dimensional as an ℝ-vector space
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and a nilradical: for each � ∈ � there exists � ∈ ℕ such that �� = 0.

The category of formal 	Cartesian 	spaces  is, by de�inition, the full subcategory (Example
1.20) of the opposite category (Example 1.13) of that of commutative algebras (Example
1.3) over the real numbers

FormalCartSp � �⎯⎯⎯ Algℝ
��

ℝ�×� ↦ ��(ℝ�×�)

≔ ��(ℝ�)⊗ℝ (ℝ⊕�)

on those which are tensor products of algebras, of an algebra of smooth functions on a
Cartesian space ℝ�,  for some � ∈ ℤ,  and the algebra of functions on an in�initesimally
thickened point.

Notice that the formal Cartesian spaces ℝ� |� are fully de�ined by this assignment.

super	points	and	super	Cartesian	spaces

The category of super	points is by	de�inition, the full subcategory (Example 1.20) of the
opposite category (Example 1.13) of that of supercommutative algebras (Example 1.3)
over the real numbers

SuperPoint � �⎯⎯⎯ sCAlgℝ
��

ℝ� |� ↦ ��

on the Grassmann algebras:

�� ≔ ℝ[��,⋯,��] / (���� = −����) � ∈ ℕ .

More  generally,  the  category  of  super 	 Cartesian 	 spaces  is  by 	 de�inition,  the  full
subcategory

SuperCartSp � �⎯⎯⎯ sCAlgℝ
��

ℝ� |� ↦ ��(ℝ�)⊗ℝ ��

on  the  tensor  product  of  algebras,  over  ℝ  of  the  algebra  of smooth  functions  on  a
Cartesian space, and a Grassmann algebra, as above.

Notice that  the super Cartesian spaces ℝ� |�  are  fully  de�ined  by  this  assignment.  We
discuss this in more detail in the chapter on supergeometry.
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(3)

Natural	transformations	and	presheaves

Given a system of (homo-)morphisms (“transformations”) in some category (Def. 1.1)

�� →⎯⎯⎯⎯
��

��

between objects that depend on some variable �, hence that are values of functors of � (Def.
1.15), one says that this is natural, hence a natural	transformation (Def. 1.23 below) if it is
compatible with (homo-)morphisms of the variable itself.

These natural transformations are the evident homomorphisms between functors

� →⎯⎯⎯
�

� ,

and hence there is a category	of	functors between any two categories (Example 1.25 below).

A key class of such functor categories are those between an opposite category ��� and the
base category of sets, these are also called categories	of	presheaves (Example 1.26 below). It
makes  good sense  (Remark 1.28  below)  to  think  of  these  as  categories  of  “generalized
objects of �”, a perspective which is made precise by the statement of the Yoneda 	lemma
(Prop. 1.29 below) and the resulting Yoneda	embedding (Prop. 1.30 below). This innocent-
looking lemma is the heart that makes category theory tick.

De�inition	1.23. (natural	transformation	and	natural	isomorphism)

Given two categories � and � (Def. 1.1) and given two functors � and � from � to � (Def.
1.15), then a natural	transformation from � to �

� ⇓� �
→⎯⎯⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯⎯⎯
�

�

is

• for each object � ∈ Obj
�

 a morphism

�(�)⟶
��

�(�)

such that
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(4)

(5)

• for each morphism �⟶
�
� we have a commuting square (Def. 1.4) of the form

�
�
∘ �(�) = �(�) ∘ �

�

�(�) ⟶
��

�(�)

�(�) ↓ ↓�(�)

�(�) ⟶
��

�(�)

(sometimes called the naturality	square of the natural transformation).

If  all  the  component  morphisms  �
�

 are  isomorphisms  (Def.  1.9),  then  the  natural

transformation � is called a natural	isomorphism.

For

� ⇓�� �→⎯⎯⎯⎯⎯⎯⎯
�

→⎯⎯⎯⎯⎯⎯⎯
�

� and � ⇓�� �→⎯⎯⎯⎯⎯⎯⎯
�

→⎯⎯⎯⎯⎯⎯⎯
�

�

two natural transformations as shown, their composition is the natural transformation

� ⇓� � ∘ �
→⎯⎯⎯⎯⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯⎯⎯⎯⎯
�

�

whose components (3) are the compositions of the components of � and �:

(� ∘ �)
�

≔ �
�
∘ �

�

�(�) ⟶
��

�(�) ⟶
��

�(�)

�(�) ↓ ↓�(�) ↓�(�)

�(�) ⟶
��

�(�) ⟶
��

�(�)

Example	1.24. (reduction	of	formal	Cartesian	spaces)

On the  category FormalCartSp of  formal  Cartesian  spaces  Example  1.22,  consider  the
endofunctor

FormalCartSp →⎯⎯⎯⎯⎯⎯
ℜ

FormalCartSp

ℝ�×� ↦ ℝ�

which sends each formal  Cartesian space to  the underlying ordinary Cartesian space,
forgetting the in�initesimally thickened point-factor. Moreover, on morphisms this functor
is de�ined via the retraction
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(6)

id : ℝ� ⟶
�

ℝ�×� ⟶
�

ℝ�

��(ℝ�) ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
quotient projection

�*

��(ℝ�)⊗ℝ (�⊕ �) ←⎯⎯⎯⎯⎯⎯
�↦�⊗�

�*

��(ℝ�)

as

��(ℝ�×�) ��(ℝ�) ⟵
�*

��(ℝ�×�)

�* ↑�
�

ℜ(�*)≔�*∘�*∘�* ↑�
�

↑�
�

�*

��(ℝ��×�′) ��(ℝ��) ⟶
�*

��(ℝ��×�′)

This is indeed functorial due to the fact that any algebra homomorphism �* needs to send
nilpotent elements to nilpotent elements, so that the following identity holds:

�* ∘ �* = �* ∘ �* ∘ �* ∘ �* .

Then there is a natural transformation (Def. 1.23) from this functor to the identity functor

ℜ →⎯⎯⎯
�ℜ

Id

whose components inject the underlying Cartesian space along the unit point inclusion of
the in�initesimally thickened point:

ℜ(ℝ�×�)≔ ℝ� →⎯⎯⎯⎯⎯⎯
�
ℝ�×�
ℜ

ℝ�×�

��(ℝ�) ⟵
�*

��(ℝ�×�)

�*∘�*∘�* ↑�
�

↑�
�

�*

��(ℝ��) ⟵
�*

��(ℝ��×�′)

The commutativity of this naturality square is again the identity (6).

Example	1.25. (functor	category)

Let � and � be categories (Def. 1.1). Then the category	of	functors between them, to be

denoted [�,�],  is  the  category whose objects  are  the  functors � →
�
�  (Def.  1.15)  and

whose morphisms are the natural transformations � ⇒
�
�  between functors (Def. 1.23)

and whose composition operation is the composition of natural transformations (5).

Example	1.26. (category	of	presheaves)
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(7)

Given a category � (Def. 1.1), a functor (Def. 1.15) of the form

� : ��� ⟶ Set ,

hence out of the opposite category of � (Def. 1.13), into the category of sets (Example 1.2)
is also called a presheaf (for reasons discussed below) on	� or over	�.

The corresponding functor category (Example 1.25)

PSh(�) ≔ [���, Set]

is hence called the category	of	presheaves over �.

Example	1.27. (representable	presheaves)

Given  a  category �  (Def.  1.1),  the  hom-functor  (Example  1.17)  induces  the  following
functor (Def. 1.15) from � to its category of presheaves (Def. 1.26):

� : � ⟶ [���, Set]

�� ⟶
�

��

� ↦ Hom�(−,�) : Hom�(��,�) ←⎯⎯⎯⎯⎯⎯⎯⎯
����(�,�)

Hom�(��,�)

� ↓
�
� ↓

�
�
����(�,�)

↓
�
�
����(�� ,�)

↓
�
�
����(�� ,�

� ↦ Hom�(−,�) : Hom�(��,�) ←⎯⎯⎯⎯⎯⎯⎯⎯
����(�,�)

Hom�(��,�)

The  presheaves �(�)≔ Hom�(−,�)  in  the  image  of  this  functor  are  called  the
representable	presheaves and � ∈ Obj

�
 is called their representing object.

The functor (7) is also called the Yoneda	embedding, due to Prop. 1.30 below.

Remark	1.28. (presheaves	as	generalized	spaces)

If a given category � (Def. 1.1) is thought of as a category of spaces of sorts, as those in
Example  1.22,  then  it  will  be  most  useful  to  think  of  the  corresponding  category  of
presheaves [���, Set] (Def. 1.26) as a category of generalized	spaces	probe-able	by the test
spaces in � (Lawvere 86, p. 17).

Namely, imagine a generalized space � which is at least probe-able by spaces in �.  This
should mean that for each object � ∈ � there is some set of geometric maps “� → �”. Here
the quotation marks are to warn us that, at	this	point, � is not de�ined yet; and even if it
were, it is not expected to be an object of �, so that, at this point, an actual morphism from
� to � is not de�inable. But we may anyway consider some abstract	set
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(8)�(�) "=Hom(�,�)"

whose elements we do want to think of maps (homomorphisms of spaces) from � to �.

That this is indeed consistent, in that we may actually remove the quotation remarks on
the right of (8), is the statement of the Yoneda 	lemma,  which we discuss as Prop. 1.29
below.

A  minimum  consistency  condition  for  this  to  make  sense  (we  will  consider  further
conditions later on when we discuss sheaves) is that we may consistently pre-compose

the would-be maps from � to � with actual morphisms � →
�
� in �.  This means that for

every such morphism there should be a function between these sets of would-be maps

� �(�)

� ↓
�
� ↑�

�
�(�) "=(�)∘�"

� �(�)

which respects composition and identity morphisms. But in summary, this says that what
we have de�ined thereby is actually a presheaf on � (Def. 1.26), namely a functor

� : ��� ⟶ Set .

For consistency of regarding this presheaf as a presheaf 	of 	sets 	of 	plots 	of 	a 	generalized
space, it ought to be true that every “ordinary space”, hence every object � ∈ �, is also an
example of a “generalized space probe-able by” object of �, since, after all, these are the
spaces which may manifestly be probed by objects � ∈ �,  in that morphisms � → �  are
already de�ined.

Hence the incarnation of � ∈ � as a generalized space probe-able by objects of � should
be the presheaf Hom�(−,�), hence the presheaf represented by � (Example 1.27), via the
Yoneda functor (7).

At this point, however, a serious consistency condition arises: The “ordinary spaces” now
exist as objects of two different categories: on the one hand there is the original � ∈ �, on
the other hand there is its Yoneda image �(�) ∈ [���, Set] in the category of generalized
spaces. Hence we need to know that these two perspectives are compatible, notably that
maps � → � between ordinary spaces are the same whether viewed in � or in the more
general context of [���, Set].

That this, too, holds true, is the statement of the Yoneda	embedding, which we discuss as
Prop. 1.30 below.

Eventually one will want to impose one more consistency condition, namely that plots are

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

26 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/Yoneda+lemma
https://ncatlab.org/nlab/show/Yoneda+lemma
https://ncatlab.org/nlab/show/sheaves
https://ncatlab.org/nlab/show/sheaves
https://ncatlab.org/nlab/show/presheaf
https://ncatlab.org/nlab/show/presheaf
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/representable+presheaf
https://ncatlab.org/nlab/show/representable+presheaf
https://ncatlab.org/nlab/show/Yoneda+embedding
https://ncatlab.org/nlab/show/Yoneda+embedding


determined by their local 	behaviour.  This is the sheaf 	condition  (Def. 4.8 below) and is
what leads over from category theory to topos theory below.

Proposition	1.29.	(Yoneda	lemma)

Let	�	be	a	category	(Def.	1.1),	� ∈ �	any	object,	and	� ∈ [���, Set]	a	presheaf	over	�	(Def.
1.26).

Then	there	is	a	bijection

Hom[���,���](�(�), (�)) ⟶≃ �(�)

� ↦ �
�
(id�)

between	the	hom-set	of	the	category	of	presheaves	from	the	presheaf	represented	by	� (7)	to
�,	and	the	set	which	is	assigned	by	�	to	�.

Proof. By Example 1.25, an element in the set on the left is a natural transformation (Def.
1.23) of the form

��� ⇓�� �→⎯⎯⎯⎯⎯⎯⎯
�

→⎯⎯⎯⎯⎯⎯⎯
�(�)

Set

hence given by component functions (3)

Hom�(�,�)⟶
��
�(�)

for each � ∈ �. In particular there is the component at � = �

Hom�(�,�) ⟶
��

�(�)

id� ↦ �
�
(id�)

and the  identity  morphism id�  on  �  is  a  canonical  element  in  the  set  on  the  left.  The
statement  to  be  proven  is  hence  equivalently  that  for  every  element  in  �(�)  there  is
precisely one � such that this element equals �

�
(id�).

Now the condition to be satis�ied by � is that it makes its naturality squares (4) commute
(Def. 1.4). This includes those of the form
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(9)

id� ∈ Hom�(�,�) ⟶
��

�(�)

����(�,�) ↓
�
� ↓

�
� �(�)

Hom�(�,�) ⟶
��

�(�)

{id�} ⟶ {�
�
(id�)}

↓
�
� ↓

�
�

{�} ⟶ ��
�
(�) = �(�)(�

�
(id�))�

for any morphism

(� ⟶
�

�) ∈ Hom�(�,�) .

As the diagram chase of elements on the right shows, this commutativity (Def. 1.4) �ixes
�
�
(�) for all � ∈ � and all � ∈ Hom�(�,�) uniquely in terms of the element �

�
(id�).

It remains only to see that there is no condition on the element �
�
(id�), hence that with

�
�
(�) de�ined this way, the commutativity of all the remaining naturality squares is implies:

The general naturality square for a morphism �� ⟶
�
�� is of the form

Hom�(��,�) ⟶
���

�(��)

����(�,�) ↓
�
� ↓

�
� �(�)

Hom�(��,�) ⟶
���

�(��)

{�
�
} ⟶ {�(�

�
)(�

�
(id�))}

↓
�
� ↓

�
�

{�
�
= �

�
∘ �} ⟶ {�(�

�
)(�

�
(id�)) = �(�) ∘ �(�

�
)(�

�

As shown on the right, the commutativity of this diagram now follows from the functoriality
�(�

�
) = �(�

�
∘ �) of the presheaf �.  ▮

As a direct corollary, we obtain the statement of the Yoneda embedding:

Proposition	1.30.	(Yoneda	embedding)

The	assignment	(7)	of	represented	presheaves	(Example	1.27)	is	a	fully	faithful	functor	(Def.
1.19),	hence	exhibits	a	full	subcategory	inclusion

� :
� � �⎯⎯⎯ [���, Set]

� ↦ Hom�(−,�)

of	the	given	category �	into	its	category	of	presheaves.

Proof. We need to show that for all ��,�� ∈ Obj� the function

Hom�(��,��) ⟶ Hom[���,���]�Hom�(−,��) , Hom�(−,��)�

� ↦ Hom�(−, �)
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is a bijection. But the Yoneda lemma (Prop. 1.29) states a bijection the other way around

Hom[���,���]�Hom�(−,��) , Hom�(−,��)� ⟶≃ Hom�(−,��)(��) = Hom�(�

� ↦ �
��
(id

Hom�(−, �) ↦ Hom�(��, �)

and hence it is suf�icient to see that this is a left inverse to (9). This follows by inspection, as
shown in the third line above.  ▮

As a direct corollary we obtain the following alternative characterization of isomorphisms,
to be compared with the de�inition of epimorphisms/monomorphisms in Def. 1.18:

Example	1.31. (isomorphism	via	bijection	of	hom-sets)

Let  �  be  a  category  (Def.  1.1),  let  �,� ∈ Obj
�

 be  a  pair  of  objects,  and  let

� →
�
� ∈ Hom�(�,�) be a morphism between them. Then the following are equivalent:

1. � →
�
� is an isomorphism (Def. 1.9),

2. the hom-functors into and out of � take values in bijections of hom-sets: i.e. for all
objects � ∈ Obj

�
, we have

Hom�(�, �) : Hom�(�,�)⟶
≃ Hom�(�,�)

and

Hom�(�,�) : Hom�(�,�)⟶
≃ Hom�(�,�)

Adjunctions

The concepts of categories, functors and natural transformations constitute the “language of
categories”.  This  language now allows to  formulate  the concept  of  adjoint 	 functors  (Def.
1.32) and more generally that of adjunctions (Def. 1.50 below. This is concept that category
theory, as a theory, is all about.

Part of the data involved in an adjunction is its adjunction	unit and adjunction	counit (Def.
1.33 below) and depending on their behaviour special cases of adjunctions are identi�ied
(Prop. 1.46 below), which we discuss in detail in following sections:

adjunction unit is iso:
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(10)

Def. 1.32, Def. 1.50

core�lection
Def. 1.60

counit is iso:
re�lection
Def. 1.60

adjoint equivalence
Def. 1.56

We now discuss four equivalent de�initions of adjoint functors:

1. via hom-isomorphism (Def. 1.32 below);

2. via adjunction unit and -counit satisfying triangle identities (Prop. 1.39);

3. via representing objects (Prop. 1.40);

4. via universal morphisms (Prop. 1.42 below).

Then we discuss some key properties:

1. uniqueness of adjoints (Prop. 1.45 below),

2. epi/mono/iso-characterization of adjunction (co-)units (Prop. 1.46 below).

De�inition	1.32. (adjoint	functors)

Let � and � be two categories (Def. 1.1), and let

�
⟶
�

⟵
�

�

be a pair of functors between them (Def. 1.15), as shown. Then this is called a pair 	of
adjoint 	functors  (or an adjoint 	pair 	of 	functors) with � left 	adjoint  and � right 	adjoint,
denoted

� ⊥
⟶
�

⟵
�

�

if  there exists  a  natural  isomorphism (Def.  1.23) between the hom-functors (Example
1.17) of the following form:

Hom�(�(−), −) ≃ Hom�(−,�(−)) .

This means that for all objects � ∈ � and � ∈ � there is a bijection of hom-sets
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(11)

Hom�(�(�),�) ⟶≃ Hom�(�,�(�))

(�(�) →
�
�) ↦ (� →

�̃
�(�))

which is natural in � and �. This isomorphism is called the adjunction	hom-isomorphism
and  the  image �̃  of  a  morphism  �  under  this  bijections  is  called  the  adjunct  of  �.
Conversely, � is called the adjunct of �̃.

Naturality here means that for every pair of morphisms � : �� → ��  in � and ℎ :�� → ��  in
�, the resulting square

Hom�(�(��),��) ⟶
≃

(�)̃
Hom�(��,�(��))

����(�(�),�) ↓
�
� ↓

�
�
����(�,�(�))

Hom�(�(��),��) ⟶
≃

(�)̃
Hom�(��,�(��))

commutes  (Def.  1.4),  where  the  vertical  morphisms  are  given  by  the  hom-functor
(Example 1.17).

Explicitly, this commutativity, in turn, means that for every morphism � : �(��) → �� with
adjunct �̃ : �� → �(��), the adjunct of the composition is

�(��) ⟶
�

��

�(�) ↑�
� ↓

�
�
�

�(��) ��

˜

=

�� ⟶
�̃

�(��)

� ↑�
� ↓

�
�
�(�)

�� �(��)

De�inition	1.33. (adjunction	unit	and	counit)

Given a pair of adjoint functors

� ⊥
⟶
�

⟵
�

�

according to Def. 1.32, one says that

1. for any � ∈ � the adjunct of the identity morphism on �(�) is the unit	morphism  of
the adjunction at that object, denoted

�
�
≔ ıd�(�)̃ : � ⟶ �(�(�))

2. for any � ∈ � the adjunct of the identity morphism on �(�) is the counit	morphism of
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(12)

(13)

the adjunction at that object, denoted

�� : �(�(�))⟶ �

Remark	1.34. (adjoint	triples)

It happens that there are sequences of adjoint functors:

If  two functors are adjoint to each other as in Def.  1.32,  we also say that we have an
adjoint	pair:

� ⊣ � .

It may happen that one functor �  participates on the right and on the left of two such
adjoint pairs � ⊣ � and � ⊣ � (not the same “�” and “�” as before!) in which case one
may speak of an adjoint	triple:

� ⊣ � ⊣ � .

Below in Example 1.52 we identify adjoint triples as adjunctions	of	adjunctions.

Similarly there are adjoint quadruples, etc.

Notice that in the case of  an adjoint triple (12),  the adjunction unit  of  � ⊣ �  and the
adjunction counit of � ⊣ �  (Def.  1.33) provide, for each object �  in the domain of �,  a
diagram

���(�)� →⎯⎯⎯⎯⎯⎯
��

� →⎯⎯⎯⎯⎯⎯⎯
��

���(�)�

which is usefully thought of as exhibiting the nature of � as being in between two opposite
extreme	aspects ���(�)� and ���(�)� of �. This is illustrated by the following examples,
and formalized by the concept of modalities that we turn to in Def. 1.62 below.

Example	1.35. (�loor	and	ceiling	as	adjoint	functors)

Consider the canonical inclusion

ℤ� � �⎯⎯⎯⎯
�

ℝ�

of the integers into the real numbers, both regarded as preorders in the standard way
(“lower  or  equal”).  Regarded  as  full  subcategory-inclusion  (Def.  1.19)  of  the
corresponding thin categories, via Example 1.8, this inclusion functor has both a left and
right adjoint functor (Def. 1.32):

• the left adjoint to � is the ceiling function;
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(14)

• the right adjoint to � is the �loor function;

forming an adjoint triple (Def. 1.34)

⌈(−)⌉ ⊣ � ⊣ ⌊(−)⌋ .

The adjunction unit and adjunction counit express that each real number is in between its
“opposite extreme integer aspects” (13) given by �loor and ceiling

�⌊�⌋ ≤
��

� ≤
��

�⌈�⌉ .

Proof. First of all, observe that we indeed have functors (Def. 1.15)

⌊(−)⌋ , ⌈(−)⌉ : ℝ ⟶ ℤ

since �loor and ceiling preserve the ordering relation.

Now in view of the identi�ication of preorders with thin categories in Example 1.8, the hom-
isomorphism (10) de�ining adjoint  functors  of  the form � ⊣ ⌊(−)⌋  says  for  all  � ∈ ℤ  and
� ∈ ℝ, that we have

� ≤ ⌊�⌋���� �
∈ℤ

⇔ � ≤ ����
∈ℝ

.

This is clearly already the de�ining condition on the �loor function ⌊�⌋.

Similarly, the hom-isomorphism de�ining adjoint functors of the form ⌈(−)⌉ ⊣ � says that for
all � ∈ ℤ and � ∈ ℝ, we have

⌈�⌉ ≤ �� � �� �
∈ℤ

⇔ � ≤ ����
∈ℝ

.

This is evidently already the de�ining condition on the �loor function ⌊�⌋.

Notice  that  in  both  cases  the  condition  of  a  natural 	 isomorphism  in  both  variables,  as
required  for  an  adjunction,  is  automatically  satis�ied:  For  let  � ≤ �′  and  �′ ≤ �,  then
naturality as in (11) means, again in view of the identi�ications in Example 1.8, that

(� ≤ ⌊�⌋) ⇔ (� ≤ �)

⇓ ⇓

(�′ ≤ ⌊�′⌋) ⇔ (�′ ≤ �′)

∈ ℤ ∈ ℝ

Here the logical implications are equivalently functions between sets that are either empty

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

33 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/right+adjoint
https://ncatlab.org/nlab/show/right+adjoint
https://ncatlab.org/nlab/show/floor+function
https://ncatlab.org/nlab/show/floor+function
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/functors
https://ncatlab.org/nlab/show/functors
https://ncatlab.org/nlab/show/preorders
https://ncatlab.org/nlab/show/preorders
https://ncatlab.org/nlab/show/thin+categories
https://ncatlab.org/nlab/show/thin+categories
https://ncatlab.org/nlab/show/adjoint+functors
https://ncatlab.org/nlab/show/adjoint+functors
https://ncatlab.org/nlab/show/floor
https://ncatlab.org/nlab/show/floor
https://ncatlab.org/nlab/show/adjoint+functors
https://ncatlab.org/nlab/show/adjoint+functors
https://ncatlab.org/nlab/show/floor
https://ncatlab.org/nlab/show/floor
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/adjunction
https://ncatlab.org/nlab/show/adjunction
https://ncatlab.org/nlab/show/sets
https://ncatlab.org/nlab/show/sets
https://ncatlab.org/nlab/show/empty+set
https://ncatlab.org/nlab/show/empty+set


or singletons. But Functions between such sets are unique, when they exist.  ▮

Example	1.36. (discrete	and	codiscrete	topological	spaces)

Consider the “forgetful functor” Top⟶
�
Set from the category Top of topological spaces

(Example 1.3) to the category of sets (Def. 1.2) which sends every topological space to its
underlying set.

This has

• a left adjoint (Def. 1.32) Disc which equips a set with its discrete topology,

• a right adjoint coDisc which equips a set with the codiscrete topology.

These hence form an adjoint triple (Remark 1.34)

Disc ⊣ � ⊣ coDisc .

Hence the adjunction counit of Disc ⊣ �  and the adjunction unit of � ⊣ coDisc  exhibit
every topology on a given set as “in between the opposite extremes” (13) of the discrete
and the co-discrete

Disc(�(�))⟶
�

� ⟶
�
coDisc(�(�)) .

Lemma 	 1.37. 	 (pre/post-composition 	with 	 (co-)unit 	 followed 	 by 	 adjunct 	 is 	 adjoint
functor)
If	a	functor �	is	the	right	adjoint

� ⊣ � : �
←⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯
�

�

in	a	pair	of	adjoint	functors	(Def.	1.32),	then	its	application	to	any	morphism � →
�
� ∈ �	is

equal	to	the	joint	operation	of	pre-composition	with	the	(� ⊣ �)-adjunction	counit ��
♭ 	(Def.

1.33),	followed	by	passing	to	the	(� ⊣ �)-adjunct:

��,� = (−) ∘ ��
♭̃ .

Dually,	if	�	is	a	left	adjoint

� ⊣ � : �
→⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

�

then	its	action	on	any	morphism � →
�
� ∈ �	equals	the	joint	operation	of	post-composition
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(15)

with	the	(� ⊣ �)-adjunction	unit ��
♯ 	(Def.	1.33),	followed	by	passing	to	the	(� ⊣ �)-adjunct:

��
♯
∘ (−)
˜

= ��,� .

In	particular,	if	�	is	the	middle	functor	in	an	adjoint	triple	(Remark	1.34)

� ⊣ � ⊣ � : �

←⎯⎯⎯⎯⎯
�

→⎯⎯⎯⎯⎯⎯⎯⎯
�

←⎯⎯⎯⎯⎯
�

�

then	these	two	operations	coincide:

��
♯
∘ (−)
˜

= ��,� = (−) ∘ ��
♭̃ .

Proof. For the �irst equality, consider the following naturality square (4) for the adjunction
hom-isomorphism (10):

Hom���(�), �(�)� ⟶
(�)̃

Hom����(�), ��

��(���), �(�)� ↓
�
� ↓

�
� �������(���), ��

Hom���(�), �(�)� ⟵
(�)̃

Hom�(��(�), �)

{�� � �⎯⎯
����

��} ⟶ {��� →
��
♭

�}

↓
�
� ↓

�
�

{�� ��⎯
�(�)

�(�)}⟵ {��� →⎯⎯⎯
�∘��

♭

�}

Chasing the identity morphism id��  through this diagram yields the claimed equality,  as
shown on the right.  Here we use that  the left  adjunct?  of  the identity  morphism is  the
adjunction counit, as shown.

The second equality is fomally dual:

Hom����, ��� ⟶
(�)̃

Hom���, ����

������(�),�(���)� ↓
�
� ↓

�
� ������,��(���)�

Hom���(�), �(�)� ⟵
(�)̃

Hom���,��(�)�

{�� � �⎯⎯
����

��}⟶ {� ���
��
♯

���}

↓
�
� ↓

�
�

{�� ��⎯⎯
�(�)

��}⟵ {� →⎯⎯⎯
��
♯
∘�

���}

  ▮

We now turn to a sequence	of	equivalent	reformulations of the condition of adjointness.
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(16)

(17)

(18)

Proposition	1.38.	(general	adjuncts	in	terms	of	unit/counit)

Consider	a	pair	of	adjoint	functors

� ⊥
⟶
�

⟵
�

�

according	to	Def.	1.32,	with	adjunction	units �
�
	and	adjunction	counits �� 	according	to	Def.

1.38.

Then

1.	The	adjunct �̃	of	any	morphism	�(�) →
�
�	is	obtained	from	�	and	�

�
	as	the	composite

�̃ : � ⟶
��

�(�(�)) →⎯⎯⎯
�(�)

�(�)

Conversely,	the	adjunct �	of	any	morphism	� ⟶
�̃
�(�)	is	obtained	from	�	and	��	as

� : �(�) →⎯⎯⎯
�(�̃)

�(�(�))⟶
��

�

2.	The 	 adjunction 	 units �
�
	 and 	 adjunction 	 counits �� 	 are 	 components 	 of 	 natural

transformations	of	the	form

� : Id� ⇒ �∘�

and

� : � ∘� ⇒ Id�

3.	The	adjunction	unit	and	adjunction	counit	satisfy	the	triangle	identities,	saying	that

id�(�) : �(�) →⎯⎯⎯
�(��)

�(�(�(�))) →⎯⎯⎯
��(�)

�(�)

and

id�(�) : �(�) →⎯⎯⎯
��(�)

�(�(�(�))) →⎯⎯⎯
�(��)

�(�)

Proof. For the �irst statement, consider the naturality square (11) in the form
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id�(�) ∈ Hom�(�(�), �(�)) ⟶
≃

(�)̃
Hom�(�,�(�(�)))

����(�(��),�) ↓
�
� ↓

�
�
����(��,�(�))

Hom�(�(�),�) ⟶
≃

(�)̃
Hom�(�,�(�))

and consider the element id�(��)  in the top left entry. Its image under going down and then

right in the diagram is �̃, by Def. 1.32. On the other hand, its image under going right and
then down is �(�) ∘ �

�
,  by Def. 1.33. Commutativity of the diagram means that these two

morphisms agree, which is the statement to be shown, for the adjunct of �.

The converse formula follows analogously.

The third statement follows directly from this by applying these formulas for the adjuncts
twice and using that the result must be the original morphism:

id�(�) = ıd�(�)̃
˜

= � →
��
�(�(�))
˜

= �(�) →⎯⎯⎯
�(��)

�(�(�(�))) →⎯⎯⎯
��(�)

�(�)

For the second statement, we have to show that for every moprhism � : �� → �� the following
square commutes:

�� ⟶
�

��

��� ↓
�
� ↓

�
�
���

�(�(��)) →⎯⎯⎯⎯⎯
�(�(�))

�(�(��))

To see this, consider the naturality square (11) in the form

id�(��) ∈ Hom�(�(��), �(��)) ⟶
≃

(�)̃
Hom�(��,�(�(��)))

����(�(�),���(��)) ↓
�
� ↓

�
�
����(�,�(���(��)))

Hom�(�(��), �(��)) ⟶
≃

(�)̃
Hom�(��,�(�(��)))

The image of the element id�(��)  in the top left along the right and down is � ∘ �
��

, by Def.

1.33, while its image down and then to the right is �(�)̃ = �(�(�)) ∘ �
��

,  by the previous

statement. Commutativity of the diagram means that these two morphisms agree, which is
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the statement to be shown.

The argument for the naturality of � is directly analogous.  ▮

Proposition	1.39.	(adjoint	functors	equivalent	to	adjunction	in	Cat)

Two	functors

�
⟶
�

⟵
�

�

are	an	adjoint	pair	in	the	sense	that	there	is	a	natural	isomorphism (10)	according	to	Def.
1.32,	precisely	if	they	participate	in	an	adjunction	in	the	2-category Cat,	meaning	that

1.	there 	 exist 	 natural
transformations

� : Id� ⇒ �∘�

and

� : � ∘� ⇒ Id�

2.	which 	 satisfy 	 the 	 triangle
identities

id�(�) : �(�) →⎯⎯⎯
�(��)

�(�(�(�))) →⎯⎯⎯
��(�

and

id�(�) : �(�) →⎯⎯⎯
��(�)

�(�(�(�))) →⎯⎯⎯
�(��)

�(�)

Proof. That a hom-isomorphism (10) implies units/counits satisfying the triangle identities
is the statement of the second two items of Prop. 1.38.

Hence it remains to show the converse. But the argument is along the same lines as the
proof  of  Prop.  1.38:  We  now  de�ine  forming  of  adjuncts  by  the  formula  (16).  That  the
resulting assignment � ↦ �̃ is an isomorphism follows from the computation
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�̃̃ = � →
��
�(�(�)) ��⎯⎯

�(�)
�(�)
˜

= �(�) � �⎯⎯
�(��)

�(�(�(�))) � �⎯⎯⎯⎯
�(�(�))

�(�(�)) →
��

�

= �(�) � �⎯⎯
�(��)

�(�(�(�))) � �⎯⎯
��(�)

�(�)⟶
�

�

= �(�)⟶
�

�

where,  after expanding out the de�inition,  we used naturality of  �  and then the triangle
identity.

Finally,  that  this  construction  satis�ies  the  naturality  condition  (11)  follows  from  the
functoriality of the functors involved, and the naturality of the unit/counit:

�� ⟶
���

�(�(��))

� ↓ ↓�(�(�)) ↘�(�(�)∘�)

�� ⟶
���

�(�(��)) →⎯⎯⎯
�(�)

�(��)

�(�∘�) ↘ ↓�(�)

�(��)

  ▮

The condition (10) on adjoint functors � ⊣ � in Def. 1.32 implies in particular that for every
object � ∈ � the functor Hom�(�(−),�) is a representable	functor with representing	object
�(�). The following Prop. 1.40 observes that the existence of such representing objects for
all � is, in fact, already suf�icient to imply that there is a right adjoint functor.

This equivalent perspective on adjoint functors makes manifest that adjoint functors are, if
they exist, unique up to natural isomorphism, this is Prop. 1.45 below.

Proposition	1.40.	(adjoint	functor	from	objectwise	representing	objects)

A	functor � : � ⟶ �	has	a	right	adjoint � : � → �,	according	to	Def.	1.32,	already	if	for	all
objects � ∈ �	there	is	an	object	�(�) ∈ �	such	that	there	is	a	natural	isomorphism

Hom�(�(−),�)⟶≃

(�)̃
Hom�(−,�(�)) ,

hence	for	each	object � ∈ �	a	bijection

Hom�(�(�),�)⟶≃

(�)̃
Hom�(�,�(�))
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(19)

(20)

such	that	for	each	morphism � : �� → ��,	the	following	diagram	commutes

Hom�(�(��),�) ⟶
≃

(�)̃
Hom�(��,�(�))

����(�(�),���) ↓
�
� ↓

�
�
����(�,���(�))

Hom�(�(��),�) ⟶
≃

(�)̃
Hom�(��,�(�))

(This	is	as	in	(11),	except	that	only	naturality	in	the	�irst	variable	is	required.)

In	this	case	there	is	a	unique	way	to	extend	�	from	a	function	on	objects	to	a	function	on
morphisms	such	as	to	make	it	a	functor � :� → �	which	is	right	adjoint	to	�.	,	and	hence	the
statement	is	that	with	this,	naturality	in	the	second	variable	is	already	implied.

Proof. Notice that

1. in the language of presheaves (Example 1.26) the assumption is that for each � ∈ � the
presheaf

Hom�(�(−),�) ∈ [���, Set]

is represented (7) by the object �(�), and naturally so.

2. In terms of the Yoneda embedding (Prop. 1.30)

� : � ↪ [���, Set]

we have

Hom�(−,�(�)) = �(�(�))

The  condition  (11)  says  equivalently  that  �  has  to  be  such  that  for  all  morphisms
ℎ : �� → �� the following diagram in the category of presheaves [���, Set] commutes

Hom�(�(−),��) ⟶
≃

(�)̃
Hom�(−,�(��))

����(�(�),�) ↓
�
� ↓

�
�
����(�,�(�))

Hom�(�(−),��) ⟶
≃

(�)̃
Hom�(−,�(��))

This manifestly has a unique solution

�(�(ℎ)) = Hom�(−,�(ℎ))
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(21)

for every morphism ℎ :�� → ��  under �(�(−)) (20). But the Yoneda embedding � is a fully
faithful functor (Prop. 1.30), which means that thereby also �(ℎ) is uniquely �ixed.  ▮

We consider one more equivalent characterization of adjunctions:

De�inition	1.41. (universal	morphism)

Let �,� be two categories (Def. 1.1) and let � : � → � be a functor (Def. 1.15)

Then for � ∈ � an object, a universal	morphism	from	�	to	� is

1. an object �(�) ∈ �,

2. a morphism �
�
: � → �(�(�)), to be called the unit,

such that for any � ∈ �, any morphism � : � → �(�) factors through this unit �
�
 as

� = �(�̃) ∘ �
�

�

�� ↙ ↘�

�(�(�)) →⎯⎯⎯
�(�̃)

�(�)

�(�) ⟶
�̃

�

for a unique morphism �̃ : �(�)⟶ �, to be called the adjunct of �.

Proposition	1.42.	(collection	of	universal	morphisms	equivalent	to	adjoint	functor)

Let	� : � → �	be	a	functor	(Def.	1.15).	Then	the	following	are	equivalent:

1.	�	has	a	left	adjoint	functor	� :� → �	according	to	Def.	1.32.

2.	For	every	object � ∈ �	there	is	a	universal	morphism � ⟶
��

�(�(�)),	according	to	Def.
1.41.

Proof. In one direction, assume a left adjoint � is given. De�ine the would-be universal arrow
at � ∈ � to be the unit of the adjunction �

�
 via Def. 1.33. Then the statement that this really is

a universal arrow is implied by Prop. 1.38.

In the other direction, assume that universal arrows �
�

 are given. The uniqueness clause in

Def. 1.41 immediately implies bijections

Hom�(�(�),�) ⟶≃ Hom�(�,�(�))

��(�) →
�̃

�� ↦ �� →
��

�(�(�)) ��⎯⎯
�(�̃)

�(�)�
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Hence to satisfy (10) it remains to show that these are natural in both variables. In fact, by
Prop. 1.40 it is suf�icient to show naturality in the variable �. But this is immediate from the
functoriality of � applied in (21): For ℎ :�� → �� any morphism, we have

�

�� ↙ ↘�

�(�(�)) →⎯⎯⎯
�(�̃)

�(��)

�(�∘�̃) ↘ ↓�(�)

�(��)

  ▮

The following equivalent formulation (Prop. 1.44) of universal morphisms is often useful:

Example	1.43. (comma	category)

Let � be a category, let � ∈ � be any object, and let � : � → � be a functor.

1. The comma	category � / � is the category whose objects are pairs consisting of an

object  � ∈ �  and  morphisms � →
�
�(�)  in  �,  and  whose  morphisms

(��,��, ��) → (��,��, ��) are the morphisms �� ⟶
�
��  in � that make a commuting

triangle (Def. 1.4):

�
�
∘ �(�) = �

�

�� →⎯⎯⎯⎯⎯⎯
�

��

�(��) →⎯⎯⎯⎯⎯⎯⎯⎯
�(�)

�(��)

��
↘ ↙��

�

There is a canonical functor

� / � ⟶ � .

2. The comma	category � / � is the category whose objects are pairs consisting of an

object � ∈ �  and  a  morphism �(�) →
�
�  in  �,  and  whose  morphisms

(��,��, ��) → (��,��, ��) are the morphisms �� ⟶
�
��  in � that make a commuting

triangle (Def. 1.4):
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(22)

�
�
∘ �(�) = �

�

�

�� ↙ ↘
��

�(��) →⎯⎯⎯⎯⎯⎯⎯⎯
�(�)

�(��)

�� →⎯⎯⎯⎯⎯⎯
�

��

Again, there is a canonical functor

� / � ⟶ �]

With this de�inition, the following is evident:

Proposition	1.44.	(universal	morphisms	are	initial	objects	in	the	comma	category)

Let	� ⟶
�
�	be	a	functor	and	� ∈ �	an	object.	Then	the	following	are	equivalent:

1.	� ���
��
�(�)	is	a	universal	morphism	into	�(�)	(Def.	1.41);

2.	(�, �
�
)	is	the	initial	object	(Def.	1.5)	in	the	comma	category � / �	(Example	1.43).

After these equivalent characterizations of adjoint functors, we now consider some of their
main properties:

Proposition	1.45.	(adjoint	functors	are	unique	up	to	natural	isomorphism)

The	left	adjoint	or	right	adjoint	to	a	functor	(Def.	1.32),	if	it	exists,	is	unique	up	to	natural
isomorphism	(Def.	1.23).

Proof. Suppose the functor � :� → � is given, and we are asking for uniqueness of its right
adjoint, if it exists. The other case is directly analogous.

Suppose that ��,�� : � → � are two functors which both are right adjoint to �.  Then for
each � ∈ � the corresponding two hom-isomorphisms (10) combine to say that there is a
natural isomorphism/

�� : Hom�(−,��(�)) ≃ Hom�(−,��(�))

As in the proof of Prop. 1.40, the Yoneda lemma implies that

�� = �(�
�
)
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for some isomorphism

�
�
: ��(�) →

≃ ��(�) .

But  then  the  uniqueness  statement  of  Prop.  1.40  implies  that  the  collection  of  these
isomorphisms for each object constitues a natural isomorphism between the functors (Def.
1.23).  ▮

Proposition	1.46.	(characterization	of	epi/mono/iso (co-)unit	of	adjunction)

Let

� ⊣ � : � ⊥
→⎯⎯
�

←⎯⎯⎯
�

�

be	a	pair	of	adjoint	functors	(Def.	1.32).

Recall	the	de�inition	of

1.	adjunction	unit/counit,	from	Def.	1.33)

2.	faithful/fully	faithful	functor	from	Def.	1.19

3.	mono/epi/isomorphism	from	Def.	1.9	and	Def.	1.18.

The	following	holds:

• �	is	faithful	precisely	if	all	components	of	the	counit	are	epimorphisms ��(�) � �⎯⎯⎯
���

��
�;

• �	is	faithful	precisely	if	all	components	of	the	unit	are	monomorphisms � � �⎯⎯⎯
����

��
��(�)

• � 	 is 	 full 	and 	 faithful 	 (exhibits 	a 	 re�lective 	 subcategory, 	Def. 	1.60) 	 precisely 	 if 	 all

components	of	the	counit	are	isomorphisms ��(�) � �⎯⎯⎯
���

��
�

• � 	 is 	 full 	and 	 faithful 	(exhibits 	a 	core�lective 	subcategory, 	def. 	1.60) 	precisely 	 if 	all

component	of	the	unit	are	isomorphisms � � �⎯⎯⎯
���

��
��(�).

Proof. This follows directly by Lemma 1.37, using the de�inition of epi/monomorphism (Def.
1.18) and the characterization of isomorphism from Example 1.31.  ▮

To complete this pattern, we will see below in Prop. 1.58 that following are equivalent:

• the unit and counit are both natural isomorphism, hence � and � are both fully faithful;

• � is an equivalence (Def. 1.57);
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• � is an equivalence (Def. 1.57)

• � ⊣ � is an adjoint equivalence (Def. 1.56).

Proposition 	1.47. 	(right/left 	adjoint 	functors 	preserve 	monomorphism/epimorphisms
and	terminal/initial	objects)

Every	right	adjoint	functor	(Def.	1.32)	preserves

1.	terminal	objects	(Def.	1.5),

2.	monomorphisms	(Def.	1.18)

Every	left	adjoint	functor	(Def.	1.32)	preserves

1.	initial	objects	(Def.	1.5),

2.	epimorphisms	(Def.	1.18).

Proof. This is immediate from the adjunction hom-isomorphism (10), but we spell it out:

We consider the �irst case, the second is formally dual (Example 1.13). So let � : � → � be a
right adjoint functor with left adjoint �.

Let * ∈ � be a terminal object (Def. 1.5). We need to show that for every object � ∈ � the
hom-set Hom�(�,�( * )) ≃ *  is a singleton. But by the hom-isomorphism (10) we have a
bijection

Hom�(�,�( * )) ≃ Hom�(�(�), * )

≃ * ,

where in the last step we used that * is a terminal object, by assumption.

Next let �� ↪
�
��  be a monomorphism. We need to show that for � ∈ � any object, the hom-

functor out of � yields a monomorphism

Hom�(�,�(�)) : Hom�(�,�(��)) ↪ Hom�(�,�(��)) .

Now consider the following naturality square (11) of the adjunction hom-isomorphism (10):

Hom�(�,�(��)) ≃ Hom�(�(�), ��)

����(�,�(�)) ↓
�
� ↓

�
�����
����(�(�),�)

Hom�(�,�(��)) ≃ Hom�(�(�), ��)

Here  the  right  vertical  function  is  an  injective  function,  by  assumption  on  �  and  the
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de�inition of monomorphism. Since the two horizontal functions are bijections, this implies
that also Hom�(�,�(�)) is an injection.  ▮

But the main preservation property of adjoint functors is that adjoints	preserve	(co-)limits.
This we discuss as Prop. 3.8 below, after introducing limits and colimits in Def. 3.1 below.

Prop. 1.39 says that adjoint functors are equivalenty “adjunctions in Cat”, as de�ined there.
This is a special case of a general more abstract concept of adjunction, that is useful:

De�inition	1.48. (strict	2-category)

A strict	category � is

1. a class Obj
�

, called the class	of	objects;

2. for each pair �,� ∈ Obj
�

 of objects,  a small category Hom�(�,�) ∈ Cat  (Def.  1.6),

called the hom-category	from	�	to	�.
We denote the objects of this hom-category by arrows like this:

� ⟶
�

� ∈ Obj
����(�,�)

and call them the 1-morphisms of �,
and we denote the morphisms in the hom-category by double arrows, like this:

� ⇓� �

⟶
�

⟶
�

�

and call these the 2-morphisms of �;

3. for each object � ∈ Obj
�

 a 1-morphism

� ��⎯
���

� ∈ Hom�(�,�)

called the identity	morphism on �;

4. for each triple ��,��,�� ∈ Obj of objects, a functor (Def. 1.15)

Hom�(��,��) × Hom�(��,��) →⎯⎯⎯⎯⎯⎯
∘�� ,�� ,��

Hom�(��,��)

�� →
�

�� , �� →
�

�� ↦ �� →⎯⎯
�∘�

��

from the product category (Example 1.14) of hom-categories, called composition;
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such that:

1. for all pairs of objects �,� ∈ Obj
�

unitality holds:

the functors of composition with identity morphisms are identity functors

(−) ∘ id� = id����(�,�) id� ∘ (−) = id����(�,�)

2. for all quadruples of objects ��,��,��,�� ∈ Obj� composition sati�ies associativity,

in that the following two composite functors are equal:

Hom�(��,��)×Hom�(��,��)×Hom�(��,��) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((�)∘(�))∘(�)

Hom�(��,��)×Hom

(�)∘((�)∘(�)) ↓
�
�� ↓

�
�� (�)∘(

Hom�(��,��)×Hom�(��,��) →⎯⎯⎯⎯⎯
(�)∘(�)

Hom�(��,

The archetypical example of a strict 2-category is the category of categories:

Example	1.49. (2-category	of	categories)

There is a strict 2-category (Def. 1.48) Cat whose

• objects are small categories (Def. 1.6);

• 1-morphisms are functors (Def. 1.15);

• 2-morphisms are natural transformations (Def. 1.23)

with the evident composition operations.

With a concept of 2-category in hand, we may phrase Prop. 1.39 more abstractly:

De�inition	1.50. (adjunction	in	a	2-category)

Let � be a strict 2-category (Def. 1.48). Then an adjunction in � is

1. a pair of objects �,� ∈ Obj
�

;

2. 1-morphisms

�
⟶
�

⟵
�

�

called the left	adjoint � and right	adjoint �;

3. 2-morphisms

id� ⇒
�
� ∘ �, called the adjunction unit
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� ∘� ⇒
�
id�, called the adjunction counit

such that the following triangle	identities hold:

We denote this situation by

� ⊥
→⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�

Hence via Example 1.49, Prop. 1.39 says that an adjoint pair of functors is equivalente an
adjunction in the general sense of Def. 1.50, realized in the very large strict 2-category Cat of
categories.

This  more  abstract  perspecive  on  adjunctions  allow  us  now  to  understand  “duality  of
dualities” as adjunction in a 2-category of adjunctions:

Example	1.51. (strict	2-category	of	categories	with	adjoint	functors	between	them)

Let Cat���  be the strict 2-category which is de�ined just as Cat (Def. 1.49) but with the 1-
morphisms being functors that are required to be left adjoints (Def. 1.32).

Since adjoints are unique up to natural isomorphism (Prop. 1.45), this may be thought of
as a 2-category whose 1-morphisms are adjoint pairs of functors.

Example	1.52. (adjunctions	of	adjoint	pairs	are	adjoint	triples)

An adjunction (Def.  1.50) in  the 2-category Cat���  of  categories  with adjoint  functors
between them (Example 1.51) is equivalently an adjoint triple of functors (Remark 1.34):

The adjunction says that two left adjoint functors �� and ��, which, hence each participate
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in an adjoint pair

�� ⊣ �� �� ⊣ ��

form themselves an adjoint pair

�� ⊣ �� .

By  essentiall  uniqueness  of  adjoints  (Prop.  1.45)  this  implies  a  natural  isomorphism
�� ≃ �� and hence an adjoint triple:

�

←⎯⎯⎯⎯⎯
�

��

→⎯⎯⎯⎯⎯
�

��≃��

←⎯⎯⎯⎯⎯
��

�

Example 1.52 suggest to consider a slight variant of the concept of strict 2-categories which
allows to make the duality between left adjoints and right adjoints explicit:

De�inition	1.53. (double	category)

A double	category � is

1. a  pair  of  categories ��,  ��  (Def.  1.1)  which  share  the  same  class  of  objects:
Obj

��
= Obj

��
, to be called the class Obj

�
 of objects	of	�

where the morphisms of �� are to be called the horizontal	morphisms of �,
while the morphisms of �� are to be called the vertical	morphisms of �,

2. for  each  quadruple  of  objects �, �, �,�, � ∈ Obj
�

 and  pairs  of  pairs  of  horizontal/

vertical morphisms of the form

� →⎯⎯⎯
�∈��

�

�∈�� ↓
�
� ↓

�
� �∈��

� →⎯⎯⎯⎯
�∈��

a set 2Hom(�,�,ℎ, �), to be called the set of 2-morphisms of � between the given 1-
morphisms, whose elements we denote by
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� →⎯⎯⎯
�∈��

�

�∈�� ↓
�
� ⇙ ↓

�
� �∈��

� →⎯⎯⎯⎯
�∈��

�

3. a horizontal and a vertical composition operation of 2-morphisms which is unitality
and associative in both directions in the evident way, which respects composition in
��  and ��,  and such that horizontal and vertical composition commute over each
other in the evident way.

Example	1.54. (double	category	of	squares	of	a	strict	2-category)

Let � be a strict 2-category (Def. 1.48). Then its double	category	of	squares Sq(�) is the
double category (Def. 1.53) whose

• objects are those of �;

• horizontal morphisms and vertical morphisms are both the 1-morphisms of �;

• 2-morphisms

� →⎯⎯⎯
�∈��

�

�∈�� ↓
�
� � ⇙ ↓

�
� �∈��

� →⎯⎯⎯⎯
�∈��

�

are the 2-morphisms of � between the evident composites of 1-morphisms:

� ∘ � ⇒
�

� ∘ ℎ

and composition is given by the evident compositions in �.

Remark	1.55. (strict	and	weak 2-functors)

Given two strict 2-categories (Def. 1.48) or double categories (Def. 1.53), �,�, there is an
evident notion of 2-functor or double	functor

� ⟶
�

�

between  them,  namely  functions  on  objects,  1-morphisms  and  2-morphisms  which
respect all the composition operations and identity morphisms.

These are also called strict	2-functors.

This  is  in  contrast  to  a  more  �lexible  concept  of  weak 	 2-functors,  often  called
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pseudofunctors,  which  respect  composition  of  1-morphisms  only  up  to  invertible  2-
morphisms (which themselves are required to satisfy some coherence condition):

�

�(�) ↗ ⇓
�
≃ ↘�(�)

� →⎯⎯⎯⎯⎯
�(�∘�)

�

We will see an important example of a weak double functor in the construction of derived
functors of Quillen functors, below in Prop. 6.50.

Equivalences

We have seen functors (Def. 1.15) as the homomorphisms between categories (Def. 1.1). But
functors themselves are identi�ied only up to natural isomorphism (Def. 1.23), re�lective the
fact that they are the 1-morphisms in a 2-category of categories (Example 1.49). This means
that in identifying two categories, we should not just ask for isomorphisms between them,
hence for a functor between them that has a strict inverse morphism, but just for an inverse
up to natural isomorphism.

This is called an equivalence 	of 	categories  (Def.  1.57 below).  A particularly well-behaved
equivalence of categories is an equivalence exhibited by an adjoint pair of functors, called an
adjoint	equivalence	of	categories (Def. 1.56 below). In fact every equivalence of categories
may be improved to an adjoint equivalence (Prop. 1.58).

De�inition	1.56. (adjoint	equivalence	of	categories)

Let �, � be two categories (Def. 1.1). Then an adjoint	equivalence	of	categories  between
them is a pair adjoint functors (Def. 1.32)

� ≃�
→⎯⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯⎯⎯
�

�

such that their unit � and counit � (Def. 1.33) are natural isomorphisms (as opposed to
just being natural transformations)

� : id� ⇒
≃

� ∘ � and � : � ∘� ⇒
≃
id� .

There is also the following, seemingly weaker, notion:
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De�inition	1.57. (equivalence	of	categories)

Let �, � be two categories (Def. 1.1). Then an equivalence	of	categories

� ≃
→⎯⎯⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯⎯⎯
�

�

is  a  pair  of  functors  back  and  forth,  as  shown  (Def.  1.15),  together  with  natural
isomorphisms (Def. 1.23) between their composition and the identity functors:

id� ⇒
≃

� ∘ � and � ∘� ⇒
≃
id� .

If a functor participates in an equivalence of categories, that functor alone is usually already
called an equivalence of categories. If there is any equivalence of categories between two
categories, these categories are called equivalent.

Proposition	1.58.	(every	equivalence	of	categories	comes	from	an	adjoint	equivalence	of
categories)

Let	�	and	�	be	two	categories	(Def.	1.1).	Then	the	they	are	equivalent	(Def.	1.57)	precisely	if
there	exists	an	adjoint	equivalence	of	categories	between	them	(Def.	1.56).

Moreover,	let	� : � ⟶ �	be	a	functor	(Def.	1.15)	which	participates	in	an	equivalence 	of
categories 	 (Def. 	 1.57). 	 Then 	 for 	 every 	 functor 	 � : � → � 	 equipped 	with 	 a 	 natural
isomorphism

� : id� ⇒
≃

� ∘ �

there	exists	a	natural	isomorphism

� : � ∘� ⇒
≃
id�

which	completes	this	to	an	adjoint	equivalence	of	categories	(Def.	1.56).

Inside every adjunction sits its maximal adjoint equivalence:

Proposition	1.59.	(�ixed	point	equivalence	of	an	adjunction)

Let

� ⊥
→⎯⎯⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯⎯⎯
�

�

be	a	pair	of	adjoint	functors	(Def.	1.32).	Say	that
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1.	an	object � ∈ �	is	a	�ixed	point	of	the	adjunction	if	its	adjunction	unit	(Def.	1.33)	is	an
isomorphism	(Def.	1.9)

� ⟶
≃

��
��(�)

and	write

���� ↪ �

for	the	full	subcategory	on	these	�ixed	objects	(Example	1.20)

2.	an	object � ∈ �	is	a	�ixed	point	of	the	adjunction	if	its	adjunction	counit	(Def.	1.33)	is
an	isomorphism	(Def.	1.9)

��(�)⟶
≃

��

and	write

���� ↪ �

for	the	full	subcategory	on	these	�ixed	objects	(Example	1.20)

Then 	 the 	 adjunction 	 (co-)restrics 	 to 	 an 	 adjoint 	 equivalence 	 (Def. 	 1.56) 	 on 	 these 	 full
subcategories	of	�ixed	points

���� ≃�
→⎯⎯⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯⎯⎯
�

����

Proof. It is suf�icient to see that the functors (co-)restrict as claimed, for then the restricted
adjunction  unit/counit  are  isomorphisms  by  de�inition,  and  hence  exhibit  an  adjoint
equivalence.

Hence we need to show that

1. for � ∈ ���� ↪ � we have that �
�(�)

 is an isomorphism;

2. for � ∈ ���� ↪ � we have that ��(�) is an isomorphism.

For the �irst case we claim that �(�
�
) provides an inverse: by the triangle identity (18) it is a

right inverse, but by assumption it is itself an invertible morphism, which implies that �
�(�)

is an isomorphism.

The second claim is formally dual.  ▮
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Modalities

Generally,  a  full  subcategory-inclusion  (Def.  1.19)  may  be  thought  of  as  a  consistent
proposition about objects in a category: The objects in the full subcategory are those that
have the given property.

This basic situation becomes particularly interesting when the inclusion functor has a left
adjoint or a right adjoint (Def. 1.32), in which case one speaks of a re�lective	subcategory, or
a core�lective	subcategory, respectively (Def. 1.60 below). The adjunction now implies that
each object is re�lected or core�lected into the subcategory, and equipped with a comparison
morphism  to  or  from  its  (co-)re�lection  (the  adjunction  (co-)unit,  Def.  1.33).  This
comparison morphism turns out to always be an idempotent (co-)projection,  in  a  sense
made precise by Prop. 1.64 below.

This  means  that,  while  any  object  may  not  fully  enjoy  the  property  that  de�ines  the
subcategory, one may ask for the “aspect” of it that does, which is what is (co-)projected out.
Regarding objects only via these aspects of them hence means to regard them only locally
(where they exhibit that aspect) or only in the mode of focus on this aspect. Therefore one
also  calls  the  (co-)re�lection  operation  into  the  given  subcategory  a  (co-)localization  or
(co-)modal	operator, or modality, for short (Def. 1.62 below).

One  �inds  that  (co-)modalities  are  a  fully  equivalent  perspective  on  the  (co-)re�lective
subcategories of their fully (co-)modal 	objects  (Def.  1.65 below),  this  is  the statement of
Prop. 1.63 below.

Another alternative perspective on this situation is given by the concept of localization 	of
categories  (Def.  1.76  below),  which  is  about  universally  forcing  a  given  collection  of
morphisms  (“weak  equivalences”,  Def.  1.75  below)  to  become  invertible.  A  re�lective
localization  is equivalently a re�lective subcategory-inclusion (Prop. 1.77 below), and this
exhibits the modal objects (Def. 1.65 below) as equivalently forming the full subcategory of
local	objects (Def. 1.78 below).

Conversely,  every  re�lection  onto  full  subcategories  of  �-local  objects  (Def.  1.79  below)
satis�ies the universal property of a localization at �  with respect to left adjoint functors
(Prop. 1.82 below).

In conclusion, we have the following three equivalent perspectives on modalities.

re�lective	subcategory modal	operator re�lective	localization

object in re�lective
full subcategory

modal object local object
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De�inition	1.60. (re�lective	subcategory	and	core�lective	subcategory)

Let � be a category (Def. 1.1) and

� � �⎯⎯⎯⎯
�

�

a full subcategory-inclusion (hence a fully faithful functor Def. 1.19). This is called:

1. a re�lective 	subcategory 	inclusion  if  the inclusion functor �  has a left adjoint �  def.
1.32)

� ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

� ,

then called the re�lector;

2. a core�lective 	subcategory-inclusion if the inclusion functor �  has a right adjoint �
(def. 1.32)

� ⊥
←⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯
�

� ,

then called the core�lector.

Example	1.61. (re�lective	subcategory	inclusion	of	sets	into	small groupoids)

There is a re�lective subcategory-inclusion (Def. 1.60)

Set ⊥
� �⎯⎯⎯

←⎯⎯⎯⎯
��

Grpd

of  the category of  sets  (Example 1.2)  into the category Grpd (Example 1.16) of  small
groupoids (Example 1.10) where

• the right adjoint full subcategory inclusion (Def. 1.19) sends a set � to the groupoid
with set of objects being �, and the only morphisms being the identity morphisms on
these  objects  (also  called  the  discrete 	 groupoid  on  �,  but  this  terminology  is
ambiguous)

• the  left  adjoint re�lector  sends  a  small groupoid �  to  its  set  of  connected
components, namely to the set of equivalence classes under the equivalence relation
on  the  set  of  objects,  which  regards  two  objects  as  equivalent,  if  there  is  any
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(23)

(24)

morphism between them.

We  now  re-consider  the  concept  of  re�lective  subcategories  from  the  point  of  view  of
modalities:

De�inition	1.62. (modality)

Let � be a category (Def. 1.1). Then

1. a modal	operator	on	� is

1. an endofunctor

◯ : � → �

whose full essential image we denote by

Im(◯ ) � �⎯⎯⎯⎯⎯
�

� ,

2. a natural transformation (Def. 1.23)

� ⟶
��

◯ �

for all objects � ∈ �, to be called the unit	morphism;

such that:

◦ for every object � ∈ Im(◯ ) ↪ � in the essential image of ◯, every morphism
� into � factors uniquely through the unit (23)

�

�� ↙ ↘�

◯ � ⟶
∃!

� ∈ Im(◯ )

which equivalently means that if � ∈ Im(◯ ) the operation of precomposition
with the unit �

�
 yields a bijection of hom-sets

(−) ∘ �
�
: Hom�(◯ �,�) →⎯⎯⎯⎯⎯⎯

≃
Hom�(�,�) ,

2. a comodal	operator	on	� is

1. an endofunctor
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(25)

(26)

□ : � → �

whose full essential image we denote by

Im(□ ) � �⎯⎯⎯⎯⎯
�

�

2. a natural transformation (Def. 1.23)

□� ⟶
��

�

for all objects � ∈ �, to be called the counit	morphism;

such that:

◦ for every object � ∈ Im(□ ) ↪ � in the essential image of □, every morphism �

out of � factors uniquely through the counit (23)

�

�� ↗ ↖�

□� ⟵
∃!

� ∈ Im(□ )

which equivalently means that if � ∈ Im(◯ ) the operation of postcomposition
with the counit �� yields a bijection of hom-sets

�� ∘ (−) : Hom�(�, □�) →⎯⎯⎯⎯⎯⎯
≃

Hom�(�,�) ,

Proposition	1.63.	(modal	operators	equivalent	to	re�lective	subcategories)

If

� ⊥
� �⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

�

is	a	re�lective	subcategory-inclusion	(Def.	1.60).	Then	the	composite

◯ ≔ � ∘ � : � ⟶ �

equipped	with	the	adjunction	unit natural	transformation	(Def.	1.33)

� ⟶
��

◯ �

is	a	modal	operator	on	�	(Def.	1.62).

Dually,	if
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� ⊥
←⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯
�

�

is	a	core�lective	subcategory-inclusion	(Def.	1.60).	Then	the	composite

□ ≔ � ∘� : � ⟶ �

equipped	with	the	adjunction	counit natural	transformation	(Def.	1.33)

□� ⟶
��

�

is	a	comodal	operator	on	�	(Def.	1.62).

Conversely:

If	an	endofunctor ◯ : � → �	with	natural	transformation � ���
��

◯ �	is	a	modal	operator
on 	a 	category � 	(Def. 	1.62), 	then 	the 	 inclusion 	of 	 its 	 full essential 	 image 	 is 	a 	re�lective
subcategory	inclusion	(Def.	1.60)	with	re�lector	given	by	the	corestriction	of	◯	to	its	image:

Im(◯ )
��⎯
�

⟵
◯

� .

Dually, 	if 	an 	endofunctor □ : � → � 	with 	natural 	transformation □� ⟶
��

� 	is 	a 	comodal
operator 	 (Def. 	 1.62), 	 then 	 the 	 inclusion 	 of 	 its 	 full essential 	 image 	 is 	 a 	 core�lective
subcategory	inclusion	(Def.	1.60)	with	core�lector	given	by	the	corestriction	of	□	to	its	image

Im(□ )
⟵
□

��⎯
�

� .

Proof.  The  �irst  two statements  are  immedialy  a  special  case  of  the  characterization  of
adjunctions via universal morphisms in Prop. 1.42: Using that � = � is here assumed to be
fully faithful, the uniqueness of �̃ in the universal morphism-factorization condition (21)

�

�� ↙ ↘�

�(�(�)) →⎯⎯⎯
�(�̃)

�(�)

�(�) ⟶
∃! �̃

�

implies that also �(�̃) = �(�̃) is the unique morphism making that triangle commute.
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Similarly for the converse: The assumption on a modal operator ◯ is just so as to make its
unit  �  be  a  universal  morphism  (Def.  1.41)  into  the  inclusion  functor  �  of  its  essential
image.  ▮

Proposition	1.64.	(modal	operator	is	idempotent)

Let	�	be	a	category	(Def.	1.1).

For	◯	a	modal	operator	on	�,	with	unit	�	(Def.	1.63),	it	is	idempotent,	in	that	it	is	naturally
isomorphic	(Def.	1.23)	to	the	composition	with	itself:

◯ ≃ ◯ ◯ .

In	fact,	the	image	under	◯	of	its	unit	is	such	an	isomorphism

◯ �� ���
��

◯ �� : ◯ � ⟶≃ ◯ (◯ �)

as	is	its	unit	on	its	image

�
◯�

: ◯ � ⟶≃ ◯ (◯ �) .

Formally	dually,	for	□	a	comodal	operator	on	�,	with	counit	�	(Def.	1.63),	it	is	idempotent,	in
that	it	is	naturally	isomorphic	(Def.	1.23)	to	the	composition	with	itsef:

□ ∘ □ ≃ □ .

In	fact,	the	image	under	□	of	its	counit	is	such	an	isomorphism

□�□� →
��

�� : □ (□�)⟶≃ □�

as	is	its	counit	on	its	image

�□� : □ (□�)⟶≃ □� .

Proof. We discuss the �irst case, the second is formally dual (Example 1.13).

By Prop. 1.63, the modal operator is equivalent to the composite � ∘ �  obtained from the
re�lective subcategory-inclusion (Def. 1.60) of its essential image of modal objects:

Im(◯ ) ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

� .

and its unit is the corresponding adjunction unit (Def. 1.33)
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� ⟶
��

�(�(�)) .

Hence it is suf�icient to show that the morphisms and �(�
�
) and �

��
 are isomorphisms.

Now, the triangle identities (18) for the adjunction � ⊣ �, which hold by Prop. 1.38, say that
their composition with the adjunction counit is the identity morphism

��(��) ∘ �(��) = id�(�) and �(��) ∘ ��(�) = id�(�) .

But by Prop. 1.46, the counit � is a natural isomorphism, since � is fully faithful. Hence we
may cancel it on both sides of the triangle identities and �ind that �(�

�
) and �

�(�)
 are indeed

isomorphisms.  ▮

De�inition	1.65. (modal	objects)

Let � be a category (Def. 1.1).

For ◯ a modal operator on � (Def. 1.62), we say:

1. a ◯-modal	object is an object � ∈ � such that the following conditions hold (which
are all equivalent, by Prop. 1.64):

◦ it is in the ◯-essential image: � ∈ Im(◯ ) ↪ �,

◦ it is isomorphic to its own ◯-image: � ≃ ◯ �,

◦ speci�ically its ◯-unit is an isomorphism �
�
: � →≃ ◯ �.

2. a ◯-submodal	object is an object � ∈ �, such that

◦ its ◯-unit is a monomorphism (Def. 1.18): �
�
: � ↪ ◯ �.

Dually (Example 1.13):

For □ a comodal operator on � (Def. 1.62), we say:

1. a □-comodal	object is an object � ∈ � such that the following conditions hold (which
are all equivalent, by Prop. 1.64):

◦ it is in the □-essential image: � ∈ Im(□ ) ↪ �,

◦ it is isomorphic to its own □-image: □� ≃ �,

◦ speci�ically its □-counit is an isomorphism �� : □� ⟶≃ �

2. a □-supcomodal	object is an object � ∈ �, such that

◦ its □-counit is an epimorphism (Def. 1.18): �� : □� ⟶
���

�.
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(27)

De�inition	1.66. (adjoint	modality)

Let

� ⊣ � ⊣ � : �

� �⎯
�

→⎯⎯⎯
�

� �⎯
�

�

be an adjoint triple (Remark 1.34) such that � and � are fully faithful functors (necessarily
both, by Prop. 1.67). By Prop. 1.63, there are induced modal operators

◯ ≔ �∘� □ ≔ �∘�

which themselves form am adjoint pair

□ ⊣ ◯ ,

hence called an adjoint	modality. The adjunction unit and adjunction counit as in (13) may
now be read as exhibiting each object � in the domain of � as “in between the opposite
extremes of its ◯-modal aspect and its □-modal aspect”

□� →⎯⎯⎯⎯⎯⎯
��
□

� →⎯⎯⎯⎯⎯⎯⎯
��
◯

◯ � .

A formally dual situation (Example 1.13) arises when � is fully faithful.

� ⊣ � ⊣ � : �

→⎯⎯⎯
�

� �⎯
�

→⎯⎯⎯
�

�

with

� ◯ ≔ �∘�� ⊣ (□ ≔ �∘�)

and canonical natural transformation between opposite extreme aspects given by

□� →⎯⎯⎯⎯⎯⎯
��
□

� →⎯⎯⎯⎯⎯⎯⎯
��
◯

◯ �

Proposition	1.67.	(fully	faithful adjoint	triple)

Let	� ⊣ � ⊣ �	be	an	adjoint	triple	(Remark	1.34).	Then	the	following	are	equivalent:
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(28)

1.	�	is	a	fully	faithful	functor;

2.	�	is	a	fully	faithful	functor,

3.	(□ ≔ �∘�) ⊣ (◯ ≔ �∘�)	is	an	adjoint	modality	(Def.	1.67).

For proof see this prop..

In order to analyze (in Prop. 1.69 below) the comparison morphism of opposite extreme
aspects (27) induced by an adjoint modality (Def. 1.66),  we need the following technical
Lemma:

Lemma	1.68.	Let

�

→⎯⎯⎯
�

� �⎯
�

→⎯⎯⎯
�

�

be	an	adjoint	triple	with	induced	adjoint	modality	(Def.	1.66)	to	be	denoted

� ◯ ≔ �∘�� ⊣ (□ ≔ �∘�)

Denoting	the	adjunction	units/counits	(Def.	1.33)	as

adjunction unit counit

(� ⊣ �) �◯ �◯

(� ⊣ �) �□ �□

we	have	that	the	following	composites	of	unit/counit	components	are	equal:

����
□ � ∘ (���

□) = ����
◯� ∘ ����

◯ �

���� →⎯⎯
���
◯

��

���
□

↓
�
� ↓

�
�
���

◯

�� →⎯⎯
���
□ ����

(Johnstone 11, lemma 2.1)

Proof. We claim that the following diagram commutes (Def. 1.4):
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��

���
◯

↗ ↘���
◯

���� ����

���
□
↙ ↘�����

◯ �����
◯

↗ ↖
���
□

�� ������ ��

���
◯ ↘ ��� ↙�����

□ �����
□ ↖��� ↗

���
◯

���� ←⎯⎯⎯⎯
������

����

This commutes, because:

1. the left square is the image under � of naturality (4) for �□ on ��
◯;

2. the top square is naturality (4) for �◯ on ���
◯;

3. the right square is naturality (4) for �◯ on ���
□ ;

4. the bottom commuting triangle is the image under � of the triangle identity (18) for
(� ⊣ �) on ��.

Moreover, notice that

1. the total bottom composite is the identity morphism id��, due to the triangle identity
(18) for (� ⊣ �);

2. also the other two morphisms in the bottom triangle are isomorphisms, as shown, due
to the idempoency of the (� − �)-adjunction (Prop. 1.64.)

Therefore the total composite from ���� → � / ��� along the bottom part of the diagram
equals the left hand side of (28), while the composite along the top part of the diagram
clearly equals the right hand side of (28).  ▮

Proposition 	1.69. 	(comparison 	transformation 	between 	opposite 	extremes 	of 	adjoint
modality)

Consider	an	adjoint	triple	of	the	form

� ⊣ � ⊣ � : �

→⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯
�

→⎯⎯⎯⎯⎯⎯⎯⎯
�

ℬ

with	induced	adjoint	modality	(Def.	1.66)	to	be	denoted
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(29)

(30)

(31)

(32)

� ◯ ≔ �∘�� ⊣ (□ ≔ �∘�)

Denoting	the	adjunction	units/counits	(Def.	1.33)	as

adjunction unit counit

(� ⊣ �) �◯ �◯

(� ⊣ �) �□ �□

Then 	 for 	 all 	� ∈ � 	 the 	 following 	 two 	 natural 	 transformations, 	 constructed 	 from 	 the
adjunction	units/counits	(Def.	1.33)	and	their	inverse	morphisms	(using	idempotency,	Prop.
1.64),	are	equal:

comp
ℬ

≔ (���
□) ∘ ����

◯ �
��

= ����
□ �

��
∘ ����

◯�

�� →⎯⎯⎯
���

◯

���

����
◯ �

��

↓
�
� ↘����ℬ ↓

�
�

���� →⎯⎯
���

□ ��

Moreover,	the	image	of	these	morphisms	under	�	equals	the	following	composite:

comp
�
: □� →⎯⎯⎯

��
□

� →⎯⎯⎯⎯
��
◯

◯ � ,

hence

comp
�
= �(comp

ℬ
) .

Proof. The �irst statement follows directly from Lemma 1.68.

For the second statement, notice that the (� ⊣ �)-adjunct (Prop. 1.38) of

comp
�
: ��� →⎯⎯⎯⎯

��
□

� →⎯⎯⎯⎯
��
◯

���

is

comp
�̃

= �� →⎯⎯⎯⎯⎯
���

���
□

���� →⎯⎯⎯⎯⎯
���

���
□

��� � �������� �������
= ����

→⎯⎯⎯⎯⎯
���

◯

���� ,

where under the braces we uses the triangle identity (Prop. 1.39).

(As a side remark, for later usage, we observe that the morphisms on the left in (32) are
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isomorphisms, as shown, by idempotency of the adjunctions.)

From this we obtain the following commuting diagram:

��� →⎯⎯⎯⎯⎯⎯
����

◯

����� →⎯⎯⎯⎯⎯⎯⎯⎯⎯
���

�����
□ �

��

���

�����
↘ ����

□

↓
�
�
≃

↗����

���

Here:

1. on the left we identi�ied comp
�̃
˜ = comp

�
 by applying the formula (Prop. 1.38) for

(� ⊣ �)-adjuncts to comp
�̃
= ���

◯ (32);

2. on the right we used the triangle identity (Prop. 1.38) for (� ⊣ �).

This proves the second statement.  ▮

De�inition	1.70. (preorder	on	modalities)

Let  ◯�  and  ◯�  be  two  modal  operators  on  a  category �.  By  Prop.  1.63  these  are
equivalently characterized by their re�lective full subcategories �◯�

,�◯� ↪ � of modal

objects.

There is an evident preorder on full subcategories of �,  given by full  inclusions of full
subcategories into each other. We write �◯�

⊂ �◯�
 if the full subcategory on the left is

contained,  as  a  full  subcategory of  �,  in  that on the right.  Via prop.  1.63  there  is  the
induced preorder on modal operators, and we write

◯� < ◯� iff �◯�
⊂ �◯�

.

There is an analogous preorder on comodal operators (Def. 1.62).

If we have two adjoint modalities (Def. 1.66) of the same type (both modal left adjoint or
both  comodal  left  adjoint)  such  that  both  the  modalities  and  the  comodalities  are
compatibly ordered in this way, we denote this situation as follows:

◯� ⊣ □�

∨ ∨

◯� ⊣ □�

or

□� ⊣ ◯�

∨ ∨

□� ⊣ ◯�

etc.
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(33)

(34)

Example	1.71. (bottom	and	top adjoint	modality)

Let � be a category with both an initial object ∅ and a terminal object * (Def. 1.5). Then, by
Example 3.7 there is an adjoint triple between � and the terminal category * (Example
1.7) of the form

�

� �⎯⎯⎯⎯⎯⎯⎯
�����∅

→⎯⎯⎯⎯

� �⎯⎯⎯⎯⎯⎯⎯
�����*

* .

The induced adjoint modality (Def. 1.66) is

const∅ ⊣ const* : � → � .

By slight abuse of notation, we will also write this as

∅ ⊣ * : � → � .

On the other extreme, for � any category whatsoever, the identity functor on it is adjoint
functor to itself, and constitutes an adjoint modality (Def. 1.66)

id� ⊣ id� : � → � .

Here

1. (33) is the bottom (or ground)

2. (34) is the top

in the preorder on adjoint modalities according to Def.  1.70,  in that for every adjoint
modality of the form ◯ ⊣ □  we have the following:

id ⊣ id

∨ ∨

□ ⊣ ◯

∨ ∨

∅ ⊣ *

De�inition	1.72. (Au�hebung)

On some category �, consider an inclusion of adjoint modalities, according to Def. 1.70:
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□� ⊣ ◯�

∨ ∨

□� ⊣ ◯�

We say:

1. This provides right	Au�hebung	of	the	opposition exhibited by □� ⊣ ◯�  if  there is
also the diagonal inclusion

□� < ◯� equivalently �□�
⊂ �◯�

We indicate this situation by

□� ⊣ ◯�

∨ / ∨

□� ⊣ ◯�

2. This provides left	Au�hebung	of	the	opposition exhibited by □� ⊣ ◯�  if there is also
the diagonal inclusion

◯� < □� equivalently �◯�
⊂ �□�

We indicate this situation by

□� ⊣ ◯�

∨ \ ∨

□� ⊣ ◯�

Remark	1.73. For a progression of adjoint modalities of the form

◯� ⊣ □�

∨ ∨

◯� ⊣ □�

the analog of Au�hebung (Def. 1.72) is automatic, since, by Prop. 1.63, in this situation the
full subcategories modal objects at each stage coincide already.

For emphasis we may denote this situation by
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◯� ⊣ □�

∨ | ∨

◯� ⊣ □�

.

Example	1.74. (top adjoint	modality	provides	Au�hebung	of	all	oppositions)

For � any category, the top adjoint modality id ⊣ id (Def. 1.71) provides Au�hebung (Def.
1.72) of every other adjoint modality.

But  already  Au�hebung  of  the  bottom adjoint  modality  is  a  non-trivial  and  interesting
condition. We consider this below in Prop. 5.7.

We  now  re-consider  the  concept  of  re�lective  subcategories  from  the  point  of  view  of
localization of categories:

De�inition	1.75. (category	with	weak	equivalences)

A category	with	weak	equivalences is

1. a category � (Def. 1.1)

2. a  subcategory � ⊂ �  (i.e.  sub-class  of  objects  and  morphisms  that  inherits  the
structure of a category)

such that the morphisms in �

1. include all the isomorphisms of �,

2. satisfy two-out-of-three:
If for �, � any two composable morphisms in �, two out of the set {�, �, � ∘ �} are in
�, then so is the third.

� ↗ ↘�

→⎯⎯⎯
�∘�

De�inition	1.76. (localization	of	a	category)

Let � ⊂ � be a category with weak equivalences (Def. 1.75). Then the localization of � at
� is, if it exsists

1. a category �[���],

2. a functor � : � ⟶ �[���] (Def. 1.15)

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

68 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/top
https://ncatlab.org/nlab/show/top
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/Aufhebung
https://ncatlab.org/nlab/show/Aufhebung
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/top
https://ncatlab.org/nlab/show/top
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/Aufhebung
https://ncatlab.org/nlab/show/Aufhebung
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/Aufhebung
https://ncatlab.org/nlab/show/Aufhebung
https://ncatlab.org/nlab/show/bottom
https://ncatlab.org/nlab/show/bottom
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/reflective+subcategories
https://ncatlab.org/nlab/show/reflective+subcategories
https://ncatlab.org/nlab/show/localization+of+categories
https://ncatlab.org/nlab/show/localization+of+categories
https://ncatlab.org/nlab/show/category+with+weak+equivalences
https://ncatlab.org/nlab/show/category+with+weak+equivalences
https://ncatlab.org/nlab/show/category+with+weak+equivalences
https://ncatlab.org/nlab/show/category+with+weak+equivalences
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/subcategory
https://ncatlab.org/nlab/show/subcategory
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/isomorphisms
https://ncatlab.org/nlab/show/isomorphisms
https://ncatlab.org/nlab/show/two-out-of-three
https://ncatlab.org/nlab/show/two-out-of-three
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/localization+of+a+category
https://ncatlab.org/nlab/show/localization+of+a+category
https://ncatlab.org/nlab/show/category+with+weak+equivalences
https://ncatlab.org/nlab/show/category+with+weak+equivalences
https://ncatlab.org/nlab/show/localization+of+a+category
https://ncatlab.org/nlab/show/localization+of+a+category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/functor
https://ncatlab.org/nlab/show/functor


(35)

such that

1. � sends all morphisms in � ⊂ � to isomorphisms (Def. 1.9),

2. � is universal with this property: If � : � ⟶ � is any functor with this property, then
it factors through �, up to natural isomorphism (Def. 1.23):

� ≃ �� ∘ �

� ⟶
�

�

� ↘
� ⇓≃ ↗��

�[���]

and  any  two  such  factorizations  ��  and  ���  are  related  by  a  unique  natural
isomorphism � compatible with � and ��:

� ⟶
�

�

� ↘
� ⇓≃ ↗�� ↘��

�[���] ≃ ⇘� �

�� ↘ ↙
���

�[���]

=

� ⟶
�

�

� ↘
��

⇓≃ ↗
���

�[���]

Such a localization is called a re�lective	localization if the localization functor has a fully
faithful right adjoint,  exhibiting it  as the re�lection functor of a re�lective subcategory-
inclusion (Def. 1.60)

�[���] ⊥
� �⎯⎯⎯⎯⎯

←⎯⎯⎯⎯⎯
�

� .

Proposition	1.77.	(re�lective	subcategories	are	localizations)

Every	re�lective	subcategory-inclusion	(Def.	1.60)

�� ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

�

is	the re�lective	localization	(Def.	1.76)	at	the	class	�≔ ���(Isos)	of	morphisms	that	are
sent	to	isomorphisms	by	the	re�lector	�.

Proof. Let � : � → � be a functor which inverts morphisms that are inverted by �.

First we need to show that it factors through �, up to natural isomorphism. But consider the
following whiskering of the adjunction unit � (Def. 1.33) with �:
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� ⟶
�

�

� ↘ ⇓ ↗��

��

≔

� ⟶
��

� ⟶
�

�

� ↘ ⇓� ↗�

��

By idempotency (Prop. 1.64), the components of the adjunction unit � are inverted by �, and
hence  by  assumption  they  are  also  inverted  by  �,  so  that  on  the  right  the  natural
transformation �(�) is indeed a natural isomorphism.

It remains to show that this factorization is unique up to unique natural isomorphism. So
consider any other factorization ��� via a natural isomorphism �. Pasting this now with the
adjunction counit

� ⟶
�

�

� ↗ � ⇓ � ↘ ⇓� ↗
���

�� ⟶
��

��

exhibits a natural isomorphism � ⋅ � between �� ≃ ���. Moreover, this is compatible with
�(�) according to (35), due to the triangle identity (Prop. 1.39):

� ⟶
��

� ⟶
�

�

� ↘
� ⇓ � ↗ � ⇓ � ↘ ⇓� ↗

���

�� ⟶
��

��

=

� ⟶
�

�

↘ ⇓� ↙

��

Finally, since � is essentially surjective functor, by idempotency (Prop. 1.39), it is clear that
this is the unique such natural isomorphism.  ▮

De�inition	1.78. (local	object)

Let �  be a category (Def. 1.1) and let � ⊂ Mor�  be a set of morphisms. Then an object

� ∈ � is called an �-local	object if for all � →
�
� ∈ � the hom-functor (Def. 1.17) from �

into � yields a bijection

Hom�(�,�) : Hom�(�,�) →⎯⎯⎯⎯⎯⎯
≃

Hom�(�,�) ,

hence if every morphism �⟶
�
� extends uniquely along � to �:
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(36)

� →⎯⎯⎯
�

�

� ↓
�
� ↗∃!

�

We write

�� � �⎯⎯⎯⎯⎯
�

�

for the full subcategory (Example 1.20) of �-local objects.

De�inition	1.79. (re�lection	onto	full	subcategory	of	local	objects)

Let � be a category and set � ⊂ Mor�  be a sub-class of its morphisms. Then the re�lection
onto	local	�-objects (often just called “localization at the collection �” is, if it exists, a left
adjoint (Def. 1.32) � to the full subcategory-inclusion of the �-local objects (36):

�� ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

� .

A class of examples is the following, which comes to its full nature (only) after passage to
homotopy theory (Example below):

De�inition	1.80. (homotopy	localization	of	1-categories)

Let � be a category, let � ∈ � be an object, and consider the class of morphisms given by
projection out of the Cartesian product with �, of all objects � ∈ �:

�×� ⟶
��

� .

If the corresponding re�lection onto the full subcategory of local objects (Def. 1.79) exists,
we  say  this  is  homotopy 	 localization  at  that  object  ,  and  denote  the  modal  operator
corresponding to this (via Prop. 1.63) by

◯� : � ⟶ � .

Proposition	1.81.	(re�lective	localization re�lects	onto	full	subcategory	of	local	objects)

Let 	� ⊂ � 	be 	a 	category 	with 	weak 	equivalences 	(Def. 	1.75). 	If 	its 	re�lective 	localization
(Def.	1.76)	exists

�[���] ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

�
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then	�[���] ↪
�
�	is	equivalently	the	inclusion	of	the	full	subcategory	(Example	1.20)	on	the

�-local	objects	(Def.	1.78),	and	hence	�	is	equivalently	re�lection	onto	the	�-local	objects,
according	to	Def.	1.79.

Proof. We need to show that

1. every � ∈ �[���] ↪
�
� is �-local,

2. every � ∈ � is �-local precisely if it is isomorphic to an object in �[���] ↪
�
�.

The �irst statement follows directly with the adjunction isomorphism (10):

Hom�(�, �(�)) ≃ Hom�[���](�(�),�)

and the fact that the hom-functor takes isomorphisms to bijections (Example 1.31).

For the second statement, consider the case that � is �-local. Observe that then �  is also
local with respect to the class

���� ≔ ���(Isos)

of all morphisms that are inverted by � (the “saturated class of morphisms”): For consider

the hom-functor � →⎯⎯⎯⎯⎯⎯⎯⎯
����(�,�)

Set�� to the opposite of the category of sets. By assumption on
� this takes elements in � to isomorphisms. Hence, by the de�ining universal property of
the localization-functor �, it factors through �, up to natural isomorphism.

Since, by idempotency (Prop. 1.64), the adjunction unit �
�

 is in ����, this implies that we

have a bijection of the form

Hom�(��,�) : Hom�(��(�),�)⟶
≃ Hom�(�,�) .

In particular the identity morphism id�  has a preimage ��
�� under this function, hence a left

inverse to �:

��
�� ∘ �

�
= id� .

But by 2-out-of-3 this implies that ��
�� ∈ ����. Since the �irst item above shows that ��(�) is

����-local, this allows to apply this same kind of argument again,

Hom�(��
��, ��(�)) : Hom�(�, ��(�))⟶

≃ Hom�(��(�), ��(�)) ,

to deduce that also ��
�� has a left inverse (��

��)�� ∘ ��
��. But since a left inverse that itself

has a left inverse is in fact an inverse morphisms (this Lemma), this means that ��
�� is an
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inverse morphism to �
�

, hence that �
�
: � → ��(�) is an isomorphism and hence that �  is

isomorphic to an object in �[���] ↪
�
�.

Conversely, if there is an isomorphism from � to a morphism in the image of � hence, by the
�irst item, to a �-local object, it follows immediatly that also � is �-local, since the hom-
functor takes isomorphisms to bijections and since bijections satisfy 2-out-of-3.  ▮

Proposition 	1.82. 	 (re�lection 	 onto 	 local 	 objects 	 is 	 localization 	with 	 respect 	 to 	 left
adjoints)

Let 	� 	be 	a 	category 	(Def. 	1.1) 	and 	 let 	� ⊂ Mor� 	be 	a 	class 	of 	morphisms 	 in 	�. 	Then 	the
re�lection	onto	the	�-local	objects	(Def.	1.79)	satis�ies,	if	it	exists,	the	universal	property	of	a
localization	of	categories	(Def.	1.76)	with	respect	to	left	adjoint	functors	inverting	�.

Proof. Write

�� ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

�

for the re�lective subcategory-inclusion of the �-local objects.

Say that a morphism � in � is an �-local	morphism if for every �-local object � ∈ � the hom-
functor (Example 1.17) from � to � yields a bijection Hom�(�,�). Notice that, by the Yoneda
embedding for ��  (Prop. 1.30), the �-local morphisms are precisely the morphisms that are
taken to isomorphisms by the re�lector � (via Example 1.31).

Now let

(� ⊣ �) : � ⊥
←⎯⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯
�

�

be a pair of adjoint functors, such that the left adjoint � inverts the morphisms in �. By the
adjunction hom-isomorphism (10) it follows that � takes values in �-local objects. This in
turn implies, now via the Yoneda embedding for �, that � inverts all �-local morphisms, and
hence all morphisms that are inverted by �.

Thus the essentially unique factorization of � through � now follows by Prop. 1.77.  ▮

2. Basic notions of Categorical algebra

We have seen that  the existence of  Cartesian products in  a  category �  equips is  with a
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functor of the form

�×� →⎯⎯⎯⎯⎯⎯
(�)×(�)

�

which is directly analogous to the operation of multiplication in an associative algebra or
even just in a semigroup (or monoid), just “categori�ied” (Example 2.2 below). This is made
precise by the concept of a monoidal	category (Def. 2.1 below).

This relation between category theory and algebra leads to the �ields of categorical	algebra
and of universal	algebra.

Here we are mainly interested in monoidal categories as a foundations for enriched category
theory, to which we turn below.

Monoidal	categories

De�inition	2.1. (monoidal	category)

An_monoidal category_ is a category � (Def. 1.1) equipped with

1. a functor (Def. 1.15)

⊗ : �×� ⟶ �

out  of  the  product  category  of  �  with  itself  (Example  1.14),  called  the  tensor
product,

2. an object

1 ∈ Obj
�

called the unit	object or tensor	unit,

3. a natural isomorphism (Def. 1.23)

� : ((−)⊗ (−))⊗ (−)⟶≃ (−)⊗ ((−)⊗ (−))

called the associator,

4. a natural isomorphism

ℓ : (1⊗ (−))⟶≃ (−)

called the left	unitor, and a natural isomorphism
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� : (−)⊗ 1⟶≃ (−)

called the right	unitor,

such that the following two kinds of diagrams commute, for all objects involved:

1. triangle	identity:

(�⊗ 1)⊗� →⎯⎯⎯⎯
��,�,�

�⊗ (1⊗�)

��⊗��
↘ ↙��⊗��

�⊗�

2. the pentagon	identity:

(�⊗�)⊗ (�⊗�)

��⊗�,�,� ↗ ↘��,�,�⊗�

((�⊗�)⊗�)⊗� (�⊗ (�⊗ (�⊗�)))

��,�,�⊗��� ↓ ↑���⊗��,�,�

(�⊗ (�⊗�))⊗� →⎯⎯⎯⎯⎯⎯
��,�⊗�,�

�⊗ ((�⊗�)⊗�)

Example	2.2. (cartesian	monoidal	category)

Let � be a category in which all �inite products exist. Then � becomes a monoidal category
(Def. 2.1) by

1. taking the tensor product to be the Cartesian product

�⊗� ≔ �×�

2. taking the unit object to be the terminal object (Def. 1.5)

� ≔ *

Monoidal categories of this form are called cartesian	monoidal	categories.

Lemma	2.3.	(Kelly	64)

Let	(�, ⊗ , 1)	be	a	monoidal	category,	def.	2.1.	Then	the	left	and	right	unitors ℓ	and	�	satisfy
the	following	conditions:

1.	ℓ� = �� : 1⊗ 1⟶≃ 1;

2.	for	all	objects	�,� ∈ �	the	following	diagrams	commutes:
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(1⊗�)⊗�

��,�,� ↓ ↘ℓ�⊗���

1⊗ (�⊗�) →⎯⎯⎯⎯
ℓ�⊗�

�⊗�

;

and

�⊗ (�⊗ 1)

��,�,�
��

↓ ↘���⊗��

(�⊗�)⊗ 1 →⎯⎯⎯⎯
��⊗�

�⊗�

;

For proof see at monoidal	category this lemma and this lemma.

Remark	2.4. Just as for an associative algebra it is suf�icient to demand 1� = � and �1 = �

and  (��)� = �(��)  in  order  to  have  that  expressions  of  arbitrary  length  may  be  re-
bracketed at will, so there is a coherence	theorem	for	monoidal	categories which states that
all ways of freely composing the unitors and associators in a monoidal category (def. 2.1)
to go from one expression to another will coincide. Accordingly, much as one may drop
the notation for the bracketing in an associative algebra altogether, so one may, with due
care, reason about monoidal categories without always making all unitors and associators
explicit.

(Here  the  quali�ier  “freely”  means  informally  that  we  must  not  use  any  non-formal
identi�ication between objects, and formally it means that the diagram in question must
be in the image of a strong monoidal functor from a free monoidal category. For example if
in a particular monoidal category it so happens that the object �⊗ (�⊗�)  is actually
equal  to (�⊗�)⊗�,  then the various ways of  going from one expression to another
using only associators and this equality no longer need to coincide.)

De�inition	2.5. (braided	monoidal	category)

A  braided 	monoidal 	category,  is  a  monoidal  category �  (def.  2.1)  equipped  with  a
natural isomorphism (Def. 1.23)

��,� : �⊗� → �⊗�

called the braiding, such that the following two kinds of diagrams commute for all objects
involved (“hexagon identities”):
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(�⊗�)⊗� � �⎯⎯
��,�,�

�⊗ (�⊗�) � �⎯⎯⎯⎯
��,�⊗�

(�⊗�)⊗�

↓��,�⊗�� ↓��,�,�

(�⊗�)⊗� � �⎯⎯
��,�,�

�⊗ (�⊗�) � �⎯⎯⎯⎯
��⊗��,�

�⊗ (�⊗�)

and

�⊗ (�⊗�) � �⎯⎯
��,�,�

��

(�⊗�)⊗� � �⎯⎯⎯⎯
��⊗�,�

�⊗ (�⊗�)

↓��⊗��,� ↓��,�,�
��

�⊗ (�⊗�) � �⎯⎯
��,�,�

��

(�⊗�)⊗� � �⎯⎯⎯⎯⎯
��,�⊗��

(�⊗�)⊗�

,

where ��,�,� : (�⊗�)⊗� → �⊗ (�⊗�) denotes the components of the associator of �⊗.

De�inition	2.6. A symmetric	monoidal	category is a braided monoidal category (def. 2.5)
for which the braiding

��,� : �⊗� → �⊗�

satis�ies the condition:

��,� ∘ ��,� = 1�⊗�

for all objects �,�

Remark 	2.7.  In analogy to the coherence theorem for monoidal categories (remark 2.4)
there is a coherence theorem for symmetric monoidal categories (def. 2.6),  saying that
every diagram built freely (see remark 2.7) from associators, unitors and braidings such
that both sides of the diagram correspond to the same permutation of objects, coincide.

De�inition	2.8. (symmetric closed	monoidal	category)

Given a symmetric monoidal category �  with tensor product ⊗  (def. 2.6) it is called a
closed 	monoidal 	category  if  for each � ∈ �  the functor �⊗ (−) ≃ (−)⊗�  has a right
adjoint, denoted hom(�, −)

� ⊥
→⎯⎯⎯⎯⎯

[�,�]

←⎯⎯⎯⎯⎯
(�)⊗�

� ,

hence if there are natural bijections

Hom�(�⊗�,�) ≃ Hom� �(�, [�,�])
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for all objects �,� ∈ �.

Since for the case that � = 1 is the tensor unit of � this means that

Hom�(1, [�,�]) ≃ Hom�(�,�) ,

the object [�,�] ∈ � is an enhancement of the ordinary hom-set Hom�(�,�) to an object
in �. Accordingly, it is also called the internal	hom between � and �.

The adjunction counit (Def. 1.33) in this case is called the evaluation	morphism

�⊗ [�,�]⟶
��

�

Example	2.9. (Set	is	a	cartesian	closed	category)

The category Set of all sets (Example 1.2) equipped with its cartesian monoidal category-
structure (Example 2.2) is a closed monoidal category (Def. 2.8), hence a cartesian	closed
category. The Cartesian product is the original Cartesian product of sets, and the internal
hom is the function set [�,�] of functions from � to �

Example	2.10. (tensor	product	of	abelian	groups	is	closed	monoidal	category symmetric
monoidal	category-structure)

The category Ab of abelian groups (as in Example 1.3) becomes a symmetric monoidal
category (Def. 2.6) with tensor product the actual tensor product of abelian groups ⊗ℤ

and with tensor unit the additive group ℤ  of integers. Again the associator, unitor and
braiding isomorphism are the evident ones coming from the underlying sets.

This  is  a  closed  monoidal  category  with  internal  hom hom(�,�)  being  the  set  of
homomorphisms Hom��(�,�)  equipped  with  the  pointwise  group  structure  for
�
�
,�

�
∈ Hom��(�,�) then (�

�
+ �

�
)(�)≔ �

�
(�) + �

�
(�) ∈ �.

This is the archetypical case that motivates the notation “⊗” for the pairing operation in a
monoidal category.

Example	2.11. (Cat	and	Grpd	are	cartesian	closed	categories)

The  category Cat  (Example  1.16)  of  all  small  categories  (Example  1.6)  is  a  cartesian
monoidal  category-structure  (Example  2.2)  with  Cartesian  product  given  by  forming
product categories (Example 1.14).

Inside  this,  the  full  subcategory  (Example  1.20)  Grpd  (Example  1.16)  of  all  small
groupoids (Example 1.10) is itself a cartesian monoidal category-structure (Example 2.2)
with Cartesian product given by forming product categories (Example 1.14).
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In both cases this yields a closed monoidal category (Def. 2.8), hence a cartesian closed
category: the internal hom is given by the functor category construction (Example 1.25).

Example	2.12. (categories	of	presheaves	are	cartesian	closed)

Let � be a category and write [���, Set] for its category of presheaves (Example 1.26).

This is

1. a  cartesian  monoidal  category  (Example  2.2),  whose  Cartesian  product  is  given
objectwise in � by the Cartesian product in Set:
for �,� ∈ [���, Set], their Cartesian product �×� exists and is given by

�×� :

�� ↦ �(��)×�(��)

� ↓
�
� ↑�

�

�(�)×�(�)

�� ↦ �(��)×�(��)

2. a  cartesian  closed  category  (Def.  2.8),  whose  internal  hom  is  given  for
�,� ∈ [���, Set] by

[�,�] :

�� ↦ Hom[���,���](�(��)×�, �)

� ↓
�
� ↑�

�

���[���,���](�(�)×�,�)

�� ↦ Hom[���,���](�(��)×�, �)

Here � : � → [���, Set]  denotes the Yoneda embedding and Hom[���,���](−, −)  is
the hom-functor on the category of presheaves.

Proof. The �irst statement is a special case of the general fact that limits of presheaves are
computed objectwise (Example 3.5).

For the second statement, �irst assume that [�,�] does exist. Then by the adjunction hom-
isomorphism (10) we have for any other presheaf � a natural isomorphism of the form

Hom[���,���](�, [�,�]) ≃ Hom[���,���](�×�,�) .

This holds in particular for � = �(�)  a representable presheaf (Example 1.27) and so the
Yoneda lemma (Prop. 1.29) implies that if it exists, then [�,�] must have the claimed form:

[�,�](�) ≃ Hom[���,���](�(�), [�,�])

≃ Hom[���,���](�(�)×�,�) .

Hence it remains to show that this formula does make (40) hold generally.
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(41)

(42)

For this we use the equivalent characterization of adjoint functors from Prop. 1.42, in terms
of the adjunction counit providing a system of universal arrows (Def. 1.41).

De�ine a would-be adjunction counit, hence a would-be evaluation morphism (39), by

�× [�,�] ⟶
��

�

�(�)×Hom[���,���](�(�)×�,�) ⟶
���

�(�)

(�,�) ↦ �
�
(id�, �)

Then it remains to show that for every morphism of presheaves of the form �×� →⎯⎯
�
�

there is a unique morphism �̃ : �⟶ [�,�] such that

�×� →⎯⎯⎯
�×�̃

�× [�,�]

�↘ ↙��

�

The commutativity of this diagram means in components at � ∈ � that, that for all � ∈ �(�)
and � ∈ �(�) we have

ev�(�, �̃�(�))≔ (�̃
�
(�))

�
(id�, �)

= �
�
(�,�)

Hence this �ixes the component �̃
�
(�)

�
 when its �irst argument is the identity morphism id�.

But let � : � → �  be any morphism and chase (id�, �)  through the naturality diagram for
�̃
�
(�):

Hom�(�, �)×�(�) →⎯⎯⎯⎯⎯
(�̃�(�))�

�(�)

�*
↓
�
� ↓

�
�
�*

Hom�(�, �)×�(�) →⎯⎯⎯⎯⎯⎯
(�̃�(�))�

�(�)

{(id�, �)} ⟶ {�
�
(�,�)}

↓
�
� ↓

�
�

{(�,�*(�))} ⟶ {�
�
(�*(�),�*(�))}

This shows that (�̃
�
(�))

�
 is �ixed to be given by

(�̃
�
(�))

�
(�, �′) = �

�
(�′,�*(�))

at least on those pairs (�, �′) such that �′ is in the image of �*.

But, �inally, (�̃
�
(�))

�
 is also natural in �
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�(�) ⟶
�̃�

[�,�](�)

�*
↓
�
� ↓

�
�
�*

�(�) ⟶
�̃�

[�,�](�)

which implies that (42) must hold generally. Hence naturality implies that (41) indeed has a
unique solution.  ▮

The internal hom (Def. 2.8) turns out to share all the abstract properties of the ordinary
(external) hom-functor (Def.  1.17),  even though this  is  not  completely manifest  from its
de�inition. We make this explicit by the following three propositions.

Proposition	2.13.	(internal	hom bifunctor)

For	�	a	closed	monoidal	category	(Def.	2.8),	there	is	a	unique	functor	(Def.	1.15)	out	of	the
product	category	(Def.	1.14)	of	�	with	its	opposite	category	(Def.	1.13)

[−, −] : ���×� ⟶ �

such	that	for	each	� ∈ �	it	coincides	with	the	internal	hom [�, −] (38)	as	a	functor	in	the
second	variable,	and	such	that	there	is	a	natural	isomorphism

Hom(�, [�,�]) ≃ Hom(�⊗�,�)

which	is	natural	not	only	in	�	and	�,	but	also	in	�.

Proof. We have a natural isomorphism for each �ixed �, and hence in particular for �ixed �
and �ixed � by (38). With this the statement follows by Prop. 1.40.  ▮

In fact the 3-variable adjunction from Prop. 2.13 even holds internally:

Proposition	2.14.	(internal	tensor/hom-adjunction)

In	a	symmetric closed	monoidal	category	(def.	2.8)	there	are	natural	isomorphisms

[�⊗�,�] ≃ [�, [�,�]]

whose 	 image 	under 	Hom�(1, −) 	(see 	also 	Example 	2.38 	below) 	are 	the 	de�ining 	natural
bijections	of	Prop.	2.13.

Proof. Let � ∈ � be any object. By applying the natural bijections from Prop. 2.13, there are
composite natural bijections
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Hom�(�, [�⊗�,�]) ≃ Hom�(�⊗ (�⊗�),�)

≃ Hom�((�⊗�)⊗�,�)

≃ Hom�(�⊗�, [�,�])

≃ Hom�(�, [�, [�,�]])

Since this holds for all �, the fully faithfulness of the Yoneda embedding (Prop. 1.30) says
that there is an isomorphism [�⊗�,�] ≃ [�, [�,�]]. Moreover, by taking � = 1 in the above
and  using  the  left  unitor  isomorphisms  �⊗ (�⊗�) ≃ �⊗�  and  �⊗� ≃ �  we  get  a
commuting diagram

Hom�(1, [�⊗�,�)) ⟶≃ Hom�(1, [�, [�,�]])

≃ ↓ ↓≃

Hom�(�⊗�,�) ⟶≃ Hom�(�, [�,�])

.

  ▮

Also the key respect of the hom-functor for limits is inherited by internal hom-functors

Proposition	2.15.	(internal	hom	preserves	limits)

Let	�	be	a	symmetric closed	monoidal	category	with	internal	hom-bifunctor [−, −]	(Prop.
2.13).	Then	this	bifunctor	preserves limits	in	the	second	variable,	and	sends	colimits	in	the
�irst	variable	to	limits:

[�, lim
←⎯⎯
�∈�

�(�)] ≃ lim
←⎯⎯
�∈�

[�,�(�)]

and

[lim
→⎯⎯⎯

�∈�

�(�),�] ≃ lim
←⎯⎯
�∈�

[�(�),�]

Proof.  For � ∈ �  any object,  [�, −]  is  a right adjoint  by de�inition,  and hence preserves
limits by Prop. 3.8.

For the other case, let � : ℒ → � be a diagram in �, and let � ∈ � be any object. Then there
are isomorphisms
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(43)

(44)

Hom�(�, lim→⎯⎯
�∈�

�(�),�) ≃ Hom�(�⊗ lim
→⎯⎯

�∈�

�(�),�)

≃ Hom�(lim→⎯⎯⎯
�∈�

(�⊗�(�)),�)

≃ lim
←⎯⎯
�∈�

Hom�((�⊗�(�)),�)

≃ lim
←⎯⎯
�∈�

Hom�(�, [�(�),�])

≃ Hom�(�, lim←⎯⎯
�∈�

[�(�),�])

which are natural in � ∈ �, where we used that the ordinary hom-functor preserves limits
(Prop. 3.6), and that the left adjoint �⊗ (−) preserves colimits, since left adjoints preserve
colimits (Prop. 3.8).

Hence by the fully faithfulness of the Yoneda embedding, there is an isomorphism

�lim
→⎯⎯

�∈�

�(�),�� ⟶≃ lim
←⎯⎯
�∈�

[�(�),�] .

  ▮

Now that we have seen monoidal categories with various extra properties, we next look at
functors which preserve these:

De�inition	2.16. (monoidal	functors)

Let (�, ⊗� , 1�) and (�, ⊗� , 1�) be two monoidal categories (def. 2.1). A lax 	monoidal
functor between them is

1. a functor (Def. 1.15)

� : � ⟶ � ,

2. a morphism

� : 1� ⟶ �(1�)

3. a natural transformation (Def. 1.23)

��,� : �(�)⊗� �(�)⟶ �(�⊗� �)

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

83 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/hom-functor+preserves+limits
https://ncatlab.org/nlab/show/hom-functor+preserves+limits
https://ncatlab.org/nlab/show/left+adjoints+preserve+colimits
https://ncatlab.org/nlab/show/left+adjoints+preserve+colimits
https://ncatlab.org/nlab/show/left+adjoints+preserve+colimits
https://ncatlab.org/nlab/show/left+adjoints+preserve+colimits
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/Yoneda+embedding
https://ncatlab.org/nlab/show/Yoneda+embedding
https://ncatlab.org/nlab/show/monoidal+categories
https://ncatlab.org/nlab/show/monoidal+categories
https://ncatlab.org/nlab/show/properties
https://ncatlab.org/nlab/show/properties
https://ncatlab.org/nlab/show/functors
https://ncatlab.org/nlab/show/functors
https://ncatlab.org/nlab/show/monoidal+functors
https://ncatlab.org/nlab/show/monoidal+functors
https://ncatlab.org/nlab/show/monoidal+categories
https://ncatlab.org/nlab/show/monoidal+categories
https://ncatlab.org/nlab/show/lax+monoidal+functor
https://ncatlab.org/nlab/show/lax+monoidal+functor
https://ncatlab.org/nlab/show/lax+monoidal+functor
https://ncatlab.org/nlab/show/lax+monoidal+functor
https://ncatlab.org/nlab/show/functor
https://ncatlab.org/nlab/show/functor
https://ncatlab.org/nlab/show/morphism
https://ncatlab.org/nlab/show/morphism
https://ncatlab.org/nlab/show/natural+transformation
https://ncatlab.org/nlab/show/natural+transformation


for all �,� ∈ �

satisfying the following conditions:

1. (associativity) For all objects �,�, � ∈ � the following diagram commutes

(�(�)⊗� �(�))⊗� �(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
≃

��(�),�(�),�(�)
�

�(�)⊗� (�(�)⊗� �(�))

��,�⊗�� ↓ ↓
��⊗��,�

�(�⊗� �)⊗� �(�) �(�)⊗� (�(�⊗� �))

��⊗� �,� ↓ ↓
��,�⊗� �

�((�⊗� �)⊗� �) →⎯⎯⎯⎯⎯⎯
�(��,�,�

� )
�(�⊗� (�⊗� �))

,

where �� and �� denote the associators of the monoidal categories;

2. (unitality) For all � ∈ � the following diagrams commutes

1�⊗� �(�) →⎯⎯⎯
�⊗��

�(1�)⊗� �(�)

ℓ�(�)
�

↓ ↓
��� ,�

�(�) ←⎯⎯⎯
�(ℓ�

�)
�(1⊗� �)

and

�(�)⊗� 1� →⎯⎯⎯⎯
��⊗�

�(�)⊗� �(1�)

��(�)
�

↓ ↓
��,��

�(�) ←⎯⎯⎯
�(��

�)
�(�⊗� 1)

,

where ℓ�, ℓ�, ��, �� denote the left and right unitors of the two monoidal categories,
respectively.

If � and alll ��,� are isomorphisms, then � is called a strong	monoidal	functor.

If  moreover (�, ⊗� , 1�)  and (�, ⊗� , 1�)  are  equipped with the structure of  braided
monoidal  categories  (def.  2.5)  with  braidings ��  and  ��,  respectively,  then  the  lax
monoidal  functor �  is  called a braided 	monoidal 	functor  if  in  addition the following
diagram commutes for all objects �,� ∈ �
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�(�)⊗� �(�) →⎯⎯⎯⎯⎯⎯
��(�),�(�)
�

�(�)⊗� �(�)

��,� ↓ ↓
��,�

�(�⊗� �) →⎯⎯⎯⎯⎯
�(��,�

� )
�(�⊗� �)

.

A  homomorphism � : (��, ��, ��)⟶ (��, ��, ��)  between  two  (braided)  lax  monoidal

functors is  a monoidal 	natural 	transformation,  in that it  is  a natural transformation
�
�
: ��(�)⟶ ��(�) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all
objects �,� ∈ �:

��(�)⊗� ��(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
�(�)⊗� �(�)

��(�)⊗� ��(�)

(��)�,� ↓ ↓
(��)�,�

��(�⊗� �) →⎯⎯⎯⎯⎯⎯⎯
�(�⊗� �)

��(�⊗� �)

and

1�
�� ↙ ↘��

��(1�) →⎯⎯⎯
�(��)

��(1�)

.

We  write  MonFun(�,�)  for  the  resulting  category  of  lax  monoidal  functors  between
monoidal categories �  and �,  similarly BraidMonFun(�,�)  for the category of braided
monoidal functors between braided monoidal categories, and SymMonFun(�,�)  for the
category of braided monoidal functors between symmetric monoidal categories.

Remark	2.17. In the literature the term “monoidal functor” often refers by default to what in
def.  2.16 is  called a strong 	monoidal 	 functor.  But for the purpose of  the discussion of
functors with smash product below, it is crucial to admit the generality of lax monoidal
functors.

If  (�, ⊗� , 1�)  and  (�, ⊗� , 1�)  are  symmetric  monoidal  categories  (def.  2.6)  then  a
braided monoidal functor (def. 2.16) between them is often called a symmetric	monoidal
functor.

Proposition	2.18.	For	� ⟶
�
�⟶

�
ℰ	two	composable	lax	monoidal	functors	(def.	2.16)	between

monoidal 	 categories, 	 then 	 their 	 composite 	� ∘� 	becomes 	a 	 lax 	monoidal 	 functor 	with
structure	morphisms
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��∘� : 1ℰ ⟶
��

�(1�) →⎯⎯⎯
�(��)

�(�(1�))

and

��� ,��
�∘� : �(�(��))⊗ℰ �(�(��)) →⎯⎯⎯⎯⎯⎯⎯⎯

��(��),�(��)
�

�(�(��)⊗� �(��)) →⎯⎯⎯⎯⎯⎯
�(��� ,��

� )

�(�(��⊗� ��)) .

Algebras	and	modules

De�inition	2.19. Given a monoidal category (�, ⊗ , 1) (Def. 2.1), then a monoid	internal	to
(�, ⊗ , 1) is

1. an object � ∈ �;

2. a morphism � : 1⟶ � (called the unit)

3. a morphism � : �⊗�⟶ � (called the product);

such that

1. (associativity) the following diagram commutes

(�⊗�)⊗� →⎯⎯⎯⎯
≃

��,�,�
�⊗ (�⊗�) →⎯⎯⎯

�⊗�
�⊗�

�⊗� ↓ ↓�

�⊗� ⟶ ⟶
�

�

,

where � is the associator isomorphism of �;

2. (unitality) the following diagram commutes:

1⊗� →⎯⎯⎯⎯
�⊗��

�⊗� ←⎯⎯⎯⎯
��⊗�

�⊗ 1

ℓ ↘ ↓� ↙�

�

,

where ℓ and � are the left and right unitor isomorphisms of �.

Moreover,  if  (�, ⊗ , 1)  has  the  structure  of  a  symmetric  monoidal  category  (def.  2.6)
(�, ⊗ , 1,�)  with  symmetric  braiding �,  then  a  monoid  (�, �, �)  as  above  is  called  a
commutative	monoid	in (�, ⊗ , 1,�) if in addition

• (commutativity) the following diagram commutes
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�⊗� →⎯⎯⎯
≃

��,�
�⊗�

� ↘ ↙�

�

.

A homomorphism of monoids (��, ��, ��)⟶ (��, ��, ��) is a morphism

� : �� ⟶ ��

in �, such that the following two diagrams commute

��⊗�� →⎯⎯⎯
�⊗�

��⊗��
�� ↓ ↓

��

�� ⟶
�

��

and

1� ⟶
��

��

�� ↘ ↓�

��

.

Write Mon(�, ⊗ , 1)  for the category 	of 	monoids  in �,  and CMon(�, ⊗ , 1)  for its full
subcategory of commutative monoids.

Example	2.20. Given a monoidal category (�, ⊗ , 1) (Def. 2.1), the tensor unit 1 is a monoid
in � (def. 2.19) with product given by either the left or right unitor

ℓ� = �� : 1⊗ 1⟶≃ 1 .

By lemma 2.3, these two morphisms coincide and de�ine an associative product with unit
the identity id : 1 → 1.

If  (�, ⊗ , 1)  is  a  symmetric  monoidal  category  (def.  2.6),  then  this  monoid  is  a
commutative monoid.

Example 	2.21.  Given a symmetric monoidal category (�, ⊗ , 1)  (def.  2.6),  and given two
commutative monoids (��, ��, ��) � ∈ {1, 2}  (def. 2.19), then the tensor product ��⊗��

becomes itself a commutative monoid with unit morphism

� : 1⟶≃ 1⊗ 1 →⎯⎯⎯⎯⎯
��⊗��

��⊗��
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(where the �irst isomorphism is,  ℓ�
�� = ��

��  (lemma 2.3)) and with product morphism
given by

��⊗��⊗��⊗�� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
��⊗��� ,��

⊗��
��⊗��⊗��⊗�� →⎯⎯⎯⎯⎯

��⊗��
��⊗��

(where we are notationally suppressing the associators and where � denotes the braiding
of �).

That  this  de�inition  indeed  satis�ies  associativity  and  commutativity  follows  from  the
corresponding properties of (��, ��, ��), and from the hexagon identities for the braiding

(def. 2.5) and from symmetry of the braiding.

Similarly one checks that for �� = �� = � then the unit maps

� ≃ �⊗ 1 →⎯⎯⎯⎯
��⊗�

�⊗�

� ≃ 1⊗� →⎯⎯⎯
�⊗�

�⊗�

and the product map

� : �⊗� ⟶ �

and the braiding

��,� : �⊗� ⟶ �⊗�

are monoid homomorphisms, with �⊗� equipped with the above monoid structure.

De�inition	2.22. Given a monoidal category (�, ⊗ , 1) (def. 2.1), and given (�, �, �) a monoid
in (�, ⊗ , 1) (def. 2.19), then a left	module	object in (�, ⊗ , 1) over (�, �, �) is

1. an object � ∈ �;

2. a morphism � : �⊗�⟶ � (called the action);

such that

1. (unitality) the following diagram commutes:

1⊗� →⎯⎯⎯
�⊗��

�⊗�

ℓ ↘ ↓�

�

,

where ℓ is the left unitor isomorphism of �.
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2. (action property) the following diagram commutes

(�⊗�)⊗� →⎯⎯⎯⎯
≃

��,�,�
�⊗ (�⊗�) →⎯⎯⎯

�⊗�
�⊗�

�⊗� ↓ ↓�

�⊗� ⟶ ⟶
�

�

,

A homomorphism of left �-module objects

(��,��)⟶ (��,��)

is a morphism

� : �� ⟶ ��

in �, such that the following diagram commutes:

�⊗�� →⎯⎯⎯
�⊗�

�⊗��
�� ↓ ↓

��

�� ⟶
�

��

.

For  the  resulting  category 	 of 	modules  of  left  �-modules  in  �  with  �-module
homomorphisms between them, we write

�Mod(�) .

Example 	2.23.  Given  a  monoidal  category (�, ⊗ , 1)  (def.  2.1)  with  the  tensor  unit 1
regarded as a monoid in a monoidal category via example 2.20, then the left unitor

ℓ� : 1⊗� ⟶ �

makes every object � ∈ �  into a left module, according to def. 2.22, over �.  The action
property holds due to lemma 2.3. This gives an equivalence of categories

� ≃ 1Mod(�)

of � with the category of modules over its tensor unit.

Example	2.24. The archetypical case in which all these abstract concepts reduce to the basic
familiar ones is  the symmetric monoidal  category Ab of  abelian groups from example
2.10.

1. A monoid in (Ab, ⊗ℤ ,ℤ) (def. 2.19) is equivalently a ring.
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2. A commutative monoid in in (Ab, ⊗ℤ ,ℤ) (def. 2.19) is equivalently a commutative
ring �.

3. An �-module object in (Ab, ⊗ℤ ,ℤ) (def. 2.22) is equivalently an �-module;

4. The tensor product of �-module objects (def. 2.27) is the standard tensor product of
modules.

5. The category of module objects �Mod(Ab)  (def. 2.27) is the standard category of
modules �Mod.

Example	2.25. Closely related to the example 2.24, but closer to the structure we will see
below  for  spectra,  are  monoids  in  the  category  of  chain  complexes (Ch•, ⊗ ,ℤ)  from
example . These monoids are equivalently differential graded algebras.

Proposition	2.26.	In	the	situation	of	def.	2.22,	the	monoid	(�, �, �)	canonically	becomes	a	left
module 	over 	 itself 	by 	 setting 	� ≔ �. 	More 	generally, 	 for 	� ∈ � 	any 	object, 	 then 	�⊗�

naturally	becomes	a	left	�-module	by	setting:

� : �⊗ (�⊗�) →⎯⎯⎯⎯
≃

��,�,�
��

(�⊗�)⊗� →⎯⎯⎯⎯
�⊗��

�⊗� .

The	�-modules	of	this	form	are	called	free	modules.

The 	 free 	 functor � 	constructing 	 free 	�-modules 	 is 	 left 	adjoint 	to 	the 	 forgetful 	 functor �
which	sends	a	module	(�,�)	to	the	underlying	object	�(�,�)≔ �.

�Mod(�) ⊥
⟶
�

⟵
�

� .

Proof. A homomorphism out of a free �-module is a morphism in � of the form

� : �⊗� ⟶ �

�itting into the diagram (where we are notationally suppressing the associator)

�⊗�⊗� →⎯⎯⎯
�⊗�

�⊗�

�⊗�� ↓ ↓�

�⊗� ⟶
�

�

.

Consider the composite

�̃ : � ⟶
≃

ℓ�
1⊗� →⎯⎯⎯⎯

�⊗��
�⊗� ⟶

�
� ,
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i.e. the restriction of � to the unit “in” �. By de�inition, this �its into a commuting square of
the form (where we are now notationally suppressing the associator and the unitor)

�⊗� →⎯⎯⎯⎯
��⊗�̃

�⊗�

��⊗�⊗�� ↓ ↓=

�⊗�⊗� →⎯⎯⎯⎯
��⊗�

�⊗�

.

Pasting this square onto the top of the previous one yields

�⊗� →⎯⎯⎯⎯
��⊗�̃

�⊗�

��⊗�⊗�� ↓ ↓=

�⊗�⊗� →⎯⎯⎯
�⊗�

�⊗�

�⊗�� ↓ ↓�

�⊗� ⟶
�

�

,

where now the left vertical composite is the identity, by the unit law in �. This shows that �
is uniquely determined by �̃ via the relation

� = � ∘ (id�⊗ �̃) .

This natural bijection between � and �̃ establishes the adjunction.  ▮

De�inition	2.27. Given a closed symmetric monoidal category (�, ⊗ , 1) (def. 2.6, def. 2.8),
given (�, �, �)  a  commutative  monoid  in (�, ⊗ , 1)  (def.  2.19),  and given (��,��)  and

(��,��) two left �-module objects (def.2.19), then

1. the tensor	product	of	modules ��⊗� �� is, if it exists, the coequalizer

��⊗�⊗�� →⎯⎯⎯⎯⎯
�� ∘(��� ,�⊗��)

→⎯⎯⎯⎯⎯
��⊗��

��⊗�� →⎯⎯⎯
����

��⊗���

and if �⊗ (−) preserves these coequalizers, then this is equipped with the left �-
action induced from the left �-action on ��

2. the function	module hom�(��,��) is, if it exists, the equalizer

hom�(��,��) →⎯⎯
���

hom(��,��) →⎯⎯⎯⎯⎯⎯⎯⎯
���(�⊗�� ,��)∘(�⊗(�))

→⎯⎯⎯⎯⎯⎯⎯⎯
���(�� ,��)

hom(�⊗��,��) .
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equipped with the left �-action that is induced by the left �-action on �� via

�⊗ hom(�,��)⟶ hom(�,��)

�⊗ hom(�,��)⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗�� ⟶
��

��

.

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2 and lemma 2.2.8)

Proposition	2.28.	Given	a	closed symmetric	monoidal	category (�, ⊗ , 1)	(def.	2.6,	def.	2.8),
and	given	(�, �, �)	a	commutative	monoid	in (�, ⊗ , 1)	(def.	2.19).	If	all	coequalizers	exist	in
�, 	then 	the 	tensor 	product 	of 	modules ⊗� 	from 	def. 	2.27 	makes 	the 	category 	of 	modules
�Mod(�)	into	a	symmetric	monoidal	category,	(�Mod, ⊗� ,�)	with	tensor	unit	the	object
�	itself,	regarded	as	an	�-module	via	prop.	2.26.

If 	moreover 	all 	equalizers 	exist, 	 then 	 this 	 is 	a 	closed 	monoidal 	category 	(def. 	2.8) 	with
internal	hom	given	by	the	function	modules	hom�	of	def.	2.27.

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2, lemma 2.2.8)

Proof	sketch. The associators and braiding for ⊗� are induced directly from those of ⊗ and
the universal property of coequalizers. That �  is the tensor unit for ⊗�  follows with the
same kind of argument that we give in the proof of example 2.29 below.  ▮

Example	2.29. For (�, �, �) a monoid (def. 2.19) in a symmetric monoidal category (�, ⊗ , 1)

(def.  2.1),  the  tensor  product  of  modules  (def.  2.27)  of  two  free  modules  (def.  2.26)
�⊗��  and �⊗��  always exists and is the free module over the tensor product in �  of
the two generators:

(�⊗��)⊗� (�⊗��) ≃ �⊗ (��⊗��) .

Hence if � has all coequalizers, so that the category of modules is a monoidal category
(�Mod, ⊗� ,�) (prop. 2.28) then the free module functor (def. 2.26) is a strong monoidal
functor (def. 2.16)

� : (�, ⊗ , 1)⟶ (�Mod, ⊗� ,�) .

Proof. It is suf�icient to show that the diagram

�⊗�⊗�
→⎯⎯⎯⎯⎯

��⊗�

→⎯⎯⎯⎯⎯
�⊗��

�⊗� ⟶
�

�

is  a  coequalizer  diagram  (we  are  notationally  suppressing  the  associators),  hence  that
�⊗� � ≃ �, hence that the claim holds for �� = 1 and �� = 1.
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To that end, we check the universal property of the coequalizer:

First observe that � indeed coequalizes id⊗� with �⊗ id, since this is just the associativity
clause in def. 2.19. So for � :�⊗�⟶ � any other morphism with this property, we need to
show that there is a unique morphism � :� ⟶ � which makes this diagram commute:

�⊗� ⟶
�

�

� ↓ ↙�

�

.

We claim that

� : � →⎯⎯
≃

���

�⊗ 1 →⎯⎯⎯⎯
��⊗�

�⊗� ⟶
�

� ,

where the �irst morphism is the inverse of the right unitor of �.

First  to  see  that  this  does  make  the  required  triangle  commute,  consider  the  following
pasting composite of commuting diagrams

�⊗� ⟶
�

�

≃
��⊗���

↓ ↓≃
���

�⊗�⊗ 1 →⎯⎯⎯⎯
�⊗��

�⊗ 1

��⊗� ↓ ↓��⊗�

�⊗�⊗� →⎯⎯⎯⎯
�⊗��

�⊗�

��⊗� ↓ ↓�

�⊗� ⟶
�

�

.

Here the the top square is the naturality of the right unitor, the middle square commutes by
the functoriality of the tensor product ⊗ : �×� ⟶ �  and the de�inition of the product
category (Example 1.14), while the commutativity of the bottom square is the assumption
that � coequalizes id⊗� with �⊗ id.

Here  the  right  vertical  composite  is  �,  while,  by  unitality  of  (�, �, �),  the  left  vertical
composite is the identity on �, Hence the diagram says that �∘ � = �, which we needed to
show.

It remains to see that � is the unique morphism with this property for given �. For that let
� :� → � be any other morphism with � ∘ � = �. Then consider the commuting diagram
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�⊗ 1 ⟵≃ �

��⊗� ↓ ↘≃ ↓=

�⊗� ⟶
�

�

� ↓ ↙�

�

,

where the top left triangle is the unitality condition and the two isomorphisms are the right
unitor and its inverse. The commutativity of this diagram says that � = �.  ▮

De�inition 	2.30.  Given a monoidal category of modules (�Mod, ⊗� ,�)  as in prop. 2.28,
then a monoid (�, �, �) in (�Mod, ⊗� ,�) (def. 2.19) is called an �-algebra.

Proposition 	2.31. 	Given 	a 	monoidal category 	of 	modules (�Mod, ⊗� ,�) 	 in 	a 	monoidal
category (�, ⊗ , 1)	as	in	prop.	2.28,	and	an	�-algebra	(�, �, �)	(def.	2.30),	then	there	is	an
equivalence	of	categories

�Alg
����

(�)≔ CMon(�Mod) ≃ CMon(�)�/

between 	 the 	 category 	of 	 commutative 	monoids 	 in 	�Mod 	and 	 the 	 coslice 	 category 	 of
commutative 	monoids 	 in 	� 	under 	�, 	hence 	between 	commutative 	�-algebras 	 in 	� 	 and
commutative	monoids	�	in	�	that	are	equipped	with	a	homomorphism	of	monoids	� ⟶ �.

(e.g. EKMM 97, VII lemma 1.3)

Proof.  In  one  direction,  consider  a  �-algebra  �  with  unit  �� : � ⟶ �  and  product
��/� :�⊗� � ⟶ �. There is the underlying product ��

�⊗�⊗�
→⎯⎯⎯⎯

→⎯⎯⎯⎯
�⊗� →⎯⎯⎯

����
�⊗� �

��
↘ ↓

��/�

�

.

By considering  a  diagram  of  such  coequalizer  diagrams  with  middle  vertical  morphism
�� ∘ ��, one �ind that this is a unit for ��  and that (�, ��, �� ∘ ��) is a commutative monoid in

(�, ⊗ , 1).

Then consider the two conditions on the unit �� :� ⟶ �.  First of all this is an �-module
homomorphism, which means that
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( ⋆ )

�⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗�

�� ↓ ↓�

� ⟶
��

�

commutes. Moreover it satis�ies the unit property

�⊗� � →⎯⎯⎯⎯⎯
��⊗��

�⊗� �

≃ ↘ ↓
��/�

�

.

By forgetting the tensor product over �, the latter gives

�⊗� →⎯⎯⎯
�⊗��

�⊗�

↓ ↓

�⊗� � →⎯⎯⎯⎯⎯
��⊗��

�⊗� �

≃ ↓ ↓
��/�

� = �

≃

�⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗�

� ↓ ↓
��

� ⟶
��

�

,

where the top vertical morphisms on the left the canonical coequalizers, which identi�ies the
vertical composites on the right as shown. Hence this may be pasted to the square ( ⋆ )
above, to yield a commuting square

�⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗�

�� ↓ � ↓ ↓
��

� ⟶
��

� ⟶
��

�

=

�⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗�

�� ↓ ↓
��

� ⟶
��

�

.

This shows that the unit �� is a homomorphism of monoids (�, ��, ��)⟶ (�, ��, �� ∘ ��).

Now for the converse direction, assume that (�, ��, ��) and (�, ��, �′�) are two commutative

monoids in (�, ⊗ , 1) with �� : � → � a monoid homomorphism. Then � inherits a left �-
module structure by

� : �⊗� →⎯⎯⎯⎯⎯
��⊗��

�⊗� ⟶
��

� .

By  commutativity  and  associativity  it  follows  that  ��  coequalizes  the  two  induced

morphisms �⊗�⊗�
→⎯⎯

→⎯⎯
�⊗�.  Hence the universal property of the coequalizer  gives  a

factorization  through  some  ��/� :�⊗� � ⟶ �.  This  shows  that  (�, ��/�, ��)  is  a
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commutative �-algebra.

Finally  one  checks  that  these  two  constructions  are  inverses  to  each  other,  up  to
isomorphism.  ▮

De�inition	2.32. (lax	monoidal	functor)

Let (�, ⊗� , 1�) and (�, ⊗� , 1�) be two monoidal categories (def. 2.1). A lax 	monoidal
functor between them is

1. a functor

� : � ⟶ � ,

2. a morphism

� : 1� ⟶ �(1�)

3. a natural transformation

��,� : �(�)⊗� �(�)⟶ �(�⊗� �)

for all �,� ∈ �

satisfying the following conditions:

1. (associativity) For all objects �,�, � ∈ � the following diagram commutes

(�(�)⊗� �(�))⊗� �(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
≃

��(�),�(�),�(�)
�

�(�)⊗� (�(�)⊗� �(�))

��,�⊗�� ↓ ↓
��⊗��,�

�(�⊗� �)⊗� �(�) �(�)⊗� (�(�⊗� �))

��⊗� �,� ↓ ↓
��,�⊗� �

�((�⊗� �)⊗� �) →⎯⎯⎯⎯⎯⎯
�(��,�,�

� )
�(�⊗� (�⊗� �))

,

where �� and �� denote the associators of the monoidal categories;

2. (unitality) For all � ∈ � the following diagrams commutes

1�⊗� �(�) →⎯⎯⎯
�⊗��

�(1�)⊗� �(�)

ℓ�(�)
�

↓ ↓
��� ,�

�(�) ←⎯⎯⎯
�(ℓ�

�)
�(1⊗� �)
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and

�(�)⊗� 1� →⎯⎯⎯⎯
��⊗�

�(�)⊗� �(1�)

��(�)
�

↓ ↓
��,��

�(�) ←⎯⎯⎯
�(��

�)
�(�⊗� 1)

,

where ℓ�, ℓ�, ��, �� denote the left and right unitors of the two monoidal categories,
respectively.

If � and alll ��,� are isomorphisms, then � is called a strong	monoidal	functor.

If  moreover (�, ⊗� , 1�)  and (�, ⊗� , 1�)  are  equipped with the structure of  braided
monoidal  categories  (def.  2.5)  with  braidings ��  and  ��,  respectively,  then  the  lax
monoidal  functor �  is  called a braided 	monoidal 	functor  if  in  addition the following
diagram commutes for all objects �,� ∈ �

�(�)⊗� �(�) →⎯⎯⎯⎯⎯⎯
��(�),�(�)
�

�(�)⊗� �(�)

��,� ↓ ↓
��,�

�(�⊗� �) →⎯⎯⎯⎯⎯
�(��,�

� )
�(�⊗� �)

.

A  homomorphism � : (��, ��, ��)⟶ (��, ��, ��)  between  two  (braided)  lax  monoidal

functors is  a monoidal 	natural 	transformation,  in that it  is  a natural transformation
�
�
: ��(�)⟶ ��(�) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all
objects �,� ∈ �:

��(�)⊗� ��(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
�(�)⊗� �(�)

��(�)⊗� ��(�)

(��)�,� ↓ ↓
(��)�,�

��(�⊗� �) →⎯⎯⎯⎯⎯⎯⎯
�(�⊗� �)

��(�⊗� �)

and

1�
�� ↙ ↘��

��(1�) →⎯⎯⎯
�(��)

��(1�)

.

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

97 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/unitors
https://ncatlab.org/nlab/show/unitors
https://ncatlab.org/nlab/show/isomorphisms
https://ncatlab.org/nlab/show/isomorphisms
https://ncatlab.org/nlab/show/braided+monoidal+categories
https://ncatlab.org/nlab/show/braided+monoidal+categories
https://ncatlab.org/nlab/show/braided+monoidal+categories
https://ncatlab.org/nlab/show/braided+monoidal+categories
https://ncatlab.org/nlab/show/braidings
https://ncatlab.org/nlab/show/braidings
https://ncatlab.org/nlab/show/braided+monoidal+functor
https://ncatlab.org/nlab/show/braided+monoidal+functor
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/homomorphism
https://ncatlab.org/nlab/show/homomorphism
https://ncatlab.org/nlab/show/monoidal+natural+transformation
https://ncatlab.org/nlab/show/monoidal+natural+transformation
https://ncatlab.org/nlab/show/natural+transformation
https://ncatlab.org/nlab/show/natural+transformation
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram


We  write  MonFun(�,�)  for  the  resulting  category  of  lax  monoidal  functors  between
monoidal categories �  and �,  similarly BraidMonFun(�,�)  for the category of braided
monoidal functors between braided monoidal categories, and SymMonFun(�,�)  for the
category of braided monoidal functors between symmetric monoidal categories.

Remark	2.33. In the literature the term “monoidal functor” often refers by default to what in
def.  2.16 is  called a strong 	monoidal 	 functor.  But for the purpose of  the discussion of
functors with smash product below, it is crucial to admit the generality of lax monoidal
functors.

If  (�, ⊗� , 1�)  and  (�, ⊗� , 1�)  are  symmetric  monoidal  categories  (def.  2.6)  then  a
braided monoidal functor (def. 2.16) between them is often called a symmetric	monoidal
functor.

Proposition	2.34.	For	� ⟶
�
�⟶

�
ℰ	two	composable	lax	monoidal	functors	(def.	2.16)	between

monoidal 	 categories, 	 then 	 their 	 composite 	� ∘� 	becomes 	a 	 lax 	monoidal 	 functor 	with
structure	morphisms

��∘� : 1ℰ ⟶
��

�(1�) →⎯⎯⎯
�(��)

�(�(1�))

and

��� ,��
�∘� : �(�(��))⊗ℰ �(�(��)) →⎯⎯⎯⎯⎯⎯⎯⎯

��(��),�(��)
�

�(�(��)⊗� �(��)) →⎯⎯⎯⎯⎯⎯
�(��� ,��

� )

�(�(��⊗� ��)) .

Proposition	2.35.	(lax	monoidal	functors	preserve	monoids)

Let	(�, ⊗� , 1�)	and	(�, ⊗� , 1�)	be	two	monoidal	categories	(def.	2.1)	and	let	� : � ⟶ �

be	a	lax	monoidal	functor	(def.	2.16)	between	them.

Then 	 for 	 (�, ��, ��) 	a 	monoid 	 in � 	 (def. 	2.19), 	 its 	 image 	�(�) ∈ � 	becomes 	a 	monoid

(�(�), ��(�), ��(�))	by	setting

��(�) : �(�)⊗� �(�)⟶ �(�⊗� �) →⎯⎯⎯⎯
�(��)

�(�)

(where	the	�irst	morphism	is	the	structure	morphism	of	�)	and	setting

��(�) : 1� ⟶ �(1�) →⎯⎯⎯⎯
�(��)

�(�)

(where	again	the	�irst	morphism	is	the	corresponding	structure	morphism	of	�).

This	construction	extends	to	a	functor
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Mon(�) : Mon(�, ⊗� , 1�)⟶ Mon(�, ⊗� , 1�)

from	the	category	of	monoids	of	�	(def.	2.19)	to	that	of	�.

Moreover, 	 if 	� 	and 	� 	are 	symmetric 	monoidal 	categories 	(def. 	2.6) 	and 	� 	 is 	a 	braided
monoidal	functor	(def.	2.16)	and	�	is	a	commutative	monoid	(def.	2.19)	then	so	is	�(�),	and
this	construction	extends	to	a	functor	between	categories	of	commutative	monoids:

CMon(�) : CMon(�, ⊗� , 1�)⟶ CMon(�, ⊗� , 1�) .

Proof.  This  follows  immediately  from  combining  the  associativity  and  unitality  (and
symmetry) constraints of � with those of �.  ▮

Enriched	categories

The plain de�inition of categories in Def. 1.1 is phrased in terms of sets. Via Example 1.2 this
assigns a special role to the category Set of all sets, as the “base” on top, or the “cosmos”
inside which category theory takes place.  For instance,  the fact that hom-sets in a plain
category are indeed sets, is what makes the hom-functor (Example 1.17) take values in Set,
and this,  in turn,  governs the form of  the all-important Yoneda lemma (Prop.  1.29) and
Yoneda embedding (Prop. 1.30) as statements about presheaves of sets (Example 1.26).

At the same time, category theory witnesses the utility of abstracting away from concrete
choices to their abstract properties that are actually used in constructions. This makes it
natural to ask if one could replace the category Set by some other category � which could
similarly serve as a “cosmos” inside which category theory may be developed.

Indeed,  such �-enriched category theory (see Example 2.43  below  for  the  terminology)
exists, beginning with the concept of �-enriched categories (Def. 2.40 below) and from there
directly paralleling, hence generalizing, plain category theory, as long as one assumes the
“cosmos” category � to share a minimum of abstract properties with Set (Def. 2.36 below).

This turns out to be most useful. In fact, the perspective of enriched categories is helpful
already when � = Set, in which case it reproduces plain category theory (Example 2.41
below), for instance in that it puts the (co)limits of the special form of (co)ends (Def. 3.13
below) to the forefront (discussed below).

De�inition	2.36. (cosmos)

A Bénabou cosmos	for	enriched	category	theory, or just cosmos, for short, is a symmetric
(Def. 2.6) closed monoidal category (Def. 2.8) � which has all limits and colimits.
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Example	2.37. (examples	of	cosmoi	for	enriched	category	theory)

The following are examples of cosmoi (Def. 2.36):

1. Sh(�) the sheaf topos (Def. 4.8) over any site (Def. 4.3) – by Prop. 4.23 below.
In particular:

1. Set (Def. 1.2) equipped with its cartesian closed category-structure (Example
2.9)

2. sSet ≃ [���, Set] (Def. , Prop. )

2. Grpd  (Def.  1.16)  equipped  with  its  cartesian  closed  category-structure  (Example
2.11).

3. Cat (Def. 1.16) equipped with its cartesian closed category-structure (Example 2.11).

Example	2.38. underlying	set	of	an	object	in	a	cosmos

Let � be a cosmos (Def. 2.36), with 1 ∈ � its tensor unit (Def. 2.1). Then the hom-functor
(Def. 1.17) out of 1

Hom�(1, −) : � ⟶ Set

admits the structure of a lax monoidal functor (Def. 2.16) to Set, with the latter regarded
with its cartesian monoidal structure from Example 2.9.

Given � ∈ �, we call

Hom�(1,�) ∈ Set

also the underlying set of �.

Proof. Take the monoidal transformations (eq“MonoidalComponentsOfMonoidalFunctor) to
be

Hom�(1,��)×Hom�(1,��)⟶ Hom�(1,��⊗��)

�1 →
��

�� , 1 →
��

��� ↦ �1 →≃ 1⊗ 1 →⎯⎯⎯⎯⎯
��⊗��

��⊗���

and take the unit transformation (43)

* ⟶ Hom�(1, 1)

to pick id� ∈ Hom�(1, 1).  ▮

Example	2.39. (underlying	set	of	internal	hom	is	hom-set)*
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For � a cosmos (Def. 2.36), let �,� ∈ Obj
�

 be two objects. Then the underlying set (Def.

2.38) of their internal hom [�,�] ∈ � (Def. 2.8) is the hom-set (Def. 1.1):

ℋℴ��(1, [�,�]) ≃ Hom�(�,�) .

This identi�ication is the adjunction isomorphism (10) for the internal hom adjunction
(38) followed composed with a unitor (Def. 2.1).

De�inition	2.40. (enriched	category)

For � a cosmos (Def. 2.36), a �-enriched	category � is:

1. a class Obj
�

, called the class	of	objects;

2. for each �, � ∈ Obj
�

, an object

�(�, �) ∈ � ,

called the �-object	of	morphisms between � and �;

3. for each �, �, � ∈ Obj(�) a morphism in �

∘�,�,� : �(�, �)×�(�, �)⟶ �(�, �)

out of the tensor product of hom-objects, called the composition operation;

4. for each � ∈ Obj(�) a morphism Id� : * → �(�,�), called the identity morphism on �

such that the composition is associative and unital.

If the class Obj
�

 happens to be a set (hence a small set instead of a proper class) then we

say the �-enriched category � is small, as in Def. 1.6.

Example	2.41. (Set-enriched	categories	are	plain	categories)

An enriched category (Def. 2.40) over the cosmos � = Set, as in Example 2.37, is the same
as a plain category (Def. 1.1).

Example	2.42. (Cat-enriched	categories	are	strict	2-categories)

An enriched category (Def. 2.40) over the cosmos � = Cat, as in Example 2.37,  is  the
same as a strict 2-category (Def. 1.48).

Example	2.43. (underlying	category	of	an	enriched	category)

Let � be a �-enriched category (Def. 2.40).
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Using the lax monoidal structure (Def. 2.16) on the hom functor (Example 2.38)

Hom�(1, −) : � ⟶ Set

out  of  the  tensor  unit 1 ∈ �  this  induces  a  Set-enriched  category |�|  with  hence  an
ordinary category (Example 2.41), with

• Obj
|�|

≔ Obj
�

;

• Hom|�|(�,�) ≔ Hom�(1,�(�,�)).

It is in this sense that � is a plain category |�| equipped with extra structure, and hence an
“enriched category”.

The archetypical example is � itself:

Example	2.44. (�	as	a	�-enriched	category)

Evert cosmos � (Def. 2.36) canonically obtains the structure of a �-enriched category, def.
2.40:

the hom-objects are the internal homs

�(�,�)≔ [�,�]

and with composition

[�,�] × [�,�]⟶ [�,�]

given  by  the  adjunct  under  the  (Cartesian  product⊣ internal  hom)-adjunction  of  the
evaluation morphisms

�⊗ [XmY]⊗ [�,�] →⎯⎯⎯⎯
(��,��)

�⊗ [�,�]⟶
��

� .

The usual construction on categories, such as that of opposite categories (Def. 1.13) and
product categories (Def. 1.14) have evident enriched analogs

De�inition	2.45. (enriched opposite	category	and	product	category)

For � a cosmos, let �,� be �-enriched categories (Def. 2.40).

1. The opposite enriched	category ��� is the enriched category with the same objects
as �, with hom-objects

���(�,�)≔ �(�,�)
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and with composition given by braiding (37) followed by the composition in �:

���(�,�)⊗���(�,�) = �(�,�)⊗�(�,�)⟶
≃

�
�(�,�)⊗�(�,�) →⎯⎯⎯⎯

∘�,�,�
�(�,�) = �

2. the enriched product 	category �×�  is the enriched category whose objects are
pairs  of  objects  (�,�)  with  � ∈ �  and  � ∈ �,  whose  hom-spaces  are  the  tensor
product of the separate hom objects

(�×�)((��,��), (��,��))≔ �(��, ��)⊗�(��,��)

and  whose  composition  operation  is  the  braiding (37)  followed  by  the  tensor
product of the separate composition operations:

(�×�)((��,��), (��,��))⊗ (�×�)((��,��), (��,��))

= ↓

(�(��, ��)⊗�(��,��))⊗ (�(��, ��)⊗�(��,��))

↓≃
�

(�(��, ��)⊗�(��, ��))⊗ (�(��,��)⊗�(��,��)) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘�� ,�� ,��

)⊗( ∘�� ,�� ,��
)

�

(�

De�inition	2.46. (enriched	functor)

For � a cosmos (Def. 2.36), let � and � be two �-enriched categories (Def. 2.40).

A �-enriched	functor from � to �

� : � ⟶ �

is

1. a function

���� : Obj� ⟶ Obj
�

of objects;

2. for each �, � ∈ Obj
�

 a morphism in �

��,� : �(�, �)⟶ �(��(�),��(�))

between hom-objects
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such that this preserves composition and identity morphisms in the evident sense.

Example	2.47. (enriched	hom-functor)

For � a cosmos (Def. 2.36), let � be a �-enriched category (Def. 2.40). Then there is a �-
enriched functor out of the enriched product category of �  with its enriched opposite
category (Def. 2.45)

�(−, −) : ���×� ⟶ �

to �,  regarded as a �-enriched category (Example 2.44), which sends a pair of objects
�,� ∈ � to the hom-object �(�,�) ∈ �, and which acts on morphisms by composition in
the evident way.

Example	2.48. (enriched	presheaves)

For � a cosmos (Def. 2.36), let � be a �-enriched category (Def. 2.40). Then a �-enriched
functor (Def. 2.46)

� : � ⟶ �

to the archetypical �-enriched category from Example 2.44 is:

1. an object �� ∈ Obj� for each object � ∈ Obj
�

;

2. a morphism in � of the form

��⊗�(�, �)⟶ ��

for all pairs of objects �, � ∈ Obj(�)
(this is the adjunct of ��,� under the adjunction (38) on �)

such that composition is respected, in the evident sense.

For every object � ∈ �, there is an enriched representable functor, denoted

�(�) ≔ �(�, −)

(where on the right we have the enriched hom-functor from Example 2.47)

which sends objects to

�(�)(�) = �(�,�) ∈ �

and whose action on morphisms is, under the above identi�ication, just the composition
operation in �.
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More generally, the following situation will be of interest:

Example	2.49. (enriched	functor	on	enriched product	category	with	opposite	category)

An �-enriched functor  (Def.  2.46)  into  �  (Example  2.44)  out  of  an  enriched product
category (Def. 2.45)

� : �×� ⟶ �

(an “enriched bifunctor”) has component morphisms of the form

�(�� ,��),(�� ,��) : �(��, ��)⊗�(��,��)⟶ ���((��,��)),��((��,��))� .

By functoriality and under passing to adjuncts (Def. 1.32) under (38) this is equivalent to
two commuting actions

�
�� ,��

(�) : �(��, ��)⊗��((��,�))⟶ ��((��,�))

and

�
�� ,��

(�) : �(��,��)⊗��((�,��))⟶ ��((�,��)) .

In the special case of a functor out of the enriched product category of some �-enriched
category � with its enriched opposite category (def. 2.45)

� : ���×� ⟶ �

then this takes the form of a “pullback action” in the �irst variable

�
�� ,��

(�) : �(��, ��)⊗��((��,�))⟶ ��((��,�))

and a “pushforward action” in the second variable

�
�� ,��

(�) : �(��,��)⊗��((�,��))⟶ ��((�,��)) .

De�inition	2.50. (enriched	natural	transformation)

For � a cosmos (Def. 2.36), let � and � be two �-enriched categories (Def. 2.40) and let

�
⟶
�

⟶
�

�

be two �-enriched functors (Def. 2.46) from � to �.
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(45)

(46)

Then a �-enriched natural transformation

� ⇓� �
→⎯⎯⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯⎯⎯
�

�

is

• for each � ∈ Obj
�

 a choice of morphism

�
�
: � ⟶ �(�(�),�(�))

such that for each pair of objects �,� ∈ � the two morphisms (in �)

�
�
∘ �(−) : �(�,�) ≃

�
�(�,�)⊗� →⎯⎯⎯⎯⎯⎯

��,�⊗��
�(�(�),�(�))⊗�(�(�),�(�)) ⎯⎯⎯⎯⎯⎯⎯⎯⎯

∘�(�),�(�),�(

and

�(−) ∘ �
�
: �(�,�) ≃

ℓ
�⊗�(�,�) →⎯⎯⎯⎯⎯⎯

��⊗��,�
�(�(�),�(�))⊗�(�(�),�(�)) ⎯⎯⎯⎯⎯⎯⎯⎯

∘�(�),�(�),�

agree.

Example	2.51. (functor	category	of	enriched	functors)

For � a cosmos (Def. 2.36) let �, � be two �-enriched categories (Def. 2.40). Then there is
a category (Def. 1.1) of enriched functors (Def. 2.46), to be denoted

[�,�]

whose objects are the enriched functors � →
�
� and whose morphisms are the enriched

natural transformations between these (Def. 2.50).

In the case that � = Set, via Def. 2.37, with Set-enriched categories identi�ied with plain
categories via Example 2.41, this coincides with the functor category from Example 1.25.

Notice that, at this point, [�,�] is a plain category, not itself a �-enriched category, unless
� = Set. But it may be enhanced to one, this is Def. 3.16 below.

There is now the following evident generalization of the concept of adjoint 	functors  (Def.
1.32) from plain category theory to enriched category theory:

De�inition	2.52. (enriched	adjunction)

For �  a cosmos (Def. 2.36), let �,  �  be two �-enriched categories (Def. 2.40). Then an
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(47)

adjoint	pair	of	�-enriched	functors or enriched	adjunction

� ⊥
⟶
�

⟵
�

�

is a pair of �-enriched functors (Def.  2.46), as shown, such that there is a �-enriched
natural isomorphism (Def. 2.50) between enriched hom-functors (Def. 2.47) of the form

�(�(−), −) ≃ �(−,�(−)) .

De�inition	2.53. (enriched equivalence	of	categories)

For �  a cosmos (Def. 2.36), let �,  �  be two �-enriched categories (Def. 2.40). Then an
equivalence	of	enriched	categories

� ≃
→⎯⎯⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯⎯⎯
�

�

is a pair of �-enriched functors back and forth, as shown (Def. 2.46), together with �-
enriched natural isomorphisms (Def. 2.50) between their composition and the identity
functors:

id� ⇒
≃

� ∘ � and � ∘� ⇒
≃
id� .

3. Universal constructions

What makes category theory be theory,  as opposed to just a language,  is  the concept of
universal	constructions. This refers to the idea of objects with a prescribed property which
are universal with this property, in that they “know about” or “subsume” every other object
with that same kind of property. Category theory allows to make precise what this means,
and then to discover and prove theorems about it.

Universal  constructions  are  all  over  the  place  in  mathematics.  Iteratively  �inding  the
universal  constructions  in  a  prescribed  situation  essentially  amounts  to  systematically
following the unravelling of the given situation or problem or theory that one is studying.

There are several different formulations of the concept of universal constructions, discussed
below:

• Limits	and	colimits

• Ends	and	coends
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• Left	and	right	Kan	extensions

But these three kinds of constructions all turn out to be special cases of each other, hence
they really re�lect different perspectives on a single topic of universal constructions. In fact,
all three are also special cases of the concept of adjunction (Def. 1.32), thus re-amplifying
that category theory is really the theory of adjunctions and hence, if we follow (Lambek 82),
of duality.

Limits	and	colimits

Maybe the most hands-on version of  universal  constructions are limits  (Def.  3.1  below),
which is short for limiting	cones (Remark 3.2 below). The formally dual concept (Example
1.13) is called colimits (which are hence limits in an opposite category). Other terminology
is in use, too:

lim
←⎯⎯

lim
→⎯⎯

limit colimit

inverse limit direct limit

There is a variety of different kinds of limits/colimits, depending on the diagram shape that
they are limiting (co-)cones over. This includes universal constructions known as equalizers,
products, �iber	products/pullbacks, �iltered	limits and various others, all of which are basic
tools frequently used whenever category theory applies.

A key fact of category theory, regarding limits, is that right adjoints preserve limits and left
adjoints  preserve  colimits  (Prop.  3.8  below).  This  will  be  used  all  the  time.  A  partial
converse to this  statement is  that  if  a  functor preserves limits/colimits,  then its  adjoint
functor is, if it exists, objectwise given by a limit/colimit over a comma category under/over
the given functor (Prop. 3.11 below). Since these comma categories are in general not small,
this involves set-theoretic size subtleties that are dealt with by the adjoint	functor	theorem
(Remark 3.12 below). We discuss in detail a very special but also very useful special case of
this in Prop. 3.29, further below.

De�inition	3.1. (limit	and	colimit)

Let � be a small category (Def. 1.6), and let � be any category (Def. 1.1). In this case one
also says that a functor

� : � ⟶ �
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(48)

is a diagram	of	shape	�	in	�.

Recalling  the  functor  category  (Example  1.25)  [�,�],  there  is  the  constant 	diagram-
functor

const : � ⟶ [�,�]

which  sends  an  object � ∈ �  to  the  functor  that  sends  every  � ∈ �  to  �,  and  every
morphism in � to the identity morphism on �. Accordingly, every morphism in � is sent
by const to the natural transformation (Def. 1.23) all whose components are equal to that
morphism.

Now:

1. if const has a right adjoint (Def. 1.32), this is called the construction of forming the
limiting	cone	of	�-shaped	diagrams	in	�, or just limit (or inverse	limit) for short, and
denoted

lim
←⎯⎯
�

: [�,�]⟶ �

2. if const  has a left adjoint (Def. 1.32), this is called the construction of forming the
colimiting	cocone	of	�-shaped	diagrams	in	�, or just colimit (or direct	limit) for short,
and denoted

lim
→⎯⎯⎯
�

: [�,�]⟶ �

[�,�]

→⎯⎯⎯⎯⎯⎯

���
→⎯⎯⎯
�

←⎯⎯⎯⎯⎯⎯⎯⎯
�����

→⎯⎯⎯⎯⎯⎯

���
←⎯⎯⎯
�

� .

If lim
←⎯⎯⎯
�

 (lim
→⎯⎯
�

) exists for a given �, one says that � has	all	limits (_has all colimits_) of shape

�_ or that all limits (colimits) of shape � exist	in	�. If this is the case for all small diagrams
�, one says that �	has	all	limits (_has all colimits_) or that all	limits	exist	in	�, (_all colimits
exist in �.)

Remark	3.2. (limit cones)

Unwinding De�inition 3.1 of limits and colimits, it says the following.

First of all, for � ∈ � any object and � : � ⟶ � any functor, a natural transformation (Def.
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(49)

(50)

(51)

1.23) of the form

const� ⇒
�
�

has component morphisms

�

↓
�
�
��

�(�)

in �, for each � ∈ �, and the naturality condition (4) says that these form a commuting
diagram (Def. 1.4) of the form

�

��� ↙ ↘
���

�(��) →⎯⎯⎯⎯⎯⎯⎯
�(�)

�(��)

for each morphism �� →
�
��  in �.  Due to the look of this diagram, one also calls such a

natural transformation a cone over the functor �.

Now  the  counit  (Def.  1.33)  of  the  (const ⊣ lim
←⎯⎯

)-adjunction (48)  is  a  natural

transformation of the form

const���
←⎯⎯⎯

� →⎯⎯⎯⎯⎯⎯
��

�

and hence is, in components, a cone (50) over �:

lim
←⎯⎯

�

��(��) ↙ ↘��(��)

�(��) →⎯⎯⎯⎯⎯⎯⎯
�(�)

�(��)

to be called the limiting	cone over �

But the universal property of adjunctions says that this is a very special cone: By Prop.
1.42  the  de�ining  property  of  the  limit  is  equivalently  that  for  every  natural
transformation of the form (49), hence for every cone of the form (50), there is a unique
natural transformation

const� ⇒
�̃

const���
←⎯⎯⎯
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(52)

which, due to constancy of the two functors applied in the naturality condition (4), has a
constant component morphism

� ⟶
�̃
lim
←⎯⎯

�

such that

const� ⟶
�̃

const���
←⎯⎯⎯

�

�� ↘ ↙�

�

hence such that (52) factors the given cone (50) through the special cone (51):

�

��� ↙ ↘
���

�(��) →⎯⎯⎯⎯⎯⎯⎯⎯
�(�)

�(��)

=

�

↓
�
�
�̃

lim
←⎯⎯

�

��(��) ↙ ↘��(��)

�(��) →⎯⎯⎯⎯⎯⎯⎯⎯
�(�)

�(��)

In this case one also says that �̃ is a morphism	of	cones.

Hence a limit 	cone  is a cone over �,  such that every other cone factors through it in a
unique way.

Of course this concept of (co)limiting cone over a functor � : � → �  makes sense also
when

1. � is not small,

2. and/or when a (co-)limiting cone exists only for some but not for all functors of this
form.

Example	3.3. (terminal/initial	object	is	empty limit/colimit)

Let � be a category, and let * ∈ � be an object. The following are equivalent:

1. * is a terminal object of � (Def. 1.5);

2. * is the limit of the empty diagram.

And formally dual (example 1.13): Let ∅ ∈ � be an object. The following are equivalent:
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(53)

1. ∅ is an initial object of � (Def. 1.5);

2. ∅ is the colimit of the empty diagram.

Proof. We discuss the case of the terminal object, the other case is formally dual (Example
1.13).

It suf�ices to observe that a cone over the empty diagram (Remark 3.2) is clearly just a plain
object of �. Hence a morphism of such cones is just a plain morphism of �.  This way the
condition on a limiting cone is  now manifestly the same as the condition on a terminal
object.  ▮

Example	3.4.	(initial	object	is	limit	over	identity	functor)

Let	�	be	a	category,	and	let	∅ ∈ �	be	an	object.	The	following	are	equivalent:

1.	∅	is	an	initial	object	of	�	(Def.	1.5);

2.	∅	is	the	tip	of	a	limit cone	(Remark	3.2)	over	the	identity	functor	on	�.

Proof. First let ∅ be an initial object. Then, by de�inition, it is the tip of a unique cone over
the identity functor

const∅ ∅

�∅ ⇓
���
∅

↙ ↘
���
∅

id� �� ⟶
�

��

We need to show that that every other cone ��

const� �

�� ⇓ ���
�

↙ ↘
���
�

id� �� ⟶
�

��

factors uniquely through �∅.

First of all, since the cones are over the identity functor, there is the component �∅
� : � → ∅,

and it is a morphism of cones.

To see that this is the unique morphism of cones, consider any morphism of cones �
∅
�, hence

a morphism in � such that ��
� = ��

∅ ∘ �
∅
� for all � ∈ �. Taking here � = ∅ yields

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

112 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/colimit
https://ncatlab.org/nlab/show/colimit
https://ncatlab.org/nlab/show/generalized+the
https://ncatlab.org/nlab/show/generalized+the
https://ncatlab.org/nlab/show/empty+category
https://ncatlab.org/nlab/show/empty+category
https://ncatlab.org/nlab/show/diagram
https://ncatlab.org/nlab/show/diagram
https://ncatlab.org/nlab/show/terminal+object
https://ncatlab.org/nlab/show/terminal+object
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/cone
https://ncatlab.org/nlab/show/cone
https://ncatlab.org/nlab/show/empty+category
https://ncatlab.org/nlab/show/empty+category
https://ncatlab.org/nlab/show/diagram
https://ncatlab.org/nlab/show/diagram
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/limit
https://ncatlab.org/nlab/show/limit
https://ncatlab.org/nlab/show/identity+functor
https://ncatlab.org/nlab/show/identity+functor
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/limit
https://ncatlab.org/nlab/show/limit
https://ncatlab.org/nlab/show/cone
https://ncatlab.org/nlab/show/cone
https://ncatlab.org/nlab/show/identity+functor
https://ncatlab.org/nlab/show/identity+functor
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/initial+object
https://ncatlab.org/nlab/show/cone
https://ncatlab.org/nlab/show/cone


(54)

�∅
� = �∅

∅
⏟
= ��∅

∘ �
∅
�

= �
∅
� ,

where under the brace we used that ∅ is initial. This proves that �∅ is the limiting cone.

For the converse, assume now that �∅ is a limiting cone over the identity functor, with labels
as in (53). We need to show that its tip ∅ is an initial object.

Now the cone condition applied for any object � ∈ � over the morphims � ≔ ��
∅ says that

��
∅ ∘ �∅

∅ = ��
∅

which  means  that  �∅
∅  constitutes  a  morphism  of  cones  from �∅  to  itself.  But  since  �∅  is

assumed to be a limiting cone, and since the identity morphism on ∅  is of course also a
morphism of cones from �∅ to itsely, we deduce that

�∅
∅ = id∅ .

Now consider any morphism of the form ∅ →
�
�. Since we already have the morphism ∅ →

��
∅

�,
to show initiality of ∅ we need to show that � = ��

∅.

Indeed, the cone condition of ��
∅ applied to � now yields

��
∅ = � ∘ �∅

∅
⏟
= ��∅

= � ,

where under the brace we used (54).  ▮

Example	3.5. (limits	of	presheaves	are	computed	objectwise)

Let � be a category and write [���, Set] for its category of presheaves (Example 1.26). Let
moreover � be a small category and consider any functor

� : � ⟶ [���,�] ,

hence a �-shaped diagram in the category of presheaves.

Then

1. The limit (Def. 3.1) of � exists, and is the presheaf which over any object � ∈ �  is
given by the limit in Set of the values of the presheaves at �:
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� lim
←⎯⎯
�∈�

�(�)�(�) ≃ lim
←⎯⎯
�∈�

�(�)(�)

2. The colimit (Def. 3.1) of � exists, and is the presheaf which over any object � ∈ � is
given by the colimit in Set of the values of the presheaves at �:

� lim
→⎯⎯

�∈�

�(�)�(�) ≃ lim
→⎯⎯⎯

�∈�

�(�)(�)

Proof. We discuss the case of limits, the other case is formally dual (Example 1.13).

Observe that there is a canonical equivalence (Def. 1.57)

[�, [���, Set ]] ≃ [�×���, Set]

where �×��� is the product category.

This makes manifest that a functor � : � → [���, Set] is equivalently a diagram of the form

⋮ ⋮

↓
�
� ↓

�
�

⋯ ⟶ �(��)(��) ⟶ �(��)(��) ⟶ ⋯

↓
�
� ↓

�
�

⋯ ⟶ �(��)(��) ⟶ �(��)(��) ⟶ ⋯

↓
�
� ↓

�
�

⋮ ⋮

Then observe that taking the limit of each “horizontal row” in such a diagram indead does
yield a  presheaf  on �,  in  that  the construction extends from objects  to  morphisms,  and

uniquely so: This is because for any morphism �� →
�
��  in �, a cone over �(−)(��) (Remark

3.2) induces a cone over �(−)(��), by vertical composition with �(−)(�)

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

114 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/colimit
https://ncatlab.org/nlab/show/colimit
https://ncatlab.org/nlab/show/presheaf
https://ncatlab.org/nlab/show/presheaf
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/colimit
https://ncatlab.org/nlab/show/colimit
https://ncatlab.org/nlab/show/Set
https://ncatlab.org/nlab/show/Set
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/equivalence+of+categories
https://ncatlab.org/nlab/show/equivalence+of+categories
https://ncatlab.org/nlab/show/product+category
https://ncatlab.org/nlab/show/product+category
https://ncatlab.org/nlab/show/functor
https://ncatlab.org/nlab/show/functor
https://ncatlab.org/nlab/show/diagram
https://ncatlab.org/nlab/show/diagram
https://ncatlab.org/nlab/show/morphism
https://ncatlab.org/nlab/show/morphism
https://ncatlab.org/nlab/show/cone
https://ncatlab.org/nlab/show/cone


lim
←⎯⎯
�∈�

�(�)(��)

↙ ↘

�(��)(��) ⟶ �(��)(��)

�(��)(�) ↓
�
� ↓

�
�
�(��)(�)

�(��)(��) ⟶ �(��)(��)

From this, the universal property of limits of sets (as in Remark 3.2) implies that there is a
unique morphism between the pointwise limits which constitutes a presheaf over �

lim
←⎯⎯
�∈�

�(�)(��)

↓
�
�
���
←⎯⎯⎯
�∈�

�(�)(�)

lim
←⎯⎯
�∈�

�(�)(��)

and that is the tip of a cone over the diagram �(−) in presheaves.

Hence it remains to see that this cone of presheaves is indeed universal.

Now if  �  is  any other cone over �  in  the  category  of  presheaves,  then by  the  universal
property of the pointswise limits, there is for each � ∈ � a unique morphism of cones in sets

�(�)⟶ lim
←⎯⎯
�∈�

�(�)(�) .

Hence there is at most one morphisms of cones of presheaves, namely if these components
make all their naturality squares commute.

�(��) ⟶ lim
←⎯⎯
�∈�

�(�)(��)

↓
�
� ↓

�
�

�(��) ⟶ lim
←⎯⎯
�∈�

�(�)(��)

.

But since everything else commutes, the two ways of going around this diagram constitute
two morphisms from a cone over �(−)(��) to the limit cone over �(−)(��), and hence they
must be equal, by the universal property of limits.  ▮

Proposition	3.6.	(hom-functor	preserves	limits)
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Let	�	be	a	category	and	write

Hom� : �
��×� ⟶ Set

for	its	hom-functor.	This	preserves limits	(Def.	3.1)	in	both	its	arguments	(recalling	that	a
limit	in	the	opposite	category ���	is	a	colimit	in	�).

More	in	detail,	let	�• : ℐ ⟶ �	be	a	diagram.	Then:

1.	If	the	limit lim
←⎯⎯�

��	exists	in	�	then	for	all	� ∈ �	there	is	a	natural	isomorphism

Hom���, lim←⎯⎯�
��� ≃ lim

←⎯⎯�
(Hom�(�,��)) ,

where	on	the	right	we	have	the	limit	over	the	diagram	of	hom-sets	given	by

Hom�(�, −) ∘ � : ℐ ⟶
�

� →⎯⎯⎯⎯⎯⎯⎯⎯
����(�,�)

Set .

2.	If	the	colimit lim
→⎯⎯ �

��	exists	in	�	then	for	all	� ∈ �	there	is	a	natural	isomorphism

Hom��lim→⎯⎯⎯ �
��,�� ≃ lim

←⎯⎯�
(Hom�(��,�)) ,

where	on	the	right	we	have	the	limit	over	the	diagram	of	hom-sets	given	by

Hom�(−,�) ∘ � : ℐ�� ⟶
�

��� →⎯⎯⎯⎯⎯⎯⎯⎯
����(�,�)

Set .

Proof. We give the proof of the �irst statement, the proof of the second statement is formally
dual (Example 1.13).

First observe that, by the very de�inition of limiting cones, maps out of some � into them are
in natural bijection with the set Cones(�,�•) of cones over the diagram �• with tip �:

Hom��, lim
←⎯⎯�

��� ≃ Cones(�,�•) .

Hence it remains to show that there is also a natural bijection like so:

Cones(�,�•) ≃ lim
←⎯⎯�

(Hom(�,��)) .

Now, again by the very de�inition of limiting cones, a single element in the limit on the right
is equivalently a cone of the form
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⎧

⎨

⎩

⎪

⎪

*

������� ↙ ↘
�������

Hom(�,��) →⎯⎯⎯⎯⎯
�� ∘(�)

Hom(�,��)

⎫

⎬

⎭

⎪

⎪
�,�∈���(ℐ),�∈���ℐ(�,�)

.

This is equivalently for each object � ∈ ℐ a choice of morphism �
�
:� → �� , such that for each

pair  of  objects  �, � ∈ ℐ  and each � ∈ Homℐ(�, �)  we have �� ∘ �� = �
�
.  And indeed,  this  is

precisely the characterization of an element in the set Cones(�,�•}).  ▮

Example	3.7. (initial	and	terminal	object	in	terms	of	adjunction)

Let � be a category (Def. 1.1).

1. The following are equivalent:

1. � has a terminal object (Def. 1.5);

2. the unique functor � → *  (Def. 1.15) to the terminal category (Example 1.7)
has a right adjoint (Def. 1.32)

* ⊥
⟶
⟵

�

Under this equivalence, the terminal object is identi�ied with the image under the
right adjoint of the unique object of the terminal category.

2. Dually, the following are equivalent:

1. � has an initial object (Def. 1.5);

2. the unique functor � → *  to the terminal category has a left adjoint

� ⊥
⟶
⟵

*

Under this equivalence, the initial object is identi�ied with the image under the left
adjoint of the unique object of the terminal category.

Proof.  Since  the  unique  hom-set  in  the  terminal  category  is  the singleton,  the  hom-
isomorphism (10) characterizing the adjoint functors is directly the universal property of an
initial object in �

Hom�(�( * ),�) ≃ Hom*( * ,�(�)) = *

or of a terminal object

Hom�(�,�( * )) ≃ Hom*(�(�), * ) = * ,
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(55)

respectively.  ▮

Proposition	3.8.	(left	adjoints	preserve	colimits	and	right	adjoints	preserve	limits)

Let	(� ⊣ �) :� → �	be	a	pair	of	adjoint	functors	(Def.	1.32).	Then

• � preserves	all	colimits	(Def.	3.1)	that	exist	in	�,

• �	preserves	all	limits	(Def.	3.1)	in	�.

Proof. Let �: � → � be a diagram whose limit lim←� ��  exists. Then we have a sequence of

natural isomorphisms, natural in � ∈ �

Hom�(�,� lim��⎯ �
�
�
) ≃ Hom�(��, lim��⎯ �

�
�
)

≃ lim
��⎯ �

Hom�(��,��)

≃ lim
��⎯ �

Hom�(�,���)

≃ Hom�(�, lim��⎯ �
��

�
) ,

where we used the hom-isomorphism (10) and the fact that any hom-functor  preserves
limits (Def.  3.6).  Because this is natural in �  the Yoneda lemma implies that we have an
isomorphism

� lim
��⎯ �

�
�
≃ lim

��⎯ �
��

�
.

The argument that shows the preservation of colimits by � is analogous.  ▮

Proposition	3.9.	(limits	commute	with	limits)

Let	�	and	�′	be	small	categories	(Def.	1.6)	and	let	�	be	a	category	(Def.	1.1)	which	admits
limits	(Def.	3.1)	of	shape	�	as	well	as	limits	of	shape	�′.	Then	these	limits	“commute”	with
each 	other, 	 in 	that 	for 	� : �×�′ → � 	a 	functor 	(hence 	a 	diagram 	of 	shape 	the 	product
category),	with	corresponding	adjunct	functors	(via	Example	2.11)

�′ ⟶
��

[�,�] � ⟶
���

[�′,�]

we	have	that	the	canonical	comparison	morphism

lim� ≃ lim�(lim�� ��) ≃ lim��(lim� ���)

is	an	isomorphism.

Proof.  Since  the  limit-construction is  the  right  adjoint  functor  to  the  constant diagram-
functor, this is a special case of right	adjoints	preserve	limits (Prop. 3.8).  ▮
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(56)

See limits	and	colimits	by	example for what formula (55) says for instance for the special case
� = Set.

Remark	3.10. (general	non-commutativity	of	limits	with	colimits)

In general limits do not commute with colimits. But under a number of special conditions
of interest they do. Special cases and concrete examples are discussed at commutativity	of
limits	and	colimits.

Proposition	3.11.	(pointwise	expression	of	left	adjoints	in	terms	of	limits	over	comma
categories)

A	functor � : � ⟶ �	(Def.	1.15)	has	a	left	adjoint � : �⟶ �	(Def.	1.32)	precisely	if

1.	� preserves	all	limits	(Def.	3.1)	that	exist	in	�;

2.	for 	each 	object � ∈ �, 	the 	 limit 	(Def. 	3.1) 	of 	the 	canonical 	 functor 	(22) 	out 	of 	the
comma	category	(Example	1.43)

� / � ⟶ �

exists.

In	this	case	the	value	of	the	left	adjoint �	on	�	is	given	by	that	limit:

�(�) ≃ lim
←⎯⎯

⎛

⎝

⎜⎜
�,

�

↓�

�(�)

⎞

⎠

⎟⎟
∈�/�

�

Proof. First assume that the left adjoint exist. Then

1. � is a right adjoint and hence preserves limits since all right adjoints preserve limits
(Prop. 3.8);

2. by Prop. 1.42 the adjunction unit provides a universal morphism �
�

 into �(�),  and

hence, by Prop. 1.44, exhibits (�(�), �
�
)  as the initial object of the comma category

� / �.  The limit over any category with an initial object exists, as it is given by that
initial object.

Conversely, assume that the two conditions are satis�ied and let �(�) be given by (56). We
need to show that this yields a left adjoint.

By the assumption that � preserves all limits that exist, we have
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(57)

�(�(�)) = �

⎛

⎝

⎜
⎜
⎜
⎜

lim
←⎯⎯

⎛

⎝

⎜⎜
�,

�

↓�

�(�)

⎞

⎠

⎟⎟
∈�/�

�

⎞

⎠

⎟
⎟
⎟
⎟

≃ lim
←⎯⎯

⎛

⎝

⎜⎜
�,

�

↓�

�(�)

⎞

⎠

⎟⎟
∈�/�

�(�)

Since  the  � →
�
�(�)  constitute  a  cone  over  the  diagram  of  the  �(�),  there  is  universal

morphism

� →⎯⎯⎯⎯⎯⎯
��

�(�(�)) .

By Prop. 1.42 it is now suf�icient to show that �
�

 is a universal morphism into �(�), hence

that for all � ∈ � and � ⟶
�
�(�) there is a unique morphism �(�)⟶

�̃
� such that

�

�� ↙ ↘�

�(�(�)) →⎯⎯⎯⎯⎯⎯⎯
�(�̃)

�(�)

�(�) →⎯⎯⎯⎯⎯
�̃

�

By Prop. 1.44, this is equivalent to (�(�), �
�
) being the initial object in the comma category

� / �,  which in turn is equivalent to it being the limit of the identity functor on � / �  (by
Example 3.4). But this follows directly from the limit formulas (56) and (57).  ▮

Remark	3.12. (adjoint	functor	theorem)

Beware the subtle point in Prop. 3.11, that the comma category � / � is in general not a
small category (Def. 1.6): It has typically “as many” objects as � has, and � is not assumed
to be small (while of course it may happen to be). But typical categories, such as notably
the category of  sets (Example 1.2) are generally guaranteed only to admit limits over
small categories. For this reason, Prop. 3.11 is rarely useful for �inding an adjoint functor
which is not already established to exist by other means.

But there are good suf�icient conditions known, on top of the condition that � preserves
limits, which guarantee the existence of an adjoint functor, after all. This is the topic of the
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adjoint	functor	theorem (one of the rare instances of useful and non-trivial theorems in
mathematics for which issues of set theoretic size play a crucial role for their statement
and proof).

A very special but also very useful case of the adjoint functor theorem is the existence of
adjoints of base change functors between categories of (enriched) presheaves via Kan
extension. This we discuss as Prop. 3.29 below. Since this is most conveniently phrased in
terms of  special  limits/colimits  called ends/coends (Def.  3.13  below)  we �irst  discuss
these.

Ends	and	coends

For working with enriched categories (Def. 2.40) , a certain shape of limits/colimits (Def.
3.1) is particularly relevant: these are called ends  and coends  (Def. 3.13 below).  We here
introduce  these  and  then  derive  some  of  their  basic  properties,  such  as  notably  the
expression for Kan extension in terms of (co-)ends (prop. 3.29 below).

De�inition	3.13. ((co)end)

Let � be a small �-enriched category (Def. 2.40). Let

� : ���×� ⟶ �

be an enriched functor (Def.  2.46) out of  the enriched product category of  �  with its
opposite category (Def. 2.45). Then:

1. The coend of �, denoted

�

�∈�

�(�, �) ∈ � ,

is the coequalizer in � of the two actions encoded in � via Example 2.49:

�

�,�∈�

�(�,�)⊗�(�, �)
→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

⊔
�,�
�(�,�)(�)

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
�,�
�(�,�)(�)

�

�∈�

�(�, �) →⎯⎯⎯
����

�

�∈�

�(�, �) .

2. The end of �, denoted
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�

�∈�

�(�, �) ∈ � ,

is the equalizer in � of the adjuncts of the two actions encoded in � via example
2.49:

�

�∈�

�(�, �) →⎯⎯⎯⎯
���

�

�∈�

�(�, �)
→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

⊔
�,�

�̃(�,�)(�)

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
�,�

�̃�,�(�)

�

�∈�

��(�,�), �(�,�)� .

Example	3.14. For � a cosmos, let � ∈ � be a group object. There is the n the one-object �-
enriched category �� as in Example 1.11.

Then a �-enriched functor

(�,�
�
) : �� ⟶ �

is an object � ≔ �( * ) ∈ � equipped with a morphism

�
�
: �⊗� ⟶ �

satisfying the action property. Hence this is equivalently an action of � on �.

The opposite category (def. 2.45) (��)�� comes from the opposite group-object

(��)�� = �(���) .

(The  isomorphism  � ≃ ���  induces  a  canonical  euqivalence  of  enriched  categories
(��)�� ≃ ��.)

So an enriched functor

(�,�
�
) : (��)�� ⟶ �

is equivalently a right action of �.

Therefore the coend of two such functors (def. 3.13) coequalizes the relation

(��, �) ∼ (�, ��)

(where juxtaposition denotes left/right action) and is the quotient of the plain tensor
product by the diagonal action of the group �:
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�

* ∈�(��)

(�,�
�
)( * ) ⊗ (�,�

�
)( * ) ≃ �⊗� � .

Example	3.15. (enriched	natural	transformations	as	ends)

Let � be a small enriched category (Def. 2.40). For �,� : � ⟶ � two enriched presheaves
(Example 2.48), the end (def. 3.13) of the internal-hom-functor

[�(−),�(−)] : ���×� ⟶ �

is  an object  of  �  whose underlying set  (Example 2.38)  is  the set  of  enriched  natural
transformations � ⇒ � (Def. 2.50)

Hom��1,� �

�∈�

��(�),�(�)��� ≃ Hom[�,�](�,�) .

Proof.  The underlying pointed set functor Hom�(1, −) :� → Set preserves all limits, since
hom-functors preserve limits (Prop. 3.6). Therefore there is an equalizer diagram in Set of
the form

Hom��1,� �

�∈�

[�(�),�(�)]�� →⎯⎯
���

�

�∈�

Hom�(�(�),�(�)) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
�,�
�(�̃(�,�)(�))

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
�,�
�(�̃�,�(�))

�

�,�∈�

Hom�(�(�,�)

where we used Example 2.39 to identify underlying sets of internal homs with hom-sets.

Here  the  object  in  the  middle  is  just  the  set  of  indexed  sets  of  component  morphisms

��(�) →
��
�(�)�

�∈�
. The two parallel maps in the equalizer diagram take such a collection to

the indexed set of composites (45) and (46). Hence that these two are equalized is precisely
the  condition  that  the  indexed  set  of  components  constitutes  an  enriched  natural
transformation.  ▮

Conversely,  example  3.15  says  that  ends  over  bifunctors  of  the  form  [�(−),�(−))]
constitute hom-spaces between pointed topologically enriched functors:

De�inition	3.16. (enriched	presheaf	category)

For � a cosmos (Def. 2.36), let � be a small �-enriched category (Def. 2.40).

Then the �-enriched presheaf category [�,�] is �-enriched functor category from � to �,
hence is the following �-enriched category (Def. 2.40)
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(58)

1. the objects are the �-enriched functors � →
�
� (Def. 2.46);

2. the hom-objects are the ends

[�,�](�,�) ≔ �

�∈�

[�(�),�(�)]

3. the  composition  operation  on  these  is  de�ined  to  be  the  one  induced  by  the
composite maps

� �

�∈�

[�(�),�(�)]�⊗� �

�∈�

[�(�),�(�)]� ⟶ �

�∈�

[�(�),�(�)]⊗ [�(�),�(�)] ⎯⎯⎯⎯⎯⎯
( ∘�(�),�

where the �irst morphism is degreewise given by projection out of the limits that
de�ined  the  ends.  This  composite  evidently  equalizes  the  two  relevant  adjunct
actions (as in the proof of example 3.15) and hence de�ines a map into the end

� �

�∈�

[�(�),�(�)]�⊗� �

�∈�

[�(�),�(�)]� ⟶ �

�∈�

[�(�),�(�)] .

By Example 3.15, the underlying plain category (Example 2.43) of this enriched functor
category is the plain functor category of enriched functors from Example 2.51.

Proposition	3.17.	(enriched	Yoneda	lemma)

For	�	a	cosmos	(Def.	2.36)	let	�	be	a	small enriched	category	(Def.	2.40).	For	� :� → �	an
enriched	presheaf	(Example	2.48)	and	for	� ∈ �	an	object,	there	is	a	natural	isomorphism

[�,�](�(�, −), �) ≃ �(�)

between 	 the 	hom-object 	of 	 the 	enriched 	 functor 	category 	 (Def. 	3.16), 	 from 	 the 	 functor
represented	by	�	to	�,	and	the	value	of	�	on	�.

In	terms	of	the	ends	(def.	3.13)	de�ining	these	hom-objects (58),	this	means	that

�

�∈�

[�(�,�),�(�)] ≃ �(�) .

In	this	form	the	statement	is	also	known	as	Yoneda	reduction.

Now that natural transformations are expressed in terms of ends (example 3.15), as is the
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enriched Yoneda lemma (prop. 3.17), it is natural to consider the dual statement (Example
1.13) involving coends:

Proposition	3.18.	(enriched	co-Yoneda	lemma)

For	�	a	cosmos	(Def.	2.36),	let	�	be	a	small �-enriched	category	(Def.	2.40).	For	� :� → �	an
enriched	presheaf	(Def.	2.48)	and	for	� ∈ �	an	object,	there	is	a	natural	isomorphism

�(−) ≃ �

�∈�

�(�, −)⊗�(�) .

Moreover,	the	morphism	that	hence	exhibits	�(�)	as	the	coequalizer	of	the	two	morphisms	in
def.	3.13	is	componentwise	the	canonical	action

�(�,�)⊗�(�)⟶ �(�)

which	is	adjunct	to	the	component	map	�(�, �) → [�(�),�(�)]	of	the	enriched	functor �.

(e.g. MMSS 00, lemma 1.6)

Proof. By the de�inition of coends and the universal property of colimits, enriched natural
transformations of the form

� �

�∈�

�(�, −)⊗�(�)� ⟶ �

are in natural bijection with systems of component morphisms

�(�,�)⊗�(�)⟶ �(�)

which satisfy some compatibility conditions in their dependence on � and � (natural in �
and “extranatural” in �). By the internal hom adjunction, these are in natural bijection to
systems of morphisms of the form

�(�)⟶ [�(�,�),�(�)]

satisfying the  analogous compatibility  conditions.  By  Example  3.15 these  are  in  natural
bijection with systems of morphisms

�(�)⟶ [�,�](�(�, −),�(−))

natural in �
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By the  enriched Yoneda lemma (Prop.  3.17),  these,  �inally,  are  in  natural  bijection  with
systems of morphisms

�(�)⟶ �(�)

natural in �. Moreover, all these identi�ications are also natural in �. Therefore, in summary,
this shows that there is a natural isomorphism

Hom[�,�]� �

�∈�

�(�, −)⊗�(�) , (−)� ≃ Hom[�,�](�, (−)) .

With this, the ordinary Yoneda lemma (Prop. 1.29) in the form of the Yoneda embedding of
[�,�] implies the required isomorphism.  ▮

Example	3.19. (co-Yoneda	lemma	over	Set)

Consider the co-Yoneda lemma (Prop. 3.18) in the special case � = Set (Example 2.37).

In this case the coequalizer in question is the set of equivalence classes of pairs

(� → ��, �) ∈ �(�, ��)⊗�(�) ,

where two such pairs

(� →
�

��, � ∈ �(�)) , (� →
�

��, � ∈ �(�))

are regarded as equivalent if there exists

� →
�

�

such that

� = � ∘� , and � = �(�) .

(Because  then  the  two  pairs  are  the  two  images  of  the  pair  (�, �)  under  the  two
morphisms being coequalized.)

But now considering the case that � = �� and � = id�� , so that � = � shows that any pair

(� →
�

��, � ∈ �(�))

is identi�ied, in the coequalizer, with the pair
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(59)

(60)

(id�� , �(�) ∈ �(��)) ,

hence with �(�) ∈ �(��).

As a conceptually important corollary we obtain:

Proposition	3.20.	(category	of	presheaves	is	free	co-completion)

For	�	a	small	category	(Def.	1.6),	its	Yoneda	embedding � ↪
�
[���, Set]	(Prop.	1.30)	exhibits

the	category	of	presheaves [���, Set]	(Example	1.26)	as	the	free	co-completion	of	� 	under
forming 	colimits 	(Def. 	3.1), 	in 	that 	it 	is 	a 	universal 	morphism, 	as 	in 	Def. 	1.41 	but 	“up 	to
natural 	isomorphism”, 	into 	a 	category 	with 	all 	colimits 	(by 	Example 	3.5) 	in 	the 	following
sense:

1.	for	�	any	category	with	all	colimits	(Def.	3.1);

2.	for	� : � ⟶ �	any	functor;

there	is	a	functor �̃ : [���, Set]⟶�,	unique	up	to	natural	isomorphism	such	that

1.	�̃ preserves	all	colimits,

2.	�̃ extends �	through	the	Yoneda	embedding,	in	that	the	following	diagram	commutes,
up	to	natural	isomorphism	(Def.	1.23):

�

� ↙ ⇙ ↘�

[���, Set]⟶
�̃

�

Hence 	when 	 interpreting 	presheaves 	as 	generalized 	 spaces, 	 this 	 says 	 that 	 “generalized
spaces	are	precisely	what	is	obtained	from	allowing	arbitrary	gluings	of	ordinary	spaces”,
see	also	Remark	4.16	below.

Proof. The last condition says that �̃ is �ixed on representable presheaves by

�̃(�(�)) ≃ �(�) .

and in fact naturally so:

�� �̃(�(��)) ≃ �(��)

� ↓
�
� �(�(�)) ↓

�
� ↓

�
�
�(�)

�� �̃(�(��)) ≃ �(��)

But the co-Yoneda lemma (Prop. 3.18) expresses every presheaf � ∈ [���, Set] as a colimit of
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representable presheaves (in the special case of enrichment over Set, Example 3.19)

� ≃ �

�∈�

�(�) ⋅ �(�) .

Since �̃ is required to preserve any colimit and hence these particular colimits, (59) implies
that �̃ is �ixed to act, up to isomorphism, as

�̃(�) = �̃��

�∈�

�(�) ⋅ �(�)� ≔ �

�∈�

�(�) ⋅ �(�) ∈ �

(where the colimit on the right is computed in �!).  ▮

Remark 	 3.21.  The  statement  of  the  co-Yoneda  lemma  in  prop.  3.18  is  a  kind  of
categori�ication of  the  following statement  in  analysis  (whence  the  notation  with  the
integral signs):

For � a topological space, � :� → ℝ a continuous function and �(−, ��) denoting the Dirac
distribution, then

�

�∈�

�(�, ��)�(�) = �(��) .

It is this analogy that gives the name to the following statement:

Proposition	3.22.	(Fubini	theorem	for	(co)-ends)

For	�	a	cosmos	(Def.	2.36),	let	��,��	be	two	�-enriched	categories	(Def.	2.40)	and

� : (�� ×��)
��
×(�� ×��)⟶ �

a	�-enriched	functor	(Def.	2.46)	from	the	product	category	with	opposite	categories	(Def.
2.45),	as	shown.

Then	its	end	and	coend	(def.	3.13)	is	equivalently	formed	consecutively	over	each	variable,	in
either	order:

�

(�� ,��)

�((��, ��), (��, ��)) ≃ �

��

�

��

�((��, ��), (��, ��)) ≃ �

��

�

��

�((��, ��), (��, ��))

and
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�

(�� ,��)

�((��, ��), (��, ��)) ≃ �

��

�

��

�((��, ��), (��, ��)) ≃ �

��

�

��

�((��, ��), (��, ��)) .

Proof. Because limits commute with limits, and colimits commute with colimits.  ▮

Remark	3.23. (internal	hom	preserves	ends)

Let � be a cosmos (Def. 2.36). Since the internal hom-functor in � (Def. 2.8) preserves
limits in both variables (Prop.  2.15),  in particular it  preserves ends (Def.  3.13)  in  the
second variable, and sends coends in the second variable to ends:

For all small �-enriched categories, �-enriched functors � : ���⊗� → � (Def. 2.46) and
all objects � ∈ � we have natural isomorphisms

��, �

�∈�

�(�, �)� ≃ �

�∈�

[�,�(�, �)]

and

��

�∈�

�(�, �),�� ≃ �

�∈�

[�(�, �),�] .

With this coend calculus in hand, there is an elegant proof of the de�ining universal property
of the smash tensoring and powering enriched presheaves

De�inition	3.24. (tensoring	and	powering	of	enriched	presheaves)

Let �  be a �-enriched category,  def.  2.40,  with [�,�]  its  functor category of  enriched
functors (Example 2.51).

1. De�ine a functor

(−) ⋅ (−) : [�,�] ×� ⟶ [�,�]

by forming objectwise tensor products

� ⋅ � : � ↦ �(�)⊗� .

This is called the tensoring of [�,�] over �.

2. De�ine a functor

(−)(�) : ���× [�,�]⟶ [�,�]
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by forming objectwise internal homs (Def. 2.8)

�� : � ↦ [�,�(�)] .

This is called the powering of [�,�] over �.

Proposition 	 3.25. 	 (universal 	 property 	 of 	 tensoring 	 and 	 powering 	 of 	 enriched
presheaves)

For	�	a	cosmos	(Def.	2.36),	let	�	be	a	small �-enriched	category	(Def.	2.40),	with	[�,�]	the
corresponding	enriched	presheaf	category.

Then	there	are	natural	isomorphisms

[�,�](� ⋅�, �) ≃ [�, �[�,�](�,�)�]

and

[�,�]��, ��� ≃ [�, �[�,�](�,�)�]

for	all	�,� ∈ [�,�]	and	all	� ∈ �,	where	(−)�	is	the	powering	and	(−) ⋅ �	the	tensoring
from	Def.	3.24.

In	particular	there	is	the	composite	natural	isomorphism

[�,�](� ⋅�,�) ≃ [�,�]��,���

exhibiting	a	pair	of	adjoint	functors

[�,�] ⊥
→⎯⎯⎯⎯

(�)�

←⎯⎯⎯⎯
(�)⋅�

[�,�] .

Proof.  Via  the end-expression for [�,�](−, −)  from Example 3.15,  and the fact  (remark
3.23) that the internal hom-functor ends in the second variable, this reduces to the fact that
[−, −]  is the internal hom in the closed monoidal category �  (Example 2.44) and hence
satis�ies the internal tensor/hom-adjunction isomorphism (prop. 2.14):
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[�,�](� ⋅�,�) = �

�

[(� ⋅�)(�),�(�)]

≃ �

�

[�(�)⊗�,�(�)]

≃ �

�

[�, [�(�),�(�)]]

≃ [�, �

�

[�(�),�(�)]]

= [�, ([�,�](�,�))]

and

[�,�](�,��) = �

�

[�(�),��(�)]

≃ �

�

[�(�), [�,�(�)]]

≃ �

�

[�(�)⊗�,�(�)]

≃ �

�

[�, [�(�),�(�)]]

≃ [�, �

�

[�(�),�(�)]]

≃ [�, [�,�](�,�] .

  ▮

Tensoring	and	cotensoring
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(61)

(62)

We make explicit the general concept of which Prpp. 3.25 provides a key class of examples:

De�inition	3.26. (tensoring	and	cotensoring)

For � a cosmos (Def. 2.36) let � be a �-enriched category (Def. 2.40). Recall the enriched
hom-functors (Example 2.47)

�(−, −) : ���×� ⟶ �

and (via Example 2.44)

�(−, −) = [−, −] : ���×� ⟶ � .

1. A powering (or cotensoring) of � over � is

1. a functor (Def. 1.15)

[−, −] : ���×� ⟶ �

2. for each � ∈ � a natural isomorphism (Def. 1.23) of the form

�(�,�(��, ��)) ≃ �(��, [�, ��])

2. A copowering (or tensoring) of � over � is

1. a functor (Def. 1.15)

(−)⊗ (−) : �×� ⟶ �

2. for each � ∈ � a natural isomorphism (Def. 1.23) of the form

�(�⊗��, ��) ≃ �(�,�(��, ��))

If � is equipped with a (co-)powering it is called (co-)powered over �.

Proposition	3.27.	(tensoring left	adjoint	to	cotensoring)

For	�	a	cosmos	(Def.	2.36)	let	�	be	a	�-enriched	category	(Def.	2.40).

If	�	is	both	tensored	and	cotensored	over	�	(Def.	3.26),	then	for	�ixed	� ∈ �	the	operations	of
tensoring	with	�	and	of	cotensoring	with	�	form	a	pair	of	adjoint	functors	(Def.	1.32)

� ⊥
→⎯⎯⎯⎯⎯⎯⎯⎯

[�,�]

←⎯⎯⎯⎯⎯⎯⎯⎯
�⊗(�)

�
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Proof. The hom-isomorphism (10) characterizing the pair of adjoint functors is provided by
the composition of the natural isomorphisms (61) and (62):

�(�⊗��, ��) ≃ �(�,�(��, ��)) ≃ �(��, [�, ��])

  ▮

Proposition 	3.28. 	(in 	tensored 	and 	cotensored 	categories initial/terminal 	objects 	are
enriched	initial/terminal)

For	�	a	cosmos	(Def.	2.36)	let	�	be	a	�-enriched	category	(Def.	2.40).

If	�	is	both	tensored	and	cotensored	over	�	(Def.	3.26)	then

1.	an 	initial 	object ∅ 	(Def. 	1.5) 	of 	the 	underlying 	category 	of 	� 	(Example 	2.43) 	 is 	also
enriched	initial,	in	that	the	hom-object	out	of	it	is	the	terminal	object *	of	�

�(∅, �) ≃ *

2.	a	terminal	object *	(Def.	1.5)	of	the	underlying	category	of	�	(Example	2.43) 	is 	also
enriched	terminal,	in	that	the	hom-object	into	it	is	the	terminal	object	of	�:

�(�, * ) ≃ *

Proof. We discuss the �irst claim, the second is formally dual.

By prop. 3.27, tensoring is a left adjoint. Since left adjoints preserve colimits (Prop. 3.8), and
since an initial object is the colimit over the empty diagram (Example 3.3), it follows that

�⊗∅ ≃ ∅

for all � ∈ �, in particular for ∅ ∈ �. Therefore the natural isomorphism (62) implies for all
� ∈ � that

�(∅, �) ≃ �(∅⊗∅, �) ≃ �(∅,�(∅, �)) ≃ *

where in the last step we used that the internal hom �(−, −) = [−, −] in � sends colimits
in its �irst argument to limits (Prop. 2.15) and used that a terminal object is the limit over
the empty diagram (Example 3.3).  ▮

Kan	extensions

Proposition	3.29.	(Kan	extension)
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(63)

(64)

(65)

(66)

For	�	a	cosmos	(Def.	2.36),	let	�,�	be	small �-enriched	categories	(Def.	2.40)	and	let

� : � ⟶ �

be 	a 	�-enriched 	 functor 	 (Def. 	2.46). 	Then 	precomposition 	with 	� 	 constitutes 	a 	 functor
between	the	corresponding	�-enriched	presheaf	categories	(Def.	3.16)

�* :
[�,�] ⟶ [�,�]

� ↦ �∘�

1.	This	enriched	functor �* (63)	has	an	enriched	left	adjoint Lan� 	(Def.	2.52),	called	left
Kan	extension	along	�

[�,�] ⊥
→⎯⎯⎯
�*

←⎯⎯⎯
����

[�,�]

which	is	given	objectwise	by	the	coend	(def.	3.13):

(Lan� �) : � ↦ �

�∈�

�(�(�),�)⊗�(�) .

2.	The 	enriched 	functor �* (63) 	has 	an 	enriched 	right 	adjoint Ran� 	(Def. 	2.52), 	called
right	Kan	extension	along	�

[�,�] ⊥
→⎯⎯⎯

����

←⎯⎯⎯
�*

[�,�]

which	is	given	objectwise	by	the	end	(def.	3.13):

(Ran� �) : � ↦ �

�∈�

[�(�,�(�)),�(�)] .

In	summary,	this	means	that	the	enriched	functor

� ⟶
�

�

induces,	via	Kan	extension,	an	adjoint	triple	(Remark	1.34)	of	enriched	functors

Lan� ⊣ �* ⊣ Ran� : [�,�] ↔ [�,�] .
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Proof. Use the expression of enriched natural transformations in terms of coends (example
3.15 and def. 3.16), then use the respect of [−, −] for ends/coends (remark 3.23), use the
internal-hom adjunction (38), use the Fubini theorem (prop. 3.22) and �inally use Yoneda
reduction (prop. 3.17) to obtain a sequence of natural isomorphisms as follows:

[�,�](Lan� �, �) = �

�∈�

[(Lan� �)(�), �(�)]

= �

�∈�

� �

�∈�

�(�(�),�)⊗�(�), �(�)�

≃ �

�∈�

�

�∈�

[�(�(�),�)⊗�(�) , �(�)]

≃ �

�∈�

�

�∈�

[�(�), [�(�(�),�), �(�)]]

≃ �

�∈�

[�(�), �

�∈�

[�(�(�),�), �(�)]]

≃ �

�∈�

[�(�),�(�(�))]

= [�,�](�, �*�)

.

and similarly:
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[�,�](�, Ran� �) ≃ �

�∈�

[�(�), (Ran� �)(�), ]

≃ �

�∈�

��(�), �

�∈�

[�(�,�(�)),�(�)]�

≃ �

�∈�

�

�∈�

[�(�)⊗�(�,�(�)), �(�)]

≃ �

�∈�

� �

�∈�

�(�)⊗�(�,�(�)), �(�)�

≃ �

�∈�

[�(�(�)), �(�)]

≃ [�,�](�*�,�)

  ▮

Example	3.30. (coend	formula	for	left	Kan	extension	of	ordinary	presheaves)

Consider the cosmos to be � = Set, via Example 2.37, so that small �-enriched categories
(Def.  2.40) are just a plain small category (Def.  1.1) by Example 2.41, and �-enriched
presheaves (Example 2.48) are just plain presheaves (Example 1.26).

Then for any plain functor (Def. 1.15)

��� →⎯⎯⎯⎯⎯
�

(�′)��

the general formula (64) for left Kan extension

[���, Set] →⎯⎯⎯
����

[(�′)��, Set]

is

(Lan� �)(�′) ≃ �

�∈�

�′(�′,�(�))×�(�) .

Using here the Yoneda lemma (Prop. 1.29) to rewrite �(�) ≃ Hom���(�)(�,�), this is
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(Lan� �)(�′) ≃ �

�∈�

Hom��(�′,�(�))×Hom���(�)(�,�) .

Hence this coend-set consists of equivalence classes of pairs of morphisms

(�′ → �(�), � → �)

where two such are regarded as equivalent whenever there is � : �′� → �′� such that

�′

↙ ↘

�(��) →⎯⎯⎯
�(�)

�(��)

�� ⟶
�

��

↘ ↙

�

.

This is particularly suggestive when � is a full subcategory inclusion (Def. 1.19). For in
that case we may imagine that a representative pair (�′ → �(�), � → �) is a stand-in for the
actual pullback of elements of � along the would-be composite “�′ → � → �”, only that this
composite need not be de�ined. But the above equivalence relation is precisely that under
which this composite would be invariant.

Further	properties

We collect here further key properties of the various universal constructions  considered
above.

Proposition	3.31.	(left	Kan	extension	preserves	representable	functors)

For	�	a	cosmos	(Def.	2.36),	let

� ⟶
�

�

be	a	�-enriched	functor	(Def.	2.46)	between	small �-enriched	categories	(Def.	2.40).

Then 	 the 	 left 	Kan 	extension Lan� 	 (Prop. 	3.29) 	 takes 	representable enriched 	presheaves
�(�, −) : � → �	to	their	image	under	�:

Lan� �(�, −) ≃ �(�(�), −)
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for	all	� ∈ �.

Proof. By the coend formula (64) we have, naturally in �′ ∈ �, the expression

Lan� �(�, −) : �′ ↦ �

��∈�

�(�(�′),�′)⊗�(�, −)(�′)

≃ �

��∈�

�(�(�′),�′)⊗�(�, �′)

≃ �(�(�),�′)

,

where the last step is the co-Yoneda lemma (Prop. 3.18).  ▮

Example	3.32. (Kan	extension	of	adjoint	pair	is	adjoint	quadruple)

For � a cosmos (Def. 2.36), let �, � be two small �-enriched categories (Def. 2.40) and let

� ⊥
⟶
�

⟵
�

�

be a �-enriched adjunction (Def. 2.52). Then there are �-enriched natural isomorphisms
(Def. 2.50)

(���)* ≃ Lan��� : [���,�]⟶ [���,�]

(���)* ≃ Ran��� : [���,�]⟶ [���,�]

between the precomposition on enriched presheaves with one functor and the left/right
Kan extension of the other (Def. 3.29).

By  essential  uniqueness  of  adjoint  functors,  this  means  that  the  two  adjoint  triples
(Remark 1.34) given by Kan extension (66) of � and �

Lan��� ⊣ (���)* ⊣ Ran���

Lan��� ⊣ (���)* ⊣ Ran���

merge into an adjoint quadruple (Remark 1.34)

Lan��� ⊣ (���)* ⊣ (���)* ⊣ Ran��� : [�
��,�] ↔ [���,�]

Proof. For every enriched presheaf � : ��� → � we have a sequence of �-enriched natural
isomorphism as follows
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(Lan��� �)(�) ≃ �

�∈�

�(�,�(�))⊗�(�)

≃ �

�∈�

�(�(�), �)⊗�(�)

≃ �(�(�))

= ((���)*�)(�) .

Here the �irst step is the coend-formula for left Kan extension (Prop. 3.29), the second step if
the enriched adjunction-isomorphism (47) for � ⊣ �  and the third step is the co-Yoneda
lemma.

This  shows  the  �irst  statement,  which,  by  essential  uniqueness  of  adjoints,  implies  the
following statements.  ▮

Proposition	3.33.	(left	Kan	extension	along	fully	faithful	functor	is	fully	faithful)

For	�	a	cosmos	(Def.	2.36),	let

� � �⎯⎯⎯⎯⎯
�

�

be	a	fully	faithful �-enriched	functor	(Def.	2.46)	between	small �-enriched	categories	(Def.
2.40).

Then	for	all	� ∈ �

�*(Lan� �) ≃ �

and	in	fact	the	(Lan� ⊣ �*)-unit	of	an	adjunction	is	a	natural	isomorphism

Id →≃ �* ∘ Lan� .

hence,	by	Prop.	1.46,

[���, Set] � �⎯⎯⎯⎯⎯⎯⎯
����

[���, Set]

is	a	fully	faithful	functor.

Proof. By the coend formula (64) we have, naturally in �′ ∈ �, the left Kan extension of any
� : � → � on the image of � is
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(67)

Lan� � : �(�) ↦ �

��∈�

�(�(�′),�(�)) ⋅ �(�′)

≃ �

��∈�

�(�′, �) ⋅ �(�′)

≃ �(�)

,

where in the second step we used the assumption of fully faithfulness of � and in the last
step we used the co-Yoneda lemma (Prop. 3.18).  ▮

Lemma	3.34.	(colimit	of	representable	is	singleton)

Let	�	be	a	small	category	(Def.	1.6).	Then	the	colimit	of	a	representable	presheaf	(Def.	1.26),
regarded	as	a	functor

�(�) : ��� ⟶ Set

is	the singleton	set.

lim
→⎯⎯⎯

���

�(�) ≃ * .

Proof.  One way to see this is to regard the colimit as the left Kan extension (Prop. 3.29)

along the unique functor ��� →
�
*  to the terminal category (Def. 1.7). By the formula (64)

this is

lim
→⎯⎯⎯

���

�(�) ≃ �

�� ∈�

* (−,�(��))� � ��� ��
�����*(��)

×�(�)(��)

≃ �

�� ∈�

const*(��)×�(��, �)

≃ const*(�)

≃ *

where we made explicit the constant functor const* : � → Set, constant on the singleton set
*, and then applied the co-Yoneda lemma (Prop. 3.18).  ▮

Proposition	3.35.	(categories	with	�inite	products	are	cosifted

Let	�	be	a	small	category	(Def.	1.6)	which	has	�inite	products.	Then	�	is	a	cosifted	category,
equivalently 	its 	opposite 	category ��� 	is 	a 	sifted 	category, 	equivalently 	colimits 	over 	���
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(68)

with 	values 	 in 	Set 	are 	 sifted 	colimits, 	equivalently 	colimits 	over 	��� 	with 	values 	 in 	Set
commute	with	�inite	products,	as	follows:

For	�,� ∈ [���, Set]	to	functors	on	the	opposite	category	of	�	(hence	two	presheaves	on	�,
Example	1.26)	we	have	a	natural	isomorphism	(Def.	1.23)

lim
→⎯⎯
���

(�×�) ≃ �lim
→⎯⎯
���

��×�lim
→⎯⎯
���

��

between	the	colimit	of	their	Cartesian	product	and	the	Cartesian	product	of	their	separate
colimits.

Proof.  First observe that for �,� ∈ [���, Set]  two presheaves, their Cartesian product is a
colimit  over  presheaves  represented  by  Cartesian  products  in  �.  Explicity,  using  coend-
notation, we have:

�×� ≃ �

�� ,�� ∈�

�(�� × ��)×�(��)×�(��) ,

where � : � ↪ [���, Set] denotes the Yoneda embedding.

This is due to the following sequence of natural isomorphisms:

(�×�)(�) ≃ ��

�� ∈�

�(�, ��)×�(��)�×��

�� ∈�

�(�, ��)×�(��)�

≃ �

�� ∈�

�

�� ∈�

�(�, ��)×�(�, ��)� � ����� ����
≃�(�,�� ×��)

× (�(��)×�(��))

≃ �

�� ∈�

�

�� ∈�

�(�, �� × ��)×�(��)×�(��) ,

where the �irst step expands out both presheaves as colimits of representables separately,
via the co-Yoneda lemma (Prop. 3.18), the second step uses that the Cartesian product of
presheaves is a two-variable left adjoint (by the symmetric closed monoidal structure on
presheaves)  and  as  such  preserves  colimits  (in  particular  coends)  in  each  variable
separately (Prop. 3.8), and under the brace we use the de�ining universal property of the
Cartesian products, assumed to exist in �.

With this, we have the following sequence of natural isomorphisms:
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lim
→⎯⎯⎯

���

(�×�) ≃ lim
→⎯⎯
���

�

�� ,�� ∈�

�(�� × ��)×�(��)×�(��)

≃ �

�� ,�� ∈�

lim
→⎯⎯

���

(�(�� × ��)×�(��)×�(��))

≃ �

�� ,�� ∈�

⎛

⎝

⎜⎜
lim
→⎯⎯
���

�(�� × ��)
� � ���� ���

≃ *

⎞

⎠

⎟⎟
×�(��)×�(��)

≃ �

�� ,�� ∈�

(�(��)×�(��))

≃ ��

�� ∈�

�(��)�×��

�� ∈�

�(��)�

≃ �lim
→⎯⎯⎯
���

��×�lim
→⎯⎯
���

��

Here the �irst step is (68), the second uses that colimits commute with colimits (Prop. 3.9),
the third uses again that the Cartesian product respects colimits in each variable separately,
the fourth is by Lemma 3.34, the last step is again the respect for colimits of the Cartesian
product in each variable separately.  ▮

4. Basic notions of Topos theory

We have explained in Remark 1.28 how presheaves on a category � may be thought of as
generalized	spaces	probe-able	by	the	objects	of	�, and that two consistency conditions on this
interpretation are provided by the Yoneda lemma (Prop. 1.29) and the resulting Yoneda
embedding (Prop. 1.30). Here we turn to a third consistency condition that one will want to
impose, namely a locality  or gluing 	condition  (Remark 4.1 below), to be called the sheaf
condition (Def. 4.1 below).

More  in  detail,  we  had  seen  that  any  category  of  presheaves [���, Set]  is  the  free
cocompletion of  the given small  category �  (Prop.  3.20) and hence exhibits  generalized
spaces � ∈ [���, Set] as being glued or generated form the “ordinary spaces” � ∈ �. Further
conditions to be imposed now will impose relations  among these generators, such as the
locality relation embodied by the sheaf-condition.
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It turns out that these relations are re�lected by special properties of an adjunction (Def.
1.32) that relates generalized spaces to ordinary spaces:

generalized	spaces	via	generators	and	relations:

free	cocompletion
= presheaves

loc.	presentable	category sheaf	topos

� ≃→⎯⎯⎯
←⎯⎯⎯[���, Set] � ⊥

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
accessible

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
[���, Set] � ⊥

� �⎯⎯⎯⎯⎯⎯⎯⎯
accessible

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
left exact

[���, Set]

Prop. 3.20 Def. 4.30 Prop. 4.32

simplicial
presheaves

combinatorial	model
category

model	topos

� ≃��
→⎯⎯⎯

←⎯⎯⎯ [���, sSet��]���� � ⊥��
� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
accessible

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
[���, sSet��]���� � ⊥��

� �⎯⎯⎯⎯⎯⎯⎯⎯
accessible

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
left exact

[���, sSet��]����

Example Def. Def.

Remark	4.1. (sheaf	condition	as	local-to-global	principle	for	generalized	spaces)

If  the objects of  �  are thought of  as spaces of  sorts,  as in Remark 1.28,  then there  is
typically a notion of locality  in these spaces, re�lected by a notion of what it means to
cover a given space by (“smaller”) spaces (a coverage, Def. 4.3 below).

But if a space � ∈ � is covered, say by two other spaces ��,�� ∈ �, via morphisms

�� ��

�� ↘ ↙��

�

then this must be re�lected in the behaviour of the probes of any generalized space � (in
the sense of Remark 1.28) by these test spaces:

For ease of discussion, suppose that there is a sense in which these two patches above
intersect in � to form a space �� ∩� �� ∈ �. Then locality of probes should imply that the
ways  of  mapping  ��  and  ��  into  �  such  that  these  maps  agree  on  the  intersection
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�� ∩� ��, should be equivalent to the ways of mapping all of � into �.

locality : �
maps from�� and�� to�

that coincide on�� ∩� ��
� ≃ {maps from � into�}

One could call this the condition of locality	of	probes	of	generalized	spaces	probeable	by
objects 	of 	�.  But the established terminology is that this is the sheaf 	condition (74) 	on
presheaves	over	�.  Those presheaves which satisfy this condition are called the sheaves
(Def. 4.8 below).

Remark	4.2. Warning

Most (if not all) introductions to sheaf theory insist on motivating the concept from the
special  case  of  sheaves  on  topological  spaces  (Example  4.12  below).  This  is  good
motivation  for  what  Grothendieck  called  “petit  topos”-theory.  The  motivation  above,
instead, naturally leads to the “gros topos”-perspective, as in Example 4.15 below, which
is more useful for discussing the synthetic higher supergeometry of physics. In fact, this is
the perspective of functorial	geometry that has been highlighted since Grothendieck 65,
but which has maybe remained underappreciated.

We  now  �irst  introduce  the  sheaf-condition  (Def.  4.8)  below  in  its  traditional  form  via
“matching  families”  (Def.  4.6  below).  Then  we  show  (Prop.  4.29  below)  how  this  is
equivalently  expressed  in  terms  of  Cech 	groupoids  (Example  4.28  below).  This  second
formulation is convenient for understanding and handling various constructions in ordinary
topos theory (for  instance the de�inition of  cohesive sites)  and  it  makes  immediate  the
generalization to higher topos theory.

Descent

Here we introduce the sheaf-condition (Def.  4.8 below) in its component-description via
matching families (Def. 4.6 below). Then we consider some of the general key properties of
the resulting categories of  sheaves,  such as  notably their  “convenience”,  in  the technical
sense of Prop. 4.23 below.

De�inition	4.3. (coverage	and	site)

Let � be a small category (Def. 1.6). Then a coverage on � is

• for each object � ∈ � a set of indexed sets of morphisms into �
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(69)

��� →
��

��
�∈ �

called the coverings of �,

such that

• for  every  covering ��� →
��
��

�∈ �
 of  �  and  every  morphism � ⟶

�
�  there  exists  a

re�ining	covering ��� →
��
��

�∈�
 of �, meaning that for each � ∈ � there exists � ∈ � and

a morphism �� ���
��,�

�� such that

� ∘ �� = �� ∘ ��,�

�� ⟶
��,�

��

�� ↓
�
� ↓

�
� ��

� ⟶
�

�

A small category � equipped with a coverage is called a site.

Example	4.4. (canonical	coverage	on	topological	spaces)

The category Top of (small) topological spaces (Example 1.3) carries a coverage (Def. 4.3)
whose coverings are the usal open covers of topological spaces.

The condition (69) on a coverage is met, since the preimages of open subsets under a
continuous function �  are again open subsets,  so that the preimages of an open cover
consistitute an open cover of the domain, such that the commuting diagram-condition
(69) is immediage.

Similarly, for � ∈ Top a �ixed topological space, there is the site Op(�) whose underlying
category is the category	of	opens of �, which is the thin category (Example 1.8) of open
subsets of � and subset inclusions, and whose coverings are again the open covers.

Example	4.5. (differentiably	good	open	covers	of	smooth	manifolds)

The category SmthMfd of smooth manifold (Example 1.3) carries a coverage (Def. 4.3),
where  for  � ∈ SmthMfd  any  smooth  manifold  of  dimension � ∈ ℕ,  its  coverings  are
collections of smooth functions from the Cartesian space ℝ�  to �  whose image is  the
inclusion of an open ball.

Hence these are the usual open	covers of �, but with the extra condition that every patch is
diffeomorphic to a Cartesian space (hence to a smooth open ball).

One may further constrain this and ask that also all the non-empty �inite intersections of
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(70)

(71)

(72)

these open balls are diffeomorphic to open balls. These are the differentiably	good 	open
covers.

To see that these coverings satisfy the condition (69): The plain pullback of an open cover
along any continuous function is  again an open cover,  just  not  necessarily  by patches
diffeomorphic to open balls. But every open cover may be re�ined by one that is (see at
good	open	cover), and this is suf�icient for (69).

Example 4.5 is further developed in the chapters smooth	sets and on	smooth	homotopy	types.

De�inition	4.6. (matching	family	–	descent	object)

Let � be a small category equipped with a coverage, hence a site (Def. 4.3) and consider a
presheaf � ∈ [���, Set] (Example 1.26) over �.

Given an object � ∈ � and a covering ��� →
��
��

�∈ �
 of it (Def. 4.3) we say that a matching

family  (of  probes of �) is  a tuple (�
�
∈ �(��))�∈ �  such that for all  �, � ∈ �  and pairs of

morphisms �� ←
��
� →

��
�� satisfying

�� ∘ �� = �� ∘ ��

�

�� ↙ ↘��

�� ��

�� ↘ ↙��

�

we have

�(��)(��) = �(��)(��) .

We write

Match�{��}�∈ � , �� ⊂ �

�

�(��) ∈ Set

for the set of matching families for the given presheaf and covering.

This is also called the descent	object of � for descent along the covering {�� →
��
�}.

Example	4.7. (matching	families	that	glue)

Let � be a small category equipped with a coverage, hence a site (Def. 4.3) and consider a
presheaf � ∈ [���, Set] (Example 1.26) over �.
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(73)

(74)

(75)

(76)

Given an object � ∈ � and a covering ��� →
��
��

�∈ �
 of it (Def. 4.3), then every element

� ∈ �(�)

induces a matching family (Def. 4.6) by

��(��)(�)��∈ � .

(That this indeed satis�ies the matching condition follows immediately by the functoriality
of �.)

This construction provides a function of the form

�(�)⟶ Match�{��}�∈ � , ��

The matching families in the image of this function are hence those tuples of probes of �
by the patches �� of � which glue to a global probe out of �.

De�inition	4.8. (sheaves	and	sheaf	toposes)

Let � be a small category equipped with a coverage, hence a site (Def. 4.3) and consider a
presheaf � ∈ [���, Set] (Example 1.26) over �.

The presheaf � is called a sheaf if for every object � ∈ � and every covering ��� →
��
��

�∈ �
 of

� all 	matching 	 families 	glue 	uniquely,  hence  if  the  comparison  morphism  (73)  is  a
bijection

�(�)⟶≃ Match�{��}�∈ � , �� .

The full subcategory (Example 1.20) of the category of presheaves over a given site �, on
those that are sheaves is the category	of	sheaves, denoted

Sh(�) � �⎯⎯⎯⎯⎯
�

[���, Set] .

A category which is equivalent (Def. 1.57) to a category of sheaves is called a sheaf	topos,
or often just topos, for short.

For ��  and ��  two such sheaf toposes, a homomorphism � : �� → ��  between them,
called a geometric	morphism is an adjoint pair of functors (Def. 1.32)

�� ⟶
�*

⟵
�*

��
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such that

• the left adjoint �*, called the inverse	image, preserves �inite products.

Hence there is a category Topos, whose objects are sheaf toposes and whose morphisms
are geometric morphisms.

Example	4.9. (global	sections geometric	morphism)

Let � be a sheaf topos (Def. 4.8). Then there is a geometric morphism (76) to the category
of sets (Example 1.2), unique up to natural isomorphism (Def. 1.23):

� ⊥
→⎯⎯⎯⎯⎯⎯

�

� �⎯⎯⎯⎯⎯
�

Set .

Here � is called the global	sections-functor.

Proof. Notice that every set � ∈ Set is the coproduct, indexed by itself, of the terminal object
* ∈ Set (the singleton):

� ≃ �

�∈�

* .

Since � is a left adjoint, it preserves this coproduct (Prop. 3.8). Moreover, since � is assumed
to preserve �inite products, and since the terminal object is the empty product (Example
3.3), it also preserves the terminal object. Therefore � is �ixed, up to natural isomorphism, to
act as

�(�) ≃ �(∐
�∈�

* )

≃ ∐
�∈�

�( * )

≃ ∐
�∈�

*

.

This  shows that  �  exists  and  uniquely  so,  up  to  natural  isomorphism.  This  implies  the
essential uniqueness of � by uniqueness of adjoints (Prop. 1.45).  ▮

Example	4.10. (trivial	coverage)

For � a small category (Def. 1.6), the trivial	coverage on it is the coverage (Def. 4.3) with
no covering families at all, meaning that the sheaf condition (Def. 4.8) over the resulting
site is empty, in that every presheaf is a sheaf for this coverage.

Hence the category of presheaves [���, Set] (Example 1.26) over a site �����  with trivial
coverage is already the corresponding category of sheaves, hence the corresponding sheaf
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topos:

Sh(�����) ≃ [���, Set] .

Example	4.11. (sheaves	on	the	terminal	category	are	plain	sets)

Consider  the  terminal  category *  (Example  1.7)  equipped  with  its  trivial  coverage
(Example 4.10). Then there is a canonical equivalence of categories (Def. 1.57) between
the category of sheaves on this site (Def. 4.8) and the category of sets (Example 1.2):

Sh( * ) ≃ Set .

Hence the category of sets is a sheaf topos.

Example	4.12. (sheaves	on	a	topological	space	–	spatial petit	toposes)

In the literature, the concept of (pre-)sheaf (Def. 4.8) is sometimes not de�ined relative to
a site, but relative to a topological space. But the latter is a special case: For � a topological
space, consider its category of open subsets Op(�) from Example 4.4, with coverage given
by the usual open covers. Then a “sheaf on this topological space” is a sheaf, in the sense
of Def. 4.8, on this site of opens. One writes

Sh(�) ≔ Sh(Op(�)) ��⎯ [Op(�)��, Set] ,

for short. The sheaf toposes arising this way are also called spatial	toposes.

Proposition	4.13.	(localic	re�lection)

The	construction	of	categories	of	sheaves	on	a	topological	space	(Example	4.12)	extends	to	a
functor	from	the	category Top	of	topological	spaces	and	continuous	functions	between	them
(Example 	1.3) 	to 	the 	category Topos 	of 	sheaf 	toposes 	and 	geometric 	morphisms 	between
them	(Example	4.12).

Sh(−) : Top⟶ Topos .

Moreover,	when	restricted	to	sober	topological	spaces,	this	becomes	a	fully	faithful	functor,
hence	a	full	subcategory-inclusion	(Def.	1.19)

Sh(−) : SoberTop � �⎯⎯⎯ Topos .

More 	generally, 	 this 	holds 	 for 	 locales 	 (i.e. 	 for 	 “sober 	 topological 	 spaces 	not 	necessarily
supported	on	points”),	in	which	case	it	becomes	a	re�lective	subcategory-inclusion	(Def.	1.60)
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Locale ⊥
� �⎯⎯⎯⎯⎯⎯⎯
��(�)

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
Topos

This 	says 	that 	categories 	of 	sheaves 	on 	topological 	spaces 	are 	but 	a 	re�lection 	of 	soper
topological	spaces	(generally:	locales)	and	nothing	more,	whence	they	are	also	called	petit
toposes.

Example	4.14. (abelian	sheaves)

In the literature, sometimes sheaves are understood by default as taking values not in the
category of sets, but in the category of abelian groups. Combined with Example 4.12 this
means that some authors really mean “sheaf of abelian groups of the site of opens of a
topological space”, when they write just “sheaf”.

But for � any mathematical structure, a sheaf of �-structured sets is equivalently an �-
structure internal to the category of sheaves according to Def. 4.8. In particular sheaves of
abelian groups are equivalently abelian group objects in the category of sheaves of sets as
discussed here.

Example	4.15. (smooth	sets)

Consider the site SmthMfd of all smooth manifolds, from Example 4.5. The category of
sheaves over this (Def. 4.8) is equivalent to the category of smooth	sets, discussed in the
chapter geometry	of	physics	–	smooth	sets:

Sh(SmthMfd) ≃ SmoothSet .

This is a gros	topos, in a sense made precise by Def. 5.2 below (a cohesive	topos).

Remark 	4.16.  (ordinary 	spaces 	and 	their 	coverings 	are 	generators 	and 	relations 	for
generalized	spaces)

Given a site �  (Def.  4.3),  then its  presheaf  topos [���, Set]  (Example 4.10) is  the free
cocompletion  of  the  category �  (Prop.  3.20),  hence  the  category  obtained  by  freely
forming colimits (“gluing”) of objects of �.

In contrast, the full subcategory inclusion Sh(�) ↪ [���, Set] enforces relations  between
these free colimits.

Therefore in total we may think of a sheaf topos Sh(�)  as obtained by generators  and
relations from the objects of its site �:

• the objects of � are the generators;

• the coverings of � are the relations.
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Proposition	4.17.	(shea�i�ication	and	plus	construction)

Let	�	be	a	site	(Def.	4.3).	Then	the	full	subcategory-inclusion	(75)	of	the	category	of	sheaves
over	�	(Def.	4.8)	into	the	category	of	presheaves	(Example	1.26)	has	a	left	adjoint	(Def.	1.32)
called	shea�i�ication

Sh(�) ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

[���, Set] .

An	explicit	formula	for	shea�i�ication	is	given	by	applying	the	following	“plus	construction”
twice:

�(�) ≃ (��)� .

Here	the	plus	construction

(−)� : [���, Set]⟶ [���, Set]

is	given	by	forming	equivalence	classes	of	sets	of	matching	families	(Def.	4.6)	for	all	possible
covers	(Def.	4.3)

��(�) ≔ �{�� →
��

�} covering ,� ∈ Match({��},�)� / ∼

under	the	equivalence	relation	which	identi�ies	two	such	pairs	if	the	two	covers	have	a	joint
re�inement	such	that	the	restriction	of	the	two	matching	families	to	that	joint	re�inement
coincide.

Example	4.18. (induced	coverage)

Let � be a site (Def. 4.3). Then a full subcategory (Def. 1.19)

� ↪ �

becomes  a  site  itself,  whose  coverage  consists  of  those  coverings {�� →
��
�}  in  �  that

happen to be in � ↪ �.

De�inition	4.19. (dense	subsite)

Let � and � be sites (Def. 4.3) with a a full subcategory-inclusion (Def. 1.19)

� ↪ �
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and regard � as equipped with the induced coverage (Def. 4.18).

This is called a dense	subsite-inclusion if every object � ∈ � has a covering {�� →
��
�}

�
 such

that for all � the patches are in the subcategory:

�� ∈ � ↪ � .

Proposition	4.20.	(comparison	lemma)

Let	� ↪
�
�	be	a	dense	subsite	inclusion	(def.	4.19).	Then	precomposition	with	�	induces	an

equivalence	of	categories	(Def.	1.57)	between	their	categories	of	sheaves	(Def.	4.8):

�* : Sh(�)⟶≃ Sh(�)

Proposition	4.21.	(recognition	of	epi-/mono-/isomorphisms	of	sheaves)

Let	�	be	a	site	(Def.	4.3)	with	Sh(�)	its	category	of	sheaves	(Def.	4.8).

Then	a	morphisms � : � → �	in	Sh(�)	is

1.	a	monomorphism	(Def.	1.18)	or	isomorphism	(Def.	1.9)	precisely	if	it	is	so	globally 	in
that 	 for 	each 	object 	� ∈ � 	 in 	the 	site, 	then 	the 	component 	�

�
:�(�) → �(�) 	 is 	an

injection	or	bijection	of	sets,	respectively.

2.	an	epimorphism	(Def.	1.18)	precisely	if	it	is	so	locally,	in	that:	for	all	� ∈ �	there	is	a
covering {�

�
:�� → �}

�∈ �
	such	that	for	all	� ∈ �	and	every	element	� ∈ �(�)	the	element

�(�
�
)(�)	is	in	the	image	of	�(��):�(��) → �(��).

Proposition	4.22.	(epi/mono-factorization	through	image)

Let	Sh(�)	be	a	category	of	sheaves	(Def.	4.8).	Then	every	morphism � : � → �	factors	as	an
epimorphism	followed	by	a	monomorphism	(Def.	1.18)	uniquely	up	to	unique	isomorphism:

� : � ⟶
���

im(�) →⎯⎯⎯⎯
����

� .

Theobject im(�),	as	a	subobject	of	�,	is	called	the	image	of	�.

In	fact	this	is	an	orthogonal	factorization	system,	in	that	for	every	commuting	square	where
the 	left 	morphism 	is 	an 	epimorphism, 	and 	the 	right 	one 	a 	monomorphism, 	there 	exists 	a
unique	lift:
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� →⎯⎯⎯ �

��� ↓
�
� ∃! ↗ ↓

�
�
����

� →⎯⎯⎯ �

This	implies	that	this	is	a	functorial	factorization,	in	that	for	every	commuting	square

�� ⟶
��

��

↓
�
� ↓

�
�

�� ⟶
��

��

there 	 is 	an 	 induced 	morphism 	of 	 images 	 such 	 that 	 the 	 resulting 	 rectangular 	diagram
commutes:

�� ⟶
���

im(�
�
) →⎯⎯⎯⎯

����
��

↓
�
� ↓

�
� ↓

�
�

�� ⟶
���

im(�
�
) →⎯⎯⎯⎯

����
��

We discuss some of the key properties of sheaf toposes:

Proposition	4.23.	(sheaf	toposes	are	cosmoi)

Let	�	be	a	site	(Def.	4.3)	and	Sh(�)	its	sheaf	topos	(Def.	4.8).	Then:

1.	All	limits	exist	in	Sh(�)	(Def.	3.1),	and	they	are	computed	as	limits	of	presheaves,	via
Example	3.5:

��lim
←⎯⎯
�

��� ≃ lim
←⎯⎯
�

�(��)

2.	All	colimits	exist	in	Sh(�)	(Def.	3.1)	and	they	are	given	by	the	shea�i�ication	(Def.	4.17)
of	the	same	colimits	computed	in	the	category	of	presheaves,	via	Example	3.5:

lim
→⎯⎯
�

�� ≃ ��lim
←⎯⎯
�

�(��)�

3.	The 	cartesian 	 (Example 	2.2) 	 closed 	monoidal 	 category-structure 	 (Def. 	2.8) 	on 	 the
category	of	presheaves [���, Set]	from	Example	2.12	restricts	to	sheaves:
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Sh(�)
⟶
[�,�]

⟵
�×(�)

Sh(�)

In	particular,	for	�,� ∈ Sh(�)	two	sheaves,	their	internal	hom [�,�] ∈ Sh(�)	is	a	sheaf
given	by

[�,�] : � ↦ Hom��(�)(�(�)�,�) ,

where	�(�)	is	the	presheaf	represented	by	� ∈ �	(Example	1.27).

This	may	be	summarized	by	saying	that	every	sheaf	topos	(in	particular	every	category 	of
presheaves,	by	Example	4.10)	is	a	cosmos	for	enriched	category	theory	(Def.	2.36).

De�inition	4.24. (local	epimorphism)

Let � be a site (Def. 4.3). Then a morphism of presheaves over � (Example 1.26)

� →⎯⎯⎯⎯⎯
�

� ∈ [���, Set]

is called a local	epimorphism if for every object � ∈ �, every morphism �(�)⟶ � out of
its represented presheaf (Example 1.27) has the local	lifting	property through �  in that

there is a covering ��� →
��
�� (Def. 4.3) and a commuting diagram of the form

�(��) →⎯⎯⎯⎯⎯
∃

�

�(��) ↓
�
�� ↓

�
�� �

�(�) →⎯⎯⎯⎯ �

Codescent

In  order  to  understand  the  sheaf  condition  (74)  better,  it  is  useful  to  consider  Cech
groupoids (Def. 4.28 below). These are really presheaves	of	groupoids (Def. 4.25 below), a
special case of the general concept of enriched presheaves. The key property of the Cech
groupoid  is  that  it  co-represents  the  sheaf  condition  (Prop.  4.29  below).  It  is  in  this
incarnation that the concept of sheaf seamlessly generalizes to homotopy theory via “higher
stacks”.

De�inition	4.25. (presheaves	of	groupoids)
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For � a small category (Def. 1.6) consider the functor category (Example 1.25) from the
opposite category of � (Example 1.13) to the category Grpd of small groupoids (Example
1.16)

[���, Grpd] .

By Example 2.37 we may regard Grpd as a cosmos for enriched category theory. Since the
inclusion Set ↪ Grpd (Example 1.61) is a strong monoidal functor (Def. 2.16) of cosmoi
(Example 2.37), the plain category � may be thought of as a Grpd-enriched category (Def.
2.40) and hence a functor ��� → Grpd is equivalently a Grpd-enriched functor (Def. 2.46).

This  means that  the  plain  category of  functors [���, Grpd]  enriches  to  Grpd-enriched
category of Grpd-enriched presheaves (Example 2.48).

Hence we may speak of presheaves	of	groupoids.

Remark	4.26. (presheaves	of	groupoids	as	internal	groupoids	in	presheaves)

From every presheaf of  groupoids � ∈ [���, Grpd]  (Def.  4.25),  we obtain two ordinary
presheaves of sets (Def. 1.26) called the

• presheaf	of	objects

Obj
�(�)

∈ [���, Set]

• the presheaf	of	morphisms

Mor�(�) ≔ �

�,�∈����(�)

Hom�(�) : [�
��, Set]

In more abstract language this assignment constitutes an equivalence of categories

[���, Grpd] ⟶≃ Grpd�[���, Grpd]�

� ↦

⎛

⎝

⎜
⎜
⎜⎜
⎜
⎜

∐
�,�∈����(�)

Hom�(�)� � �������������
����(�)

(� →
�
�)

↦

� ↓
�
��

↑
��
�

�

↦

� ��⎯
���

� ↓
�
��

(� →
�
�)

↦

�

Obj
�(�)

⎞

⎠

⎟
⎟
⎟⎟
⎟
⎟

.

from presheaves of groupoids to internal	groupoids-	in	the	category	of	presheaves	over	�
(Def.	1.26).

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

155 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/small+category
https://ncatlab.org/nlab/show/small+category
https://ncatlab.org/nlab/show/functor+category
https://ncatlab.org/nlab/show/functor+category
https://ncatlab.org/nlab/show/opposite+category
https://ncatlab.org/nlab/show/opposite+category
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/small+groupoid
https://ncatlab.org/nlab/show/small+groupoid
https://ncatlab.org/nlab/show/groupoids
https://ncatlab.org/nlab/show/groupoids
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/cosmos
https://ncatlab.org/nlab/show/cosmos
https://ncatlab.org/nlab/show/enriched+category+theory
https://ncatlab.org/nlab/show/enriched+category+theory
https://ncatlab.org/nlab/show/strong+monoidal+functor
https://ncatlab.org/nlab/show/strong+monoidal+functor
https://ncatlab.org/nlab/show/cosmoi
https://ncatlab.org/nlab/show/cosmoi
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/category+of+functors
https://ncatlab.org/nlab/show/category+of+functors
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/Grpd
https://ncatlab.org/nlab/show/enriched+presheaves
https://ncatlab.org/nlab/show/enriched+presheaves
https://ncatlab.org/nlab/show/presheaves+of+groupoids
https://ncatlab.org/nlab/show/presheaves+of+groupoids
https://ncatlab.org/nlab/show/presheaves+of+groupoids
https://ncatlab.org/nlab/show/presheaves+of+groupoids
https://ncatlab.org/nlab/show/internal+groupoids
https://ncatlab.org/nlab/show/internal+groupoids
https://ncatlab.org/nlab/show/presheaves
https://ncatlab.org/nlab/show/presheaves
https://ncatlab.org/nlab/show/presheaf+of+groupoids
https://ncatlab.org/nlab/show/presheaf+of+groupoids
https://ncatlab.org/nlab/show/presheaves
https://ncatlab.org/nlab/show/presheaves
https://ncatlab.org/nlab/show/equivalence+of+categories
https://ncatlab.org/nlab/show/equivalence+of+categories
https://ncatlab.org/nlab/show/presheaves+of+groupoids
https://ncatlab.org/nlab/show/presheaves+of+groupoids
https://ncatlab.org/nlab/show/internal+groupoids
https://ncatlab.org/nlab/show/internal+groupoids
https://ncatlab.org/nlab/show/category+of+presheaves
https://ncatlab.org/nlab/show/category+of+presheaves


(79)

Example 	 4.27.  (presheaves 	 of 	 sets 	 form 	 re�lective 	 subcategory 	 of 	 presheaves 	 of
groupoids)

Let �  be a small category (Def. 1.6). There is the re�lective subcategory-inclusion (Def.
1.60) of the category of presheaves over � (Example 1.26) into the category of presheaves
of groupoids over � (Def. 4.25)

[���, Set] ⊥
� �⎯⎯⎯

←⎯⎯⎯⎯
��

[���, Grpd]

which is given over each object of �  by the re�lective inclusion of sets into groupoids
(Example 1.61).

Example	4.28. (Cech	groupoid)

Let  �  be  a  site  (Def.  4.3),  and  � ∈ �  an  object  of  that  site.  For  each  covering  family

{�� →
��
�} of � in the given coverage, the Cech	groupoid is the presheaf of groupoids (Def.

4.25)

�({��}) ∈ [���, Grpd] ≃ Grpd�[���, Set]�

which, regarded as an internal groupoid in the category of presheaves over �, via (78), has
as presheaf of objects the coproduct

Obj
�({��})

≔ �

�

�(��)

of the presheaves represented (under the Yoneda embedding, Prop. 1.30) by the covering
objects ��, and as presheaf of morphisms the coproduct over all �iber products of these:

Mor�({��}) ≔ �

�,�

�(��)×�(�) �(��) .

This means equivalently that for any � ∈ � the groupoid assigned by �({��}) has as set of

objects pairs consisting of an index � and a morphism � →
��
��  in �, and there is a unique

morphism between two such objects

�� ⟶ ��

precisely if
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�� ∘ �� = �� ∘ ��

�

�� ↙ ↘��

�� ��

�� ↘ ↙��

�

Condition  (79)  for  morphisms in  the  Cech  groupoid  to  be  well-de�ined  is  verbatim  the
condition  (70)  in  the  de�inition  of  matching  families.  Indeed,  Cech  groupoids  serve  to
conveniently summarize (and then generalize) the sheaf condition (Def. 4.8):

Proposition	4.29.	(Cech	groupoid	co-represents	matching	families	–	codescent)

For	Grpd	regarded	as	a	cosmos	(Example	2.37),	and	�	a	site	(Def.	4.3),	let

� ∈ [���, Set] ↪ [���, Grpd]

be	a	presheaf	on	�	(Example	1.26),	regarded	as	a	Grpd-enriched	presheaf	via	Example	4.27,

let 	� ∈ � 	be 	any 	object 	and 	 {�� →
��
�}

�
	a 	covering 	 family 	 (Def. 	4.3) 	with 	 induced 	Cech

groupoid �({��}�)	(Example	4.28).

Then	there	is	an	isomorphism

[���, Grpd]��({��}�), �� ≃ Match({��}�, �)

between	the	hom-groupoid	of	Grpd-enriched	presheaves	(Def.	3.16)	and	the	set	of	matching
families	(Def.	4.6).

Since	hence	the	Cech-groupoid	co-represents	the	descent	object,	it	is	sometimes	called	the
codescent	object	along	the	given	covering.

Moreover,	under	this	identi�ication	the	canonical	morphism

�({��}�) →⎯⎯⎯⎯
�{��}�

�(�)

induces	the	comparison	morphism	(73)

[���, Grpd](�(�), �) ≃ �(�)

[���,����](�{��}�
,�)

↓ ↓

[���, Grpd]��({��}�), �� ≃ Match({��}�, �)

.
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In	conclusion,	this	means	that	the	presheaf �	is	a	sheaf	(Def.	4.8)	precisely	if	homming	Cech
groupoid	projections	into	it	produces	an	isomorphism:

� is a sheaf ⇔ ��({��}�) � �⎯⎯⎯
�{��}�

�(�) , �� is iso, for all covering families {

One	also	says	in	this	case	that	�	is	a	local	object	with	respect	to	Cech	covers/

Proof. By (58) the hom-groupoid is computed as the end

[���, Grpd]��({��}�), �� = �

�∈�

��({��}�)(�), �(�)� ,

where, by Example 2.37, the “integrand” is the functor category (here: a groupoid) from the
Cech groupoid at a given � to the set (regarded as a groupoid) assigned by � to �.

Since �(�) is just a set, that functor groupoid, too, is just a set, regarded as a groupoid. Its
elements are the functors �({��}�)(�)⟶ �(�), which are equivalently those functions on

sets of objects

�

�

�(��)(�) = Obj
�({��}�)(�)

⟶ Obj
�(�)

= �(�)

which respect the equivalence relation induced by the morphisms in the Cech groupoid at �.

Hence the hom-groupoid is a subset of the end of these function sets:

�

�∈�

��({��}�)(�), �(�)� ↪ �

�∈�

��

�

�(��)(�), �(�)�

≃ �

�∈�

�

�

[�(��)(�), �(�)]

≃ �

�

�

�∈�

[�(��)(�), �(�)]

≃ �

�

�(��)

Here we used: �irst that the internal hom-functor turns colimits in its �irst argument into
limits (Prop. 2.15), then that limits commute with limits (Prop. 3.9), hence that in particular
ends commute with products , and �inally the enriched Yoneda lemma (Prop. 3.17), which
here is, via Example 3.15, just the plain Yoneda lemma (Prop. 1.29). The end result is hence
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the same Cartesian product set  that also the set  of  matching families is  de�ined to be a
subset of, in (72).

This shows that an element in ∫�∈� ��({��}�)(�), �(�)� is a tuple (�
�
∈ �(��))�, subject to

some condition. This condition is that for each � ∈ � the assignment

�({��}�)(�) ⟶ �(�)

(� →
��

��) ↦ ��
*�
�
= �(��)(��)

constitutes a functor of groupoids.

By  de�inition  of  the  Cech  groupoid,  and since  the  codomain  is  a  just  set  regarded as  a
groupoid, this is the case precisely if

�(��)(��) = �(��)(��) for all �, � ,

which is exactly the condition (71) that makes (�
�
)
�
 a matching family.  ▮

Local	presentation

We now discuss a more abstract characterization of sheaf toposes, in terms of properties
enjoyed by the adjunction that relates them to the corresponding categories of presheaves.

De�inition	4.30. (locally	presentable	category)

A category � (Def. 1.1) is called locally	presentable if there exists a small category � (Def.
1.6) and a re�lective subcategory-inclusion of � into its category of presheaves (Example
1.26)

� ⊥
� �⎯⎯⎯⎯⎯acc

←⎯⎯⎯⎯⎯
�

[���, Set]

such  that  the  inclusion  functor  is  an  accessible 	 functor  in  that  it  preserves �-�iltered
colimits for some regular cardinal �.

Proposition	4.31.	(Giraud's	theorem)

A	sheaf	topos	(Def.	4.8)	is	equivalently	a	locally	presentable	category	(Def.	4.30)	with

1.	universal	colimits,

2.	effective	quotients,
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3.	disjoint	coproducts.

Proposition	4.32.	(sheaf	toposes	are	equivalently	the	left	exact	re�lective	subcategories
of	presheaf	toposes)

Let	(�, �)	be	a	site	(Def.	4.3).	Then	the	full	subcategory	inclusion	� : Sh(�, �) ↪ PSh(�)	of	its
sheaf 	topos 	(Def. 	4.8) 	into 	its 	category 	of 	presheaves 	is 	a 	re�lective 	subcategory 	 inclusion
(Def.	1.60)

Sh(�, �) ⊥
� �⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

PSh(�)

such	that:

1.	the	inclusion	�	is	an	accessible	functor,	thus	exhibiting	Sh(�, �)	as	a	locally	presentable
category	(Def.	4.30)

2.	the	re�lector	� : PSh(�) → Sh(�)	(which	is	shea�i�ication,	Prop.	4.17)	is	left	exact	(“lex”)
in	that	it	preserves �inite	limits.

Conversely,	every	sheaf	topos	arises	this	way.	Hence	sheaf	toposes �	are	equivalently	the	left
exact-re�lectively full	subcategories	of	presheaf	toposes	over	some	small	category �:

� ⊥
� �⎯⎯⎯⎯⎯
���

←⎯⎯⎯⎯⎯⎯
���

PSh(�)

(e.g. Borceux 94, prop. 3.5.4, cor. 3.5.5, Johnstone, C.2.1.11)

Remark	4.33. (left	exact	re�lections	of	categories	of	presheaves	are	locally 	presentable
categories)

In  the  characterization  of  sheaf  toposes  as  left  exact  re�lections  of  categories  of
presheaves  in  Prop.  4.32,  the  accessibility  of  the  inclusion,  equivalently  the  local
presentability (Def. 4.30) is automatically implied (using the adjoint functor theorem), as
indicated in (82).

5. Gros toposes

We have seen roughly two different kinds of sheaf toposes:

• categories of sheaves on a given space�  (Example 4.12), which, by localic re�lection
(Prop. 4.13), really are just a re�lection of the space � in the category of toposes,
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these are called petit	toposes;

• categories of sheaves whose objects are generalized spaces (Example 4.15)
these are called gros	toposes.

Remark	5.1. (cohesive generalized	spaces	as	foundations	of	geometry)

If we aim to lay foundations for geometry, then we are interested in isolating those kinds
of  generalized  spaces  which  have  foundational  a 	priori  meaning,  independent  of  an
otherwise  pre-con�igured  notion  of  space.  Hence  we  would  like  to  �irst  characterize
suitable  gros  toposes,  extract  concepts  of  space  from  these,  and  only  then,  possibly,
consider the petit topos-re�lections of these (Prop. 4.13 below).

The gros toposes of such foundational generalized spaces ought to have an internal	logic
that  knows about modalities 	of 	geometry  such as  discreteness  or  concreteness.  Via  the
formalization of modalities in Def. 1.62 this leads to the de�initon of cohesive toposes (Def.
5.2, Prop. 5.7 below, due to Lawvere 91, Lawvere 07).

gros
topos

generalized	spaces	obey… example:

cohesion Def. 5.2
principles of differential

topology
SmoothSet

elasticity
Def.
5.10

principles of differential
geometry

FormallSmoothset

solidity
Def.
5.14

principles of supergeometry SuperFormalSmoothSet

Cohesive	toposes

De�inition	5.2. (cohesive	topos)

A sheaf topos � (Def. 4.8) is called a cohesive	topos if there is a quadruple (Remark 1.34)
of adjoint functors (Def. 1.32) to the category of sets (Example 1.2)

� ⊣ Disc ⊣ � ⊣ coDisc : �

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯
����

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

Set
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such that:

1. Disc and coDisc are full and faithful functors (Def. 1.19)

2. � preserves �inite products.

Example	5.3. (adjoint	quadruple	of	presheaves	over	site	with	�inite	products)

Let �  be a small category (Def. 1.6) with �inite products (hence with a terminal object
* ∈ � and for any two objects �,� ∈ � their Cartesian product �×� ∈ �).

Then there is an adjoint quadruple (Remark 1.34) of functors between the category of
presheaves over � (Example 1.26), and the category of sets (Example 1.2)

[���, Set]

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯
����

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

Set

such that:

1. the functor � sends a presheaf � to its set of global sections, which here is its value
on the terminal object:

�� = lim
←⎯⎯
�

�

≃ �( * )

2. Disc and coDisc are full and faithful functors (Def. 1.19).

3. � preserves �inite products:
for �,� ∈ [���, Set], we have a natural bijection

�(�×�) ≃ �(�)×�(�) .

Hence the category of presheaves over a small category with �inite products, hence the
category of sheaves for the trivial coverage (Example 4.10) is a cohesive topos (Def. 5.2).

Proof. The existence of the terminal object in � means equivalently (by Example 1.7) that
there is an adjoint pair of functors between � and the terminal category (Example 1.7):

* ⊥
��⎯

⟵
�

�
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whose right adjoint takes the unique object of the terminal category to that terminal object.

From this it follows, by Example 3.32, that Kan extension produces an adjoint quadruple
(Remark 1.34) of functors between the category of presheaves [���, Set] and [ * , Set] ≃ Set,
as shown, where

1. � is the operation of pre-composition with the terminal object inclusion * ↪ �

2. Disc is the left Kan extension along the inclusion * ↪ � of the terminal object.

The former is manifestly the operation of evaluating on the terminal object. Moreover, since
the terminal object inclusion is manifestly a fully faithful functor (Def. 1.19), it follows that
also its left Kan extension Disc is fully faithful (Prop. 3.33). This implies that also coDisc is
fully faithful, by (Prop. 1.67).

Equivalently, Disc ≃ �* is the constant diagram-assigning functor. By uniqueness of adjoints
(Prop.  1.45)  implies  that  �  is  the  functor  that  sends  a  presheaf,  regarded  as  a  functor
� : ��� → Set, to its colimit

�(�) = lim
→⎯⎯⎯
���

� .

The fact that this indeed preserves products follows from the assumption that � has �inite
products, since categories with �inite products are cosifted (Prop. 3.35)  ▮

Example 5.3 suggests to ask for coverages on categories with �inite products which are such
that  the  adjoint  quadruple (107)  on  the  category  of  presheaves  (co-)restricts  to  the
corresponding category of sheaves. The following De�inition 5.4 states a suf�icient condition
for this to be the case:

De�inition	5.4. (cohesive	site)

We call a site � (Def. 4.3) cohesive if the following conditions are satis�ied:

1. The category � has �inite products (as in Example 5.3).

2. For every covering family {�� → �}
�
 in the given coverage on �  the induced Cech

groupoid �({��}�) ∈ [�
��, Grpd] (Def. 4.28) satis�ies the following two conditions:

1. the set of connected components of the groupoid obtained as the colimit over
the Cech groupoid is the singleton:

�� lim→⎯⎯
���

�({��}) ≃ *

2. the set of connected components of the groupoid obtained as the limit of the
Cech groupoid is equivalent to the set of points of �, regarded as a groupoid:
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�� lim←⎯⎯
���

�({��}) ≃ Hom�( * ,�) .

This de�inition is designed to make the following true:

Proposition	5.5.	(category	of	sheaves	on	a	cohesive	site	is	a	cohesive	topos)

Let	�	be	a	cohesive	site	(Def.	5.4).	Then	the	adjoint	quadruple	on	the	category	of	presheaves
over 	�, 	 from 	Example 	5.3 	 (given 	 that 	a 	cohesive 	 site 	by 	de�inition 	has 	 �inite 	products)
(co-)restricts	from	the	category	of	presheaves	over	�,	to	the	category	of	sheaves	(Def.	4.8)
and	hence	exhibits	Sh(�)	as	a	cohesive	topos	(Def.	5.2):

Sh(�)

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯
����

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

Set

Proof.  By  example  5.3  we  alreaday  have  the  analogous  statement  for  the  categories  of
presheaves. Hence it is suf�icient to show that the functors Disc and coDisc from Example 5.3
factor through the de�inition inclusion of the category of sheaves, hence that for each set �
the presheaves Disc(�) and coDisc(�) are indeed sheaves (Def. 4.8).

By the formulaton of the sheaf condition via the Cech groupoid (Prop. 4.29), and using the
adjunction hom-isomorphisms (here) this is readily seen to be equivalent to the two further
conditions on a cohesive site (Def. 5.4):

Let {�� → �} be a covering family.

The sheaf condition (81) for Disc(�) says that

⎡
⎣
�({��}) � �⎯⎯⎯

�{��}�
�(�) , Disc(�)⎤

⎦

is an isomorphism of groupoids, which by adjunction and using (86) means equivalently
that

�lim
→⎯⎯
���

(�({��})) → * , ��

is  an  isomorphism  of  groupoids,  where  we  used  that  colimits  of  representables  are
singletons (Lemma 3.34) to replace lim

→⎯⎯⎯
���

�(�) ≃ * .
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(88)

But now in this internal hom of groupoids, the set � is really a groupoid in the image of the
re�lective  embedding  of  sets  into  groupoids,  whose  left  adjoint  is  the  connected
components-functor ��  (Example 1.61). Hence by another adjunction isomoprhism this is
equivalent to

��� lim→⎯⎯⎯
���

(�({��})) → * , ��

being an isomorphism (a bijection of sets, now). This is true for all � ∈ Set precisely if (by
the Yoneda lemma, if you wish) the morphism

�� lim→⎯⎯
���

(�({��})) → *

is already an isomorphism (here: bijection) itself.

Similarly, the sheaf condition (81) for coDisc(�) says that

⎡
⎣
�({��}) � �⎯⎯

�{��}�
�(�) , coDisc(�)⎤

⎦

is an isomorphism, and hence by adjunction and using (85), this is equivalent to

��� lim←⎯⎯
���

�({��}) � �⎯⎯
�{��}�

Hom�( * ,�) , ��

being an isomorphism. This holds for all � ∈ Set if (by the Yoneda lemma, if you wish)

�� lim←⎯⎯
���

�({��}) � �⎯⎯
�{��}�

Hom�( * ,�)

is an isomorphism.  ▮

De�inition	5.6. (adjoint	triple	of	adjoint modal	operators	on	cohesive	topos)

Given a cohesive topos (Def. 5.2), its adjoint quadruple (Remark 1.34) of functors to and
from Set
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� ⊣ Disc ⊣ � ⊣ coDisc : �

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯
����

→⎯⎯⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

Set

induce, by composition of functors, an adjoint triple (Remark 1.34) of adjoint modalities
(Def. 1.66):

ʃ ⊣ ♭ ⊣ ♯ : �

� �⎯⎯⎯⎯⎯⎯⎯
ʃ ≔ ����∘�

→⎯⎯⎯⎯⎯⎯⎯⎯
♭ ≔ ����∘�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
♯ ≔ ������∘�

� .

Since  Disc  and coDisc  are  fully  faithful  functors  by  assumption,  these  are  (co-)modal
operators (Def. 1.62) on the cohesive topos, by (Prop. 1.63).

We pronounce these as follows:

shape	modality �lat	modality sharp	modality

ʃ ≔ Disc ∘� ♭ ≔ Disc ∘ � ♯ ≔ coDisc ∘ �

and we refer to the corresponding modal objects (Def. 1.65) as follows:

• a �lat-comodal object

♭� →⎯⎯⎯
≃

��
♭

�

is called a discrete	object;

• a sharp-modal object

� →⎯⎯⎯⎯
≃

��
♯

♯�

is called a codiscrete	object;

• a sharp-submodal object

� →⎯⎯⎯⎯
����

��
♯

♯�
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is a concrete	object.

Proposition 	5.7. 	(pieces 	have 	points ≃ discrete 	objects 	are 	concrete ≃ Au�hebung 	of
bottom adjoint	modality)

Let	�	be	a	cohesive	topos	(Def.	5.2).	Then	the	following	conditions	are	equivalent:

1.	pieces	have	points:	For	every	object � ∈ �,	comparison	of	extremes-transformation
(27) 	 for 	 the 	 (ʃ , ⊣ ♭)-adjoint 	modality (27), 	hence 	 the 	 ♭-counit 	 of 	 an 	 adjunction
composed	with	the	ʃ-unit

♭� →⎯⎯⎯⎯⎯⎯
��
♭

� →⎯⎯⎯⎯⎯⎯
��
ʃ

ʃ�

is	an	epimorphism	(Def.	1.18)

2.	discrete	objects	are	concrete:	For	every	object � ∈ �,	we	have	that	its	discrete	object
♭�	is	a	concrete	object	(Def.	5.6).

3.	Au�hebung	of	bottom adjoint	modality
The 	adjoint 	modality ♭ ⊣ ♯ 	 exhibits 	Au�hebung 	 (Def. 	1.72) 	of 	 the 	bottom adjoint
modality	(Example	1.71),	i.e.	the	initial	object	(Def.	1.5)	is	codiscrete	(Def.	5.6):

♯∅ ≃ ∅ .

Proof. The comparison morphism ptp
�

 is a special case of that discussed in Prop. 1.69. First

observe, in the notation there, that

ptp
�

is epi iff ptp
�

is epi .

In one direction, assume that ptp
�

 is an epimorphism. By (31) we have ptp
�
= Disc(ptp

�
),

but Disc is a left adjoint and left adjoints preserve monomorphisms (Prop. 1.47).

In the other direction, assume that ptp
�

 is an epimorphism. By (29) and (32) we see that

ptp
�

 is re-obtained from this by applying � and then composition with isomorphisms. But �

is again a left adjoint, and hence preserves epimorphism by Prop. 1.47, as does composition
with isomorphisms.

By applying (29) again, we �ind in particular that pieces 	have 	points  is also equivalent to
������ �

♭  being an epimorphism, for all � ∈ �. But this is equivalent to

Hom�(���
♭ , �) = Hom�(��

♭ , Disc(�))

being  a  monomorphism  for  all  �  (by  adjunction  isomorphism  (10)  and  de�inition  of
epimorphism, Def. 1.18).
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Now by Lemma 1.37, this is equivalent to

Hom�(�, �����(�)
♯

)

being  an  injection  for  all  �,  which,  by  Def.  1.18,  is  equivalent  to  �����(�)
♯  being  a

monomorphism, hence to discrete	objects	are	concrete.

This establishes the equivalence between the �irst two items.  ▮

Proposition 	 5.8. 	 (cohesive 	 site 	 such 	 that 	 pieces 	 have 	 points/discrete 	 objects 	 are
concrete)

Let	�	be	a	cohesive	site	(Def.	5.4),	such	that

• for	every	object � ∈ �,	there	is	at	least	one	morphism * →
∃
�	from	the terminal	object

to	�,	hence	such	that	the	hom	set Hom�( * ,�)	is	non-empty.

Then 	the 	cohesive 	topos Sh(�), 	according 	to 	Prop. 	5.5, 	satis�ies 	the 	equivalent 	conditions
from	Prop.	5.7:

1.	pieces	have	points,

2.	discrete	objects	are	concrete.

Proof. By Prop. 5.7 it is suf�icient to show the second condition, hence to check that for each
set � ∈ Set, the canonical morphism

Disc(�)⟶ coDisc(�)

is a monomorphism. By Prop. 4.21 this means equivalently that for each object � ∈ � in the
site, the component function

Disc(�)(�)⟶ coDisc(�)(�)

is an injective function.

Now, by the proof of Prop. 5.5, this is the diagonal function

� ⟶ Hom���(Hom�( * ,�), �)

� ↦ const�

This  function  is  injective  precisely  if  Hom�( * ,�)  is  non-empty,  which  is  true  by
assumption.  ▮

Proposition	5.9.	(quasitopos	of	concrete	objects	in	a	cohesive	topos)
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(89)

For	�	a	cohesive	topos	(Def.	5.2),	write

����� � �⎯⎯⎯ �

for	its	full	subcategory	(Example	1.20)	of	concrete	objects	(Def.	5.6).

Then 	 there 	 is 	a 	sequence 	of 	re�lective 	subcategory-inclusions 	(Def. 	1.60) 	 that 	 factor 	 the
(� ⊣ coDisc)-adjunction	as

� ⊣ coDisc : �
→⎯⎯⎯⎯⎯⎯⎯⎯

����

� �⎯⎯⎯⎯⎯⎯⎯
�����

�����
→⎯⎯⎯⎯⎯⎯

�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

Set

If	in	addition	discrete	objects	are	concrete	(Prop.	5.7),	then	the	full	adjoint	quadruple	factors
through	the	concrete	objects:

� ⊣ coDisc

: �
→⎯⎯⎯⎯⎯⎯⎯⎯

����

� �⎯⎯⎯⎯⎯⎯⎯
�����

�����

→⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯
����

→⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

Set

Proof. For the adjunction on the right, we just need to observe that for every set � ∈ Set, the
codiscrete object coDisc(�) is concrete, which is immediate by idempotency of ♯ (Prop. 1.64)
and the fact that every isomorphism is also a monomorphism. Similarly, the assumption that
discrete objects are concrete says exactly that also Disc factors through �����.

For  the  adjunction  on  the  left  we  claim  that  the  left  adjoint conc,  (to  be  called
concreti�ication), is given by sending each object to the image (Def. 4.22) of its (� ⊣ coDisc)
adjunction unit �♯:

conc : � ↦ im(��
♯
) ,

hence to the object which exhibits the epi/mono-factorization (Prop. 4.22) of ��
♯

��
♯
: � →⎯⎯⎯

���

��
����

conc� →⎯⎯⎯⎯
����

♯� .

First we need to show that conc�, thus de�ined, is indeed concrete, hence that �
��(��

♯
)

♯  is a

monomorphism (Def. 1.18). For this, consider the following naturality square (11) of the
� ⊣ coDisc-adjunction hom-isomorphism
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(90)
Hom���(� im(��

♯
),� im(��

♯
)) ≃ Hom�(im(��

♯
), ♯ im(��

♯
))

(�)∘�(��
����) ↓

�
� ↓

�
�
(�)∘��

����

Hom���(��,� im(��
♯
)) ≃ Hom�(�, ♯ im(��

♯
))

�id
� ��(��

♯
)
� ⟶

↓
�
�

��(��
����)� ⟶

By  chasing  the  identity  morphism  on  � im(��
♯
)  through  this  diagram,  as  shown  by  the

diagram on the right, we obtain the equality displayed in the bottom right entry, where we
used the general formula for adjuncts (Prop. 1.38) and the de�inition ♯ ≔ coDisc ∘ � (Def.
5.6).

But  observe  that  �(��
����),  and  hence  also  ♯(��

����),  is  an  isomorphism  (Def.  1.9),  as

indicated above: Since � is both a left adjoint as well as a right adjoint, it preserves both
epimorphisms  as  well  as  monomorphisms  (Prop.  1.47),  hence  it  preserves  image
factorizations (Prop. 4.22). This implies that ���

���� is the epimorphism onto the image of

�(��
♯
).  But  by  idempotency  of  ♯,  the  latter  is  an  isomorphism,  and  hence  so  is  the

epimorphism in its image factorization.

Therefore the equality in (90) says that

��
♯
= �iso ∘ �

��(��
♯
)

♯ � ∘ ��
����

= mono ∘ ��
���� ,

where in the second line we remembered that ��
���� is, by de�inition, the epimorphism in the

epi/mono-factorization of ��
♯ .

Now the de�ining property of  epimorphisms (Def.  1.18)  allows to cancel  this  commmon
factor on both sides, which yields

�
��(��

♯
)

♯
= iso ∘mono = mono .

This shows that conc� ≔ im(��
♯
) is indeed concret.

It remains to show that this construction is left adjoint to the inclusion. We claim that the
adjunction unit (Def. 1.33) of (conc ⊣ �����) is provided by ����� (89).

To see this, �irst notice that, since the epi/mono-factorization (Prop. 4.22) is orthogonal and
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(91)

hence functorial, we have commuting diagrams of the form

�� →⎯⎯⎯⎯
���

���
����

im(���

♯
) →⎯⎯⎯

����
♯��

↓
�
� ↓

�
� ↓

�
�

�� →⎯⎯⎯⎯
���

���
����

im(���

♯
) →⎯⎯⎯

����
♯��

Now to demonstrate the adjunction it is suf�icient, by Prop. 1.42, to show that �����  is a
universal morphism in the sense of Def. 1.41. Hence consider any morphism � : �� → ��
with �� ∈ ����� ↪ �. Then we need to show that there is a unique diagonal morphism as
below, that makes the following top	left	triangle commute:

�� →⎯⎯⎯⎯⎯⎯
�

��

��� ↓
�
�
���
����

∃! ↗ ↓
�
�
����

im(���

♯
) ⟶ ♯��

Now,  from (91),  we  have  a  commuting  square  as  shown.  Here  the  left  morphism is  an
epimorphism by construction, while the right morphism is a monomorphism by assumption
on ��. With this, the epi/mono-factorization in Prop. 4.22 says that there is a diagonal lift
which makes both triangles commute.

It remains to see that the lift is unique with just the property of making the top left triangle
commute. But this is equivalently the statement that the left morphism is an epimorphism,
by Def. 1.18.  ▮

The equivalence of  the �irst  two follows with (Johnstone,  lemma 2.1,  corollary 2.2).  The
equivalence of the �irst and the last is due to Lawvere-Menni 15, lemma 4.1, lemma 4.2.

Elastic	toposes

De�inition	5.10. (elastic	topos)

Let ����  be a cohesive topos (Def.  5.2).  Then an elastic 	topos  or differentially 	cohesive
topos over ���� is a sheaf topos � which is

1. a cohesive topos over Set,

2. equipped with a quadruple of adjoint functors (Def. 1.32) to ���� of the form
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����

� �⎯⎯⎯⎯⎯⎯⎯
����

←⎯⎯⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
�������

←⎯⎯⎯⎯⎯⎯⎯
����

�

Lemma	5.11.	(progression	of	(co-)re�lective	subcategories	of	elastic	topos)

Let	�	be	an	elastic	topos	(Def.	5.10)	over	a	cohesive	topos����	(Def.	5.2):

Set

←⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯
�������

←⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
���������

����

� �⎯⎯⎯⎯⎯⎯⎯
����

←⎯⎯⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
�������

←⎯⎯⎯⎯⎯⎯⎯
����

�

and	write

Set

←⎯⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯
����

←⎯⎯⎯⎯⎯
�

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

�

for 	the 	adjoint 	quadruple 	exhibiting 	the 	cohesion 	of 	� 	 itself. 	Then 	these 	adjoint 	functors
arrange	and	decompose	as	in	the	following	diagram

Proof. The identi�ication

(Disc ⊣ �) ≃ (Disc��� ∘Disc��� ⊣ ���� ∘ ����)
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follows from the essential uniqueness of the global section-geometric morphism (Example
4.9).  This  implies  the  identi�ications  � ≃ ���� ∘����  by  essential  uniqueness  of  adjoints
(Prop. 1.45).  ▮

De�inition	5.12. (adjoint	modalities	on	elastic	topos)

Given an elastic topos (differentially cohesive topos) � over ����  (Def. 5.10), composition
of the functors in Lemma 5.11 yields, via Prop. 1.63, the following adjoint modalities (Def.
1.66)

ℜ ⊣ ℑ ⊣ & : �

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
ℜ ≔ ���� ∘����

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
ℑ ≔ ������� ∘����

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
& ≔ ������� ∘����

� .

Since  ����  and  Disc���  are  fully  faithful  functors  by  assumption,  these  are  (co-)modal
operators (Def. 1.62) on the cohesive topos, by (Prop. 1.63).

We pronounce these as follows:

reduction
modality

in�initesimal	shape
modality

in�initesimal	�lat
modality

ℜ ≔ ���� ∘���� ℑ ≔ Disc��� ∘���� & ≔ Disc��� ∘ ����

and we refer to the corresponding modal objects (Def. 1.65) as follows:

• a reduction-comodal object

ℜ� ⟶
≃

��
ℜ

�

is called a reduced	object;

• an in�initesimal shape-modal object

� →⎯⎯⎯⎯
≃

��
ℑ

ℑ�

is called a coreduced	object.

Proposition	5.13.	(progression	of	adjoint	modalities	on	elastic	topos)

Let 	� 	be 	an 	elastic 	topos 	(Def. 	5.10) 	and 	consider 	the 	corresponding 	adjoint 	modalities
which	it	inherits
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1.	for	being	a	cohesive	topos,	from	Def.	5.6,

2.	for	being	an	elastic	topos,	from	Def.	5.12:

shape	modality �lat	modality sharp	modality

ʃ ≔ Disc ∘� ♭ ≔ Disc ∘ � ♯ ≔ coDisc ∘ �

reduction	modality in�initesimal	shape	modality in�initesimal	�lat	modality

ℜ ≔ ���� ∘���� ℑ ≔ Disc��� ∘���� & ≔ Disc��� ∘ ����

Then	these	arrange	into	the	following	progression,	via	the	preorder	on	modalities	from	Def.
1.70

ℜ ⊣ ℑ ⊣ &

∨ ∨

ʃ ⊣ ♭ ⊣ ♯

∨ ∨

∅ ⊣ *

where	we	display	also	the	bottom adjoint	modality ∅ ⊣ * 	(Example	1.71),	for	completeness.

Proof. We need to show, for all � ∈ �, that

1. ♭� is an &-modal object (Def. 1.65), hence that

&♭� ≃ �

2. ʃ� is an ℑ-modal object (Def. 1.65), hence that

ℑʃ� ≃ �

After unwinding the de�initions of the modal operators Def. 5.6 and Def. 5.6, and using their
re-identi�ication from Lemma 5.11, this comes down to the fact that

���� Disc��� ≃ id and ���� Disc��� ≃ id ,

which holds by Prop. 1.46, since Disc���  is a fully faithful functor and ����,  Gamma���  are
(co-)re�lectors for it, respectively:
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  ▮

Solid	toposes

De�inition	5.14. (solid	topos)

Let ����  be an elastic topos (Def. 5.10) over a cohesive topos ����  (Def. 5.2). Then a solid
topos or super-differentially	cohesive	topos over ���� is a sheaf topos �, which is

1. a cohesive topos over Set (Def. 5.2),

2. an elastic topos over ����,

3. equipped with a quadruple of adjoint functors (Def. 1.32) to ���� of the form

����

←⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯
����

←⎯⎯⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
�������

�
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hence with ���� and Disc��� being fully faithful functors (Def. 1.19).

Lemma	5.15.	(progression	of	(co-)re�lective	subcategories	of	solid	topos)

Let	�	be	a	solid	topos	(Def.	5.14)	over	an	elastic	topos����	(Def.	5.10):

Set

←⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯
�������

←⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
���������

����

� �⎯⎯⎯⎯⎯⎯⎯
����

←⎯⎯⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
�������

←⎯⎯⎯⎯⎯⎯⎯⎯
����

����

←⎯⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯
����

←⎯⎯⎯⎯⎯⎯⎯⎯
����

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
�������

←⎯⎯⎯⎯⎯⎯⎯⎯
����

�

Then	these	adjoint	functors	arrange	and	decompose	as	shown	in	the	following	diagram:

Here	the	composite	adjoint	quadruple

Set

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
�≃������������

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
����=���������������������

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
�=������������

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
������

�

exhibits	the	cohesion	of	�	over	Set,	and	the	composite	adjoint	quadruple
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����

� �⎯⎯⎯⎯⎯
��������

←⎯⎯⎯⎯⎯⎯
��������

� �⎯⎯⎯⎯⎯⎯⎯⎯⎯
��������������

←⎯⎯⎯
����

�

exhibits	the	elasticity	of	�	over	����.

Proof. As in the proof of Prop. 5.11, this is immediate by the essential uniqueness of adjoints
(Prop. 1.45) and of the global section-geometric morphism (Example 4.9).  ▮

De�inition	5.16. (adjoint	modalities	on	solid	topos)

Given a solid topos � over ����  (Def. 5.14), composition of the functors in Lemma 5.15
yields, via Prop. 1.63, the following adjoint modalities (Def. 1.66)

⇉ ⊣ ⇝ ⊣ Rh : �

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⇉ ≔ ���� ∘����

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⇝ ≔ ���� ∘����

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
�� ≔ ������� ∘����

� .

Since ����  and Disc���  are  fully  faithful  functors  by assumption,  these are  (co-)modal
operators (Def. 1.62) on the cohesive topos, by (Prop. 1.63).

We pronounce these as follows:

fermionic	modality bosonic	modality rheonomy	modality

⇉ ≔ ���� ∘ even ⇝ ≔ ���� ∘���� Rh ≔ Disc��� ∘����

and we refer to the corresponding modal objects (Def. 1.65) as follows:

• a ⇝-comodal object

�
⇝

⟶
≃

��
⇝

�

is called a bosonic	object;

• a Rh-modal object

� →⎯⎯⎯
≃

��
��

Rh�
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is called a rheonomic	object;

Proposition	5.17.	(progression	of	adjoint	modalities	on	solid	topos)

Let	�	be	a	solid	topos	(Def.	5.14)	and	consider	the	adjoint	modalities	which	it	inherits

1.	for	being	a	cohesive	topos,	from	Def.	5.6,

2.	for	being	an	elastic	topos,	from	Def.	5.12,

3.	for	being	a	solid	topos,	from	Def.	5.16:

shape	modality �lat	modality sharp	modality

ʃ ≔ Disc� ♭ ≔ Disc ∘ � ♯ ≔ coDisc ∘ �

reduction	modality in�initesimal	shape
modality

in�initesimal	�lat	modality

ℜ ≔ �������� ∘�������� ℑ ≔ Disc���Disc��� ∘�������� & ≔ Disc���Disc��� ∘ ��������

fermionic	modality
bosonic	modality rheonomy	modality

⇉ ≔ ���� ∘ even ⇝ ≔ ���� ∘���� Rh ≔ Disc��� ∘����

Then	these	arrange	into	the	following	progression,	via	the	preorder	on	modalities	from	Def.
1.70:

id ⊣ id

∨ ∨

⇉ ⊣ ⇝ ⊣ Rh

∨ ∨

ℜ ⊣ ℑ ⊣ &

∨ ∨

ʃ ⊣ ♭ ⊣ ♯

∨ ∨

∅ ⊣ *

where	we	are	displaying,	for	completeness,	also	the	adjoint	modalities	at	the	bottom ∅ ⊣ *
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and	the	top id ⊣ id	(Example	1.71).

Proof. By Prop. 5.13, it just remains to show that for all objects � ∈ �

1. ℑ� is an Rh-modal object, hence Rhℑ� ≃ �,

2. ℜ� is a bosonic object, hence ℜ�
⇝

≃ℜ�.

The proof is directly analogous to that of Prop. 5.13, now using the decompositions from
Lemma 5.15:

Rhℑ = Disc������� Disc���� � ���� ���
≃��

Disc��� ��������

≃ Disc���Disc��� ��������

= ℑ

and

⇝ ℜ = �������� ����� � ��� ��
≃��

������������

≃ ����������������

≃ ℜ

  ▮

(…)

6. Basic notions of homotopy theory

Traditionally, mathematics and physics have been founded on set theory, whose concept of
sets is that of “bags of distinguishable points”.

But fundamental physics is governed by the gauge	principle. This says that given any two
“things”, such as two �ield histories � and �, it is in general wrong to ask whether they are
equal or not, instead one has to ask where there is a gauge	transformation

� ⟶
�

�

between them. In mathematics this is called a homotopy.

This principle applies also to gauge transformations/homotopies themselves, and thus leads
to gauge-of-gauge	transformations or homotopies	of	homotopies
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and so on to ever higher	gauge	transformations or higher	homotopies:

This shows that what � an � here are elements of is not really a set in the sense of set theory.
Instead,  such  a  collection  of  elements  with  higher  gauge  transformations/higher
homotopies between them is called a homotopy	type.

Hence the theory of homotopy types – homotopy	theory – is much like set theory, but with
the concept of gauge transformation/homotopy built right into its foundations. Homotopy
theory is gauged mathematics.

A classical model for homotopy types are simply topological spaces: Their points represent
the elements, the continuous paths between points represent the gauge transformations,
and continuous deformations of paths represent higher gauge transformations.  A central
result of homotopy theory is the proof of the homotopy	hypothesis,  which says that under
this identi�ication homotopy types are equivalent to topological spaces viewed, in turn, up to
“weak homotopy equivalence”.

In the special case of a homotopy type with a single element �, the gauge transformations
necessarily go from � to itself and hence form a group	of	symmetries of �.
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This way homotopy theory subsumes group theory.

If  there  are  higher  order  gauge-of-gauge  transformations/homotopies  of  homotopies
between  these  symmetry group-elements,  then  one  speaks  of  2-groups,  3-groups,  …  n-
groups, and eventually of ∞-groups. When homotopy types are represented by topological
spaces, then ∞-groups are represented by topological groups.

This way homotopy theory subsumes parts of topological group theory.

Since, generally, there is more than one element in a homotopy type, these are like “groups
with several elements”, and as such they are called groupoids (Def. 1.10).

If  there  are  higher  order  gauge-of-gauge  transformations/homotopies  of  homotopies
between the transformations in such a groupoid, one speaks of 2-groupoids, 3-groupoids, …
n-groupoids, and eventually of ∞-groupoids. The plain sets are recovered as the special case
of 0-groupoids.

Due to the higher orders � appearing here, mathematical structures based not on sets but
on homotopy types are also called higher	structures.

Hence homotopy types are equivalently ∞-groupoids. This perspective makes explicit that
homotopy  types  are  the  uni�ication  of  plain  sets  with  the  concept  of  gauge-symmetry
groups.

An ef�icient way of handling ∞-groupoids is in their explicit guise as Kan 	complexes  (Def.
below); these are the non-abelian generalization of the chain	complexes used in homological
algebra. Indeed, chain	homotopy is a special case of the general concept of homotopy, and
hence  homological  algebra  forms  but  a  special  abelian  corner  within  homotopy theory.
Conversely,  homotopy  theory  may  be  understood  as  the  non-abelian  generalization  of
homological algebra.

Hence, in a self-re�lective manner, there are many different but equivalent incarnations of
homotopy theory. Below we discuss in turn:

• Topological	homotopy	theory
∞-groupoids modeled by topological spaces. This is the classical model of homotopy
theory familiar from traditional point-set topology, such as covering space-theory.

• Simplicial	homotopy	theory.
∞-groupoids modeled on simplicial sets, whose �ibrant objects are the Kan complexes.
This simplicial homotopy theory is Quillen equivalent to topological homotopy theory
(the “homotopy hypothesis”), which makes explicit that homotopy theory is not really
about topological spaces, but about the ∞-groupoids that these represent.
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(92)

Ideally, abstract homotopy theory would simply be a complete replacement of set theory,
obtained by removing  the assumption of strict equality, relaxing it to gauge equivalence/
homotopy. As such, abstract homotopy theory would be part and parcel of the foundations
of mathematics themselves, not requiring any further discussion. This ideal perspective is
the  promise  of  homotopy 	 type 	 theory  and  may  become  full  practical  reality  in  the  next
decades.

Until  then,  abstract  homotopy  theory  has  to  be  formulated  on  top  of  the  traditional
foundations of mathematics provided by set theory, much like one may have to run a Linux
emulator on a Windows machine, if one does happen to be stuck with the latter.

A very convenient and powerful such emulator for homotopy theory within set theory is
model 	category 	theory,  originally due to Quillen 67 and highly developed since.  This  we
introduce here.

The idea is to consider ordinary categories (Def. 1.1) but with the understanding that some
of their morphisms

� ⟶
�

�

should be homotopy	equivalences (Def. ), namely similar to isomorphisms (Def. 1.9), but not
necessarily satisfying the two equations de�ining an actual isomorphism

��� ∘ � = id� � ∘ ��� = id�

but intended to satisfy this only with equality relaxed to gauge transformation/homotopy:

��� ∘ � � ����
�����

id� � ∘ ��� � ����
�����

id� .

Such would-be	homotopy	equivalences are called weak	equivalences (Def. 1.75 below).

In principle, this information already de�ines a homotopy theory by a construction called
simplicial	localization, which turns weak equivalences into actual homotopy equivalences in
a suitable way.

However, without further tools this construction is unwieldy. The extra structure of a model
category  (Def.  6.1 below) on top of a category with weak equivalences provides a set of
tools.

The idea here is to abstract (in Def. 6.20 below) from the evident concepts in topological
homotopy theory of left	homotopy (Def. ) and right	homotopy  (Def. ) between continuous
functions:  These  are  provided  by  continuous  functions  out  of  a  cylinder  space
Cyl(�) = �× [0, 1] or into a path space Path(�) = �[�,�], respectively, where in both cases
the  interval  space [0, 1]  serves  to  parameterize  the  relevant  gauge  transformation/
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homotopy.

Now a little re�lection shows (this was the seminal insight of Quillen 67) that what really
matters  in  this  construction  of  homotopies  is  that  the  path  space  factors  the  diagonal
morphism from a space � to its Cartesian product as

diag
�
: � →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

weak equiv.
co�ibration

Path(�) →⎯⎯⎯⎯⎯⎯⎯⎯
�ibration

�×�

while the cylinder serves to factor the codiagonal morphism as

codiag
�
: � ⊔ � →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

co�ibration
Cyl(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

weak equiv
�ibration

�

where  in  both  cases  “�ibration”  means  something  like  well 	 behaved 	 surjection,  while
“co�ibration” means something like satisfying 	the 	 lifting 	property 	(Def. 	6.2 	below) 	against
�ibrations	that	are	also	weak	equivalences.

Such factorizations subject  to lifting properties  is  what the de�inition of  model 	category
axiomatizes,  in  some  generality.  That  this  indeed  provides  a  good  toolbox  for  handling
homotopy equivalences is shown by the Whitehead 	theorem 	 in 	model 	categories  (Lemma
6.25 below), which exhibits all weak equivalences as actual homotopy equivalences  after
passage to “good representatives” of objects (�ibrant/co�ibrant resolutions, Def. 6.26 below).
Accordingly,  the  �irst  theorem  of  model  category  theory  (Quillen  67,  I.1  theorem  1,
reproduced  as  Theorem  6.29  below),  provides  a  tractable  expression  for  the  hom-sets
modulo homotopy equivalence of the underlying category with weak equivalences in terms
of  actual  morphisms  out  of  co�ibrant  resolutions  into  �ibrant  resolutions  (Lemma  6.35
below).

This is then generally how model category-theory serves as a model for homotopy theory:
All homotopy-theoretic constructions, such as that of long homotopy �iber sequences (Prop.
below), are re�lected via constructions of ordinary category theory but applied to suitably
resolved objects.

Literature (Dwyer-Spalinski 95)

De�inition	6.1. (model	category)

A model	category is

1. a category � (Def. 1.1) with all limits and colimits (Def. 3.1);
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2. three sub-classes �, Fib, Cof ⊂ Mor(�) of its class of morphisms;

such that

1. the class � makes � into a category	with	weak	equivalences, def. 1.75;

2. The pairs (�∩ Cof , Fib) and (Cap , �∩ Fib) are both weak factorization systems,
def. 6.3.

One says:

• elements in � are weak	equivalences,

• elements in Cof are co�ibrations,

• elements in Fib are �ibrations,

• elements in �∩ Cof are acyclic	co�ibrations,

• elements in �∩ Fib are acyclic	�ibrations.

The form of def.  6.1 is due to (Joyal,  def.  E.1.2).  It  implies various other conditions that
(Quillen 67) demands explicitly, see prop. 6.8 and prop. 6.12 below.

We now dicuss the concept of weak factorization systems (Def. 6.3 below) appearing in def.
6.1.

Factorization	systems

De�inition	6.2. (lift	and	extension)

Let � be any category. Given a diagram in � of the form

� ⟶
�

�

� ↓

�

then  an  extension  of  the  morphism �  along  the  morphism �  is  a  completion  to  a
commuting diagram of the form

� ⟶
�

�

� ↓ ↗�̃

�

.

Dually, given a diagram of the form
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�

↓�

� ⟶
�

�

then a lift of � through � is a completion to a commuting diagram of the form

�

�̃ ↗ ↓�

� ⟶
�

�

.

Combining these cases: given a commuting square

�� ⟶
��

��
�� ↓ ↓

��

�� ⟶
��

��

then a lifting in the diagram is a completion to a commuting diagram of the form

�� ⟶
��

��
�� ↓ ↗ ↓

��

�� ⟶
��

��

.

Given a sub-class of morphisms � ⊂ Mor(�), then

• a morphism �
�

 as above is said to have the right	lifting	property	against	� or to be

a �-injective	morphism if in all square diagrams with �
�

 on the right and any �
�
∈ �

on the left a lift exists.

dually:

• a morphism �
�
 is  said to have the left 	 lifting 	property 	against 	�  or  to be a �-

projective	morphism if in all square diagrams with �
�
 on the left and any �

�
∈ � on

the left a lift exists.

De�inition	6.3. (weak	factorization	systems)

A weak 	factorization 	system  (WFS) on a category �  is  a  pair (Proj, Inj)  of  classes of
morphisms of � such that
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1. Every morphism � :� → � of � may be factored as the composition of a morphism in
Proj followed by one in Inj

� : � →⎯⎯⎯⎯
∈����

� →⎯⎯⎯
∈���

� .

2. The classes are closed under having the lifting property, def. 6.2, against each other:

1. Proj is precisely the class of morphisms having the left lifting property against
every morphisms in Inj;

2. Inj is precisely the class of morphisms having the right lifting property against
every morphisms in Proj.

De�inition	6.4. (functorial	factorization)

For � a category, a functorial	factorization of the morphisms in � is a functor

fact : ��[�] ⟶ ��[�]

which is a section of the composition functor �� : �
�[�] → ��[�].

Remark	6.5. In def. 6.4 we are using the following standard notation, see at simplex	category
and at nerve	of	a	category:

Write [1] = {0 → 1} and [2] = {0 → 1 → 2} for the ordinal numbers, regarded as posets
and hence as categories. The arrow category Arr(�) is equivalently the functor category
��[�] ≔ Funct(�[1],�),  while ��[�] ≔ Funct(�[2],�)  has as objects pairs of composable
morphisms in �. There are three injective functors �� : [1] → [2], where ��  omits the index
� in its image. By precomposition, this induces functors �� :�

�[�] ⟶ ��[�]. Here

• �� sends a pair of composable morphisms to their composition;

• �� sends a pair of composable morphisms to the �irst morphisms;

• �� sends a pair of composable morphisms to the second morphisms.

De�inition 	 6.6.  A  weak  factorization  system,  def.  6.3,  is  called  a  functorial 	 weak
factorization	system if the factorization of morphisms may be chosen to be a functorial
factorization fact, def. 6.4, i.e. such that �� ∘ fact lands in Proj and �� ∘ fact in Inj.

Remark 	6.7.  Not  all  weak  factorization  systems  are  functorial,  def.  6.6,  although  most
(including those produced by the small  object argument (prop. 6.15 below),  with due
care) are.

Proposition 	6.8. 	Let 	� 	be 	a 	category 	and 	 let 	� ⊂ Mor(�) 	be 	a 	class 	of 	morphisms. 	Write
�Proj 	and 	� Inj, 	 respectively, 	 for 	 the 	 sub-classes 	of 	�-projective 	morphisms 	and 	of 	�-
injective	morphisms,	def.	6.2.	Then:
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1.	Both	classes	contain	the	class	of	isomorphism	of	�.

2.	Both	classes	are	closed	under	composition	in	�.
�Proj	is	also	closed	under	trans�inite	composition.

3.	Both	classes	are	closed	under	forming	retracts	in	the	arrow	category ��[�]	(see	remark
6.10).

4.	�Proj	is	closed	under	forming	pushouts	of	morphisms	in	�	(“cobase	change”).
� Inj	is	closed	under	forming	pullback	of	morphisms	in	�	(“base	change”).

5.	�Proj	is	closed	under	forming	coproducts	in	��[�].
� Inj	is	closed	under	forming	products	in	��[�].

Proof. We go through each item in turn.

containing	isomorphisms

Given a commuting square

� →
�

�

∈���
�
↓ ↓�

� ⟶
�

�

with the left  morphism an isomorphism, then a lift  is  given by using the inverse  of  this

isomorphism �∘�
��
↗ . Hence in particular there is a lift when � ∈ � and so � ∈ �Proj.  The

other case is formally dual.

closure	under	composition

Given a commuting square of the form

� ⟶ �

↓ ↓∈� ���
��

∈�
�
↓ ↓∈� ���

��

� ⟶ �

consider its pasting decomposition as
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� ⟶ �

↓ ↘ ↓∈� ���
��

∈�
�
↓ ↓∈� ���

��

� ⟶ �

.

Now the bottom commuting square has a lift, by assumption. This yields another pasting
decomposition

� ⟶ �

∈�
�
↓ ↓∈� ���

��

↓ ↗ ↓∈� ���
��

� ⟶ �

and now the top commuting square has a lift by assumption. This is now equivalently a lift in
the total diagram, showing that �

�
∘ �

�
 has the right lifting property against � and is hence

in � Inj.  The case of composing two morphisms in �Proj  is formally dual.  From this the
closure of �Proj under trans�inite composition follows since the latter is given by colimits of
sequential  composition  and  successive  lifts  against  the  underlying  sequence  as  above
constitutes a cocone, whence the extension of the lift to the colimit follows by its universal
property.

closure	under	retracts

Let � be the retract of an � ∈ �Proj, i.e. let there be a commuting diagram of the form.

id� : � ⟶ � ⟶ �

↓� ↓∈�����
�

↓�

id� : � ⟶ � ⟶ �

.

Then for

� ⟶ �

� ↓ ↓∈�
�

� ⟶ �

a commuting square, it is equivalent to its pasting composite with that retract diagram
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� ⟶ � ⟶ � ⟶ �

↓� ↓∈�����
�

↓� ↓∈�
�

� ⟶ � ⟶ � ⟶ �

.

Here the pasting composite of the two squares on the right has a lift, by assumption:

� ⟶ � ⟶ � ⟶ �

↓� ↓
�

↗ ↓∈�
�

� ⟶ � ⟶ � ⟶ �

.

By composition, this is also a lift in the total outer rectangle, hence in the original square.
Hence � has the left lifting property against all � ∈ � and hence is in �Proj. The other case is
formally dual.

closure	under	pushout	and	pullback

Let � ∈ � Inj and and let

�×� � ⟶ �

�*� ↓ ↓�

� ⟶
�

�

be a pullback diagram in �.  We need to show that �*� has the right lifting property with
respect to all � ∈ �. So let

� ⟶ �×� �

∈�
�
↓ ↓�

*�

� ⟶
�

�

be a commuting square. We need to construct a diagonal lift of that square. To that end, �irst
consider  the  pasting  composite  with  the  pullback  square  from  above  to  obtain  the
commuting diagram

� ⟶ �×� � ⟶ �

� ↓ ↓�
*� ↓�

� ⟶
�

� ⟶
�

�

.

By the right lifting property of �, there is a diagonal lift of the total outer diagram

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

189 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/right+lifting+property
https://ncatlab.org/nlab/show/right+lifting+property
https://ncatlab.org/nlab/show/commuting+square
https://ncatlab.org/nlab/show/commuting+square
https://ncatlab.org/nlab/show/pasting
https://ncatlab.org/nlab/show/pasting


� ⟶ �

↓� (��)^ ↗ ↓�

� ⟶
��

�

.

By the universal property of the pullback this gives rise to the lift �̂ in

�×� � ⟶ �

�̂ ↗ ↓�
*� ↓�

� ⟶
�

� ⟶
�

�

.

In order for �̂ to qualify as the intended lift of the total diagram, it remains to show that

� ⟶ �×� �

↓� �̂ ↗

�

commutes. To do so we notice that we obtain two cones with tip �:

• one is given by the morphisms

1. � → �×� � → �

2. � →
�
� →

�
�

with universal morphism into the pullback being

◦ � → �×� �

• the other by

1. � →
�
� →

�̂
�×� � → �

2. � →
�
� →

�
�.

with universal morphism into the pullback being

◦ � →
�
� →

�̂
�×� �.

The commutativity of the diagrams that we have established so far shows that the �irst and
second  morphisms  here  equal  each  other,  respectively.  By  the  fact  that  the  universal
morphism into a pullback diagram is unique this implies the required identity of morphisms.

The other case is formally dual.

closure	under	(co-)products
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Let {(�� →
��
��) ∈ �Proj}�∈�  be a set of elements of �Proj.  Since colimits in the presheaf

category ��[�] are computed componentwise, their coproduct in this arrow category is the
universal  morphism  out  of  the  coproduct  of  objects  ∐

�∈�
��  induced  via  its  universal

property by the set of morphisms ��:

⊔
�∈�

�� →⎯⎯⎯⎯⎯
(��)�∈�

⊔
�∈�

�� .

Now let

⊔
�∈�

�� ⟶ �

(��)�∈� ↓ ↓∈�
�

⊔
�∈�

�� ⟶ �

be a commuting square. This is in particular a cocone under the coproduct of objects, hence
by the universal property of the coproduct, this is equivalent to a set of commuting diagrams

⎧

⎨

⎩

⎪

⎪

�� ⟶ �

∈�����

��
↓ ↓∈�

�

�� ⟶ �

⎫

⎬

⎭

⎪

⎪
�∈�

.

By assumption, each of these has a lift ℓ�. The collection of these lifts

⎧

⎨

⎩

⎪

⎪

�� ⟶ �

∈����

��
↓ ℓ� ↗ ↓∈�

�

�� ⟶ �

⎫

⎬

⎭

⎪

⎪
�∈�

is  now  itself  a  compatible  cocone,  and  so  once  more  by  the  universal  property  of  the
coproduct, this is equivalent to a lift (ℓ�)�∈� in the original square

⊔
�∈�

�� ⟶ �

(��)�∈� ↓ (ℓ�)�∈� ↗ ↓∈�
�

⊔
�∈�

�� ⟶ �

.

This shows that the coproduct of the ��  has the left lifting property against all � ∈ � and is
hence in �Proj. The other case is formally dual.  ▮
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An immediate consequence of prop. 6.8 is this:

Corollary	6.9.	Let	�	be	a	category	with	all	small	colimits,	and	let	� ⊂ Mor(�)	be	a	sub-class	of
its	morphisms.	Then	every	�-injective	morphism,	def.	6.2,	has	the	right	lifting	property,	def.
6.2,	against	all	�-relative	cell	complexes,	def.	and	their	retracts,	remark	6.10.

Remark	6.10. By a retract of a morphism �⟶
�
� in some category � we mean a retract of �

as an object in the arrow category ��[�], hence a morphism �⟶
�
� such that in ��[�] there

is a factorization of the identity on � through �

id� : � ⟶ � ⟶ � .

This means equivalently that in � there is a commuting diagram of the form

id� : � ⟶ � ⟶ �

↓� ↓� ↓�

id� : � ⟶ � ⟶ �

.

Lemma	6.11.	In	every	category �	the	class	of	isomorphisms	is	preserved	under	retracts	in	the
sense	of	remark	6.10.

Proof. For

id� : � ⟶ � ⟶ �

↓� ↓� ↓�

id� : � ⟶ � ⟶ �

.

a  retract  diagram  and  � →
�
�  an  isomorphism,  the  inverse  to  � →

�
�  is  given  by  the

composite

� ⟶ �

↑�
��

� ⟶ �

.

  ▮

More generally:

Proposition 	6.12. 	Given 	a 	model 	category 	 in 	 the 	sense 	of 	def. 	6.1, 	 then 	 its 	class 	of 	weak
equivalences	is	closed	under	forming	retracts	(in	the	arrow	category,	see	remark	6.10).

(Joyal, prop. E.1.3)
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Proof. Let

id : � ⟶ � ⟶ �

� ↓ ↓� ↓�

id : � ⟶ � ⟶ �

be a commuting diagram in the given model category, with � ∈ � a weak equivalence. We
need to show that then also � ∈ �.

First consider the case that � ∈ Fib.

In this case, factor � as a co�ibration followed by an acyclic �ibration. Since � ∈ � and by
two-out-of-three  (def.  1.75)  this  is  even  a  factorization  through  an  acyclic  co�ibration
followed by an acyclic �ibration. Hence we obtain a commuting diagram of the following
form:

id : � ⟶ � →⎯⎯⎯⎯ �

�� ↓ ↓ ∈�∩��� ↓��

id : �′ ⟶
�

�′ →⎯⎯⎯⎯⎯
�

�′

∈���
�
↓ ↓ ∈�∩��� ↓∈���

�

id : � ⟶ � →⎯⎯⎯⎯ �

,

where  �  is  uniquely  de�ined  and  where  �  is  any  lift  of  the  top  middle  vertical  acyclic
co�ibration against �. This now exhibits � as a retract of an acyclic �ibration. These are closed
under retract by prop. 6.8.

Now consider the general case. Factor � as an acyclic co�ibration followed by a �ibration and
form the pushout in the top left square of the following diagram

id : � ⟶ � →⎯⎯⎯⎯ �

∈�∩��� ↓ (po) ↓ ∈�∩��� ↓ ∈�∩���

id : �′ ⟶ �′ →⎯⎯⎯⎯ �′

∈��� ↓ ↓ ∈� ↓ ∈���

id : � ⟶ � →⎯⎯⎯⎯ �

,

where the other three squares are induced by the universal property of the pushout, as is
the identi�ication of the middle horizontal  composite as the identity on �′.  Since  acyclic
co�ibrations  are  closed  under  forming  pushouts  by  prop.  6.8,  the  top  middle  vertical

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

193 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/two-out-of-three
https://ncatlab.org/nlab/show/two-out-of-three
https://ncatlab.org/nlab/show/pushout
https://ncatlab.org/nlab/show/pushout
https://ncatlab.org/nlab/show/universal+property
https://ncatlab.org/nlab/show/universal+property


morphism is now an acyclic �ibration, and hence by assumption and by two-out-of-three so
is the middle bottom vertical morphism.

Thus  the  previous  case  now  gives  that  the  bottom  left  vertical  morphism  is  a  weak
equivalence, and hence the total left vertical composite is.  ▮

Lemma	6.13.	(retract	argument)

Consider	a	composite	morphism

� : � ⟶
�

� ⟶
�

� .

1.	If	�	has	the	left	lifting	property	against	�,	then	�	is	a	retract	of	�.

2.	If	�	has	the	right	lifting	property	against	�,	then	�	is	a	retract	of	�.

Proof. We discuss the �irst statement, the second is formally dual.

Write the factorization of � as a commuting square of the form

� ⟶
�

�

� ↓ ↓�

� = �

.

By the assumed lifting property of  �  against  �  there exists  a  diagonal  �iller  �  making a
commuting diagram of the form

� ⟶
�

�

� ↓ � ↗ ↓�

� = �

.

By rearranging this diagram a little, it is equivalent to

� = �

� ↓ � ↓

id� : � ⟶
�

� ⟶
�

�

.

Completing this to the right, this yields a diagram exhibiting the required retract according
to remark 6.10:
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id� : � = � = �

� ↓ � ↓ � ↓

id� : � ⟶
�

� ⟶
�

�

.

  ▮

Small	object	argument

Given a set � ⊂ Mor(�) of morphisms in some category �, a natural question is how to factor
any given morphism � :� ⟶ �  through a relative �-cell  complex,  def.  ,  followed by a �-
injective morphism, def.

� : � →⎯⎯⎯⎯⎯
∈�����

�̂ →⎯⎯⎯⎯
∈� ���

� .

A �irst approximation to such a factorization turns out to be given simply by forming �̂ = ��
by attaching all possible �-cells to �. Namely let

(� / �)≔

⎧

⎨
⎩

⎪

⎪

dom(�) ⟶ �

�∈� ↓ ↓�

cod(�) ⟶ �

⎫

⎬
⎭

⎪

⎪

be the set of all ways to �ind a �-cell attachment in �, and consider the pushout �̂ of the
coproduct of morphisms in � over all these:

∐
�∈ (�/�)

dom(�) ⟶ �

∐�∈ (�/�) � ↓ (po) ↓

∐
�∈ (�/�)

cod(�) ⟶ ��

.

This gets already close to producing the intended factorization:

First of all the resulting map � → �� is a �-relative cell complex, by construction.

Second, by the fact that the coproduct is over all commuting squres to �, the morphism �
itself makes a commuting diagram

∐
�∈ (�/�)

dom(�) ⟶ �

∐�∈ (�/�) � ↓ ↓�

∐
�∈ (�/�)

cod(�) ⟶ �

and hence the universal property of the colimit means that � is indeed factored through that
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�-cell complex ��; we may suggestively arrange that factorizing diagram like so:

∐
�∈ (�/�)

dom(�) ⟶ �

�� ↓ ↓

∐
�∈ (�/�)

dom(�) ��

∐�∈ (�/�) � ↓ ↗ ↓

∐
�∈ (�/�)

cod(�) ⟶ �

.

This shows that, �inally, the colimiting co-cone map – the one that now appears diagonally –
almost exhibits the desired right lifting of �� → � against the � ∈ �. The failure of that to
hold on the nose is only the fact that a horizontal map in the middle of the above diagram is
missing: the diagonal map obtained above lifts not all commuting diagrams of � ∈ � into �,
but only those where the top morphism dom(�) → �� factors through � → ��.

The idea of the small object argument now is to �ix this only remaining problem by iterating
the construction: next factor �� → � in the same way into

�� ⟶ �� ⟶ �

and so forth. Since relative �-cell complexes are closed under composition, at stage �  the
resulting � ⟶ ��  is still a �-cell complex, getting bigger and bigger. But accordingly, the
failure of the accompanying �� ⟶ �  to be a �-injective morphism becomes smaller  and
smaller,  for  it  now  lifts  against  all  diagrams  where  dom(�)⟶ ��  factors  through
���� ⟶ ��, which intuitively is less and less of a condition as the ����  grow larger and
larger.

The concept of small	object is just what makes this intuition precise and �inishes the small
object argument. For the present purpose we just need the following simple version:

De�inition	6.14. For � a category and � ⊂ Mor(�) a sub-set of its morphisms, say that these
have small	domains if there is an ordinal � (def. ) such that for every � ∈ � and for every �-
relative cell complex given by a trans�inite composition (def. )

� : � → �� → �� → ⋯ → �� → ⋯ ⟶ �̂

every morphism dom(�)⟶ �̂ factors through a stage �� → �̂ of order � < �:

��

↗ ↓

dom(�) ⟶ �̂

.
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The above discussion proves the following:

Proposition	6.15.	(small	object	argument)

Let	�	be	a	locally	small	category	with	all	small	colimits.	If	a	set � ⊂ Mor(�)	of	morphisms
has	all	small	domains	in	the	sense	of	def.	6.14,	then	every	morphism	� :� ⟶ 	in	� 	factors
through	a	�-relative	cell	complex,	def.	,	followed	by	a	�-injective	morphism,	def.

� : � →⎯⎯⎯⎯⎯
∈�����

�̂ →⎯⎯⎯⎯
∈� ���

� .

(Quillen 67, II.3 lemma)

Homotopy

We discuss how the concept of homotopy is abstractly realized in model categories, def. 6.1.

De�inition	6.16. Let � be a model category, def. 6.1, and � ∈ � an object.

• A path	space	object Path(�) for � is a factorization of the diagonal �� : � → �×�

as

�� : � →⎯⎯⎯
∈�

�
Path(�) →⎯⎯⎯⎯⎯

∈���

(�� ,��)
�×� .

where � → Path(�) is a weak equivalence and Path(�) → �×� is a �ibration.

• A cylinder 	object Cyl(�)  for �  is a factorization of the codiagonal (or “fold map”)
∇� : � ⊔ � → � as

∇� : � ⊔ � →⎯⎯⎯⎯
∈���

(�� ,��)
Cyl(�) →⎯⎯

∈�

�
� .

where Cyl(�) → � is a weak equivalence. and � ⊔ � → Cyl(�) is a co�ibration.

Remark	6.17. For every object � ∈ � in a model category, a cylinder object and a path space
object according to def. 6.16 exist: the factorization axioms guarantee that there exists

1. a factorization of the codiagonal as

∇� : � ⊔ � →⎯⎯⎯
∈���

Cyl(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

�

2. a factorization of the diagonal as

�� : � →⎯⎯⎯⎯⎯⎯
∈�∩���

Path(�) →⎯⎯⎯
∈���

�×� .
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The cylinder and path space objects obtained this way are actually better than required by
def. 6.16: in addition to Cyl(�) → � being just a weak equivalence, for these this is actually
an acyclic �ibration, and dually in addition to � → Path(�) being a weak equivalence, for
these it is actually an acyclic co�ibrations.

Some  authors  call  cylinder/path-space  objects  with  this  extra  property  “very  good”
cylinder/path-space objects, respectively.

One may also consider dropping a condition in def. 6.16: what mainly matters is the weak
equivalence, hence some authors take cylinder/path-space objects to be de�ined as in def.
6.16  but  without  the  condition  that  � ⊔ � → Cyl(�)  is  a  co�ibration  and  without  the
condition that Path(�) → � is a �ibration. Such authors would then refer to the concept in
def. 6.16 as “good” cylinder/path-space objects.

The terminology in def. 6.16 follows the original (Quillen 67, I.1 def. 4). With the induced
concept of left/right homotopy below in def. 6.20, this admits a quick derivation of the key
facts in the following, as we spell out below.

Lemma	6.18.	Let	�	be	a	model	category.	If	� ∈ �	is	co�ibrant,	then	for	every	cylinder	object
Cyl(�)	of	�,	def.	6.16,	not	only	is	(��, ��) :� ⊔ � → �	a	co�ibration,	but	each

��, �� :� ⟶ Cyl(�)

is	an	acyclic	co�ibration	separately.

Dually,	if	� ∈ �	is	�ibrant,	then	for	every	path	space	object Path(�)	of	�,	def.	6.16,	not	only	is
(�

�
,�

�
) : Path(�) → �×�	a	co�ibration,	but	each

�
�
,�
�
: Path(�)⟶ �

is	an	acyclic	�ibration	separately.

Proof. We discuss the case of the path space object. The other case is formally dual.

First, that the component maps are weak equivalences follows generally: by de�inition they
have a right inverse Path(�) → � and so this follows by two-out-of-three (def. 1.75).

But if  �  is  �ibrant,  then also the two projection maps out of  the product �×� → �  are
�ibrations, because they are both pullbacks of the �ibration � → *

�×� ⟶ �

↓ (pb) ↓

� ⟶ *

.
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hence  �
�
: Path(�) → �×� → �  is  the  composite  of  two  �ibrations,  and  hence  itself  a

�ibration, by prop. 6.8.  ▮

Path space objects are very non-unique as objects up to isomorphism:

Example	6.19. If � ∈ � is a �ibrant object in a model category, def. 6.1, and for Path�(�) and
Path�(�)  two  path  space  objects  for  �,  def.  6.16,  then  the  �iber  product
Path�(�)×� Path�(�) is another path space object for �: the pullback square

� ⟶
��

�×�

↓ ↓

Path�(�)×
�
Path�(�) ⟶ Path�(�)×Path�(�)

∈��� ↓ (pb) ↓ ∈���

�×�×� →⎯⎯⎯⎯⎯⎯⎯
(��,�� ,��)

�×�×�×�

↓∈���
(��� ,���)

↓
(�� ,��)

�×� = �×�

gives that the induced projection is again a �ibration. Moreover, using lemma 6.18 and
two-out-of-three (def. 1.75) gives that � → Path�(�)×� Path�(�) is a weak equivalence.

For  the  case  of  the  canonical  topological  path  space  objects  of  def  ,  with
Path�(�) = Path�(�) = �� = �[�,�]  then this new path space object is ��∨� = �[�,�],  the
mapping space out of the standard interval of length 2 instead of length 1.

De�inition	6.20. (abstract	left	homotopy	and	abstract	right	homotopy

Let �,� :� ⟶ � be two parallel morphisms in a model category.

• A left	homotopy � : � ⇒� � is a morphism � : Cyl(�)⟶ � from a cylinder object of �,
def. 6.16, such that it makes this diagram commute:

� ⟶ Cyl(�) ⟵ �

� ↘ ↓� ↙�

�

.

• A right 	homotopy � : � ⇒� �  is  a  morphism � :� → Path(�)  to  some path  space
object of �, def. 6.16, such that this diagram commutes:
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�

� ↙ ↓� ↘�

� ⟵ Path(�) ⟶ �

.

Lemma	6.21.	Let	�,� :� → �	be	two	parallel	morphisms	in	a	model	category.

1.	Let 	� 	be 	co�ibrant. 	 If 	 there 	 is 	a 	 left 	homotopy � ⇒� � 	 then 	 there 	 is 	also 	a 	right
homotopy � ⇒� �	(def.	6.20)	with	respect	to	any	chosen	path	space	object.

2.	Let	�	be	�ibrant.	If	there	is	a	right	homotopy � ⇒� �	then	there	is	also	a	left	homotopy
� ⇒� �	with	respect	to	any	chosen	cylinder	object.

In	particular	if	�	is	co�ibrant	and	�	is	�ibrant,	then	by	going	back	and	forth	it	follows	that
every 	 left 	homotopy 	 is 	exhibited 	by 	every 	cylinder 	object, 	and 	every 	right 	homotopy 	 is
exhibited	by	every	path	space	object.

Proof. We discuss the �irst case, the second is formally dual. Let � : Cyl(�)⟶ � be the given
left homotopy. Lemma 6.18 implies that we have a lift ℎ in the following commuting diagram

� ⟶
�∘�

Path(�)

∈�∩���

��
↓ � ↗ ↓∈���

�� ,��

Cyl(�) →⎯⎯⎯⎯⎯
(�∘�,�)

�×�

,

where on the right we have the chosen path space object. Now the composite �̃≔ ℎ∘ ��  is a
right homotopy as required:

Path(�)

� ↗ ↓∈���
�� ,��

� ⟶
��

Cyl(�) →⎯⎯⎯⎯⎯
(�∘� �)

�×�

.

  ▮

Proposition	6.22.	For	�	a	co�ibrant	object	in	a	model	category	and	�	a	�ibrant	object,	then	the
relations	of	left	homotopy � ⇒� �	and	of	right	homotopy � ⇒� �	(def.	6.20)	on	the	hom	set
Hom(�,�)	coincide	and	are	both	equivalence	relations.

Proof. That both relations coincide under the (co-)�ibrancy assumption follows directly from
lemma 6.21.

The symmetry and re�lexivity of the relation is obvious.
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That  right  homotopy (hence  also  left  homotopy)  with  domain �  is  a  transitive  relation
follows from using example 6.19 to compose path space objects.  ▮

The	homotopy	category

We discuss the construction that takes a model category, def. 6.1, and then universally forces
all its weak equivalences into actual isomorphisms.

De�inition	6.23. (homotopy	category	of	a	model	category)

Let � be a model category, def. 6.1. Write Ho(�) for the category whose

• objects are those objects of � which are both �ibrant and co�ibrant;

• morphisms are  the  homotopy classes  of  morphisms of  �,  hence  the  equivalence
classes of morphism under the equivalence relation of prop. 6.22;

and whose composition operation is given on representatives by composition in �.

This is, up to equivalence of categories, the homotopy	category	of	the	model	category �.

Proposition	6.24.	Def.	6.23	is	well	de�ined,	in	that	composition	of	morphisms	between	�ibrant-
co�ibrant	objects	in	�	indeed	passes	to	homotopy	classes.

Proof. Fix any morphism � →
�
� between �ibrant-co�ibrant objects. Then for precomposition

(−) ∘ [�] : Hom��(�)(�,�) → Hom��(�(�,�))

to be well de�ined, we need that with (� ∼ ℎ) : � → � also (�� ∼ �ℎ) : � → �. But by prop
6.22 we may take the homotopy ∼ to be exhibited by a right homotopy � :� → Path(�), for
which case the statement is evident from this diagram:

�

� ↗ ↑
��

� ⟶
�

� ⟶
�

Path(�)

� ↘ ↓��

�

.

For  postcomposition  we  may  choose  to  exhibit  homotopy  by  left  homotopy  and  argue
dually.  ▮

We now spell  out  that  def.  6.23 indeed satis�ies  the universal  property that  de�ines the
localization of a category with weak equivalences at its weak equivalences.
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Lemma	6.25.	(Whitehead	theorem	in	model	categories)

Let	�	be	a	model	category.	A	weak	equivalence	between	two	objects	which	are	both	�ibrant
and	co�ibrant	is	a	homotopy	equivalence (92).

Proof.  By the factorization axioms in the model category �  and by two-out-of-three (def.
1.75), every weak equivalence � :� ⟶ � factors through an object � as an acyclic co�ibration
followed by an acyclic �ibration. In particular it follows that with � and � both �ibrant and
co�ibrant, so is �, and hence it is suf�icient to prove that acyclic (co-)�ibrations between such
objects are homotopy equivalences.

So let � :� ⟶ � be an acyclic �ibration between �ibrant-co�ibrant objects, the case of acyclic
co�ibrations is formally dual. Then in fact it has a genuine right inverse given by a lift ��� in
the diagram

∅ → �

∈��� ↓ ���
↗ ↓∈���∩�

�

� = �

.

To see that ��� is also a left inverse up to left homotopy, let Cyl(�) be any cylinder object on
� (def. 6.16), hence a factorization of the codiagonal on � as a co�ibration followed by a an
acyclic �ibration

� ⊔ � ⟶
��
Cyl(�)⟶

�
�

and consider the commuting square

� ⊔ � →⎯⎯⎯⎯⎯⎯⎯⎯
(���∘�,��)

�

��
∈��� ↓ ↓∈�∩���

�

Cyl(�) →⎯⎯
�∘�

�

,

which  commutes  due  to  ���  being  a  genuine  right  inverse  of  �.  By  construction,  this
commuting  square  now  admits  a  lift �,  and  that  constitutes  a  left  homotopy
� : ��� ∘ � ⇒� id.  ▮

De�inition	6.26. (�ibrant	resolution	and	co�ibrant	resolution)

Given a model category �, consider a choice for each object � ∈ � of

1. a factorization
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∅ →⎯⎯⎯⎯⎯⎯
∈���

��
�� →⎯⎯⎯⎯⎯⎯

∈�∩���

��
�

of  the  initial  morphism  (Def.  1.5),  such  that  when  �  is  already  co�ibrant  then
�
�
= id�;

2. a factorization

� →⎯⎯⎯⎯⎯⎯
∈�∩���

��
�� →⎯⎯⎯⎯⎯⎯

∈���

��
*

of  the  terminal  morphism  (Def.  1.5),  such  that  when  �  is  already  �ibrant  then
�
�
= id�.

Write then

��,� : � ⟶ Ho(�)

for the functor to the homotopy category, def. 6.23, which sends an object � to the object
��� and sends a morphism � :� ⟶ � to the homotopy class of the result of �irst lifting in

∅ ⟶ ��

�� ↓ �� ↗ ↓
��

�� →⎯⎯⎯
�∘��

�

and then lifting (here: extending) in

�� →⎯⎯⎯⎯⎯
��� ∘��

���

��� ↓ ��� ↗ ↓
���

��� ⟶ *

.

Lemma	6.27.	The	construction	in	def.	6.26	is	indeed	well	de�ined.

Proof. First of all, the object ��� is indeed both �ibrant and co�ibrant (as well as related by a
zig-zag of weak equivalences to �):

∅

∈��� ↓ ↘ ∈���

�� →⎯⎯⎯⎯⎯⎯
∈�∩���

��� →⎯⎯⎯
∈���

*

∈� ↓

�

.
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Now to see that the image on morphisms is well de�ined. First observe that any two choices
(��)

�
 of the �irst lift in the de�inition are left homotopic to each other, exhibited by lifting in

�� ⊔ �� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((��)� ,(��)�)

��

∈��� ↓ ↓∈�∩���
��

Cyl(��) →⎯⎯⎯⎯⎯⎯⎯⎯
�∘�� ∘���

�

.

Hence also  the  composites  �
��
∘ (��)�  are  left  homotopic  to  each  other,  and  since  their

domain is co�ibrant, then by lemma 6.21 they are also right homotopic by a right homotopy
�. This implies �inally, by lifting in

�� ⟶
�

Path(���)

∈�∩��� ↓ ↓ ∈���

��� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(�(��)� ,�(��)�)

���×���

that also �(��)
�

 and �(��)
�

 are right homotopic, hence that indeed ��� represents a well-

de�ined homotopy class.

Finally to see that the assignment is indeed functorial, observe that the commutativity of the
lifting diagrams for �� and ��� imply that also the following diagram commutes

� ⟵
��

�� →⎯⎯
���

���

� ↓ ↓�� ↓���

� ⟵
��

�� →⎯⎯
���

���

.

Now from the pasting composite

� ⟵
��

�� →⎯⎯
���

���

� ↓ ↓�� ↓���

� ⟵
��

�� →⎯⎯
���

���

� ↓ ↓�� ↓���

� ⟵
��

�� →⎯⎯
���

���

one sees that (���) ∘ (���) is a lift of � ∘ � and hence the same argument as above gives
that it is homotopic to the chosen ��(� ∘ �).  ▮
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For  the  following,  recall  the  concept  of  natural  isomorphism  between  functors:  for
�,� : � ⟶ �  two  functors,  then  a  natural 	 transformation � :� ⇒ �  is  for  each  object
� ∈ Obj(�) a morphism �

�
:�(�)⟶ �(�) in �, such that for each morphism � : �� → ��  in �

the following is a commuting square:

�(��) ⟶
���

�(��)

�(�) ↓ ↓�(�)

�(��) ⟶
���

�(��)

.

Such � is called a natural	isomorphism if its �
�
 are isomorphisms for all objects �.

De�inition	6.28. (localization	of	a	category category	with	weak	equivalences)

For � a category with weak equivalences, its localization	at	the	weak	equivalences is, if
it exists,

1. a category denoted �[���]

2. a functor

� : � ⟶ �[���]

such that

1. � sends weak equivalences to isomorphisms;

2. � is universal with this property, in that:
for  � :� ⟶ �  any functor  out  of  �  into  any category �,  such that  �  takes  weak
equivalences to isomorphisms, it factors through � up to a natural isomorphism �

� ⟶
�

�

� ↘ ⇓� ↗�̃

Ho(�)

and this factorization is unique up to unique isomorphism, in that for (�̃�,��) and

(�̃�,��)  two  such  factorizations,  then  there  is  a  unique  natural  isomorphism

� : �̃� ⇒ �̃� making the evident diagram of natural isomorphisms commute.

Theorem	6.29.	(convenient	localization	of	model	categories)

For	�	a	model	category,	the	functor	��,� 	in	def.	6.26	(for	any	choice	of	�	and	�)	exhibits

Ho(�)	as	indeed	being	the	localization	of	the	underlying	category	with	weak	equivalences	at
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its	weak	equivalences,	in	the	sense	of	def.	6.28:

� = �

��,� ↓ ↓�

Ho(�) ≃ �[���]

.

(Quillen 67, I.1 theorem 1)

Proof. First, to see that that ��,�  indeed takes weak equivalences to isomorphisms: By two-

out-of-three (def. 1.75) applied to the commuting diagrams shown in the proof of lemma
6.27, the morphism ��� is a weak equivalence if � is:

� ⟵
≃

��
�� →⎯⎯

≃

���
���

� ↓ ↓�� ↓���

� ⟵
��

≃ �� →⎯⎯
���

≃ ���

With this  the “Whitehead theorem for  model  categories”,  lemma 6.25,  implies  that  ���
represents an isomorphism in Ho(�).

Now let � :� ⟶ � be any functor that sends weak equivalences to isomorphisms. We need
to show that it factors as

� ⟶
�

�

� ↘ ⇓� ↗�̃

Ho(�)

uniquely up to unique natural isomorphism. Now by construction of � and � in def. 6.26,
��,�  is the identity on the full subcategory of �ibrant-co�ibrant objects. It follows that if �̃

exists at all, it must satisfy for all � →
�
� with � and � both �ibrant and co�ibrant that

�̃([�]) ≃ �(�) ,

(hence in particular �̃(��,�(�)) = �(���)).

But by def.  6.23 that already �ixes �̃  on all  of Ho(�),  up to unique natural isomorphism.
Hence  it  only  remains  to  check  that  with  this  de�inition  of  �̃  there  exists  any  natural
isomorphism � �illing the diagram above.

To that end, apply � to the above commuting diagram to obtain
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�(�) ←⎯⎯⎯⎯
���

�(��)
�(��) →⎯⎯⎯⎯

���

�(���)

�(���)

�(�) ↓ ↓�(��) ↓�(���)

�(�) ←⎯⎯⎯⎯
�(��)

���
�(��) →⎯⎯⎯⎯

�(���)

���
�(���)

.

Here now all horizontal morphisms are isomorphisms, by assumption on �. It follows that
de�ining �

�
≔ �(�

��
) ∘ �(�

�
)�� makes the required natural isomorphism:

�
�
: �(�) →⎯⎯⎯⎯⎯⎯

���

�(��)
��

�(��) →⎯⎯⎯⎯⎯
���

�(���)

�(���) = �̃(��,�(�))

�(�) ↓ ↓�(���) ↓�̃(��,�(�))

�
�
: �(�) →⎯⎯⎯⎯⎯⎯

�(��)
��

���
�(��) →⎯⎯⎯⎯⎯

�(���)

���
�(���) = �̃(��,�(�))

.

  ▮

Remark	6.30. Due to theorem 6.29 we may suppress the choices of co�ibrant � and �ibrant
replacement � in def. 6.26 and just speak of the localization functor

� : � ⟶ Ho(�)

up to natural isomorphism.

In general, the localization �[���] of a category with weak equivalences (�,�) (def. 6.28)
may invert  more  morphisms than just  those  in  �.  However,  if  the  category  admits  the
structure of a model category (�,�, Cof, Fib), then its localization precisely only inverts the
weak equivalences:

Proposition 	 6.31. 	 (localization 	 of 	 model 	 categories 	 inverts 	 precisely 	 the 	 weak
equivalences)

Let	�	be	a	model	category	(def.	6.1)	and	let	� : � ⟶ Ho(�)	be	its	localization	functor	(def.
6.26,	theorem	6.29).	Then	a	morphism	�	in	�	is	a	weak	equivalence	precisely	if	�(�)	is	an
isomorphism	in	Ho(�).

(e.g. Goerss-Jardine 96, II, prop 1.14)

While the construction of the homotopy category in def. 6.23 combines the restriction to
good (�ibrant/co�ibrant) objects with the passage to homotopy classes of morphisms, it is
often useful to consider intermediate stages:

De�inition	6.32. Given a model category �, write
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���

↙ ↘

�� ��

↘ ↙

�

for the system of full subcategory inclusions of:

1. the category of �ibrant objects ��

2. the category of co�ibrant objects ��,

3. the category of �ibrant-co�ibrant objects ���,

all regarded a categories with weak equivalences (def. 1.75), via the weak equivalences
inherited from �, which we write (��,��), (��,��) and (���,���).

Remark	6.33. (categories	of	�ibrant	objects	and	co�ibration	categories)

Of course the subcategories in def. 6.32 inherit more structure than just that of categories
with weak equivalences from �. ��  and ��  each inherit “half” of the factorization axioms.
One says that ��  has the structure of a “�ibration category” called a “Brown-category of
�ibrant objects”, while �� has the structure of a “co�ibration category”.

We discuss properties of these categories of (co-)�ibrant objects below in Homotopy	�iber
sequences.

The proof of theorem 6.29 immediately implies the following:

Corollary 	 6.34. 	 For 	 � 	 a 	model 	 category, 	 the 	 restriction 	 of 	 the 	 localization 	 functor
� : � ⟶ Ho(�)	from	def.	6.26	(using	remark	6.30)	to	any	of	the	sub-categories	with	weak
equivalences	of	def.	6.32

���

↙ ↘

�� ��

↘ ↙

�

↓�

Ho(�)

exhibits 	Ho(�) 	 equivalently 	as 	 the 	 localization 	 also 	 of 	 these 	 subcategories 	with 	weak
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equivalences,	at	their	weak	equivalences.	In	particular	there	are	equivalences	of	categories

Ho(�) ≃ �[���] ≃ ��[��
��] ≃ ��[��

��] ≃ ���[���
��] .

The following says that for computing the hom-sets in the homotopy category, even a mixed
variant of the above will do; it is suf�icient that the domain is co�ibrant and the codomain is
�ibrant:

Lemma 	6.35. 	(hom-sets 	of 	homotopy 	category 	via 	mapping 	co�ibrant 	resolutions 	into
�ibrant	resolutions)

For 	�,� ∈ � 	with 	� 	co�ibrant 	and 	� 	 �ibrant, 	and 	 for 	�,� 	 �ibrant/co�ibrant 	replacement
functors	as	in	def.	6.26,	then	the	morphism

Hom��(�)(��,��) = Hom�(��,��) /∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
����(�� ,��)

Hom�(�,�) /∼

(on	homotopy	classes	of	morphisms,	well	de�ined	by	prop.	6.22)	is	a	natural	bijection.

(Quillen 67, I.1 lemma 7)

Proof. We may factor the morphism in question as the composite

Hom�(��,��) /∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
����(���� ,��) /∼

Hom�(��,�) /∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
����(�� ,���) /∼

Hom�(�,�) /∼ .

This shows that it is suf�icient to see that for � co�ibrant and � �ibrant, then

Hom�(id�,��) /∼ : Hom�(�,��) /∼ → Hom�(�,�) /∼

is an isomorphism, and dually that

Hom�(��, id�) /∼ : Hom�(��,�) /∼ → Hom�(�,�) /∼

is an isomorphism. We discuss this for the former; the second is formally dual:

First, that Hom�(id�,��) is surjective is the lifting property in

∅ ⟶ ��

∈��� ↓ ↓∈�∩���
��

� ⟶
�

�

,

which  says  that  any  morphism  � :� → �  comes  from  a  morphism  �̂ :� → ��  under

postcomposition with �� ���
��
�.
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Second, that Hom�(id�,��) is injective is the lifting property in

� ⊔ � →⎯⎯⎯
(�,�)

��

∈��� ↓ ↓∈�∩���
��

Cyl(�) ⟶
�

�

,

which says that if two morphisms �,� :� → ��  become homotopic after postcomposition
with �

�
:�� → �, then they were already homotopic before.  ▮

We record the following fact which will be used in part 1.1 (here):

Lemma 	6.36. 	Let 	� 	be 	a 	model 	category 	 (def. 	6.1). 	Then 	every 	commuting 	 square 	 in 	 its
homotopy	category Ho(�)	(def.	6.23)	is,	up	to	isomorphism	of	squares,	in	the	image	of	the
localization	functor	� ⟶ Ho(�)	of	a	commuting	square	in	�	(i.e.:	not	just	commuting	up	to
homotopy).

Proof. Let

� ⟶
�

�

� ↓ ↓�

�′ ⟶
��

�′

∈ Ho(�)

be a commuting square in the homotopy category. Writing the same symbols for �ibrant-
co�ibrant objects in � and for morphisms in � representing these, then this means that in �
there is a left homotopy of the form

� ⟶
�

�

�� ↓ ↓�

Cyl(�) ⟶
�

�′

�� ↑ ↑��

� ⟶
�

�′

.

Consider the factorization of the top square here through the mapping cylinder of �
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� ⟶
�

�

�� ↓ (po) ↓ ∈�

Cyl(�) ⟶ Cyl(�)

�� ↑ � ↘ ↓

� �′

� ↘ ↑��

�′

This exhibits the composite � →
��
Cyl(�) → Cyl(�)  as an alternative representative of  �  in

Ho(�), and Cyl(�) → �′ as an alternative representative for �, and the commuting square

� ⟶ Cyl(�)

� ↓ ↓

�′ ⟶
��

�′

as an alternative representative of the given commuting square in Ho(�).  ▮

Derived	functors

De�inition	6.37. (homotopical	functor)

For � and � two categories with weak equivalences, def. 1.75, then a functor � :� ⟶ � is
called a homotopical	functor if it sends weak equivalences to weak equivalences.

De�inition	6.38. (derived	functor)

Given  a  homotopical  functor � :� ⟶ �  (def.  6.37)  between  categories  with  weak
equivalences  whose  homotopy categories Ho(�)  and  Ho(�)  exist  (def.  6.28),  then  its
(“total”) derived	functor is the functor Ho(�) between these homotopy categories which is
induced uniquely, up to unique isomorphism, by their universal property (def. 6.28):

� ⟶
�

�

�� ↓ ⇙≃ ↓
��

Ho(�) →⎯⎯⎯⎯⎯
∃ ��(�)

Ho(�)

.

Remark 	 6.39.  While  many  functors  of  interest  between  model  categories  are  not
homotopical in the sense of def. 6.37, many become homotopical after restriction to the
full subcategories �� of �ibrant objects or �� of co�ibrant objects, def. 6.32. By corollary
6.34 this is just as good for the purpose of homotopy theory.
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Therefore one considers the following generalization of def. 6.38:

De�inition	6.40. (left	and	right	derived	functors)

Consider a functor � :� ⟶ �  out of a model category �  (def. 6.1) into a category  with
weak equivalences � (def. 1.75).

1. If  the  restriction  of  �  to  the  full  subcategory ��  of  �ibrant  object  becomes  a
homotopical  functor  (def.  6.37),  then  the  derived  functor  of  that  restriction,
according to def. 6.38, is called the right	derived	functor of � and denoted by ℝ�:

�� ↪ � ⟶
�

�

��� ↓ ⇙≃ ↓
��

ℝ� : ��[�
��] ≃ Ho(�) →⎯⎯⎯⎯

��(�)
Ho(�)

,

where we use corollary 6.34.

2. If  the  restriction  of  �  to  the  full  subcategory ��  of  co�ibrant  object  becomes  a
homotopical  functor  (def.  6.37),  then  the  derived  functor  of  that  restriction,
according to def. 6.38, is called the left	derived	functor of � and denoted by ��:

�� ↪ � ⟶
�

�

��� ↓ ⇙≃ ↓
��

�� : ��[�
��] ≃ Ho(�) →⎯⎯⎯⎯

��(�)
Ho(�)

,

where again we use corollary 6.34.

The key fact that makes def. 6.40 practically relevant is the following:

Proposition	6.41.	(Ken	Brown's	lemma)

Let	�	be	a	model	category	with	full	subcategories ��,�� of	�ibrant	objects	and	of	co�ibrant
objects	respectively	(def.	6.32).	Let	�	be	a	category	with	weak	equivalences.

1.	A	functor	out	of	the	category	of	�ibrant	objects

� : �� ⟶ �

is 	a 	homotopical 	 functor, 	def. 	6.37, 	already 	 if 	 it 	 sends 	acyclic 	 �ibrations 	 to 	weak
equivalences.

2.	A	functor	out	of	the	category	of	co�ibrant	objects
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� : �� ⟶ �

is 	a 	homotopical 	 functor, 	def. 	6.37, 	already 	 if 	 it 	sends 	acyclic 	co�ibrations 	to 	weak
equivalences.

The following proof refers to the factorization lemma, whose full statement and proof we
postpone to further below (lemma 6.69).

Proof. We discuss the case of a functor on a category of �ibrant objects ��, def. 6.32.  The
other case is formally dual.

Let � :� ⟶ � be a weak equivalence in ��. Choose a path space object Path(�) (def. 6.16)
and consider the diagram

Path(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

�

∈�

��
*�

↓ (pb) ↓∈�
�

Path(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

��
�

∈�∩���

��
↓

�

,

where the square is a pullback and Path(�) on the top left is our notation for the universal
cone object. (Below we discuss this in more detail, it is the mapping	cocone of �, def. 6.61).

Here:

1. �
�
 are both acyclic �ibrations, by lemma 6.18;

2. Path(�) → � is an acyclic �ibration because it is the pullback of �
�

.

3. �
�
*�  is  a  weak  equivalence,  because  the  factorization  lemma 6.69  states  that  the

composite vertical  morphism factors �  through a weak equivalence,  hence if  �  is  a
weak equivalence, then �

�
*� is by two-out-of-three (def. 1.75).

Now  apply  the  functor  �  to  this  diagram  and  use  the  assumption  that  it  sends  acyclic
�ibrations to weak equivalences to obtain
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�(Path(�)) →⎯⎯
∈�

�(�)

�(��
*�)

↓ ↓�(�)

�(Path(�)) →⎯⎯⎯
∈�

�(��)
�(�)

∈�

�(��)
↓

�

.

But the factorization lemma 6.69, in addition says that the vertical composite �
�
∘ �

�
*� is a

�ibration,  hence  an  acyclic  �ibration  by  the  above.  Therefore  also  �(�
�
∘ �

�
*�)  is  a  weak

equivalence. Now the claim that also �(�) is a weak equivalence follows with applying two-
out-of-three (def. 1.75) twice.  ▮

Corollary	6.42.	Let	�,�	be	model	categories	and	consider	� :� ⟶ �	a	functor.	Then:

1.	If 	� 	preserves 	co�ibrant 	objects 	and 	acyclic 	co�ibrations 	between 	these, 	then 	 its 	 left
derived	functor	(def.	6.40)	��	exists,	�itting	into	a	diagram

�� ⟶
�

��
�� ↓ ⇙≃ ↓

��

Ho(�) ⟶
��

Ho(�)

2.	If	�	preserves	�ibrant	objects	and	acyclic	�ibrants	between	these,	then	its	right	derived
functor	(def.	6.40)	ℝ�	exists,	�itting	into	a	diagram

�� ⟶
�

��
�� ↓ ⇙≃ ↓

��

Ho(�) ⟶
ℝ�

Ho(�)

.

Proposition	6.43. (construction	of	left/right	derived	functors)

Let � : � ⟶ � be a functor between two model categories (def. 6.1).

1. If � preserves �ibrant objects and weak equivalences between �ibrant objects, then
the total right derived functor ℝ� ≔ ℝ(�� ∘ �) (def. 6.40) in
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�� ⟶
�

�

��� ↓ ⇙≃ ↓
��

Ho(�) ⟶
ℝ�

Ho(�)

is given, up to isomorphism, on any object � ∈ � ⟶
��

Ho(�) by appying � to a �ibrant
replacement ��  of  �  and then forming a co�ibrant replacement �(�(��))  of  the
result:

ℝ�(�) ≃ �(�(��)) .

1. If �  preserves co�ibrant objects and weak equivalences between co�ibrant objects,
then the total left derived functor �� ≔ �(�� ∘ �) (def. 6.40) in

�� ⟶
�

�

��� ↓ ⇙≃ ↓
��

Ho(�) ⟶
��

Ho(�)

is  given,  up  to  isomorphism,  on  any  object  � ∈ � ⟶
��

Ho(�)  by  appying  �  to  a
co�ibrant replacement �� of � and then forming a �ibrant replacement �(�(��)) of
the result:

��(�) ≃ �(�(��)) .

Proof. We discuss the �irst case, the second is formally dual. By the proof of theorem 6.29 we
have

ℝ�(�) ≃ ��(�(��))

≃ ���(�(�(�)))
.

But since � is a homotopical functor on �ibrant objects, the co�ibrant replacement morphism
�(�(�(�))) → �(�(�)) is a weak equivalence in �, hence becomes an isomorphism under
��. Therefore

ℝ�(�) ≃ ��(�(�(�))) .

Now since � is assumed to preserve �ibrant objects, �(�(�)) is �ibrant in �, and hence ��
acts on it (only) by co�ibrant replacement.  ▮

Quillen	adjunctions
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In practice it turns out to be useful to arrange for the assumptions in corollary 6.42 to be
satis�ied by pairs of adjoint functors (Def. 1.32). Recall that this is a pair of functors � and �
going back and forth between two categories

� ⊥
⟶
�

⟵
�

�

such that there is a natural bijection between hom-sets with � on the left and those with �
on the right (10):

�
�,�

: Hom�(�(�), �)⟶≃
Hom�(�,�(�))

for  all  objects  � ∈ �  and  � ∈ �.  This  being  natural  (Def.  1.23)  means  that
� : Hom�(�(−), −) ⇒ Hom�(−,�(−))  is  a  natural  transformation,  hence  that  for  all
morphisms � :�� → �� and � : �� → �� the following is a commuting square:

Hom�(�(��), ��) →⎯⎯⎯⎯
≃

��� ,��
Hom�(��,�(��))

�(�)∘(�)∘� ↓ ↓�∘(�)∘�(�)

Hom�(�(��), ��) →⎯⎯⎯⎯
��� ,��

≃ Hom�(��,�(��))

. /

We write (� ⊣ �) to indicate such an adjunction and call � the left	adjoint and � the right
adjoint of the adjoint pair.

The archetypical example of a pair of adjoint functors is that consisting of forming Cartesian
products �×(−)  and  forming  mapping  spaces (−)�,  as  in  the  category  of  compactly
generated topological spaces of def. .

If � : �(�) → � is any morphism, then the image �
�,�
(�) :� → �(�) is called its adjunct,  and

conversely. The fact that adjuncts are in bijection is also expressed by the notation

�(�)⟶
�

�

� ⟶
�̃

�(�)

.

For  an  object  � ∈ �,  the  adjunct  of  the  identity  on  ��  is  called  the  adjunction 	 unit
�
�
: � ⟶ ���.

For  an  object  � ∈ �,  the  adjunct  of  the  identity  on  ��  is  called  the  adjunction 	 counit
�� : ��� ⟶ �.

Adjunction units and counits turn out to encode the adjuncts of all other morphisms by the
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formulas

• (�� →
�
�)
˜

= (� →
�
��� ���

��
��)

• (� →
�
��)
˜

= (�� ��
��
��� →

�
�).

De�inition	6.44. (Quillen	adjunction)

Let �,� be model categories. A pair of adjoint functors (Def. 1.32) between them

(� ⊣ �) : �
⟶
�

⟵
�

�

is called a Quillen	adjunction, to be denoted

� ⊥��
→⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�

and �,  �  are  called left/right  Quillen 	 functors,  respectively,  if  the  following  equivalent
conditions are satis�ied:

1. � preserves co�ibrations and � preserves �ibrations;

2. � preserves acyclic co�ibrations and � preserves acyclic �ibrations;

3. � preserves co�ibrations and acyclic co�ibrations;

4. � preserves �ibrations and acyclic �ibrations.

Proposition	6.45.	The	conditions	in	def.	6.44	are	indeed	all	equivalent.

(Quillen 67, I.4, theorem 3)

Proof. First observe that

• (i) A	left	adjoint �	between	model	categories	preserves	acyclic	co�ibrations	precisely	if	its
right	adjoint �	preserves	�ibrations.

• (ii) A	left	adjoint �	between	model	categories	preserves	co�ibrations	precisely	if	its	right
adjoint �	preserves	acyclic	�ibrations.

We  discuss  statement  (i),  statement  (ii)  is  formally  dual.  So  let  � :� → �  be  an  acyclic
co�ibration in � and � :� → � a �ibration in �. Then for every commuting diagram as on the
left of the following, its (� ⊣ �)-adjunct is a commuting diagram as on the right here:
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� ⟶ �(�)

� ↓ ↓�(�)

� ⟶ �(�)

,

�(�) ⟶ �

�(�) ↓ ↓�

�(�) ⟶ �

.

If  �  preserves  acyclic  co�ibrations,  then  the  diagram  on  the  right  has  a  lift,  and  so  the
(� ⊣ �)-adjunct of that lift is a lift of the left diagram. This shows that �(�) has the right
lifting  property  against  all  acylic  co�ibrations  and  hence  is  a  �ibration.  Conversely,  if  �
preserves �ibrations, the same argument run from right to left gives that � preserves acyclic
�ibrations.

Now  by  repeatedly  applying  (i)  and  (ii),  all  four  conditions  in  question  are  seen  to  be
equivalent.  ▮

The following is the analog of adjunction unit and adjunction counit (Def. 1.33):

De�inition	6.46. (derived	adjunction	unit)

Let � and � be model categories (Def. 6.1), and let

� ⊥��
→⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯
�

�

be a Quillen adjunction (Def. 6.44). Then

1. a derived	adjunction	unit at an object � ∈ � is a composition of the form

�(�) →⎯⎯⎯
��(�)

�(�(�(�))) →⎯⎯⎯⎯⎯⎯⎯⎯
�(��(�(�)))

�(�(�(�(�)))

where

1. � is the ordinary adjunction unit (Def. 1.33);

2. ∅ →⎯⎯⎯⎯
∈����

��(�)
�(�) →⎯⎯⎯⎯⎯⎯⎯⎯

∈��∩����

��(�)
� is a co�ibrant resolution in � (Def. 6.26);

3. �(�(�)) →⎯⎯⎯⎯⎯⎯⎯⎯
∈��∩����

��(�(�))
�(�(�(�))) →⎯⎯⎯⎯⎯

∈����

��(�(�))
*  is a �ibrant resolution in � (Def. 6.26);

2. a derived	adjunction	counit at an object � ∈ � is a composition of the form

�(�(�(�(�)))) →⎯⎯⎯⎯⎯
��(�(�))

��(�(�)) →⎯⎯⎯
��(�)

�(�)

where

1. � is the ordinary adjunction counit (Def. 1.33);
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2. � →⎯⎯⎯⎯⎯⎯⎯⎯
∈��∩����

��
�� →⎯⎯⎯⎯

∈����

��
*  is a �ibrant resolution in � (Def. 6.26);

3. ∅ →⎯⎯⎯⎯⎯
∈����

��(�(�))
�(�(�(�))) →⎯⎯⎯⎯⎯⎯⎯⎯

∈��∩����

��(�(�))
�(�(�))  is  a  co�ibrant  resolution  in  �  (Def.

6.26).

We will see that Quillen adjunctions induce ordinary adjoint pairs of derived functors on
homotopy  categories  (Prop.  6.48).  For  this  we  �irst  consider  the  following  technical
observation:

Lemma	6.47.	(right	Quillen	functors	preserve	path	space	objects)

Let	� ⟶
�

�
⟵
�

�	be	a	Quillen	adjunction,	def.	6.44.

1.	For 	 � ∈ � 	 a 	 �ibrant 	 object 	 and 	 Path(�) 	 a 	 path 	 space 	 object 	 (def. 	 6.16), 	 then
�(Path(�))	is	a	path	space	object	for	�(�).

2.	For	� ∈ �	a	co�ibrant	object	and	Cyl(�)	a	cylinder	object	(def.	6.16),	then	�(Cyl(�))	is
a	cylinder	object	for	�(�).

Proof. Consider the second case, the �irst is formally dual.

First  Observe  that  �(� ⊔ �) ≃ �� ⊔ ��  because  �  is  left  adjoint  and  hence  preserves
colimits, hence in particular coproducts.

Hence

�(X ⊔ � � �⎯⎯
∈���

Cyl(�)) = (�(�) ⊔ �(�) � �⎯⎯
∈���

�(Cyl(�)))

is a co�ibration.

Second,  with  �  co�ibrant  then  also  � ⊔ Cyl(�)  is  a  co�ibrantion,  since  � → � ⊔ �  is  a
co�ibration (lemma 6.18). Therefore by Ken Brown's lemma (prop. 6.41) �  preserves the

weak equivalence Cyl(�) →⎯⎯⎯
∈�

�.  ▮

Proposition	6.48.	(derived	adjunction)

For	� ⊥��
→⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�	a	Quillen	adjunction,	def.	6.44,	also	the	corresponding	left	and	right	derived

functors	(Def.	6.40,	via	cor.	6.42)	form	a	pair	of	adjoint	functors

Ho(�) ⊥
⟶
ℝ�

⟵
��

Ho(�) .
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(93)

Moreover, 	 the 	adjunction 	unit 	and 	adjunction 	counit 	of 	 this 	derived 	adjunction 	are 	 the
images	of	the	derived	adjunction	unit	and	derived	adjunction	counit	(Def.	6.46)	under	the
localization	functors	(Theorem	6.29).

(Quillen 67, I.4 theorem 3)

Proof.  For the �irst statement, by def. 6.40 and lemma 6.35 it is suf�icient to see that for
�,� ∈ � with � co�ibrant and � �ibrant, then there is a natural bijection

Hom�(��,�) /∼ ≃ Hom�(�,��) /∼ .

Since  by  the  adjunction  isomorphism  for  (� ⊣ �)  such  a  natural  bijection  exists  before
passing to  homotopy classes  (−) /

∼
,  it  is  suf�icient  to  see  that  this  respects  homotopy

classes. To that end, use from lemma 6.47 that with Cyl(�) a cylinder object for �, def. 6.16,
then �(Cyl(�)) is a cylinder object for �(�). This implies that left homotopies

(� ⇒� �) : �� ⟶ �

given by

� : Cyl(��) = �Cyl(�)⟶ �

are in bijection to left homotopies

(�̃ ⇒� �̃) : � ⟶ ��

given by

�̃ : Cyl(�)⟶ �� .

This  establishes  the  adjunction.  Now  regarding  the  (co-)units:  We  show  this  for  the
adjunction unit, the case of the adjunction counit is formally dual.

First  observe  that  for  � ∈ ��,  then  the  de�ining  commuting  square  for  the  left  derived
functor from def. 6.40

�� ⟶
�

�

�� ↓ ⇙≃ ↓
��,�

Ho(�) ⟶
��

Ho(�)

(using �ibrant and �ibrant/co�ibrant replacement functors ��, ��,�  from def. 6.26 with their

universal property from theorem 6.29, corollary 6.34) gives that
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(��)� ≃ ���� ≃ ��� ∈ Ho(�) ,

where the second isomorphism holds because the left Quillen functor �  sends the acyclic
co�ibration �

�
:� → �� to a weak equivalence.

The adjunction unit of (�� ⊣ ℝ�) on �� ∈ Ho(�) is the image of the identity under

Hom��(�)((��)��, (��)��) →
≃ Hom��(�)(��, (ℝ�)(��)��) .

By the above and the proof of prop. 6.48, that adjunction isomorphism is equivalently that of
(� ⊣ �) under the isomorphism

Hom��(�)(���,���) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
���(��� ,��)

Hom�(��,���) /∼

of lemma 6.35. Hence the derived adjunction unit (Def. 6.46) is the (� ⊣ �)-adjunct of

�� ⟶
���

��� →
��

��� ,

which indeed (by the formula for adjuncts, Prop. 1.38) is the derived adjunction unit

� ⟶
�

��� →⎯⎯⎯⎯
�(���)

���� .

  ▮

This suggests to regard passage to homotopy categories and derived functors as itself being
a suitable functor from a category of model categories to the category of categories. Due to
the role played by the distinction between left Quillen functors and right Quillen functors,
this is usefully formulated as a double functor:

De�inition	6.49. (double	category	of	model	categories)

The (very large) double 	category 	of 	model 	categories ModCat���  is the double category
(Def. 1.54) that has

1. as objects: model categories � (Def. 6.1);

2. as vertical morphisms: left Quillen functors � ⟶
�
ℰ (Def. 6.44);

3. as horizontal morphisms: right Quillen functors � ⟶
�
� (Def. 6.44);

4. as  2-morphisms natural  transformations  between  the  composites  of  underlying
functors:
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�� ∘ �� ⇒
�

�� ∘ ��

� →⎯⎯⎯⎯⎯⎯
��

�

�� ↓
�
�� � ⇙ ↓

�
�� ��

� →⎯⎯⎯⎯⎯⎯
��

�

and composition is given by ordinary composition of functors, horizontally and vertically,
and by whiskering-composition of natural transformations.

(Shulman 07, Example 4.6)

There is hence a forgetful double functor (Remark 1.55)

� : ModCat��� ⟶ Sq(Cat)

to the double category of squares (Example 1.54) in the 2-category of categories (Example
1.49), which forgets the model category-structure and the Quillen functor-property.

The following records the 2-functoriality of sending Quillen adjunctions to adjoint pairs of
derived functors (Prop. 6.48):

Proposition 	6.50. 	(homotopy 	double 	pseudofunctor 	on 	the 	double 	category 	of 	model
categories)

There	is	a	double	pseudofunctor	(Remark	1.55)

Ho(−) : ModCat��� ⟶ Sq(Cat)

from	the	double	category	of	model	categories	(Def.	6.49)	to	the	double	category	of	squares
(Example	1.54)	in	the	2-category Cat	(Example	1.49),	which	sends

1.	a	model	category �	to	its	homotopy	category	of	a	model	category	(Def.	6.23);

2.	a	left	Quillen	functor	(Def.	6.44)	to	its	left	derived	functor	(Def.	6.40);

3.	a	right	Quillen	functor	(Def.	6.44)	to	its	right	derived	functor	(Def.	6.40);

4.	a	natural	transformation

� ⟶
��

�

�� ↓
�
�� � ⇙ ↓

�
�� ��

ℰ ⟶
��

ℱ

to	the	“derived	natural	transformation”
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(94)

(95)

Ho(�) →⎯⎯
ℝ��

Ho(�)

��� ↓
�
�� ⇙

��(�)

↓
�
�� ���

Ho(ℰ) →⎯⎯
ℝ��

Ho(ℱ)

given	by	the	zig-zag

Ho(�) : ������ ⟵ ������� ⟶ ������ ⟶
�

������ ⟶ ����1�� ⟵ ���

where	the	unlabeled	morphisms	are	induced	by	�ibrant	resolution � → ��	and	co�ibrant
resolution �� → �,	respectively	(Def.	6.26).

(Shulman 07, Theorem 7.6)

Lemma	6.51.	(recognizing	derived	natural	isomorphisms)

For 	the 	derived 	natural 	transformation Ho(�) 	 in 	(94) 	to 	be 	 invertible 	 in 	the 	homotopy
category,	it	is	suf�icient	that	for	every	object � ∈ �	which	is	both	�ibrant	and	co�ibrant 	the
following	composite	natural	transformation

������ →⎯⎯⎯⎯⎯
������

����� ⟶
�

����� →⎯⎯⎯⎯⎯
������

������

(of	�	with	images	of	�ibrant	resolution/co�ibrant	resolution,	Def.	6.26)	is	invertible	in	the
homotopy	category,	hence	that	the	composite	is	a	weak	equivalence	(by	Prop.	6.31).

(Shulman 07, Remark 7.2)

Example	6.52. (derived	functor	of	left-right	Quillen	functor)

Let �, � be model categories (Def. 6.1), and let

� →⎯⎯⎯
�

�

be a functor that is both a left Quillen functor as well as a right Quillen functor (Def. 6.44).
This  means equivalently  that  there is  a  2-morphism in the double  category  of  model
categories (Def. 6.49) of the form

� →⎯⎯⎯⎯⎯⎯
�

�

� ↓
�
�� �� ⇙ ↓

�
�� ��

� →⎯⎯⎯⎯
��

�
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It follows that the left derived functor �� and right derived functor ℝ� of � (Def. 6.40) are
naturally isomorphic:

Ho(�) →⎯⎯⎯⎯⎯
��≃ℝ�

Ho(�) .

(Shulman 07, corollary 7.8)

Proof.  To see the natural  isomorphism �� ≃ ℝ�:  By Prop.  6.50 this  is  implied once the
derived natural transformation Ho(id) of (95) is a natural isomorphism. By Prop. 6.51 this is
the case, in the present situation, if the composition of

��� ⟶
���

�� ⟶
���

���

is a weak equivalence. But this is immediate, since the two factors are weak equivalences, by
de�inition of �ibrant/co�ibrant resolution (Def. 6.26).  ▮

The following is the analog of co-re�lective subcategories (Def. 1.60) for model categories:

De�inition	6.53. (Quillen	re�lection)

Let � and � be model categories (Def. 6.1), and let

� ⊥��
→⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�

be a Quillen adjunction between them (Def. 6.44). Then this may be called

1. a Quillen	re�lection if the derived adjunction counit (Def. 6.46) is componentwise a
weak equivalence;

2. a Quillen	co-re�lection if the derived adjunction unit (Def. 6.46) is componentwise a
weak equivalence.

The main class of examples of Quillen re�lections are left Bous�ield localizations, discussed
as Prop. below.

Proposition	6.54.	(characterization	of	Quillen	re�lections)

Let

� ⊥��
→⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�

be	a	Quillen	adjunction	(Def.	6.44)	and	write
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Ho(�) ⊥��
→⎯⎯⎯⎯⎯⎯⎯

ℝ�

←⎯⎯⎯⎯⎯⎯⎯
��

Ho(�)

for	the	induced	adjoint	pair	of	derived	functors	on	the	homotopy	categories,	from	Prop.	6.48.

Then

1.	(� ⊣
��

�) 	 is 	a 	Quillen 	 re�lection 	 (Def. 	6.53) 	precisely 	 if 	 (�� ⊣ ℝ�) 	 is 	a 	 re�lective

subcategory-inclusion	(Def.	1.60);

2.	(� ⊣
��

�)	is	a	Quillen	co-re�lection]	(Def.	6.53)	precisely	if	(�� ⊣ ℝ�)	is	a	co-re�lective

subcategory-inclusion	(Def.	1.60);

Proof.  By  Prop.  6.48  the  components  of  the  adjunction  unit/counit  of  (�� ⊣ ℝ�)  are
precisely the images under localization of the derived adjunction unit/counit of (� ⊣

��
�).

Moreover, by Prop. 6.31 the localization functor of a model category inverts precisely the
weak equivalences. Hence the adjunction (co-)unit of (�� ⊣ ℝ�) is an isomorphism if and
only if the derived (co-)unit of (� ⊣

��
�) is a weak equivalence, respectively.

With this  the statement reduces to the characterization of  (co-)re�lections via  invertible
units/counits, respectively, from Prop. 1.46.  ▮

The  following  is  the  analog  of  adjoint  equivalence  of  categories  (Def.  1.56)  for  model
categories:

De�inition	6.55. (Quillen	equivalence)

For �,� two model categories (Def. 6.1), a Quillen adjunction (def. 6.44)

� ⊥��
→⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�

is called a Quillen	equivalence, to be denoted

� ≃��
→⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

� ,

if the following equivalent conditions hold:

1. The right derived functor of � (via prop. 6.45, corollary 6.42) is an equivalence of
categories
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ℝ� : Ho(�)⟶≃ Ho(�) .

2. The left  derived functor of �  (via prop. 6.45,  corollary 6.42) is an equivalence  of
categories

�� : Ho(�)⟶≃ Ho(�) .

3. For every co�ibrant object � ∈ �, the derived adjunction unit (Def. 6.46)

� ⟶
��

�(�(�)) →⎯⎯⎯⎯⎯
�(��(�))

�(�(�(�)))

is a weak equivalence;
and for every �ibrant object � ∈ �, the derived adjunction counit (Def. 6.46)

�(�(�(�))) →⎯⎯⎯⎯⎯
�(��(�))

�(�(�))⟶
�

�

is a weak equivalence.

4. For  every  co�ibrant  object  � ∈ �  and  every  �ibrant  object  � ∈ �,  a  morphism
� ⟶ �(�) is a weak equivalence precisely if its adjunct morphism �(�) → � is:

� →⎯⎯⎯
∈��

�(�)

�(�) →⎯⎯⎯
∈��

�
.

Poposition	6.56.	The	conditions	in	def.	6.55	are	indeed	all	equivalent.

(Quillen 67, I.4, theorem 3)

Proof. That 1)⇔ 2) follows from prop. 6.48 (if in an adjoint pair one is an equivalence, then
so is the other).

To  see  the  equivalence  1), 2)⇔ 3),  notice  (prop.)  that  a  pair  of  adjoint  functors  is  an
equivalence of categories precisely if both the adjunction unit and the adjunction counit are
natural isomorphisms. Hence it is suf�icient to see that the derived adjunction unit/derived
adjunction counit (Def. 6.46) indeed represent the adjunction (co-)unit of (�� ⊣ ℝ�) in the
homotopy category. But this is the statement of Prop. 6.48.

To see that 4) ⇒ 3):

Consider the weak equivalence ��⟶
���

���. Its (� ⊣ �)-adjunct is

� ⟶
�

��� →⎯⎯⎯
����

����

by assumption 4) this is again a weak equivalence, which is the requirement for the derived
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adjunction unit in 3). Dually for derived adjunction counit.

To see 3) ⇒ 4):

Consider any � : �� → � a weak equivalence for co�ibrant �, �irbant �. Its adjunct �̃ sits in a
commuting diagram

�̃ : � ⟶
�

��� ⟶
��

��

= ↓ ↓
���� ↓

���

� →⎯⎯
∈�

���� →⎯⎯
���

���

,

where �� is any lift constructed as in def. 6.26.

This exhibits the bottom left morphism as the derived adjunction unit (Def. 6.46), hence a
weak equivalence by assumption. But since � was a weak equivalence, so is �� (by two-out-
of-three). Thereby also ��� and ��

�
, are weak equivalences by Ken Brown's lemma 6.41 and

the assumed �ibrancy of �. Therefore by two-out-of-three (def. 1.75) also the adjunct �̃ is a
weak equivalence.  ▮

Example	6.57. (trivial	Quillen	equivalence)

Let � be a model category (Def. 6.1). Then the identity functor on � constitutes a Quillen
equivalence (Def. 6.55) from � to itself:

� ≃��
→⎯⎯⎯⎯⎯⎯

��

←⎯⎯⎯⎯⎯⎯
��

�

Proof. From prop. 6.43 it is clear that in this case the derived functors � id and ℝ id both are
themselves the identity functor on the homotopy category of a model category,  hence in
particular are an equivalence of categories.  ▮

In certain situations the conditions on a Quillen equivalence simplify. For instance:

Proposition	6.58.	(recognition	of	Quillen	equivalences)

If 	 in 	 a 	 Quillen 	 adjunction � ⊥
→
�

←
�

� 	 (def. 	 6.44) 	 the 	 right 	 adjoint � 	 “creates 	 weak

equivalences” 	(in 	that 	a 	morphism 	� 	in 	� 	is 	a 	weak 	equivalence 	precisly 	if 	�(�) 	is) 	then
(� ⊣ �)	is	a	Quillen	equivalence	(def.	6.55)	precisely	already	if	for	all	co�ibrant	objects � ∈ �
the	plain	adjunction	unit

� ⟶
�

�(�(�))
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is	a	weak	equivalence.

Proof. By prop. 6.56, generally, (� ⊣ �) is a Quillen equivalence precisely if

1. for every co�ibrant object � ∈ �, the derived adjunction unit (Def. 6.46)

� ⟶
�

�(�(�)) →⎯⎯⎯⎯⎯
�(��(�))

�(�(�(�)))

is a weak equivalence;

2. for every �ibrant object � ∈ �, the derived adjunction counit (Def. 6.46)

�(�(�(�))) →⎯⎯⎯⎯⎯
�(��(�))

�(�(�))⟶
�

�

is a weak equivalence.

Consider the �irst condition: Since � preserves the weak equivalence �
�(�)

, then by two-out-

of-three (def. 1.75) the composite in the �irst item is a weak equivalence precisely if � is.

Hence it is now suf�icient to show that in this case the second condition above is automatic.

Since � also re�lects weak equivalences, the composite in item two is a weak equivalence
precisely if its image

�(�(�(�(�)))) →⎯⎯⎯⎯⎯⎯⎯⎯
�(�(��(�)))

�(�(�(�))) →⎯⎯⎯
�(�)

�(�)

under � is.

Moreover, assuming, by the above, that �
�(�(�))

 on the co�ibrant object �(�(�))  is a weak

equivalence, then by two-out-of-three this composite is a weak equivalence precisely if the
further composite with � is

�(�(�)) →⎯⎯⎯⎯⎯
��(�(�))

�(�(�(�(�)))) →⎯⎯⎯⎯⎯⎯⎯⎯
�(�(��(�)))

�(�(�(�))) →⎯⎯
�(�)

�(�) .

By the formula for adjuncts, this composite is the (� ⊣ �)-adjunct of the original composite,
which is just �

�(�)

�(�(�(�))) →⎯⎯⎯⎯⎯
�(��(�))

�(�(�))⟶
�

�

�(�(�)) →⎯⎯⎯
��(�)

�(�)
.

But �
�(�)

 is a weak equivalence by de�inition of co�ibrant replacement.  ▮

The following is the analog of  adjoint triples,  adjoint quadruples (Remark 1.34),  etc.  for
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model categories:

De�inition	6.59. (Quillen	adjoint	triple)

Let ��,��,� be model categories (Def. 6.1), where ��  and ��  share the same underlying
category �, and such that the identity functor on � constitutes a Quillen equivalence (Def.
6.55):

�� ⊥��
→⎯⎯⎯⎯⎯⎯

��

←⎯⎯⎯⎯⎯⎯
��

��

Then

1. a Quillen	adjoint	triple of the form

��/�

→⎯⎯⎯⎯⎯
���

�

←⎯⎯⎯⎯⎯
���

�

→⎯⎯⎯⎯⎯
�

�

is diagrams in the double category of model categories (Def. 6.49) of the form

�� →⎯⎯⎯⎯⎯
��

��

� ↓
�
�� � ⇙ ↓

�
�� ��

�� →⎯⎯⎯
�

� →⎯⎯⎯
�

��

�� ↓
�
�� � ⇙ � ↓

�
�� ⇙�� ↓

�
�� ��

�� →⎯⎯⎯⎯⎯
��

�� →⎯⎯⎯⎯⎯
��

��

such that  �  is  the  unit  of  an adjunction and �  the  counit  of  an adjunction,  thus
exhibiting Quillen adjunctions

�� ⊥��
←⎯⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯⎯
�

�

�� ⊥��
→⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�
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and such that the derived natural transformation Ho(id) of the bottom right square
(94) is invertible (a natural isomorphism);

2. a Quillen	adjoint	triple of the form

��/�

←⎯⎯⎯⎯⎯
���

�

→⎯⎯⎯⎯⎯
���

�

←⎯⎯⎯⎯⎯⎯
�

�

is diagram in the double category of model categories (Def. 6.49) of the form

�� →⎯⎯⎯⎯⎯
��

�� →⎯⎯⎯⎯⎯
��

��

�� ↓
�
�� �� ⇙ ↓

�
�� � � ⇙ ↓

�
�� ��

�� →⎯⎯⎯
�

� ⟶
�

��

�� ↓

�
�� � ⇙ ↓

�
�� �

�� →⎯⎯⎯⎯⎯
��

��

such that  �  is  the  unit  of  an adjunction and �  the  counit  of  an adjunction,  thus
exhibiting Quillen adjunctions

�� ⊥��
→⎯⎯⎯⎯⎯⎯

�

←⎯⎯⎯⎯⎯⎯
�

�

�� ⊥��
←⎯⎯⎯⎯⎯⎯

�

→⎯⎯⎯⎯⎯⎯
�

�

and such that the derived natural transformation Ho(id) of the top left square square
(here) is invertible (a natural isomorphism).

If a Quillen adjoint triple of the �irst kind overlaps with one of the second kind
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��/�

→⎯⎯⎯⎯⎯
���

��

←⎯⎯⎯⎯⎯
���

��=��

→⎯⎯⎯⎯⎯
���

��=��

←⎯⎯⎯⎯⎯
��

�

we speak of a Quillen	adjoint	quadruple, and so forth.

Proposition 	6.60. 	(Quillen 	adjoint 	triple 	induces 	adjoint 	triple 	of 	derived 	functors 	on
homotopy	categories)

Given 	a 	Quillen 	adjoint 	triple 	(Def. 	6.59), 	the 	induced 	derived 	functors 	(Def. 	6.38) 	on 	the
homotopy	categories	form	an	ordinary	adjoint	triple	(Remark	1.34):

��/�

→⎯⎯⎯⎯⎯
���

�

←⎯⎯⎯⎯⎯
���

�

→⎯⎯⎯⎯⎯⎯
�

� � �⎯⎯⎯
��(�)

Ho(�)

→⎯⎯⎯⎯⎯
�

��

←⎯⎯⎯⎯⎯
�

��≃ℝ�

→⎯⎯⎯⎯⎯⎯
ℝ�

Ho(�)

��/�

→⎯⎯⎯⎯⎯
���

�

←⎯⎯⎯⎯⎯
���

�

→⎯⎯⎯⎯⎯⎯
�

� � �⎯⎯⎯
��(�)

Ho(�)

→⎯⎯⎯⎯⎯
�

��

←⎯⎯⎯⎯⎯
�

��≃ℝ�

→⎯⎯⎯⎯⎯⎯
ℝ�

Ho(�)

Proof. This follows immediately from the fact that passing to homotopy categories of model
categories is a double pseudofunctor from the double category of model categories to the
double category of squares in Cat (Prop. 6.50).  ▮

Mapping	cones

In the context of homotopy theory, a pullback diagram, such as in the de�inition of the �iber
in example

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

231 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/Quillen+adjoint+quadruple
https://ncatlab.org/nlab/show/Quillen+adjoint+quadruple
https://ncatlab.org/nlab/show/Quillen+adjoint+triple
https://ncatlab.org/nlab/show/Quillen+adjoint+triple
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/derived+functors
https://ncatlab.org/nlab/show/derived+functors
https://ncatlab.org/nlab/show/homotopy+category+of+a+model+category
https://ncatlab.org/nlab/show/homotopy+category+of+a+model+category
https://ncatlab.org/nlab/show/Quillen+adjoint+triple
https://ncatlab.org/nlab/show/Quillen+adjoint+triple
https://ncatlab.org/nlab/show/derived+functors
https://ncatlab.org/nlab/show/derived+functors
https://ncatlab.org/nlab/show/homotopy+category+of+a+model+category
https://ncatlab.org/nlab/show/homotopy+category+of+a+model+category
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/homotopy+categories+of+model+categories
https://ncatlab.org/nlab/show/homotopy+categories+of+model+categories
https://ncatlab.org/nlab/show/homotopy+categories+of+model+categories
https://ncatlab.org/nlab/show/homotopy+categories+of+model+categories
https://ncatlab.org/nlab/show/double+pseudofunctor
https://ncatlab.org/nlab/show/double+pseudofunctor
https://ncatlab.org/nlab/show/double+category+of+model+categories
https://ncatlab.org/nlab/show/double+category+of+model+categories
https://ncatlab.org/nlab/show/double+category+of+squares
https://ncatlab.org/nlab/show/double+category+of+squares
https://ncatlab.org/nlab/show/Cat
https://ncatlab.org/nlab/show/Cat
https://ncatlab.org/nlab/show/homotopy+theory
https://ncatlab.org/nlab/show/homotopy+theory
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/fiber
https://ncatlab.org/nlab/show/fiber


fib(�) ⟶ �

↓ ↓�

* ⟶ �

ought  to  commute  only  up  to  a  (left/right)  homotopy  (def.  6.20)  between  the  outer
composite  morphisms.  Moreover,  it  should  satisfy  its  universal  property  up  to  such
homotopies.

Instead of going through the full theory of what this means, we observe that this is plausibly
modeled by the following construction, and then we check (below) that this indeed has the
relevant abstract homotopy theoretic properties.

De�inition	6.61. Let � be a model category, def. 6.1 with � * /  its model structure on pointed
objects, prop. . For � :� ⟶ � a morphism between co�ibrant objects (hence a morphism in
(� * /)

�
↪ � * / , def. 6.32), its reduced	mapping	cone is the object

Cone(�)≔ * ⊔
�
Cyl(�) ⊔

�
�

in the colimiting diagram

� ⟶
�

�

↓�� ↓�

� ⟶
��

Cyl(�)

↓ ↘� ↓

* ⟶ ⟶ Cone(�)

,

where Cyl(�) is a cylinder object for �, def. 6.16.

Dually,  for  � :� ⟶ �  a  morphism  between  �ibrant  objects  (hence  a  morphism  in
(�*)

�
↪ � * / , def. 6.32), its mapping	cocone is the object

Path*(�)≔ * ×
�
Path(�)×

�
�

in the following limit diagram
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Path*(�) ⟶ ⟶ �

↓ ↘� ↓�

Path(�) ⟶
��

�

↓ ↓
��

* ⟶ �

,

where Path(�) is a path space object for �, def. 6.16.

Remark	6.62. When we write homotopies (def. 6.20) as double arrows between morphisms,
then the limit diagram in def. 6.61 looks just like the square in the de�inition of �ibers in
example ,  except  that  it  is  �illed by the right  homotopy given by  the  component  map
denoted �:

Path*(�) ⟶ �

↓ ⇙� ↓�

* ⟶ �

.

Dually, the colimiting diagram for the mapping cone turns to look just like the square for
the co�iber, except that it is �illed with a left homotopy

� ⟶
�

�

↓ ⇙� ↓

* ⟶ Cone(�)

Proposition	6.63.	The	colimit	appearing	in	the	de�inition	of	the	reduced	mapping	cone	in	def.
6.61	is	equivalent	to	three	consecutive	pushouts:

� ⟶
�

�

↓�� (po) ↓�

� ⟶
��

Cyl(�) ⟶ Cyl(�)

↓ (po) ↓ (po) ↓

* ⟶ Cone(�) ⟶ Cone(�)

.

The	two	intermediate	objects	appearing	here	are	called

• the	plain	reduced	cone Cone(�)≔ * ⊔
�
Cyl(�);

• the	reduced	mapping	cylinder Cyl(�)≔ Cyl(�) ⊔
�
�.
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Dually,	the	limit	appearing	in	the	de�inition	of	the	mapping	cocone	in	def.	6.61	is	equivalent
to	three	consecutive	pullbacks:

Path*(�) ⟶ Path(�) ⟶ �

↓ (pb) ↓ (pb) ↓�

Path*(�) ⟶ Path(�) ⟶
��

�

↓ (pb) ↓
��

* ⟶ �

.

The	two	intermediate	objects	appearing	here	are	called

• the	based	path	space	object Path*(�)≔ * ∏
�
Path(�);

• the	mapping	path	space	or	mapping	co-cylinder Path(�)≔ �×
�
Path(�).

De�inition	6.64. Let � ∈ � * /  be any pointed object.

1. The  mapping  cone,  def.  6.63,  of  � → *  is  called  the  reduced suspension  of  �,
denoted

�� = Cone(� → * ) .

Via prop. 6.63 this is equivalently the coproduct of two copies of the cone on � over
their base:

� ⟶ *

↓�� (po) ↓

� ⟶
��

Cyl(�) ⟶ Cone(�)

↓ (po) ↓ (po) ↓

* ⟶ Cone(�) ⟶ ��

.

This  is  also  equivalently  the  co�iber,  example  of  (��, ��),  hence  (example  )  of  the
wedge sum inclusion:

� ∨ � = � ⊔ � →⎯⎯⎯⎯
(�� ,��)

Cyl(�) →⎯⎯⎯⎯⎯⎯⎯⎯
�����(�� ,��)

�� .

2. The  mapping  cocone,  def.  6.63,  of  * → �  is  called  the  loop 	space 	object  of  �,
denoted

�� = Path*( * → �) .
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Via prop. 6.63 this is equivalently

�� ⟶ Path*(�) ⟶ *

↓ (pb) ↓ (pb) ↓

Path*(�) ⟶ Path(�) ⟶
��

�

↓ (pb) ↓
��

* ⟶ �

.

This is also equivalently the �iber, example of (�
�
,�

�
):

�� →⎯⎯⎯⎯⎯⎯⎯
���(�� ,��)

Path(�) →⎯⎯⎯⎯⎯
(�� ,��)

�×� .

Proposition	6.65.	In	pointed	topological	spaces Top * / ,

• the	reduced	suspension	objects	(def.	6.64)	induced	from	the	standard	reduced	cylinder
(−) ∧ (��)	of	example	are	isomorphic	to	the	smash	product	(def.	)	with	the	1-sphere,
for	later	purposes	we	choose	to	smash	on	the	left	and	write

cofib(� ∨ � → � ∧ (��)) ≃ �� ∧ � ,

Dually:

• the	loop	space	objects	(def.	6.64)	induced	from	the	standard	pointed	path	space	object
Maps(��, −)*

	are 	 isomorphic 	to 	the 	pointed 	mapping 	space 	(example 	) 	with 	the 	1-

sphere

fib(Maps(��,�)*
→ �×�) ≃ Maps(��,�)

*
.

Proof. By immediate inspection: For instance the �iber of Maps(��,�)*
⟶ �×�  is clearly

the subspace of the unpointed mapping space �� on elements that take the endpoints of � to
the basepoint of �.  ▮

Example 	 6.66.
For  � = Top
with
Cyl(�) = �× �

the  standard
cyclinder
object,  def.  ,
then  by
example  ,  the
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mapping  cone,
def.  6.61,  of  a
continuous
function
� :� ⟶ �  is
obtained by

1. forming
the
cylinder over �;

2. attaching to one end of that cylinder the space � as speci�ied by the map �.

3. shrinking the other end of the cylinder to the point.

Accordingly the suspension of a topological space is the result of shrinking both ends of
the cylinder on the object two the point. This is homeomoprhic to attaching two copies of
the cone on the space at the base of the cone.

(graphics taken from Muro 2010)

Below  in  example  we  �ind  the  homotopy-theoretic  interpretation  of  this  standard
topological mapping cone as a model for the homotopy	co�iber.

Remark	6.67. The formula for the mapping cone in prop. 6.63 (as opposed to that of the
mapping  co-cone)  does  not  require  the  presence  of  the  basepoint:  for  � :� ⟶ �  a
morphism in � (as opposed to in � * /) we may still de�ine

Cone′(�)≔ �⊔
�
Cone′(�) ,

where the prime denotes the unreduced	cone, formed from a cylinder object in �.

Proposition	6.68.	For	� :� ⟶ �	a	morphism	in	Top,	then	its	unreduced	mapping	cone,	remark
6.67,	with	respect	to	the	standard	cylinder	object	�× �	def.	,	is	isomorphic	to	the	reduced
mapping	cone,	def.	6.61,	of	the 	morphism 	�

�
:�� → �� 	(with 	a 	basepoint	adjoined, 	def. 	)

with	respect	to	the	standard	reduced	cylinder	(example	):

Cone′(�) ≃ Cone(�
�
) .

Proof.  By prop. and example , Cone(�
�
) is given by the colimit in Top  over the following

diagram:
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* ⟶ �⊔ * →⎯⎯⎯
(�,��)

� ⊔ *

↓ ↓ ↓

� ⊔ * ⟶ (�× �) ⊔ *

↓ ↓

* ⟶ ⟶ Cone(�
�
)

.

We may factor the vertical maps to give

* ⟶ �⊔ * →⎯⎯⎯
(�,��)

� ⊔ *

↓ ↓ ↓

� ⊔ * ⟶ (�× �) ⊔ *

↓ ↓

* ⊔ * ⟶ ⟶ Cone′(�)
�

↓ ↓

* ⟶ ⟶ Cone′(�)

.

This way the top part of the diagram (using the pasting law to compute the colimit in two
stages) is manifestly a cocone under the result of  applying (−)

�
 to  the diagram for the

unreduced cone. Since (−)
�

 is itself given by a colimit, it preserves colimits, and hence gives

the  partial  colimit  Cone′(�)
�

 as  shown.  The  remaining  pushout  then  contracts  the

remaining copy of the point away.  ▮

Example 6.66 makes it clear that every cycle �� → � in � that happens to be in the image of
� can be continuously translated in the cylinder-direction, keeping it constant in �,  to the
other  end  of  the  cylinder,  where  it  shrinks  away  to  the  point.  This  means  that  every
homotopy group of �, def. , in the image of � vanishes in the mapping cone. Hence in the
mapping cone the 	image 	of 	� 	under 	� 	in 	� 	is 	removed 	up 	to 	homotopy.  This makes it
intuitively clear how Cone(�) is a homotopy-version of the cokernel of �. We now discuss
this formally.

Lemma	6.69.	(factorization	lemma)

Let	�� 	be	a	category	of	co�ibrant	objects,	def.	6.32.	Then	for	every	morphism	� :� ⟶ �	the
mapping	cylinder-construction	in	def.	6.63	provides	a	co�ibration	resolution	of	�,	in	that

1.	the	composite	morphism	� ⟶
��
Cyl(�) →⎯⎯⎯⎯

(��)*� Cyl(�)	is	a	co�ibration;

2.	� 	 factors 	 through 	 this 	morphism 	by 	a 	weak 	equivalence 	 left 	 inverse 	 to 	an 	acyclic
co�ibration
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� : � →⎯⎯⎯⎯⎯⎯
∈���

(��)*�∘�� Cyl(�) →⎯⎯⎯
∈�

� ,

Dually:

Let	�� 	be	a	category	of	�ibrant	objects,	def.	6.32.	Then	for	every	morphism 	� :� ⟶ �	the
mapping	cocylinder-construction	in	def.	6.63	provides	a	�ibration	resolution	of	�,	in	that

1.	the	composite	morphism	Path(�) →⎯⎯⎯
��

*�
Path(�)⟶

��
�	is	a	�ibration;

2.	� 	 factors 	through 	this 	morphism 	by 	a 	weak 	equivalence 	right 	 inverse 	to 	an 	acyclic
�ibration:

� : � →⎯⎯
∈�

Path(�) →⎯⎯⎯⎯⎯
∈���

�� ∘��
*�

� ,

Proof. We discuss the second case. The �irst case is formally dual.

So consider the mapping cocylinder-construction from prop. 6.63

Path(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

�

��
*�

↓ (pb) ↓�

Path(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

��
�

∈�∩��� ↓
��

�

.

To see that the vertical composite is indeed a �ibration, notice that, by the pasting law, the
above pullback diagram may be decomposed as a pasting of two pullback diagram as follows

Path(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈���

(�,��)*(�� ,��)
�×� ��⎯

���
�

↓ ↓(�,��) ↓�

Path(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
(�� ,��)∈���

�×� ⟶
���

�

�� ↓ ↙ ���
∈���

�

.

Both squares are pullback squares. Since pullbacks of �ibrations are �ibrations by prop. 6.8,
the morphism Path(�) → �×� is a �ibration. Similarly, since � is �ibrant, also the projection
map �×� → � is a �ibration (being the pullback of � → *  along � → * ).

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

238 of 249 5/1/2025, 2:02 PM

https://ncatlab.org/nlab/show/category+of+fibrant+objects
https://ncatlab.org/nlab/show/category+of+fibrant+objects
https://ncatlab.org/nlab/show/mapping+cocylinder
https://ncatlab.org/nlab/show/mapping+cocylinder
https://ncatlab.org/nlab/show/formal+dual
https://ncatlab.org/nlab/show/formal+dual
https://ncatlab.org/nlab/show/mapping+cocylinder
https://ncatlab.org/nlab/show/mapping+cocylinder
https://ncatlab.org/nlab/show/pasting+law
https://ncatlab.org/nlab/show/pasting+law
https://ncatlab.org/nlab/show/pasting
https://ncatlab.org/nlab/show/pasting
https://ncatlab.org/nlab/show/projection
https://ncatlab.org/nlab/show/projection


Since the vertical composite is thereby exhibited as the composite of two �ibrations

Path(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(�,��)*(�� ,��)

�×� →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
��� ∘(�,��)=���

� ,

it is itself a �ibration.

Then to see that there is a weak equivalence as claimed:

The universal property of the pullback Path(�) induces a right inverse of Path(�) → � �itting
into this diagram

id� : � →⎯⎯
∈�

∃
Path(�) →⎯⎯⎯⎯⎯⎯

∈�∩���
�

�↓ ↓ ↓�

id� : � →⎯⎯
∈�

�
Path(�) →

��
�

�� ↘ ↓
��

�

,

which is a weak equivalence, as indicated, by two-out-of-three (def. 1.75).

This establishes the claim.  ▮

Categories	of	�ibrant	objects

Below we discuss the homotopy-theoretic properties of the mapping cone- and mapping
cocone-constructions from above. Before we do so, we here establish a collection of general
facts that hold in categories of �ibrant objects and dually in categories of co�ibrant objects,
def. 6.32.

Literature (Brown 73, section 4).

Lemma	6.70. 	Let	� :� ⟶ �	be	a	morphism	in	a	category	of	�ibrant	objects,	def. 	6.32. 	Then
given	any	choice	of	path	space	objects Path(�)	and	Path(�),	def.	6.16,	there	is	a	replacement
of	Path(�)	by	a	path	space	object	Path(�)̃	along	an	acylic	�ibration,	such	that	Path(�)̃	has	a
morphism	�	to	Path(�)	which	is	compatible	with	the	structure	maps,	in	that	the	following
diagram	commutes
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� ⟶
�

�

↙ ↓ ↓

Path(�) ←⎯⎯⎯⎯⎯⎯
∈�∩���

Path(�)̃ ⟶
�

Path(�)

(��
�,��

�) ↘ ↓
(��

�,��
�)

↓
(�̃�

�,�̃�
�)

�×� →⎯⎯⎯
(�,�)

�×�

.

(Brown 73, section 2, lemma 2)

Proof. Consider the commuting square

� ⟶
�

� ⟶ Path(�)

↓ ↓
(��

�,��
�)

Path(�) →⎯⎯⎯⎯⎯
(��

�,��
�)

�×� →⎯⎯⎯
(�,�)

�×�

.

Then consider its factorization through the pullback of the right morphism along the bottom
morphism,

� ⟶ (� ∘ ��
�, � ∘ ��

�)*Path(�) ⟶ Path(�)

∈� ↘ ↓ ∈�∩��� ↓∈���
(��

�,��
�)

Path(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
(�∘��

�,�∘��
�)

�×�

.

Finally use the factorization lemma 6.69 to factor the morphism � → (� ∘ ��
�, � ∘ ��

�)*Path(�)

through a weak equivalence followed by a �ibration, the object this factors through serves as
the desired path space resolution

� →⎯⎯
∈�

Path(�)̃ ⟶ Path(�)

∈� ↘ ↓ ∈�∩��� ↓
(��

�,��
�)

Path(�) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
(�∘��

�,�∘��
�)

�×�

.

  ▮

Lemma	6.71.	In	a	category	of	�ibrant	objects ��,	def.	6.32,	let
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�� ⟶
�

��

∈��� ↘ ↙∈���

�

be	a	morphism	over	some	object	�	in	��	and	let	� :�′ → �	be	any	morphism	in	��.	Let

�*�� →⎯⎯
�*�

�*��

∈��� ↘ ↙∈���

�′

be	the	corresponding	morphism	pulled	back	along	�.

Then

• if	�	is	a	�ibration	then	also	�*�	is	a	�ibration;

• if	�	is	a	weak	equivalence	then	also	�*�	is	a	weak	equivalence.

(Brown 73, section 4, lemma 1)

Proof. For � ∈ Fib the statement follows from the pasting law which says that if in

�′×� �� ⟶ ��

↓�
*�∈��� ↓�∈���

�′×� �� ⟶ ��

↓ ∈��� ↓ ∈���

�′ ⟶
�

�

the bottom and the total square are pullback squares, then so is the top square. The same
reasoning applies for � ∈ � ∩ Fib.

Now to see the case that � ∈ �:

Consider the full subcategory (�/�)�  of the slice category �/�  (def. ) on its �ibrant objects,

i.e. the full subcategory of the slice category on the �ibrations

�

↓∈���
�

�
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into �. By factorizing for every such �ibration the diagonal morphisms into the �iber product
�×

�
�  through a weak equivalence followed by a �ibration,  we obtain path space objects

Path�(�) relative to �:

(��) / � : � →⎯⎯
∈�

Path�(�) →⎯⎯⎯
∈���

�×
�
�

∈��� ↘ ↓ ↙∈���

�

.

With these, the factorization lemma (lemma 6.69) applies in (�/�)�.

(Notice that for this we do need the restriction of �/� to the �ibrations, because this ensures
that the projections �

�
:�� ×� �� → ��  are still �ibrations, which is used in the proof of the

factorization lemma (here).)

So now given any

� →⎯⎯
∈�

�
�

∈��� ↘ ↙∈���

�

apply the factorization lemma in (�/�)� to factor it as

� →⎯⎯⎯
�∈�

Path�(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

�

∈��� ↘ ↓ ↙∈���

�

.

By the previous discussion it is suf�icient now to show that the base change of � to �′ is still a
weak equivalence. But by the factorization lemma in (�/�)�, the morphism � is right inverse

to another acyclic �ibration over �:

id� : � →⎯⎯⎯
�∈�

Path�(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

�

∈��� ↘ ↓ ↙∈���

�

.

(Notice that if we had applied the factorization lemma of ��  in ��  instead of (��) / �  in
(�/�) then the corresponding triangle on the right here would not commute.)

Now we may reason as before: the base change of the top morphism here is exhibited by the
following pasting composite of pullbacks:
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�′×
�
� ⟶ �

↓ (pb) ↓

�′×
�
Path�(�) ⟶ Path�(�)

↓ (pb) ↓ ∈�∩���

�′×
�
� ⟶ �

↓ (pb) ↓

�′ ⟶ �

.

The  acyclic  �ibration  Path�(�)  is  preserved  by  this  pullback,  as  is  the  identity
id� :� → Path�(�) → �.  Hence the weak equivalence � → Path�(�)  is  preserved by two-
out-of-three (def. 1.75).

Lemma	6.72.	In	a	category	of	�ibrant	objects,	def.	6.32,	the 	pullback 	of	a	weak 	equivalence
along	a	�ibration	is	again	a	weak	equivalence.

(Brown 73, section 4, lemma 2)

Proof. Let � :�′ → � be a weak equivalence and � :� → � be a �ibration. We want to show
that the left vertical morphism in the pullback

�×� �′ ⟶ �′

↓⇒ ∈� ↓ ∈�

� →⎯⎯⎯
∈���

�

is a weak equivalence.

First of all, using the factorization lemma 6.69 we may factor �′ → � as

�′ →⎯⎯
∈�

Path(�) →⎯⎯⎯⎯⎯
∈�∩�

�

with the �irst morphism a weak equivalence that is a right inverse to an acyclic �ibration and
the right one an acyclic �ibration.

Then the pullback diagram in question may be decomposed into two consecutive pullback
diagrams
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�×� �′ → �′

↓ ↓

� � �⎯⎯
∈���

Path(�)

↓ ∈�∩��� ↓ ∈�∩���

� →⎯⎯⎯
∈���

�

,

where the morphisms are indicated as �ibrations and acyclic �ibrations using the stability of
these under arbitrary pullback.

This means that the proof reduces to proving that weak equivalences �:�′ ��⎯
∈�

�  that are

right  inverse  to  some  acyclic  �ibration  �:� � �⎯⎯⎯⎯
∈�∩�

�′  map  to  a  weak  equivalence  under
pullback along a �ibration.

Given such � with right inverse �, consider the pullback diagram

�
(�,��)
∈� ↓ ↘��

�� ≔ �×�� � →⎯⎯⎯⎯⎯⎯
∈�∩���

�

↓ ∈��� ↓�∈���

(pb) �

↓ ↓�∈�∩���

� →⎯⎯⎯⎯⎯⎯⎯
�∈���∩�

�′

.

Notice that the indicated universal morphism �× Id:� ��⎯
∈�

��  into the pullback is a weak
equivalence by two-out-of-three (def. 1.75).

The  previous  lemma  6.71  says  that  weak  equivalences  between  �ibrations  over  �  are
themselves preserved by base extension along � :�′ → �.  In total this yields the following
diagram
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�*� = �′×� � ⟶ �

�*(�×��)
∈� ↓

�×��
∈� ↓ ↘��

�*�� ⟶ �� →⎯⎯⎯⎯⎯⎯
∈�∩���

�

↓ ∈��� ↓ ∈��� ↓�∈���

�

↓ ↓ ↓�∈�∩���

�′ ⟶
�

� →⎯⎯⎯⎯⎯⎯⎯
�∈�∩���

�′

so that with �× Id:� → ��  a  weak equivalence also �*(�× Id)  is  a  weak equivalence,  as
indicated.

Notice that �*� = �′×� � → � is the morphism that we want to show is a weak equivalence.
By two-out-of-three (def. 1.75) for that it is now suf�icient to show that �*�� → ��  is a weak
equivalence.

That �inally follows now since, by assumption, the total bottom horizontal morphism is the
identity. Hence so is the top horizontal morphism. Therefore �*�� → ��  is right inverse to a
weak equivalence, hence is a weak equivalence.  ▮

Lemma	6.73.	Let	(� * /)
�
	be	a	category	of	�ibrant	objects,	def.	6.32	in	a	model 	structure 	on

pointed	objects	(prop.	).	Given	any	commuting	diagram	in	�	of	the	form

�′� →⎯⎯
�

∈�
�� ⟶

�

⟶
�

��

↓∈���
��

↓∈���
��

� ⟶
�

�

(meaning: 	both 	squares 	commute 	and 	� 	equalizes 	� 	with 	�) 	then 	the 	localization 	functor
� : (� * /)

�
→ Ho(� * /)	(def.	6.26,	cor	6.34)	takes	the	morphisms	fib(�

�
)⟶⟶ fib(�

�
)	induced

by	�	and	�	on	�ibers	(example	)	to	the	same	morphism,	in	the	homotopy	category.

(Brown 73, section 4, lemma 4)

Proof. First consider the pullback of �
�

 along �: this forms the same kind of diagram but

with the bottom morphism an identity. Hence it is suf�icient to consider this special case.

Consider the full subcategory (�/�
* /
)
�

 of the slice category �/�
* /  (def. ) on its �ibrant objects,

i.e. the full subcategory of the slice category on the �ibrations
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�

↓∈���
�

�

into �. By factorizing for every such �ibration the diagonal morphisms into the �iber product
�×

�
�  through a weak equivalence followed by a �ibration,  we obtain path space objects

Path�(�) relative to �:

(��) / � : � →⎯⎯
∈�

Path�(�) →⎯⎯⎯
∈���

�×
�
�

∈��� ↘ ↓ ↙∈���

�

.

With these, the factorization lemma (lemma 6.69) applies in (�/�
* /
)
�

.

Let then � →
�
Path�(��) � �⎯⎯⎯⎯

(�� ,��)
�� ×� �� be a path space object for �� in the slice over � and

consider the following commuting square

�′� ⟶
���

Path�(��)

∈�
�
↓ ↓∈���

(�� ,��)

�� →⎯⎯⎯
(�,�)

�� ×
�
��

.

By factoring this through the pullback (�,�)*(�
�
,�

�
)  and then applying the factorization

lemma 6.69 and then two-out-of-three (def. 1.75) to the factoring morphisms, this may be
replaced by a commuting square of the same form, where however the left morphism is an
acyclic �ibration

�″� ⟶ Path�(��)

∈�∩���
�
↓ ↓∈���

(�� ,��)

�� →⎯⎯⎯
(�,�)

�� ×
�
��

.

This makes also the morphism �″� → � be a �ibration, so that the whole diagram may now
be regarded as a diagram in the category of �ibrant objects (�/�)�  of the slice category over

�.

As  such,  the  top  horizontal  morphism  now  exhibits  a  right  homotopy  which  under
localization �� : (�/�)� ⟶ Ho(�/�)  (def.  6.26) of  the slice model  structure (prop.  )  we

have
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��(�) = ��(�) .

The result then follows by observing that we have a commuting square of functors

(�/�
* /
)
�

⟶
���

� * /

↓
�� ⇙ ↓�

Ho(�/�
* /
) ⟶ Ho(� * /)

,

because,  by  lemma  6.71,  the  top  and  right  composite  sends  weak  equivalences  to
isomorphisms, and hence the bottom �iller exists by theorem 6.29. This implies the claim.  ▮

Homotopy	�ibers

We now discuss  the  homotopy-theoretic  properties  of  the  mapping  cone-  and mapping
cocone-constructions from above.

Literature (Brown 73, section 4).

Remark	6.74. The factorization lemma 6.69 with prop. 6.63 says that the mapping cocone of
a morphism �, def. 6.61, is equivalently the plain �iber, example , of a �ibrant resolution �̃
of �:

Path*(�) ⟶ Path(�)

↓ (pb) ↓�̃

* ⟶ �

.

The following prop. 6.75 says that, up to equivalence, this situation is independent of the
speci�ic  �ibration  resolution  �̃  provided  by  the  factorization  lemma  (hence  by  the
prescription  for  the  mapping  cocone),  but  only  depends  on  it  being  some  �ibration
resolution.

Proposition	6.75.	In	the	category	of	�ibrant	objects (� * /)
�
,	def.	6.32,	of	a	model	structure	on

pointed 	 objects 	 (prop. 	 ) 	 consider 	 a 	morphism 	 of 	 �iber-diagrams, 	 hence 	 a 	 commuting
diagram	of	the	form

fib(�
�
) ⟶ �� →⎯⎯⎯

∈���

��
��

↓� ↓� ↓�

fib(�
�
) ⟶ �� →⎯⎯⎯

∈���

��
��

.

If	�	and	�	weak	equivalences,	then	so	is	ℎ.
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Proof. Factor the diagram in question through the pullback of �
�

 along �

fib(�
�
) ⟶ ��

↓� ∈� ↓ ↘
��

fib(�*�
�
) ⟶ �*�� →⎯⎯⎯

∈���

�*��
��

↓≃ ↓ ∈� ↓∈�
�

fib(�
�
) ⟶ �� →⎯⎯⎯

∈���

��
��

and observe that

1. fib(�*�
�
) = pt* �*�

�
= pt*�

�
= fib(�

�
);

2. �*�� → �� is a weak equivalence by lemma 6.72;

3. �� → �*�� is a weak equivalence by assumption and by two-out-of-three (def. 1.75);

Moreover, this diagram exhibits ℎ : fib(�
�
) → fib(�*�

�
) = fib(�

�
) as the base change, along

* → ��, of �� → �*��. Therefore the claim now follows with lemma 6.71.  ▮

Hence we say:

De�inition	6.76. Let � be a model category and � * /  its model category of pointed objects,
prop. . For � :� ⟶ � any morphism in its category of �ibrant objects (� * /)

�
, def. 6.32, then

its homotopy	�iber

hofib(�)⟶ �

is the morphism in the homotopy category Ho(� * /), def. 6.23, which is represented by the
�iber, example , of any �ibration resolution �̃ of � (hence any �ibration �̃ such that � factors
through a weak equivalence followed by �̃).

Dually:

For � :� ⟶ � any morphism in its category of co�ibrant objects (� * /)
�
, def. 6.32, then its

homotopy	co�iber

� ⟶ hocofib(�)

is the morphism in the homotopy category Ho(�), def. 6.23, which is represented by the
co�iber, example , of any co�ibration resolution of � (hence any co�ibration �̃ such that �
factors as �̃ followed by a weak equivalence).
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Proposition	6.77.	The	homotopy	�iber	in	def.	6.76	is	indeed	well	de�ined,	in	that	for	�
�
	and	�

�

two	�ibration	replacements	of	any	morphisms	�	in	��,	then	their	�ibers	are	isomorphic	in
Ho(� * /).

Proof. It is suf�icient to exhibit an isomorphism in Ho(� * /) from the �iber of the �ibration
replacement given by the factorization lemma 6.69 (for any choice of path space object) to
the �iber of any other �ibration resolution.

Hence given a morphism � :� ⟶ � and a factorization

� : � →⎯⎯⎯
∈�

�̂ →⎯⎯⎯
��

∈���
�

consider, for any choice Path(�) of path space object (def. 6.16), the diagram

Path(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

�

∈� ↓ (pb) ↓ ∈�

Path(�
�
) →⎯⎯⎯⎯⎯⎯

∈�∩���
�̂

∈��� ↓ (pb) ↓
��

∈���

Path(�) →⎯⎯⎯⎯⎯⎯
∈�∩���

��
�

��
∈�∩��� ↓

�

as in the proof of lemma 6.69. Now by repeatedly using prop. 6.75:

1. the bottom square gives a weak equivalence from the �iber of Path(�
�
) → Path(�)  to

the �iber of �
�

;

2. The square

Path(�
�

  ▮
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