Poisson structures from cornets of field theories bused on joint work with
P. Miner, N. Reshetikhin
N. Morhoyedi, M. Schiaving, K. Wernli
G. Canepa: focus on 3+1 gravity in coframe formulation

Field theory on manifolds with boundaries and corners
 \sim partition ρ an state Ψ boundary: symplectic manifold M \sim its quantization \mathcal{H}
corners: Poisson mandible P and its quantization A

$$
\begin{aligned}
& \sum_{\text {boundorb }} \sim M_{\Sigma}
\end{aligned}
$$

Part I: Some buckground \& results
Aftire Lie alpebras
Let $(g, 2,>)$ be a f.d quadratic lie algebora (ine. <>> inaraiont $\begin{gathered}\text { imner praduct })\end{gathered}$

- $y_{s^{\prime}}:=\operatorname{Map}\left(s^{\prime}, y\right)$ with pointwire Lie brocket $[b, g](-)=[g(x), \rho(x)]_{g}$

$$
\begin{aligned}
& c(b, \rho):=\int_{S^{\prime}}\langle b, d g\rangle \text { is a cocycle! } \\
& b, \rho \in g_{s^{\prime}} \\
\Rightarrow \quad & \hat{y}:=g_{s^{\prime}} \oplus \mathbb{R} \text { with }[b \theta a, g \oplus b]:=[b, g] \oplus c(\theta, \rho) \\
& \text { ir a Lie algebre }
\end{aligned}
$$

- \hat{y} is culled an attire Lie algebra
- Its representation theory is widely studied
- It is related to Chern-Simons theory and the Wess-2umino-Witten model
- The Poisson algebra in the title is " \hat{y} "" viz, $f^{\partial d}:=\Omega^{\prime}\left(S^{\prime}\right) \otimes g^{*}$ with attire Poisson itunctate (defined on certain functionals, e.g., local ones) A ssociated to the corners of CS theory

2) Deneralization Let y be a fid. Lie algebra Γ a closed oriented surface
$Y_{\Gamma}:=\operatorname{Map}(\Gamma, g)$ with pointwire Lie bracket
$y_{\rho}^{*}:=R^{\prime}(\rho) \otimes y^{*}$ with pointwire coudjoint action of y on y^{*}
$\tilde{y}_{\Gamma}:=\varphi_{\Gamma} \oplus y_{\Gamma}^{x} \quad$ with Lie bracket

$$
[b \otimes \alpha, g \otimes \beta \tilde{]}=[b, \phi] \oplus(\operatorname{ad} \beta \beta-\operatorname{adg} \alpha)
$$

Cocycle: $\quad C(b \forall \alpha, g \otimes \beta)=\int_{\Gamma}((\alpha, d g)-(\beta, d f))$
$($,$) curonical pairing of y^{*}$ with y

$$
\begin{aligned}
\Rightarrow & \hat{y}_{\Gamma}:=\tilde{y}_{\Gamma} \oplus \mathbb{R} \text { with } \\
& {[b \oplus \alpha \oplus a, g \oplus \beta \oplus b]:=[b \oplus \alpha, \rho \otimes \beta \tilde{\beta} \oplus C(b \otimes \alpha, \rho \otimes \beta)}
\end{aligned}
$$

is a Lie alpebra

Generalizations
(3) $\quad g$-bundle over $\Gamma \leadsto y_{\Sigma}, y_{\varepsilon}^{*}$ sections

$$
C(b \otimes \alpha, g \otimes \beta)=\int_{\Gamma}\left(\left(\alpha, \rho_{\beta_{0}} g\right)-\left(\beta, \rho_{0} f f\right)\right)
$$

do. covariant derivative w.r.t. some connection
(2) If (y, c, λ) quadratic

$$
c_{\Lambda}(b \otimes \alpha, g \otimes \beta):=c(b \otimes \alpha, g \otimes \beta)+\Lambda \int\langle\alpha, \beta\rangle
$$

$\leadsto \hat{y}_{\Gamma}^{\wedge}$

- \hat{y}_{Γ} is related to 4D BF theory (with "cosmological" term for $\Lambda \neq 0$)
It is worth being studied
- For CD BF thersy, one has to consider the Poison manifubl
and the Poison sub -o

$$
=\left\{(A, B): F_{A}+\Lambda B=0\right\}
$$

4D Gravity is related to the above:

- $y=s 0(3,1) \cong \lambda^{2} \mathbb{R}^{4}$ (or so lh) for Euclidean ssavity)
- A further constraints

$$
P f(B)=0 \quad(\operatorname{and} \quad B \neq 0)
$$

which defines a Poisson submanitold of P

Part II Ps-struetures from graded manifolds

A Poisson structure on a manifold M
is the same a function S of degree $2 \mathrm{~m} T^{*} T M$
st. $\{S, S\}=0$

$$
\left.c^{\infty}\left(J^{x} C_{1}\right] M\right):=\Gamma(\Lambda T M)
$$

$$
\text { Jr fact, } C^{\infty}\left(T^{8}[1] M\right)=\rho(\Lambda 丁 M)
$$

$$
h,\}=[,]_{S N}
$$

Geveralization: allow M to be a psaded manifold itselt

$$
\begin{aligned}
\Rightarrow & S \sim \pi=\pi_{0}+\pi_{1}+\pi_{2}+\cdots, \quad \pi_{k} \in \Gamma\left(\Lambda^{k} J / \Lambda\right) \\
& \operatorname{de\rho } \pi_{k}=2-k
\end{aligned} \quad\left\{\begin{array}{l}
\left\{b_{1}, \ldots, b_{k}\right\}_{k}=\pi_{k}\left(d h_{1}, \ldots, d b_{k}\right)
\end{array}\right.
$$

L_{∞}-stinctare by multidesivations $=: P_{\infty}$

Notation We call such (and S) a BF'V manitold

Further generalization:

1) Replace Trismus by any graded manifold M with sympleatic form of deposes 1 .
2) Write Ma $T^{x}[1] M$ (choice of polarisation)

Example y tinito dinerriunal Lie alpobra
$\Rightarrow g^{*}$ Poisson munitold w/ HKS Poisson stinathoe
$\leadsto \mu=T^{*}[1] y^{*}=g^{*} \oplus y[1]$

$$
\pi=\pi_{2}=\pi_{K K S} \sim S
$$

We can also write $M=T^{*}[1]$ gri]
$S \leadsto \pi=\pi_{1}=\delta_{C E}$ cheralley-Eilenberg

$$
\left.c^{\infty}(g()]\right)=\Lambda y^{*}
$$

A further generalization:

- A praded Painon alpebra (e.i.c.cis (TMinn) with $S \in A_{2},\{S, S\}=0$
- spilitizg $A=h \oplus g$

$$
\text { (} \rho . \rho, \quad h=c^{\omega}(n)
$$

habelian

$$
\varphi=\Gamma\left(\Lambda^{0} T M\right)
$$

- Define derived brackets on 4 [T.Voronor]

$$
\begin{aligned}
& \left.\left\{b_{1}, \ldots, b_{k}\right\}_{k}:=P \mid \cdots\left\{\left\{s_{1}, b_{1}\right\}, b_{2}\right\}, \cdots, b_{n}\right\} \\
& b_{i} \in h \quad P=1 \rightarrow h
\end{aligned}
$$

Claim (1) (BV) Field theories yield a BF'V structure on their codimeusion-2 corners
$\xrightarrow{\text { Polariaution Poipgon co-structare }}$
(2) Boundary to covner

 fiebler the corker

$$
F_{z} \rightarrow F_{r} \text { "Poirivon map" }
$$

- J will applain (1)

This is pretty obvious in AtE SZ theories

- Target $\left(Y, \omega_{y}=d \alpha_{y}, S_{y}\right) \quad$ B平 V

- Source $T^{x}[1] \Sigma$

$$
T-\operatorname{manit} t_{2} d d
$$

Spare of fields: $M_{\phi}\left(T^{*}[1] \Sigma, y\right)$ with induced structure $w, S:\{S, S\}=0 \quad B F^{n-k} V$ Toke $k=n-2$

The two examples? pave at the pepirning

$$
\begin{aligned}
& \text { are of this type } \\
& \text { - Chern-fimons } \\
& B_{4}
\end{aligned}
$$

- Interesting non AHSS 2 example: GD Palatini-Cartan gravity

Exumple $1 B F_{2}$

$$
\begin{aligned}
& y=T[T] g[1]=T^{*}[1] g^{*}, \quad g \text { f.d. L'ie alypira } \\
& n=2 \\
& \operatorname{din} \Sigma=0 \sim \Sigma=\left\{\rho^{t}\right\} \\
& \operatorname{Mrp}(T[\square \Sigma, y)=y
\end{aligned}
$$

This is the exunple we hure coasidened bofore

Example $C S \quad n=3, k=1$
$y=\underset{\substack{u \\ a}}{g[1]},(g, 2,>)$ quadratic Lie algebra

$$
\begin{gathered}
\stackrel{u}{a} \quad \omega_{y}=\frac{1}{2}\langle d a, d o\rangle=d\left(\frac{1}{2}\langle a, d a\rangle\right) \\
S_{y}=\frac{1}{6}\langle a,[a, a]\rangle \\
\Sigma=S^{\prime} \sim \mu_{0 p}(T[1] \Sigma, \rho(a))=\frac{\Omega^{0}(\Sigma)[1] \oplus y \oplus \Omega^{\prime}(\Sigma) \otimes \theta}{C} A \\
\omega=\int_{S^{\prime}}\langle\delta c, \delta A\rangle \\
S=\int_{S^{\prime}}\left(\frac{1}{2}\langle c, d c\rangle+\frac{1}{2}\langle A,[c, c]\rangle\right)
\end{gathered}
$$

Choose the polarization:

$$
\operatorname{Mop}(T[T] \Sigma, \rho)=\vec{\jmath}[T] \rho^{\prime}(\Sigma) \theta \rho
$$

"A: coordinate, $C \sim \frac{\delta}{\delta A} "$

$$
\left.{ }^{\prime \prime} S \leadsto \pi_{2}=\int_{S^{1}}\left(<\frac{\delta}{\delta A}, d \frac{\delta}{\delta A}>+\frac{1}{2}<A, \frac{\delta}{\delta A}, \frac{\delta}{\delta A}\right\rangle\right)^{\prime \prime}
$$

On linear furctiozals: $\quad J_{b}=\int_{5^{\prime}}\langle b, A\rangle, f \in R^{0}\left(s^{\prime}\right) \theta g$
\sim affine Poisson structure on $\hat{g}_{S^{\prime}}$

- Exumple3 $B F_{4} n=4, k=3$, $\operatorname{dim} \Sigma=2$

Fields

$$
\begin{aligned}
& \omega=\int_{\Sigma} \delta B \delta c+\delta r \delta A+\delta \varphi \delta B^{\dagger} \\
& \text { (pairing ip undertord) } \\
& S=\int_{\Sigma} \frac{1}{2} B[C, C]+d_{1} C+\phi\left(r_{1}+\left[E_{,}, B^{+}\right]\right)+\Lambda\left(\frac{1}{2}+\varepsilon+B \phi\right) \\
& \text { these terus } \\
& \text { require in } \\
& \begin{array}{l}
\text { inuarient inuer } \\
\text { puoduct }
\end{array}
\end{aligned}
$$

Polarizution $1 T^{*}[1] M, \quad M \ni\left(A, B, B^{+}\right)$
S~) $\pi=\pi_{1}+\pi_{2}$ nonporitive depree

$$
\begin{aligned}
\pi_{1}= & \int_{\Sigma}\left(F_{A}+\lambda B\right) \frac{\delta}{\partial B^{+}} \\
\pi_{2}= & \int_{\Sigma} \frac{1}{2} B\left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B}\right]+\frac{\delta}{\delta A} d \frac{\delta}{\delta B}+A\left[\frac{\delta}{\delta A}, \frac{\delta}{\delta B}\right]+\lambda \frac{\delta}{\delta A} \frac{\delta}{\partial A} \\
& +B^{+}\left[\frac{\delta}{\delta B^{+}}, \frac{\delta}{\delta B}\right]
\end{aligned}
$$

- T_{2}, forpettirg B^{+}, yields the affine foipson on $\left(\hat{y}_{\Gamma}^{\wedge}\right)^{\star}$
- B^{t} und π_{1} corserponde to selectiry the Pision submanifold $\left\{F_{A}+\wedge B=0\right\}$

Polarization $2 T^{x}[1] M, M \rightarrow(\phi, \varphi, B)$, expand brand a set. counortion to

$$
\left.\int \sim\right) \pi=\pi_{0}+\pi_{1}+\pi_{2}
$$

(puppobly trivial or flat)

$$
\Pi_{0}=\int_{\Sigma} F_{A_{0}}+\Lambda\left(\frac{1}{2} r \tau+B \phi\right)
$$

$$
\Pi_{1}=\int_{\Sigma} d_{A} \zeta_{0} \frac{\delta}{\delta B}+d_{A_{0}} \phi \frac{\delta}{\delta \varepsilon}
$$

$$
J_{2}=\sum_{\sum} \frac{1}{2} B\left[\frac{\delta}{\delta B}, \frac{\delta}{\partial \delta}\right]+r\left[\frac{\delta}{\partial \varepsilon}, \frac{\delta}{\partial B}\right]+\frac{1}{2} \phi\left[\frac{\delta}{\partial \varepsilon}, \frac{\delta}{\partial \varepsilon}\right]+\phi\left[\frac{\delta}{\delta \partial}, \frac{\delta}{\partial B}\right]
$$

On libear functionds

$$
J_{\alpha}:=\int_{\Sigma} \alpha B, \quad M_{\beta}:=\int_{\Sigma} \beta \gamma, \quad K_{\gamma}=\int_{\Sigma} \gamma \phi
$$

we set

$$
\begin{aligned}
& \text { e set } \quad\left\{\beta_{0}=\int_{\Sigma} b F_{\alpha_{0}}+\Lambda\left(\frac{1}{2} \psi_{\eta}+B \phi\right)\right. \\
& \left\{J_{\alpha}\right\}_{1}=M_{d_{A_{0}} \alpha}, \quad\left\{M_{\beta}\right\}_{1}=H_{d_{\beta} \beta}, \quad\left\{H_{\gamma r_{1}}=0\right.
\end{aligned}
$$

$\left\{J_{\alpha}, J_{\tilde{\alpha}}\right\}_{2}=J_{[\alpha, \tilde{\alpha}]},\left\{J_{\alpha}, M_{\beta}\right\}_{2}=M_{[\alpha, \beta]}$,

$$
\left\{J_{a}, H_{f}\right\}_{2}=+[[a, \gamma],
$$

$\left(M_{\beta}, M_{\beta} \tilde{\beta}_{2}=H_{[}[\tilde{B}, \vec{\beta}]\right.$, oflerwire zero

Changing polarizations
We may realize $M=T^{0}[1] M_{1}=T^{*}[1] M_{2}$
Q: What is the relations between the Pco-ptruentruep associated to μ_{1} and μ_{2} ?
Conjecture They are "Morita" equivalent
Idea $B F^{2} V$ on $F_{\Sigma}^{D} \leadsto$ cansiober $F_{\Sigma \times I}^{\partial}$
$G R$ in ad (Pulatini-Curlan) produces something related! In the PC version the metric is replaced by a cotrame e
M 4 -manifold that admits a Lorentzian structure

- $\begin{gathered} \\ \\ M\end{gathered}$ a vector bundle isomorphic to TM endowed with a fibervise Minkowski metric y
cotrame: $e: T M \simeq V \sim$ metric $g=e^{*} y=y(e, e)$

The theory is governed by the action functional

$$
\begin{aligned}
& \int_{M}[e, \omega]=\int_{M} \frac{1}{2} e e F_{\omega}+\frac{\Lambda}{2 h} \text { eeee } \\
& 1 \underset{\substack{\text { cornological } \\
\text { conrlant }}}{ } \\
& \text { Formelly: } B:=\frac{1}{2} e e \leadsto S_{n}^{B F}=\int B F_{\omega}+\frac{1}{6} B B
\end{aligned}
$$

On a $2 d$ corner \sum one may define

$$
\begin{array}{ll}
J_{\alpha}:=\int_{\Sigma} \frac{1}{2} \alpha(e e+\cdots) & \alpha \in \Gamma\left(\Sigma, \Lambda^{2} V_{\varepsilon}\right) \\
H_{\beta}:=\int_{\Sigma} \beta\left(2_{\xi} e l+\cdots\right) & \beta \in \Gamma\left(\Sigma, T^{0} \varepsilon \otimes \Lambda^{2} V_{\varepsilon}\right) \\
K_{\gamma}:=\int_{\Sigma} \gamma\left(2_{\xi} e l_{\xi} e+\cdots\right) & \gamma \in \Gamma\left(\Sigma, R^{2} T^{0} \varepsilon \oplus \Lambda^{2} V_{\varepsilon}\right)
\end{array}
$$

with ξ the ghost for diffeomorphirus and the dots involve other fields

This produces the sane brackets as for $B F_{n}$ in polarization 2 with $y=s 0(3,1)$
Rem The fiber of $\Lambda^{2} V$ is isomorphic to so $(3,1)$
But one has to remember that e is nondegenerate Setting $B:=\frac{1}{2} e e+\cdots$, this can be imposed by considering the Poison submanifold

$$
\left\{B \in \Gamma\left(\Sigma, R^{2} \Gamma^{*} \Sigma \otimes R^{2} V_{I_{\Sigma}}\right) \mid B \neq 0 \text { and } \underset{\sim}{P f(B)=0} \begin{array}{r}
\Gamma \\
\Gamma\left(\Sigma,\left(R^{\top} J^{x} \Sigma\right)^{\theta 2}\right)
\end{array}\right.
$$

$G R$ is not an Alk $\rho 2$ theory
Q: How do we get this result?
A: there is a general procedure $B F V$ on the boundory 3
$B F^{2} V$ on the corner

1) Classically, a field theory produces

- a symplectic space of boundary fields
- a coisotropic submanifold thereof

Ex (Electromugnetion) Boundory fields: Electric field E

$$
\begin{aligned}
& \omega^{\partial}=\int \delta E \cdot \delta A \sqrt{\operatorname{detg}} \\
& \tau=\{\operatorname{div} E=0\}
\end{aligned}
$$

Gauss law

Generad procedure [Hijowphi-Tulczijow]
Local adion functional S
i) EL equations
δS yields
ii) "Noether" 1-form $\tilde{\alpha}^{0}$

boundory terms

Next a) defire $\hat{\omega}^{2}:=\delta \tilde{\alpha}^{\partial}$
b) if needed, reduce by kerw ${ }^{\partial}$
(i.e. vector fíeld, Y p.t. $2 y \tilde{\omega}^{2}=0$)
~) cet col on reduction
c) find the conetraints: i.e., El eqnations

W/ ho trancereral componorets
Aspume for simplicity coustraints are firet clase

$$
\left\{\varphi^{i}\right\} \text { H. }\left\{\varphi_{1}^{i}, \varphi^{j}\right\}=\theta_{k}^{i j} \varphi^{k} \text {, ome fanctions }
$$

Then [BFV]
i) Add phots c_{i} and untighots b^{i} $\operatorname{sh} t=+1$
ii) $\omega^{2} \sim \omega^{B R V}=\omega^{\partial}+\sum \sum b_{i}^{j} \delta c_{i}$
iii) $\int^{2}:=\sum_{i} c_{i} \varphi^{i}+\cdots{ }_{\text {convection in } b}$ st. $\left\{S^{\partial}, \rho^{\partial}\right\}=0 \quad$ (ME

Than [BFV, Skachtf] I It is posilde re find...
rit. cne ratistied
2) unigne solution (up to)
3) in yood unses: $H_{Q}^{0} \cong C^{\infty}(\underline{\varepsilon})$ as Pripronclapera

$$
Q=\left\{S^{\text {BFV }},-\right\} \quad E=\left\{\varphi^{i}=0\right\}
$$

2) Boundary to corner:

Given BFV on $\sum \quad(\partial \Sigma=\sigma)$, one can extend it to $\partial \leq \neq \varnothing$

By a procedure similar to KT one gets ' $B F^{2} V^{\prime \prime}$ data on $F^{\partial \prime}=$ " fidel on $\partial \Sigma^{\prime}$ Lo $\quad \omega^{2 a}, s^{\partial \partial} \quad$ sh $s^{2 \lambda}=2$
st. $\delta \delta w^{\partial d}=0$ (sometimes one can seduce by its ketene)

- $2 Q^{\partial A}=2 a^{D \lambda} \omega^{\partial \partial}=\delta \int^{\partial \partial}$ and $Q^{2 d}$ ir the projection of Q^{2}
- some other conditions

Then $\int^{d o}+$ polarization \sim Poisson structure (purity up to hanotops)

- In AKTPZ theories, this produces the same se cults as with the procedure discussed above
- For general relativity, this produces the result announced above

Thanks

Bonus material
Cofsame gravity in $3+1$ dimensions
Rule data; M 4 -manifold that admits a Lorentzian structure

U a vector bundle isomorphic to TM
M endowed with a fiberuise Minkowski metric y

Ficlds i) cotrame: $e: T M \simeq V$
In purtichar, $e \in \Gamma\left(T^{*} M \otimes V\right)$
2) connection W on the orthorormol trane burdle of V

The adjaint burdle may be identificed with $\Lambda^{2} V\binom{$ sseew-symatetric) }{ madrices $n}$
Locally, w is a $1-$-trm with ralues in $1^{2} V$

Clascical description of the boundory
Fields: e, w

- pre-symplectic form

$$
\Omega=\delta \int \frac{1}{2} \text { ee } \delta w
$$

kermel: $\omega \leadsto \omega+v$ with $\mathrm{eV}=0$

- corptraints: $\quad e F=0, d_{w} e=0$
low re tine the space of balk fields

$$
\left.f_{M}=\left\{(e, w): \quad z_{d}^{*} e \leadsto\right) \text { space -like metric }\right\}
$$

i.e. $\quad 2 z: \partial M \rightarrow M$
$g^{\partial}:=\left(7_{g}^{x} e, y_{z}^{z} e\right)$ tenor on ∂M
Condition g^{∂} is positive definite

In this unie, on dM, we can choose $e_{n} \in \Gamma(V)$ sit. (e, e_{n}) basipofl
Moreover, (1) $\begin{aligned} d_{w} e & =0 \Rightarrow \quad e d_{\omega} e \\ \text { bulk } & =0 \\ e_{n} d_{\omega} e & =e \sigma\end{aligned} \quad$ on the boundary for nome σ

Now on Jan $_{\partial n}^{\partial}$ we still have to impose the contrain's

$$
\left\{\begin{array}{l}
e F_{w}=0 \\
e d_{w} e=0
\end{array}\right.
$$

They are $1^{i k}$ dass, so the BKV contrination is popithe
From the BFV contisution on $\sum=\partial M$ we tlon dorive the $B F^{2} V$ constraction on $\Gamma=d \varepsilon$

Einstion-Hilbert version

$$
S=\int_{M} \sqrt{\rho} R+\Lambda \sqrt{g}
$$

$A D M$ decomposition near ∂M (with assumption: yields ${F_{G H}^{\partial}}_{\partial}^{a_{E+H}^{\partial}}, \varepsilon_{E H}$ Ian nordepeenemate)

- $\varepsilon_{E H} \simeq \varepsilon_{k c}$ とhltivi-cotion
- Eats may be described in terms of BEV

Bat $b F V \sim B F^{2} V$ is a mesp ir thip becaure the cosptanites contain second denivatives

