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This entry is one chapter of geometry of physics.

next chapters: smooth sets, supergeometry

Category theory and topos theory concern the general abstract

structure underlying algebra, geometry and logic. They are  Context
ubiquituous in and indispensible for organizing conceptual Category theory
mathematical frameworks.

Topos Theory

We give here an introduction to the basic concepts and results,

aimed at providing background for the synthetic higher supergeometry of relevance in
formulations of fundamental physics, such as used in the chapters on perturbative quantum
field theory and on fundamental super p-branes. For quick informal survey see Introduction
to Higher Supergeometry,.

This makes use of the following curious dictionary between category theory/topos theory
and the geometry of generalized spaces, which we will explain in detail (following
Grothendieck 65, Lawvere 86, p. 17, Lawvere 91):

category theory Rmk. 1.28 geometry of generalized spaces
presheaf Expl. 1.26 generalized space
representable Expl. 1.27 model space |

presheaf regarded as generalized space

sets of probes of generalized spaces
are indeed

Prop.

Yoneda lemma 129

sets of maps from model spaces
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category theory Rmk. 1.28 geometry of generalized spaces

Yoneda embedding Prop. nature.of model spaces is preserved when
1.30 regarding them as generalized spaces

Yoneda embedding is Prop. 3.2 generalized spaces really are

free co-completion glued from ordinary spaces

local-global principle for generalized

t th Rmk. 4.1
topos theory mk. 4.1 spaces
coverage Defn. 4.3 notion of locality
sheaf condition Defn. 4.8 plo.ts of generalized SDaC-eS |
Prop. 4.29 satisfy local-to-global principle
comparison lemma Prop. 4.20 notion of generalized spaces
B p-2.£5 independent under change of model space

gros topos theory Rmk. 5.1 generalized spaces at the foundations

i
cohesion Defn. 5.2 ge.ner.a ized snlaces ob.ey
- principles of differential topology

, ) , generalized spaces obey
differential cohesion Defn. 5.10 . . .
principles of differential geometry

lized b

super cohesion Defn. 5.14 EENELAUZEC SPALES ObEY

principles of supergeometry

The perspective is that of functorial geometry (Grothendieck 65). (For more exposition of
this point see also at motivation for sheaves, cohomology and higher stacks.) This dictionary
implies a wealth of useful tools for handling and reasoning about geometry:

We discuss below that sheaf toposes, regarded as categories of generalized spaces via the
above disctionary, are “convenient contexts” for geometry (Prop. 4.23 below), in the
technical sense that they provide just the right kind of generalization that makes all
desireable constructions on spaces actually exist:

sheaf topos as category of generalized spaces
Yoneda embedding: contains and generalizes ordinary spaces
has all limits: contains all Cartesian products and intersections
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sheaf topos as category of generalized spaces

has all colimits: contains all disjoint unions and quotients
cartesian closure: contains all mapping spaces

local cartesian closure: contains all fiber-wise mapping spaces

Notably mapping_spaces play a pivotal role in physics, in the guise of spaces of field
histories, but fall outside the applicability of traditional formulations of geometry based on
just manifolds. Topos theory provides their existence (Prop. 4.23 below) and the relevant
infrastructure, for example for the construction of transgression of differential forms to
mapping spaces of smooth sets, that is the basis for sigma-model-field theories. This is
discussed in the following chapters on smooth sets and on supergeometry,.

In conclusion, one motivation for category theory and topos theory is a posteriori: As a
matter of experience, there is just no other toolbox that allows to deeply understand and
handle the geometry of physics. Similar comments apply to a wealth of other topics of
mathematics.

But we may offer also an a priori motivation:

Category theory is the theory of duality.

Duality is of course an ancient notion in philosophy. At least as
a term, it makes a curious re-appearance in the conjectural
theory of fundamental physics formerly known as string theory,
in the guise of duality in string theory. In both cases, the
literature left some room in delineating what precisely is
meant. But the philosophically inclined mathematician could
notice (see Lambek 82) that an excellent candidate to make
precise the idea of duality is the mathematical concept of
adjunction, from category theory. This is particularly
pronounced for adjoint triples (Remark 1.34 below) and their
induced adjoint modalities (Lawvere 91, see Def. 1.66 below),
which exhibit a given “mode of being” of any object X as

intermediate between two dual opposite extremes (Prop. 1.69 below):

oX—X— OX

For example, cohesive geometric structure on generalized spaces is captured, this way, as
modality in between the discrete and the codiscrete (Example 1.36, and Def. 5.2 below).

Historically, category theory was introduced in

> universal monadic
e constructions algebra
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order to make precise the concept of natural
transformation: The concept of functors was
introduced just so as to support that of natural
transformations, and the concept of categories
only served that of functors (see Freyd 1964, p 1).

But natural transformations are, in turn, exactly
the basis for the concept of adjoint functors (Def.
1.32 below), equivalently adjunctions between
categories (Prop. 1.39 below).

Shown below is the “Yin-Yang identity” (the triangle identity, cf. Prop. below) characterizing

adjunctions.

All universal constructions —
the heart of category theory
— are special cases of adjoint
functors, hence of dualities, if
we follow Lambek 82: This
includes the concepts of
limits and colimits (Def. 3.1
below), ends and coends
(Def. 3.13 below) Kan

extensions  (Prop. 3.29

below), and the behaviour of
these constructions, such as
for instance the free co-
completion nature of the
Yoneda embedding (Prop.
3.20 below).
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Therefore it makes sense to regard category theory as the theory of adjunctions,

hence the theory of duality:

hierarchy of concepts

adjunction of adjunctions

duality of dualities

category theory enriched homotopical

Def.

1.52 Def. 6.59
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hierarchy of concepts category theory enriched homotopical
adjoint equivalence
: Def. 1.5 Def. 2.53 Def. 6.55
dual equivalence
adjunction
. Def. 1.3 Def. 2.52 Def. 6.44
duality
natural transformation Def. 1.23 Def. 2.5
functor Def. 1.15 Def. 2.46
category Def. 1.1 Def. 2.40 Def. 6.1

The pivotal role of adjunctions in category theory (Lawvere 08) and in the foundations of

mathematics (Lawvere 69, Lawvere 94 ) was particularly amplified by E_W. Lawverel.

Moreover, Lawvere saw the future of category theory (Lawvere 91) as concerned with
adjunctions expressing systems of archetypical dualities that reveal foundations for
geometry (Lawvere 07) and physics (Lawvere 97, see Def. 5.2 and Def. 5.10 below). He
suggested (Lawvere 94) this as a precise formulation of core aspects of the theory of
everything of early 19th century philosophy: Hegel's Science of Logic.

These days, of course, theories of everything, such as string theory, are understood less
ambitiously than Hegel’s ontological process, as mathematical formulations of fundamental
theories of physics, that could conceptually unify the hodge-podge of currently available
“standard models” of particle physics and of cosmology to a more coherent whole.

The idea of duality in string theory refers to different perspectives on physics that appear
dual to each other while being equivalent. But one of the basic results of category theory
(Prop. 1.58, below) is that equivalence is indeed a special case of adjunction. This allows to
explore the possibility that there is more than a coincidence of terms.

Of course the usage of the term duality in string theory is too loose for one to expect to be
able to refine each occurrence of the term in the literature to a mathematical adjunction.
However, we will see mathematical formalizations of core aspects of key string-theoretic
dualities, such as topological T-duality and the duality between M-theory and type IIA string
theory, in terms of adjunctions. Indeed, at the heart of these dualities in string theory is the
phenomenon of double dimensional reduction, which turns out to be formalized by one of the
most fundamental adjunctions in (higher) category theory: base change along the point
inclusion into a classifying space. All this is discussed in the chapter on fundamental super p-
branes.

This suggests that there may be a deeper relation here between the superficially alien uses
of the word “duality”, that is worth exploring.
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In this respect it is worth noticing that core structure of string/M-theory arises via universal
constructions from the superpoint (as explained in the chapter on fundamental super p-
branes), while the superpoint itself arises, in a sense made precise by category theory, “from
nothing”, by a system of twelve adjunctions (explained in the chapter on supergeometry).

Here we introduce the requisites for understanding these statements.

Contents

1. Basic notions of Category theory

Categories and Functors

Natural transformations and presheaves

Adjunctions

Equivalences

Modalities

2. Basic notions of Categorical algebra

Monoidal categories

Algebras and modules

Enriched categories

3. Universal constructions

Limits and colimits

Ends and coends

Tensoring and cotensoring

Kan extensions

Further properties

4. Basic notions of Topos theory

Descent
Codescent

L.ocal presentation
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Simplicial homotopy

Kan complexes

Groupoids as Kan complexes

Chain complexes as Kan complexes

Theorem (Eilenberg-MacLane)
Theorem (Kan)

Theorem (]J. C. Moore)

Geometric realization

The classical model structure on simplicial sets

9. Basic notions of higher topos theory

Locally presentable co-Categories

oco-Modalities
oo-Toposes

10. Gros oo-Toposes

Cohesive co-Toposes

Elastic co-Toposes

Solid co-Toposes

1. Basic notions of Category theory

We introduce here the basic notions of category theory, along with examples and motivation
from geometry:

1. Categories and functors

2. Natural transformations and presheaves

3. Adjunctions
4. Equivalences

5. Modalities

This constitutes what is sometimes called the language of categories. While we state and
prove some basic facts here, notably the notorious Yoneda lemma (Prop. 1.29 below), what
makes category theory be a mathematical theory in the sense of a coherent collection of
non-trivial theorems is all concerned with the topic of universal constructions, which may be
formulated (only) in this language. This we turn to further below.

8 0f 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#simplicial_homotopy
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#simplicial_homotopy
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#KanComplexes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#KanComplexes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#GroupoidsAsKanComplexes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#GroupoidsAsKanComplexes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#DoldKanCorrespondence
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#DoldKanCorrespondence
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#theorem_eilenbergmaclane
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#theorem_eilenbergmaclane
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#theorem_kan
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#theorem_kan
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#theorem_j_c_moore
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#theorem_j_c_moore
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#geometric_realization
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#geometric_realization
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#the_classical_model_structure_on_simplicial_sets
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#the_classical_model_structure_on_simplicial_sets
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#basic_notions_of_higher_topos_theory
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#basic_notions_of_higher_topos_theory
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#basic_notions_of_higher_topos_theory
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LocallyPresentbableInfinityCategories
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#modalities
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#gros_toposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#CohesiveInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#ElasticInfinityToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#SolidModelToposes
https://ncatlab.org/nlab/show/category+theory
https://ncatlab.org/nlab/show/category+theory
https://ncatlab.org/nlab/show/geometry
https://ncatlab.org/nlab/show/geometry
https://ncatlab.org/nlab/show/Yoneda+lemma
https://ncatlab.org/nlab/show/Yoneda+lemma
https://ncatlab.org/nlab/show/category+theory
https://ncatlab.org/nlab/show/category+theory
https://ncatlab.org/nlab/show/theorems
https://ncatlab.org/nlab/show/theorems
https://ncatlab.org/nlab/show/universal+constructions
https://ncatlab.org/nlab/show/universal+constructions

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

Categories and Functors

The notion of a category (Def. 1.1 below) embodies the idea of structuralism applied to
concepts in mathematics: it collects, on top of the set (or generally: class) of mathematical
objects that belong to it, also all the structure-preserving maps between them, hence the
homomorphisms in the case of Bourbaki-style mathematical structures.

The first achievement of the notion of a category is to abstract away from such manifestly
concrete categories (Examples 1.3, 1.21 below) to more indirectly defined mathematical
objects whose “structure” is only defined, after the fact, by which maps, now just called
morphisms, there are between them.

This structuralism-principle bootstraps itself to life by considering morphisms between
categories themselves to be those “maps” that respect their structuralism, namely the
connectivity and composition of the morphisms between their objects: These are the
functors (Def. 1.15 below).

For the purpose of geometry, a key class of examples of functors are the assignments of
algebras of functions to spaces, this is Example 1.22 below.

Definition 1.1. (category)
A category Cis

1.aclass Objc, called the class of objects;

2. for each pair X,Y € Obj, of objects, a set Home(X,Y), called the set of morphisms

from X to Y, or the hom-set, for short.
We denote the elements of this set by arrows like this:

X L Y € Homq(X,Y) .

3. for each object X € Obj. a morphism
idy
X — X € Homq(X,X)

called the identity morphism on X;

4. for each triple X, X,, X3 € Obj of objects, a function
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called composition;
such that:

1. for all pairs of objects X, Y € Obj, unitality holds: given

X L Y € Homq(X,Y)
then
idyef feidy

X—>Y=XL>Y=X—>Y;

2. for all quadruples of objects X;, X5, X3, X4 € Obj, composition satifies associativity:

given
X1]C—12>X2]E>X3§X4
then
x, el oy Usndle)hg

The archetypical example of a category is the category of sets:

Example 1.2. (category of all sets)

The class of all sets with functions between them is a category (Def. 1.1), to be denoted
Set:

o Objset = class of all sets;

e Homge(X,Y) = set of functions from set X to set Y;

e idy € Homge (X, X) = identity function on set X;

* oy x,x,; — ordinary composition of functions.

More generally all kind of sets with structure, in the sense going back to Bourbaki, form
categories, where the morphisms are the homomorphisms (whence the name “morphism”!).
These are called concrete categories (we characterize them precisely in Example 1.21,
further below):
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Example 1.3. (basic examples of concrete categories)

For § a kind of mathematical structure, there is the category (Def. 1.1) § Set whose objects
are the corresponding structured sets, and whose morphisms are the corresponding
structure homomorphisms, hence the functions of underlying sets which respect the
given structure.

Basic examples of concrete categories include the following:

concrete category objects morphisms

Set sets functions

Top topological spaces continuous functions
Mfd,; differentiable manifolds differentiable functions
Vect vector spaces linear functions

Grp groups group homomorphisms
Alg algebras algebra homomorphism

This is the motivation for the terminology “categories”, as the examples in Example 1.3 are
literally categories of mathematical structures. But not all categories are “concrete” in this
way.

Some terminology:

Definition 1.4. (commuting diagram)

Let C be a category (Def. 1.1), then a directed graph with edges labeled by morphisms of
the category is called a commuting diagram if for any two vertices any two ways of
passing along edges from one to the other yields the same composition of the
corresponding morphismes.

For example, a commuting triangle is

X
f=hog 9 v NS
Y — Z

h

while a commuting square is
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X — v,
g
g.°f, = 9,°f, f2 | s
YZ e Z
9,

Definition 1.5. (initial object and terminal object)

Let C be a category (Def. 1.1). Then

1. an object * € C is called a terminal object if for every other object ¢ € C, there is a

unique morphism from c to *

3!
c— *

hence if the hom-set is a singleton * € Set:
Home(c, *) = * .

2.an object @ € C is called an initial object if for every other object ¢ € C, there is a
unique morphism from @ to ¢

3!
D —c

hence if the hom-set is a singleton * € Set:
Homq(@,c) =~ *.
Definition 1.6. (small category)

If a category C (Def. 1.1) happens to have as class Obj, of objects an actual set (i.e. a small

set instead of a proper class), then C is called a small category.

As usual, there are some trivial examples, that are however usefully made explicit for the
development of the theory:

Example 1.7. (initial category and terminal category)

1. The terminal category * is the category (Def. 1.1) whose class of objects is the
singleton set, and which has a single morphism on this object, necessarily the
identity morphism.

objects is the empty set, and which, hence, has no morphism whatsoever.
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Clearly, these are small categories (Def. 1.6).

Example 1.8. (preordered sets as thin categories)

Let (S, <) be a preordered set. Then this induces a small category whose set of objects is
S, and which has precisely one morphism x — y whenever x < y, and no such morphism

otherwise:
3!
x>y precisely if x<y (1)

Conversely, every small category with at most one morphism from any object to any other,
called a thin category, induces on its set of objects the structure of a partially ordered set
via (1).

Here the axioms for preordered sets and for categories match as follows:

reflexivity transitivity
partially ordered sets x<x x<y<z)=>(x<2z2)
thin categories identity morphisms composition

Definition 1.9. (isomorphism)

For C a category (Def. 1.1), a morphism
f
X —>Y €Home(X,Y)

is called an isomorphism if there exists an inverse morphism

-1

Y f—> X € Homg(Y,X)

namely a morphism such that the compositions with f are equal to the identity
morphisms on X and Y, respectively

fllof =idy  fof ™' = idy
Definition 1.10. (groupoid)

If C is a category in which every morphism is an isomorphism (Def. 1.9), then C is called a

groupoid.

Example 1.11. (delooping groupoid)
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For G a group, there is a groupoid (Def. 1.10) B ¢ with a single object, whose single hom-
set is G, with identity morphism the neutral element and composition the group operation
in G:

e Objg. = *
e Home(™,*) = G
In fact every groupoid with precisely one object is of the form.

Remark 1.12. (groupoids and homotopy theory)

Even though groupoids (Def. 1.10) are special cases of categories (Def. 1.1), the theory of
groupoids in itself has a rather different flavour than that of category theory: Part of the
homotopy hypothesis-theorem is that the theory of groupoids is really homotopy theory

for the special case of homotopy 1-types.

(In applications in homotopy theory, groupoids are considered mostly in the case that the
class Objc, of objects is in fact a set: small groupoids, Def. 1.6).

For this reason we will not have more to say about groupoids here, and instead relegate
their discussion to the section on homotopy theory, further below.

There is a range of constructions that provide new categories from given ones:

Example 1.13. (opposite category and formal duality)

Let C be a category. Then its opposite category C°P has the same objects as C, but the
direction of the morphisms is reversed. Accordingly, composition in the opposite category
C°P is that in C, but with the order of the arguments reversed:

L Objc,op = ObjC’;

e Homeop(X,Y) := Home(Y, X).

Hence for every statementa about some category C there is a corresponding “dual”
statement about its opposite category, which is “the same but with the direction of all
morphisms reversed”. This relation is known as formal duality.

Example 1.14. (product category)

Let C and D be two categories (Def. 1.1). Then their product category C X D has as objects
pairs (¢, d) with c€Obj, and deObj, and as morphisms pairs

(cq ER c3) € Home(cq,c5), (dy 5 d,) € Homqp(d4,d;), and composition is defined by
composition in each entry:
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* Obj,, . = Obj, X Obj,;
e Homeyp((€1,d1), (€2,d3)) == Home(cq, cz) X Homp (dq, d3)
* (f9,)°(f1.9,) = (f,°f1,9,°9,)

Definition 1.15. (functor)
Let C and D be two categories (Def. 1.1). A functor from C to D, to be denoted
C LR D

is

1. a function between the classes of objects:

Fopj : Obj, — Obj,
2. for each pair X, Y € Obj,, of objects a function
Fxy : Home(X,Y) — Homp (Fop;(X), Fopj(Y))

such that

1. For each object X € Obj, the identity morphism is respected:

Fy x(idy) = idFOb]-(X);

2. for each triple X1, X5, X3 € Obj,, of objects, composition is respected: given

Xl —>X2 _)Xg
we have
FX1,X3(gof) = FXZ,Xg(g)OFXl,Xz(f) "

Example 1.16. (categories of small categories and of small groupoids)

[t is clear that functors (Def. 1.15) have a composition operation given componentwise by
the composition of their component functions. Accordingly, this composition is unital and
associative. This means that there is

1. the category (Def. 1.1) Cat whose objects are small categories (Def. 1.6) and whose
morphisms are functors (Def. 1.15) between these

2.the category (Def. 1.1) Grpd whose objects are small groupoids (Def. 1.10) and
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whose morphisms are functors (Def. 1.15) between these.

Example 1.17. (hom-functor)

Let C be a category (Def. 1.1). Then its hom-functor
Home : C°P X C — Set

is the functor (Def. 1.15) out of the product category (Def. 1.14) of C with its opposite
category to the category of sets, which sends a pair X,Y € C of objects to the hom-set
Hom(X,Y) between them, and which sends a pair of morphisms, with one of them into X
and the other out of Y, to the operation of composition with these morphisms:

X1 1y Home(X4,Y1)

h > hofo

Home : gT |~ lf fog
X, Y, Home(X5,Y5)

Definition 1.18. (monomorphism and epimorphism)

Let C be a category (Def. 1.1). Then a morphism X ER Y in Cis called

e a monomorphism if for every object Z € C the hom-functor (Example 1.17) out of Z
takes f to an injective function of hom-sets:

Homq(Z, f) : Home(Z,X) = Home(Z,Y);

e an epimorphism if for every object Z € Z the hom-functor (Example 1.17) into Z
takes f to an injective function:

Home(f,Z) : Home(Y,Z) < Home(X,Z) .

Definition 1.19. (full, faithful and fully faithful functors)

A functor F : C — D (Def. 1.15) is called

e a full functor if all its hom-functions are surjective functions

Fxy
Home(X,Y) ;r; Homq (F(X), F(Y))

e a faithful functor if all its hom-functions are injective functions

F
Home (X, Y) <> Hom (F(X), F(Y))
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e a fully faithful functor if all its hom-functions are bijective functions

F
Home(X, Y) ;‘—UY> Homyp (F(X), F(Y))

A fully faithful functor is also called a full subcategory-inclusion. We will denote this
situation by

F
C—D.
Example 1.20. (full subcategory on a sub-class of objects)

Let C be a category (Def. 1.1) and let § c Obj, be a sub-class of its class of objects. The

there is a category Cs whose class of objects is S, and whose morphisms are precisely the
morphisms of C, between these given objects:

Home (s1,82) = Home(sy,s;)

with identity morphisms and composition defined as in C. Then there is a fully faithful
functor (Def. 1.19)

CS(_)C

which is the evident inclsuion on objects, and the identity function on all hom-sets.

This is called the full subcategory of C on the objects in S.

Beware that not every fully faithful functor is, in components, exactly of this form, but,
assuming the axiom of choice, every fully faithful functor is so up to equivalence of
categories (Def. 1.57).

The concept of faithful functor from Def. 1.19 allows to make precise the idea of concrete
category from Example 1.3:

Example 1.21. (structured sets and faithful functors)

Let § be a kind of mathematical structure and let S Set be the category of S-structured
sets. Then there is the forgetful functor

S Set — Set

which sends each structured set to the underlying set (“forgetting” the structure that it
carries), and which sends functions of sets to themselves. That a homomorphism of
structured sets is a function between the underlying sets satisfying a special condition
implies that this is a faithful functor (Def. 1.19).
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Conversely, it makes sense to define structured sets in general to be the objects of a

faithful
category C which is equipped with a faithful functor C 2T Set to the category of sets.

See at structure for more on this.

Example 1.22. (spaces seen via their algebras of functions)

In any given context of geometry, there is typically a functor which sends any space of the
given kind to its algebra of functions, and which sends a map (i.e. homomorphism)
between the given spaces to the algebra homomorphism given by precomposition with
that map (a hom-functor, Def. 1.17). Schematically:

algebra of functions

{geometric spaces} {algebras} P
X4 - FunctionsOn(X;)
pgof
rl |
X5 - FunctionsOn(X,)

Since the precomposition operation reverses the direction of morphisms, as shown, these
are functors from the given category of spaces to the opposite (Example 1.13) of the
relevant category of algebras.

In broad generality, there is a duality (“Isbell duality”) between geometry/spaces and
algebra/algebras of functions) (“space and quantity”, Lawvere 86).

We now mention some concrete examples of this general pattern:

topological spaces and C*-algebras

Consider

1.the category Top,; of compact topological Hausdorff spaces with continuous

functions between them;

2. the category C*Alg of unital C*-algebras over the complex numbers

from Example 1.3.

Then there is a functor (Def. 1.15)
C(—) : Topy, opt C*Alg°p

from the former to the opposite category of the latter (Example 1.13) which sends any
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. : . . ¢ :
compact topological space X to its C*-algebra C(X) of continuous functions X = C with
values in the complex numbers, and which sends every continuous function between
compact spaces to the C*-algebra-homomorphism that is given by precomposition:

X o CX)
=) ¢ r| Tf*:¢H¢°f
Y » C)

Part of the statement of Gelfand duality is that this is a fully faithful functor, hence
exhibiting a full subcategory-inclusion (Def. 1.19), namely that of commutative C*-
algebras:

Topy (o c"Alg®P .

affine schemes and commutative algebras

The starting point of algebraic geometry is to consider affine schemes as the formal duals
(Example 1.13) of finitely generated commutative algebras over some algebraically closed
ground field K:

Affg = CAlgh™P . (2)

Beware that the immediate identification (2) is often obscured by the definition of affine
schemes as locally ringed spaces. While the latter is much more complicated, at face value,
in the end it yields an equivalent category (Def. 1.57 below) to the simple formal
dualization (Example 1.13) in (2), see here. Already in 1973 Alexander Grothendieck had
urged to abandon, as a foundational concept, the more complicated definition in favor of
the simpler one in (2), see Lawvere 03.

smooth manifolds and real associative algebras

Consider

1. the category SmthMfd of smooth manifolds with smooth functions between them;

2. the category Algg of associative algebras over the real numbers

from Example 1.3.

Then there is a functor (Def. 1.15)
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C*(-) : SmthMfd — Algp®

from the former to the opposite category of the latter (Def. 1.13), which sends any smooth

. : i : : ¢
manifold X to its associative algebra C*(X) of continuous functions X - R to the real
numbers, and which sends every smooth function between smooth manifolds to the
algebra homomorphism that is given by precomposition:

X » C*X)
Co(=) 7| Tf*:qupof
Y e CO(Y)

The statement of Milnor's exercise is that this this is a fully faithful functor, hence
exhibiting a full subcategory-inclusion (Def. 1.19):

SmthMfd —— Alg]fép :

These two statements, expressing categories of spaces as full subcategories of opposite
categories of categories of algebras, are the starting point for many developments in
geometry, such as algebraic geometry, supergeometry, noncommutative geometry and
noncommutative topology.

Since a fully faithful functor/full subcategory-embedding C < D exhibits the objects of D
as a consistent generalization of the objects of C, one may turn these examples around
and define more general kinds of spaces as formal duals (Example 1.13) to certain
algebras:

infinitesimally thickened points and formal Cartesian spaces

The category of infinitesimally thickened points is, by definition, the full subcategory
(Example 1.20) of the opposite category (Example 1.13) of that of commutative algebras
(Example 1.3) over the real numbers

InfThckPoint —— Alg]glp
D - C”(D)
=RV

on those with a unique maximal ideal V which is a finite-dimensional as an R-vector space
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and a nilradical: for each a € V there exists n € N such that a™ = 0.

The category of formal Cartesian spaces is, by definition, the full subcategory (Example

1.3) over the real numbers

FormalCartSp —— Alg]l%p
R"x D > CP(R"x D)
= C”(R™ RQr (RD V)

on those which are tensor products of algebras, of an algebra of smooth functions on a
Cartesian space R", for some n € Z, and the algebra of functions on an infinitesimally
thickened point.

Notice that the formal Cartesian spaces R™!? are fully defined by this assignment.

super points and super Cartesian spaces

The category of super points is by definition, the full subcategory (Example 1.20) of the

over the real numbers

SuperPoint —— sCAlgH%p

RO!4 - Ay

on the Grassmann algebras:

Aq = ]R[01,---, Hq] / (6191 = —9101) q EN.

More generally, the category of super Cartesian spaces is by definition, the full
subcategory

SuperCartSp —— sCAlgH%p
R = CP(R™) Qg 4q

on the tensor product of algebras, over R of the algebra of smooth functions on a
Cartesian space, and a Grassmann algebra, as above.

Notice that the super Cartesian spaces R™? are fully defined by this assignment. We
discuss this in more detail in the chapter on supergeometry.
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Natural transformations and presheaves

Given a system of (homo-)morphisms (“transformations”) in some category (Def. 1.1)

n
Fy —> Gy

between objects that depend on some variable X, hence that are values of functors of X (Def.
1.15), one says that this is natural, hence a natural transformation (Def. 1.23 below) if it is
compatible with (homo-)morphisms of the variable itself.

These natural transformations are the evident homomorphisms between functors

F—a,
and hence there is a category of functors between any two categories (Example 1.25 below).

A key class of such functor categories are those between an opposite category C°P and the
base category of sets, these are also called categories of presheaves (Example 1.26 below). It
makes good sense (Remark 1.28 below) to think of these as categories of “generalized
objects of C”, a perspective which is made precise by the statement of the Yoneda lemma
(Prop. 1.29 below) and the resulting Yoneda embedding (Prop. 1.30 below). This innocent-
looking lemma is the heart that makes category theory tick.

Definition 1.23. (natural transformation and natural isomorphism)

Given two categories C and D (Def. 1.1) and given two functors F and G from C to D (Def.
1.15), then a natural transformation from F to G

is

e for each object X € Obj, a morphism

FOO % 600 (3)

such that
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e for each morphism X ERN Y we have a commuting square (Def. 1.4) of the form

FX) 2 60 (4)
NyeFX) = G(Y)on, F() | 160
F(Y) o G(Y)

(sometimes called the naturality square of the natural transformation).

If all the component morphisms 7, are isomorphisms (Def. 1.9), then the natural
transformation 7 is called a natural isomorphism.

For
F G
_— _—
¢ |In D and C |p D
G H

two natural transformations as shown, their composition is the natural transformation

whose components (3) are the compositions of the components of 7 and p:

FX) 2 6 2 Ho (5)
(por})x = Py oy F(f) ] lG(f) J,H(f)

F(Y) o> G0N > HO

Example 1.24. (reduction of formal Cartesian spaces)

On the category FormalCartSp of formal Cartesian spaces Example 1.22, consider the
endofunctor

R
FormalCartSp ——— FormalCartSp

R"x D - R™

which sends each formal Cartesian space to the underlying ordinary Cartesian space,

forgetting the infinitesimally thickened point-factor. Moreover, on morphisms this functor
is defined via the retraction
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i r

id: R" — R" % D N R™
* n < i* 0 n r’ 00 n
CT(RY) & otient projection © (RDOr ROV) can (R
as
C*(R™ x D) C®(R™) o C™(R™ x D)
] R(F)=i"ofor” | )’
C”(R™ x D") C*(R™) LN CP(R™ x D)

This is indeed functorial due to the fact that any algebra homomorphism f* needs to send
nilpotent elements to nilpotent elements, so that the following identity holds:

iTof = i"of or’oi. (6)

Then there is a natural transformation (Def. 1.23) from this functor to the identity functor

R
R 1d

whose components inject the underlying Cartesian space along the unit point inclusion of
the infinitesimally thickened point:

R
MrnD

R(R"X D) := R"™ R"™ x D

C°(RY) <« C2(R"xD)

i*Of*OT*T Tf
CO(RY) <& C®R"xD)

The commutativity of this naturality square is again the identity (6).

Example 1.25. (functor category)

Let C and D be categories (Def. 1.1). Then the category of functors between them, to be

F
denoted [C,D], is the category whose objects are the functors € — D (Def. 1.15) and

: : U
whose morphisms are the natural transformations F = G between functors (Def. 1.23)
and whose composition operation is the composition of natural transformations (5).

Example 1.26. (category of presheaves)

5/1/2025, 2:02 PM
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Given a category C (Def. 1.1), a functor (Def. 1.15) of the form

F : C°? — Set,

hence out of the opposite category of C (Def. 1.13), into the category of sets (Example 1.2)
is also called a presheaf (for reasons discussed below) on C or over C.

The corresponding functor category (Example 1.25)
PSh(C) = [C°P,Set]
is hence called the category of presheaves over C.

Example 1.27. (representable presheaves)

Given a category C (Def. 1.1), the hom-functor (Example 1.17) induces the following
functor (Def. 1.15) from C to its category of presheaves (Def. 1.26):

y : C —  [C°P, Set] (7)
9
Cq — Cy
Home(g,X)
X = Home(—X) : Home(cq,X) «—— Home(cy, X)
Home (-, f) Home(cq,f) Home(c2, f
7l l l l
Home(g,Y)
Y = Home(—Y) : Home(cq,Y) «——— Home(cy,Y)

The presheaves y(X) := Home(—,X) in the image of this functor are called the
representable presheaves and X € Objc, is called their representing object.

The functor (7) is also called the Yoneda embedding, due to Prop. 1.30 below.

Remark 1.28. (presheaves as generalized spaces)

If a given category C (Def. 1.1) is thought of as a category of spaces of sorts, as those in
Example 1.22, then it will be most useful to think of the corresponding category of
presheaves [C°P, Set] (Def. 1.26) as a category of generalized spaces probe-able by the test
spaces in C (Lawvere 86, p. 17).

Namely, imagine a generalized space X which is at least probe-able by spaces in C. This
should mean that for each object ¢ € C there is some set of geometric maps “c — X”. Here
the quotation marks are to warn us that, at this point, X is not defined yet; and even if it
were, it is not expected to be an object of C, so that, at this point, an actual morphism from
¢ to X is not definable. But we may anyway consider some abstract set
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X(c¢) "=Hom(c, X)" (8)
whose elements we do want to think of maps (homomorphisms of spaces) from c to X.

That this is indeed consistent, in that we may actually remove the quotation remarks on
the right of (8), is the statement of the Yoneda lemma, which we discuss as Prop. 1.29
below.

A minimum consistency condition for this to make sense (we will consider further
conditions later on when we discuss sheaves) is that we may consistently pre-compose

the would-be maps from c¢ to X with actual morphisms d ER ¢ in C. This means that for
every such morphism there should be a function between these sets of would-be maps

c X(c)
fl T () =(—)er
d X(d)

which respects composition and identity morphisms. But in summary, this says that what
we have defined thereby is actually a presheaf on C (Def. 1.26), namely a functor

X: C%%° — Set.

For consistency of regarding this presheaf as a presheaf of sets of plots of a generalized
space, it ought to be true that every “ordinary space”, hence every object X € C, is also an
example of a “generalized space probe-able by” object of C, since, after all, these are the
spaces which may manifestly be probed by objects ¢ € C, in that morphisms ¢ — X are
already defined.

Hence the incarnation of X € C as a generalized space probe-able by objects of C should
be the presheaf Homq(—, X), hence the presheaf represented by X (Example 1.27), via the
Yoneda functor (7).

At this point, however, a serious consistency condition arises: The “ordinary spaces” now
exist as objects of two different categories: on the one hand there is the original X € C, on
the other hand there is its Yoneda image y(X) € [C°P, Set] in the category of generalized
spaces. Hence we need to know that these two perspectives are compatible, notably that
maps X — Y between ordinary spaces are the same whether viewed in C or in the more
general context of [C°P, Set].

That this, too, holds true, is the statement of the Yoneda embedding, which we discuss as
Prop. 1.30 below.

Eventually one will want to impose one more consistency condition, namely that plots are
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determined by their local behaviour. This is the sheaf condition (Def. 4.8 below) and is
what leads over from category theory to topos theory below.

Proposition 1.29. (Yoneda lemma)

Let C be a category (Def. 1.1), X € C any object, and Y € [C°P, Set] a presheaf over C (Def.
1.26).

Then there is a bijection

Homeop sy (v(X), (Y)) =  Y(X)
n = T]X(ldx)

between the hom-set of the category of presheaves from the presheaf represented by X (7) to
Y, and the set which is assigned by Y to X.

Proof. By Example 1.25, an element in the set on the left is a natural transformation (Def.
1.23) of the form

y(X)
c® |n Set

s
Y

hence given by component functions (3)

Ne
Home(c, X) — Y(X)
for each ¢ € C. In particular there is the componentatc = X

Home(X,X) %  Y(X)

idy = 1y (idy)
and the identity morphism idy on X is a canonical element in the set on the left. The

statement to be proven is hence equivalently that for every element in Y(X) there is
precisely one 7 such that this element equals 1, (idx).

Now the condition to be satisfied by 7 is that it makes its naturality squares (4) commute
(Def. 1.4). This includes those of the form
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idy € Home(X,X) % yY(x)  f{idy — {n,(idy)}
Home (f,X) | lyp | |
Home(Y, X) ™ Y(Y) fy — (" =Y, (dx))}

for any morphism

v L x) € Home(v,X) .

As the diagram chase of elements on the right shows, this commutativity (Def. 1.4) fixes
ny(f) forallY € Cand all f € Hom¢(Y, X) uniquely in terms of the element n, (idy).

It remains only to see that there is no condition on the element 7, (idyx), hence that with

ny(f) defined this way, the commutativity of all the remaining naturality squares is implies:

The general naturality square for a morphism Y, =N Y, is of the form

Home(Y1,X) -3 Y(Yy) 73— Y(F,) (0, (idx))}

me(9.%) | R{®) | |

Home(Y2, X) — Y(¥2) f,=rf1°9) — (Y(m(dx)) =Y(g) Y (f ),

Y,

As shown on the right, the commutativity of this diagram now follows from the functoriality
Y(f,) = Y(f, o g) of the presheaf Y. I

As a direct corollary, we obtain the statement of the Yoneda embedding:

Proposition 1.30. (Yoneda embedding)

The assignment (7) of represented presheaves (Example 1.27) is a fully faithful functor (Def.
1.19), hence exhibits a full subcategory inclusion

C —— [C°P,Set]
X +» Home(—X)

y .

of the given category C into its category of presheaves.

Proof. We need to show that for all X;, X, € Obj the function

Home(X4,X,) — Hom[cop,Set](Homc(—,Xl),Homc(—,Xz)) (9)
f - Home(—, f)
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is a bijection. But the Yoneda lemma (Prop. 1.29) states a bijection the other way around

Hom eop g (Home(—, X;) , Home(—,X;)) = Home(—X2)(X;) = Home(X
U] - My, (id
Home(—, f) - Home (X3, f)

and hence it is sufficient to see that this is a left inverse to (9). This follows by inspection, as
shown in the third line above.

As a direct corollary we obtain the following alternative characterization of isomorphisms,
to be compared with the definition of epimorphisms/monomorphisms in Def. 1.18:

Example 1.31. (isomorphism via bijection of hom-sets)

Let C be a category (Def. 1.1), let X,YEOij be a pair of objects, and let

X J, Y € Home(X,Y) be a morphism between them. Then the following are equivalent:

1.X L Y is an isomorphism (Def. 1.9),

2. the hom-functors into and out of f take values in bijections of hom-sets: i.e. for all

objects A € Objc,, we have
Home(4, f) : Home(A4,X) = Home(A4,Y)
and

Home(f,A) : Home(Y,A) = Home (X, A)

Adjunctions

The concepts of categories, functors and natural transformations constitute the “language of
categories”. This language now allows to formulate the concept of adjoint functors (Def.
1.32) and more generally that of adjunctions (Def. 1.50 below. This is concept that category
theory, as a theory, is all about.

Part of the data involved in an adjunction is its adjunction unit and adjunction counit (Def.
1.33 below) and depending on their behaviour special cases of adjunctions are identified
(Prop. 1.46 below), which we discuss in detail in following sections:

adjunction unit is iso:
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Def. 1.32, Def. 1.50

coreflection
Def. 1.60

reflection adjoint equivalence
Def. 1.60 Def. 1.56

counit is iso:

We now discuss four equivalent definitions of adjoint functors:

1. via hom-isomorphism (Def. 1.32 below);

2.via adjunction unit and -counit satisfying triangle identities (Prop. 1.39);

3. via representing objects (Prop. 1.40);

4. via universal morphisms (Prop. 1.42 below).

Then we discuss some key properties:

1. uniqueness of adjoints (Prop. 1.45 below),

2. epi/mono/iso-characterization of adjunction (co-)units (Prop. 1.46 below).

Definition 1.32. (adjoint functors)

Let C and D be two categories (Def. 1.1), and let

D ¢

:Ul Th

be a pair of functors between them (Def. 1.15), as shown. Then this is called a pair of
adjoint functors (or an adjoint pair of functors) with L left adjoint and R right adjoint,
denoted

D

:Ull—Th
§p)

if there exists a natural isomorphism (Def. 1.23) between the hom-functors (Example
1.17) of the following form:

Homgp (L(-), =) = Home(—,R(-)) . (10)

This means that for all objects ¢ € C and d € D there is a bijection of hom-sets
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Homg (L(c),d) — Home(c, R(d))
wodd -  (Lr@y

which is natural in ¢ and d. This isomorphism is called the adjunction hom-isomorphism
and the image f of a morphism f under this bijections is called the adjunct of f.
Conversely, f is called the adjunct of f.

Naturality here means that for every pair of morphisms g:c, = ¢y in Cand h:d; = d, in
D, the resulting square

|

~
|
—

Homp(L(c;),d;) — Home(cy, R(dy)) (11)

Ill

Homp (L(g),h) l lHomc(Q,R(h))

|

~
|
—

Homy (L(c3), d2)

Ill

Home (¢, R(d3))

commutes (Def. 1.4), where the vertical morphisms are given by the hom-functor
(Example 1.17).

Explicitly, this commutativity, in turn, means that for every morphism f : L(c;) = d; with
adjunct f : ¢; = R(d,), the adjunct of the composition is

L) 5 ds e b Ry
L | " =41 [
L(cy) d, Cy R(d,)

Definition 1.33. (adjunction unit and counit)

Given a pair of adjoint functors
L
h
D 1cC
-
R

according to Def. 1.32, one says that

1. for any c € C the adjunct of the identity morphism on L(c) is the unit morphism of
the adjunction at that object, denoted

Ne = 1dy ¢ ¢ — RL(S))

2. for any d € D the adjunct of the identity morphism on R(d) is the counit morphism of
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the adjunction at that object, denoted
€q ' L(R(d)) — d
Remark 1.34. (adjoint triples)
It happens that there are sequences of adjoint functors:

If two functors are adjoint to each other as in Def. 1.32, we also say that we have an
adjoint pair:

L 4R.

It may happen that one functor C participates on the right and on the left of two such
adjoint pairs L 4 C and C 4 R (not the same “L” and “R” as before!) in which case one
may speak of an adjoint triple:

L 4CHR. (12)
Below in Example 1.52 we identify adjoint triples as adjunctions of adjunctions.

Similarly there are adjoint quadruples, etc.

adjunction counit of L 4 C (Def. 1.33) provide, for each object X in the domain of C, a
diagram

€x Nx

L(C(X)) X R(C(X)) (13)

which is usefully thought of as exhibiting the nature of X as being in between two opposite
extreme aspects L(C (X)) and R(C X )) of X. This is illustrated by the following examples,
and formalized by the concept of modalities that we turn to in Def. 1.62 below.

Example 1.35. (floor and ceiling as adjoint functors)

Consider the canonical inclusion

LZs — Rg
of the integers into the real numbers, both regarded as preorders in the standard way
(“lower or equal”). Regarded as full subcategory-inclusion (Def. 1.19) of the
corresponding thin categories, via Example 1.8, this inclusion functor has both a left and
right adjoint functor (Def. 1.32):

e the left adjoint to t is the ceiling function;
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e the right adjoint to ¢ is the floor function;

forming an adjoint triple (Def. 1.34)

(D] 4 ¢ 4 [()]. (14)

The adjunction unit and adjunction counit express that each real number is in between its
“opposite extreme integer aspects” (13) given by floor and ceiling

t x| Eé X nsx tx] .
Proof. First of all, observe that we indeed have functors (Def. 1.15)
(D] (D R—Z
since floor and ceiling preserve the ordering relation.

Now in view of the identification of preorders with thin categories in Example 1.8, the hom-
isomorphism (10) defining adjoint functors of the form ¢4 [(—)] says for all n € Z and
x € R, that we have

This is clearly already the defining condition on the floor function |x|.

Similarly, the hom-isomorphism defining adjoint functors of the form [(—)] ¢ says that for
alln € Z and x € R, we have

[x] <n & x<n.
R , N—_——
EZ ER

This is evidently already the defining condition on the floor function |x]|.

Notice that in both cases the condition of a natural isomorphism in both variables, as
required for an adjunction, is automatically satisfied: For let x < x' and n' <n, then
naturality as in (11) means, again in view of the identifications in Example 1.8, that

m=lx]) & m=sx)
U U

' <xX]) e @'=<x)
€ Z e R

Here the logical implications are equivalently functions between sets that are either empty
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or singletons. But Functions between such sets are unique, when they exist. |l

Example 1.36. (discrete and codiscrete topological spaces)

U
Consider the “forgetful functor” Top — Set from the category Top of topological spaces
(Example 1.3) to the category of sets (Def. 1.2) which sends every topological space to its
underlying set.

This has

e aleft adjoint (Def. 1.32) Disc which equips a set with its discrete topology,

e aright adjoint coDisc which equips a set with the codiscrete topology.

These hence form an adjoint triple (Remark 1.34)

Disc 4 U 4 coDisc.

Hence the adjunction counit of Disc 4 U and the adjunction unit of U H coDisc exhibit
every topology on a given set as “in between the opposite extremes” (13) of the discrete
and the co-discrete

Disc(U(X)) — X -5 coDisc(U(X)) .

Lemma 1.37. (pre/post-composition with (co-)unit followed by adjunct is adjoint

functor)

If a functor C is the right adjoint

L4C : C D
C

in a pair of adjoint functors (Def. 1.32), then its application to any morphism X ER Y €Cis
equal to the joint operation of pre-composition with the (L 4 C)-adjunction counit EE( (Def.
1.33), followed by passing to the (L - C)-adjunct:

Cxy = (_)°€)b( .

Dually, if C is a left adjoint

C4dR : C D

then its action on any morphism X — Y € C equals the joint operation of post-composition
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with the (C 4 R)-adjunction unit ng (Def. 1.33), followed by passing to the (C 4 R)-adjunct:

771E°(_) = Cxy .

In particular, if C is the middle functor in an adjoint triple (Remark 1.34)

nhbo(=) = Cxy = (—)o€}. (15)

Proof. For the first equality, consider the following naturality square (4) for the adjunction
hom-isomorphism (10):

) idex ek
Homp (C(X), C(X)) 9 Hom¢(LC(X), X) (CX dex CX} — {LCX > X}
(cidx), €(n) | | Homy(Lc(idx), 1) ) |
&) c(f) foek
Homp(C(X), C(Y)) <= Home(LC(X),Y) (CX 5 C(Y)}— {LCX—3Y}

Chasing the identity morphism id.y through this diagram yields the claimed equality, as
shown on the right. Here we use that the left adjunct? of the identity morphism is the
adjunction counit, as shown.

The second equality is fomally dual:

— . f
— d
Homgp (CY, CY) 3 Home (Y, RCY) Yy =% vy — (v % Rreyy
p(C().Chdy) | | Home(f,Re(idy)) | |
Hom (C X). C (:' c(f) 771n/°f
p(C(X), C(Y)) <« Home(X,RC(Y)) (cx -5 cyy — (X X5 Rey)

We now turn to a sequence of equivalent reformulations of the condition of adjointness.
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Proposition 1.38. (general adjuncts in terms of unit/counit)

Consider a pair of adjoint functors
L
H
D1LcC
-
R

according to Def. 1.32, with adjunction units n . and adjunction counits €; according to Def.
1.38.

Then

1. The adjunct f of any morphism L(c) J, d is obtained from R and 1, as the composite

f: R(L(c)) R(d) (16)

Conversely, the adjunct f of any morphism c ER R(d) is obtained from L and €4 as

£ B Ry & (17)

2. The adjunction units n, and adjunction counits €; are components of natural

transformations of the form

n:lde = RoL
and

€: LoR=1Idp

3. The adjunction unit and adjunction counit satisfy the triangle identities, saying that
L(n,) €L(c)
idy (o) 1 L(e) — L(R(L(€)) = L(¢) (18

and

MR(a)

idg(ay + R(d) — R(L(R @) "3 R(d)

Proof. For the first statement, consider the naturality square (11) in the form
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|

idL(C) € Homqp(L(c),L(c)) %2 Home(c, R(L(c)))
Homyp (L(id), f) l lHomC(id’R(f )
Homp(L(c),d) =5 Home(c,R(d))

and consider the element id; ., in the top left entry. Its image under going down and then

right in the diagram is f, by Def. 1.32. On the other hand, its image under going right and
then down is R(f) o7, by Def. 1.33. Commutativity of the diagram means that these two

morphisms agree, which is the statement to be shown, for the adjunct of f.
The converse formula follows analogously.

The third statement follows directly from this by applying these formulas for the adjuncts
twice and using that the result must be the original morphism:

idL(C) = ldL(C)

= ¢ 5 R(L(c))
= L) 29 LRL©)) 29 L(o)

For the second statement, we have to show that for every moprhism f: c; — ¢, the following
square commutes:

e | "
RIL(D) 7775 R

To see this, consider the naturality square (11) in the form

|

. (=)
idyc,) € Homgp(L(cz), L(c2)) — Home(cz, R(L(c2)))
Homyp (L(f),id(c,)) l lHome(f,R(idL(Q)))
()

Homyp(L(c1), L(c2)) —> Home(cy, R(L(c1)))

The image of the element id, ., in the top left along the right and down is f o Me, by Def.
1.33, while its image down and then to the right is L(f) = R(L(f)) oM, by the previous

statement. Commutativity of the diagram means that these two morphisms agree, which is
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the statement to be shown.
The argument for the naturality of € is directly analogous. W

Proposition 1.39. (adjoint functors equivalent to adjunction in Cat)

Two functors

D ¢

:ul Th

are an adjoint pair in the sense that there is a natural isomorphism (10) according to Def.
1.32, precisely if they participate in an adjunction in the 2-category Cat, meaning that

1. there exist natural
transformations
///C\\ Pl a‘\
n:lde = RolL Pl B TS :
c // \\ N % / \\
J I R ¥ = L =ik /L
an \ \\ / \ Yy
i B ) / Seg gt
€: LoR=1Idg Sy D
2.which satisfy the triangle AL -
identities //"/ "\\ / \\
laentities / \\ N \ / \'\
: bis R = R id= R
\\ % \ / \ /
idye)  L(O) =9 LRALE) 2\ & ) -~
& A o 4
-T/
and

"R(a)

idg(a) : R(d) — R(L(R @) “U R(@)

Proof. That a hom-isomorphism (10) implies units/counits satisfying the triangle identities
is the statement of the second two items of Prop. 1.38.

Hence it remains to show the converse. But the argument is along the same lines as the
proof of Prop. 1.38: We now define forming of adjuncts by the formula (16). That the
resulting assignment f — f is an isomorphism follows from the computation
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F=cBRL) D R@)

= L(©) 29 LRL(e))) 292 L(R(d))
= L(c) L) LR(L(0)) 28 1) L d
1) L d

where, after expanding out the definition, we used naturality of € and then the triangle
identity.

Finally, that this construction satisfies the naturality condition (11) follows from the
functoriality of the functors involved, and the naturality of the unit/counit:

e,
cz — R(L(c))

g\ LRAW@) (RS
Ne R

6 3 RULE) B Ry

R(h)

Rthop) ¥ 1

R(d;)

The condition (10) on adjoint functors L 4 R in Def. 1.32 implies in particular that for every
object d € D the functor Homqp (L(—), d) is a representable functor with representing object
R(d). The following Prop. 1.40 observes that the existence of such representing objects for
all d is, in fact, already sufficient to imply that there is a right adjoint functor.

This equivalent perspective on adjoint functors makes manifest that adjoint functors are, if
they exist, unique up to natural isomorphism, this is Prop. 1.45 below.

Proposition 1.40. (adjoint functor from objectwise representing objects)

A functor L : C — D has a right adjoint R : D — C, according to Def. 1.32, already if for all
objects d € D there is an object R(d) € C such that there is a natural isomorphism

Homy (L(-),d) = Home(—, R(d)),
hence for each object ¢ € C a bijection

Homqp (L(c), d) g Home(c, R(d))
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such that for each morphism g : ¢, = ¢4, the following diagram commutes

|

Homp(L(cy),d) = Homg(cy, R(d)) (19)
Home (L(9),idg) | |Home(idra@)
Homgp (L(c2), d) (—3 Home(cy, R(d))

(This is as in (11), except that only naturality in the first variable is required.)

In this case there is a unique way to extend R from a function on objects to a function on
morphisms such as to make it a functor R:D — C which is right adjoint to L., and hence the
statement is that with this, naturality in the second variable is already implied.

Proof. Notice that

1. in the language of presheaves (Example 1.26) the assumption is that for each d € D the
presheaf

Homqp(L(—),d) € [D°P,Set]

is represented (7) by the object R(d), and naturally so.

2. In terms of the Yoneda embedding (Prop. 1.30)

y : DS [DOP,Set]
we have
Home(—, R(d)) = y(R(d)) (20)

The condition (11) says equivalently that R has to be such that for all morphisms
h : d; — d, the following diagram in the category of presheaves [C°P, Set] commutes

|

)
Homgp(L(—),d;) — Home(—,R(dy))
Home (=) | lHome<—.1!e<h>>
)
Homyp(L(—),d2) — Home(—, R(dy))

This manifestly has a unique solution

y(R(h)) = Home(—,R(h))
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for every morphism h:d; — d, under y(R(—)) (20). But the Yoneda embedding y is a fully
faithful functor (Prop. 1.30), which means that thereby also R(h) is uniquely fixed. W

We consider one more equivalent characterization of adjunctions:

Definition 1.41. (universal morphism)

Let C,D be two categories (Def. 1.1) and let R : D — C be a functor (Def. 1.15)

Then for ¢ € C an object, a universal morphism from c to R is

1. an object L(c) € D,

2.amorphismn, : ¢ - R(L(c)), to be called the unit,

such that for any d € D, any morphism f: ¢ - R(d) factors through this unit 7, as

¢ (21)
Te vy v
f = R(Pen, R(L(c)) 7 R@
L(c) ? d

for a unique morphism f : L(c¢) — d, to be called the adjunct of f.

Proposition 1.42. (collection of universal morphisms equivalent to adjoint functor)

LetR : D — C be a functor (Def. 1.15). Then the following are equivalent:

1. R has a left adjoint functor L: C — D according to Def. 1.32.

e ;
2. For every object c € C there is a universal morphism ¢ — R(L(c)), according to Def.
1.41.

Proof. In one direction, assume a left adjoint L is given. Define the would-be universal arrow
at ¢ € C to be the unit of the adjunction n, via Def. 1.33. Then the statement that this really is

a universal arrow is implied by Prop. 1.38.

In the other direction, assume that universal arrows 7, are given. The uniqueness clause in
Def. 1.41 immediately implies bijections

Homg(L(c),d) = Home(c, R(d))

(loba) ~ (c5ra@) P rw@)
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Hence to satisfy (10) it remains to show that these are natural in both variables. In fact, by
Prop. 1.40 it is sufficient to show naturality in the variable d. But this is immediate from the
functoriality of R applied in (21): For h: d; — d, any morphism, we have

C
Te v N
R(L(c)) vt R(d,)
B R(h)
R(hof) ™ !
R(d3)

The following equivalent formulation (Prop. 1.44) of universal morphisms is often useful:

Example 1.43. (comma category)
Let C be a category, let ¢ € C be any object, and let F : D — C be a functor.

1. The comma category c / F is the category whose objects are pairs consisting of an

object d €D and morphisms X I> F(d) in C, and whose morphisms
(dy, X1, f,) = (d3, X3, f,) are the morphisms X, =N X, in C that make a commuting
triangle (Def. 1.4):

X — X,
_ Fixy)  —2 Ry
f,oF(g) = f,
£y /f,
C

There is a canonical functor

F/c — D.

2. The comma category F / c is the category whose objects are pairs consisting of an
object d €D and a morphism F(d) 1) X in G, and whose morphisms
(dy,X1,f,) = (d2, X, f,) are the morphisms X, LN X, in C that make a commuting
triangle (Def. 1.4):
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C
fiy 2
fooF(9) = f; F(X F(X
(X1) - (X2)
%1 K
Again, there is a canonical functor
c/F — D] (22)

With this definition, the following is evident:

Proposition 1.44. (universal morphisms are initial objects in the comma category)

R
Let C — D be a functor and d € D an object. Then the following are equivalent:

1.d @) R(c) is a universal morphism into R(c) (Def. 1.41);

2.(d,n,) is the initial object (Def. 1.5) in the comma category d / R (Example 1.43).

After these equivalent characterizations of adjoint functors, we now consider some of their
main properties:

Proposition 1.45. (adjoint functors are unique up to natural isomorphism)

The left adjoint or right adjoint to a functor (Def. 1.32), if it exists, is unique up to natural
isomorphism (Def. 1.23).

Proof. Suppose the functor L:D — C is given, and we are asking for uniqueness of its right
adjoint, if it exists. The other case is directly analogous.

Suppose that R{,R, : C — D are two functors which both are right adjoint to L. Then for
each d € D the corresponding two hom-isomorphisms (10) combine to say that there is a
natural isomorphism/

®q : Home(—,R1(d)) = Home(—, Rz (d))

As in the proof of Prop. 1.40, the Yoneda lemma implies that

(pd = y(d)d)
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for some isomorphism

Pg : R1(d) > Ra(d)

But then the uniqueness statement of Prop. 1.40 implies that the collection of these
isomorphisms for each object constitues a natural isomorphism between the functors (Def.
1.23). B

Proposition 1.46. (characterization of epi/mono/iso (co-)unit of adjunction)

Let

L4AR:D (64

R

be a pair of adjoint functors (Def. 1.32).
Recall the definition of

1. adjunction unit/counit, from Def. 1.33)
2. faithful/fully faithful functor from Def. 1.19
3. mono/epi/isomorphism from Def. 1.9 and Def. 1.18.

The following holds:

Mc
R is faithful precisely if all components of the counit are epimorphisms LR(c) e—pi> c;

n
L is faithful precisely if all components of the unit are monomorphisms d rF‘;(; RL(d)

R is full and faithful (exhibits a reflective subcategory, Def. 1.60) precisely if all

. . ) Ne
components of the counit are isomorphisms LR(c) arad’

L is full and faithful (exhibits a coreflective subcategory, def. 1.60) precisely if all

. . , n
component of the unit are isomorphisms d Ti) RL(4).

Proof. This follows directly by Lemma 1.37, using the definition of epi/monomorphism (Def.
1.18) and the characterization of isomorphism from Example 1.31. W

To complete this pattern, we will see below in Prop. 1.58 that following are equivalent:

¢ the unit and counit are both natural isomorphism, hence L and R are both fully faithful;

e Lisan equivalence (Def. 1.57);
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e Risan equivalence (Def. 1.57)

e L 4 Risan adjoint equivalence (Def. 1.56).

Proposition 1.47. (right/left adjoint functors preserve monomorphism/epimorphisms
and terminal/initial objects)

Every right adjoint functor (Def. 1.32) preserves

1. terminal objects (Def. 1.5),
2. monomorphisms (Def. 1.18)

Every left adjoint functor (Def. 1.32) preserves

1. initial objects (Def. 1.5),
2. epimorphisms (Def. 1.18).

Proof. This is immediate from the adjunction hom-isomorphism (10), but we spell it out:

We consider the first case, the second is formally dual (Example 1.13).SoletR : C - Dbea
right adjoint functor with left adjoint L.

Let * € C be a terminal object (Def. 1.5). We need to show that for every object d € D the
hom-set Homp(d, R(*)) = * is a singleton. But by the hom-isomorphism (10) we have a
bijection

Hom(d, R(*)) = Home(L(d), *)

*
)

1R

where in the last step we used that * is a terminal object, by assumption.

f
Next let c; © ¢, be a monomorphism. We need to show that for d € D any object, the hom-
functor out of d yields a monomorphism

Homyp (d, R(f)) : Homyp(d, R(cy)) © Homyp(d, R(cy)) .

Now consider the following naturality square (11) of the adjunction hom-isomorphism (10):

Homqp(d,R(c;)) = Home(L(d),cq)
lHomc (L(d), )

mono

Homp(d,R(c;)) =~ Homg(L(d),cy)

Homp (4,R() |

Here the right vertical function is an injective function, by assumption on f and the
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definition of monomorphism. Since the two horizontal functions are bijections, this implies
that also Hom,(d, R(f)) is an injection. W

But the main preservation property of adjoint functors is that adjoints preserve (co-)limits.
This we discuss as Prop. 3.8 below, after introducing limits and colimits in Def. 3.1 below.

Prop. 1.39 says that adjoint functors are equivalenty “adjunctions in Cat”, as defined there.
This is a special case of a general more abstract concept of adjunction, that is useful:

Definition 1.48. (strict 2-category)
A strict category C is

1.aclass Objc,, called the class of objects;

2. for each pair X,Y € Obj, of objects, a small category Home(X,Y) € Cat (Def. 1.6),

called the hom-category from X to Y.
We denote the objects of this hom-category by arrows like this:

f .
X—Y € Ob]Homc(X’Y)

and call them the 1-morphisms of C,
and we denote the morphisms in the hom-category by double arrows, like this:

S
bl(Zl\h
e

and call these the 2-morphisms of C;

3. for each object X € Objc, a 1-morphism

idy
X —X € Home(X,X)

called the identity morphism on X;

4. for each triple X, X,, X3 € Obj of objects, a functor (Def. 1.15)

X1,X5,X3

Homq(X{,X;) X Home(X,,X3) —— Home(Xq,X3)
Xl I))(2 , XZ I))(3 s Xlg—oj;'Xg

from the product category (Example 1.14) of hom-categories, called composition;
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such that:

1. for all pairs of objects X, Y € Obj, unitality holds:

the functors of composition with identity morphisms are identity functors
(—)eidy = idyom.x,v) idy e (=) = idHom.x,v)

2. for all quadruples of objects X1, X5, X3, X4 € Obj, composition satifies associativity,

in that the following two composite functors are equal:

Home (X1, X,) X Home (X5, X3) X Home (X3, Xy) w Home (X, X3) X F

(=)o (=)o (=) l l (-l

Home(X1, X5) X Home (X5, X,) S Home (X1,

The archetypical example of a strict 2-category is the category of categories:

Example 1.49. (2-category of categories)
There is a strict 2-category (Def. 1.48) Cat whose

e objects are small categories (Def. 1.6);

e 1-morphisms are functors (Def. 1.15);

e 2-morphisms are natural transformations (Def. 1.23)
with the evident composition operations.
With a concept of 2-category in hand, we may phrase Prop. 1.39 more abstractly:
Definition 1.50. (adjunction in a 2-category)
Let C be a strict 2-category (Def. 1.48). Then an adjunction in C is

1. a pair of objects C,D € Objc,;

2. 1-morphisms

D (64

L
H
—

R

called the left adjoint L and right adjoint R;

3. 2-morphisms

. n . . .
ide = R oL, called the adjunction unit
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€
Lo R = idyp, called the adjunction counit

such that the following triangle identities hold:

- &
//?”C:\ Pl
/ N \ / \\
L R 5 = L =id=> L
\ / /
\\'F‘ )y / % 7
S oD
B -8
Ay 7D\”\ // ™
/ |\\ N \ / \\
R \L R = R Gd= R
\ N / /
N & ) / \\ A
= g

We denote this situation by

Hence via Example 1.49, Prop. 1.39 says that an adjoint pair of functors is equivalente an
adjunction in the general sense of Def. 1.50, realized in the very large strict 2-category Cat of
categories.

This more abstract perspecive on adjunctions allow us now to understand “duality of
dualities” as adjunction in a 2-category of adjunctions:

Example 1.51. (strict 2-category of categories with adjoint functors between them)

Let Catpq; be the strict 2-category which is defined just as Cat (Def. 1.49) but with the 1-
morphisms being functors that are required to be left adjoints (Def. 1.32).

Since adjoints are unique up to natural isomorphism (Prop. 1.45), this may be thought of
as a 2-category whose 1-morphisms are adjoint pairs of functors.

Example 1.52. (adjunctions of adjoint pairs are adjoint triples)

An adjunction (Def. 1.50) in the 2-category Cataq; of categories with adjoint functors
between them (Example 1.51) is equivalently an adjoint triple of functors (Remark 1.34):

The adjunction says that two left adjoint functors L; and L,, which, hence each participate
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in an adjoint pair
Li 4Ry L, 4R,
form themselves an adjoint pair
LiHL,.

By essentiall uniqueness of adjoints (Prop. 1.45) this implies a natural isomorphism
R, = L, and hence an adjoint triple:

Example 1.52 suggest to consider a slight variant of the concept of strict 2-categories which
allows to make the duality between left adjoints and right adjoints explicit:

Definition 1.53. (double category)
A double category C is

1.a pair of categories Cp, C, (Def. 1.1) which share the same class of objects:
Objc,1 = Objcz' to be called the class Obj, of objects of C

where the morphisms of Cj, are to be called the horizontal morphisms of C,

while the morphisms of C,, are to be called the vertical morphisms of C,

2. for each quadruple of objects a,b,c,d, e € Obj, and pairs of pairs of horizontal/

vertical morphisms of the form

fEeCy
a —> b
hee,,l lkeC’v
C e
gECp

a set 2Hom(f, g, h, k), to be called the set of 2-morphisms of C between the given 1-
morphisms, whose elements we denote by

49 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/adjoint+pair
https://ncatlab.org/nlab/show/adjoint+pair
https://ncatlab.org/nlab/show/adjoint+pair
https://ncatlab.org/nlab/show/adjoint+pair
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/strict+2-categories
https://ncatlab.org/nlab/show/strict+2-categories
https://ncatlab.org/nlab/show/left+adjoints
https://ncatlab.org/nlab/show/left+adjoints
https://ncatlab.org/nlab/show/right+adjoints
https://ncatlab.org/nlab/show/right+adjoints
https://ncatlab.org/nlab/show/double+category
https://ncatlab.org/nlab/show/double+category
https://ncatlab.org/nlab/show/double+category
https://ncatlab.org/nlab/show/double+category
https://ncatlab.org/nlab/show/pair
https://ncatlab.org/nlab/show/pair
https://ncatlab.org/nlab/show/categories
https://ncatlab.org/nlab/show/categories
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/horizontal+morphisms
https://ncatlab.org/nlab/show/horizontal+morphisms
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/morphisms
https://ncatlab.org/nlab/show/vertical+morphisms
https://ncatlab.org/nlab/show/vertical+morphisms
https://ncatlab.org/nlab/show/quadruple
https://ncatlab.org/nlab/show/quadruple
https://ncatlab.org/nlab/show/objects
https://ncatlab.org/nlab/show/objects
https://ncatlab.org/nlab/show/pairs
https://ncatlab.org/nlab/show/pairs
https://ncatlab.org/nlab/show/pairs
https://ncatlab.org/nlab/show/pairs
https://ncatlab.org/nlab/show/set
https://ncatlab.org/nlab/show/set
https://ncatlab.org/nlab/show/2-morphisms
https://ncatlab.org/nlab/show/2-morphisms
https://ncatlab.org/nlab/show/1-morphisms
https://ncatlab.org/nlab/show/1-morphisms
https://ncatlab.org/nlab/show/1-morphisms
https://ncatlab.org/nlab/show/1-morphisms

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

50 of 249

€ec
aub

heevl v lke(?v

c — d
geChp

3. a horizontal and a vertical composition operation of 2-morphisms which is unitality
and associative in both directions in the evident way, which respects composition in
C, and C,, and such that horizontal and vertical composition commute over each

other in the evident way.

Example 1.54. (double category of squares of a strict 2-category)

Let C be a strict 2-category (Def. 1.48). Then its double category of squares Sq(C) is the
double category (Def. 1.53) whose

e objects are those of C;

e horizontal morphisms and vertical morphisms are both the 1-morphisms of C;

e 2-morphisms

€ec
aub

heevl ¢ 4 lke(?v

C —_—
gEeCp

are the 2-morphisms of C between the evident composites of 1-morphisms:

¢
kof=>goh
and composition is given by the evident compositions in C.

Remark 1.55. (strict and weak 2-functors)

Given two strict 2-categories (Def. 1.48) or double categories (Def. 1.53), C, D, there is an
evident notion of 2-functor or double functor

F
C—9D

between them, namely functions on objects, 1-morphisms and 2-morphisms which
respect all the composition operations and identity morphisms.

These are also called strict 2-functors.

This is in contrast to a more flexible concept of weak Z2-functors, often called
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pseudofunctors, which respect composition of 1-morphisms only up to invertible 2-
morphisms (which themselves are required to satisfy some coherence condition):

Y
F) o P O
—_—
F(gef)

We will see an important example of a weak double functor in the construction of derived
functors of Quillen functors, below in Prop. 6.50.

Equivalences

We have seen functors (Def. 1.15) as the homomorphisms between categories (Def. 1.1). But
functors themselves are identified only up to natural isomorphism (Def. 1.23), reflective the
fact that they are the 1-morphisms in a 2-category of categories (Example 1.49). This means
that in identifying two categories, we should not just ask for isomorphisms between them,
hence for a functor between them that has a strict inverse morphism, but just for an inverse
up to natural isomorphism.

This is called an equivalence of categories (Def. 1.57 below). A particularly well-behaved
equivalence of categories is an equivalence exhibited by an adjoint pair of functors, called an
adjoint equivalence of categories (Def. 1.56 below). In fact every equivalence of categories
may be improved to an adjoint equivalence (Prop. 1.58).

Definition 1.56. (adjoint equivalence of categories)

Let C, D be two categories (Def. 1.1). Then an adjoint equivalence of categories between
them is a pair adjoint functors (Def. 1.32)

such that their unit 7 and counit € (Def. 1.33) are natural isomorphisms (as opposed to
just being natural transformations)

n:idp > RolL and €: LoR>ide.

There is also the following, seemingly weaker, notion:
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Definition 1.57. (equivalence of categories)

Let C, D be two categories (Def. 1.1). Then an equivalence of categories

—
¢c = D
R

is a pair of functors back and forth, as shown (Def. 1.15), together with natural
isomorphisms (Def. 1.23) between their composition and the identity functors:

idp = RolL and LoRSide.

If a functor participates in an equivalence of categories, that functor alone is usually already
called an equivalence of categories. If there is any equivalence of categories between two
categories, these categories are called equivalent.

Proposition 1.58. (every equivalence of categories comes from an adjoint equivalence of

categories)

Let C and D be two categories (Def. 1.1). Then the they are equivalent (Def. 1.57) precisely if
there exists an adjoint equivalence of categories between them (Def. 1.56).

Moreover, let R : C — D be a functor (Def. 1.15) which participates in an equivalence of
categories (Def. 1.57). Then for every functor L : D — C equipped with a natural
isomorphism

n:idp S RolL

there exists a natural isomorphism

€:LoRSide

which completes this to an adjoint equivalence of cateqories (Def. 1.56).

Inside every adjunction sits its maximal adjoint equivalence:

Proposition 1.59. (fixed point equivalence of an adjunction)

Let

be a pair of adjoint functors (Def. 1.32). Say that
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1. an object ¢ € C is a fixed point of the adjunction if its adjunction unit (Def. 1.33) is an
isomorphism (Def. 1.9)

Me
¢ — RL(c)

and write
Cfix S e

for the full subcategory on these fixed objects (Example 1.20)

2.an object d € D is a fixed point of the adjunction if its adjunction counit (Def. 1.33) is
an isomorphism (Def. 1.9)

€d
LR(d) =
and write
D¢y @D
for the full subcategory on these fixed objects (Example 1.20)

Then the adjunction (co-)restrics to an adjoint equivalence (Def. 1.56) on these full
subcategories of fixed points

Proof. It is sufficient to see that the functors (co-)restrict as claimed, for then the restricted
adjunction unit/counit are isomorphisms by definition, and hence exhibit an adjoint
equivalence.

Hence we need to show that

1. for ¢ € Cgx © C we have that Mra) is an isomorphism;

2.for d € Dgy & D we have that €, is an isomorphism.

For the first case we claim that R(n,) provides an inverse: by the triangle identity (18) itisa

right inverse, but by assumption it is itself an invertible morphism, which implies that Mrea)

is an isomorphism.

The second claim is formally dual. W
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Modalities

Generally, a full subcategory-inclusion (Def. 1.19) may be thought of as a consistent
proposition about objects in a category: The objects in the full subcategory are those that
have the given property.

This basic situation becomes particularly interesting when the inclusion functor has a left
adjoint or a right adjoint (Def. 1.32), in which case one speaks of a reflective subcategory, or
a coreflective subcategory, respectively (Def. 1.60 below). The adjunction now implies that
each object is reflected or coreflected into the subcategory, and equipped with a comparison
morphism to or from its (co-)reflection (the adjunction (co-)unit, Def. 1.33). This
comparison morphism turns out to always be an idempotent (co-)projection, in a sense
made precise by Prop. 1.64 below.

This means that, while any object may not fully enjoy the property that defines the
subcategory, one may ask for the “aspect” of it that does, which is what is (co-)projected out.
Regarding objects only via these aspects of them hence means to regard them only locally
(where they exhibit that aspect) or only in the mode of focus on this aspect. Therefore one
also calls the (co-)reflection operation into the given subcategory a (co-)localization or
(co-)modal operator, or modality, for short (Def. 1.62 below).

One finds that (co-)modalities are a fully equivalent perspective on the (co-)reflective
subcategories of their fully (co-)modal objects (Def. 1.65 below), this is the statement of
Prop. 1.63 below.

Another alternative perspective on this situation is given by the concept of localization of
categories (Def. 1.76 below), which is about universally forcing a given collection of
morphisms (“weak equivalences”, Def. 1.75 below) to become invertible. A reflective
localization is equivalently a reflective subcategory-inclusion (Prop. 1.77 below), and this
exhibits the modal objects (Def. 1.65 below) as equivalently forming the full subcategory of
local objects (Def. 1.78 below).

Conversely, every reflection onto full subcategories of S-local objects (Def. 1.79 below)
satisfies the universal property of a localization at S with respect to left adjoint functors
(Prop. 1.82 below).

In conclusion, we have the following three equivalent perspectives on modalities.

reflective subcategory modal operator reflective localization

object in reflective
full subcategory

modal object local object
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Definition 1.60. (reflective subcategory and coreflective subcategory)

Let D be a category (Def. 1.1) and
L
C——D

a full subcategory-inclusion (hence a fully faithful functor Def. 1.19). This is called:

1. a reflective subcategory inclusion if the inclusion functor ¢ has a left adjoint L def.
1.32)

then called the reflector;

2. a coreflective subcategory-inclusion if the inclusion functor ¢ has a right adjoint R
(def. 1.32)

then called the coreflector.

Example 1.61. (reflective subcategory inclusion of sets into small groupoids)

There is a reflective subcategory-inclusion (Def. 1.60)

To
b
Set 1 Grpd
—

of the category of sets (Example 1.2) into the category Grpd (Example 1.16) of small
groupoids (Example 1.10) where

e the right adjoint full subcategory inclusion (Def. 1.19) sends a set S to the groupoid
with set of objects being S, and the only morphisms being the identity morphisms on
these objects (also called the discrete groupoid on S, but this terminology is
ambiguous)

e the left adjoint reflector sends a small groupoid G to its set of connected
components, namely to the set of equivalence classes under the equivalence relation
on the set of objects, which regards two objects as equivalent, if there is any
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morphism between them.

We now re-consider the concept of reflective subcategories from the point of view of
modalities:

Definition 1.62. (modality)
Let D be a category (Def. 1.1). Then

1. a modal operator on D is

1. an endofunctor
O :Dp-D

whose full essential image we denote by

Im(Q ) ——D,

2. a natural transformation (Def. 1.23)

xX Ox (23)

for all objects X € D, to be called the unit morphism;
such that:

o for every object Y € Im( O ) © D in the essential image of O, every morphism
f into Y factors uniquely through the unit (23),

X
Tx v N

OX? Y elim(QO)

which equivalently means that if Y € Im( O ) the operation of precomposition
with the unit 7, yields a bijection of hom-sets

(—)emn, : Homp( OXY) — Homqg (X,Y), (24)

2.a comodal operator on D is

1. an endofunctor
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o:D->D

whose full essential image we denote by

Im(0) ——D

2. a natural transformation (Def. 1.23)

ox = x (25)

for all objects X € D, to be called the counit morphism;
such that:

o for every object Y € Im(O) < D in the essential image of O, every morphism f
out of Y factors uniquely through the counit (23),

X
€ N\
oX <« YeIm(O)

3!

which equivalently means that if Y € Im( O ) the operation of postcomposition
with the counit ey yields a bijection of hom-sets

€x o (=) : Homyp (Y, 0X) —— Homp (Y, X), (26)

Proposition 1.63. (modal operators equivalent to reflective subcategories)

If

is a reflective subcategory-inclusion (Def. 1.60). Then the composite

QO =t1oL:D—D

equipped with the adjunction unit natural transformation (Def. 1.33)

xXX Ox

is a modal operator on D (Def. 1.62).

Dually, if
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is a coreflective subcategory-inclusion (Def. 1.60). Then the composite

O :=t(oR:D—9D

equipped with the adjunction counit natural transformation (Def. 1.33)

€x

oX — X

is a comodal operator on D (Def. 1.62).

Conversely:

n
If an endofunctor O : D — D with natural transformation X = O X is a modal operator
on a category D (Def. 1.62), then the inclusion of its full essential image is a reflective
subcategory inclusion (Def. 1.60) with reflector given by the corestriction of O to its image:

O
Im( Q) :D.

L

€
Dually, if an endofunctor O : D — D with natural transformation OX - X is a comodal
operator (Def. 1.62), then the inclusion of its full essential image is a coreflective
subcategory inclusion (Def. 1.60) with coreflector given by the corestriction of O to its image

L
Im(o) _ D.
]

Proof. The first two statements are immedialy a special case of the characterization of
adjunctions via universal morphisms in Prop. 1.42: Using that R = ¢ is here assumed to be
fully faithful, the uniqueness of f in the universal morphism-factorization condition (21)

c
e v N
R(L(c)) = R(d)
L(c) ﬁ' d

implies that also R(f) = i(f) is the unique morphism making that triangle commute.
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Similarly for the converse: The assumption on a modal operator O is just so as to make its
unit n be a universal morphism (Def. 1.41) into the inclusion functor ¢ of its essential
image. W

Proposition 1.64. (modal operator is idempotent)

Let D be a category (Def. 1.1).

For O a modal operator on D, with unitn (Def. 1.63), it is idempotent, in that it is naturally
isomorphic (Def. 1.23) to the composition with itself:

O =00.

In fact, the image under O of its unit is such an isomorphism
nX ~
O(x%0x): Ox> 00X
as is its unit on its image

oy ¢ OX=> 00X,

Formally dually, for 0 a comodal operator on D, with counit € (Def. 1.63), it is idempotent, in
that it is naturally isomorphic (Def. 1.23) to the composition with itsef:

OoO0 = 0O.
In fact, the image under O of its counit is such an isomorphism
|:|(|:|X 24 X) : o(oX) > oX
as is its counit on its image
€ax ¢ O(OX)> oX.

Proof. We discuss the first case, the second is formally dual (Example 1.13).

By Prop. 1.63, the modal operator is equivalent to the composite to L obtained from the
reflective subcategory-inclusion (Def. 1.60) of its essential image of modal objects:

L

Im(O) L D.

and its unit is the corresponding adjunction unit (Def. 1.33)

5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/modal+operator
https://ncatlab.org/nlab/show/modal+operator
https://ncatlab.org/nlab/show/universal+morphism
https://ncatlab.org/nlab/show/universal+morphism
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/modal+operator
https://ncatlab.org/nlab/show/modal+operator
https://ncatlab.org/nlab/show/idempotent
https://ncatlab.org/nlab/show/idempotent
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/category
https://ncatlab.org/nlab/show/modal+operator
https://ncatlab.org/nlab/show/modal+operator
https://ncatlab.org/nlab/show/idempotent+monad
https://ncatlab.org/nlab/show/idempotent+monad
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/formal+dual
https://ncatlab.org/nlab/show/formal+dual
https://ncatlab.org/nlab/show/comodal+operator
https://ncatlab.org/nlab/show/comodal+operator
https://ncatlab.org/nlab/show/idempotent+monad
https://ncatlab.org/nlab/show/idempotent+monad
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/formal+dual
https://ncatlab.org/nlab/show/formal+dual
https://ncatlab.org/nlab/show/reflective+subcategory
https://ncatlab.org/nlab/show/reflective+subcategory
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/modal+objects
https://ncatlab.org/nlab/show/modal+objects
https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+unit

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

n
X 3 LX) .
Hence it is sufficient to show that the morphisms and L(n,,) and n,,, are isomorphisms.

Now, the triangle identities (18) for the adjunction L - ¢, which hold by Prop. 1.38, say that
their composition with the adjunction counit is the identity morphism

€Lty °L(y) = idyxy and  i(ey)on,y,) = idyy) -

But by Prop. 1.46, the counit € is a natural isomorphism, since ¢ is fully faithful. Hence we
may cancel it on both sides of the triangle identities and find that L(7,) and M,y are indeed

isomorphisms. i

Definition 1.65. (modal objects)

Let D be a category (Def. 1.1).

For O a modal operator on D (Def. 1.62), we say:

1.a O-modal object is an object X € D such that the following conditions hold (which
are all equivalent, by Prop. 1.64):

o itisin the (O-essential image: X € Im( O ) © D,

o it is isomorphic to its own (O-image: X =~ O X,

o specifically its O)-unit is an isomorphism Ny :X> O X.

2.a O-submodal object is an object X € D, such that

o its O-unit is a monomorphism (Def. 1.18):n, : X = O X.

Dually (Example 1.13):

For 0 a comodal operator on D (Def. 1.62), we say:

1. a O-comodal object is an object X € D such that the following conditions hold (which
are all equivalent, by Prop. 1.64):

o itis in the O-essential image: X € Im(0O) < D,

o itis isomorphic to its own O-image: O0X =~ X,

o specifically its O-counit is an isomorphism ey : OX — X

2. a O-supcomodal object is an object X € D, such that

. I . . epi
o its O-counit is an epimorphism (Def. 1.18): ey : OX — X.
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Definition 1.66. (adjoint modality)

Let

L
A}

L4CHR:clD
R
(_)

be an adjoint triple (Remark 1.34) such that L and R are fully faithful functors (necessarily
both, by Prop. 1.67). By Prop. 1.63, there are induced modal operators

O = LoC 1O := RoC
which themselves form am adjoint pair

o4 O,

hence called an adjoint modality. The adjunction unit and adjunction counit as in (13) may
now be read as exhibiting each object X in the domain of C as “in between the opposite
extremes of its (O-modal aspect and its O-modal aspect”

o O
ox —* x—% ,0x.

A formally dual situation (Example 1.13) arises when C is fully faithful.

L
—

L4CHR:c5D

R
—

with
(O = CoL) 4 (O = CoR)

and canonical natural transformation between opposite extreme aspects given by

O @)
oX —* x—% , Ox (27)

Let L 4 C 4 R be an adjoint triple (Remark 1.34). Then the following are equivalent:
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1. L is a fully faithful functor;
2. R is a fully faithful functor,
3.(go == LoC)4 (O := RoC)isan adjoint modality (Def. 1.67).

For proof see this prop..

In order to analyze (in Prop. 1.69 below) the comparison morphism of opposite extreme
aspects (27) induced by an adjoint modality (Def. 1.66), we need the following technical

Lemma:

Lemma 1.68. Let

be an adjoint triple with induced adjoint modality (Def. 1.66) to be denoted

(O = CeoL) 4 (O = CoR)

Denoting the adjunction units/counits (Def. 1.33) as

adjunction unit counit
(L40C) nO €O
(CH4R) n- eX

we have that the following composites of unit/counit components are equal:

@)
LCRX ERY RX (28)
O
(R ep) = (Rn?)e(ef)  uef] |7
LX — RCLX
Mrx

(Johnstone 11, lemma 2.1)

Proof. We claim that the following diagram commutes (Def. 1.4):

62 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+triple#FullyFaithful
https://ncatlab.org/nlab/show/adjoint+triple#FullyFaithful
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjoint+triple
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjoint+modality
https://ncatlab.org/nlab/show/adjunction+units
https://ncatlab.org/nlab/show/adjunction+units
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/adjunction
https://ncatlab.org/nlab/show/adjunction
https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/composition
https://ncatlab.org/nlab/show/adjoint+quadruple#Johnstone11
https://ncatlab.org/nlab/show/adjoint+quadruple#Johnstone11
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

RX
eRx 7 N
LCRX RCLX
Leq \,LCRU)C() EICQDCLX 7 \WLDX
LX LCRCLX LX
iso iso
g h /LEELX Lenpx ) ]58(
LCLX — LCLX
idrcLx
This commutes, because:
1. the left square is the image under L of naturality (4) for e” on r]?;

2. the top square is naturality (4) for €O on Rn?;

4. the bottom commuting triangle is the image under L of the triangle identity (18) for
(CHAR)onlLX.

Moreover, notice that

1. the total bottom composite is the identity morphism id;y, due to the triangle identity
(18).for (C 4 R);

2. also the other two morphisms in the bottom triangle are isomorphisms, as shown, due
to the idempoency of the (C — R)-adjunction (Prop. 1.64.)

Therefore the total composite from LCRX — R / CLX along the bottom part of the diagram
equals the left hand side of (28), while the composite along the top part of the diagram
clearly equals the right hand side of (28).

Proposition 1.69. (comparison transformation between opposite extremes of adjoint
modality)

Consider an adjoint triple of the form

with induced adjoint modality (Def. 1.66) to be denoted
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(O = CoL) 4 (O = CoR)

Denoting the adjunction units/counits (Def. 1.33) as

adjunction unit counit
(L4C) nO €O
(CHE) n- eX

https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

Then for all X € C the following two natural transformations, constructed from the
adjunction units/counits (Def. 1.33) and their inverse morphisms (using idempotency, Prop.

1.64), are equal:

O

Ry %

comp, = (LeD)o(nQ) = (B o (mP)  (R) 7| compy
LCRX  —;

Ley

Moreover, the image of these morphisms under C equals the following composite:

€x 71)9
comp, : OX —— X —— Ox,

hence
comp, = C(compy) .

Proof. The first statement follows directly from Lemma 1.68.

For the second statement, notice that the (C 4 R)-adjunct (Prop. 1.38) of

€x ng
comp. : CRX — X —— CLX

is

nl] r [m] R O
comp, = I'X —-% RCRX —— RX —*- RCLX,
1sO 1SO

where under the braces we uses the triangle identity (Prop. 1.39).

RC(29)

|

L.

(30)

(31)

(32)

(As a side remark, for later usage, we observe that the morphisms on the left in (32) are
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isomorphisms, as shown, by idempotency of the adjunctions.)

From this we obtain the following commuting diagram:

O o\~ 1
R C(n
CRX ——*, CRCLX % CLX
comp,, N fcLx l }ide
CLX

Here:

1. on the left we identified comp, = comp, by applying the formula (Prop. 1.38) for
(C 4 R)-adjuncts to comp, = RnXO (32);

2. on the right we used the triangle identity (Prop. 1.38) for (C 4 R).

This proves the second statement. |l

Definition 1.70. (preorder on modalities)

Let O, and O, be two modal operators on a category C. By Prop. 1.63 these are

equivalently characterized by their reflective full subcategories Co ,Co2 < € of modal

objects.

There is an evident preorder on full subcategories of C, given by full inclusions of full
subcategories into each other. We write Co < Cp, if the full subcategory on the left is

contained, as a full subcategory of C, in that on the right. Via prop. 1.63 there is the
induced preorder on modal operators, and we write

Ol < Oz iff 601 (i Coz'

There is an analogous preorder on comodal operators (Def. 1.62).

If we have two adjoint modalities (Def. 1.66) of the same type (both modal left adjoint or
both comodal left adjoint) such that both the modalities and the comodalities are
compatibly ordered in this way, we denote this situation as follows:

O, 4 o, o, 4 O,
v v or v v
O, 4 oy o, 4 O

etc.
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Example 1.71. (bottom and top adjoint modality)

Let C be a category with both an initial object @ and a terminal object * (Def. 1.5). Then, by
Example 3.7 there is an adjoint triple between C and the terminal category * (Example
1.7) of the form

COl’lStQ)
—

cC — *.

constx
—

The induced adjoint modality (Def. 1.66) is

consty 4 consts : C—C.

By slight abuse of notation, we will also write this as
o4 * : C-C. (33)

On the other extreme, for C any category whatsoever, the identity functor on it is adjoint
functor to itself, and constitutes an adjoint modality (Def. 1.66)

Here

1. (33) is the bottom (or ground)
2.(34) is the top

in the preorder on adjoint modalities according to Def. 1.70, in that for every adjoint
modality of the form (O - O we have the following:

id 4 id
Vv Y
o 4 O
Vv Vv
o -4 *

Definition 1.72. (Aufhebung)

On some category C, consider an inclusion of adjoint modalities, according to Def. 1.70:
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DZ = OZ

\% \%

o, 4 Oy
We say:

1. This provides right Aufhebung of the opposition exhibited by 0; 4 O, if there is
also the diagonal inclusion

o, < O, equivalently  Cp, © Co,

We indicate this situation by

o, 4 O,
vV / Vv
o, 4 O

2. This provides left Aufhebung of the opposition exhibited by o; 4 O, if there is also

the diagonal inclusion

O, < o, equivalently Co, <€ Cq,

We indicate this situation by

D2_|Oz
vV \ V

o, 4 Oy
Remark 1.73. For a progression of adjoint modalities of the form

O, 4 o,

O, 4 oq

the analog of Aufhebung (Def. 1.72) is automatic, since, by Prop. 1.63, in this situation the
full subcategories modal objects at each stage coincide already.

For emphasis we may denote this situation by
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Oz = DZ
v | V.
O, 4 o4

1.72) of every other adjoint modality.

But already Aufhebung of the bottom adjoint modality is a non-trivial and interesting
condition. We consider this below in Prop. 5.7.

We now re-consider the concept of reflective subcategories from the point of view of
localization of categories:

Definition 1.75. (category with weak equivalences)

A category with weak equivalences is

1. a category C (Def. 1.1)

2.a subcategory W c C (i.e. sub-class of objects and morphisms that inherits the
structure of a category)

such that the morphisms in W

1. include all the isomorphisms of C,

2. satisfy two-out-of-three:
If for g, f any two composable morphisms in C, two out of the set {g, f, go f} are in
W, then so is the third.

Definition 1.76. (localization of a category)

Let W c C be a category with weak equivalences (Def. 1.75). Then the localization of C at
W is, if it exsists

1. a category C[W 7],
2.afunctory : € — C[W '] (Def. 1.15)
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such that

1. y sends all morphisms in W c C to isomorphisms (Def. 1.9),

2.y is universal with this property: If F : C — D is any functor with this property, then
it factors through y, up to natural isomorphism (Def. 1.23):

F
C — D
F = DFoy SN PUL /e
cw 1

and any two such factorizations DF and D'F are related by a unique natural
isomorphism k compatible with p and p":

e 5 D (35)
yy Pl 7pp \id C 5 D
ew N D = SN Pl 2
ia o~ cw ™
cw™4

Such a localization is called a reflective localization if the localization functor has a fully
faithful right adjoint, exhibiting it as the reflection functor of a reflective subcategory-
inclusion (Def. 1.60)

_1;
cw 1 1 e.

Proposition 1.77. (reflective subcategories are localizations)

Every reflective subcategory-inclusion (Def. 1.60)

is the reflective localization (Def. 1.76) at the class W = L ~*(Isos) of morphisms that are
sent to isomorphisms by the reflector L.

Proof. Let F : C — D be a functor which inverts morphisms that are inverted by L.

First we need to show that it factors through L, up to natural isomorphism. But consider the
following whiskering of the adjunction unit 7 (Def. 1.33) with F:
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F id F
C — D C — C — D
Ly b 7Zpp = LN U2

By idempotency (Prop. 1.64), the components of the adjunction unit 7 are inverted by L, and
hence by assumption they are also inverted by F, so that on the right the natural
transformation F(n) is indeed a natural isomorphism.

It remains to show that this factorization is unique up to unique natural isomorphism. So
consider any other factorization D'F via a natural isomorphism p. Pasting this now with the
adjunction counit

F

C — D
p

AR VL N
CL E) CL

exhibits a natural isomorphism € p between DF ~ D'F. Moreover, this is compatible with
F(n) according to (35), due to the triangle identity (Prop. 1.39):

id F F
C — C — D C N D
I AR A VI L = v P
CL E) CL CL

Finally, since L is essentially surjective functor, by idempotency (Prop. 1.39), it is clear that
this is the unique such natural isomorphism.

Definition 1.78. (local object)

Let C be a category (Def. 1.1) and let S € Mor, be a set of morphisms. Then an object
X € C is called an S-local object if for all A > B €S the hom-functor (Def. 1.17) from s

into X yields a bijection

Home(s, X) : Home(B, X) — Home(4, X),

hence if every morphism A ERN X extends uniquely along w to B:
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We write
Cs N (36)

for the full subcategory (Example 1.20) of S-local objects.

Definition 1.79. (reflection onto full subcategory of local objects)

Let C be a category and set S € Mor¢ be a sub-class of its morphisms. Then the reflection
onto local S-objects (often just called “localization at the collection S§” is, if it exists, a left
adjoint (Def. 1.32) L to the full subcategory-inclusion of the S-local objects (36):

A class of examples is the following, which comes to its full nature (only) after passage to
homotopy theory (Example below):

Definition 1.80. (homotopy localization of 1-categories)

Let C be a category, let A € C be an object, and consider the class of morphisms given by
projection out of the Cartesian product with A, of all objects X € C:

XxAZS x.

If the corresponding reflection onto the full subcategory of local objects (Def. 1.79) exists,
we say this is homotopy localization at that object , and denote the modal operator
corresponding to this (via Prop. 1.63) by

D:c—cC.

Proposition 1.81. (reflective localization reflects onto full subcategory of local objects)

Let W c C be a category with weak equivalences (Def. 1.75). If its reflective localization
(Def. 1.76) exists

e
w1 ¢

L
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L
then C[W ~Y| & € is equivalently the inclusion of the full subcategory (Example 1.20) on the
W-local objects (Def. 1.78), and hence L is equivalently reflection onto the W-local objects,
according to Def. 1.79.

Proof. We need to show that
L
1.every X € C[W '] & € is W-local,
L
2.every Y € Cis W-local precisely if it is isomorphic to an object in C[W ~'] & €.

The first statement follows directly with the adjunction isomorphism (10):

Home (w, (X)) = Homgpy, -1, (L(w), X)

and the fact that the hom-functor takes isomorphisms to bijections (Example 1.31).

For the second statement, consider the case that Y is W-local. Observe that then Y is also
local with respect to the class

Weat = L '(Isos)

of all morphisms that are inverted by L (the “saturated class of morphisms”): For consider
Home(-,Y) . .
the hom-functor € ————— Set°P to the opposite of the category of sets. By assumption on

Y this takes elements in W to isomorphisms. Hence, by the defining universal property of
the localization-functor L, it factors through L, up to natural isomorphism.

Since, by idempotency (Prop. 1.64), the adjunction unit 7, is in Wy, this implies that we

have a bijection of the form
Home¢ (7, Y) : Home(lL(Y),Y) = Home(Y,Y) .

In particular the identity morphism idy has a preimage ny_l under this function, hence a left

inverse to 7:

But by 2-out-of-3 this implies that n, 1 € W, Since the first item above shows that (L(Y) is

W .a¢-local, this allows to apply this same kind of argument again,
Home(ny_l, (L(Y)) : Home(Y,(L(Y)) = Home((LL(Y),L(Y)),

to deduce that also 7, ! has a left inverse (%)~ on, L. But since a left inverse that itself

has a left inverse is in fact an inverse morphisms (this Lemma), this means that ny'l is an
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inverse morphism to n,, hence that n, : Y — (L(Y) is an isomorphism and hence that Y is

L
isomorphic to an object in C[W ~!] & €.

Conversely, if there is an isomorphism from Y to a morphism in the image of ¢ hence, by the
first item, to a W-local object, it follows immediatly that also Y is W-local, since the hom-
functor takes isomorphisms to bijections and since bijections satisfy 2-out-of-3. W

Proposition 1.82. (reflection onto local objects is localization with respect to left
adjoints)

Let C be a category (Def. 1.1) and let S € More be a class of morphisms in C. Then the
reflection onto the S-local objects (Def. 1.79) satisfies, if it exists, the universal property of a
localization of categories (Def. 1.76) with respect to left adjoint functors inverting S.

Proof. Write

for the reflective subcategory-inclusion of the S-local objects.

Say that a morphism f in C is an S-local morphism if for every S-local object A € C the hom-
functor (Example 1.17) from f to A yields a bijection Hom¢(f, A). Notice that, by the Yoneda
embedding for Cs (Prop. 1.30), the S-local morphisms are precisely the morphisms that are
taken to isomorphisms by the reflector L (via Example 1.31).

Now let

F
_
(F46):€¢ L1 D
G

be a pair of adjoint functors, such that the left adjoint F inverts the morphisms in S. By the
adjunction hom-isomorphism (10) it follows that G takes values in S-local objects. This in
turn implies, now via the Yoneda embedding for D, that F inverts all S-local morphisms, and
hence all morphisms that are inverted by L.

Thus the essentially unique factorization of F through L now follows by Prop. 1.77. i

2. Basic notions of Categorical algebra

We have seen that the existence of Cartesian products in a category C equips is with a
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functor of the form

(=)x(-)
CxC——>¢C
which is directly analogous to the operation of multiplication in an associative algebra or

even just in a semigroup (or monoid), just “categorified” (Example 2.2 below). This is made
precise by the concept of a monoidal category (Def. 2.1 below).

This relation between category theory and algebra leads to the fields of categorical algebra
and of universal algebra.

Here we are mainly interested in monoidal categories as a foundations for enriched category
theory, to which we turn below.

Monoidal categories

Definition 2.1. (monoidal category)

An_monoidal category _is a category C (Def. 1.1) equipped with

1. a functor (Def. 1.15)

QR :exec—e
out of the product category of C with itself (Example 1.14), called the tensor
product,
2. an object

1 € Obj,

called the unit object or tensor unit,

3.anatural isomorphism (Def. 1.23)

a: (N> (U ®(-)

called the associator,

4. a natural isomorphism

£: (1Q(-) = ()

called the left unitor, and a natural isomorphism
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r:(-)®1>(-)
called the right unitor,

such that the following two kinds of diagrams commute, for all objects involved:

1. triangle identity:

@Dy —2 x@A®Y)
Py @1y ¥ Y1, @2y
x®y
2. the pentagon identity:
w®x)Q (& z)
Aw®x,yz 2 \ Iw,x,y®z
(W®x)Qy)Qz WQxQ(y®2))
Ay, x,y ®idy l Tidw®ax,y,z
WRxRY)Kz W W (x®y) X z)

Example 2.2. (cartesian monoidal category)

Let C be a category in which all finite products exist. Then C becomes a monoidal category
(Def. 2.1) by

1. taking the tensor product to be the Cartesian product

X®Y = XXY
2. taking the unit object to be the terminal object (Def. 1.5)

[ = *

Monoidal categories of this form are called cartesian monoidal categories.

Lemma 2.3. (Kelly 64)

Let (C, ®,1) be a monoidal category, def. 2.1. Then the left and right unitors € and r satisfy
the following conditions:

1.’€1=T1 . 1®li)1;

2. for all objects x,y € C the following diagrams commutes:
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1)y

@rxy | P ®idy,

1IQ(x®y) ,— x®y

{)x®y

)

and
xQ(y®1)
aixy l \idx ®1y

CR®YRX®1 — xQy

rx®y

For proof see at monoidal category this lemma and this lemma.

Remark 2.4. Just as for an associative algebra it is sufficient to demand 1a = a and al = a
and (ab)c = a(bc) in order to have that expressions of arbitrary length may be re-
bracketed at will, so there is a coherence theorem for monoidal categories which states that
all ways of freely composing the unitors and associators in a monoidal category (def. 2.1)
to go from one expression to another will coincide. Accordingly, much as one may drop
the notation for the bracketing in an associative algebra altogether, so one may, with due
care, reason about monoidal categories without always making all unitors and associators
explicit.

(Here the qualifier “freely” means informally that we must not use any non-formal
identification between objects, and formally it means that the diagram in question must
be in the image of a strong monoidal functor from a free monoidal category. For example if
in a particular monoidal category it so happens that the object X ® (Y @ Z) is actually
equal to (XX Y) X Z, then the various ways of going from one expression to another
using only associators and this equality no longer need to coincide.)

Definition 2.5. (braided monoidal category)

A braided monoidal category, is a monoidal category C (def. 2.1) equipped with a
natural isomorphism (Def. 1.23)

Ty XQYy >y ®x (37)

called the braiding, such that the following two kinds of diagrams commute for all objects
involved (“hexagon identities”):
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Ax,y,z Tx,yQz

xR®YQz — xQYRz) — (YR2)R«x

lTx,y®Id lay_zlx

Ay,x,z [d® 1y, 2

R®N®z — yRQ(xR®z) — yR(zQx)

and
ax_,}/,z Tx®y,z
xQVz) — xRz — zQxRVY)
1d4®Ty,, 1%2xy
A2y Ty,z®1d

xQzQy) — xQ®2)Q®y —— (ZR®¥Qy
where ay, ,: (x ®y) ® z - xQ (y & z) denotes the components of the associator of c®,

Definition 2.6. A symmetric monoidal category is a braided monoidal category (def. 2.5)
for which the braiding

Ty XQYy >y Qx
satisfies the condition:
Tyx°Try = lx@y
for all objects x, y

Remark 2.7. In analogy to the coherence theorem for monoidal categories (remark 2.4)
there is a coherence theorem for symmetric monoidal categories (def. 2.6), saying that
every diagram built freely (see remark 2.7) from associators, unitors and braidings such
that both sides of the diagram correspond to the same permutation of objects, coincide.

Definition 2.8. (symmetric closed monoidal category)

Given a symmetric monoidal category C with tensor product & (def. 2.6) it is called a
closed monoidal category if for each Y € C the functor Y ® (=) = (=) ® Y has a right
adjoint, denoted hom(Y, —)

(Y (38)

hence if there are natural bijections

Home(X ®Y,Z) = HomC(X,[Y,Z])
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for all objects X, Z € C.
Since for the case that X = 1 is the tensor unit of C this means that
Home(1,[Y,Z]) = Home(Y,Z2),

the object [Y, Z] € C is an enhancement of the ordinary hom-set Home(Y, Z) to an object
in C. Accordingly, it is also called the internal hom between Y and Z.

The adjunction counit (Def. 1.33) in this case is called the evaluation morphism

XQ[X,Y] =Y (39)

Example 2.9. (Set is a cartesian closed category)

The category Set of all sets (Example 1.2) equipped with its cartesian monoidal category-
structure (Example 2.2) is a closed monoidal category (Def. 2.8), hence a cartesian closed
category. The Cartesian product is the original Cartesian product of sets, and the internal
hom is the function set [X, Y] of functions from X to Y

Example 2.10. (tensor product of abelian groups is closed monoidal category symmetric
monoidal category-structure)

The category Ab of abelian groups (as in Example 1.3) becomes a symmetric monoidal
category (Def. 2.6) with tensor product the actual tensor product of abelian groups &,

and with tensor unit the additive group Z of integers. Again the associator, unitor and
braiding isomorphism are the evident ones coming from the underlying sets.

This is a closed monoidal category with internal hom hom(A4,B) being the set of
homomorphisms Homyp(4,B) equipped with the pointwise group structure for

¢, ¢, € Homyy, (4, B) then (¢, + ¢,)(a) == ¢, (a) + ¢,(b) €B.

This is the archetypical case that motivates the notation “®” for the pairing operation in a
monoidal category.

Example 2.11. (Cat and Grpd are cartesian closed categories)

The category Cat (Example 1.16) of all small categories (Example 1.6) is a cartesian
monoidal category-structure (Example 2.2) with Cartesian product given by forming
product categories (Example 1.14).

Inside this, the full subcategory (Example 1.20) Grpd (Example 1.16) of all small
groupoids (Example 1.10) is itself a cartesian monoidal category-structure (Example 2.2)
with Cartesian product given by forming product categories (Example 1.14).
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In both cases this yields a closed monoidal category (Def. 2.8), hence a cartesian closed
category: the internal hom is given by the functor category construction (Example 1.25).

Example 2.12. (categories of presheaves are cartesian closed)

Let C be a category and write [C°P, Set] for its category of presheaves (Example 1.26).

This is

1.a cartesian monoidal category (Example 2.2), whose Cartesian product is given
objectwise in C by the Cartesian product in Set:
for X, Y € [C°P, Set], their Cartesian product X X Y exists and is given by

cp ~ X(c1)XY(cq)

XXY : fl TX(f)XY(f)

c; + X(cz)xXY(c2)

2.a cartesian closed category (Def. 2.8), whose internal hom is given for
X, Y € [C°P, Set] by

¢1 = Hompeop oy (y(c1) XX, y)
X,Y] : 7| HOMeoP e (/1) XX.)

¢z = Hompeop g0y (y(c2) XX,y)

Here y : C — [C°P,Set] denotes the Yoneda embedding and Homcop g (—, =) is
the hom-functor on the category of presheaves.

Proof. The first statement is a special case of the general fact that limits of presheaves are
computed objectwise (Example 3.5).

For the second statement, first assume that [X, Y] does exist. Then by the adjunction hom-
isomorphism (10) we have for any other presheaf Z a natural isomorphism of the form

Homcop g0 (Z, X, Y]) = Homeop g0 (Z XX, Y) . (40)

This holds in particular for Z = y(c) a representable presheaf (Example 1.27) and so the
Yoneda lemma (Prop. 1.29) implies that if it exists, then [X, Y] must have the claimed form:

[X,Y](c) = Homeop geqy (¥(€), [X, Y])
= HOl’n[C,op’Set] (y(C) X X, Y) .

Hence it remains to show that this formula does make (40) hold generally.
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For this we use the equivalent characterization of adjoint functors from Prop. 1.42, in terms
of the adjunction counit providing a system of universal arrows (Def. 1.41).

Define a would-be adjunction counit, hence a would-be evaluation morphism (39), by

ev

X x [X,Y] &y
X(c) x Homeop gy (7(€) XX, Y) =5 Y(c)
(% ¢) > ¢,(ide %)

Then it remains to show that for every morphism of presheaves of the form X x A 7, Y
there is a unique morphism f : A — [X, Y] such that

.
X x A T XX [XY] (41)
A oy
Y

The commutativity of this diagram means in components at ¢ € C that, that for all x € X(c¢)
and a € A(c) we have

eve(x, F,(@) = (F (@), (ide, )
= f.(xa)

Hence this fixes the component fc(a)c when its first argument is the identity morphism id..

But let g : d = ¢ be any morphism and chase (id., x) through the naturality diagram for

7 (@)
Home(c, ) xX(0) 258 ¥(©)  {(dox)) —  (f.(xa)
g | lg* l l
iy (09° ) — (00" ® g @)

Home(d,c) XX(d) —— Y(d)
This shows that (fc (@), is fixed to be given by
(Fe(@)g(9,x) = f,(x',g"(@) (42)
at least on those pairs (g, x') such that x’ is in the image of g .

But, finally, (fc (a)), is also natural in ¢
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Alc) — [XY](o)
g*l lg
Ad) — [XY](d)

which implies that (42) must hold generally. Hence naturality implies that (41) indeed has a
unique solution. W

The internal hom (Def. 2.8) turns out to share all the abstract properties of the ordinary
(external) hom-functor (Def. 1.17), even though this is not completely manifest from its
definition. We make this explicit by the following three propositions.

Proposition 2.13. (internal hom bifunctor)

For C a closed monoidal category (Def. 2.8), there is a unique functor (Def. 1.15) out of the
product category (Def. 1.14) of C with its opposite category (Def. 1.13)

[, —]:CPxC—¢C

such that for each X € C it coincides with the internal hom [X, —] (38) as a functor in the
second variable, and such that there is a natural isomorphism

Hom(X,[Y,Z]) ~ Hom(X®Y,Z2)
which is natural not only in X and Z, but also in'Y.

Proof. We have a natural isomorphism for each fixed Y, and hence in particular for fixed Y
and fixed Z by (38). With this the statement follows by Prop. 1.40. i

In fact the 3-variable adjunction from Prop. 2.13 even holds internally:
Proposition 2.14. (internal tensor/hom-adjunction)

In a symmetric closed monoidal category (def. 2.8) there are natural isomorphisms

X®Y,Z] = [X,[Y,Z]]

whose image under Home(1, —) (see also Example 2.38 below) are the defining natural
bijections of Prop. 2.13.

Proof. Let A € C be any object. By applying the natural bijections from Prop. 2.13, there are
composite natural bijections
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Home(A,[X®Y,Z]) ~ Hom:(AQRQR (XK Y),Z)
~ Home(A® X) ®Y,2)
~ Hom:(ARK X, [Y,Z])
~ Home(4, [X, [Y, Z]])

Since this holds for all A4, the fully faithfulness of the Yoneda embedding (Prop. 1.30) says
that there is an isomorphism [X ® Y, Z] = [X, [V, Z]]. Moreover, by taking A = 1 in the above
and using the left unitor isomorphisms AQ (X XY)=XXY and AR X =~ X we get a
commuting diagram

Home(1, [X®Y,Z)) = Home(1, [X, [V, Z]])
=1 1=
Home(X®Y,Z) =  Home(X,[Y,Z])

Also the key respect of the hom-functor for limits is inherited by internal hom-functors

Proposition 2.15. (internal hom preserves limits)

Let C be a symmetric closed monoidal category with internal hom-bifunctor [—, —] (Prop.

2.13). Then this bifunctor preserves limits in the second variable, and sends colimits in the
first variable to limits:

(X, JimY()] = lim[X,Y()]
JjeJ JjeJ

and

[lim Y(j), X] = lim[Y()), X]
jed €

-
Q

Proof. For X € X any object, [X, —] is a right adjoint by definition, and hence preserves
limits by Prop. 3.8.

For the other case, letY : £ — C be a diagram in C, and let C € C be any object. Then there
are isomorphisms
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Home(C, lim ¥ (), X) = Home(C @ lim Y (j), X)
jed jedg
~ Home(lim(C ® Y (), X)
Jjedg

~ limHome (€ ® ¥ (/). X)
jed

~ limHome(C, [¥ (), X))
jed

~ Home(C, lim[¥ ()), X))

jed

which are natural in C € C, where we used that the ordinary hom-functor preserves limits
(Prop. 3.6), and that the left adjoint C @ (—) preserves colimits, since left adjoints preserve
colimits (Prop. 3.8).

Hence by the fully faithfulness of the Yoneda embedding, there is an isomorphism

lim ¥(j), X| = lim[Y(}), X] .
JEJ jed

Now that we have seen monoidal categories with various extra properties, we next look at
functors which preserve these:

Definition 2.16. (monoidal functors)

Let (C, Q¢,1¢) and (D, ®4, 1p) be two monoidal categories (def. 2.1). A lax monoidal
functor between them is

1. a functor (Def. 1.15)
F:C—D,
2.a morphism
€:1p — F(1e) (43)

3. a natural transformation (Def. 1.23)

ey : FX) @p F(Y) = F(x ®c ) (44)
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forallx,y € C
satisfying the following conditions:

1. (associativity) For all objects x, y, z € C the following diagram commutes

D
AF (x),F(y),F(z)

(F) ®p F() ®p F(2) ——— F(x) Qp (F(y) ®p F(2)

Hyy ®id | L1d®Hy 2
Fx®ey) Qp F(2) Fx) Qp F(xQey))
”x®c A l l”x,y@)cz
F((x®ey) Q¢ 2) F(Tg Fx Qe (v Q¢ 2))
X, ¥Y,Z

where a® and a® denote the associators of the monoidal categories;

2. (unitality) For all x € C the following diagrams commutes

e®id
1D ®D F(x) — F(l(}) ®D F(x)
f?(x) l l'ule,x
F(£5)

F(x) — F(1Qex)

and
FO) @plp —5 F(x) ®pF(lc)
TRGo) | WHete
F(rg)

F(x) —  Flx®:1

where ¢, ¢2, €, r? denote the left and right unitors of the two monoidal categories,
respectively.

If e and alll u,, y are isomorphisms, then F is called a strong monoidal functor.

If moreover (C, Q¢,1¢) and (D, ®4,1p) are equipped with the structure of braided
monoidal categories (def. 2.5) with braidings ¢ and 7P, respectively, then the lax
monoidal functor F is called a braided monoidal functor if in addition the following
diagram commutes for all objects x,y € C
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D
TF(x),F(y)

FX)QcFy) —— F() ®p F(x)

Hy,y l J,I'Ly,x

F(xQcy) e Fly ®ex)
x,y

A homomorphism f : (Fq,p,€1) — (F2, 1y, €;) between two (braided) lax monoidal

functors is a monoidal natural transformation, in that it is a natural transformation
f, + F1(x) — F3(x) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all
objects x,y € C:

fx)®p fF(¥)
F1(0) @p F1(y) —— F,(x) ®p F2(¥)
('ul)x,y l l(ﬂz)x,y
F1(xQey) @y F(x®ey)
and
1p
€1 V4 \,62 .
Fi(1e) 78 Fy(1e)

We write MonFun(C,D) for the resulting category of lax monoidal functors between
monoidal categories C and D, similarly BraidMonFun(C,D) for the category of braided
monoidal functors between braided monoidal categories, and SymMonFun(C, D) for the
category of braided monoidal functors between symmetric monoidal categories.

Remark 2.17. In the literature the term “monoidal functor” often refers by default to what in
def. 2.16 is called a strong monoidal functor. But for the purpose of the discussion of
functors with smash product below, it is crucial to admit the generality of lax monoidal
functors.

If (C, ®p,1c) and (D, ®p,1p) are symmetric monoidal categories (def. 2.6) then a

braided monoidal functor (def. 2.16) between them is often called a symmetric monoidal
functor.

F G

Proposition 2.18. For C — D — &£ two composable lax monoidal functors (def. 2.16) between
monoidal categories, then their composite Fo G becomes a lax monoidal functor with
structure morphisms
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G(eh)

1 5 G(1D) ) G(F(1¢))

and

F

Gk, c,)
G(F(c1) Qp F(c2)) — G(F(c1 Q¢ C2)) -

G
KF(cy).F(cy)
_

uSt 1 G(F(c1) ®¢ G(F(c2)

Algebras and modules

Definition 2.19. Given a monoidal category (C, & ,1) (Def. 2.1), then a monoid internal to
6 ®,is

1. an object A € C;
2.amorphisme : 1 — A (called the unit)
3.amorphismu : A® A — A (called the product);

such that

1. (associativity) the following diagram commutes

ARAR®A 4 40Ue4a) =5 404
h®A | il
AR A — Ao

where a is the associator isomorphism of C;

2. (unitality) the following diagram commutes:

id
104 229 404 &8¢ ax1
g\l »LM ‘/T )
A

where £ and r are the left and right unitor isomorphisms of C.

Moreover, if (C, ®,1) has the structure of a symmetric monoidal category (def. 2.6)
(G, ®,1,B) with symmetric braiding 7, then a monoid (4,u,e) as above is called a
commutative monoid in (C, &, 1, B) if in addition

¢ (commutativity) the following diagram commutes
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TAA

AR A — AR A

~

A

A homomorphism of monoids (44, u;, €1) — (A2, 1,, f,) is a morphism

fiA; — 4,

in C, such that the following two diagrams commute

f®f
A1®A1 — A2®A2

i) LH2

and

Write Mon(C, ®,1) for the category of monoids in C, and CMon(C, ®,1) for its full
subcategory of commutative monoids.

Example 2.20. Given a monoidal category (C, @, 1) (Def. 2.1), the tensor unit 1 is a monoid
in C (def. 2.19) with product given by either the left or right unitor

‘£1=T1:1®1i)1.

By lemma 2.3, these two morphisms coincide and define an associative product with unit
the identity id: 1 — 1.

If (C,®,1) is a symmetric monoidal category (def. 2.6), then this monoid is a
commutative monoid.

Example 2.21. Given a symmetric monoidal category (C, ®,1) (def. 2.6), and given two
commutative monoids (Ej;, u;,€;) i € {1,2} (def. 2.19), then the tensor product E; ® E,

becomes itself a commutative monoid with unit morphism

e1Qey

e . 1i)1®1—)E1®E2
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(where the first isomorphism is, 7+ = r; ! (lemma 2.3)) and with product morphism

given by

id®7g,, 5, ®id

U Qu
E,QE,QE,QE, E,QE,QE,QE, —3FE,QE,

(where we are notationally suppressing the associators and where 7 denotes the braiding
of C).

That this definition indeed satisfies associativity and commutativity follows from the
corresponding properties of (E;, u;, e;), and from the hexagon identities for the braiding

(def. 2.5) and from symmetry of the braiding.

Similarly one checks that for E; = E, = E then the unit maps
id®e
E~EX1—EQXRE

E~1QF 2 EQE
and the product map
U: EQE—E
and the braiding
gg: EQE—>EQXRE
are monoid homomorphisms, with E & E equipped with the above monoid structure.

Definition 2.22. Given a monoidal category (C, &, 1) (def. 2.1), and given (4, u, e) a monoid
in (C, ®,1) (def. 2.19), then a left module object in (C, ®,1) over (4, u,e) is

1. an object N € C;

2.amorphismp : AQ N — N (called the action);
such that

1. (unitality) the following diagram commutes:

e®id
1®N — AQN
#\l lp 4

N

where ¥ is the left unitor isomorphism of C.
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2. (action property) the following diagram commutes

ARAHRN M axuen 25 a@N
HQON | P
AQN N L

A homomorphism of left A-module objects

(Nllpl) - (N2'p2)
is a morphism
f:Ni— N,

in C, such that the following diagram commutes:

A
AN, 221 4@nN,

P1| P2

Ny 7> N,

For the resulting category of modules of left A-modules in C with A-module
homomorphisms between them, we write

AMod(C) .

Example 2.23. Given a monoidal category (C, ®,1) (def. 2.1) with the tensor unit 1
regarded as a monoid in a monoidal category via example 2.20, then the left unitor

. 1Q0C—C

makes every object C € C into a left module, according to def. 2.22, over C. The action
property holds due to lemma 2.3. This gives an equivalence of categories

¢ =~ 1Mod(C)

of C with the category of modules over its tensor unit.

Example 2.24. The archetypical case in which all these abstract concepts reduce to the basic
familiar ones is the symmetric monoidal category Ab of abelian groups from example
2.10.

1. A monoid in (Ab, ®,,Z) (def. 2.19) is equivalently a ring.
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2. A commutative monoid in in (Ab, ®,,Z) (def. 2.19) is equivalently a commutative

ring R.
3. An R-module object in (Ab, ®;,Z) (def. 2.22) is equivalently an R-module;

4. The tensor product of R-module objects (def. 2.27) is the standard tensor product of
modules.

5. The category of module objects R Mod(Ab) (def. 2.27) is the standard category of
modules R Mod.

Example 2.25. Closely related to the example 2.24, but closer to the structure we will see
below for spectra, are monoids in the category of chain complexes (Ch,, ®,Z) from
example . These monoids are equivalently differential graded algebras.

Proposition 2.26. In the situation of def. 2.22, the monoid (A, u, e) canonically becomes a left
module over itself by setting p = u. More generally, for C € C any object, then AR C
naturally becomes a left A-module by setting:

p: AR (A®C) =25 “C(A®A)®C~A®c

The A-modules of this form are called free modules.

The free functor F constructing free A-modules is left adjoint to the forgetful functor U
which sends a module (N, p) to the underlying object U(N, p) :== N.

il
AMod(¢) L €.
U

Proof. A homomorphism out of a free A-module is a morphism in C of the form
f:AQC—N

fitting into the diagram (where we are notationally suppressing the associator)

AR4A®c 2L a@N
u®id l lp
ARC ? N
Consider the composite
e®id

f C—>1®C—>A®C—>N
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i.e. the restriction of f to the unit “in” A. By definition, this fits into a commuting square of
the form (where we are now notationally suppressing the associator and the unitor)

-d -~
Ac 2L 4N
id®e®idl l:
ARARC w ARQN

Pasting this square onto the top of the previous one yields

.d ~
Ac 220 aenN
id®e®idl l:
A
ARARC 2L AN
,u®idl J’P

ARKC 7) N

where now the left vertical composite is the identity, by the unit law in A. This shows that f
is uniquely determined by f via the relation

f=pe(ds®f) .
This natural bijection between f and f establishes the adjunction. |l

Definition 2.27. Given a closed symmetric monoidal category (G, ®,1) (def. 2.6, def. 2.8),
given (4, u,e) a commutative monoid in (C, ®,1) (def. 2.19), and given (Nq,p,) and
(N3, p,) two left A-module objects (def.2.19), then

1. the tensor product of modules Ny @ , N, is, if it exists, the coequalizer

V1 ©p, coeq

e
N1®A®N2 N1®N1_)N1®AN2
p1°(TN1,A®N2)

and if A ® (—) preserves these coequalizers, then this is equipped with the left A-
action induced from the left A-action on N4

2. the function module hom, (N4, N,) is, if it exists, the equalizer

hom(p,,N2)

equ _—
homy,(N{,N,) — hom(N{,N,) hom(A® N4,N,) .
hom(AQN1,p,)° (AR ()
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equipped with the left A-action that is induced by the left A-action on N, via

A ®hom(X,N,) — hom(X,N,)

id®ev P, .
AQ@hom(X,N,) X — AQN, — N,

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2 and lemma 2.2.8)

Proposition 2.28. Given a closed symmetric monoidal category (C, @ ,1) (def. 2.6, def. 2.8),
and given (4, u, e) a commutative monoid in (C, @, 1) (def. 2.19). If all coequalizers exist in
C, then the tensor product of modules & , from def. 2.27 makes the category of modules

AMod(C) into a symmetric monoidal category, (AMod, & ,,A) with tensor unit the object

A itself, regarded as an A-module via prop. 2.26.

If moreover all equalizers exist, then this is a closed monoidal category (def. 2.8) with
internal hom given by the function modules homy of def. 2.27.

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2, lemma 2.2.8)

Proof sketch. The associators and braiding for & , are induced directly from those of @ and
the universal property of coequalizers. That A is the tensor unit for ®A follows with the

same kind of argument that we give in the proof of example 2.29 below. i

Example 2.29. For (A, i, e) a monoid (def. 2.19) in a symmetric monoidal category (C, &, 1)
(def. 2.1), the tensor product of modules (def. 2.27) of two free modules (def. 2.26)
A®C, and A ® C, always exists and is the free module over the tensor product in C of

the two generators:
(AQC) RV (AQC) =AQ(C;1QC(y) .

Hence if C has all coequalizers, so that the category of modules is a monoidal category
(AMod, ®,,A) (prop. 2.28) then the free module functor (def. 2.26) is a strong monoidal

functor (def. 2.16)

F: (€ ®,1) — (AMod, ®,,A) .

Proof. It is sufficient to show that the diagram

r®id

—) #
ARARA ARA— A
id®u

is a coequalizer diagram (we are notationally suppressing the associators), hence that
A® , A = A, hence that the claim holds for €; = 1and C, = 1.
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To that end, we check the universal property of the coequalizer:

First observe that y indeed coequalizes id @ u with u & id, since this is just the associativity
clause in def. 2.19. So for f: A ® A — Q any other morphism with this property, we need to
show that there is a unique morphism ¢: A — Q which makes this diagram commute:

ARA 5 a4

rl b
Q

We claim that
r-1 idRe f
P: A AQLI—ARA—Q,

where the first morphism is the inverse of the right unitor of C.

First to see that this does make the required triangle commute, consider the following
pasting composite of commuting diagrams

A4 5 a4
der— oo
A0401 Y8 ax1
id®el lid®.e
A404 Y28 Aga4
id®u | lf

A®A - Q

Here the the top square is the naturality of the right unitor, the middle square commutes by
the functoriality of the tensor product & : CXC — C and the definition of the product
category (Example 1.14), while the commutativity of the bottom square is the assumption
that f coequalizes id @ p with y & id.

Here the right vertical composite is ¢, while, by unitality of (A4, u,e), the left vertical
composite is the identity on A4, Hence the diagram says that ¢ o u = f, which we needed to
show.

It remains to see that ¢ is the unique morphism with this property for given f. For that let
q:A — Q be any other morphism with go u = f. Then consider the commuting diagram
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AR1 & A
id@e | = |7
ARA 5 4
) /4

Q

where the top left triangle is the unitality condition and the two isomorphisms are the right
unitor and its inverse. The commutativity of this diagram says thatq = ¢. i

Definition 2.30. Given a monoidal category of modules (AMod, ®,,A) as in prop. 2.28,
then a monoid (E, g, e) in (A Mod, ® ,,A) (def. 2.19) is called an A-algebra.

Proposition 2.31. Given a monoidal category of modules (AMod, ®,,A) in a monoidal
category (C, @®,1) as in prop. 2.28, and an A-algebra (E, p, e) (def. 2.30), then there is an
equivalence of categories

AAlg__ (€)== CMon(A Mod) =~ CMon(€)*/

comm
between the category of commutative monoids in AMod and the coslice category of
commutative monoids in C under A, hence between commutative A-algebras in C and
commutative monoids E in C that are equipped with a homomorphism of monoids A — E.

(e.g. EKMM 97, VII lemma 1.3)

Proof. In one direction, consider a A-algebra E with unit ez : A— E and product
Mg o E Q4 E — E.There is the underlying product y

coeq

EQARE __ EQE —3 E®,E

HE ) a
p N

E

By considering a diagram of such coequalizer diagrams with middle vertical morphism
e © ey, one find that this is a unit for u, and that (E, i, eg o e,) is a commutative monoid in

(¢ ®,1).

Then consider the two conditions on the unit e;: A — E. First of all this is an A-module
homomorphism, which means that
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id
AQA 22 4QE
(%) Ha | 1P
A — E
€g

commutes. Moreover it satisfies the unit property

id
AR, E 428 E®,E
-\ LHE/ A

E

By forgetting the tensor product over 4, the latter gives

e®id
AQE 228 EQE
id
! ! AQE %Y EQE
; 3

ARLE E28 E@,E = Pl oy
= | lI’LE/A E E) E

E - E

where the top vertical morphisms on the left the canonical coequalizers, which identifies the
vertical composites on the right as shown. Hence this may be pasted to the square (*)
above, to yield a commuting square

id id
A4 2% 4oF =2 FQE A4 2% EQE
Ha | Pl LHE = Ha | LHE |
A — E — E A — E
eg id e

This shows that the unit e, is a homomorphism of monoids (4, u,,e4) — (E, iz, egoey).

Now for the converse direction, assume that (4, u,, e4) and (E, u,, e'g) are two commutative

monoids in (C, ®,1) with ez : A = E a monoid homomorphism. Then E inherits a left A-
module structure by

id u
0 AQEXACSEQEXE.

By commutativity and associativity it follows that u, coequalizes the two induced

—
morphisms EQ A ®E_)E X E. Hence the universal property of the coequalizer gives a

factorization through some uE/A:E®AE—>E. This shows that (E,,uE/A,eE) is a
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commutative A-algebra.

Finally one checks that these two constructions are inverses to each other, up to
isomorphism.

Definition 2.32. (lax monoidal functor)

Let (G, ®¢,1¢) and (D, ®4,1p) be two monoidal categories (def. 2.1). A lax monoidal

functor between them is

1. a functor

F:C—D,
2.a morphism

€: 1p — F(1le)

3. a natural transformation

eyt FOO®p F(y) — F(x®c )

forallx,y € C

satisfying the following conditions:

1. (associativity) For all objects x, y, z € C the following diagram commutes

D
AF (x),F(y),F(z)

F) @p F) ®p F(2) ———— F(x) Qg (F(y) ®p F(2))

Hyy ®id | 1@y
Fx®cy) Qp F(2) FxX) @p (F(x®cy))
I"x®€y,z ~L l”x,y®cz
F((xQ¢y) ®c 2) et Fx®e (v ®¢2)
X,V,Z

where a® and a® denote the associators of the monoidal categories;

2. (unitality) For all x € C the following diagrams commutes

e®id
1p @p F(x) — F(le) ®p F(x)

f?(x) l l“lc,x
o5
Fo) 2 F1®.x)
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and
F) ®plp —5 F(x) ®pF(le)
TReo | Whrre
F(rg)

F(x) —  Flx®:D

where ¢, ¢2, r€, r? denote the left and right unitors of the two monoidal categories,
respectively.

If e and alll u,, y are isomorphisms, then F is called a strong monoidal functor-.

If moreover (C, ®.,1¢) and (D, ®p,1p) are equipped with the structure of braided
monoidal categories (def. 2.5) with braidings ¢ and 7P, respectively, then the lax
monoidal functor F is called a braided monoidal functor if in addition the following
diagram commutes for all objects x,y € C

D
TF(x),F(y)

FO)®Fy) —— F() ®p F(x)

H’x‘y J{ i”y,x

F(x®cy) — Fly @cx)

F(t$y)

A homomorphism f : (Fq,u,,€1) — (Fa,1,,€,) between two (braided) lax monoidal

functors is a monoidal natural transformation, in that it is a natural transformation
f, + F1(x) — F,(x) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all
objects x,y € C:

f(xX)Qp f(¥)
F1(X) Qp F1(¥) —— F5(x) ®p F2(»)
(“1)x,y l l(ﬂz)x,y
Fi(x®cy) a8y, F(x Qe y)
and
1p
€1y €2 _
Fi(1e) f(Te)) F,(1e)
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We write MonFun(C,D) for the resulting category of lax monoidal functors between
monoidal categories C and D, similarly BraidMonFun(C,D) for the category of braided
monoidal functors between braided monoidal categories, and SymMonFun(C, D) for the

category of braided monoidal functors between symmetric monoidal categories.

Remark 2.33. In the literature the term “monoidal functor” often refers by default to what in
def. 2.16 is called a strong monoidal functor. But for the purpose of the discussion of
functors with smash product below, it is crucial to admit the generality of lax monoidal
functors.

If (C, ®¢,1c) and (D, ®p,1p) are symmetric monoidal categories (def. 2.6) then a

braided monoidal functor (def. 2.16) between them is often called a symmetric monoidal
functor.

F G
Proposition 2.34. For C — D — £ two composable lax monoidal functors (def. 2.16) between
monoidal categories, then their composite F oG becomes a lax monoidal functor with

structure morphisms

G G F
€9F 1 15 5 6(1p) 23 G(F(10))

and
GoF M ey Fiey) G(1e, ¢,)
uét 1 G(F(cr)) ®¢ G(F(cz)) —— G(F(c1) ®p F(c2)) — G(F(c1 ®¢ c2)) -

Proposition 2.35. (lax monoidal functors preserve monoids)

Let (C, Q¢,1¢) and (D, ®,, 1p) be two monoidal categories (def. 2.1) and let F : C — D
be a lax monoidal functor (def. 2.16) between them.

Then for (A,p,,es) a monoid in C (def. 2.19), its image F(A) € D becomes a monoid
(F(A), Hpay er(a)) by setting

F(HA)

By © F(A) @ F(A) — FAG e A) = F(A)

(where the first morphism is the structure morphism of F) and setting

F(ea)
er) + 1p = F(lg) — F(4)

(where again the first morphism is the corresponding structure morphism of F).

This construction extends to a functor
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Mon(F) : Mon(C, ®., 1) — Mon(D, K4, 1p)

from the category of monoids of C (def. 2.19) to that of D.

Moreover, if C and D are symmetric monoidal categories (def. 2.6) and F is a braided
monoidal functor (def. 2.16) and A is a commutative monoid (def. 2.19) then so is F(A), and
this construction extends to a functor between categories of commutative monoids:

CMon(F) : CMon(C, ®., 1) — CMon(D, K4, 1p) .

Proof. This follows immediately from combining the associativity and unitality (and
symmetry) constraints of F with those of A. Wi

Enriched categories

The plain definition of categories in Def. 1.1 is phrased in terms of sets. Via Example 1.2 this
assigns a special role to the category Set of all sets, as the “base” on top, or the “cosmos”
inside which category theory takes place. For instance, the fact that hom-sets in a plain
category are indeed sets, is what makes the hom-functor (Example 1.17) take values in Set,
and this, in turn, governs the form of the all-important Yoneda lemma (Prop. 1.29) and
Yoneda embedding (Prop. 1.30) as statements about presheaves of sets (Example 1.26).

At the same time, category theory witnesses the utility of abstracting away from concrete
choices to their abstract properties that are actually used in constructions. This makes it
natural to ask if one could replace the category Set by some other category V which could
similarly serve as a “cosmos” inside which category theory may be developed.

Indeed, such V-enriched category theory (see Example 2.43 below for the terminology)
exists, beginning with the concept of V-enriched categories (Def. 2.40 below) and from there
directly paralleling, hence generalizing, plain category theory, as long as one assumes the
“cosmos” category V to share a minimum of abstract properties with Set (Def. 2.36 below).

This turns out to be most useful. In fact, the perspective of enriched categories is helpful
already when V = Set, in which case it reproduces plain category theory (Example 2.41
below), for instance in that it puts the (co)limits of the special form of (co)ends (Def. 3.13
below) to the forefront (discussed below).

Definition 2.36. (cosmos)

A Bénabou cosmos for enriched category theory, or just cosmos, for short, is a symmetric
(Def. 2.6) closed monoidal category (Def. 2.8) V which has all limits and colimits.
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Example 2.37. (examples of cosmoi for enriched category theory)

The following are examples of cosmoi (Def. 2.36):

1. Sh(C) the sheaf topos (Def. 4.8) over any site (Def. 4.3) - by Prop. 4.23 below.
In particular:

1. Set (Def. 1.2) equipped with its cartesian closed category-structure (Example
2.9)

2. sSet =~ [A°P, Set] (Def., Prop.)

2.Grpd (Def. 1.16) equipped with its cartesian closed category-structure (Example
2.11).

3. Cat (Def. 1.16) equipped with its cartesian closed category-structure (Example 2.11).
Example 2.38. underlying set of an object in a cosmos

Let V be a cosmos (Def. 2.36), with 1 € V its tensor unit (Def. 2.1). Then the hom-functor
(Def.1.17) out of 1

Homy (1, =) : V — Set

admits the structure of a lax monoidal functor (Def. 2.16) to Set, with the latter regarded
with its cartesian monoidal structure from Example 2.9.

GivenV € V, we call

Homy,(1,V) € Set

also the underlying set of V.

Proof. Take the monoidal transformations (eq“MonoidalComponentsOfMonoidalFunctor) to
be

Homy(1,V1) X Homy(1,V,) — Homy(1,V; ®V,)
(1£1>V1,1£2>V2) = (151®1&V1®V2)
and take the unit transformation (43)
* — Homy(1,1)
to pickid; € Homy(1,1). B

Example 2.39. (underlying set of internal hom is hom-set)*
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For V a cosmos (Def. 2.36), let X,Y € Obj,, be two objects. Then the underlying set (Def.
2.38) of their internal hom [X, Y] € V (Def. 2.8) is the hom-set (Def. 1.1):

Homy(1,[X,Y]) = Homy(X,Y) .

This identification is the adjunction isomorphism (10) for the internal hom adjunction
(38) followed composed with a unitor (Def. 2.1).

Definition 2.40. (enriched category)

For V a cosmos (Def. 2.36), a V-enriched category C is:

1. a class Obj,., called the class of objects;

2. for each a, b € Obj,, an object
C(a,b) €V,

called the V-object of morphisms between a and b;

3.for each a, b, c € Obj(C) a morphism in V
°aupc - Cla,b)xC(b,c)— C(a,c)

out of the tensor product of hom-objects, called the composition operation;

4. for each a € Obj(C) a morphism Id,: * — C(a, a), called the identity morphism on a

such that the composition is associative and unital.

If the class Obj, happens to be a set (hence a small set instead of a proper class) then we
say the V-enriched category C is small, as in Def. 1.6.

Example 2.41. (Set-enriched categories are plain categories)

An enriched category (Def. 2.40) over the cosmos V = Set, as in Example 2.37, is the same
as a plain category (Def. 1.1).

Example 2.42. (Cat-enriched categories are strict 2-categories)

An enriched category (Def. 2.40) over the cosmos V = C(Cat, as in Example 2.37, is the
same as a strict 2-category (Def. 1.48).

Example 2.43. (underlying category of an enriched category)

Let C be a V-enriched category (Def. 2.40).
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Using the lax monoidal structure (Def. 2.16) on the hom functor (Example 2.38)

Homy (1, —) : V — Set

out of the tensor unit 1 € C this induces a Set-enriched category |C| with hence an
ordinary category (Example 2.41), with

. Obj|6| = Obj;

e Home(X,Y) = Homy(1,C(X,Y)).

[t is in this sense that C is a plain category |C| equipped with extra structure, and hence an
“enriched category”.

The archetypical example is V itself:

Example 2.44. (V as a V-enriched category)

Evert cosmos C (Def. 2.36) canonically obtains the structure of a V-enriched category, def.
2.40:

the hom-objects are the internal homs

v(X,Y) =[XY]
and with composition
[X,Y|X[Y,Z] — [X,Z]

given by the adjunct under the (Cartesian product- internal hom)-adjunction of the
evaluation morphisms

(ev,

XQxmY| @[, 2] &L yov.z S 7.

The usual construction on categories, such as that of opposite categories (Def. 1.13) and
product categories (Def. 1.14) have evident enriched analogs

Definition 2.45. (enriched opposite category and product category)

For V a cosmos, let C, D be V-enriched categories (Def. 2.40).

1. The opposite enriched category C°P is the enriched category with the same objects
as C, with hom-objects

CP(X,Y) = C(Y,X)
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and with composition given by braiding (37) followed by the composition in C:

°Z)Y,X

CP(X,V) ® C°P(Y,Z) = C(Y,X) ® C(Z,Y) — C(Z,Y) ® C(Y,X) =5 C(Z,X) = (

2.the enriched product category C XD is the enriched category whose objects are
pairs of objects (c¢,d) with ¢ € C and d € D, whose hom-spaces are the tensor
product of the separate hom objects

(€CXxD)((c1,dy1), (c2,d3)) = C(cq,¢2) ®D(dy,d3)

and whose composition operation is the braiding (37) followed by the tensor
product of the separate composition operations:

(X D)((c1,d1), (€2,d2)) @ (CXD)((cz,d2), (c3,d3))

=1
(6(01» c2) ®D(dy, dz)) ® (C(Cz» c3) ®D(dy, d3))
12
(°c1,cz,c3)®(° 1,dy, 3)
(C(cy, 2) ® C(cz,¢3)) @ (D(dy, dz) ® D(dy, ds)) SR

G

Definition 2.46. (enriched functor)

For V a cosmos (Def. 2.36), let C and D be two V-enriched categories (Def. 2.40).

A V-enriched functor from C to D

F:C—D
is
1. a function

Fopj ¢ Obj. — Obj,

of objects;

2.for each a,b € Obj, a morphism inV
Fep : C(a,b) — D(Fo(a),Fo(b))

between hom-objects
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such that this preserves composition and identity morphisms in the evident sense.

Example 2.47. (enriched hom-functor)

For V a cosmos (Def. 2.36), let C be a V-enriched category (Def. 2.40). Then there is a V-
enriched functor out of the enriched product category of C with its enriched opposite
category (Def. 2.45)

C(— —): CPxC—V

to V, regarded as a V-enriched category (Example 2.44), which sends a pair of objects
X,Y € C to the hom-object C(X,Y) € V, and which acts on morphisms by composition in
the evident way.

Example 2.48. (enriched presheaves)

For V a cosmos (Def. 2.36), let C be a V-enriched category (Def. 2.40). Then a V-enriched
functor (Def. 2.46)

F:C—oV

to the archetypical V-enriched category from Example 2.44 is:

1. an object F, € Obj,, for each object a € Obj;

2.a morphism in PV of the form
F,&®C(a,b) — Fy

for all pairs of objects a, b € Obj(C)
(this is the adjunct of F, , under the adjunction (38) on V)

such that composition is respected, in the evident sense.

For every object ¢ € C, there is an enriched representable functor, denoted

y(c) = C(c, —)

(where on the right we have the enriched hom-functor from Example 2.47)

which sends objects to
y()(d) =C(c,d) €V

and whose action on morphisms is, under the above identification, just the composition
operation in C.
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More generally, the following situation will be of interest:

Example 2.49. (enriched functor on enriched product category with opposite category)

An V-enriched functor (Def. 2.46) into V (Example 2.44) out of an enriched product
category (Def. 2.45)

F:CXD—7V
(an “enriched bifunctor”) has component morphisms of the form

Fic,,dy),(cady) C(c1,¢2) ®D(dy,dy) — [Fo((CL d1))'F0((Cz»d2))] .

By functoriality and under passing to adjuncts (Def. 1.32) under (38) this is equivalent to
two commuting actions

Pec, (@ C(cr,¢2) ®Fo((c1,d)) — Fol(cz,d))
and

Pa,a,(©) : D(d1,dz) ® Fo((c,dq)) — Fo((c,dz)) -

In the special case of a functor out of the enriched product category of some V-enriched

F:CPxC—V
then this takes the form of a “pullback action” in the first variable
Pe, e, (A C(cr,¢2) @ Fo((c2,d)) — Fol(c1,d))
and a “pushforward action” in the second variable

Pa,a,(©) : C(d1,d2) ® Fo((c,dq)) — Fo((c,dz)) -

Definition 2.50. (enriched natural transformation)

For V a cosmos (Def. 2.36), let C and D be two V-enriched categories (Def. 2.40) and let

¢C D

F
—
—

G

be two V-enriched functors (Def. 2.46) from C to D.
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Then a V-enriched natural transformation

.
¢c Un D
_—
G
is
» for each c € Obj, a choice of morphism
n.: 1 — D(F(c),G(c)
such that for each pair of objects ¢, d € C the two morphisms (in V)
2°F(—) i Cled) =Cled) I 4B D(G(e), 6(d)) ® D(F(c), G(c)) —2U2E(45)
and
G(—)en,: C(cd) = I® C(c, d) D(F(d) G(d)) ® D(F(c), F(d)) °F(©).F(d).6(46)
agree.

Example 2.51. (functor category of enriched functors)

For V a cosmos (Def. 2.36) let C, D be two V-enriched categories (Def. 2.40). Then there is
a category (Def. 1.1) of enriched functors (Def. 2.46), to be denoted

[C,D]

F
whose objects are the enriched functors C — D and whose morphisms are the enriched
natural transformations between these (Def. 2.50).

In the case that V = Set, via Def. 2.37, with Set-enriched categories identified with plain
categories via Example 2.41, this coincides with the functor category from Example 1.25.

Notice that, at this point, [C, D] is a plain category, not itself a V-enriched category, unless
V = Set. But it may be enhanced to one, this is Def. 3.16 below.

There is now the following evident generalization of the concept of adjoint functors (Def.
1.32) from plain category theory to enriched category theory:

Definition 2.52. (enriched adjunction)

For V a cosmos (Def. 2.36), let C, D be two V-enriched categories (Def. 2.40). Then an
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adjoint pair of V-enriched functors or enriched adjunction

L
(_
cC LD
=
R

is a pair of V-enriched functors (Def. 2.46), as shown, such that there is a V-enriched
natural isomorphism (Def. 2.50) between enriched hom-functors (Def. 2.47) of the form

C(L(=), =) = D(—R(-)) (47)

Definition 2.53. (enriched equivalence of categories)

For V a cosmos (Def. 2.36), let C, D be two V-enriched categories (Def. 2.40). Then an
equivalence of enriched categories

-t
cC = D
R

is a pair of V-enriched functors back and forth, as shown (Def. 2.46), together with V-
enriched natural isomorphisms (Def. 2.50) between their composition and the identity
functors:

idl)::)RoL and LOR%idc.

3. Universal constructions

What makes category theory be theory, as opposed to just a language, is the concept of
universal constructions. This refers to the idea of objects with a prescribed property which
are universal with this property, in that they “know about” or “subsume” every other object
with that same kind of property. Category theory allows to make precise what this means,
and then to discover and prove theorems about it.

Universal constructions are all over the place in mathematics. Iteratively finding the
universal constructions in a prescribed situation essentially amounts to systematically
following the unravelling of the given situation or problem or theory that one is studying.

There are several different formulations of the concept of universal constructions, discussed
below:

e Limits and colimits

e Ends and coends
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e Left and right Kan extensions

But these three kinds of constructions all turn out to be special cases of each other, hence
they really reflect different perspectives on a single topic of universal constructions. In fact,
all three are also special cases of the concept of adjunction (Def. 1.32), thus re-amplifying
that category theory is really the theory of adjunctions and hence, if we follow (Lambek 82),
of duality.

Limits and colimits

Maybe the most hands-on version of universal constructions are [imits (Def. 3.1 below),
which is short for limiting cones (Remark 3.2 below). The formally dual concept (Example
1.13) is called colimits (which are hence limits in an opposite category). Other terminology
is in use, too:

lim lim

— —

limit colimit
inverse limit direct limit

There is a variety of different kinds of limits/colimits, depending on the diagram shape that
they are limiting (co-)cones over. This includes universal constructions known as equalizers,
products, fiber products/pullbacks, filtered limits and various others, all of which are basic
tools frequently used whenever category theory applies.

A key fact of category theory, regarding limits, is that right adjoints preserve limits and left
adjoints preserve colimits (Prop. 3.8 below). This will be used all the time. A partial
converse to this statement is that if a functor preserves limits/colimits, then its adjoint
functor is, if it exists, objectwise given by a limit/colimit over a comma category under/over
the given functor (Prop. 3.11 below). Since these comma categories are in general not small,
this involves set-theoretic size subtleties that are dealt with by the adjoint functor theorem
(Remark 3.12 below). We discuss in detail a very special but also very useful special case of
this in Prop. 3.29, further below.

Definition 3.1. (limit and colimit)

Let C be a small category (Def. 1.6), and let D be any category (Def. 1.1). In this case one
also says that a functor

F:¢C—D
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is a diagram of shape C in D.

Recalling the functor category (Example 1.25) [C, D], there is the constant diagram-
functor

const : D — [C, D]

which sends an object X € D to the functor that sends every c € C to X, and every
morphism in C to the identity morphism on X. Accordingly, every morphism in D is sent
by const to the natural transformation (Def. 1.23) all whose components are equal to that
morphism.

Now:

1. if const has a right adjoint (Def. 1.32), this is called the construction of forming the
limiting cone of C-shaped diagrams in D, or just [imit (or inverse limit) for short, and
denoted

lim: [C,D] — D
e

2.if const has a left adjoint (Def. 1.32), this is called the construction of forming the
colimiting cocone of C-shaped diagrams in D, or just colimit (or direct limit) for short,
and denoted

lim : [C,D] — D
<

3

(48)

I

[C, D] D .

3

I

If h(_m (li_)m) exists for a given D, one says that D has all limits (_has all colimits_) of shape
c ¢

C_ or that all limits (colimits) of shape D exist in D. If this is the case for all small diagrams
C, one says that D has all limits (_has all colimits_) or that all limits exist in D, (_all colimits
existin D.)

Remark 3.2. (limit cones)

Unwinding Definition 3.1 of limits and colimits, it says the following.

First of all, for d € D any object and F : C — D any functor, a natural transformation (Def.
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1.23) of the form
i
consty = F (49)

has component morphisms
d
I*
F(c)

in D, for each c € C, and the naturality condition (4) says that these form a commuting
diagram (Def. 1.4) of the form

d (50)
ic, e
F(cy) 5 F(cy)

. f . ..
for each morphism c; = ¢, in C. Due to the look of this diagram, one also calls such a
natural transformation a cone over the functor F.

Now the counit (Def. 1.33) of the (const—iliil)-adjunction (48) is a natural

transformation of the form

E€F
constjjmrp ——
o

and hence is, in components, a cone (50) over F:

lim F (51)
€r(c1) » \ €F(C2)
F(c1) 5 F)

to be called the limiting cone over F

But the universal property of adjunctions says that this is a very special cone: By Prop.
1.42 the defining property of the limit is equivalently that for every natural
transformation of the form (49), hence for every cone of the form (50), there is a unique
natural transformation

i
const; = constjjy
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which, due to constancy of the two functors applied in the naturality condition (4), has a
constant component morphism

d - lim F (52)
H
such that
i
consty — constjjm r
(3 N ‘/l
F
hence such that (52) factors the given cone (50) through the special cone (51):
d
d |
oy Ve o lim F
H
F(cq) FO) F(cy) er(c1) » \ EF(C2)
F(c1) g Fle2)

In this case one also says that i is a morphism of cones.

Hence a limit cone is a cone over F, such that every other cone factors through it in a
unique way.

Of course this concept of (co)limiting cone over a functor F : C — D makes sense also
when

1. Cis not small,

2.and/or when a (co-)limiting cone exists only for some but not for all functors of this
form.

Example 3.3. (terminal/initial object is empty limit/colimit)

Let C be a category, and let * € C be an object. The following are equivalent:

1. * is a terminal object of C (Def. 1.5);

2. *is the limit of the empty diagram.

And formally dual (example 1.13): Let @ € C be an object. The following are equivalent:
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1. @ is an initial object of C (Def. 1.5);

Proof. We discuss the case of the terminal object, the other case is formally dual (Example
1.13).

[t suffices to observe that a cone over the empty diagram (Remark 3.2) is clearly just a plain
object of C. Hence a morphism of such cones is just a plain morphism of C. This way the
condition on a limiting cone is now manifestly the same as the condition on a terminal
object. i

Example 3.4. (initial object is limit over identity functor)

Let C be a category, and let @ € C be an object. The following are equivalent:

1. @ is an initial object of C (Def. 1.5);

2. @ is the tip of a limit cone (Remark 3.2) over the identity functor on C.

Proof. First let @ be an initial object. Then, by definition, it is the tip of a unique cone over
the identity functor

consty 0) (53)
id c — c
e 1 7 2

We need to show that that every other cone i*

const, x

. iX

lx U lcl ‘/ \‘lCZ
ide cq 7> C,

factors uniquely through i®.

First of all, since the cones are over the identity functor, there is the component if,f x> 0,
and it is a morphism of cones.

To see that this is the unique morphism of cones, consider any morphism of cones j;, hence

a morphism in C such that i¥ = i®o Jg forall ¢ € C. Taking here ¢ = @ yields
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_ 0
iy = \lg 013

=id¢

:J'g»

where under the brace we used that @ is initial. This proves that i? is the limiting cone.

For the converse, assume now that i? is a limiting cone over the identity functor, with labels
as in (53). We need to show that its tip @ is an initial object.

Now the cone condition applied for any object x € C over the morphims f = i,(? says that

)

x

) ?

oi¢=ix

which means that ig constitutes a morphism of cones from i® to itself. But since i? is

assumed to be a limiting cone, and since the identity morphism on @ is of course also a
morphism of cones from i? to itsely, we deduce that

iy = idy . (54)

?

Now consider any morphism of the form @ ER x. Since we already have the morphism @ k3 X,

to show initiality of @ we need to show that f = i?.

Indeed, the cone condition of i,? applied to f now yields

where under the brace we used (54). R

Example 3.5. (limits of presheaves are computed objectwise)

Let C be a category and write [C°P, Set] for its category of presheaves (Example 1.26). Let
moreover D be a small category and consider any functor

F:D— [C°P D],

hence a D-shaped diagram in the category of presheaves.

Then

1. The limit (Def. 3.1) of F exists, and is the presheaf which over any object c € C is
given by the limit in Set of the values of the presheaves at c:
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(h(_m F(d))(c) ~ lim F(d)(©)

deD deD

2. The colimit (Def. 3.1) of F exists, and is the presheaf which over any object ¢ € C is
given by the colimit in Set of the values of the presheaves at c:

deD deD

(h_r,n F(d))(c) ~ lim F(d)(©)

Proof. We discuss the case of limits, the other case is formally dual (Example 1.13).

Observe that there is a canonical equivalence (Def. 1.57)

(D, [C°P, Set ] ~ [D x C°P, Set]
where D x C°P is the product category.

This makes manifest that a functor F : D — [C°P, Set] is equivalently a diagram of the form

l l
— F(d)(e) —  Fd)(e) —
l l

— F(dy)(c1) —  F(dx)(c1) —

l l

Then observe that taking the limit of each “horizontal row” in such a diagram indead does
yield a presheaf on C, in that the construction extends from objects to morphisms, and

uniquely so: This is because for any morphism ¢4 5 ¢, in C, a cone over F(—)(cy) (Remark
3.2) induces a cone over F(—)(c;), by vertical composition with F(—)(g)
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lim F(d)(c;)

deD
/ \
Fldy)(e2) - F(dz)(c2)
F(d1)(9) | | @)
Fldy)(en) - F(dz)(c1)

From this, the universal property of limits of sets (as in Remark 3.2) implies that there is a
unique morphism between the pointwise limits which constitutes a presheaf over C

lim F(d)(c;)

deD
lim F(d)(9)
deD
lim F(d)(c)
deD

and that is the tip of a cone over the diagram F(—) in presheaves.
Hence it remains to see that this cone of presheaves is indeed universal.

Now if I is any other cone over F in the category of presheaves, then by the universal
property of the pointswise limits, there is for each ¢ € C a unique morphism of cones in sets

I(c) — lim F(d)(c) .
deD

Hence there is at most one morphisms of cones of presheaves, namely if these components
make all their naturality squares commute.

I(c;) — lim F(d)(cy)
deD

l l

I(cy) — lim F(d)(c1)
deD

But since everything else commutes, the two ways of going around this diagram constitute
two morphisms from a cone over F(—)(c;) to the limit cone over F(—)(c;), and hence they
must be equal, by the universal property of limits. Wi

Proposition 3.6. (hom-functor preserves limits)
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Let C be a category and write
Home : C°P X C — Set

for its hom-functor. This preserves limits (Def. 3.1) in both its arguments (recalling that a
limit in the opposite category C°P is a colimit in C).

More in detail, let X,:J — C be a diagram. Then:

1. If the limit lin X; exists in C then for all Y € C there is a natural isomorphism
l

H0m6<Y, lim Xi) = mi(Hom@(Y, X1),

where on the right we have the limit over the diagram of hom-sets given by

X Home(Y, -)
Home(Y, =)o X : 7 — € ———— Set .

2. If the colimitli_r)n_ X; exists in C then for all Y € C there is a natural isomorphism
l

Hom@<li_m)i Xi, Y) = liLni(Home(Xi, Y)),

where on the right we have the limit over the diagram of hom-sets given by

X H -Y
Home(—,Y)o X : 70 25 cop 20 g

Proof. We give the proof of the first statement, the proof of the second statement is formally
dual (Example 1.13).

First observe that, by the very definition of limiting cones, maps out of some Y into them are
in natural bijection with the set Cones(Y, X,) of cones over the diagram X, with tip Y:

Hom(Y,lim Xl-> ~ Cones(Y,X.) .
—i

Hence it remains to show that there is also a natural bijection like so:

Cones(Y,X,) = li(_m_(Hom(Y,Xi)).
l

Now, again by the very definition of limiting cones, a single element in the limit on the right
is equivalently a cone of the form
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COI’lStpi / COHStpj

\

Hom(Y, X;) Hom(Y, X;)

T
Xao (=) i, j € Obj(7), & € Homy (i, j)

This is equivalently for each object i € J a choice of morphism p;:Y — X;, such that for each
pair of objects i,j € J and each a@ € Hom;y(i, j) we have X, op, = p; And indeed, this is

precisely the characterization of an element in the set Cones(Y, X.}). W

Example 3.7. (initial and terminal object in terms of adjunction)

Let C be a category (Def. 1.1).

1. The following are equivalent:

1. C has a terminal object (Def. 1.5);

2. the unique functor € - * (Def. 1.15) to the terminal category (Example 1.7)
has a right adjoint (Def. 1.32)

H
*1C
H

Under this equivalence, the terminal object is identified with the image under the
right adjoint of the unique object of the terminal category.

2. Dually, the following are equivalent:
1. C has an initial object (Def. 1.5);

2. the unique functor C = * to the terminal category has a left adjoint

(—
c 1l *
_)

Under this equivalence, the initial object is identified with the image under the left
adjoint of the unique object of the terminal category.

Proof. Since the unique hom-set in the terminal category is the singleton, the hom-
isomorphism (10) characterizing the adjoint functors is directly the universal property of an
initial objectin C

Home(L(*),X) = Hom«(*,R(X)) = *

or of a terminal object

Home (X, R(*)) = Hom«(L(X), *) = *,
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respectively. |l

Proposition 3.8. (left adjoints preserve colimits and right adjoints preserve limits)

Let (L 4 R):D — C be a pair of adjoint functors (Def. 1.32). Then

o L preserves all colimits (Def. 3.1) that exist in C,

e R preserves all limits (Def. 3.1) in D.

Proof. Let y:1 - D be a diagram whose limit lim._, y, exists. Then we have a sequence of

natural isomorphisms, naturalin x € C

Homc(x,Rliiqi y;) = Homp(Lx, li_mi y;)
= liLniHomD(Lx, y;)
= liLniHomC(x, Ry,)
~ Home(x, lim Ry,),
where we used the hom-isomorphism (10) and the fact that any hom-functor preserves

limits (Def. 3.6). Because this is natural in x the Yoneda lemma implies that we have an
isomorphism

Rlim y; =lim Ry, .

The argument that shows the preservation of colimits by L is analogous. i

Proposition 3.9. (limits commute with limits)

Let D and D' be small categories (Def. 1.6) and let C be a category (Def. 1.1) which admits
limits (Def. 3.1) of shape D as well as limits of shape D'. Then these limits “commute” with
each other, in that for F : DX D' — C a functor (hence a diagram of shape the product
category), with corresponding adjunct functors (via Example 2.11)

» Fp Fpy ’
D' — [D,C] D — [D',C]
we have that the canonical comparison morphism
limF = limD(limD, FD) = limD, (llmD FD’) (55)

is an isomorphism.

Proof. Since the limit-construction is the right adjoint functor to the constant diagram-
functor, this is a special case of right adjoints preserve limits (Prop. 3.8). i
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See limits and colimits by example for what formula (55) says for instance for the special case
C = Set.

Remark 3.10. (general non-commutativity of limits with colimits)

In general limits do not commute with colimits. But under a number of special conditions
of interest they do. Special cases and concrete examples are discussed at commutativity of
limits and colimits.

Proposition 3.11. (pointwise expression of left adjoints in terms of limits over comma

categories)

A functor R : C — D (Def. 1.15) has a left adjoint L : D — C (Def. 1.32) precisely if

1. R preserves all limits (Def. 3.1) that exist in C;

2. for each object d € D, the limit (Def. 3.1) of the canonical functor (22) out of the
comma category (Example 1.43)

d/R—C
exists.

In this case the value of the left adjoint L on d is given by that limit:

L(d) = lim ¢ (56)
d
c, if €d/R
R(c)

Proof. First assume that the left adjoint exist. Then

1. R is a right adjoint and hence preserves limits since all right adjoints preserve limits
(Prop. 3.8);

2. by Prop. 1.42 the adjunction unit provides a universal morphism 7, into L(d), and
hence, by Prop. 1.44, exhibits (L(d),n,) as the initial object of the comma category

d / R. The limit over any category with an initial object exists, as it is given by that
initial object.

Conversely, assume that the two conditions are satisfied and let L(d) be given by (56). We
need to show that this yields a left adjoint.

By the assumption that R preserves all limits that exist, we have
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\ (57)

R(L(d) =R lim ¢
d

c, lf €d/R
R(c) /
~ lim  R(o)
da
c, lf €d/R
R(c)

Since the d ER R(d) constitute a cone over the diagram of the R(d), there is universal
morphism

d—"“ L RL()) .

By Prop. 1.42 it is now sufficient to show that n, is a universal morphism into L(d), hence

that forall ¢ € Cand d -2 R(c) there is a unique morphism L(d) ERN ¢ such that

d
Ta v \
R(L(d)) = R(c)
L(d) — c

By Prop. 1.44, this is equivalent to (L(d),n,) being the initial object in the comma category
¢ / R, which in turn is equivalent to it being the limit of the identity functor on ¢ /R (by
Example 3.4). But this follows directly from the limit formulas (56) and (57). B

Remark 3.12. (adjoint functor theorem)

Beware the subtle point in Prop. 3.11, that the comma category ¢ / F is in general not a
small category (Def. 1.6): It has typically “as many” objects as C has, and C is not assumed
to be small (while of course it may happen to be). But typical categories, such as notably
the category of sets (Example 1.2) are generally guaranteed only to admit limits over
small categories. For this reason, Prop. 3.11 is rarely useful for finding an adjoint functor
which is not already established to exist by other means.

But there are good sufficient conditions known, on top of the condition that R preserves
limits, which guarantee the existence of an adjoint functor, after all. This is the topic of the
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adjoint functor theorem (one of the rare instances of useful and non-trivial theorems in
mathematics for which issues of set theoretic size play a crucial role for their statement
and proof).

A very special but also very useful case of the adjoint functor theorem is the existence of
adjoints of base change functors between categories of (enriched) presheaves via Kan
extension. This we discuss as Prop. 3.29 below. Since this is most conveniently phrased in
terms of special limits/colimits called ends/coends (Def. 3.13 below) we first discuss
these.

Ends and coends

For working with enriched categories (Def. 2.40) , a certain shape of limits/colimits (Def.
3.1) is particularly relevant: these are called ends and coends (Def. 3.13 below). We here
introduce these and then derive some of their basic properties, such as notably the
expression for Kan extension in terms of (co-)ends (prop. 3.29 below).

Definition 3.13. ((co)end)

Let C be a small V-enriched category (Def. 2.40). Let

F:CPxec—V

be an enriched functor (Def. 2.46) out of the enriched product category of C with its

1. The coend of F, denoted

cecC

jF(c,c) €V,

is the coequalizer in V of the two actions encoded in F via Example 2.49:

taPeay@ v
U C(c,d) ®F(d,c) ]_[F(c,c)(ﬁ>1 jF(c,c).

c,deC cl,Jdp(d'C)(C) cecC

2. The end of F, denoted
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jF(c,c) €V,

cecC

is the equalizer in V of the adjuncts of the two actions encoded in F via example
2.49:

U Bg,c(d)
jF(c, c) BN HF(C, c) 1_[ [C(c,d), F(c,d)] .

Ze ceC Cudﬁ)(c,d)(c) ceC
c ,

Example 3.14. For V a cosmos, let G € V be a group object. There is the n the one-object V-
enriched category B G as in Example 1.11.

Then a V-enriched functor

X,p) : BG—V

is an object X := F(*) € V equipped with a morphism

p GRX—X

satisfying the action property. Hence this is equivalently an action of G on X.

(BG)°P = B(G°P) .

(The isomorphism G =~ G°P induces a canonical eugivalence of enriched categories
(BG)°P ~BG.)

So an enriched functor

(¥,p,) : BG® =V

is equivalently a right action of G.

Therefore the coend of two such functors (def. 3.13) coequalizes the relation

(xg, ¥) ~ (x, gy)

(where juxtaposition denotes left/right action) and is the quotient of the plain tensor
product by the diagonal action of the group G:

122 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/equalizer
https://ncatlab.org/nlab/show/equalizer
https://ncatlab.org/nlab/show/adjuncts
https://ncatlab.org/nlab/show/adjuncts
https://ncatlab.org/nlab/show/cosmos
https://ncatlab.org/nlab/show/cosmos
https://ncatlab.org/nlab/show/group+object
https://ncatlab.org/nlab/show/group+object
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/enriched+category
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/object
https://ncatlab.org/nlab/show/morphism
https://ncatlab.org/nlab/show/morphism
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/opposite+category
https://ncatlab.org/nlab/show/opposite+category
https://ncatlab.org/nlab/show/opposite+group
https://ncatlab.org/nlab/show/opposite+group
https://ncatlab.org/nlab/show/group+object
https://ncatlab.org/nlab/show/group+object
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/coend
https://ncatlab.org/nlab/show/coend
https://ncatlab.org/nlab/show/quotient
https://ncatlab.org/nlab/show/quotient
https://ncatlab.org/nlab/show/tensor+product
https://ncatlab.org/nlab/show/tensor+product
https://ncatlab.org/nlab/show/tensor+product
https://ncatlab.org/nlab/show/tensor+product
https://ncatlab.org/nlab/show/diagonal+action
https://ncatlab.org/nlab/show/diagonal+action

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

*€B(G4)

¥,0,)() ® X,p)(*) = Y ®;X .

Example 3.15. (enriched natural transformations as ends)

Let C be a small enriched category (Def. 2.40). For F,G : € — V two enriched presheaves
(Example 2.48), the end (def. 3.13) of the internal-hom-functor

[F(=),G(=)] : C’xC —V

is an object of V whose underlying set (Example 2.38) is the set of enriched natural
transformations F = G (Def. 2.50)

Homy, 1,( f [F(c), G(c)]> =~ Homyey(F,G) .
cecC
Proof. The underlying pointed set functor Homy,(1, —):V — Set preserves all limits, since

hom-functors preserve limits (Prop. 3.6). Therefore there is an equalizer diagram in Set of
the form

L U(pg (@)

Homy 1,( j [F(c),c;(c)]> i nHomV(F(c),G(c)) H Homy (C(c, d

ceC U UPqn(©)cdee
cec ca red

where we used Example 2.39 to identify underlying sets of internal homs with hom-sets.

Here the object in the middle is just the set of indexed sets of component morphisms

N¢ . . . .
{F (c) = G(c)}cec. The two parallel maps in the equalizer diagram take such a collection to

the indexed set of composites (45) and (46). Hence that these two are equalized is precisely
the condition that the indexed set of components constitutes an enriched natural
transformation. i

Conversely, example 3.15 says that ends over bifunctors of the form [F(—),G(—))]
constitute hom-spaces between pointed topologically enriched functors:

Definition 3.16. (enriched presheaf category)

For V a cosmos (Def. 2.36), let C be a small V-enriched category (Def. 2.40).

Then the V-enriched presheaf category [C, V] is V-enriched functor category from C to V,
hence is the following V-enriched category (Def. 2.40)
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F
1. the objects are the C-enriched functors € — V (Def. 2.46);

2. the hom-objects are the ends

(58)
[CVI(F,G) = f [F(c), G(c)]
cec

3.the composition operation on these is defined to be the one induced by the
composite maps

( j £ <C)'G(C)]> ®< J [G(c)ﬂ(c)]) — | [IFer6@1®160). 1) L

cCeC

cecC cecC

where the first morphism is degreewise given by projection out of the limits that
defined the ends. This composite evidently equalizes the two relevant adjunct
actions (as in the proof of example 3.15) and hence defines a map into the end

( j[F(C),G(C)]> ®< j[G(C),H(C)]> — j[F(C),H(C)] :

cecC cCeC cCeC

By Example 3.15, the underlying plain category (Example 2.43) of this enriched functor
category is the plain functor category of enriched functors from Example 2.51.

Proposition 3.17. (enriched Yoneda lemma)

ForV a cosmos (Def. 2.36) let C be a small enriched category (Def. 2.40). For F:C — V an
enriched presheaf (Example 2.48) and for ¢ € C an object, there is a natural isomorphism

[C,V](C(c, =), F) = F(c)

between the hom-object of the enriched functor category (Def. 3.16), from the functor
represented by c to F, and the value of F on c.

In terms of the ends (def. 3.13) defining these hom-objects (58), this means that

j[C’(C;d),F(d)] = F(o) .

dec

In this form the statement is also known as Yoneda reduction.

Now that natural transformations are expressed in terms of ends (example 3.15), as is the
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enriched Yoneda lemma (prop. 3.17), it is natural to consider the dual statement (Example
1.13) involving coends:

Proposition 3.18. (enriched co-Yoneda lemma)

ForV a cosmos (Def. 2.36), let C be a small V-enriched category (Def. 2.40). For F:C — V an
enriched presheaf (Def. 2.48) and for ¢ € C an object, there is a natural isomorphism

cCEC

F(-) = jc’(a —)®F(c) .

Moreover, the morphism that hence exhibits F(c) as the coequalizer of the two morphisms in
def. 3.13 is componentwise the canonical action

C(c,d) ® F(c) — F(d)

which is adjunct to the component map C(d, c) — [F(c), F(d)] of the enriched functor F.

(e.g. MMSS 00, lemma 1.6)

Proof. By the definition of coends and the universal property of colimits, enriched natural
transformations of the form

ceC

( j c(c, —)®F(c)) G

are in natural bijection with systems of component morphisms

C(c,d) @ F(c) — G(d)

which satisfy some compatibility conditions in their dependence on ¢ and d (natural in d
and “extranatural” in c¢). By the internal hom adjunction, these are in natural bijection to
systems of morphisms of the form

F(c) — [C(c,d), G(d)]

satisfying the analogous compatibility conditions. By Example 3.15 these are in natural
bijection with systems of morphisms

F(c) — [6,V]I(C(c, —),G(—))

natural in ¢
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By the enriched Yoneda lemma (Prop. 3.17), these, finally, are in natural bijection with
systems of morphisms

F(c) — G(co)

natural in c. Moreover, all these identifications are also natural in G. Therefore, in summary,
this shows that there is a natural isomorphism

ceC

HOIn[C’,V]( jc(‘?: -)QF(c), (‘)) =~ Homgey(F,(—)) -

With this, the ordinary Yoneda lemma (Prop. 1.29) in the form of the Yoneda embedding of
[C, V] implies the required isomorphism.

Example 3.19. (co-Yoneda lemma over Set)

Consider the co-Yoneda lemma (Prop. 3.18) in the special case V = Set (Example 2.37).

In this case the coequalizer in question is the set of equivalence classes of pairs

(c—=cg x) €C(c,ch) ®F(0),
where two such pairs
f g
(c>cg, x€F(c)), (d—cy y€EF())

are regarded as equivalent if there exists

such that
f=g°¢, and y=¢x).

(Because then the two pairs are the two images of the pair (g,x) under the two
morphisms being coequalized.)

But now considering the case thatd = ¢y and g = id,, so that f = ¢ shows that any pair

(c f) Co, X € F(c))

is identified, in the coequalizer, with the pair

5/1/2025, 2:02 PM
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(id¢,, ¢(x) € F(co)),
hence with ¢(x) € F(cy).
As a conceptually important corollary we obtain:

Proposition 3.20. (category of presheaves is free co-completion)

For C a small category (Def. 1.6), its Yoneda embedding C 2 [C°P, Set] (Prop. 1.30) exhibits
the category of presheaves [C°P, Set| (Example 1.26) as the free co-completion of C under
forming colimits (Def. 3.1), in that it is a universal morphism, as in Def. 1.41 but “up to
natural isomorphism’; into a category with all colimits (by Example 3.5) in the following

sense:

1. for D any category with all colimits (Def. 3.1);
2. for F : C — D any functor;

there is a functor F : [C°P,Set] — D, unique up to natural isomorphism such that

1. F preserves all colimits,

2. F extends F through the Yoneda embedding, in that the following diagram commutes,
up to natural isomorphism (Def. 1.23):

C
Yv v NP
[COp,SetﬂI? D

Hence when interpreting presheaves as generalized spaces, this says that “generalized
spaces are precisely what is obtained from allowing arbitrary gluings of ordinary spaces’,
see also Remark 4.16 below.

Proof. The last condition says that F is fixed on representable presheaves by

F(y(c)) = F(c) . (59)
and in fact naturally so:

€1 F(}’(CO) =~ F(cq) (60)
rl roon | (L
C2 1?(}’(02)) =~ F(cz)

But the co-Yoneda lemma (Prop. 3.18) expresses every presheaf X € [C°P, Set] as a colimit of
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representable presheaves (in the special case of enrichment over Set, Example 3.19)

cecC
X = f y(c)-X(c) .

Since F is required to preserve any colimit and hence these particular colimits, (59) implies
that F is fixed to act, up to isomorphism, as

cec ceC
F()Q:’F( j y(c)-X(c)> = j F(c)-X(c) €D

(where the colimit on the right is computed in D!).

Remark 3.21. The statement of the co-Yoneda lemma in prop. 3.18 is a kind of
categorification of the following statement in analysis (whence the notation with the
integral signs):

For X a topological space, f: X — R a continuous function and §(—, xy) denoting the Dirac

distribution, then
f 8(x,x0)f(x) = f(xo) -
XEX

[t is this analogy that gives the name to the following statement:

Proposition 3.22. (Fubini theorem for (co)-ends)

ForV a cosmos (Def. 2.36), let C4, C, be two V-enriched categories (Def. 2.40) and

F: (61X62)0p><(€1 XCZ) — P

a V-enriched functor (Def. 2.46) from the product category with opposite categories (Def.
2.45), as shown.

Then its end and coend (def. 3.13) is equivalently formed consecutively over each variable, in
either order:

(c1,¢2) €1 € Cy €1

F((c1,¢2), (€1, ¢2)) = fjF((CpCz),(61,62))z ij((Cl,Cz),(CpCz))

and
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JF((CLCZ)»(CLCZ)) = ffF((CLCz): (c1,c2)) = ij((CerZ)' (c1,¢2)) -

(c1,¢2) €1 C2 C2 C1
Proof. Because limits commute with limits, and colimits commute with colimits. i

Remark 3.23. (internal hom preserves ends)

Let V be a cosmos (Def. 2.36). Since the internal hom-functor in V (Def. 2.8) preserves
limits in both variables (Prop. 2.15), in particular it preserves ends (Def. 3.13) in the
second variable, and sends coends in the second variable to ends:

For all small C-enriched categories, V-enriched functors F : C°°? ® C - V (Def. 2.46) and
all objects X € V we have natural isomorphisms

cecC cec
X,J F(c,o)| = j [X,F(c,0)]
cecC
Ij F(c,0),X ZJ [F(c,0),X] .
cec

With this coend calculus in hand, there is an elegant proof of the defining universal property
of the smash tensoring and powering enriched presheaves

and

Definition 3.24. (tensoring and powering of enriched presheaves)

Let C be a V-enriched category, def. 2.40, with [C,V] its functor category of enriched
functors (Example 2.51).

1. Define a functor
(=) (=) [CGV]XV — [CV]

by forming objectwise tensor products

F-X:cr»Fl)®X.

This is called the tensoring of [C, V] over V.

2. Define a functor

(=) YPx e, V] — [C V]
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by forming objectwise internal homs (Def. 2.8)

F¥:cw [X,F(0)].

This is called the powering of [C, V] over V.

Proposition 3.25. (universal property of tensoring and powering of enriched

presheaves)

ForV a cosmos (Def. 2.36), let C be a small V-enriched category (Def. 2.40), with [C,V] the
corresponding enriched presheaf category.

Then there are natural isomorphisms

[CVIX-K, V) = [K([cVIXY))]
and
[e,V)(Xx, Y¥) = [K, ([c,ClX,1))]

for all X,Y € [C,V] and all K € C, where (—)* is the powering and (=) -K the tensoring
from Def. 3.24.

In particular there is the composite natural isomorphism

[CVI(X-KY) = [cV](X,YF)
exhibiting a pair of adjoint functors

(-)K
b
[c,V] L [¢V].
(-¥

Proof. Via the end-expression for [C,V]|(—, —) from Example 3.15, and the fact (remark
3.23) that the internal hom-functor ends in the second variable, this reduces to the fact that

[—, —] is the internal hom in the closed monoidal category V (Example 2.44) and hence
satisfies the internal tensor/hom-adjunction isomorphism (prop. 2.14):
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[

[CVIX-K,Y) = [[(X-K)(c),Y(c)]

c

[

1R

[X(c) ® K, Y (x)]

(9}

(

1R

[K, [X(c), Y ()]

S

= [K, J[X(C)' Y(oll

= [K, ([¢, V](X,Y))]

and

[C,VI(X,Y5) = j [X (), Y¥(0)]

c

= j [X (o), [K, Y (O)]]

c

=~ j[X(C)®K,Y(C)]

c

=~ j[K, [X(c), Y (o)l

c

= [K, j[X(C), Y(oll

~ [K,[C,V](X,Y] .

Tensoring and cotensoring
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We make explicit the general concept of which Prpp. 3.25 provides a key class of examples:

Definition 3.26. (tensoring and cotensoring)

For V a cosmos (Def. 2.36) let C be a V-enriched category (Def. 2.40). Recall the enriched
hom-functors (Example 2.47)

C(— —):CP’xCc—oV
and (via Example 2.44)
V(- -)=[-—-]:VPxV—->V.

1. A powering (or cotensoring) of C over V is

1. a functor (Def. 1.15)

[—, —]:VPxC—¢C

2.for each v € V a natural isomorphism (Def. 1.23) of the form

V(U, C(clr CZ)) = C(clr ['U, CZ]) (61)

2. A copowering (or tensoring) of C over V is

1. a functor (Def. 1.15)

(D)X (=-): VXC—C

2.for each v € V a natural isomorphism (Def. 1.23) of the form

Cw®cy,c2) = V(,C(cy,¢2)) (62)
If C is equipped with a (co-)powering it is called (co-)powered over V.

Proposition 3.27. (tensoring left adjoint to cotensoring)

ForV a cosmos (Def. 2.36) let C be a V-enriched category (Def. 2.40).

If C is both tensored and cotensored over V (Def. 3.26), then for fixed v € V the operations of
tensoring with v and of cotensoring with 'V form a pair of adjoint functors (Def. 1.32)

vR(-)
%
(64 1 C
%

(v, ~]
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Proof. The hom-isomorphism (10) characterizing the pair of adjoint functors is provided by
the composition of the natural isomorphisms (61) and (62):

C(v®clrc2) = v(v'C(CLCZ)) = C(Cli [U,Cz])
|

Proposition 3.28. (in tensored and cotensored categories initial/terminal objects are
enriched initial/terminal)

ForV a cosmos (Def. 2.36) let C be a V-enriched category (Def. 2.40).

If C is both tensored and cotensored overV (Def. 3.26) then

1. an initial object @ (Def. 1.5) of the underlying category of C (Example 2.43) is also
enriched initial, in that the hom-object out of it is the terminal object * of V

C@,c) = *

2. a terminal object * (Def. 1.5) of the underlying category of C (Example 2.43) is also
enriched terminal, in that the hom-object into it is the terminal object of V:

Clc,*) = ~*

Proof. We discuss the first claim, the second is formally dual.

By prop. 3.27, tensoring is a left adjoint. Since left adjoints preserve colimits (Prop. 3.8), and
since an initial object is the colimit over the empty diagram (Example 3.3), it follows that

VRO = @

for all v € V, in particular for @ € V. Therefore the natural isomorphism (62) implies for all
v € V that

C(@,c) = CORD,c) = V(B,C(®,¢c) = *

where in the last step we used that the internal hom V(—, —) = [—, —] in V sends colimits
in its first argument to limits (Prop. 2.15) and used that a terminal object is the limit over
the empty diagram (Example 3.3). i

Kan extensions

Proposition 3.29. (Kan extension)
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ForV a cosmos (Def. 2.36), let C, D be small V-enriched categories (Def. 2.40) and let

p:C—D

be a V-enriched functor (Def. 2.46). Then precomposition with p constitutes a functor
between the corresponding V-enriched presheaf categories (Def. 3.16)

p* [D,V] — |[CV] (63)
. G = Go p
1. This enriched functor p” (63) has an enriched left adjoint Lan, (Def. 2.52), called left
Kan extension along p

Lanp
[D,V] L [€V]
p *

which is given objectwise by the coend (def. 3.13):

cecC [64)
(Lany, F) : d = fD(p(c),d)@F(c).

2. The enriched functor p* (63) has an enriched right adjoint Ran,, (Def. 2.52), called
right Kan extension along p

*

p
[cV] L [DV]

Rany,
which is given objectwise by the end (def. 3.13):

(65)
(Ran, F) : d » f[D(d,p(c)),F(c)] :

cecC

In summary, this means that the enriched functor

¢t

induces, via Kan extension, an adjoint triple (Remark 1.34) of enriched functors

Lan, 4 p 4 Ran, : [C,V] & [D,V]. (66)
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Proof. Use the expression of enriched natural transformations in terms of coends (example
3.15 and def. 3.16), then use the respect of [ —, —] for ends/coends (remark 3.23), use the
internal-hom adjunction (38), use the Fubini theorem (prop. 3.22) and finally use Yoneda
reduction (prop. 3.17) to obtain a sequence of natural isomorphisms as follows:

[D,V](Lan, F, G) = f[(Lanp F)(d), G(d)]

deD

cecC
= j j’D(p(C),d)@)F(C), G(d)
deD

~ f j [D(p(c),d) ® F(c), G(d)]

deDceC

12

Jr j[F(C)' [D(p(c), D), G(A)]]

ceECAED

r[F (©), f [D(p(c), D), G(A)]]

ceC deD

1R

=~ j [F(c), G(p(c))]
cec

[C,VI(F,p"6)

and similarly:
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[

[D,V](G, Ran, F) = | [G(d), (Ran,, F)(d), |

deD

1R

Jr[G(d). j[D(d,P(C)),F(C)]

deD cecC
deDcecC
deD

f[ fG(d)@)D(d,P(C)), F(c)

cCeC

1R

[G(d) ® D(d, p(c)), F(c)]

12

1R

f [G(p(c)), F(c)]
cE€ED

= [C,V](p'G,F)

Example 3.30. (coend formula for left Kan extension of ordinary presheaves)

Consider the cosmos to be V = Set, via Example 2.37, so that small V-enriched categories
(Def. 2.40) are just a plain small category (Def. 1.1) by Example 2.41, and V-enriched
presheaves (Example 2.48) are just plain presheaves (Example 1.26).

Then for any plain functor (Def. 1.15)
COp b (C,) op

the general formula (64) for left Kan extension

L
[CP, Set] ——% [(C")°P, Set]

is
cecC
(Lan, F)(c") = j C'(c',p(c)) X F(c) .

Using here the Yoneda lemma (Prop. 1.29) to rewrite F(c) = Hompgy¢) (¢, F), this is
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cec

(Lan, F)(c) = | Homg, (¢, p(c)) X Hompsh(c) (¢, F) -

Hence this coend-set consists of equivalence classes of pairs of morphisms

(¢ = p(0),c—F)

where two such are regarded as equivalent whenever there is f:c¢'; = ¢', such that

C

vd N

p(f)
p(cy) — p(cz)
f )
Cl i CZ

\ 4

F

This is particularly suggestive when p is a full subcategory inclusion (Def. 1.19). For in
that case we may imagine that a representative pair (¢’ = p(c), ¢ — F) is a stand-in for the
actual pullback of elements of F along the would-be composite “c’ — ¢ — F”, only that this
composite need not be defined. But the above equivalence relation is precisely that under
which this composite would be invariant.

Further properties

We collect here further key properties of the various universal constructions considered
above.

Proposition 3.31. (left Kan extension preserves representable functors)

ForV a cosmos (Def. 2.36), let

¢t

be a V-enriched functor (Def. 2.46) between small V-enriched categories (Def. 2.40).

Then the left Kan extension Lan, (Prop. 3.29) takes representable enriched presheaves
C(c, =) : C = V to their image under p:

Lan, C(c, =) = D(p(c), —)
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forall c € C.

Proof. By the coend formula (64) we have, naturally in d' € D, the expression
crec
Lan, C(c, —) : d' = j D(p(ch),d) ®C(c, —)(c")

crecC
i j D(p(c"),d) ® C(c,c)

= D(p(c),d)

where the last step is the co-Yoneda lemma (Prop. 3.18). W

Example 3.32. (Kan extension of adjoint pair is adjoint quadruple)

For V a cosmos (Def. 2.36), let C, D be two small V-enriched categories (Def. 2.40) and let

L
C LD

ﬁ

P

be a V-enriched adjunction (Def. 2.52). Then there are V-enriched natural isomorphisms
(Def. 2.50)

(qOP)* ~ Lanpop : [COP,V] — [DOp,V]
(p°P)" = Rangop : [D°P, V] — [C°P, V]

between the precomposition on enriched presheaves with one functor and the left/right
Kan extension of the other (Def. 3.29).

By essential uniqueness of adjoint functors, this means that the two adjoint triples
(Remark 1.34) given by Kan extension (66) of g and p

Langop - (q"p)* - Rangop

Lanyop - (p°p)* -+ Ranyop
merge into an adjoint quadruple (Remark 1.34)
Langop 4 (q°?)° 4 (p°P)" 4 Ranyop : [C°P,V] & [DP, V]

Proof. For every enriched presheaf F : C°P? - V we have a sequence of V-enriched natural
isomorphism as follows
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CEC

(Lanyop F)(d) = D(d,p(c)) ® F(c)

J
rceC
=~ C(q(d),c) @ F(c)

J

=~ F(q(d))
= ((q°®)F)(d) .

Here the first step is the coend-formula for left Kan extension (Prop. 3.29), the second step if
the enriched adjunction-isomorphism (47) for q 4 p and the third step is the co-Yoneda
lemma.

This shows the first statement, which, by essential uniqueness of adjoints, implies the
following statements. Wl

Proposition 3.33. (left Kan extension along fully faithful functor is fully faithful)

ForV a cosmos (Def. 2.36), let

p
C——D

be a fully faithful V-enriched functor (Def. 2.46) between small V-enriched categories (Def.
2.40).

Then forallc € C

p’(Lany,c) = c

and in fact the (Lang 4 F*)-unit of an adjunction is a natural isomorphism

Id 5 polan, .

hence, by Prop. 1.46,

Lany
[C°P, Set] ———— [D°P, Set]

is a fully faithful functor.

Proof. By the coend formula (64) we have, naturally in d' € D, the left Kan extension of any
F : C - Vonthe image of p is

139 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/coend
https://ncatlab.org/nlab/show/coend
https://ncatlab.org/nlab/show/left+Kan+extension
https://ncatlab.org/nlab/show/left+Kan+extension
https://ncatlab.org/nlab/show/enriched+adjunction
https://ncatlab.org/nlab/show/enriched+adjunction
https://ncatlab.org/nlab/show/co-Yoneda+lemma
https://ncatlab.org/nlab/show/co-Yoneda+lemma
https://ncatlab.org/nlab/show/co-Yoneda+lemma
https://ncatlab.org/nlab/show/co-Yoneda+lemma
https://ncatlab.org/nlab/show/left+Kan+extension
https://ncatlab.org/nlab/show/left+Kan+extension
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/cosmos
https://ncatlab.org/nlab/show/cosmos
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/enriched+functor
https://ncatlab.org/nlab/show/small+category
https://ncatlab.org/nlab/show/small+category
https://ncatlab.org/nlab/show/enriched+categories
https://ncatlab.org/nlab/show/enriched+categories
https://ncatlab.org/nlab/show/unit+of+an+adjunction
https://ncatlab.org/nlab/show/unit+of+an+adjunction
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/natural+isomorphism
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/fully+faithful+functor
https://ncatlab.org/nlab/show/coend
https://ncatlab.org/nlab/show/coend

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

crecC
Lany, F : p(c) = j D(p(c"),p(c)) - F(c)

crecC ,
o~ j c(c',c)-F(c")

~ F(c)

where in the second step we used the assumption of fully faithfulness of p and in the last
step we used the co-Yoneda lemma (Prop. 3.18). W

Lemma 3.34. (colimit of representable is singleton)

Let C be a small category (Def. 1.6). Then the colimit of a representable presheaf (Def. 1.26),
regarded as a functor

y(c) : C°P — Set
is the singleton set.

limy(c) = *. (67)
poP

Proof. One way to see this is to regard the colimit as the left Kan extension (Prop. 3.29)

along the unique functor ¢°P 2 % to the terminal category (Def. 1.7). By the formula (64)
this is

cLEC
lim y(c) = j * (= p(c1)) X y(c)(cy)

pOP consts(cq)

2

Cq eC
j const«(c1) X C(cq, )

~ const«(c)

*

12

where we made explicit the constant functor const« : C — Set, constant on the singleton set
*, and then applied the co-Yoneda lemma (Prop. 3.18). W

Proposition 3.35. (categories with finite products are cosifted

Let C be a small category (Def. 1.6) which has finite products. Then C is a cosifted category,
equivalently its opposite category C°P is a sifted category, equivalently colimits over C°P
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with values in Set are sifted colimits, equivalently colimits over C°P with values in Set
commute with finite products, as follows:

For X,Y € [C°P,Set] to functors on the opposite category of C (hence two presheaves on C,
Example 1.26) we have a natural isomorphism (Def. 1.23)

lim(XxY) = (limX) X (limY)
— — —_—

copP copP copP

between the colimit of their Cartesian product and the Cartesian product of their separate
colimits.

Proof. First observe that for X,Y € [C°P, Set] two presheaves, their Cartesian product is a

colimit over presheaves represented by Cartesian products in C. Explicity, using coend-
notation, we have:

€1,C2 €EC (68)
XXY = y(cy X c3) X X(cq) X Y(cp),

wherey : C & [C°P, Set] denotes the Yoneda embedding.

This is due to the following sequence of natural isomorphisms:

6166’

(XXY)(c) = C(c,c1) X X(cq1) | X ( C(c,c) X Y(cy)

CzEc

1R

C1LEC pCcr€EC
j j C(c,c1) X C(c,c3) X (X(cq) xX(cy))

~c(c,c1%XC3)
Cq eC Co eC
J j C(c,c1 X €3) X X(cq) X X(cz2),

where the first step expands out both presheaves as colimits of representables separately,
via the co-Yoneda lemma (Prop. 3.18), the second step uses that the Cartesian product of
presheaves is a two-variable left adjoint (by the symmetric closed monoidal structure on
presheaves) and as such preserves colimits (in particular coends) in each variable
separately (Prop. 3.8), and under the brace we use the defining universal property of the
Cartesian products, assumed to exist in C.

12

With this, we have the following sequence of natural isomorphisms:
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Cq1,C eC
“_H;)(XXY) = h_n);j y(c1 X ¢c3) XX(cq) X Y(cz)
D° D°

1R

C1,C2€c
j g_z)r;(ﬂﬁ X cp) X X(c1) xY(c2))

C1,C2€C
~ j li_rr);y(clxcz) X X(c1) X Y(cz)
DO

~ %

c1,C2 €EC
j (X(c1) X Y(c))

c1€C c, EC
= (j X(01)> X (f Y(Cz)>
(i)
copP c°P

Here the first step is (68), the second uses that colimits commute with colimits (Prop. 3.9),
the third uses again that the Cartesian product respects colimits in each variable separately,
the fourth is by Lemma 3.34, the last step is again the respect for colimits of the Cartesian
product in each variable separately. Wi

12

4. Basic notions of Topos theory

We have explained in Remark 1.28 how presheaves on a category C may be thought of as
generalized spaces probe-able by the objects of C, and that two consistency conditions on this
interpretation are provided by the Yoneda lemma (Prop. 1.29) and the resulting Yoneda
embedding (Prop. 1.30). Here we turn to a third consistency condition that one will want to
impose, namely a locality or gluing condition (Remark 4.1 below), to be called the sheaf
condition (Def. 4.1 below).

More in detail, we had seen that any category of presheaves [C°P,Set] is the free
cocompletion of the given small category C (Prop. 3.20) and hence exhibits generalized
spaces X € [C°P, Set] as being glued or generated form the “ordinary spaces” X € C. Further
conditions to be imposed now will impose relations among these generators, such as the
locality relation embodied by the sheaf-condition.
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[t turns out that these relations are reflected by special properties of an adjunction (Def.
1.32) that relates generalized spaces to ordinary spaces:

generalized spaces via generators and relations:

free cocompletion

— presheaves loc. presentable category sheaf topos
left exact
(—
H (E) [COP’ Set] H L . [cop’ Set] H y 1L [COp' Set]
accessible accessible
Prop. 3.20 Def. 4.30 Prop. 4.32
simplicial combinatorial model
model topos
presheaves category
E left exact
< [poP op
H __)Qu €™ SsetQu]pmi H Lqu [ SsetQu]pmj H T [COp'SSetQu]proj
— ¢ ,
accessible accessible
Example Def. Def.

Remark 4.1. (sheaf condition as local-to-global principle for generalized spaces)

If the objects of C are thought of as spaces of sorts, as in Remark 1.28, then there is
typically a notion of locality in these spaces, reflected by a notion of what it means to
cover a given space by (“smaller”) spaces (a coverage, Def. 4.3 below).

But if a space X € C is covered, say by two other spaces Uy, U, € C, via morphisms

Uy Uz
AV 7

i1 )

X

then this must be reflected in the behaviour of the probes of any generalized space Y (in
the sense of Remark 1.28) by these test spaces:

For ease of discussion, suppose that there is a sense in which these two patches above
intersect in X to form a space U; Ny U, € C. Then locality of probes should imply that the
ways of mapping U; and U, into Y such that these maps agree on the intersection
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U, Ny U,, should be equivalent to the ways of mapping all of X into Y.

maps fromU; and U, toY
locality : ~ {maps from X into Y}
that coincide on U4, Ny U,

One could call this the condition of locality of probes of generalized spaces probeable by
objects of C. But the established terminology is that this is the sheaf condition (74) on
presheaves over C. Those presheaves which satisfy this condition are called the sheaves
(Def. 4.8 below).

Remark 4.2. Warning

Most (if not all) introductions to sheaf theory insist on motivating the concept from the
special case of sheaves on topological spaces (Example 4.12 below). This is good
motivation for what Grothendieck called “petit topos”-theory. The motivation above,
instead, naturally leads to the “gros topos”-perspective, as in Example 4.15 below, which
is more useful for discussing the synthetic higher supergeometry of physics. In fact, this is
the perspective of functorial geometry that has been highlighted since Grothendieck 65,
but which has maybe remained underappreciated.

We now first introduce the sheaf-condition (Def. 4.8) below in its traditional form via
“matching families” (Def. 4.6 below). Then we show (Prop. 4.29 below) how this is
equivalently expressed in terms of Cech groupoids (Example 4.28 below). This second
formulation is convenient for understanding and handling various constructions in ordinary
topos theory (for instance the definition of cohesive sites) and it makes immediate the
generalization to higher topos theory.

Descent

Here we introduce the sheaf-condition (Def. 4.8 below) in its component-description via
matching families (Def. 4.6 below). Then we consider some of the general key properties of
the resulting categories of sheaves, such as notably their “convenience”, in the technical
sense of Prop. 4.23 below.

Definition 4.3. (coverage and site

Let C be a small category (Def. 1.6). Then a coverage on C is

o for each object X € C a set of indexed sets of morphisms into X
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{v; % x}

iel

called the coverings of X,

such that

e for every covering {Ul- 5 X} of X and every morphism Y ERN X there exists a
i€l

y
refining covering {V j 2 Y} of Y, meaning that for each j € J there exists i € I and
jeJ
Lig
a morphism V; KN U; such that

v, 9Ly, (69)
fey = oy, y | u
Yy —» X
f

A small category C equipped with a coverage is called a site.

Example 4.4. (canonical coverage on topological spaces)

whose coverings are the usal open covers of topological spaces.

The condition (69) on a coverage is met, since the preimages of open subsets under a
continuous function f are again open subsets, so that the preimages of an open cover
consistitute an open cover of the domain, such that the commuting diagram-condition
(69) is immediage.

Similarly, for X € Top a fixed topological space, there is the site Op(X) whose underlying
category is the category of opens of X, which is the thin category (Example 1.8) of open
subsets of X and subset inclusions, and whose coverings are again the open covers.

Example 4.5. (differentiably good open covers of smooth manifolds)

The category SmthMfd of smooth manifold (Example 1.3) carries a coverage (Def. 4.3),
where for X € SmthMfd any smooth manifold of dimension D € N, its coverings are

collections of smooth functions from the Cartesian space R” to X whose image is the
inclusion of an open ball.

Hence these are the usual open covers of X, but with the extra condition that every patch is
diffeomorphic to a Cartesian space (hence to a smooth open ball).

One may further constrain this and ask that also all the non-empty finite intersections of
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these open balls are diffeomorphic to open balls. These are the differentiably good open
covers.

To see that these coverings satisfy the condition (69): The plain pullback of an open cover
along any continuous function is again an open cover, just not necessarily by patches
diffeomorphic to open balls. But every open cover may be refined by one that is (see at
good open cover), and this is sufficient for (69).

Example 4.5 is further developed in the chapters smooth sets and on smooth homotopy types.

Definition 4.6. (matching family - descent object)

Let C be a small category equipped with a coverage, hence a site (Def. 4.3) and consider a
presheaf Y € [C°P, Set] (Example 1.26) over C.

Given an object X € C and a covering {Ul- 5 X}' of it (Def. 4.3) we say that a matching
iel

family (of probes of Y) is a tuple (¢, € Y(U;)),, such that for all i, j € I and pairs of

i€l

ki Kj
morphisms U; « V i U; satisfying

4 (70)
Ki ‘/ \‘K]
LioK; = LjoK; U; Uj
Li \’ '/Lj
X
we have
Y(k) (@) = Y()(®)) . (71)
We write
Match({U;},,, Y) € ﬂY(Ui) € Set (72)
i

for the set of matching families for the given presheaf and covering.

This is also called the descent object of Y for descent along the covering {U; R X}.

Example 4.7. (matching families that glue)

Let C be a small category equipped with a coverage, hence a site (Def. 4.3) and consider a
presheaf Y € [C°P, Set] (Example 1.26) over C.
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Given an object X € C and a covering {Ul- 5 X} of it (Def. 4.3), then every element
I

i€

¢ € Y(X)

induces a matching family (Def. 4.6) by
YW @), -

(That this indeed satisfies the matching condition follows immediately by the functoriality
of Y.)

This construction provides a function of the form
Y(X) — Match({U;},.,, Y) (73)

The matching families in the image of this function are hence those tuples of probes of Y
by the patches U; of X which glue to a global probe out of X.

Definition 4.8. (sheaves and sheaf toposes)

Let C be a small category equipped with a coverage, hence a site (Def. 4.3) and consider a
presheaf Y € [C°P, Set] (Example 1.26) over C.

The presheaf'Y is called a sheaf if for every object X € C and every covering {Ul- 5 X} of
i€l
X all matching families glue uniquely, hence if the comparison morphism (73) is a

bijection

Y(X) = Match({U;},.,, Y) . (74)

ier’

The full subcategory (Example 1.20) of the category of presheaves over a given site C, on
those that are sheaves is the category of sheaves, denoted

Sh(C) — [C°P, Set] . (75)

A category which is equivalent (Def. 1.57) to a category of sheaves is called a sheaf topos,
or often just topos, for short.

For H; and H, two such sheaf toposes, a homomorphism f : H; — H, between them,

called a geometric morphism is an adjoint pair of functors (Def. 1.32)

*

(76)

Hy H,

f
H
%

fx
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such that

e the left adjoint f*, called the inverse image, preserves finite products.

are geometric morphisms.

Example 4.9. (global sections geometric morphism)

Let H be a sheaf topos (Def. 4.8). Then there is a geometric morphism (76) to the category
of sets (Example 1.2), unique up to natural isomorphism (Def. 1.23):

Here I' is called the global sections-functor.

Proof. Notice that every set S € Set is the coproduct, indexed by itself, of the terminal object
* € Set (the singleton):
s= ][

SES

Since L is a left adjoint, it preserves this coproduct (Prop. 3.8). Moreover, since L is assumed

to preserve finite products, and since the terminal object is the empty product (Example
3.3), it also preserves the terminal object. Therefore L is fixed, up to natural isomorphism, to
actas

L(S)

12

L(HSES *)
Hses LCF) .

~ *
- HSES

12

This shows that L exists and uniquely so, up to natural isomorphism. This implies the
essential uniqueness of I' by uniqueness of adjoints (Prop. 1.45). W

Example 4.10. (trivial coverage)

For C a small category (Def. 1.6), the trivial coverage on it is the coverage (Def. 4.3) with
no covering families at all, meaning that the sheaf condition (Def. 4.8) over the resulting
site is empty, in that every presheaf is a sheaf for this coverage.

Hence the category of presheaves [C°P, Set] (Example 1.26) over a site Cy, with trivial

coverage is already the corresponding category of sheaves, hence the corresponding sheaf
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topos:
Sh(etriv) = [Cop’ Set]-

Example 4.11. (sheaves on the terminal category are plain sets)

Consider the terminal category * (Example 1.7) equipped with its trivial coverage
(Example 4.10). Then there is a canonical equivalence of categories (Def. 1.57) between
the category of sheaves on this site (Def. 4.8) and the category of sets (Example 1.2):

Sh(*) = Set.

Hence the category of sets is a sheaf topos.

Example 4.12. (sheaves on a topological space - spatial petit toposes)

In the literature, the concept of (pre-)sheaf (Def. 4.8) is sometimes not defined relative to
a site, but relative to a topological space. But the latter is a special case: For X a topological
space, consider its category of open subsets Op(X) from Example 4.4, with coverage given
by the usual open covers. Then a “sheaf on this topological space” is a sheaf, in the sense
of Def. 4.8, on this site of opens. One writes

Sh(X) = Sh(Op(X)) < [Op(X)", Set],

for short. The sheaf toposes arising this way are also called spatial toposes.

Proposition 4.13. (localic reflection)

The construction of categories of sheaves on a topological space (Example 4.12) extends to a
functor from the category Top of topological spaces and continuous functions between them
(Example 1.3) to the category Topos of sheaf toposes and geometric morphisms between
them (Example 4.12).

Sh(—=) : Top — Topos .

Moreover, when restricted to sober topological spaces, this becomes a fully faithful functor,
hence a full subcategory-inclusion (Def. 1.19)

Sh(—) : SoberTop < Topos .

More generally, this holds for locales (i.e. for “sober topological spaces not necessarily
supported on points”), in which case it becomes a reflective subcategory-inclusion (Def. 1.60)
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Locale 1 Topos
>
Sh(-)

This says that categories of sheaves on topological spaces are but a reflection of soper
topological spaces (generally: locales) and nothing more, whence they are also called petit
toposes.

Example 4.14. (abelian sheaves)

In the literature, sometimes sheaves are understood by default as taking values not in the
category of sets, but in the category of abelian groups. Combined with Example 4.12 this
means that some authors really mean “sheaf of abelian groups of the site of opens of a
topological space”, when they write just “sheaf”.

But for § any mathematical structure, a sheaf of S-structured sets is equivalently an §-
structure internal to the category of sheaves according to Def. 4.8. In particular sheaves of
abelian groups are equivalently abelian group objects in the category of sheaves of sets as
discussed here.

Example 4.15. (smooth sets)

Consider the site SmthMfd of all smooth manifolds, from Example 4.5. The category of
sheaves over this (Def. 4.8) is equivalent to the category of smooth sets, discussed in the
chapter geometry of physics - smooth sets:

Sh(SmthMfd) =~ SmoothSet .

This is a gros topos, in a sense made precise by Def. 5.2 below (a cohesive topos).

Remark 4.16. (ordinary spaces and their coverings are generators and relations for
generalized spaces)

Given a site C (Def. 4.3), then its presheaf topos [C°P,Set] (Example 4.10) is the free
cocompletion of the category C (Prop. 3.20), hence the category obtained by freely
forming colimits (“gluing”) of objects of C.

In contrast, the full subcategory inclusion Sh(C) < [C°P, Set] enforces relations between
these free colimits.

Therefore in total we may think of a sheaf topos Sh(C) as obtained by generators and
relations from the objects of its site C:

¢ the objects of C are the generators;

e the coverings of C are the relations.
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Proposition 4.17. (sheafification and plus construction)

Let C be a site (Def. 4.3). Then the full subcategory-inclusion (75) of the category of sheaves
over C (Def. 4.8) into the category of presheaves (Example 1.26) has a left adjoint (Def. 1.32)
called shedafification

L
Sh(€) L [C°P,Set].

L

An explicit formula for sheafification is given by applying the following “plus construction”
twice:

L(Y) = (YH?.

Here the plus construction

(=) : [C°P,Set] — [C°P, Set]

is given by forming equivalence classes of sets of matching families (Def. 4.6) for all possible
covers (Def. 4.3)

Y (X) = {{Ul- 5 X} covering , ¢ € Match({U;}, Y)}/ ~

under the equivalence relation which identifies two such pairs if the two covers have a joint
refinement such that the restriction of the two matching families to that joint refinement
coincide.

Example 4.18. (induced coverage)

Let C be a site (Def. 4.3). Then a full subcategory (Def. 1.19)

Doce

y
becomes a site itself, whose coverage consists of those coverings {U; = Y} in C that
happentobeinD < C.

Definition 4.19. (dense subsite)

Let C and D be sites (Def. 4.3) with a a full subcategory-inclusion (Def. 1.19)

DocC
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and regard D as equipped with the induced coverage (Def. 4.18).

This is called a dense subsite-inclusion if every object X € C has a covering {U; 5 X}; such

that for all i the patches are in the subcategory:
U € Do C.

Proposition 4.20. (comparison lemma)

L
Let D < C be a dense subsite inclusion (def. 4.19). Then precomposition with t induces an
equivalence of categories (Def. 1.57) between their categories of sheaves (Def. 4.8):

" : Sh(C) = Sh(D)

Proposition 4.21. (recognition of epi-/mono-/isomorphisms of sheaves)

Let C be a site (Def. 4.3) with Sh(C) its category of sheaves (Def. 4.8).
Then a morphisms f : X = Yin Sh(C) is

1. a monomorphism (Def. 1.18) or isomorphism (Def. 1.9) precisely if it is so globally in
that for each object U € C in the site, then the component f  :X(U) - Y(U) is an

injection or bijection of sets, respectively.

2. an epimorphism (Def. 1.18) precisely if it is so locally, in that: for all U € C there is a
covering {p;: U; — U}, ., such that for all i € I and every elementy € Y(U) the element

f(p)(y) is in the image of f(U): X(U;) — Y(Uy).

Proposition 4.22. (epi/mono-factorization through image)

Let Sh(C) be a category of sheaves (Def. 4.8). Then every morphism f : X — Y factors as an
epimorphism followed by a monomorphism (Def. 1.18) uniquely up to unique isomorphism:

mono

X Bimn) 28y,

Theobject im(f), as a subobject of Y, is called the image of f.

In fact this is an orthogonal factorization system, in that for every commuting square where
the left morphism is an epimorphism, and the right one a monomorphism, there exists a
unique lift:

(77)
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A — B
ep] l 1 /‘ lmono
c — D

This implies that this is a functorial factorization, in that for every commuting square

X, %y,
l l
X2 f_; Y2

there is an induced morphism of images such that the resulting rectangular diagram
commutes:

X, B im(f) —% vy,
| | |

X, = im(f,) — Y,

We discuss some of the key properties of sheaf toposes:

Proposition 4.23. (sheaf toposes are cosmoi)

Let C be a site (Def. 4.3) and Sh(C) its sheaf topos (Def. 4.8). Then:

1. All limits exist in Sh(C) (Def. 3.1), and they are computed as limits of presheaves, via
Example 3.5:

{imxe) = mico

2. All colimits exist in Sh(C) (Def. 3.1) and they are given by the sheafification (Def. 4.17)
of the same colimits computed in the category of presheaves, via Example 3.5:

i, ~ 1y

3. The cartesian (Example 2.2) closed monoidal category-structure (Def. 2.8) on the
category of presheaves [C°P, Set] from Example 2.12 restricts to sheaves:
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X% (=)
sh(¢) . sh(c)
X, <]

In particular, for X,Y € Sh(C) two sheaves, their internal hom [X,Y] € Sh(C) is a sheaf
given by

[X,Y] : U » Homgy)(y(U)X,Y),

where y(U) is the presheaf represented by U € C (Example 1.27).

This may be summarized by saying that every sheaf topos (in particular every category of
presheaves, by Example 4.10) is a cosmos for enriched category theory (Def. 2.36).

Definition 4.24. (local epimorphism)

Let C be a site (Def. 4.3). Then a morphism of presheaves over C (Example 1.26)

vy .x ¢ [S°P, Set]

is called a local epimorphism if for every object U € C, every morphism y(U) — X out of
its represented presheaf (Example 1.27) has the local lifting property through f in that

there is a covering {Ul- 5 U} (Def. 4.3) and a commuting diagram of the form

3
ylUy) — Y

y() l l f

yu) — X

Codescent

In order to understand the sheaf condition (74) better, it is useful to consider Cech
groupoids (Def. 4.28 below). These are really presheaves of groupoids (Def. 4.25 below), a
special case of the general concept of enriched presheaves. The key property of the Cech
groupoid is that it co-represents the sheaf condition (Prop. 4.29 below). It is in this
incarnation that the concept of sheaf seamlessly generalizes to homotopy theory via “higher
stacks”.

Definition 4.25. (presheaves of groupoids)
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For C a small category (Def. 1.6) consider the functor category (Example 1.25) from the
opposite category of C (Example 1.13) to the category Grpd of small groupoids (Example
1.16)

[C°P, Grpd] .

By Example 2.37 we may regard Grpd as a cosmos for enriched category theory. Since the
inclusion Set & Grpd (Example 1.61) is a strong monoidal functor (Def. 2.16) of cosmoi
(Example 2.37), the plain category C may be thought of as a Grpd-enriched category (Def.
2.40) and hence a functor C°°? - Grpd is equivalently a Grpd-enriched functor (Def. 2.46).

This means that the plain category of functors [C°P,Grpd] enriches to Grpd-enriched
category of Grpd-enriched presheaves (Example 2.48).

Hence we may speak of presheaves of groupoids.

Remark 4.26. (presheaves of groupoids as internal groupoids in presheaves)

From every presheaf of groupoids Y € [C°P,Grpd] (Def. 4.25), we obtain two ordinary
presheaves of sets (Def. 1.26) called the

e presheaf of objects

Objy _, € [C°P, Set]
e the presheaf of morphisms

Mory(_y = U Homy(_y : [C°P, Set]
x,yEOij(_)

In more abstract language this assignment constitutes an equivalence of categories

[C°P,Grpd] = Grpd([C°P, Grpd]) (78)
/ Hx,ye Obijy HomY(—) \
Mory (-
v N x Ly * @ty

S I TR
\ Objy )

from presheaves of groupoids to internal groupoids- in the category of presheaves over C
(Def. 1.26).
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Example 4.27. (presheaves of sets form reflective subcategory of presheaves of
groupoids)

Let C be a small category (Def. 1.6). There is the reflective subcategory-inclusion (Def.
1.60) of the category of presheaves over C (Example 1.26) into the category of presheaves
of groupoids over C (Def. 4.25)

o

[C°P,Set] L [C°P,Grpd]

which is given over each object of C by the reflective inclusion of sets into groupoids
(Example 1.61).

Example 4.28. (Cech groupoid)

Let C be a site (Def. 4.3), and X € C an object of that site. For each covering family

{U; 5 X} of X in the given coverage, the Cech groupoid is the presheaf of groupoids (Def.
4.25)

C({U;}) € [€°P,Grpd] =~ Grpd([C°P,Set])

which, regarded as an internal groupoid in the category of presheaves over C, via (78), has
as presheaf of objects the coproduct

Objcquey = ]_[y(Ui)
i

of the presheaves represented (under the Yoneda embedding, Prop. 1.30) by the covering
objects U;, and as presheaf of morphisms the coproduct over all fiber products of these:

Mor¢qy,py = U)’(Ui) Xyx) Y(Uj) -
iJj

This means equivalently that for any V € C the groupoid assigned by C({U;}) has as set of

i
objects pairs consisting of an index i and a morphism V = U; in C, and there is a unique
morphism between two such objects

Ki — K,'j
precisely if

(79)
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lioK; = l,jon Ui U]

Condition (79), for morphisms in the Cech groupoid to be well-defined is verbatim the
condition (70) in the definition of matching families. Indeed, Cech groupoids serve to
conveniently summarize (and then generalize) the sheaf condition (Def. 4.8):

Proposition 4.29. (Cech groupoid co-represents matching families - codescent)

For Grpd regarded as a cosmos (Example 2.37), and C a site (Def. 4.3), let
Y € [C°P, Set] & [C°P, Grpd]

be a presheaf on C (Example 1.26), regarded as a Grpd-enriched presheaf via Example 4.27,
let X € C be any object and {U; 5 X}; a covering family (Def. 4.3) with induced Cech
groupoid C({U;},) (Example 4.28).

Then there is an isomorphism
[€°P,Grpd](C({U;},), Y) = Match({U}, Y)

between the hom-groupoid of Grpd-enriched presheaves (Def. 3.16) and the set of matching
families (Def. 4.6).

Since hence the Cech-groupoid co-represents the descent object, it is sometimes called the
codescent object along the given covering.

Moreover, under this identification the canonical morphism

Py,
() —25 y (80)

induces the comparison morphism (73)

[C°P, Grpd] (y(X), Y)

2

Y(X)

! !
[C°P,Grpd](C({U;}), Y) =~ Match({U;},Y)
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In conclusion, this means that the presheaf’Y is a sheaf (Def. 4.8) precisely if homming Cech
groupoid projections into it produces an isomorphism:

{U;

: Py . . 4. (81)
Y is a sheaf = C({Ui}l.) — y(X), Y] is iso, for all covering families

One also says in this case that Y is a local object with respect to Cech covers/
Proof. By (58) the hom-groupoid is computed as the end
[€°P, Grpd] (C({(U},), Y) = j [c(w3)W), YW,
vece

where, by Example 2.37, the “integrand” is the functor category (here: a groupoid) from the
Cech groupoid at a given V to the set (regarded as a groupoid) assigned by Y to V.

Since Y (V) is just a set, that functor groupoid, too, is just a set, regarded as a groupoid. Its
elements are the functors C ({Ul-}l.)(V) — Y(V), which are equivalently those functions on

sets of objects

[ [ywom) = 0biy 0 = Obiyg, = YO
i

which respect the equivalence relation induced by the morphisms in the Cech groupoid at V.

Hence the hom-groupoid is a subset of the end of these function sets:

j cwapm. Y] | [ [ywom, v
vee JVEC L

1

f [ [wom, v

vee U

—

1R

j yWH (), Y]
h VeeC

1R

Y(Uy)

1
2

Here we used: first that the internal hom-functor turns colimits in its first argument into
limits (Prop. 2.15), then that limits commute with limits (Prop. 3.9), hence that in particular
ends commute with products , and finally the enriched Yoneda lemma (Prop. 3.17), which
here is, via Example 3.15, just the plain Yoneda lemma (Prop. 1.29). The end result is hence
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the same Cartesian product set that also the set of matching families is defined to be a
subset of, in (72).

This shows that an element in [, _, [C({Ul-}l.)(V), Y(V)] is a tuple (¢, € Y(U,)),, subject to

some condition. This condition is that for each V' € C the assignment
CUIV) — Y(V)
Ki *
V-U) » ko, =Y(x)(P)

constitutes a functor of groupoids.

By definition of the Cech groupoid, and since the codomain is a just set regarded as a
groupoid, this is the case precisely if

Y(x) (@) = Y(x)(P)) forall, j,

which is exactly the condition (71) that makes (¢,), a matching family. l

Local presentation

We now discuss a more abstract characterization of sheaf toposes, in terms of properties
enjoyed by the adjunction that relates them to the corresponding categories of presheaves.

Definition 4.30. (locally presentable category)

A category H (Def. 1.1) is called locally presentable if there exists a small category C (Def.
1.6) and a reflective subcategory-inclusion of C into its category of presheaves (Example
1.26)

L
‘ op
H L [C"F,Set]
——>
acc

such that the inclusion functor is an accessible functor in that it preserves k-filtered
colimits for some regular cardinal .

Proposition 4.31. (Giraud's theorem)

A sheaf topos (Def. 4.8) is equivalently a locally presentable category (Def. 4.30) with

1. universal colimits,

2. effective quotients,
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3. disjoint coproducts.

Proposition 4.32. (sheaf toposes are equivalently the left exact reflective subcategories
of presheaf toposes)

Let (C,7) be a site (Def. 4.3). Then the full subcategory inclusion i:Sh(C,t) < PSh(C) of its
sheaf topos (Def. 4.8) into its category of presheaves is a reflective subcategory inclusion

(Def. 1.60)
L
Sh(¢,r) L PSh(C)
) (é
L
such that:

1. the inclusion t is an accessible functor, thus exhibiting Sh(C, t) as a locally presentable
category (Def. 4.30)

2. the reflector L: PSh(C) — Sh(C) (which is sheafification, Prop. 4.17) is left exact (“lex”)
in that it preserves finite limits.

Conversely, every sheaf topos arises this way. Hence sheaf toposes H are equivalently the left
exact-reflectively full subcategories of presheaf toposes over some small category C:

lex (82)
H™ L PSh©)
—

acc

(e.g. Borceux 94, prop. 3.5.4, cor. 3.5.5, Johnstone, C.2.1.11)

Remark 4.33. (left exact reflections of categories of presheaves are locally presentable
categories)

In the characterization of sheaf toposes as left exact reflections of categories of
presheaves in Prop. 4.32, the accessibility of the inclusion, equivalently the local
presentability (Def. 4.30) is automatically implied (using the adjoint functor theorem), as
indicated in (82).

5. Gros toposes

We have seen roughly two different kinds of sheaf toposes:

o categories of sheaves on a given spaceX (Example 4.12), which, by localic reflection
(Prop. 4.13), really are just a reflection of the space X in the category of toposes,
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these are called petit toposes;

e categories of sheaves whose objects are generalized spaces (Example 4.15)
these are called gros toposes.

Remark 5.1. (cohesive generalized spaces as foundations of geometry)

If we aim to lay foundations for geometry, then we are interested in isolating those kinds
of generalized spaces which have foundational a priori meaning, independent of an
otherwise pre-configured notion of space. Hence we would like to first characterize
suitable gros toposes, extract concepts of space from these, and only then, possibly,
consider the petit topos-reflections of these (Prop. 4.13 below).

The gros toposes of such foundational generalized spaces ought to have an internal logic
that knows about modalities of geometry such as discreteness or concreteness. Via the
formalization of modalities in Def. 1.62 this leads to the definiton of cohesive toposes (Def.
5.2, Prop. 5.7 below, due to Lawvere 91, Lawvere 07).

gros :
lized bey... le:
topos generalized spaces obey example
inciples of differential
cohesion Def. 5.2 prineipres of (et SmoothSet
topology
. inciples of differential
elasticity Def principies ot Lereita FormallSmoothset
5.10 geometry
- Def. o
solidity 5 14 principles of supergeometry SuperFormalSmoothSet

Cohesive toposes

Definition 5.2. (cohesive topos)

A sheaf topos H (Def. 4.8) is called a cohesive topos if there is a quadruple (Remark 1.34)
of adjoint functors (Def. 1.32) to the category of sets (Example 1.2)

7 (83)

I 4 DiscH T 4 coDisc : H Set

coDisc
(—)
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such that:

1. Disc and coDisc are full and faithful functors (Def. 1.19)

2. Il preserves finite products.

Example 5.3. (adjoint quadruple of presheaves over site with finite products)

Let C be a small category (Def. 1.6) with finite products (hence with a terminal object
* € C and for any two objects X, Y € C their Cartesian product X XY € C).

Then there is an adjoint quadruple (Remark 1.34) of functors between the category of
presheaves over C (Example 1.26), and the category of sets (Example 1.2)

. (84)

such that:

1. the functor I" sends a presheaf Y to its set of global sections, which here is its value

on the terminal object:

ry = liLnY (85)

2. Disc and coDisc are full and faithful functors (Def. 1.19).

3. 11 preserves finite products:
for X, Y € [C°P, Set], we have a natural bijection

NXXY) = 0(X)xM(Y) .

Hence the category of presheaves over a small category with finite products, hence the
category of sheaves for the trivial coverage (Example 4.10) is a cohesive topos (Def. 5.2).

Proof. The existence of the terminal object in C means equivalently (by Example 1.7) that
there is an adjoint pair of functors between C and the terminal category (Example 1.7):

p
(_
*1C
—
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whose right adjoint takes the unique object of the terminal category to that terminal object.

From this it follows, by Example 3.32, that Kan extension produces an adjoint quadruple
(Remark 1.34) of functors between the category of presheaves [C°P, Set] and [ *, Set] =~ Set,
as shown, where

1. I' is the operation of pre-composition with the terminal object inclusion * < C

2. Disc is the left Kan extension along the inclusion * < C of the terminal object.

The former is manifestly the operation of evaluating on the terminal object. Moreover, since
the terminal object inclusion is manifestly a fully faithful functor (Def. 1.19), it follows that
also its left Kan extension Disc is fully faithful (Prop. 3.33). This implies that also coDisc is
fully faithful, by (Prop. 1.67).

Equivalently, Disc = p” is the constant diagram-assigning functor. By uniqueness of adjoints
(Prop. 1.45) implies that II is the functor that sends a presheaf, regarded as a functor
Y : C°P - Set, to its colimit

ny)) = “LE}Y- (86)
CO

The fact that this indeed preserves products follows from the assumption that C has finite
products, since categories with finite products are cosifted (Prop. 3.35) R

Example 5.3 suggests to ask for coverages on categories with finite products which are such
that the adjoint quadruple (107) on the category of presheaves (co-)restricts to the
corresponding category of sheaves. The following Definition 5.4 states a sufficient condition
for this to be the case:

Definition 5.4. (cohesive site)

We call a site C (Def. 4.3) cohesive if the following conditions are satisfied:

1. The category C has finite products (as in Example 5.3).

2. For every covering family {U; — X}, in the given coverage on C the induced Cech
groupoid C({U;},) € [C°P, Grpd] (Def. 4.28) satisfies the following two conditions:

1. the set of connected components of the groupoid obtained as the colimit over
the Cech groupoid is the singleton:

o lim C((U)) = *

coP

2. the set of connected components of the groupoid obtained as the limit of the
Cech groupoid is equivalent to the set of points of X, regarded as a groupoid:
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o lim C({U;}) =~ Home(*, X) .

coP
This definition is designed to make the following true:

Proposition 5.5. (category of sheaves on a cohesive site is a cohesive topos)

Let C be a cohesive site (Def. 5.4). Then the adjoint quadruple on the category of presheaves
over C, from Example 5.3 (given that a cohesive site by definition has finite products)
(co-)restricts from the category of presheaves over C, to the category of sheaves (Def. 4.8)

and hence exhibits Sh(C) as a cohesive topos (Def. 5.2):

T (87)

coDisc
—

Proof. By example 5.3 we alreaday have the analogous statement for the categories of
presheaves. Hence it is sufficient to show that the functors Disc and coDisc from Example 5.3
factor through the definition inclusion of the category of sheaves, hence that for each set S
the presheaves Disc(S) and coDisc(S) are indeed sheaves (Def. 4.8).

By the formulaton of the sheaf condition via the Cech groupoid (Prop. 4.29), and using the
adjunction hom-isomorphisms (here) this is readily seen to be equivalent to the two further
conditions on a cohesive site (Def. 5.4):

Let {U; — X} be a covering family.

The sheaf condition (81) for Disc(S) says that

Py, .
e ™% yo0, pisc(s)|

is an isomorphism of groupoids, which by adjunction and using (86) means equivalently
that

lim(C((U) > *, S

copP

is an isomorphism of groupoids, where we used that colimits of representables are

singletons (Lemma 3.34) to replace li_>my(X) ~
coP
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But now in this internal hom of groupoids, the set S is really a groupoid in the image of the
reflective _embedding of sets into groupoids, whose left adjoint is the connected
components-functor m, (Example 1.61). Hence by another adjunction isomoprhism this is

equivalent to
1o lim(C({U)) - *,

cop

being an isomorphism (a bijection of sets, now). This is true for all S € Set precisely if (by
the Yoneda lemma, if you wish) the morphism

o lim(C((U)) - *

cop

is already an isomorphism (here: bijection) itself.

Similarly, the sheaf condition (81) for coDisc(S) says that
p{Ui}i ;
[C({Ui}) — y(X), CODISC(S)]

is an isomorphism, and hence by adjunction and using (85), this is equivalent to

Pwyy,
l”o lim C((U;}) — Home(*,X), §

coP

being an isomorphism. This holds for all S € Set if (by the Yoneda lemma, if you wish)

Py,
7o lim C({U;}) —2% Homg(*, X)
cOpP

is an isomorphism. W

Definition 5.6. (adjoint triple of adjoint modal operators on cohesive topos)

Given a cohesive topos (Def. 5.2), its adjoint quadruple (Remark 1.34) of functors to and
from Set

(88)
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Il 4 DiscH T 4dcoDisc : H Set

coDisc
(—)

induce, by composition of functors, an adjoint triple (Remark 1.34) of adjoint modalities
(Def. 1.66):

[ = Discell
—

[4b g : H2=Dsel g

#f := coDiscoelI’

—

Since Disc and coDisc are fully faithful functors by assumption, these are (co-)modal
operators (Def. 1.62) on the cohesive topos, by (Prop. 1.63).

We pronounce these as follows:

shape modality flat modality sharp modality

[ == Discoll b := Discol f := coDiscol

and we refer to the corresponding modal objects (Def. 1.65) as follows:

¢ 3 flat-comodal object

b

€
X — X
is called a discrete object;
¢ a sharp-modal object
n
is called a codiscrete object;
e a sharp-submodal object
n
X — X
mono
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is a concrete object.

Proposition 5.7. (pieces have points =~ discrete objects are concrete ~ Aufhebung of
bottom adjoint modality)

Let H be a cohesive topos (Def. 5.2). Then the following conditions are equivalent:

1. pieces have points: For every object X € H, comparison of extremes-transformation
(27) for the ([, 4 b)-adjoint _modality (27), hence the b-counit of an adjunction
composed with the [~unit

i
€x €x

b X X X

is an epimorphism (Def. 1.18)
2. discrete objects are concrete: For every object X € H, we have that its discrete object
b X is a concrete object (Def. 5.6).

3. Aufhebung of bottom adjoint modality
The adjoint modality b 4 § exhibits Aufhebung (Def. 1.72) of the bottom adjoint
modality (Example 1.71), i.e. the initial object (Def. 1.5) is codiscrete (Def. 5.6):

0 = 0.

Proof. The comparison morphism ptpy, is a special case of that discussed in Prop. 1.69. First

observe, in the notation there, that
ptpy is epi iff ptpg isepi.

In one direction, assume that ptpg is an epimorphism. By (31) we have ptp, = Disc(ptpg),

but Disc is a left adjoint and left adjoints preserve monomorphisms (Prop. 1.47).

In the other direction, assume that ptp, is an epimorphism. By (29) and (32) we see that
ptpg is re-obtained from this by applying I" and then composition with isomorphisms. But I

is again a left adjoint, and hence preserves epimorphism by Prop. 1.47, as does composition
with isomorphisms.

By applying (29) again, we find in particular that pieces have points is also equivalent to
He]b)iscs being an epimorphism, for all S € B. But this is equivalent to

Hompg (He,b(, S) = Homy (eg’(, Disc(S5))

being a monomorphism for all § (by adjunction isomorphism (10) and definition of
epimorphism, Def. 1.18).
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Now by Lemma 1.37, this is equivalent to

Homy (X, nlﬁ)isc(S))

being an injection for all X, which, by Def. 1.18, is equivalent to r]]ﬂ)isc(s) being a

monomorphism, hence to discrete objects are concrete.

This establishes the equivalence between the first two items. i

Proposition 5.8. (cohesive site such that pieces have points/discrete objects are

concrete)

Let C be a cohesive site (Def. 5.4), such that

3
e for every object X € C, there is at least one morphism * — X from the terminal object
to X, hence such that the hom set Home(*, X) is non-empty.

Then the cohesive topos Sh(C), according to Prop. 5.5, satisfies the equivalent conditions
from Prop. 5.7:

1. pieces have points,

2. discrete objects are concrete.

Proof. By Prop. 5.7 it is sufficient to show the second condition, hence to check that for each
set S € Set, the canonical morphism

Disc(S) — coDisc(S)

is a monomorphism. By Prop. 4.21 this means equivalently that for each object X € C in the
site, the component function

Disc(S5)(X) — coDisc(S)(X)

is an injective function.

Now, by the proof of Prop. 5.5, this is the diagonal function

S — Homge(Home(*,X),S)

s constg

This function is injective precisely if Homge(*,X) is non-empty, which is true by
assumption.

Proposition 5.9. (quasitopos of concrete objects in a cohesive topos)
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For H a cohesive topos (Def. 5.2), write

I'Iconc — H

for its full subcategory (Example 1.20) of concrete objects (Def. 5.6).

Then there is a sequence of reflective subcategory-inclusions (Def. 1.60) that factor the
(I' 4 coDisc)-adjunction as

conc r
s —
I' 4 coDisc : H H
coLisc Lconc conc  coDisc Set
—

If in addition discrete objects are concrete (Prop. 5.7), then the full adjoint quadruple factors
through the concrete objects:

I' 4 coDisc

Proof. For the adjunction on the right, we just need to observe that for every set S € Set, the
codiscrete object coDisc(S) is concrete, which is immediate by idempotency of #f (Prop. 1.64)
and the fact that every isomorphism is also a monomorphism. Similarly, the assumption that
discrete objects are concrete says exactly that also Disc factors through H.ypc-

For the adjunction on the left we claim that the left adjoint conc, (to be called
concretification), is given by sending each object to the image (Def. 4.22) of its (I 4 coDisc)
adjunction unit n*:

conc: X~ im(nf(),

hence to the object which exhibits the epi/mono-factorization (Prop. 4.22) of nf(

conc
r]?( . X X conc X — g1X . (89)
epl1 mono

#
im(rf)
monomorphism (Def. 1.18). For this, consider the following naturality square (11) of the
I' 4 coDisc-adjunction hom-isomorphism

First we need to show that conc X, thus defined, is indeed concrete, hence that n isa
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{id ﬁ} _, (90)
H I'i 4 ri i ~ H : i ﬁ f rim(my)
omget(I'im(ny), I'im(ny)) = Homy(im(n), #im(ny))
(2)ermg™) | l(—)°n§°“° |
HomSet(FX,Fim(nf()) = HomH(X,jiim(nE()) (rmero}  —

By chasing the identity morphism on Fim(ni) through this diagram, as shown by the

diagram on the right, we obtain the equality displayed in the bottom right entry, where we
used the general formula for adjuncts (Prop. 1.38) and the definition # := coDisceI" (Def.
5.6).

But observe that I'(n;°"¢), and hence also #(n3;°"), is an isomorphism (Def. 1.9), as

indicated above: Since I' is both a left adjoint as well as a right adjoint, it preserves both

epimorphisms as well as monomorphisms (Prop. 1.47), hence it preserves image

factorizations (Prop. 4.22). This implies that I'n;°" is the epimorphism onto the image of

P(ng). But by idempotency of f, the latter is an isomorphism, and hence so is the

epimorphism in its image factorization.

Therefore the equality in (90) says that

ﬁ : ﬂ conc
= 1SO o o
Nx ( Uim(n§)> Ny
= mono o 7y,°"¢,

conc

¥ ©is, by definition, the epimorphism in the

where in the second line we remembered that n

epi/mono-factorization of nf{.

Now the defining property of epimorphisms (Def. 1.18) allows to cancel this commmon
factor on both sides, which yields

n# 4 = Isoomono = mono.
im(ny)

This shows that conc X = im(nf() is indeed concret.

[t remains to show that this construction is left adjoint to the inclusion. We claim that the
adjunction unit (Def. 1.33) of (conc 4 t¢opc) is provided by n€°"c (89).

To see this, first notice that, since the epi/mono-factorization (Prop. 4.22) is orthogonal and
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hence functorial, we have commuting diagrams of the form

CA (1)
X1 —r mx) oo 1X1
X, 2 imel) —— #X
2 epi x, mono 2

Now to demonstrate the adjunction it is sufficient, by Prop. 1.42, to show that n°"¢ is a
universal morphism in the sense of Def. 1.41. Hence consider any morphism f : X; = X,
with X, € H¢ype © H. Then we need to show that there is a unique diagonal morphism as

below, that makes the following top left triangle commute:

X4 L) X,

conc

epi lnxl . ;‘ lmono

im(ny,) —  #X,
Now, from (91), we have a commuting square as shown. Here the left morphism is an

epimorphism by construction, while the right morphism is a monomorphism by assumption
on X,. With this, the epi/mono-factorization in Prop. 4.22 says that there is a diagonal lift

which makes both triangles commute.

It remains to see that the lift is unique with just the property of making the top left triangle
commute. But this is equivalently the statement that the left morphism is an epimorphism,
by Def. 1.18. W

The equivalence of the first two follows with (Johnstone, lemma 2.1, corollary 2.2). The
equivalence of the first and the last is due to Lawvere-Menni 15, lemma 4.1, lemma 4.2.

Elastic toposes

Definition 5.10. (elastic topos)

Let H,.q be a cohesive topos (Def. 5.2). Then an elastic topos or differentially cohesive

topos over H.¢q is a sheaf topos H which is

1. a cohesive topos over Set,

2. equipped with a quadruple of adjoint functors (Def. 1.32) to H, .4 of the form
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linf
Hinf
I'Ired

Discinf

Finf

Lemma 5.11. (progression of (co-)reflective subcategories of elastic topos)

Let H be an elastic topos (Def. 5.10) over a cohesive topos Hyeq (Def. 5.2):

linf
Iyeq
— Hinf
Disc
red Discijnf
—
Set Hred H
I'red
— Finf
coDiscreq
and write
i
(—
Disc
—
Set H
r
(—
coDisc
—

for the adjoint quadruple exhibiting the cohesion of H itself. Then these adjoint functors
arrange and decompose as in the following diagram

e
~—Ieq— <—Iling I1
Disc : Set “—Discrea> Hpeq “Discin— H
<—Tred <TI'pisc—— : r

C

coDisc coDisc

Proof. The identification

(Disc 4 I') = (DiscijproDiscreq 3 I'red © Iinf)
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follows from the essential uniqueness of the global section-geometric morphism (Example
4.9). This implies the identifications IT = [l..4 ° Il; by essential uniqueness of adjoints
(Prop.1.45). R

Definition 5.12. (adjoint modalities on elastic topos)

Given an elastic topos (differentially cohesive topos) H over Hyqq (Def. 5.10), composition
of the functors in Lemma 5.11 yields, via Prop. 1.63, the following adjoint modalities (Def.
1.66)

R = nrellinf
—

R4S 48& : HS = DiscCintollinegy

& = Discipfolinf

Since ¢ and Discjys are fully faithful functors by assumption, these are (co-)modal
operators (Def. 1.62) on the cohesive topos, by (Prop. 1.63).

We pronounce these as follows:

reduction infinitesimal shape infinitesimal flat
modality modality modality
R = tinfo inf S = DiscCips o linf & = Discjpfo [inf

and we refer to the corresponding modal objects (Def. 1.65) as follows:

¢ areduction-comodal object

€%
RX —> X
is called a reduced object;
¢ an infinitesimal shape-modal object
3
X —=3X

is called a coreduced object.

Proposition 5.13. (progression of adjoint modalities on elastic topos)

Let H be an elastic topos (Def. 5.10) and consider the corresponding adjoint modalities
which it inherits
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1. for being a cohesive topos, from Def. 5.6,

2. for being an elastic topos, from Def. 5.12:

shape modality flat modality sharp modality

[ = Discoll b := Discorl § = coDiscorl
reduction modality infinitesimal shape modality infinitesimal flat modality
R = tinfo inf 3 = Discipgo llinf & = Discjpro linf

Then these arrange into the following progression, via the preorder on modalities from Def.
1.70

R

_ < W
1 1
® < ¥ < p
1
< =

| *

where we display also the bottom adjoint modality @ 4 * (Example 1.71), for completeness.

Proof. We need to show, for all X € H, that
1.b X is an &-modal object (Def. 1.65), hence that
&X =~ X
2. [X is an J-modal object (Def. 1.65), hence that
JX = X

After unwinding the definitions of the modal operators Def. 5.6 and Def. 5.6, and using their
re-identification from Lemma 5.11, this comes down to the fact that

Il Discipe = id and ['ine Discipe =~ id,

which holds by Prop. 1.46, since Disc;ys is a fully faithful functor and I1;,f, Gamma;,s are
(co-)reflectors for it, respectively:
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& b =Discjpeljp¢g Disc T
Discipf F'ingDisc I’ DiscipfDisCreq
= DiscCipflinf DiscinfDisCreq I’
N——
~id
=~ Disc

= DiscijpfDisCreql X

Disc
= DiscTI’
=b
and
R — 1 . . 1
= ) = Discin [inr _ Dls_c Il
Discinf MinfDisc IT DiscipfDiscred
= Discipfllinf DiscineDiscreql]
~id
=~ Disc
=~ Disc Il
|
Solid toposes

Definition 5.14. (solid topos)

Let Hy,,s be an elastic topos (Def. 5.10) over a cohesive topos Hyeq (Def. 5.2). Then a solid
topos or super-differentially cohesive topos over Hy,g is a sheaf topos H, which is

1. a cohesive topos over Set (Def. 5.2),

2. an elastic topos over Hyeqg,

3. equipped with a quadruple of adjoint functors (Def. 1.32) to Hy,,s of the form

even
(—

lsup
—

I-Ibos H

Hsyp
_

Discgyp
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hence with (g, and Discgy, being fully faithful functors (Def. 1.19).

Lemma 5.15. (progression of (co-)reflective subcategories of solid topos)

Let H be a solid topos (Def. 5.14) over an elastic topos Heq (Def- 5.10):

even
(—
linf lsup
i
(Ld Ming sup
%
Discreq Discipf Discsup
> « @ 3
Set Tred Hieq Hyos H
ored Ting T'sup
(—
coDiscCreq

Then these adjoint functors arrange and decompose as shown in the following diagram:

—oven
'f_l.infq- usnpq
<~—Tlreq— ~—TTipe— <TTsup S §
Dise : Set < Discreaa>= Hpoq “Discing—>= Hpos Discsip—= H
'<—Frecl— anp s B

coDisc C coDisc

Here the composite adjoint quadruple

N =1lreqHinflsup

Disc=DiscgypDiscinfDiscreq
C

Set H
rzrsuprinfrred

coDisc
[ — Y

exhibits the cohesion of H over Set, and the composite adjoint quadruple
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lsuplinf

—

Hinfnsup

redDiSCinfDiSCred

Isup
h

exhibits the elasticity of H over H 4.
Proof. As in the proof of Prop. 5.11, this is immediate by the essential uniqueness of adjoints
(Prop. 1.45) and of the global section-geometric morphism (Example 4.9). i

Definition 5.16. (adjoint modalities on solid topos)
Given a solid topos H over Hy,s (Def. 5.14), composition of the functors in Lemma 5.15

yields, via Prop. 1.63, the following adjoint modalities (Def. 1.66)

3 = lgypoeven

Wy = Lsup onsup H

=2 4 w» 4 Rh : H
Rh := Discgyp °Msup

Since gy, and Discgy, are fully faithful functors by assumption, these are (co-)modal

operators (Def. 1.62) on the cohesive topos, by (Prop. 1.63).

We pronounce these as follows:
rheonomy modality

bosonic modality

fermionic modality

w = gyp © Hgyp Rh := Discgyp o lsyp

3 = lgypoeven

and we refer to the corresponding modal objects (Def. 1.65) as follows:

e a -w-comodal object

X > X
is called a bosonic object;
e a Rh-modal object
nRh
X —>RhX
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is called a rheonomic object;

Proposition 5.17. (progression of adjoint modalities on solid topos)

Let H be a solid topos (Def. 5.14) and consider the adjoint modalities which it inherits

1. for being a cohesive topos, from Def. 5.6,

2. for being an elastic topos, from Def. 5.12,

3. for being a solid topos, from Def. 5.16:

shape modality flat modality sharp modality

[ = Discll b := Discol § = coDiscorl

reduction modality infinitesimal shape infinitesimal flat modality

modality
R = lsuplinf © Hinfnsup J = DiscsupDiSCinf ° Hiansup & = DiscsupDiSCinf ° Fiansup

ermionic modalit

J J. bosonic modality rheonomy modality
3 = Lgyp O €ven w = igun © gy Rh = Discgyp © lgyp

Then these arrange into the following progression, via the preorder on modalities from Def.
1.70:

id 4 id

\% \%

=2 4 w 4 Rh

Y Y
R 4 3 4 &
Y Y
[ 4 b 4 f
% %
@ 4 *

where we are displaying, for completeness, also the adjoint modalities at the bottom @ 4 *
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and the top id 4 id (Example 1.71).
Proof. By Prop. 5.13, it just remains to show that for all objects X € H

1. 3X is an Rh-modal object, hence Rh X = X,

2.RX is a bosonic object, hence diﬁ\)? =~ RX.

The proof is directly analogous to that of Prop. 5.13, now using the decompositions from

Lemma 5.15:
Rh3J = Discgypllsyp DisCsypDisCing Minellsup
N— e
~id
= DiscCgyp DisCinf Hinfllsup
=3
and
w R = Lsupnsup lsup‘inf”inf”sub
N—— ——
~id
= Lsuplinfninfnsub
~ R
|
(..)

6. Basic notions of homotopy theory

Traditionally, mathematics and physics have been founded on set theory, whose concept of
sets is that of “bags of distinguishable points”.

But fundamental physics is governed by the gauge principle. This says that given any two
“things”, such as two field histories x and y, it is in general wrong to ask whether they are
equal or not, instead one has to ask where there is a gauge transformation

14
X —Yy

between them. In mathematics this is called a homotopy.

This principle applies also to gauge transformations/homotopies themselves, and thus leads
to gauge-of-gauge transformations or homotopies of homotopies

179 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/top
https://ncatlab.org/nlab/show/top
https://ncatlab.org/nlab/show/objects
https://ncatlab.org/nlab/show/objects
https://ncatlab.org/nlab/show/modal+object
https://ncatlab.org/nlab/show/modal+object
https://ncatlab.org/nlab/show/bosonic+object
https://ncatlab.org/nlab/show/bosonic+object
https://ncatlab.org/nlab/show/mathematics
https://ncatlab.org/nlab/show/mathematics
https://ncatlab.org/nlab/show/physics
https://ncatlab.org/nlab/show/physics
https://ncatlab.org/nlab/show/foundations
https://ncatlab.org/nlab/show/foundations
https://ncatlab.org/nlab/show/set+theory
https://ncatlab.org/nlab/show/set+theory
https://ncatlab.org/nlab/show/sets
https://ncatlab.org/nlab/show/sets
https://ncatlab.org/nlab/show/physics
https://ncatlab.org/nlab/show/physics
https://ncatlab.org/nlab/show/gauge+principle
https://ncatlab.org/nlab/show/gauge+principle
https://ncatlab.org/nlab/show/field+history
https://ncatlab.org/nlab/show/field+history
https://ncatlab.org/nlab/show/equality
https://ncatlab.org/nlab/show/equality
https://ncatlab.org/nlab/show/gauge+transformation
https://ncatlab.org/nlab/show/gauge+transformation
https://ncatlab.org/nlab/show/homotopy
https://ncatlab.org/nlab/show/homotopy
https://ncatlab.org/nlab/show/gauge+transformations
https://ncatlab.org/nlab/show/gauge+transformations
https://ncatlab.org/nlab/show/homotopies
https://ncatlab.org/nlab/show/homotopies
https://ncatlab.org/nlab/show/gauge-of-gauge+transformations
https://ncatlab.org/nlab/show/gauge-of-gauge+transformations
https://ncatlab.org/nlab/show/homotopies+of+homotopies
https://ncatlab.org/nlab/show/homotopies+of+homotopies

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

71
4 K Y
and so on to ever higher gauge transformations or higher homotopies:

Y4

This shows that what x an y here are elements of is not really a set in the sense of set theory.
Instead, such a collection of elements with higher gauge transformations/higher

Hence the theory of homotopy types - homotopy theory - is much like set theory, but with
the concept of gauge transformation/homotopy built right into its foundations. Homotopy
theory is gauged mathematics.

A classical model for homotopy types are simply topological spaces: Their points represent
the elements, the continuous paths between points represent the gauge transformations,
and continuous deformations of paths represent higher gauge transformations. A central
result of homotopy theory is the proof of the homotopy hypothesis, which says that under

this identification homotopy types are equivalent to topological spaces viewed, in turn, up to
“weak homotopy equivalence”.

In the special case of a homotopy type with a single element x, the gauge transformations
necessarily go from x to itself and hence form a group of symmetries of x.

geG

=

T
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This way homotopy theory subsumes group theory.

If there are higher order gauge-of-gauge transformations/homotopies of homotopies
between these symmetry group-elements, then one speaks of Z-groups, 3-groups, ... n-
groups, and eventually of co-groups. When homotopy types are represented by topological
spaces, then co-groups are represented by topological groups.

This way homotopy theory subsumes parts of topological group theory.

Since, generally, there is more than one element in a homotopy type, these are like “groups
with several elements”, and as such they are called groupoids (Def. 1.10).

If there are higher order gauge-of-gauge transformations/homotopies of homotopies
between the transformations in such a groupoid, one speaks of 2-groupoids, 3-groupoids, ...
n-groupoids, and eventually of c0-groupoids. The plain sets are recovered as the special case
of 0-groupoids.

Due to the higher orders n appearing here, mathematical structures based not on sets but
on homotopy types are also called higher structures.

Hence homotopy types are equivalently c0-groupoids. This perspective makes explicit that

groups.

An efficient way of handling c-groupoids is in their explicit guise as Kan complexes (Def.
below); these are the non-abelian generalization of the chain complexes used in homological
algebra. Indeed, chain homotopy is a special case of the general concept of homotopy, and
hence homological algebra forms but a special abelian corner within homotopy theory.
Conversely, homotopy theory may be understood as the non-abelian generalization of
homological algebra.

Hence, in a self-reflective manner, there are many different but equivalent incarnations of
homotopy theory. Below we discuss in turn:

e Topological homotopy theory
oo-groupoids modeled by topological spaces. This is the classical model of homotopy
theory familiar from traditional point-set topology, such as covering space-theory.

e Simplicial homotopy theory.
oo-groupoids modeled on simplicial sets, whose fibrant objects are the Kan complexes.
This simplicial homotopy theory is Quillen equivalent to topological homotopy theory
(the “homotopy hypothesis”), which makes explicit that homotopy theory is not really
about topological spaces, but about the co-groupoids that these represent.
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Ideally, abstract homotopy theory would simply be a complete replacement of set theory,
obtained by removing the assumption of strict equality, relaxing it to gauge equivalence/
homotopy. As such, abstract homotopy theory would be part and parcel of the foundations
of mathematics themselves, not requiring any further discussion. This ideal perspective is
the promise of homotopy type theory and may become full practical reality in the next
decades.

Until then, abstract homotopy theory has to be formulated on top of the traditional
foundations of mathematics provided by set theory, much like one may have to run a Linux
emulator on a Windows machine, if one does happen to be stuck with the latter.

A very convenient and powerful such emulator for homotopy theory within set theory is
model category theory, originally due to Quillen 67 and highly developed since. This we
introduce here.

The idea is to consider ordinary categories (Def. 1.1) but with the understanding that some
of their morphisms

XLY

should be homotopy equivalences (Def. ), namely similar to isomorphisms (Def. 1.9), but not
necessarily satisfying the two equations defining an actual isomorphism

fheof = idy fof™ = idy

but intended to satisfy this only with equality relaxed to gauge transformation/homotopy:

flof =5 idy  fof =S idy 92)

Such would-be homotopy equivalences are called weak equivalences (Def. 1.75 below).

In principle, this information already defines a homotopy theory by a construction called
simplicial localization, which turns weak equivalences into actual homotopy equivalences in
a suitable way.

However, without further tools this construction is unwieldy. The extra structure of a model
category (Def. 6.1 below) on top of a category with weak equivalences provides a set of
tools.

The idea here is to abstract (in Def. 6.20 below) from the evident concepts in topological
homotopy theory of left homotopy (Def. ) and right homotopy (Def. ) between continuous
functions: These are provided by continuous functions out of a cylinder space
Cyl(X) = X x[0,1] or into a path space Path(X) = xlo1l respectively, where in both cases
the interval space [0,1] serves to parameterize the relevant gauge transformation/
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homotopy.

Now a little reflection shows (this was the seminal insight of Quillen 67) that what really
matters in this construction of homotopies is that the path space factors the diagonal
morphism from a space X to its Cartesian product as

] cofibration fibration
diag, : X ———— > Path(X) ———— X X X
X weak equiv.

while the cylinder serves to factor the codiagonal morphism as

_ cofibration fibration
codiag, : XUX — Cyl(X) ——— X
X weak equiv

where in both cases “fibration” means something like well behaved surjection, while
“cofibration” means something like satisfying the lifting property (Def. 6.2 below) against
fibrations that are also weak equivalences.

Such factorizations subject to lifting properties is what the definition of model category
axiomatizes, in some generality. That this indeed provides a good toolbox for handling
homotopy equivalences is shown by the Whitehead theorem in model categories (Lemma
6.25 below), which exhibits all weak equivalences as actual homotopy equivalences after
passage to “good representatives” of objects (fibrant/cofibrant resolutions, Def. 6.26 below).
Accordingly, the first theorem of model category theory (Quillen 67, 1.1 theorem 1,
reproduced as Theorem 6.29 below), provides a tractable expression for the hom-sets
modulo homotopy equivalence of the underlying category with weak equivalences in terms
of actual morphisms out of cofibrant resolutions into fibrant resolutions (Lemma 6.35
below).

This is then generally how model category-theory serves as a model for homotopy theory:
All homotopy-theoretic constructions, such as that of long homotopy fiber sequences (Prop.
below), are reflected via constructions of ordinary category theory but applied to suitably
resolved objects.

Literature (Dwyer-Spalinski 95)

Definition 6.1. (model category)

A model category is

1. a category C (Def. 1.1) with all limits and colimits (Def. 3.1);
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2. three sub-classes W, Fib, Cof € Mor(C) of its class of morphisms;

such that

1. the class W makes C into a category with weak equivalences, def. 1.75;

2. The pairs (W n Cof, Fib) and (Cap, W n Fib) are both weak factorization systems,
def. 6.3.

One says:

e elements in W are weak equivalences,

elements in Cof are cofibrations

elements in Fib are fibrations

elements in W N Cof are acyclic cofibrations,

elements in W N Fib are acyclic fibrations.

The form of def. 6.1 is due to (Joyal,_def. E.1.2). It implies various other conditions that
(Quillen 67) demands explicitly, see prop. 6.8 and prop. 6.12 below.

We now dicuss the concept of weak factorization systems (Def. 6.3 below) appearing in def.
6.1.

Factorization systems
Definition 6.2. (lift and extension)

Let C be any category. Given a diagram in C of the form

XLY
Py
B

then an extension of the morphism f along the morphism p is a completion to a
commuting diagram of the form

XLY
p .
l 7%
B

Dually, given a diagram of the form
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A
lp
XLY

A
f P
X i) Y

Combining these cases: given a commuting square

f

X, =5 Y,

Pr| 1Pr
f

X, =Y,

then a lifting in the diagram is a completion to a commuting diagram of the form

f

X, = Y,

Poy P
f

X, =Y,

Given a sub-class of morphisms K ¢ Mor(C), then

e amorphism p_ as above is said to have the right lifting property against K or to be

a K-injective morphism if in all square diagrams with p__ on the right and any p, € K

on the left a lift exists.

dually:

projective morphism if in all square diagrams with p, on the left and any p_. € K on
the left a lift exists.

Definition 6.3. (weak factorization systems)

A weak factorization system (WFS) on a category C is a pair (Proj,Inj) of classes of
morphisms of C such that
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1. Every morphism f: X — Y of C may be factored as the composition of a morphism in
Proj followed by one in Inj

€ Proj €1Inj
f:X—Z—Y.

2. The classes are closed under having the lifting property, def. 6.2, against each other:

1. Proj is precisely the class of morphisms having the left lifting property against
every morphisms in Inj;

2. Inj is precisely the class of morphisms having the right lifting property against
every morphisms in Proj.

Definition 6.4. (functorial factorization)

For C a category, a functorial factorization of the morphisms in C is a functor

fact : ¢4 — A2l

which is a section of the composition functor d; : cAlzl o Al

Remark 6.5. In def. 6.4 we are using the following standard notation, see at simplex category
and at nerve of a category:

Write [1] = {0 = 1} and [2] = {0 - 1 — 2} for the ordinal numbers, regarded as posets
and hence as categories. The arrow category Arr(C) is equivalently the functor category
cAll .= Funct(4[1], C), while cAlZl = Funct(4[2],C) has as objects pairs of composable
morphisms in C. There are three injective functors §;:[1] — [2], where §; omits the index
[ in its image. By precomposition, this induces functors d;: c412l ¢4l Here

e d, sends a pair of composable morphisms to their composition;
* d, sends a pair of composable morphisms to the first morphisms;
* d, sends a pair of composable morphisms to the second morphisms.
Definition 6.6. A weak factorization system, def. 6.3, is called a functorial weak

factorization system if the factorization of morphisms may be chosen to be a functorial
factorization fact, def. 6.4, i.e. such that d, o fact lands in Proj and d, o fact in In;.

Remark 6.7. Not all weak factorization systems are functorial, def. 6.6, although most
(including those produced by the small object argument (prop. 6.15 below), with due
care) are.

Proposition 6.8. Let C be a category and let K c Mor(C) be a class of morphisms. Write
K Proj and K Inj, respectively, for the sub-classes of K-projective morphisms and of K-
injective morphisms, def. 6.2. Then:
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1. Both classes contain the class of isomorphism of C.

2. Both classes are closed under composition in C.
K Proj is also closed under transfinite composition.

3. Both classes are closed under forming retracts in the arrow category cAll (see remark
6.10).

4. K Proj is closed under forming pushouts of morphisms in C (“cobase change”).
K Inj is closed under forming pullback of morphisms in C (“base change”).

5. K Proj is closed under forming coproducts in cAl,
K Inj is closed under forming products in cAl,

Proof. We go through each item in turn.
containing isomorphisms

Given a commuting square

A L ox
L p
EIso']’ d
B — Y

g

with the left morphism an isomorphism, then a lift is given by using the inverse of this

isomorphism fi™" »  Hence in particular there is a lift when p € K and so i € K Proj. The
other case is formally dual.

closure under composition

Given a commuting square of the form

A — X
b,
! ‘J’EKIn]
i p,
EK‘L 'J'EKIn]
B — Y

consider its pasting decomposition as
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A — X
Py
l v ‘LEKIn]
i P
EKJ' 'LEKIn]
B — Y

Now the bottom commuting square has a lift, by assumption. This yields another pasting

decomposition
A — X
EKi'L J’le’<an
R
B — Y

and now the top commuting square has a lift by assumption. This is now equivalently a lift in
the total diagram, showing that p, o p, has the right lifting property against K and is hence
in K Inj. The case of composing two morphisms in K Proj is formally dual. From this the
closure of K Proj under transfinite composition follows since the latter is given by colimits of
sequential composition and successive lifts against the underlying sequence as above
constitutes a cocone, whence the extension of the lift to the colimit follows by its universal
property.

closure under retracts

Let j be the retract of an i € K Proj, i.e. let there be a commuting diagram of the form.

idg: A — C — A
LV L .

€K Proj
idg: B — D — B

Then for
A — X
il Vo
B — Y

a commuting square, it is equivalent to its pasting composite with that retract diagram
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A —> C — A — X
J i j f
! 'J'(EJ’(Proj“L 'J'E'K
B —- D — B — Y

Here the pasting composite of the two squares on the right has a lift, by assumption:

A —> C — A — X
J L f
) \) 7 ek
B — D — B — Y
By composition, this is also a lift in the total outer rectangle, hence in the original square.

Hence j has the left lifting property against all p € K and hence is in K Proj. The other case is
formally dual.

closure under pushout and pullback

Let p € K Inj and and let

Ix;X — X
ey P
z Ly

be a pullback diagram in C. We need to show that f*p has the right lifting property with
respecttoall i € K. So let

A — Zx;X
i f'p

EKl l
B 3 7z

be a commuting square. We need to construct a diagonal lift of that square. To that end, first
consider the pasting composite with the pullback square from above to obtain the
commuting diagram

A — IXgX — X
il lf*p 1P

B 4 7 Ly

By the right lifting property of p, there is a diagonal lift of the total outer diagram
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A — X
Ik (ng); i

fg
ﬁ

B Y

By the universal property of the pullback this gives rise to the lift § in

Ix;X — X
g, e P,
5 % 2z Ly

In order for g to qualify as the intended lift of the total diagram, it remains to show that

A — ZXfX
1t g
B

commutes. To do so we notice that we obtain two cones with tip A:

¢ one is given by the morphisms

LA-ZXpX - X
i g
2A-B—>7Z
with universal morphism into the pullback being
0o A->ZXeX
¢ the other by
i g
1LA->B—->ZXsX—->X
i g
2.A-> B - Z.
with universal morphism into the pullback being
i g
©A—->B—>ZXgX.
The commutativity of the diagrams that we have established so far shows that the first and

second morphisms here equal each other, respectively. By the fact that the universal
morphism into a pullback diagram is unique this implies the required identity of morphisms.

The other case is formally dual.

closure under (co-)products
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Let {(A; 5 Bg) € K Proj} . be a set of elements of K Proj. Since colimits in the presheaf

category ¢4 are computed componentwise, their coproduct in this arrow category is the
universal morphism out of the coproduct of objects [[ . A induced via its universal

property by the set of morphisms i:

(is)
U A, —3 U B;.
SES SES

Now let

U A; — X

SES

(s)ses | J’éK

LU Bg — Y
SES

be a commuting square. This is in particular a cocone under the coproduct of objects, hence
by the universal property of the coproduct, this is equivalent to a set of commuting diagrams

A, — X

is f
€K Proj ! ‘LEK

B, — Y

SES
By assumption, each of these has a lift . The collection of these lifts
A, — X
EPr(l;? L 5z “L];K

By, — Y
SES

is now itself a compatible cocone, and so once more by the universal property of the
coproduct, this is equivalent to a lift (¢) ¢ in the original square

L Ag — X
SES

(dses | (Es)ses 2 V;K

L Bg — Y

This shows that the coproduct of the ig has the left lifting property against all f € K and is
hence in K Proj. The other case is formally dual. W
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An immediate consequence of prop. 6.8 is this:

Corollary 6.9. Let C be a category with all small colimits, and let K € Mor(C) be a sub-class of
its morphisms. Then every K-injective morphism, def. 6.2, has the right lifting property, def.
6.2, against all K-relative cell complexes, def. and their retracts, remark 6.10.

Remark 6.10. By a retract of a morphism X EN Y in some category C we mean a retract of f

as an object in the arrow category ¢4 hencea morphism A 2, B such that in ¢4 there
is a factorization of the identity on g through f

idg: 9g—f—g.

This means equivalently that in C there is a commuting diagram of the form

idg: A — X — A
O
idg: B -, Y — B

Lemma 6.11. In every category C the class of isomorphisms is preserved under retracts in the
sense of remark 6.10.

Proof. For

idg: A — X — A
N A
idg: B - Y — B

. f : . . 9 o o
a retract diagram and X — Y an isomorphism, the inverse to A — B is given by the

composite
X — A
v
B — Y

More generally:

Proposition 6.12. Given a model category in the sense of def. 6.1, then its class of weak
equivalences is closed under forming retracts (in the arrow category, see remark 6.10).

(Joyal, prop. E.1.3)
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Proof. Let
idi: 4 — X — A
l WV
idi: B — Y — B

be a commuting diagram in the given model category, with w € W a weak equivalence. We
need to show that then also f € W.

First consider the case that f € Fib.

In this case, factor w as a cofibration followed by an acyclic fibration. Since w € W and by
two-out-of-three (def. 1.75) this is even a factorization through an acyclic cofibration
followed by an acyclic fibration. Hence we obtain a commuting diagram of the following
form:

id: A — X — A
ldl lEWnCOf lld

s 3., [S ! t !/
id: A4 — X — A,

f e WnNFib f
€ Fib l l ‘LeFib

idi: B —», Y — B

where s is uniquely defined and where t is any lift of the top middle vertical acyclic
cofibration against f. This now exhibits f as a retract of an acyclic fibration. These are closed
under retract by prop. 6.8.

Now consider the general case. Factor f as an acyclic cofibration followed by a fibration and
form the pushout in the top left square of the following diagram

id: 4 — X — A
EWﬂCofl (pO) lEWnCOf lEWnCOf

id: A4 — X — A"
€Fib | LEW | EFib
idi: B — Y — B
where the other three squares are induced by the universal property of the pushout, as is

the identification of the middle horizontal composite as the identity on A’. Since acyclic
cofibrations are closed under forming pushouts by prop. 6.8, the top middle vertical
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morphism is now an acyclic fibration, and hence by assumption and by two-out-of-three so
is the middle bottom vertical morphism.

Thus the previous case now gives that the bottom left vertical morphism is a weak
equivalence, and hence the total left vertical composite is. Wi

Lemma 6.13. (retract argument)

Consider a composite morphism
i p
f:X—A—>Y.

1. If f has the left lifting property against p, then f is a retract of i.

2. If f has the right lifting property against i, then f is a retract of p.

Proof. We discuss the first statement, the second is formally dual.

Write the factorization of f as a commuting square of the form

X — A
fl LP.
Y =Y

By the assumed lifting property of f against p there exists a diagonal filler g making a
commuting diagram of the form

X — A
fl 9 1P
Y =Y

By rearranging this diagram a little, it is equivalent to

X = X
Fl by
idy: ¥ — A — Y
g P

Completing this to the right, this yields a diagram exhibiting the required retract according
to remark 6.10:
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Small object argument

Given a set C < Mor(C) of morphisms in some category C, a natural question is how to factor
any given morphism f:X — Y through a relative C-cell complex, def. , followed by a C-
injective morphism, def.

€Ccell A €Cinj

f: X X > Y

A first approximation to such a factorization turns out to be given simply by forming X=x 1
by attaching all possible C-cells to X. Namely let

dom(c) — X
(C/f)={ €L !
cod(c) — Y

be the set of all ways to find a C-cell attachment in f, and consider the pushout X of the
coproduct of morphisms in C over all these:

]_[CE(C/f) dom(¢c) — X
Heee/pe | (po) | .
]_[Ce(c/f) cod(c) — X,

This gets already close to producing the intended factorization:
First of all the resulting map X — X, is a C-relative cell complex, by construction.

Second, by the fact that the coproduct is over all commuting squres to f, the morphism f
itself makes a commuting diagram

HCE(C/D dom(c) — X
Heeerpne W
]_[CE(C/f) cod(c) — Y

and hence the universal property of the colimit means that f is indeed factored through that
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C-cell complex X;; we may suggestively arrange that factorizing diagram like so:

]_[CE(C/f) dom(c) — X
id | l

Heee pdom(e) Xy,
Heeern©y y )
]_[CE(C/f) cod(c) — Y

This shows that, finally, the colimiting co-cone map - the one that now appears diagonally -
almost exhibits the desired right lifting of X; — Y against the ¢ € C. The failure of that to
hold on the nose is only the fact that a horizontal map in the middle of the above diagram is
missing: the diagonal map obtained above lifts not all commuting diagrams of ¢ € C into f,
but only those where the top morphism dom(c) = X; factors through X — X;.

The idea of the small object argument now is to fix this only remaining problem by iterating
the construction: next factor X; — Y in the same way into

X1 — X, —Y

and so forth. Since relative C-cell complexes are closed under composition, at stage n the
resulting X — X,, is still a C-cell complex, getting bigger and bigger. But accordingly, the
failure of the accompanying X,, — Y to be a C-injective morphism becomes smaller and

smaller, for it now lifts against all diagrams where dom(c) — X, factors through
X,—1 — X,, which intuitively is less and less of a condition as the X,,_; grow larger and
larger.

The concept of small object is just what makes this intuition precise and finishes the small
object argument. For the present purpose we just need the following simple version:

Definition 6.14. For C a category and C € Mor(C) a sub-set of its morphisms, say that these
have small domains if there is an ordinal a (def. ) such that for every ¢ € € and for every C-
relative cell complex given by a transfinite composition (def.)

every morphism dom(c) — X factors through a stage Xg — X of order B < a:
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The above discussion proves the following:

Proposition 6.15. (small object argument)

Let C be a locally small category with all small colimits. If a set C € Mor(C) of morphisms
has all small domains in the sense of def. 6.14, then every morphism f:X — in C factors
through a C-relative cell complex, def., followed by a C-injective morphism, def.

€Ccell A €Cinj
> X

f:X

(Quillen 67,11.3 lemma)

Homotopy

We discuss how the concept of homotopy is abstractly realized in model categories, def. 6.1.

Definition 6.16. Let C be a model category, def. 6.1, and X € C an object.

e A path space object Path(X) for X is a factorization of the diagonal 4y : X - X X X

as

(PgrP)
Ay - X—>Path(X) UL XXX .

where X — Path(X) is a weak equivalence and Path(X) — X X X is a fibration.

e A cylinder object Cyl(X) for X is a factorization of the codiagonal (or “fold map”)
Vy : XUX > Xas
(o i1)
Vy : XUX — C yl(X) —> X.

where Cyl(X) — X is a weak equivalence. and X LI X — Cyl(X) is a cofibration.

Remark 6.17. For every object X € C in a model category, a cylinder object and a path space
object according to def. 6.16 exist: the factorization axioms guarantee that there exists
1. a factorization of the codiagonal as
EWnNFib
Vy : XUX—>Cyl(X) — X
2. a factorization of the diagonal as

eWnCof
Ay : X — Path(X) —>X><X
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The cylinder and path space objects obtained this way are actually better than required by
def. 6.16: in addition to Cyl(X) — X being just a weak equivalence, for these this is actually
an acyclic fibration, and dually in addition to X — Path(X) being a weak equivalence, for
these it is actually an acyclic cofibrations.

Some authors call cylinder/path-space objects with this extra property “very good”
cylinder/path-space objects, respectively.

One may also consider dropping a condition in def. 6.16: what mainly matters is the weak
equivalence, hence some authors take cylinder/path-space objects to be defined as in def.
6.16 but without the condition that X LI X = Cyl(X) is a cofibration and without the
condition that Path(X) — X is a fibration. Such authors would then refer to the concept in
def. 6.16 as “good” cylinder/path-space objects.

The terminology in def. 6.16 follows the original (Quillen 67, 1.1 def. 4). With the induced
concept of left/right homotopy below in def. 6.20, this admits a quick derivation of the key
facts in the following, as we spell out below.

Lemma 6.18. Let C be a model category. If X € C is cofibrant, then for every cylinder object
Cyl(X) of X, def. 6.16, notonly is (i, i1): X U X — X a cofibration, but each

io, il X — CYI(X)

is an acyclic cofibration separately.

Dually, if X € C is fibrant, then for every path space object Path(X) of X, def. 6.16, not only is
(py, P,): Path(X) - X X X a cofibration, but each

Py P, :Path(X) — X
is an acyclic fibration separately.

Proof. We discuss the case of the path space object. The other case is formally dual.

First, that the component maps are weak equivalences follows generally: by definition they
have a right inverse Path(X) — X and so this follows by two-out-of-three (def. 1.75).

But if X is fibrant, then also the two projection maps out of the product X X X — X are
fibrations, because they are both pullbacks of the fibration X — *

XXX — X
l (pb) .
X — ¥
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hence p;:Path(X) - XXX — X is the composite of two fibrations, and hence itself a
fibration, by prop. 6.8. i
Path space objects are very non-unique as objects up to isomorphism:

Example 6.19. If X € C is a fibrant object in a model category, def. 6.1, and for Path,; (X) and
Path,(X) two path space objects for X, def. 6.16, then the fiber product
Path; (X) Xy Path,(X) is another path space object for X: the pullback square

X 2 XxX
l l
Path, (X) X Path,(X) ~ —  Pathy (X) x Path, (X)
€ Fib l (pb) l € Fib
XX XXX Adaeld) oy xxxxX
I
X x X - XXX

gives that the induced projection is again a fibration. Moreover, using lemma 6.18 and
two-out-of-three (def. 1.75) gives that X — Path, (X) X Path, (X) is a weak equivalence.

For the case of the canonical topological path space objects of def , with
Path, (X) = Path,(X) = X' = X191 then this new path space object is X'V! = x102] the
mapping space out of the standard interval of length 2 instead of length 1.

Definition 6.20. (abstract left homotopy and abstract right homotopy

Let f,g:X — Y be two parallel morphisms in a model category.

e A left homotopy n: f =, g is a morphism 7n: Cyl(X) — Y from a cylinder object of X,
def. 6.16, such that it makes this diagram commute:

X — X)) « X
FRY v
Y

g

e A right homotopy 7n:f =z g is a morphism 7n: X — Path(Y) to some path space
object of X, def. 6.16, such that this diagram commutes:
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X
Fv L7 \ I
Y <« Path(Y) — Y

Lemma 6.21. Let f,g: X — Y be two parallel morphisms in a model category.

1. Let X be cofibrant. If there is a left homotopy f = g then there is also a right
homotopy f =r g (def. 6.20) with respect to any chosen path space object.

2. Let X be fibrant. If there is a right homotopy f =g g then there is also a left homotopy
f = g with respect to any chosen cylinder object.

In particular if X is cofibrant and Y is fibrant, then by going back and forth it follows that

every left homotopy is exhibited by every cylinder object, and every right homotopy is
exhibited by every path space object.

Proof. We discuss the first case, the second is formally dual. Let n: Cyl(X) — Y be the given
left homotopy. Lemma 6.18 implies that we have a lift h in the following commuting diagram

iof
X —  Path(Y)

io h PosP1
eWnCof l 4 J’eFib’
Cyl(X) —— YXxY

(fop,m)

where on the right we have the chosen path space object. Now the composite 7} := hoi; is a
right homotopy as required:

Path(Y)

po'pl

h
4 l'eFib-

X 35 lX) ——  YXY

(f A )

Proposition 6.22. For X a cofibrant object in a model category and Y a fibrant object, then the
relations of left homotopy f = g and of right homotopy f =g g (def. 6.20) on the hom set
Hom(X,Y) coincide and are both equivalence relations.

Proof. That both relations coincide under the (co-)fibrancy assumption follows directly from
lemma 6.21.

The symmetry and reflexivity of the relation is obvious.
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That right homotopy (hence also left homotopy) with domain X is a transitive relation
follows from using example 6.19 to compose path space objects. |l

The homotopy category

We discuss the construction that takes a model category, def. 6.1, and then universally forces
all its weak equivalences into actual isomorphisms.

Definition 6.23. (homotopy category of a model category)

Let C be a model category, def. 6.1. Write Ho(C) for the category whose

e objects are those objects of C which are both fibrant and cofibrant;

e morphisms are the homotopy classes of morphisms of C, hence the equivalence
classes of morphism under the equivalence relation of prop. 6.22;

and whose composition operation is given on representatives by composition in C.

This is, up to equivalence of categories, the homotopy category of the model category C.

Proposition 6.24. Def. 6.23 is well defined, in that composition of morphisms between fibrant-
cofibrant objects in C indeed passes to homotopy classes.

Proof. Fix any morphism X ER Y between fibrant-cofibrant objects. Then for precomposition
(=) e [f] : Homyqey (Y, Z) » Homyeex, 7))

to be well defined, we need that with (g ~ h) : Y = Z also (fg ~ fh) : X = Z. But by prop
6.22 we may take the homotopy ~ to be exhibited by a right homotopy 7:Y — Path(Z), for
which case the statement is evident from this diagram:

Z
97 TP
x L v L pahz) -
AN Ly
Z

For postcomposition we may choose to exhibit homotopy by left homotopy and argue
dually. B

We now spell out that def. 6.23 indeed satisfies the universal property that defines the
localization of a category with weak equivalences at its weak equivalences.
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Lemma 6.25. (Whitehead theorem in model categories)

Let C be a model category. A weak equivalence between two objects which are both fibrant
and cofibrant is a homotopy equivalence (92).

Proof. By the factorization axioms in the model category C and by two-out-of-three (def.
1.75), every weak equivalence f: X — Y factors through an object Z as an acyclic cofibration
followed by an acyclic fibration. In particular it follows that with X and Y both fibrant and
cofibrant, so is Z, and hence it is sufficient to prove that acyclic (co-)fibrations between such
objects are homotopy equivalences.

So let f: X — Y be an acyclic fibration between fibrant-cofibrant objects, the case of acyclic
cofibrations is formally dual. Then in fact it has a genuine right inverse given by a lift f ~* in
the diagram

o - X

f -1 f
fotl T2 Lerpaw

X = X

To see that f " is also a left inverse up to left homotopy, let Cyl(X) be any cylinder object on
X (def. 6.16), hence a factorization of the codiagonal on X as a cofibration followed by a an
acyclic fibration

tx p
XuX—->C0lX) — X

and consider the commuting square

_10 ,.d
xux LMYy

ecof 4 ‘LQWnFib
Cyl(X 14
yl(X) o

which commutes due to f~! being a genuine right inverse of f. By construction, this
commuting_ square now admits a lift n, and that constitutes a left homotopy

nif tof=,id N

Definition 6.26. (fibrant resolution and cofibrant resolution)

Given a model category C, consider a choice for each object X € C of

1. a factorization
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o ix 0X Px

€ Cof €W NFib

of the initial morphism (Def. 1.5), such that when X is already cofibrant then
pX = ldx,

2. a factorization

Jx ax

PX : *
eWnCof €Fib

of the terminal morphism (Def. 1.5), such that when X is already fibrant then
jX == ldX

Write then

Ypo C — Ho(C)

for the functor to the homotopy category, def. 6.23, which sends an object X to the object
PQX and sends a morphism f: X — Y to the homotopy class of the result of first lifting in

o — o
x| Qf a 1Pr
X — Y

Q fopy

and then lifting (here: extending) in

joroQf
ox == poy

Jox 1 PQf 190y
PQX — *

Lemma 6.27. The construction in def. 6.26 is indeed well defined.

Proof. First of all, the object PQX is indeed both fibrant and cofibrant (as well as related by a
zig-zag of weak equivalences to X):

1)
eCofl \ECof
*
QX cwncor POX oy 7
EWl
X
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Now to see that the image on morphisms is well defined. First observe that any two choices
(Qf); of the first lift in the definition are left homotopic to each other, exhibited by lifting in

((@)1,(@),)
QX U QX ————3 QY

Py

eCofl
EW NFib

DRX) o ¥

Hence also the composites jQy° (Qf)l. are left homotopic to each other, and since their

domain is cofibrant, then by lemma 6.21 they are also right homotopic by a right homotopy
k. This implies finally, by lifting in

0X 5 Path(PQY)
ewWnCof l lEFib
PQX PQY x PQY

(R(Qf)1,P(Qf)3)

that also P(Qf), and P(Qf), are right homotopic, hence that indeed PQf represents a well-

defined homotopy class.

Finally to see that the assignment is indeed functorial, observe that the commutativity of the
lifting diagrams for Qf and PQf imply that also the following diagram commutes

) j
x & ox =2 pox
i L et
Y «— QY — PQY
Now from the pasting composite
J
x & ox % pox
fl le lPQf
Y «— QY — PQY
Py Joy
g\ ng lPQg

7 — Q7 — PQZ
Pz Joz

one sees that (PQg) o (PQf) is a lift of go f and hence the same argument as above gives
that it is homotopic to the chosen PQ(gef). I
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For the following, recall the concept of natural isomorphism between functors: for
F,G : C — D two functors, then a natural transformation n:F = G is for each object
¢ € Obj(C) a morphism n,_: F(¢) — G(c) in D, such that for each morphism f:c; = ¢, in C

the following is a commuting square:

e,
F(c1) — G(cq)

F(f) | 160
F(cz) 77_) G(cz)

C2

Such 7 is called a natural isomorphism if its ), are isomorphisms for all objects c.

Definition 6.28. (localization of a category category with weak equivalences)

For C a category with weak equivalences, its localization at the weak equivalences is, if
it exists,

1. a category denoted C[W ~']

2. a functor
y:C—Ccw™
such that

1. y sends weak equivalences to isomorphisms;

2.y is universal with this property, in that:
for F:C — D any functor out of C into any category D, such that F takes weak
equivalences to isomorphisms, it factors through y up to a natural isomorphism p

Ho(C)

and this factorization is unique up to unique isomorphism, in that for (F, p,) and

(F,, p,) two such factorizations, then there is a unique natural isomorphism

x:F,; = F, making the evident diagram of natural isomorphisms commute.

Theorem 6.29. (convenient localization of model categories)

For C a model category, the functor VYp,o N def. 6.26 (for any choice of P and Q) exhibits
Ho(C) as indeed being the localization of the underlying category with weak equivalences at
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its weak equivalences, in the sense of def. 6.28:
C = C
Yp,o l ly

Ho(€) = Cc[w™]

(Quillen 67,1.1 theorem 1)

Proof. First, to see that that y,, 0 indeed takes weak equivalences to isomorphisms: By two-

out-of-three (def. 1.75) applied to the commuting diagrams shown in the proof of lemma
6.27, the morphism PQf is a weak equivalence if f is:

j
x & ox & pox

fl le lPQf
Y & QY 5 PQY
With this the “Whitehead theorem for model categories”, lemma 6.25, implies that PQf
represents an isomorphism in Ho(C).

Now let F:C — D be any functor that sends weak equivalences to isomorphisms. We need
to show that it factors as

C — D
SN P g
Ho(C)

uniquely up to unique natural isomorphism. Now by construction of P and Q in def. 6.26,
is the identity on the full subcategory of fibrant-cofibrant objects. It follows that if F

Yp,o
exists at all, it must satisfy for all X L Y with X and Y both fibrant and cofibrant that

F(IfD = F(),
(hence in particular F(y, ,(f)) = F(PQf)).

But by def. 6.23 that already fixes F on all of Ho(C), up to unique natural isomorphism.
Hence it only remains to check that with this definition of F there exists any natural

isomorphism p filling the diagram above.

To that end, apply F to the above commuting diagram to obtain
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F(py) F(Jox)

F(X) <X FQX) =25 F(PQX)
1SO 1SO

F(f) | lF(Qf) lF(PQf)

iso iso
F(Y F(QY F(PQY
()‘F(p—y) (Q)m (PQY)

Here now all horizontal morphisms are isomorphisms, by assumption on F. It follows that

defining p,, = F(jQX) °oF(p,) ~! makes the required natural isomorphism:

Fpy) " F(jox) -
px: F(X) ——— F(QX) —/— F(PQX) = F(yp (X))
F(f) | LFPR) | Flrp o)
iso iso ~
py: F(Y) W F(QY) Flor) F(PQY) = F(yp (X))

Remark 6.30. Due to theorem 6.29 we may suppress the choices of cofibrant Q and fibrant
replacement P in def. 6.26 and just speak of the localization functor

y : C — Ho(0)

up to natural isomorphism.

In general, the localization C[W ~'] of a category with weak equivalences (C, W) (def. 6.28)
may invert more morphisms than just those in W. However, if the category admits the
structure of a model category (C, W, Cof, Fib), then its localization precisely only inverts the

weak equivalences:

Proposition 6.31. (localization of model categories inverts precisely the weak

equivalences)

Let C be a model category (def. 6.1) and let y : C — Ho(C) be its localization functor (def.
6.26, theorem 6.29). Then a morphism f in C is a weak equivalence precisely if y(f) is an
isomorphism in Ho(C).

(e.g. Goerss-Jardine 96, 11, prop 1.14)

While the construction of the homotopy category in def. 6.23 combines the restriction to
good (fibrant/cofibrant) objects with the passage to homotopy classes of morphisms, it is
often useful to consider intermediate stages:

Definition 6.32. Given a model category C, write
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for the system of full subcategory inclusions of:

1. the category of fibrant objects Cr

2. the category of cofibrant objects C,,

3. the category of fibrant-cofibrant objects Cy,,

all regarded a categories with weak equivalences (def. 1.75), via the weak equivalences
inherited from C, which we write (Cs, W¢), (C;, W) and (Cfs¢, W ().

Remark 6.33. (categories of fibrant objects and cofibration categories)

Of course the subcategories in def. 6.32 inherit more structure than just that of categories
with weak equivalences from C. Cr and C. each inherit “half” of the factorization axioms.
One says that Cy has the structure of a “fibration category” called a “Brown-category_of
fibrant objects”, while C. has the structure of a “cofibration category”.

We discuss properties of these categories of (co-)fibrant objects below in Homotopy fiber
sequences.

The proof of theorem 6.29 immediately implies the following:

Corollary 6.34. For C a model category, the restriction of the localization functor
y : C — Ho(C) from def. 6.26 (using remark 6.30) to any of the sub-categories with weak

equivalences of def. 6.32
Cre
v \
C. Cr
\ V4
C
l)’
Ho(C)

exhibits Ho(C) equivalently as the localization also of these subcategories with weak
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equivalences, at their weak equivalences. In particular there are equivalences of categories

Ho(C) = C[W ™'] = C[W; ] = Co[We ] = Cre[Wre] .

The following says that for computing the hom-sets in the homotopy category, even a mixed
variant of the above will do; it is sufficient that the domain is cofibrant and the codomain is
fibrant:

Lemma 6.35. (hom-sets of homotopy category via mapping cofibrant resolutions into
fibrant resolutions)

For X,Y € C with X cofibrant and Y fibrant, and for P,Q fibrant/cofibrant replacement
functors as in def. 6.26, then the morphism

Home(jx,py)
X5 Home(X,Y) /.

Homy e (PX,QY) = Homq(PX,QY) /_

(on homotopy classes of morphisms, well defined by prop. 6.22) is a natural bijection.

(Quillen 67, 1.1 lemma 7)

Proof. We may factor the morphism in question as the composite

Home(idpx,py) /. Home(y.idy) /.
Home(PX, QY) | omeldrxby) [y e (PX,Y) /| omeUl ) [ o m e (X,Y) /.

This shows that it is sufficient to see that for X cofibrant and Y fibrant, then

Home(idy,p,) /. : Home(X,QY) /. — Home(X,Y) /

is an isomorphism, and dually that

Homc(jX, idy) /. : Home(PX,Y) /. = Home(X,Y) /_

is an isomorphism. We discuss this for the former; the second is formally dual:

First, that Home(idy, p, ) is surjective is the lifting property in

@ — QY

Cof Py

eto d ’J’eWnFib
X L Y

which says that any morphism f:X — Y comes from a morphism %:X—> QY under

- . p
postcomposition with QY Xy.
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Second, that Home (idy, p, ) is injective is the lifting property in

(f.9)

XuX — QY
Cof Py
etotl J’e’WnFib

i) — Y

which says that if two morphisms f, g: X = QY become homotopic after postcomposition
with p,,: QX — Y, then they were already homotopic before. W

We record the following fact which will be used in part 1.1 (here):

Lemma 6.36. Let C be a model category (def. 6.1). Then every commuting square in its
homotopy category Ho(C) (def. 6.23) is, up to isomorphism of squares, in the image of the
localization functor C — Ho(C) of a commuting square in C (i.e.: not just commuting up to

homotopy).
Proof. Let
A i> B
a| 1> € Ho(C)
A — B
fr

be a commuting square in the homotopy category. Writing the same symbols for fibrant-
cofibrant objects in C and for morphisms in C representing these, then this means that in C
there is a left homotopy of the form

A L B
f | b
Cyl(4) — B,
fo 1 i

A - A’

Consider the factorization of the top square here through the mapping cylinder of f
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A i) B

) (po) LEW
Gltd) —  Gyl(f)

ot N !
A B’
a N Tfl

AI

This exhibits the composite A 3 Cyl(A) — Cyl(f) as an alternative representative of f in
Ho(C), and Cyl(f) — B’ as an alternative representative for b, and the commuting square

A — Cyl(f)
al l
A — B
fr

as an alternative representative of the given commuting square in Ho(C). Wi

Derived functors

Definition 6.37. (homotopical functor)

For C and D two categories with weak equivalences, def. 1.75, then a functor F:C — D is
called a homotopical functor if it sends weak equivalences to weak equivalences.

Definition 6.38. (derived functor)

Given a homotopical functor F:C — D (def. 6.37) between categories with weak
equivalences whose homotopy categories Ho(C) and Ho(D) exist (def. 6.28), then its
(“total”) derived functor is the functor Ho(F) between these homotopy categories which is
induced uniquely, up to unique isomorphism, by their universal property (def. 6.28):

F
C — D

Ye | Z~ IRE

Ho(C) THeG) Ho(D)

Remark 6.39. While many functors of interest between model categories are not
homotopical in the sense of def. 6.37, many become homotopical after restriction to the
full subcategories Cy of fibrant objects or C, of cofibrant objects, def. 6.32. By corollary
6.34 this is just as good for the purpose of homotopy theory.
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Therefore one considers the following generalization of def. 6.38:

Definition 6.40. (left and right derived functors)

Consider a functor F:C — D out of a model category C (def. 6.1) into a category with

weak equivalences D (def. 1.75).

1.If the restriction of F to the full subcategory C; of fibrant object becomes a
homotopical functor (def. 6.37), then the derived functor of that restriction,
according to def. 6.38, is called the right derived functor of F and denoted by RF:

F
Ve | . o,
RF: Cf[W™' = Ho(C) —— Ho(D)

where we use corollary 6.34.

2.If the restriction of F to the full subcategory C. of cofibrant object becomes a
homotopical functor (def. 6.37), then the derived functor of that restriction,
according to def. 6.38, is called the left derived functor of F and denoted by LF:

F
c, © ¢ — D
e | a o,
LF: C.W™] = Ho(C) —— Ho(D)

where again we use corollary 6.34.
The key fact that makes def. 6.40 practically relevant is the following:

Proposition 6.41. (Ken Brown's lemma)

Let C be a model category with full subcategories Cy, C. of fibrant objects and of cofibrant
objects respectively (def. 6.32). Let D be a category with weak equivalences.

1. A functor out of the category of fibrant objects

F:Cf—D

is a homotopical functor, def. 6.37, already if it sends acyclic fibrations to weak
equivalences.

2. A functor out of the category of cofibrant objects
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F:C.—D

is a homotopical functor, def. 6.37, already if it sends acyclic cofibrations to weak
equivalences.

The following proof refers to the factorization lemma, whose full statement and proof we
postpone to further below (lemma 6.69).

Proof. We discuss the case of a functor on a category of fibrant objects Cy, def. 6.32. The
other case is formally dual.

Let f: X — Y be a weak equivalence in Cy. Choose a path space object Path(X) (def. 6.16)
and consider the diagram

Path(f) —— X

€W NFib
P f f
ew ¥ (pb) ey
D,
Path(Y) m)) Y-
Py
e WNFib

Y

where the square is a pullback and Path(f) on the top left is our notation for the universal
cone object. (Below we discuss this in more detail, it is the mapping cocone of f, def. 6.61).

Here:

1. p; are both acyclic fibrations, by lemma 6.18;

2. Path(f) — X is an acyclic fibration because it is the pullback of p, .

3.p1f is a weak equivalence, because the factorization lemma 6.69 states that the

composite vertical morphism factors f through a weak equivalence, hence if f is a
weak equivalence, then p;f is by two-out-of-three (def. 1.75).

Now apply the functor F to this diagram and use the assumption that it sends acyclic
fibrations to weak equivalences to obtain
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F(Path(f)) pove F(X)

F(p1f) L J,F(f)
F(py)
F(Path(Y)) —% F(Y) -
eEwW
F(py)
eEw
Y

But the factorization lemma 6.69, in addition says that the vertical composite p, op:f is a

fibration, hence an acyclic fibration by the above. Therefore also F(p, op; f) is a weak

equivalence. Now the claim that also F(f) is a weak equivalence follows with applying two-
out-of-three (def. 1.75) twice. W

Corollary 6.42. Let C, D be model categories and consider F:C — D a functor. Then:

1. If F preserves cofibrant objects and acyclic cofibrations between these, then its left
derived functor (def. 6.40) LF exists, fitting into a diagram

F
C. — D,

Ye | &~ L

LF
Ho(C) — Ho(D)

2. If F preserves fibrant objects and acyclic fibrants between these, then its right derived
functor (def. 6.40) RF exists, fitting into a diagram

Ye | 74 o .

Ho(C) = Ho(D)

Proposition 6.43. (construction of left/right derived functors)

Let F : C — D be a functor between two model categories (def. 6.1).

1. If F preserves fibrant objects and weak equivalences between fibrant objects, then
the total right derived functor RF := R(y,, o F) (def. 6.40) in
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F
Yef l

¢. P
Ho(C) - Ho(D)

14
is given, up to isomorphism, on any object X € C -5 Ho(C) by appying F to a fibrant
replacement PX of X and then forming a cofibrant replacement Q(F(PX)) of the
result:

RF(X) = Q(F(PX)) .

1. If F preserves cofibrant objects and weak equivalences between cofibrant objects,
then the total left derived functor ILF := L(y,, o F) (def. 6.40) in

C. — D
Yee gy, U'p

Ho(C) 2 Ho(D)

is given, up to isomorphism, on any object X € C Y, Ho(C) by appying F to a
cofibrant replacement QX of X and then forming a fibrant replacement P(F(QX)) of
the result:

LF(X) = P(F(QX)) .

Proof. We discuss the first case, the second is formally dual. By the proof of theorem 6.29 we
have

RF(X) =y, (F(v,))
~y, F(Q(P(X)))

But since F is a homotopical functor on fibrant objects, the cofibrant replacement morphism
F(Q(P(X))) = F(P(X)) is a weak equivalence in D, hence becomes an isomorphism under
Y- Therefore

RF(X) =y, (F(P(X))) .

Now since F is assumed to preserve fibrant objects, F(P(X)) is fibrant in D, and hence y,,

acts on it (only) by cofibrant replacement. |

Quillen adjunctions

5/1/2025, 2:02 PM
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In practice it turns out to be useful to arrange for the assumptions in corollary 6.42 to be
satisfied by pairs of adjoint functors (Def. 1.32). Recall that this is a pair of functors L and R
going back and forth between two categories

L
(_
¢c LD
=
R

such that there is a natural bijection between hom-sets with L on the left and those with R
on the right (10):

bac: Home(L(d), ¢) — Homgp(d, R(c))

for all objects d €D and c€C. This being natural (Def. 1.23) means that
¢:Homp(L(—), —) = Home(—,R(—)) is a natural transformation, hence that for all

morphisms g:d, = dq and f:cq — ¢, the following is a commuting square:

¢d1,C1

Home(L(dy),¢1) —— Homp(dy, R(c1))

LFo(-)og | 19°(9)°R(g) /

Home(L(d>), c3) ﬁ’ Homg (d3, R(¢2))

We write (L 4 R) to indicate such an adjunction and call L the left adjoint and R the right
adjoint of the adjoint pair.

The archetypical example of a pair of adjoint functors is that consisting of forming Cartesian
products Y X (=) and forming mapping_spaces (—) Y as in the category of compactly
generated topological spaces of def..

If f:L(d) — c is any morphism, then the image ¢, .(f):d = R(c) is called its adjunct, and

conversely. The fact that adjuncts are in bijection is also expressed by the notation
Lie) L d
¢ LR

For an object d € D, the adjunct of the identity on Ld is called the adjunction unit
n, : d — RLd.

For an object c € C, the adjunct of the identity on Rc is called the adjunction counit
€. : LRc — c.

Adjunction units and counits turn out to encode the adjuncts of all other morphisms by the
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formulas
e (tdL o) =@ rLd ro
9 . Lg €
e (d > Rc) = (Ld = LRc = c).

Definition 6.44. (Quillen adjunction)

Let C, D be model categories. A pair of adjoint functors (Def. 1.32) between them

(L4R): ¢ D

L
H
—

R

is called a Quillen adjunction, to be denoted

b
C lquD

—_—
R

and L, R are called left/right Quillen functors, respectively, if the following equivalent
conditions are satisfied:

1. L preserves cofibrations and R preserves fibrations;

2. L preserves acyclic cofibrations and R preserves acyclic fibrations;

3. L preserves cofibrations and acyclic cofibrations;

4. R preserves fibrations and acyclic fibrations.

Proposition 6.45. The conditions in def. 6.44 are indeed all equivalent.

(Quillen 67, 1.4, theorem 3)

Proof. First observe that

o (i) A left adjoint L between model categories preserves acyclic cofibrations precisely if its
right adjoint R preserves fibrations.

e (ii) A left adjoint L between model categories preserves cofibrations precisely if its right
adjoint R preserves acyclic fibrations.

We discuss statement (i), statement (ii) is formally dual. So let f:A — B be an acyclic
cofibration in D and g: X — Y a fibration in C. Then for every commuting diagram as on the
left of the following, its (L 4 R)-adjunct is a commuting diagram as on the right here:
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A — RX) L(A) — X
i W@,y 1.
B — R(Y) L(B) — Y

If L preserves acyclic cofibrations, then the diagram on the right has a lift, and so the
(L 4 R)-adjunct of that lift is a lift of the left diagram. This shows that R(g) has the right
lifting_property against all acylic cofibrations and hence is a fibration. Conversely, if R
preserves fibrations, the same argument run from right to left gives that L preserves acyclic
fibrations.

Now by repeatedly applying (i) and (ii), all four conditions in question are seen to be
equivalent. l

The following is the analog of adjunction unit and adjunction counit (Def. 1.33):

Definition 6.46. (derived adjunction unit)

Let C and D be model categories (Def. 6.1), and let

et
C Loy D

—_—
R

be a Quillen adjunction (Def. 6.44). Then

1. a derived adjunction unit at an object d € D is a composition of the form

mm RG me)

Q(d) — R(L(Q(d))) —— R(P(L(Q(d)))

where

1. is the ordinary adjunction unit (Def. 1.33);

to(a) Po : : o
2.0 —> < Cory — Q(d) m d is a cofibrant resolution in D (Def. 6.26);

L(Q(d))

3.LQD) gpyneor PLQD)) Zrp>

L(Q(d)) * is a fibrant resolution in € (Def. 6.26);

2. a derived adjunction counit at an object ¢ € C is a composition of the form

LQRP©))) 229 Lr(P(c)) L3 P(c)

where

1. e is the ordinary adjunction counit (Def. 1.33);
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Je
c Pc —
EWenNCofe €Fibe

* is a fibrant resolution in C (Def. 6.26);

3.0 iRL(C))) Q(R(P(c)) M)R(P(C)) is a cofibrant resolution in D (Def.
) € COfD EWpN FlbD )
6.26).

We will see that Quillen adjunctions induce ordinary adjoint pairs of derived functors on
homotopy categories (Prop. 6.48). For this we first consider the following technical
observation:

Lemma 6.47. (right Quillen functors preserve path space objects)

L
«—

LetC %) D be a Quillen adjunction, def. 6.44.

1. For X € C a fibrant object and Path(X) a path space object (def. 6.16), then
R(Path(X)) is a path space object for R(X).

2. For X € C a cofibrant object and Cyl(X) a cylinder object (def. 6.16), then L(Cyl(X)) is
a cylinder object for L(X).

Proof. Consider the second case, the first is formally dual.

First Observe that L(Y UY) = LY U LY because L is left adjoint and hence preserves
colimits, hence in particular coproducts.

Hence
€ Cof € Cof
LX UX —Cyl(X)) = (L(X) UL(X) —> L(Cyl(X)))
is a cofibration.

Second, with Y cofibrant then also Y U Cyl(Y) is a cofibrantion, since Y =Y LY is a
cofibration (lemma 6.18). Therefore by Ken Brown's lemma (prop. 6.41) L preserves the

w
weak equivalence Cyl(Y) Ak Y.

Proposition 6.48. (derived adjunction)

L
For C  lqy D a Quillen adjunction, def. 6.44, also the corresponding left and right derived

—_—
R

functors (Def. 6.40, via cor. 6.42) form a pair of adjoint functors

LL

Ho(C) L Ho(D) .
RR
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Moreover, the adjunction unit and adjunction counit of this derived adjunction are the
images of the derived adjunction unit and derived adjunction counit (Def. 6.46) under the
localization functors (Theorem 6.29).

(Quillen 67,1.4 theorem 3)

Proof. For the first statement, by def. 6.40 and lemma 6.35 it is sufficient to see that for
X,Y € C with X cofibrant and Y fibrant, then there is a natural bijection

Home(LX,Y) /_ =~ Home(X,RY)/_ . (93)

Since by the adjunction isomorphism for (L 4 R) such a natural bijection exists before
passing to homotopy classes (=) /_, it is sufficient to see that this respects homotopy

classes. To that end, use from lemma 6.47 that with Cyl(Y) a cylinder object for Y, def. 6.16,
then L(Cyl(Y)) is a cylinder object for L(Y). This implies that left homotopies

(f=L9:LX—Y
given by
n: Cyl(LX) =LCyl(X) —Y
are in bijection to left homotopies
(F=19): X —>RY
given by
n: Cyl(X) — RX .

This establishes the adjunction. Now regarding the (co-)units: We show this for the
adjunction unit, the case of the adjunction counit is formally dual.

First observe that for d € D, then the defining commuting square for the left derived
functor from def. 6.40

L
D, — C

Pl . UYPe

Ho(D) ET Y Ho(C)

(using fibrant and fibrant/cofibrant replacement functors y,, from def. 6.26 with their

Ypo
universal property from theorem 6.29, corollary 6.34) gives that

220 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+unit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/adjunction+counit
https://ncatlab.org/nlab/show/derived+adjunction+unit
https://ncatlab.org/nlab/show/derived+adjunction+unit
https://ncatlab.org/nlab/show/derived+adjunction+counit
https://ncatlab.org/nlab/show/derived+adjunction+counit
https://ncatlab.org/nlab/show/localization
https://ncatlab.org/nlab/show/localization
https://ncatlab.org/nlab/show/model+category#Quillen67
https://ncatlab.org/nlab/show/model+category#Quillen67
https://ncatlab.org/nlab/show/natural+bijection
https://ncatlab.org/nlab/show/natural+bijection
https://ncatlab.org/nlab/show/adjoint+functor
https://ncatlab.org/nlab/show/adjoint+functor
https://ncatlab.org/nlab/show/cylinder+object
https://ncatlab.org/nlab/show/cylinder+object
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/formal+duality
https://ncatlab.org/nlab/show/commuting+square
https://ncatlab.org/nlab/show/commuting+square
https://ncatlab.org/nlab/show/left+derived+functor
https://ncatlab.org/nlab/show/left+derived+functor
https://ncatlab.org/nlab/show/left+derived+functor
https://ncatlab.org/nlab/show/left+derived+functor
https://ncatlab.org/nlab/show/fibrant+replacement
https://ncatlab.org/nlab/show/fibrant+replacement

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

(LL)d ~ PLPd ~ PLd € Ho(C),

where the second isomorphism holds because the left Quillen functor L sends the acyclic
cofibration j,:d — Pd to a weak equivalence.

The adjunction unit of (LL 4 RR) on Pd € Ho(C) is the image of the identity under
Homyyq ¢y ((LL) Pd, (ILL) Pd) 5 Homye ) (Pd, (RR)(LL)Pd) .

By the above and the proof of prop. 6.48, that adjunction isomorphism is equivalently that of
(L 4 R) under the isomorphism

Hom(j ;4,id)
Homy ¢ (PLd, PLd) ———— Hom¢(Ld, PLd) /

of lemma 6.35. Hence the derived adjunction unit (Def. 6.46) is the (L 4 R)-adjunct of

JLa

id
Ld 24 pra S pLd,

which indeed (by the formula for adjuncts, Prop. 1.38) is the derived adjunction unit

)
X -5 RLd =% RPLA .

This suggests to regard passage to homotopy categories and derived functors as itself being
a suitable functor from a category of model categories to the category of categories. Due to
the role played by the distinction between left Quillen functors and right Quillen functors,
this is usefully formulated as a double functor:

Definition 6.49. (double category of model categories)

The (very large) double category of model categories ModCatgy, is the double category
(Def. 1.54) that has

1. as objects: model categories C (Def. 6.1);

L
2. as vertical morphisms: left Quillen functors C — &€ (Def. 6.44);

R
3. as horizontal morphisms: right Quillen functors € — D (Def. 6.44);

4.as 2-morphisms natural transformations between the composites of underlying
functors:
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Ry
_

LzoR1 = Ryoly Lll ¢y le

cC —— D
R;

and composition is given by ordinary composition of functors, horizontally and vertically,
and by whiskering-composition of natural transformations.

(Shulman 07, Example 4.6)

There is hence a forgetful double functor (Remark 1.55)

F : ModCatg, — Sq(Cat)

to the double category of squares (Example 1.54) in the 2-category of categories (Example
1.49), which forgets the model category-structure and the Quillen functor-property.

The following records the 2-functoriality of sending Quillen adjunctions to adjoint pairs of
derived functors (Prop. 6.48):

Proposition 6.50. (homotopy double pseudofunctor on the double category of model

categories)

There is a double pseudofunctor (Remark 1.55)

Ho(—) : ModCatg,; — Sq(Cat)

from the double category of model categories (Def. 6.49) to the double category of squares
(Example 1.54) in the 2-category Cat (Example 1.49), which sends

1. a model category C to its homotopy category of a model category (Def. 6.23);
2. a left Quillen functor (Def. 6.44) to its left derived functor (Def. 6.40);
3. a right Quillen functor (Def. 6.44) to its right derived functor (Def. 6.40);

4. a natural transformation

Ry
¢cC — D
Lllw le
E — F
R,

to the “derived natural transformation”
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Ho(C) — Ho(D)
wl o |

Ho(€) H@ Ho(F)

given by the zig-zag

Ho(¢) : L,QRP < LyQR,QP — LyR,QP > R,L,QP — R,PL1QP — R,H(9%)

where the unlabeled morphisms are induced by fibrant resolution ¢ — Pc and cofibrant
resolution Qc — c, respectively (Def. 6.26).

(Shulman 07, Theorem 7.6)

Lemma 6.51. (recognizing derived natural isomorphisms)

For the derived natural transformation Ho(¢) in (94) to be invertible in the homotopy
category, it is sufficient that for every object ¢ € C which is both fibrant and cofibrant the
following composite natural transformation

RZPLlc ¢ LZlec
RzQLlc — R2L1C — L2R1C 4 L2PR1C

(of ¢ with images of fibrant resolution/cofibrant resolution, Def. 6.26) is invertible in the
homotopy category, hence that the composite is a weak equivalence (by Prop. 6.31).

(Shulman 07, Remark 7.2)

Example 6.52. (derived functor of left-right Quillen functor)

Let C, D be model categories (Def. 6.1), and let

F
C—2C

be a functor that is both a left Quillen functor as well as a right Quillen functor (Def. 6.44).
This means equivalently that there is a 2-morphism in the double category of model
categories (Def. 6.49) of the form

F

c —— D (95)
F|l id id
|y |
T
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[t follows that the left derived functor LF and right derived functor RF of F (Def. 6.40) are
naturally isomorphic:

LF = RF
Ho(C) —— Ho(D) .

(Shulman 07, corollary 7.8)

Proof. To see the natural isomorphism LF ~ RF: By Prop. 6.50 this is implied once the
derived natural transformation Ho(id) of (95) is a natural isomorphism. By Prop. 6.51 this is
the case, in the present situation, if the composition of

ch

Prc
QFc -5 Fc =5 PFc

is a weak equivalence. But this is immediate, since the two factors are weak equivalences, by
definition of fibrant/cofibrant resolution (Def. 6.26). i

The following is the analog of co-reflective subcategories (Def. 1.60) for model categories:

Definition 6.53. (Quillen reflection)

Let C and D be model categories (Def. 6.1), and let

b
C lgu D

_—
R

be a Quillen adjunction between them (Def. 6.44). Then this may be called

1. a Quillen reflection if the derived adjunction counit (Def. 6.46) is componentwise a
weak equivalence;

2.a Quillen co-reflection if the derived adjunction unit (Def. 6.46) is componentwise a
weak equivalence.

The main class of examples of Quillen reflections are left Bousfield localizations, discussed
as Prop. below.

Proposition 6.54. (characterization of Quillen reflections)

Let

P
C lqu D

—_—
R

be a Quillen adjunction (Def. 6.44) and write
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LL
Ho(C) lqgu Ho(D)

—
RR

for the induced adjoint pair of derived functors on the homotopy categories, from Prop. 6.48.

Then

1. (L 61 R) is a Quillen reflection (Def. 6.53) precisely if (LL 4 RR) is a reflective
u
subcategory-inclusion (Def. 1.60);

2. (L (? R) is a Quillen co-reflection] (Def. 6.53) precisely if (LL 4 RR) is a co-reflective
u
subcategory-inclusion (Def. 1.60);

Proof. By Prop. 6.48 the components of the adjunction unit/counit of (LL 4 RR) are
precisely the images under localization of the derived adjunction unit/counit of (L (? R).
u

Moreover, by Prop. 6.31 the localization functor of a model category inverts precisely the
weak equivalences. Hence the adjunction (co-)unit of (LL 4 RR) is an isomorphism if and
only if the derived (co-)unit of (L 61 R) is a weak equivalence, respectively.

u

With this the statement reduces to the characterization of (co-)reflections via invertible
units/counits, respectively, from Prop. 1.46. i

The following is the analog of adjoint equivalence of categories (Def. 1.56) for model
categories:

Definition 6.55. (Quillen equivalence)

For C,D two model categories (Def. 6.1), a Quillen adjunction (def. 6.44)

b
C LlquD

e
R

is called a Quillen equivalence, to be denoted

L
C zQu D,

 —
R
if the following equivalent conditions hold:

1. The right derived functor of R (via prop. 6.45, corollary 6.42) is an equivalence of
categories
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RR:Ho(C) = Ho(D) .

2. The left derived functor of L (via prop. 6.45, corollary 6.42) is an equivalence of
categories

LL: Ho(D) = Ho(C) .

3. For every cofibrant object d € D, the derived adjunction unit (Def. 6.46)

d2s R(L(d)) R(P(L(d)))

is a weak equivalence;
and for every fibrant object ¢ € C, the derived adjunction counit (Def. 6.46)

L(Pgr(c) €
L(Q(R(c))) —— L(R(c)) — ¢

is a weak equivalence.

4. For every cofibrant object d € D and every fibrant object ¢ € C, a morphism
d — R(c) is a weak equivalence precisely if its adjunct morphism L(c) — d is:
EWp
d —> R(c)
EWe '
L(d)—c
Poposition 6.56. The conditions in def. 6.55 are indeed all equivalent.

(Quillen 67, 1.4, theorem 3)

Proof. That 1) & 2) follows from prop. 6.48 (if in an adjoint pair one is an equivalence, then
so is the other).

To see the equivalence 1),2) & 3), notice (prop.) that a pair of adjoint functors is an
equivalence of categories precisely if both the adjunction unit and the adjunction counit are
natural isomorphisms. Hence it is sufficient to see that the derived adjunction unit/derived
adjunction counit (Def. 6.46) indeed represent the adjunction (co-)unit of (LL 4 RR) in the
homotopy category. But this is the statement of Prop. 6.48.

To see that 4) = 3):

Consider the weak equivalence LX X prX. Its (L 4 R)-adjunctis

x5 RLX X RPLX

by assumption 4) this is again a weak equivalence, which is the requirement for the derived
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adjunction unit in 3). Dually for derived adjunction counit.

To see 3) = 4):

Consider any f:Ld — ¢ a weak equivalence for cofibrant d, firbant c. Its adjunct f sits in a
commuting diagram

~ R
7ood L R P Re

=1 FLa L

RPf
d — RPLd — RPc

c A7

where Pf is any lift constructed as in def. 6.26.

This exhibits the bottom left morphism as the derived adjunction unit (Def. 6.46), hence a
weak equivalence by assumption. But since f was a weak equivalence, so is Pf (by two-out-
of-three). Thereby also RPf and Rj, are weak equivalences by Ken Brown's lemma 6.41 and

the assumed fibrancy of c. Therefore by two-out-of-three (def. 1.75) also the adjunct f is a
weak equivalence. W

Example 6.57. (trivial Quillen equivalence)

Let C be a model category (Def. 6.1). Then the identity functor on C constitutes a Quillen
equivalence (Def. 6.55) from C to itself:

id
(—
C zQu C
_—
id
Proof. From prop. 6.43 it is clear that in this case the derived functors LLid and R id both are
themselves the identity functor on the homotopy category of a model category, hence in

particular are an equivalence of categories. Wi

In certain situations the conditions on a Quillen equivalence simplify. For instance:

Proposition 6.58. (recognition of Quillen equivalences)

L

If in a Quillen adjunction C I D (def. 6.44) the right adjoint R “creates weak
R

equivalences” (in that a morphism f in C is a weak equivalence precisly if U(f) is) then

(L 4 R) is a Quillen equivalence (def. 6.55) precisely already if for all cofibrant objects d € D

the plain adjunction unit

d -5 R(L(d))
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is a weak equivalence.

Proof. By prop. 6.56, generally, (L 4 R) is a Quillen equivalence precisely if

1. for every cofibrant object d € D, the derived adjunction unit (Def. 6.46)

R(j L(d)

d -5 R(L(d) —= R(P(L(D)))

is a weak equivalence;:

2. for every fibrant object ¢ € C, the derived adjunction counit (Def. 6.46)

L(Q(R(C))) L(R(C)) =

is a weak equivalence.

Consider the first condition: Since R preserves the weak equivalence j L(d)’ then by two-out-

of-three (def. 1.75) the composite in the first item is a weak equivalence precisely if ) is.

Hence it is now sufficient to show that in this case the second condition above is automatic.

Since R also reflects weak equivalences, the composite in item two is a weak equivalence
precisely if its image

R(L(Q(R(C)))) R(L(R( ))) ak R(c)
under R is.

Moreover, assuming, by the above, that Norey ON the cofibrant object Q(R(c)) is a weak

equivalence, then by two-out-of-three this composite is a weak equivalence precisely if the
further composite with 7 is

Q( ()

QR(c) — R(L(Q(R(C)))) R(L(R( M DR -

By the formula for adjuncts, this composite is the (L 4 R)-adjunct of the original composite,
which is just Preo)

Pr (C)

L(Q(R(c )))
QR(O) —

L(R()) > ¢

R(C)

R(c)
Butp R(S) is a weak equivalence by definition of cofibrant replacement.

The following is the analog of adjoint triples, adjoint quadruples (Remark 1.34), etc. for
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model categories:

Definition 6.59. (Quillen adjoint triple)

Let C;,C,, D be model categories (Def. 6.1), where C; and C, share the same underlying
category C, and such that the identity functor on C constitutes a Quillen equivalence (Def.

6.55):
id
%
C; Llqu€i
—_—
id
Then
1. a Quillen adjoint triple of the form
L
—_—
J—Qu

is diagrams in the double category of model categories (Def. 6.49) of the form

id
c, — G,

Ll ny lid
Cc

D — Cl

idl €y Cl //id lid

cz.—>ezT’Cz

such that n is the unit of an adjunction and € the counit of an adjunction, thus

exhibiting Quillen adjunctions

_ Lt
€, LlquD

—
C

Cc
#
C; LquD

—_—
R
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and such that the derived natural transformation Ho(id) of the bottom right square
(94) is invertible (a natural isomorphism);

2. a Quillen adjoint triple of the form

1qu

c
61/2 TQU)D

is diagram in the double category of model categories (Def. 6.49) of the form

id id
C; — 6 — G

idl id& lC €y lid

62?1) ?Cl

such that n is the unit of an adjunction and € the counit of an adjunction, thus
exhibiting Quillen adjunctions

b
C; LlquD

 ——
C

C
e —
C; LD

«—
R

and such that the derived natural transformation Ho(id) of the top left square square
(here) is invertible (a natural isomorphism).

If a Quillen adjoint triple of the first kind overlaps with one of the second kind
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Ly
_
lQu

C1 =L2
1
Qu
61/2 D
R1=0C;
E—
J—Qu

Ry
b

we speak of a Quillen adjoint quadruple, and so forth.

Proposition 6.60. (Quillen adjoint triple induces adjoint triple of derived functors on
homotopy categories)

Given a Quillen adjoint triple (Def. 6.59), the induced derived functors (Def. 6.38) on the
homotopy categories form an ordinary adjoint triple (Remark 1.34):

L LL
— —
1lqu 1
C Ho(-) LC=RC
Cl/Z(TQD — HO(C) <T HO(D)
R RR
E— E—
L LL
— —
1qu 1
c Ho(-) LC=RC
Ci/2¢——D — Ho(C) «—— Ho(D)
J—Qu 1
R RR
E— E—

Proof. This follows immediately from the fact that passing to homotopy categories of model
categories is a double pseudofunctor from the double category of model categories to the
double category of squares in Cat (Prop. 6.50). B

Mapping cones

In the context of homotopy theory, a pullback diagram, such as in the definition of the fiber
in example
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fib(f) — X
l V
*k N Y

ought to commute only up to a (left/right) homotopy (def. 6.20) between the outer
composite morphisms. Moreover, it should satisfy its universal property up to such
homotopies.

Instead of going through the full theory of what this means, we observe that this is plausibly
modeled by the following construction, and then we check (below) that this indeed has the
relevant abstract homotopy theoretic properties.

Definition 6.61. Let C be a model category, def. 6.1 with ¢/ its model structure on pointed
objects, prop. . For f: X — Y a morphism between cofibrant objects (hence a morphism in
(C*/)C o e/, def. 6.32), its reduced mapping cone is the object

— k
Cone(f) : E Cyl(X) |)_(| Y
in the colimiting diagram

X - Y

e Ik
X 2 o :
l N l

* - — Cone(f)
where Cyl(X) is a cylinder object for X, def. 6.16.

Dually, for f:X — Y a morphism between fibrant objects (hence a morphism in
((;’*)f o ¢/, def. 6.32), its mapping cocone is the object

Path«(f) == * >1§ Path(Y) >1§ Y

in the following limit diagram
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Path«(f) — — X
) T Vv
Path(Y) p—> Y

1

\) LPo

* — Y

where Path(Y) is a path space object for Y, def. 6.16.

Remark 6.62. When we write homotopies (def. 6.20) as double arrows between morphisms,
then the limit diagram in def. 6.61 looks just like the square in the definition of fibers in
example , except that it is filled by the right homotopy given by the component map
denoted n:

Path.(f) — X
Lo, VL
* N Y

Dually, the colimiting diagram for the mapping cone turns to look just like the square for
the cofiber, except that it is filled with a left homotopy

f

X — Y
Lz, )
* — Cone(f)

Proposition 6.63. The colimit appearing in the definition of the reduced mapping cone in def.
6.61 is equivalent to three consecutive pushouts:

X i) Y

L (po) |
X 2 gl — ol
L (po) l (po) l
* —  Cone(X) — Cone(f)

The two intermediate objects appearing here are called

e the plain reduced cone Cone(X) = * % Cyl(X);
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Dually, the limit appearing in the definition of the mapping cocone in def. 6.61 is equivalent
to three consecutive pullbacks:

Path«(f) — Path(f) — X

L @by L (b)) V
Path«(Y) — Path(Y) p—> Y

1
! (pb) LPo

k N Y
The two intermediate objects appearing here are called

* the based path space object Path«(Y) := * [], Path(Y),

e the mapping path space or mapping co-cylinder Path(f) := X X Path(X).

Definition 6.64. Let X € ¢"/ be any pointed object.

1. The mapping_cone, def. 6.63, of X — * is called the reduced suspension of X,
denoted

2X = Cone(X —» *).

Via prop. 6.63 this is equivalently the coproduct of two copies of the cone on X over
their base:

X — *
La (po) \)
x =2 Cyl(X) — Cone(X) -

L (po) L (po) l
* —  Cone(X) — X

This is also equivalently the cofiber, example of (iy,i;), hence (example ) of the
wedge sum inclusion:

(fo,i1) cofib(ig,i;)

XvX=XUX=5Cyl(X) —=5 5X .

2. The mapping_cocone, def. 6.63, of * — X is called the loop space object of X,
denoted

0X = Path«(* > X) .
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Via prop. 6.63 this is equivalently

0X
! (pb)
Path.(X)
! (pb)

k

https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

—  Path«(X) — *

) (pb) |

Path(X) — X
|21 '

LPo

X

This is also equivalently the fiber, example of (p, p,):

NX

fib(py.p4)
S

PyP1)

Path(X) 5 XX X .

Proposition 6.65. In pointed topological spaces Top*/,

e the reduced suspension objects (def. 6.64) induced from the standard reduced cylinder
(=) A (I4) of example are isomorphic to the smash product (def. ) with the 1-sphere,
for later purposes we choose to smash on the left and write

cofib(XVX - XA(UI,) =S'AX,

Dually:

e the loop space objects (def. 6.64) induced from the standard pointed path space object
Maps(I,, —). are isomorphic to the pointed mapping_space (example ) with the 1-

sphere

fib(Maps(I,, X), = X X X) = Maps(S*, X). .

Example  6.66.

For ¢ = Top

with

Cyl(x) =XxI . -
the standard £ \
cyclinder | 4
object, def. ,

then by

example , the
\ V4 f s

Proof. By immediate inspection: For instance the fiber of Maps(/,, X), — X X X is clearly

the subspace of the unpointed mapping space X’ on elements that take the endpoints of I to
the basepoint of X. i

mapping
cone

i \ﬁ/'\ q — \/
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mapping cone, A T 7 ¥ " icusion - Y T collapse ¢ 2= A Suspensen
def. 6.61, of a
continuous
function
f:X—>Y is
obtained by

1. forming
the
cylinder over X;

2. attaching to one end of that cylinder the space Y as specified by the map f.

3. shrinking the other end of the cylinder to the point.

Accordingly the suspension of a topological space is the result of shrinking both ends of
the cylinder on the object two the point. This is homeomoprhic to attaching two copies of
the cone on the space at the base of the cone.

(graphics taken from Muro 2010)

Below in example we find the homotopy-theoretic interpretation of this standard
topological mapping cone as a model for the homotopy cofiber.

Remark 6.67. The formula for the mapping_cone in prop. 6.63 (as opposed to that of the
mapping co-cone) does not require the presence of the basepoint: for f:X —Y a
morphism in C (as opposed to in C’*/) we may still define

Cone'(f) ==Y N Cone'(X),

where the prime denotes the unreduced cone, formed from a cylinder object in C.

Proposition 6.68. For f: X — Y a morphism in Top, then its unreduced mapping cone, remark
6.67, with respect to the standard cylinder object X X I def. , is isomorphic to the reduced
mapping cone, def. 6.61, of the morphism f_ :X, — Y, (with a basepoint adjoined, def. )

with respect to the standard reduced cylinder (example ):
Cone'(f) =~ Cone(f ) .

Proof. By prop. and example , Cone(f ) is given by the colimit in Top over the following

diagram:
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(f,id)
—

* —  Xu* Yu*
\) \)
Xu* — (XxhHhu*
\) )
* — —  Cone(f,)
We may factor the vertical maps to give
* ~ oxur Iy
\) \)
Xu* — (XxhHhu*
\)
*u*r — —  Cone'(f),
\) \)
* — —  Cone'(f)

This way the top part of the diagram (using the pasting law to compute the colimit in two
stages) is manifestly a cocone under the result of applying (—), to the diagram for the

unreduced cone. Since (—), is itself given by a colimit, it preserves colimits, and hence gives
the partial colimit Cone’(f)Jr as shown. The remaining pushout then contracts the

remaining copy of the point away. i

Example 6.66 makes it clear that every cycle S™ — Y in Y that happens to be in the image of
X can be continuously translated in the cylinder-direction, keeping it constant in Y, to the
other end of the cylinder, where it shrinks away to the point. This means that every
homotopy group of Y, def. , in the image of f vanishes in the mapping cone. Hence in the
mapping cone the image of X under f in Y is removed up to homotopy. This makes it
intuitively clear how Cone(f) is a homotopy-version of the cokernel of f. We now discuss
this formally.

Lemma 6.69. (factorization lemma)

Let C. be a category of cofibrant objects, def. 6.32. Then for every morphism f: X — Y the
mapping cylinder-construction in def. 6.63 provides a cofibration resolution of f, in that

1. the composite morphism X -, Cyl(X) G Cyl(f) is a cofibration;

2. f factors through this morphism by a weak equivalence left inverse to an acyclic
cofibration
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(i1)«f°lg
foX—ccor KDY,

Dually:

Let Cs be a category of fibrant objects, def. 6.32. Then for every morphism f:X — Y the
mapping_cocylinder-construction in def. 6.63 provides a fibration resolution of f, in that

S
1. the composite morphism Path(f) e Path(Y) L Y is a fibration;

2. f factors through this morphism by a weak equivalence right inverse to an acyclic
fibration:
. X — path(p) "2 y
f ew 2 ) €EFib "’

Proof. We discuss the second case. The first case is formally dual.

So consider the mapping cocylinder-construction from prop. 6.63

€W NFib
Path(f) — X
P1fl (pb) lf
P4 _
€W NFib J,PO
Y

To see that the vertical composite is indeed a fibration, notice that, by the pasting law, the
above pullback diagram may be decomposed as a pasting of two pullback diagram as follows

(f,id) (p1,p,) pr
1 l(f'ld) lf
(p D )EFlb pr
Path(Y) ———— YxY = Y-
Poy < or,
e Fib
Y

Both squares are pullback squares. Since pullbacks of fibrations are fibrations by prop. 6.8,
the morphism Path(f) — X XY is a fibration. Similarly, since X is fibrant, also the projection
map X XY — Y is a fibration (being the pullback of X — * alongV — *).
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Since the vertical composite is thereby exhibited as the composite of two fibrations

(f,id) (04, p,) pr, o (f,1d) =pr
Path(f) ————3 X xY -2 3

it is itself a fibration.
Then to see that there is a weak equivalence as claimed:

The universal property of the pullback Path(f) induces a right inverse of Path(f) — X fitting
into this diagram

3 eEWnNFib
idy: X i Path(f) —— X

fl ! V
. i Dy
idy: Y i Path(Y) - Y’
RV LPo
Y

which is a weak equivalence, as indicated, by two-out-of-three (def. 1.75).

This establishes the claim. B

Categories of fibrant objects

Below we discuss the homotopy-theoretic properties of the mapping cone- and mapping
cocone-constructions from above. Before we do so, we here establish a collection of general

facts that hold in categories of fibrant objects and dually in categories of cofibrant objects,
def. 6.32.

Literature (Brown 73, section 4).

Lemma 6.70. Let f:X — Y be a morphism in a category of fibrant objects, def. 6.32. Then
given any choice of path space objects Path(X) and Path(Y), def. 6.16, there is a replacement
of Path(X) by a path space object Path(X) along an acylic fibration, such that Path(X) has a
morphism ¢ to Path(Y) which is compatible with the structure maps, in that the following
diagram commutes
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X L Y
4 ) \)
= ¢
Path(X) pv— Path(X) — Path(Y).
Y Y =X 5 X
k) \ 1®o-P1) 1®o.P1)
XXX (f—’? Y XY
(Brown 73, section 2, lemma 2)
Proof. Consider the commuting square
f
X — Y —  Path(Y)
L @o-PD)
@) .
Path(x) P4 xxx Y8 yxy

Then consider its factorization through the pullback of the right morphism along the bottom
morphism,

X — (fop¥ fopX) Path(Y) — Path(Y)

€W NFib &phH
ew N l { e Fip:
(For,fopi
Path(X) Uebo 7Pi) iy

Finally use the factorization lemma 6.69 to factor the morphism X — (fopJ, f o pf)*Path(Y)

through a weak equivalence followed by a fibration, the object this factors through serves as
the desired path space resolution

eEw —
X - Path(X) — Path(Y)

; Y Y
Ew\l lEWnFlb l(po,p.l)

ford.fony
Path(x) TPy iy

Lemma 6.71. In a category of fibrant objects Cy, def. 6.32, let

240 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#Brown73
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#Brown73
https://ncatlab.org/nlab/show/commuting+square
https://ncatlab.org/nlab/show/commuting+square
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/factorization+lemma
https://ncatlab.org/nlab/show/factorization+lemma
https://ncatlab.org/nlab/show/category+of+fibrant+objects
https://ncatlab.org/nlab/show/category+of+fibrant+objects

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

A1 - Az
€Fib ™ Y eFib

B

be a morphism over some object B in Cy and let u: B' — B be any morphism in Cy. Let

*

* f *
uA1 u_) U,AZ

€Fib ™ < eFib
BI
be the corresponding morphism pulled back along u.
Then
e if f is a fibration then also u"f is a fibration;
o if f is a weak equivalence then also u’f is a weak equivalence.

(Brown 73, section 4, lemma 1)

Proof. For f € Fib the statement follows from the pasting law which says that if in
B, Xp A1 — A1
lu*feFib | fEFib
B, Xp A2 — AZ
l €Fib l €Fib

u

B’ — B

the bottom and the total square are pullback squares, then so is the top square. The same
reasoning applies for f € W N Fib.

Now to see the case that f € W:

Consider the full subcategory (C,p) f of the slice category C,p (def. ) on its fibrant objects,
i.e. the full subcategory of the slice category on the fibrations

X

P
VeFib
B
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into B. By factorizing for every such fibration the diagonal morphisms into the fiber product
X ;§X through a weak equivalence followed by a fibration, we obtain path space objects

Pathg (X) relative to B:

ew €Fib
(4x)/B: X — Pathg(X) — X§X

€ Fib N 2 ‘/eFib
B

With these, the factorization lemma (lemma 6.69) applies in (C’/B)f.

(Notice that for this we do need the restriction of C 5 to the fibrations, because this ensures
that the projections p;: X1 Xg X, — X; are still fibrations, which is used in the proof of the

factorization lemma (here).)

So now given any

f

X — Y
eEw

€Fib ¥ Y e Fib
B

apply the factorization lemma in (C’/B)f to factor it as

iew e W NFib
X — Pathg(f) — Y
€Fib ¥ l Z cFib
B

By the previous discussion it is sufficient now to show that the base change of i to B’ is still a
weak equivalence. But by the factorization lemma in (C ) P the morphism i is right inverse

to another acyclic fibration over B:

] iEW € WNFib
idy : X — Pathg(f) — X
E€Fib ¥ d  eFib
B

(Notice that if we had applied the factorization lemma of Ay in Cf instead of (dx) / B in
(C, ) then the corresponding triangle on the right here would not commute.)

Now we may reason as before: the base change of the top morphism here is exhibited by the
following pasting composite of pullbacks:
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B’ >B< X — X
) (pb) \)
B’éPathB(f) —  Pathg(f)
l (pb) | EWNFib
B’ é X — X
) (pb) \
B’ — B

The acyclic fibration Pathg(f) is preserved by this pullback, as is the identity
idy: X — Pathp(X) — X. Hence the weak equivalence X — Pathy(X) is preserved by two-
out-of-three (def. 1.75).

Lemma 6.72. In a category of fibrant objects, def. 6.32, the pullback of a weak equivalence
along a fibration is again a weak equivalence.

(Brown 73, section 4, lemma 2)

Proof. Let u: B’ —> B be a weak equivalence and p: E — B be a fibration. We want to show
that the left vertical morphism in the pullback

ExzB — B
lﬁEW J,EW

€Fib
—_ B

is a weak equivalence.

First of all, using the factorization lemma 6.69 we may factor B’ — B as

, EW EWNF
B" — Path(u) —— B

with the first morphism a weak equivalence that is a right inverse to an acyclic fibration and
the right one an acyclic fibration.

Then the pullback diagram in question may be decomposed into two consecutive pullback
diagrams
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ExzB - B’

\) \)
€ Fib
Q — Path(u),
| EWNFib | EWNFib
€ Fib
o

where the morphisms are indicated as fibrations and acyclic fibrations using the stability of
these under arbitrary pullback.

eEw
This means that the proof reduces to proving that weak equivalences u: B* — B that are

EWNF
right inverse to some acyclic fibration v: B—— B’ map to a weak equivalence under

pullback along a fibration.

Given such u with right inverse v, consider the pullback diagram

E
(p.id) .
eEw l \‘ld
eEW NFib
El = B XB,E _—
(pb) B
l lvEWnFib
veFibnw ,
_—

w
Notice that the indicated universal morphism p X 1d: E LE 1 into the pullback is a weak
equivalence by two-out-of-three (def. 1.75).

The previous lemma 6.71 says that weak equivalences between fibrations over B are
themselves preserved by base extension along u: B’ — B. In total this yields the following
diagram
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WE=B%xgE — E

u*(pxId) pxId id
ew | Ew | \!
* eEWnNFib
u Eq — E; —

B

~L l lUEWnFlb
, u veEWNFib ,
B — B — B

so that with p xId: E - E; a weak equivalence also u'(p x Id) is a weak equivalence, as
indicated.

Notice that u'E = B’ X E — E is the morphism that we want to show is a weak equivalence.
By two-out-of-three (def. 1.75) for that it is now sufficient to show that u’E; — E; is a weak

equivalence.

That finally follows now since, by assumption, the total bottom horizontal morphism is the
identity. Hence so is the top horizontal morphism. Therefore u’E; — E; is right inverse to a

weak equivalence, hence is a weak equivalence. |

Lemma 6.73. Let (C*/)f be a category of fibrant objects, def. 6.32 in a model structure on

pointed objects (prop. ). Given any commuting diagram in C of the form

f

EW N
X, — X1 = X
t g

Py P,
‘LEFib ‘LEFib
u
B — C

(meaning: both squares commute and t equalizes f with g) then the localization functor
y: (C*/)f - Ho(C*/) (def. 6.26, cor 6.34) takes the morphisms fib(p, ) = fib(p,) induced
by f and g on fibers (example ) to the same morphism, in the homotopy category.

(Brown 73, section 4, lemma 4)

Proof. First consider the pullback of p, along u: this forms the same kind of diagram but

with the bottom morphism an identity. Hence it is sufficient to consider this special case.

Consider the full subcategory (C’; é) f of the slice category C’; g (def. ) on its fibrant objects,

i.e. the full subcategory of the slice category on the fibrations
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X

p
’J'eFib

B

into B. By factorizing for every such fibration the diagonal morphisms into the fiber product
X EX through a weak equivalence followed by a fibration, we obtain path space objects

Pathg (X) relative to B:

w Fib
(Uy)/B: X - Pathp(X) — XXX
eFib\‘ 1 l/eFib
B

With these, the factorization lemma (lemma 6.69) applies in (C’;é)f.

(Po/P1)
Let then X — Pathp(X5;) —% X, x5 X, be a path space object for X, in the slice over B and

consider the following commuting square

, sft
X 1 — PathB(Xz)
t (potpl)
EW ! leFib )

X TR X xx,

By factoring this through the pullback (f,g)*(po,pl) and then applying the factorization

lemma 6.69 and then two-out-of-three (def. 1.75) to the factoring morphisms, this may be
replaced by a commuting square of the same form, where however the left morphism is an
acyclic fibration

X", — Pathg(X,)

PyP1)
€Fib -

t
e WnFib l l
)

Xl — X2 >§X2

This makes also the morphism X”; — B be a fibration, so that the whole diagram may now
be regarded as a diagram in the category of fibrant objects (C’/B)f of the slice category over

B.

As such, the top horizontal morphism now exhibits a right homotopy which under
localization y, : (C’/B)f — Ho(C,p) (def. 6.26) of the slice model structure (prop. ) we

have
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Ye(f) =v(9) -

The result then follows by observing that we have a commuting square of functors

(C/B)f - ¢
ey o,

Ho(C,;) — Ho(c™/)

because, by lemma 6.71, the top and right composite sends weak equivalences to
isomorphisms, and hence the bottom filler exists by theorem 6.29. This implies the claim. W

Homotopy fibers

We now discuss the homotopy-theoretic properties of the mapping _cone- and mapping
cocone-constructions from above.

Literature (Brown 73, section 4).

Remark 6.74. The factorization lemma 6.69 with prop. 6.63 says that the mapping cocone of
a morphism f, def. 6.61, is equivalently the plain fiber, example , of a fibrant resolution f

of f:

Path«(f) — Path(f)
Lob) U

* — Y
The following prop. 6.75 says that, up to equivalence, this situation is independent of the
specific fibration resolution f provided by the factorization lemma (hence by the

prescription for the mapping cocone), but only depends on it being some fibration
resolution.

Proposition 6.75. In the category of fibrant objects (C*/)f, def. 6.32, of a model structure on

pointed objects (prop. ) consider a morphism of fiber-diagrams, hence a commuting
diagram of the form

. by
fib(p,) — X1 <Fib Yy
L 19 V.
fib X, 2% y
ib(p,) — X <rip '2

If f and g weak equivalences, then so is h.

247 of 249 5/1/2025, 2:02 PM


https://ncatlab.org/nlab/show/functors
https://ncatlab.org/nlab/show/functors
https://ncatlab.org/nlab/show/mapping+cone
https://ncatlab.org/nlab/show/mapping+cone
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#Brown73
https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#Brown73
https://ncatlab.org/nlab/show/factorization+lemma
https://ncatlab.org/nlab/show/factorization+lemma
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/fiber
https://ncatlab.org/nlab/show/fiber
https://ncatlab.org/nlab/show/factorization+lemma
https://ncatlab.org/nlab/show/factorization+lemma
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/mapping+cocone
https://ncatlab.org/nlab/show/category+of+fibrant+objects
https://ncatlab.org/nlab/show/category+of+fibrant+objects
https://ncatlab.org/nlab/show/slice+model+structure
https://ncatlab.org/nlab/show/slice+model+structure
https://ncatlab.org/nlab/show/slice+model+structure
https://ncatlab.org/nlab/show/slice+model+structure
https://ncatlab.org/nlab/show/fiber
https://ncatlab.org/nlab/show/fiber
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram
https://ncatlab.org/nlab/show/commuting+diagram

geometry of physics -- categories and toposes in nLab https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and...

Proof. Factor the diagram in question through the pullback of p, along f

fib(p,) — X

W Wy AP
fib(f" v, 7y
ib(fp,) — fX, S22 ¥

=~ EW f

! ! .
fib X, 2%y
ib(p,) — 2 cpp 12

and observe that

1.fib(f p,) = pt f p, = pt p, = fib(p,);
2. f*XZ — X, is a weak equivalence by lemma 6.72;

3.X, - f*XZ is a weak equivalence by assumption and by two-out-of-three (def. 1.75);

Moreover, this diagram exhibits h:fib(p,) — fib(f*pz) = fib(p,) as the base change, along

*—>Y,ofX; - f*Xz. Therefore the claim now follows with lemma 6.71. i
Hence we say:

Definition 6.76. Let C be a model category and ¢/ its model category of pointed objects,
prop.. For f: X — Y any morphism in its category of fibrant objects (C’*/)f, def. 6.32, then

its homotopy fiber

hofib(f) — X

is the morphism in the homotopy category Ho(C’* /), def. 6.23, which is represented by the
fiber, example , of any fibration resolution f of f (hence any fibration f such that f factors
through a weak equivalence followed by f).

Dually:

For f: X — Y any morphism in its category of cofibrant objects (C’*/)C, def. 6.32, then its

homotopy cofiber

Y — hocofib(f)

is the morphism in the homotopy category Ho(C), def. 6.23, which is represented by the
cofiber, example , of any cofibration resolution of f (hence any cofibration f such that f
factors as f followed by a weak equivalence).
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Proposition 6.77. The homotopy fiber in def. 6.76 is indeed well defined, in that for f. and f,

two fibration replacements of any morphisms f in Cy, then their fibers are isomorphic in
Ho(C™ /).

Proof. 1t is sufficient to exhibit an isomorphism in Ho(C "/ ) from the fiber of the fibration
replacement given by the factorization lemma 6.69 (for any choice of path space object) to
the fiber of any other fibration resolution.

Hence given a morphism f:Y — X and a factorization

A €Fib
fiX—X—Y
ew”™ f,

consider, for any choice Path(Y) of path space object (def. 6.16), the diagram

eEWnNFib
Path(f) —— X
EW | (pb) L%

EWNFib A

Path(f,) —— X

€Fib l (pb) | €Fib
b,
Do
€W NFib l

Y

as in the proof of lemma 6.69. Now by repeatedly using prop. 6.75:

1. the bottom square gives a weak equivalence from the fiber of Path(f,) — Path(Y) to
the fiber of f ;

2. The square

Path(f,
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