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ABSTRACT

In this project we will study free groups and basic algebraic topology to

establish that subgroup of a free group is free with the help of basic graph

theory. Then in the second part of project we studied covering space of

graph theory. Notice that some notations of graph theory in the second part

differ from the first part where we used basic graph theory. Moreover, we

studied amalgamated products in detail which helped us in establishing our

main result that SL(2,Z) is the amalgamated product of Z4 and Z6 with Z2

amalgamated that is

SL(2,Z) ∼= Z4 ∗Z2 Z6 .

In the first part of the project we tried to establish that subgroup of a free

group is free. In order to show this result, we shall introduce CW -pairs and

briefly discuss how the homotopy extension property can lead to homotopy

equivalences. We then use this concept and the contractibility of tress, to

establish that a graph is homotopically equivalent to a wedge of circles and

consequently, its fundamental group is free. Finally, using covering space

theory, we shall establish the required result.

Then in the second part we studied amalgamated products and their

structure for which we rigorously studied direct limits of family of groups.

Also, as one of result we establish that every element in amalgamated product

can be uniquely composed via homomorphism maps. Further we studied

graph of groups and with deep understanding of trees we established some

very interesting results e.g. tree of even finite diameter, has a vertex, which

is invariant under all automorphisms. Then with concluding the project we

establish our main result

SL(2,Z) ∼= Z4 ∗Z2 Z6 .
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LIST OF SYMBOLS OR

ABBREVIATIONS

G = (V,E) Graph with vertex V and edge E

T Tree

F (X) Free group on set X

〈R〉 Subgroup generated by R, R ⊂ G

〈〈R〉〉 Normal subgroup generated by R ⊂ G

enα α no. of n− cells

∂(X) boundary of some set X

f |A f restricted to A

HEP Homotopy Extension Property

f ' g f and g are homotopic.

ea0 constant map to a0

X/A X quotient A

iA identity map on A

τ : A→ X inclusion map.

A ∗B Free product of A and B

Z Group of all Integers

R Real Number Field

θg orbit of g under a quotient map.

o(y) and t(y) terminal vertices of edge y of a graph.

π1(X) fundamental group of space X
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1. GRAPHS AND FREE GROUPS

1.1 Introduction

As the first part of the project we establish that subgroup of a free group is

free. For this we study some terminologies and definitions in Graph theory.

Definition of graph will change in our next chapter, it will be according to

sirre’s theory [5]. Then we study Free group theory in which we understand

universal property for free groups and give a presentation for a group (see

[1]). Moreover, we will discuss Cell complex theory and see how to construct

a cell complex n− cells and using this we see that a graph is a 1 dimensional

cell complex. After that we move to covering space theory, in particular for

graphs and as an application of it we establish that subgroup of a free group

is free (See [4] and [2]). Since, every group can be realized as the fundamental

group of some space, thus in this section we see that how algebraic topology

is connected to free group theory which gives us the motivation to study this

subject.

1.2 Graph Theory

Definition 1.1. A graph is an ordered pair G = (V,E), where V is a set of

vertices together with a set E of edges whose element are two element subset

of V .

Definition 1.2. A graph G′ = (V ′, E ′) is subgraph of G if V ′ ⊂ V and

E ′ ⊂ E.

Definition 1.3. A Path in a graph is a sequence of edges e1e2...en such that

it connects a sequence of vertices. A path has a start vertex and an end
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vertex which are called as terminal vertices of path and the other vertices

in path are called internal vertices.

A cycle is a path whose start and end vertices that is terminal vertices are

same.

Definition 1.4. A Graph G = (V,E) is connected if there is a path between

any two vertices in V .

Definition 1.5. A simple graph is a connected graph which contains no

cycles. In a simple graph the edges of the graph form a set (rather than a

multiset) and each edge is a distinct pair of vertices.

Definition 1.6. A tree is a undirected simple graph i.e. it is a connected

and has no cycles.

Definition 1.7. A tree T in X is maximal if there is no tree in X such that

it properly contains T .

Theorem 1.8. Let X be a connected graph. A tree T in X is maximal if

and only if it contains all the vertices of X.

Proof. Suppose X = (V,E) be a graph.

Let T be a tree that contains all vertices of X. Suppose that Y is a subgraph

of X such that T ⊂ Y (proper) that is edges set and vertex set of T are

properly contain in edges set and vertex set of Y . We will show T contains

a cycle; it follows that T is maximal.

Let e be a edge in Y \ T . If e has end points a, b, then a, b ∈ T ⊂ Y . Since

T is connected.

Therefore, ∃ a path P = e′0.e
′
1e
′
2...e

′
n in T from a to b.

Thus, passing this path to edge e, we get a cycle P ∪ e in Y which implies Y

is not a tree. Thus T is maximal.

Now suppose that tree T is maximal. We intend to establish that T contains

all vertices of X. Suppose not, let x0 ∈ X \ T . Since X is connected hence

there exists a path from x0 to a vertex v in T . Assume P = x0.x1...xn be a

path in X connecting x0 and xn = v Let i be the smallest index such that

xi ∈ T .
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Let ei be the edge between xi−1 and xi. Then T ∪ e is a tree. Clearly

T ⊂ T ∪ e, which contradicts the maximality of T . Thus T contains all the

vertices of X.

1.3 Free group

Definition 1.9. A group G is called free if there exists a subset X of G such

that every element of G can be written uniquely as the product of finitely

many elements from X and X−1 = {x−1|x ∈ X}. X is called the basis set of

G

Example 1.10. The group of integers (Z,+) is free on the set X{= 1}.
Moreover, free group on two letters F (a, b) is isomorphic to Z× Z

Definition 1.11. Let X be any set and let X−1 = {x−1|x ∈ X}, then group

generated by X ∪X−1 is said to be free group on X, denoted as F (X), every

element of F (X) is called a word (see [3]). A word w ∈ F (X) is said to be

reduced if there exist no twistors(that is subwords) of the form xx−1 for all

x ∈ X in w.

Example 1.12. Let X = {x, y}, X−1 = {x−1, y−1}. Let w be a word in

F (X) such that

w = x2yx−3x2y−2x5y2 .

It is not reduced word since it has two twistors x−1x. Reduced word w will

look like

w = x2yx−1y−2x5y2 .

Universal property of free groups

Theorem 1.13. Let G be any group and let f : X → G be a map. Then

there exists a unique group homomorphism φ : F (X) → G such that f =

φ ◦ τ , where τ : X ↪→ F (X) is a inclusion map and the following Figure 1.1

commutes. That is we have that homomorphisms φ : F (X) → G are in one

to one correspondence with the functions f : X → G.
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F(X)

GX
f

τ
φ

Fig. 1.1:

Proof. It is a well known fact and proof can be refer from [1].

Definition 1.14. Let G be a group and R be a subset of G, then 〈R〉 is the

group generated by R and 〈〈R〉〉 is the normal group generated by R and is

defined as:

〈R〉 := {rl11 ........r
lk
k |k ∈ N ∪ {0}, r1, ....., rk ∈ R}.

〈R〉 := {m1, ..........mk|k ∈ N ∪ {0},mi = monomonials}.

〈〈R〉〉 := {mg1
1 .........m

gk
k |k ∈ N ∪ {0},mi = monomonials, gi ∈ G} ,

where mgi
i = g−1

i migi.

Also 〈R〉 is the smallest subgroup of G containing G and 〈〈R〉〉 is the smallest

normal subgroup of G containing R.

Presentation

Theorem 1.15. Any group G can be presented as G = 〈X|R〉, where X =

generating set and R = relation set.

G = 〈X|R〉 is defined as:

G = 〈X|R〉 =
F (X)

〈〈R〉〉
,

where R ⊂ G and F (X) is free group generated by X and 〈〈R〉〉 is the normal

subgroup generated by R.
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Proof. Let G be group generated by set X ⊂ G then by universal property

for the inclusion map i : X ↪→ G, there exists a surjective homomorphism

φ : F (X)→ G, then by the isomorphism theorem we have that

G ∼=
F (X)

N
,

where N = ker(φ) = {x ∈ F (X)|φ(x) = idG}, idG is the identity element of

G. N is normal subgroup of F (X), therefore N = 〈〈R〉〉 for some R ⊂ F (X)

(see [1]), we call this R as relation set, and thus we have a presentation for

a group G = 〈X|R〉

Example 1.16. Consider a cyclic group of order 15 generated by a, then its

presentation is G = {a|a15 = 1}.

1.4 Cell Complexes

Cell Complex were first introduce by J.H.C. Whitehead. Cell complexes are

made up of basic blocks called the n − cells. An n − cell is homeomorphic

to a closed ball in Rn. For example a 1− cell is a point, a 2− cell is a closed

disk in R2 etc. Given below are the n− cell upto n = 3 and their boundary.

2−cell(e  )2
α

3−cell(e  )
α
3

             

d(2−cell)

d(3−cell)

00−cell(e )              d(0−cell)

1 
α

α

1−cell(e )         d(1−cell)

Fig. 1.2:
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Construction of Cell Complexes: We start with a discrete set X0 whose

points regarded as 0 − cells.. Then we start attaching the boundary of one

cell to the skeleton X0 via the quotient map φα : {x1, x2} → X0, where x1

and x2 are boundary of 1−cell e1
α, α runs over J =number of 1−cells and we

get new skeleton X1. Inductively, we will get the n-skeleton Xn cell complex

from Xn−1 by attaching n cells via the quotient maps

φα : Sn−1 −→ Xn−1 ,

where Sn−1 is the boundary of n cell enα.

Xn = Xn−1 t {enα}α∈J/ ∼ ,

where J is the number of n cells. ∼ is a equivalence relation which is defined

as

x = φα(x) for each x belongs to the boundary of n− cell enα for every α .

Dimension of Xn we constructed in this fashion is n and is said to be a n

dimensional cell complex.

Example 1.17. A very good example of a cell complex is graph. We can

construct graph using cell with 0 − cell as the vertices set and edges being

the 1− cell.

Example 1.18. Sphere can be constructed using n− cells. In fact sphere is

a 2 dimensional cell complex.

Step 1 Take one 0− cell e0
1 and one 1− cell e1

1 and take φ : {x1, x2} → e0
1 to

be the constant map, where x1, x2 are boundary points of e1
1. Thus we get

X1 =
e0

1 t e1
1

∼

to be a loop based at e0
1, where ∼ is equivalence relation defined as x = φ(x)

for x ∈ ∂(e1
1) = {x1, x2}.

Step 2 Now take two 2− cells e1
2 and e2

2, then ∂(eα2 ) = S1. Define quotient

map φα : S1 → X1 to be the identity map, where α ∈ {1, 2}. Thus We get
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sphere

S2 =
X1 t {e2

1, e
2
2}

∼
,

where ∼ is an equivalence relation defined as x = φα(x) for all x ∈ ∂(eα2 ),

α ∈ {1, 2}. Thus we have constructed sphere using 0, 1, 2− cells and we see

that sphere is 2 dimensional complex.

Definition 1.19. Let f and f ′ be continous maps from a space X to a space

Y . Then f is said to be homotopic to f ′ if there is a continuous map

F : X × I −→ Y

such that F (x, 0) = f(x) , F (x, 1) = f ′(x) for each x and I = [0, 1]. It is

sometimes also denoted by Ft. The map F is called a homotopy between f

and f ′. It is denoted by f ' f ′. If f ' f ′ and f ′ is a constant map then we

say that f is nullhomotopic.

Note that Homotopy is the continuous deformation of f into f ′.

Definition 1.20. Let f, g : X −→ Y be two continuous functions. Let A ⊆
X and f |A ' g|A(via h). If h can be extended to a homotopy such that f '
g(viaH) s.t. H|A = h, then we say (X,A) has homotopy extension property(HEP ).

Sufficient condition for HEP : If (X,A) is CW pair and X×o∪A×I is a

deformation retract of X × I hence then (X,A) has the homotopy extension

property. (see [2])

Theorem 1.21. If the pair (X,A) satisfies the HEP and A is contractible

then the quotient map q :−→ X/A is a homotopy equivalence.

Proof. Since A is contractible there exists a homotopy Ht such that is iA '
ea0(via Ht), where ea0 is constant map taking A to a0 ∈ A. Consider iX :

X −→ X , then iX ' ea0(via homotopy ft), where ft|A = Ht. ft : X −→ X.

Since ft(A) ⊂ A ∀t. f0 = idX .
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X/A X/A

X X

tf
_

X/A X/A

X X

f
_

1

f1f

qq

t

qq g

Fig. 1.3:

Therefore, the compositionq ◦ ft : X −→ X/A sends A to a point and we

have the composition X −→ X/A −→ X/A where ft(x) = ft(x) and x ∈ X
such that the above diagram commutes.

ft = ft ◦ q (1.1)

Now take t=1, f1(A) = a0(fixed point to which A contracts), hence f1 induces

a map g : X/A −→ X.

It remains to show that q ◦ g = f1.

q ◦ g(x) = q ◦ g ◦ q(x) = q ◦ f1(x) = f1 ◦ q(x) (from 1.1)

we know that which would imply q ◦ g(x) = f1(x), and from 1.2 the maps g

and q are inverse homotopy equivalences.

gq = f1 ' f0 = ix and qg = f1 ' f0 = iX/A (1.2)

via ft. Hence X and X/A are homotopy equivalences.

Theorem 1.22. Every connected graph has a maximal tree.

Proof. We will prove this using Zorn’s lemma. Let T0 be a tree and T be

collection of all trees in X that contains T0, strictly order by proper inclusion.

To show T has a maximal element, it is enough to show the following:

If T ′ is subcollection of T which is ordered by proper inclusion, then Y union

of the elements of T ′ is a tree in X.

Since Y is a union of subgraphs of X, it is a subgraph of X. Also Y is a
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union of connected spaces that contain the connected space T0, therefore Y

is also connected.

It is enough to show that Y is a tree. Let e1...en be a cycle in Y . For each

i, choose an element Ti of T ′ that contains ei. As T ′ is ordered by proper

inclusion, one of the trees will contain all the other trees, say Tj, contains all

the other trees, which would imply that e1...en is a cycle in Tj because every

edge ei ∈ Tj, and we have a contradiction to hypothesis.

Theorem 1.23. Every tree T in graph X is contractible.

Proof. Refer page 508 of munkres (see[4])

Theorem 1.24. For a connected graph X with a maximal tree T . π1(X) is a

free group generated by the elements which are in one to one correspondence

with the edges of X\T .

Proof. Let X be a connected graph and T be maximal tree of X. Then by

theorem 1.23 T is contractible. Therefore, by the theorem 1.21 we have that

quotient map q : X → X/T is a homotopy equivalence.

Since, T contains all the vertices of X. Therefore, X/T is a cell complex with

a single vertex v and an edge set which is in one to one correspondence with

the number of edges in X\T , call it n which are loops. Since X ≈ X/T , we

have π1(X) ∼= π1(X/T ). Also we proved in class that fundamental group of

wedge of n circles is the free group on n letters. Hence we have π1(X) = Fn

where Fn is a free group of n− letters.

Theorem 1.25. Every covering space of a graph is also a graph with vertices

and edges as the lifts of the vertices and edges in the base graph.

Proof. Let X be a graph and let P : X̃ → X be a covering space.

Define vertices of X̃ as X̃0 = P−1(X0). Graph X is a quotient space obtained

by attaching one cell to zero cell via quotient map X = X0 tα Iα.

Now Use the path lifting property to define the edges of X̃ which says that

there exists a unique f̃ : Iα → X̃. These lifts define the edges of a graph

structure of X̃.



1. Graphs and Free Groups 10

I
α

~
X

~
f

X

f

P

Fig. 1.4:

Theorem 1.26. Suppose X is path connected, locally path connected and

semi locally simply connected. Then for every subgroup H ≤ π(X, x0) there

exist a covering space P : XH → X such that P∗(Π1(XH , x̃0)) = H for

suitably chosen base point x̃o ∈ XH .

Proof. For a proof, Refer A.Hatcher [2]

Theorem 1.27. Every subgroup of a free group is free.

Proof. Let F be a free group. Let X be a graph with pi1(X) ∼= F . Consider

G to be a subgroup of F then by theorem 1.26 there exist a covering space

(X̃, P : X̃ → X) with P∗(Π1(X̃)) = G.

Also we have covering space of a graph is also a graph. Hence Π1(X̃) is also

free and since P∗ is injective. We have G ∼= Π1(X̃) which is free.



2. AMALGAMS PRODUCTS

2.1 Introduction

SL(2,Z) also called modular group is a very important class of group of linear

fractional transformations of the upper half of the complex plane. One of

the significant reasons behind studying SL(2,Z) = 〈X, Y 〉 is to understand

the structure of GL(2,Z) via the epimorphisms π : GL(2,Z)→ {±1} whose

kernel is SL(2,Z).

In this chapter we will establish one known result which was proved by

J.Peare Serre that SL(2,Z) is amalgamated product of Z6 and Z4 over Z2

(see [5]). For this we first understand structure of amalgams and then we will

rigorously study certain terminologies in graph theory(according to Serre′s

notation) such as morphism of graphs, graph of groups etc. Notice that

serre′s definition and terminologies of graph theory differ from what we

studied in the previous chapter. Moreover, we will study how a group acts

on a graph and with the fact that

SL(2,Z) = 〈X, Y 〉 ,

where X =

[
0 1

−1 0

]
and Y =

[
0 1

−1 1

]
we will show our main result.

2.2 Direct limits

Let (Gi)i∈I be a family of groups and for each pair (i, j), let Fij ⊆Hom(Gi, Gj)

where Hom(Gi, Gj) = {φ : Gi −→ Gj|φ is a group homomorphism}. We are

seeking for a group G and a family of homomorphisms fi : Gi → G such that
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fj ◦ f = fi ∀ f ∈ Fij i.e. the following diagram commutes.

G
i

Gj

fi jf

G

f

Fig. 2.1:

Then we call G as the direct limit of Gi relative to Fij provided G and the

family of homomorphisms {fi}i∈I is universal in the sense that if H is a group

and hi : Gi → H be another family of homomophism such that hj ◦ f = hi ∀
f ∈ Fij then there exist a unique homomorphism h : G −→ H such that 41

and 42 commutes in figure 2.2 i.e. h ◦ fi = hi and h ◦ fj = hj

G
i

Gj

fi jf

G

f

H

h
h h1 2
i

j

Fig. 2.2:

Theorem 2.1. The pair consisting of G and the family (fi)i∈I exists and is

unique upto isomorphism.

Proof. Uniqueness: Let G be direct limit of Gi and a fi be a family of

homomorphism fi : Gi −→ G s.t. fj ◦ f = fi ∀ f ∈ Fij.
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Now let H be another group which is also direct limit of Gi and hi : Gi → H

be a family of homomorphism s.t. hj ◦ f = hi, for all f ∈ Fij then by

universal property of G there exist a unique homomorphism φ : G→ H such

that hi = φ ◦ fi.
Similarly there exists a unique homomorphism ψ : H → G whence we have a

homomorphism ψ ◦φ : G→ G. But since G is direct limit and hence possess

universal property which says there exist a unique homomorphism from G to

G. One such is identity homomorphism therefore we have ψ ◦φ = idG which

implies that φ is injective.

G
i

Gj

fi jf

G

f

H

h h1 2
i

j

G

ψ

φ

Fig. 2.3:

Similarly if we interchange the role of G and H in above then we will get

φ ◦ψ = idH which implies φ is surjective and hence φ is isomorphism and we

have G ∼= H

Existence: We will define a group G and a family of homomorphism from Gi

to G and show that it is actually the direct limit of Gi. Define G as follows

G = 〈
⊔
Gi|R〉, where R is the relation set which is given as

1.xyz−1 = 1 in G if x, y, z ∈ Gi for some i ∈ I and xy = z in Gi.

2.xy−1 = 1 in G where x ∈ Gi, y ∈ Gj and y = f(x) for some f ∈ Fij.
Consider the inclusion map τi : Gi → G as a family of homomorphism. Check

τj ◦ f = τi ∀ f ∈ Fij. Let x ∈ Gi τj ◦ f(x) = τj(y) = y and τi(x) = x. But

from second relation we have xy−1 = 1 in G whence x = y. Thus we have
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τj ◦ f = τi as x was arbitrary.

To show G is direct limit it suffices to show that G possess universal property.

let H be a group and hi : Gi → H such that hj ◦ f = hi be a family of

homomorphism. Define φ : G → H as φ(g) = hi(g) if g ∈ Gi, then clearly

hi = φ ◦ τi, whence we have universal property. Thus G we defined is direct

limit of family of groups Gi.

2.3 Structure of amalgams

Definition 2.2. Consider (Gi)i∈I be a family of groups and A be another

group. For every i we have injection f ′i : A → Gi. Then f ′i(A) ≤ Gi and

identify A ≡ f ′i(A). Then We denote ∗AGi as the direct limit of the family

(A,Gi) w.r.t. these homomorphism and call it the sum of the Gi with A

amalgamated.

Example 2.3. Let A = {1}, then corresponding group is denoted by ∗Gi

which is the free product of the Gi.

For every i Write Gi as presentation Gi = 〈Xi|Ri〉. Then we claim that

K = 〈∪Xi| ∪Ri〉

f

H

φ

ψ

G

K

A = {1}

id

id

K

H i

φ

i

i
i

Fig. 2.4:
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Let H be a group and φ : Gi → H is a homomorphism s.t. idH = φi ◦ fi ∀.
We want to contruct a homomorphism φ : K → H, where K = F (∪Xi)

�∪Ri� .

Define φ : K → H as φ(xi) = φi(xi) if xi ∈ Xi. We want to show that φ is

well define. Let r ∈ ∪Ri =⇒ r ∈ Ri for some i. φ(r) = φi(r) = 1. Since φ′is

are well defined homomorphism. Hence φ is a well defined homomorphism(By

first isomorphism theorem). Clearly, φ◦ψi = φi. Thus the universal property

is satisfied and ∗Gi = K.

We now define notion of reduced word in G. Let Gi be a family of group

and A be another group. Let f ′i : A → Gi is injective homomorphism.

Identify A ≡ f ′i(A). Gi/f
′
i(A) = {g1f

′
i(A) = f ′i(A), g2f

′
i(A)........., gnf

′
i(A)}.

Let Si := {all right coset representatives of Gai/f
′
i(A)}. 1 ∈ Si ∀ i.

Define a map θi : A× Si → Gi as (a, s) 7→ f ′i(a)s. It is easy to check that θi

is a bijection. injective is clear as f ′is are injective. All we need to show is

that it is surjective. Let g ∈ Gi =
⊔
s∈Si f

′
i(A).s. Thus g ∈ f ′i(A)s for some

s ∈ Si ⇒ g = f ′i(a)s. Hence (a, s) 7→ f ′i(a)s, whence θi is surjective hence

bijective.

Definition 2.4. Let i = (i1, i2, ......., in) ∈ In be a sequence where n ≥ 0

such that

im 6= ım+1 (2.1)

A reduced word of type i is any family m = (a; s1, s2, ......, sn) where a ∈
A, s1 ∈ Si1 , ......, sn ∈ Sin and sj 6= 1 ∀ j.

Theorem 2.5. For every g ∈ G, there is a sequence i satisfying 2.1 and

a reduced word m = (a; s1, s2, ......, sn) of type i such that

g = f(a)fi1(s1), f(a)fi2(s2), ........, fin(sn)

Furthermore, i and m are unique.

Remark 2.6. f and fi are injective maps.
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G = *AGi

f

A G
i

f f

i

i

’

Fig. 2.5:

It is clear by the uniqueness of m. Suppose f is not injective i.e. for some

a1 6= a2 and f(a1) = f(a2). Then for g = f(a1) = f(a2) we have two different

types m1 = (a1; 0) and m2 = (a2; 0) with m1 6= m2, which contradicts to

uniqueness property of m. Hence f is injective. Similarly we can show that

f ′is are also injective.

Proof. Step 1

Let Xi = {m = (a; s1, s2, .........., sn)|m is set of reduced words of type i}
and X = Xi. we want to establish X ∼= G.

Let Yi = {(1; s1, s2, ......, sn)|i1 6= i}
Define map Pi : A× Yi → X

(a, (1; s1, s2, .....sn))→ (a; s1, .....sn) .

and

qi : A× (Si − {1})× Yi → X .

(a, s, (a; s1, s2, .....sn))→ (a; s, s1, ....., sn) .

This yields a bijection of A× Yi ∪A× (Si − 1)× Yi onto X. Clearly Pi and

qi are injective maps.

Let x ∈ X = ∪Xi ⇒ x = (a; s1, s2, ....sn).

If i1 6= i, then Pi(a, (1; s1, s2, .....sn)) = (a; s1, .....sn).

If i1 = i then s1 ∈ Si1 = Si and i2 6= i and qi(a, s1, (a; s2, s3, .....sn)) =
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(a; s1, .....sn). This implies Surjection. Hence we have the bijection.

Step 2

If g ∈ Gi, then g has type (i) ⇒ g = as, s ∈ Si. Otherwise g has type

φ ⇒ g = a where a ∈ A g ∈ Gi =
⊔
s∈Si f

′
i(A)s ⇒ g = f ′i(a)s.

If s = 1 then g is of type φ with reduced word m = (a; ....).

If s 6= 1 then g is of type (i) with reduced word m = (a; s).

Now define θi : Gi × Yi as

θi(g, y) = qi((a, s), y) = (a; s, s1, ......, sn) if type (i) .

and θi(g, y) = Pi(a, y) = (a; s1, s2, ...., sn) if type (φ) where y = (1; s1, s2, ......sn)

The way we have constructed θ it is clear that θi is bijective. Hence X ≡
Gi × Y i.e. every element of X can be uniquely identifies as an element of

Gi × Y
Step-3

Define an action of Gi on Gi × Yi as g′.(g, y) = (g′g, y). Clearly it is a group

action as

e.(g, y) = (eg, y) = (g, y)

and

g1.(g2.(g, y)) = g1.(g2g, y) = (g1g2g, y) = g1g2.(g, y) .

now transfer this action on X, Gi ×X → X as

(g′, (a; s1, s2, ...., sn)) 7→ (a′a; s, s1, s2, ........., sn) if g′ = a′s i.e. of type (i)

and

(g′, (a; s1, s2, ...., sn)) 7→ (a′a; s1, s2, ........., sn) if g′ = a′ i.e. of type (φ) .

Its restiction to A is given by a′.(a; s1, s2, ....sn) = (a′a; s1, ......, sn) which is

independent of i. With all these we have an action of G on X.

Step-4

If m = (a; s1, s2, ....sn) is a reduced word and g = f(a)fi1(s1)........fin(sn) and
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e = (1; .....) (empty sequence), then (g.e) = m. Now denote α : G → X

such that g 7→ g.e and

β : X → G as (a; s1, ......, sn) 7→ f(a)fi1(s1)........fin(sn) .

We claim that α ◦ β = id. let (a; s1, s2, .....sn),

α ◦ β((a; s1, s2, .....sn) = α(f(a)fi1(s1)........fin(sn)) = g.e = (a; s1, ......., sn , )

where

g = f(a)fi1(s1)........fin(sn)

thus β is injective and we have uniqueness of the decomposition which is non

trivial part of the theorem. X ≡ β(X) ⊂ G.

Step-5

We want to show that β(X) = G, it suffices to show that G ⊂ β(X). we

first show that Giβ(X) ⊂ β(X). Let x = gf(a)fi1(s1).........fin(sn) ∈ Giβ(X)

where (a; s1, ....sn) ∈ X and g ∈ Gi. Thus, g is of type (i) i.e. g = a′s or

type φ ie. g = a′ then β(a′a; s, s1, s2, .....sn) = x or β(a′a; s1, s2, .....sn) = x.

Hence, Gβ(X) ⊂ β(X), but 1 ∈ β(X)⇒ G ⊂ β(X) and we have G = β(X).

Remark 2.7. we want to state previous theorem without involving the sets

Si. let G′i = Gi − A. every g ∈ G can be written as f(a) for some a ∈ A or

fi(θg), where fi : G′i → G,

G′i = quotient of An−1 × (Gi′1
× .......×Gi′n) .

under the quotient map

An−1 × (Gi′1
× .......×Gi′n)→ Gi′1

× .......×Gi′n .

such that
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(a1, .....an−1).(g1, g2, ......, gn) = (g1a
−1
1 , a1g2a

−1
2 , a2g3a

−1
3 ......., an−1gn) .

It is well defined group action. Orbits of g ∈ Gi′1
× .......×Gi′n

θg = {a.g|a ∈ An−1} ,

where g = (g1, g2, ...., gn).

Then G′i = {θg|g ∈ Gi′1
× .......×Gi′n}. Define fi : G′i → G as

θg 7→ fi1(g1).........fin(gn). It is well defined and bijective map, whence we

have the remark.

Example 2.8. Let A = {1}, Si = Gi and G′i = Gi − {1}. Suppose

Gi = (xi) = {xri |r ∈ (Z)}

Then direct limit of G′is and A is the free group F ((xi)i∈I).

Let G be a direct limit of A and Gi and fi : Gi → G be a family of homomor-

phism such that idG = fi ◦ f ′i . Define a homomorphism φ : F ((xi)i∈I) → G

as φ(xi) = fi(xi). Clearly 41 and 42 commutes. Let g ∈ F ((xi)i∈I) then

by previous theorem there exist i = (i1, i2, ....., in) such that im 6= im+1 and

a reduced word m = (1;xr1i1 , ......., x
rn
in

) with ri 6= 0 for all i ∈ {1, 2, ......, n}
such that g = xr1i1 .x

r2
i2
......xrnin .

Remark 2.9. The type of an element g ∈ G is the sequence i = (i1, i2, ....., in)

such that im 6= im+1, g is of type i. Type i = φ if and only if g ∈ A.

Definition 2.10. Let i = (i1, i2, ....., in) be the type of an element g ∈ G.

then n is called the length of g and we denote it by l(g).

Result: l(g) ≤ 1 if and only if g ∈ Gi for some i.

Let l(g) ≤ 1. This would imply that i = (i) or i = (φ). If l(g) = 0 then

it is clear that g ∈ Gi so assume l(g) = 1 which means that G′i = G′i.

φ : G′i t A = Gi → G is a bijective map from remark 2.7. Hence g ∈ Gi.
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Now let g ∈ Gi =
⊔
s∈Si f

′
i(A)s which would imply that g = f ′i(a)s or g =

f ′i(a) whence clearly g has type (i) or has type φ. Hence we have l(g) ≤ 1.

Definition 2.11. Let g ∈ G is of type i = (i1, i2, ....in), n ≥ 2, g is said to

be cyclically reduced if i1 6= in

Theorem 2.12. (a) Every element g of G is conjugate to a cyclically reduced

element, or conjugate to an element of the Gi.

(b)Every cyclically reduced element is of infinite order.

Proof. (a) We will prove this statement by using induction. Suppose l(g) = 2

ie. i = (ii, i2) and assume it is not cyclically reduced ie. i1 = i2 = i. Then

g = fi(g1)fi(g2) is of type i. g = g1g2 (f ′is are injective maps). g1, g2 ∈ G′i .

Then g is an element of G′i ⊂ Gi. Hence the result is clear.

Now assume the result is true for l(g) < n. We will try to establish the result

for l(g) = n. Let g ∈ G is of type i = (i1, i2, ....in) and let g is not cyclically

reduced ie. i1 = in. Then

g = g1g2, ...gn s.t. g1 ∈ G′i1 , ....., gn ∈ G
′
in .

then g−1
1 gg1 = g2........gn−1gng1. gng1 ∈ Gi1 = Gin . This would imply that

g−1
1 gg1 is of length n− 1 if gng1 /∈ A.

and is of length n− 2 if gng1 ∈ A. By induction hypothesis we have g−1
1 gg1

is conjugate to some cyclically reduced element or conjugate to an element

of Gi. Then same is true for g. Since

g−1
1 gg1 = g′−1′′g′ where g′′ is either a cyclically reduced element or an an

element of G′i.

⇒ g = (g′g−1
1 )−1g′′g′g−1

1 .

(b) Let g be cyclically reduced word of type i = (i1, i2, ....in) such that i1 6= in

then g2 will be of type 2i = (i1, i2, ....in, i1, .....in) and length 2n. More

generally gk(k ≥ 1) is of length kn and therefore never equal to 1. Hence is

of infinite order.

Remark 2.13. Every element of G of finite order is conjugate to an element

of one of the Gi.

It is clear from part (a) and (b) of previous theorem.
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2.4 Graphs

Definition 2.14. A graph Γ has a vertex set X and an edge set Y with two

maps

Y → X ×X, y 7→ (o(y), t(y))

and

Y → Y, y → y

satisfying for every y ∈ Y we have ¯̄y = y, ȳ 6= y and o(y) = t(ȳ). Every

element of X and Y is called the vertex and respectively edge of Γ. y is

called the oriented edge and ȳ is called the inverse edge. origin vertex of

edge e is defined as o(y) = t(ȳ) and t(y) = o(ȳ) is called the terminal vertex

of y. These two vertices are refer to as extremities of edge y.

Definition 2.15. Let a, b ∈ X. We say that a, b are adjacent if they are

extremities of some edge.

Definition 2.16. (Morphism of graphs)

Let A,B be graphs with (V (A), E(A)) (V (B), E(B)) be the vertex and edge

set of A and B respectively. Then

φ : A→ B

is a morphism provided we have maps

φV : V (A)→ V (B)

and

φE : E(A)→ E(B)

such that

(1) φV (o(e)) = o(φE(e)) and

(2) φV (t(e)) = t(φE(e)) and

(3) φE(ē) = φE(e).

Definition 2.17. Let Γ be a graph with X and Y as set of vertices and
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edges respectively. Then orientation of graph Γ is subset Y+ of Y such that

Y is the disjoint union of Y+ and Y+.

Definition 2.18. (Diagrams) A graph is represented using a diagram such

that every point on the diagram represent the vertex of graph and line joining

any two marked points represent edges of the form y, ȳ.

Example 2.19. Let Γ has three vertices P,Q,R, S and 6 edges p, q, r, p̄, q̄, r̄

such that o(p) = o(r) = o(q) = S and t(p) = P, t(r) = R, t(q) = Q. This

graph will be represented as

P Q P Q

             
y y

_
{ }, y

or by

Fig. 2.6:

Example 2.20. Consider the following diagram with vertices P,Q,R and 8

edges r, s, t, u, r̄, s̄, t̄, ū such that r, s, t, u have the extremities

{P, P}, {P,Q}, {P,Q}, {Q,R} respectively. Also we have o(r) = t(r) =

P but we don’t have information whether P is terminal or origin of edges

s and t.

P Q R

s

r 

t

u

Fig. 2.7:

Definition 2.21. Paths: A Pathn where n ≥ 0 is an oriented graph which

has n + 1 vertices given as 1, 2, ....., n and n edges denoted as [i, i + 1], 0 ≤
i < n which gives the orientation as o([i, i+ 1]) = i and t([i, i+ 1]) = i+ 1.
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Path   :n
0 1 2 3 n−1 n

Fig. 2.8:

A Path in a graph Γ is a morphism φ of pathn into Γ.

Definition 2.22. A pair of the form (yi, yi+1) = (yi, yi) in the path is called

backtracking.

Definition 2.23. A graph Γ is connected if there exist atleast one path

between any two vertices of graph Γ. Moreover, the maximal connected

subgraphs og graph called the connected component of the graph.

Definition 2.24. Circuit: Consider the oriented graph circn where n ≥ 0

and the set of vertices are from Z/nZ and edges [i, i + 1] which gives the

orientation as o([i, i+ 1]) = i and t([i, i+ 1]) = i+ 1.

0

1
n−1

i−1

i

i+1

Fig. 2.9:
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A circuit in a graph of length n is any subgraph which is isomorphic to Circn.

A circuit of length 1 is called a loop.

= [0,0]

Fig. 2.10:

.

Definition 2.25. A graph Γ is said to be combinatorial if it has no circuit

of length ≤ 2.

Suppose Γ be a combinatorial graph and let X and Y be the vertex and edge

set respectively of Γ, then a set {P,Q} of the extremities of some edge y ∈ Y
is called an geometric edge. Thus geometric edges actually determines the

set of orientated edge {y, ȳ}.

Definition 2.26. Graph of groups: Suppose G be any group and S be

any subset of G. Define Γ(G,S) to be an oriented graph with G as its set of

vertices and G× S as the set of edges such that the orientation is given by

o(g, s) = g and t(g, s) = gs for all edge (g, s) ∈ G× S .

Example 2.27. Suppose G be a cyclic group of order 15 and S be the

generating element of G that is

G = {x|x15 = 1} and S = {x}

. So the vertex set of graph Γ(G,S) is (x) and edge(Γ) = ((x) × {x}) such

that x15 = 1. let (xt, x), then orientation of edge is given as o(xt, x) = xt

and t(xt, x) = xt+1 where 0 ≤ t ≤ 14. Then graph Γ(G,S) will be a circuit

of length 15. .
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x

x2

x 3

x
4

x5

x
6

x 7

8
x

x
9

x10

x
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x
12

x
13

x
14

1

Fig. 2.11:

Example 2.28. Now suppose in the previous example instead of taking

S = {x} we take S = {x5}, let (xt, x5) be a edge in Γ(G × S). Then the

graph will look like as following because o(xt, x5) = xt and t(xt, x5) = xt+5.

Therefore in the graph there will be 5 circuits of length 3. .

1

x

x

x

x

x

x

x

x

x

 2

7

x
12

xx

x

10 5

3

13 8

4

914

611

x

Fig. 2.12:
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The graph of Γ(G×S) is connected since there is no path from 1 to x. Infact

we have the following result for this particular graph

Remark 2.29. Result: Let G = {x|x15 = 1 and S = {xt}, then there is a

path from 1 to x in Γ(G× S) if and only if g.c.d.(t, 15) = 1 . More generally

there is a path from xi to xj in Γ(G×S) if and only if j−i divides g.c.d.(t, 15).

Theorem 2.30. Let Γ(G,S) be the graph defined by the group G and a subset

S of G. Then the following are true.

(a) Γ is connected if and only if S generate G.

(b) Γ contain a loop if and only if 1 belong to S.

(c) Γ is a combinatorial graph if and only if S ∩ S−1 = φ.

Proof. (a) Suppose Γ is connected that is between any two vertex of Γ there

exist a path connecting them.

Let g, g′ ∈ G = V er Γ. Consider the path from g to g′ as

(g, s1).(gs1, s2).......(gs1s2....sn−1, sn) such that g′ = gs1........sn. In particular

if we take g = 1 then clearly S generate G.

Now assume S generate G that is every element of G can be written as

combination of elements of S or S−1. consider g, g′ ∈ G = V er Γ. Since S

generate G hence we have g′ = g.s1.....sn and where si ∈ S ∪ S−1. Clearly

then we have a path from g to g′ as (g, s1).(gs1, s2).......(gs1s2....sn−1, sn).

(b) Let Γ contains a loop that is we have an edge (g, s) such that

o(g, s) and t(g, s) = gs = g

⇒ s = 1, Hence clearly 1 ∈ S.

Now suppose 1 ∈ S then clearly we have a loop with edge (g, 1) ∈ G× S.

(c) Let Γ is combinatorial graph that is it has no circuit of length ≤ 2.

Suppose s 6= 1 ∈ S ∩ S−1 because if s = 1 then by previous part Γ will

contain a loop. As s−1 ∈ S consider the edge

(s, s−1), o(s−1, s) = s−1 and t(s−1, s) = 1 Also consider the edge (1, s),

o(1, s) = 1 and t(1, s) = s. This will give us a circuit of length 2 hence we

have a contradiction. Thus S ∩ S−1 = φ.

Assume S ∩ S−1 = φ. We want to show that Γ is a combinatorial graph.

Suppose it is not combinatorial graph that it has circuit of length 2 or has
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a loop. Suppose first that it has circuit of length 2 that is we have g and g′

and edges (g, s) and (g′, s′) such that o(g, s) = g and t(g, s) = gs = g′. Also

we have o(g′, s′) = g′ and t(g′.s′) = g′s′ = g. Thus we have

g′ = g′s′s ⇒ s′s = 1 ⇒ s = s′−1. Since s ∈ S and s = s′−1 ∈ S−1 we have

s ∈ S ∩ S−1. Hence we have a contradiction.

2.5 Trees

Definition 2.31. A tree T is a connected graph which has no circuits.

Example 2.32. Given are some examples of trees .

Fig. 2.13:

Definition 2.33. Let T be a tree. A geodesic in T is a path without back-

tracking.

Theorem 2.34. Let P and Q be two vertices in a tree T , then there exists

a unique geodesic from P to Q and it is an injective path.

Proof. Existence is trivial since T is connected.

Injectivity: Suppose c : pathn → T be a geodesic from P to Q such that

P = c(0) and Q = c(n) and put Pi = c(i). We want to show that c is

injective, it suffices to show that all vertex Pi are different. Then we can

assume that c is defined by the sequence of edges (y1, y2, ......., yn) such that

o(y1) = P and t(y1) = P1, o(yi+1) = Pi, t(yi+1) = Pi+1 and t(yn) = Q.

Suppose if it were not injective meaning for some i 6= j Pi = Pj. Then

(yi+1, ......, yj will form a circuit from Pi to Pj which is a contradiction since

tree cannot have circuits.
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Uniqueness: Assume P 6= Q because if it not then a geodesic of length> 0

from P to Q would define a circuit as it is injective.

Let there are two geodesic from P to Q given as (x1, ......xn) and (y1, ......, ym).

Suppose if xn 6= ym then we will have a geodesic from P to P given as

(x1, ......., xn, ȳn, ......., ȳ1), which is a contradiction hence xn = ym. Thus

by induction geodesics (x1, ......., xn−1) and y1, ......, ym−1 having the same

terminal point must coincide.

Definition 2.35. Subtree generated by a set of vertices: Let T be a

tree and X ′ be subset of vertex set of T . Consider all geodesics in tree T

whose extremities are in X ′. Take all the vertices and edges of these geodesics

which will form a subtree T ′ containing X ′. Such a subtree T ′ is said to be

generated by X ′.

Definition 2.36. Let Γ be a graph. Let X and Y be vertex and edge set

respectively of Γ and suppose P ∈ X then st(P ) = {e ∈ Y : t(e) = P}.
Valency of vertex P is defined as V (P ) =no. of elements in st(P ).

Definition 2.37. A vertex P ∈ ver(Γ) is said to be terminal if valency of

that vertex is one that is V (P ) = 1. If V (P ) = 0 then we say that P is

isolated vertex of Γ.

Theorem 2.38. Let P be a non- isolated terminal vertex of a graph Γ. Then

(a) Γ is connected if and only if Γ− P is connected.

(b) Every circuit of Γ is contained in Γ− P .

(c) Γ is a tree if and only if Γ− p is a tree.

Proof. Since P is terminal vertex hence it is terminus of a unique edge y.

Thus (a) is clear.

Every vertex belonging to circuit have valency two whence we have (b). And

we get (c) from (a) and (b).

Definition 2.39. Let T be a tree and X be the set of vertices. Define a

metric on X. Let x, y ∈ X then metric l(x, y) =no. of edges in shortest path

from x to y. Define Diameter(Γ) = sup{l(x, y)|x, y ∈ X}.
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Theorem 2.40. Let T be a tree of finite diameter n.

(a) The set t(T ) of terminal vertices of T is non empty.

(b) If n ≥ 2, V erT − t(T ) is the vertex set of a subtree of diameter n− 2.

(c) If n = 0 we have T ∼= Path0(diagram:◦) and if n = 1 we have T ∼= Path1

Fig. 2.14: Path1

Proof. It suffices to show (b) since (a) follows clearly from (b) and (c) and

(c) is trivial.

(b) Let X ′ = verT − t(T ). Let P,Q ∈ X ′. Then any point of the geodesics

from P to Q is non terminal. This will imply that subtree T ′ generared by

X ′ has all of its vertices same as of X ′. Now suppose that l(P,Q) = m.

Now add two more edges from t(T ) to both the vertex P and Q then length

of geodesic will be m+2. But as n is diameter of T we have m+2 ≤ n. Thus

Diam(T ′) ≤ n − 2. As T is of diameter n there exist a geodesic of length

n remove the first and last edge from this geodesic we will get a geodesic of

length n− 2 in T ′. Thus we have DiamT ′ = n− 2.

Result:

Let Γ be a graph. If α ∈ Aut(Γ) then for all P ∈ V (Γ) valency(P ) =

valency(α(P )).

Result: If α ∈ Aut(Γ) then t(Γ) = α(t(Γ)), where t(Γ) =set of terminal

vertices.

It is clear since valency remains unchanged on application of automorphism

from previous result that is we have V (α(t(e))) = V (t(e)) = 1.

Theorem 2.41. A tree of even finite diameter (respectively odd diameter)

has a vertex (respectively a edge) which remains fixed under all automor-

phisms.

Proof. Let n be the diameter of tree T . If n = 0 then the result is trivial.

Without loss of generality assume that n is even and positive. Let α ∈ Aut(T )

be any arbitrary automorphism then by previous result α just permuting the
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elements of t(T ) so we can remove these many elements from the vertex set.

Now use part (b) which says V er(T )−t(T ) is vertex set of subtree of diameter

n−2. In this way deleting the terminal vertices we will get a graph consisting

of a fixed point with diameter zero, that point will remain fixed under all

automorphism.

Following the same procedure we will get an edge if n is odd and positive.

2.6 Trees and amalgams

Definition 2.42. Let G be a group and X be a graph. A Group G acts on

a graph X, denoted by G×X → X, if G acts on the vertices and edges of

X:

(a) G× vert(X)→ vert(X)

(b) G× edge(X)→ edge(X)

and the action commutes with the maps o, t : edge(X) → vert(X) that is

following holds true:

o(gy) = g(o(y))

t(gy) = g(t(y))

where g ∈ G, y ∈ edge(X).

Definition 2.43. Let G be a group and X a graph upon which G acts.

(a) An inversion is a pair consisting of some g ∈ G and an edge y of X such

that gy = ȳ (where ȳ is the reverse edge of y).

(b) If no such pair exists we say that G acts without inversion on X. In other

words, the action does not map any edge to its reverse edge (and thus we

say that G preserves the orientation of X).

If G acts on X without inversion, then we can define the quotient graph

denoted as G\X (which we read as : X mod G) in an obvious way:

(a) The vertex set of G\X is the quotient of vert(X) under the action of G:

vert(G\X) = {Gx : x ∈ vert(X)}.
(b) Similarly, the edge set of G\X is the quotient of edge(X) under the action

of G: edge(G\X) = {Gy : y ∈ edge(X)}.
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Theorem 2.44. Let X be a connected graph, acted upon without inversion

by a group G. Every subtree T ′ of G\X lifts to a subtree of X.

Proof. Let T ′ be a tree in G\X. Consider ω to be a set of all those trees T in

X which project injectively into T ′. This is a directed set under the relation

of inclusion. Hence by Zorn’s lemma it has a maximal element T0, let T ′0 be

its image in T ′ ie. G\T0 ≡ T0 ⊆ T ′. If T0 is properly contained in T ′ then

there exist an edge y′ ∈ T ′ but y′ /∈ T ′0. As T ′ is connected we can assume

that o(y′) ∈ T ′0 but t(y′) /∈ T ′0 (because if t(y′) ∈ T ′0 then as T ′0 is connected

there is a geodesic from o(y′) to t(y′) in T ′0, this geodesic will contain in T

also as T ′0 ⊂ T ′, this geodesic from o(y′) to t(y′) followed by ȳ′ will give a

circuit in T ′ which is a contradiction since T ′ is a tree.

Now let y be a lift of y′; then G.(o(y))∩ V (T0) 6= φ (since image of both sets

is in T ′ )

Thus we can assume that o(y) ∈ T0. Let T1 be a graph which we get by joining

the vertex t(y) to o(y) via the edges y, ȳ and T1 is tree from Theorem 2.38(c)

such that T ′ is properly contained in T1 . Also by the way we have chosen y′,

T1 projected injectively into T ′, which is a contradiction to the maximality

of T ′, hence we have the theorem.

Definition 2.45. Let G be a group acting on a graph X. A fundamen-

tal domain of X mod G is a subgraph T of X such that T → G\X is a

isomorphism.

Theorem 2.46. Let G be a group acting without inversion on a tree X. A

fundamental domain of G\X exists if and only if G\X is a tree.

Proof. Let T be a fundamental domain of G\X that is T is a subgraph of

X such that T ∼= G\X. As X is connected and non-empty therefore G\X
is also connected and non-empty. So, T is a tree as a non empty, connected

subgraph of X. Thus G\X is also a tree.

Now suppose G\X is a tree. By previous theorem there is a tree T which is

isomorphic to G\X such that G\X ∼= T . This T is a fundamental domain

of G\X. Hence it exists.
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Definition 2.47. A graph is called segment if it is isomorphic to Path1 =

Theorem 2.48. Let G be a group acting without inversion on a graph X,

and let T be a segment of X that has edge y(reverse edgeȳ) with o(y) = P

and t(y) = Q. Suppose that T is a fundamental domain of X mod G. Let

GP , GQ and Gy = Gȳ be the stabilizers of the vertices and edges of T , then

X is a tree if and only if the homomorphism GP ∗Gy GQ → G induced by the

inclusions GP → G and GQ → G is an isomorphism.

(Note:Amalgam makes sense because GP ∩GQ = Gy).

First we will show that Gy ⊂ GP ∩ GQ , let g ∈ Gy then g.y = y, thus we

have o(g(y)) = g(o(y)). Hence o(y) = g.P ⇒ P = g.P .

Similarly we have t(g(y)) = g(t(y)). Hence t(y) = g.Q⇒ Q = g.Q.

Thus g ⊂ GP ∩ GQ. Now we want to show that GP ∩ GQ ⊂ Gy. Let

g ∈ GP ∩GQ. Then we have g.P = P and g.Q = Q. We want to show that

g ∈ Gy, but this is clear as there is only one edge on which when g acts we

will get the same thing. Thus GP ∩GQ = Gy.

Proof. It follows from the proof of the next two theorems:

Theorem 2.49. X is connected if and only if G is generated by GP ∪GQ.

Proof. Let X ′ be the connected component of X containing T , let

G′ = {g ∈ G|gX ′ = X ′}

and G′′ be the subgroup generated bt GP ∪GQ. We intend to establish that

G′′ = G′.

Let h ∈ GP ∪GQ, suppose if h ∈ GP then h.P = P . Thus, clearly T and hT

will have a common vertex P . Then as X ′ is connected component contain-

ing T , we have h.T ⊂ X ′.

Claim: h.X ′ = X ′.

First we show that h.X ′ ⊂ X ′, let v ∈ X ′ but v /∈ V (T ) = {P,Q}, we

need to show that h.v ∈ V ert(X ′). Then as X ′ is connected there is a path
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e1, e2, ......, en from P to v such that o(e1) = P and t(en) = v. If h ∈ GP then

h.P = P .

h.v = h.t(en) = t(h.en) and h.P = h.o(e1) = o(h.e1). Thus we have a path

from P = h.P to h.v and since P ∈ X ′ with X ′ is connected we have that

h.v ∈ V ert(X ′).
Suppose if h ∈ GQ that is h.Q = Q. Consider the same path as in above

from h.P to h.v and attach this path to the edge h.Q = Q, h.P . Thus again

we have a path from Q to h.v in X ′. Hence, h.v ∈ V ert(X ′) Now we want to

show that if e ∈ edge(X ′) then h.e ∈ edge(X ′). Since X ′ is connected there

will be a path γ in X ′ containing e and y. Therefore γ and h.γ will have one

vertex in common.

This implies that h.γ is a path contained in X ′ since X ′ is connected com-

ponent. Thus h.e ∈ edge(X ′). And hence we have h.X ′ ⊂ X ′.

Similarly, h−1.X ′ ⊂ X ′. From this we want to establish that X ′ ⊂ h.X ′.

Let v ∈ V ert(X ′). As, h−1.X ′ ⊂ X ′

⇒ h−1.v = v′ for some v′ ∈ V Ert(X ′).
⇒ h.h−1.v = h.v′.

⇒ v = h.v′.

⇒ v ∈ h.X ′.
Hence we have that h.X ′ = X ′. Therefore h ∈ G′ and we established that

G′′ ⊂ G′.

Now we want to show thatG′ ⊂ G′′. Firstly, we show thatG′′T and (G−G′′)T
are the disjoint subgraphs of X whose union is X. We start with showing

that vertex set of these two subgraphs has no intersection .

gv ∈ G′′T , where g ∈ G′′ and v ∈ {P,Q}. Suppose if gv ∈ (G − G′′)T that

is gv = g′v′, where g′ ∈ (G − G′′) and v′ ∈ {P,Q}. If v = v′, then we have

gv = g′v,

⇒ v = (g−1g′).v, ⇒ g−1g′ ∈ GP ∪GQ,

⇒ g−1g′ ∈ G′′, which implies g′ ∈ G′′ which is a contradiction (as by hypoth-

esis g′ ∈ (G−G′′)).

Now suppose if v 6= v′. Without loss of generality assume v = P and v′ = Q

(proof of other case will be exactly same by just interchanging vertices P ,
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Q′), then we have g.P = g′.Q. This implies P = (g−1g′)Q, whence we have

G.P = G.Q, where G.P,G.Q ∈ V ert(G\X), which is a contradiction since

P,Q are vertices of segment T which will go to different class in V ert(G\X).

Thus we have that vertex set of G′′T and (G−G′′)T are disjoint.

Edge set of G′′T and (G−G′′)T will also be disjoint since if it were not then

that is if e ∈ Edge(G′′T )∩Edge((G−G′′)T ) ,then o(e), t(e) ∈ V ert(G′′T )∩
V ert((G − G′′)T ), which is a contradiction because we showed that vertex

set of G′′T and (G−G′′)T are disjoint.

Now we will show that X = G′′T ∪ (G − G′′)T . Let v ∈ V ert(X). We are

also given that T is fundamental domain that is T ∼= G\X. Therefore

G.v = {g.v|g ∈ G} .

will either equal to

G.P = {g.P |g ∈ G} .

or

G.Q = {g.Q| ∈ G} .

Suppose if G.v = G.P , then v = g.P for some g ∈ G, g either belong to G′′

or (G−G′′) and hence we have

g.v ∈ G′′T or g.v ∈ (G−G′′)T .

and hence X ⊆ G′′T ∪ (G − G′′)T . Thus, we have that the required result

that union of subgraphs G′′T and (G−G′′)T is X.

From this we have that X ′ ⊂ G′′T since T = 1GT ∈ G′′T and as T ∈ X ′

therefore X ′ has to be contained in G′′T because G′′T and (G − G′′)T are

disjoint subgraphs and X ′ is connected.

Claim: G′ ⊆ G′′

Let g ∈ G′. This implies that g.X ′ = X ′, suppose if g /∈ G′′ that is g ∈ G−G′′.
P ∈ V ert(T ) ⊆ V ert(X ′).

⇒ g.P ∈ V ert(g.X ′) = V ert(X ′).

Also we have that X ′ ⊂ G′′T , thus we have
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gP ∈ V ert(G′′T ) and by assumption we have gP ∈ (G−G′′)T and we have

a contradiction since subgraphs G′′T and (G − G′′)T are disjoint. Thus we

have G ⊆ G′′.

Combining this with the above G′′ ⊆ G, we have G′′ = G

The graph X is connected if and only if X = X ′ that is if G = G′ = G′′ and

we have the required theorem.

Theorem 2.50. X contains no circuit if and only if GP ∗Gy GQ → G is

injective.

Proof. X contains a circuit if and only if there exists a path c = (w0, ......wn),

where n ≥ 1 in X without backtracking such that o(w0) = t(wn). As G\X =

T , we have only two class of edges in G\X, which are Gy = {gy|g ∈ G}
and Gȳ = {gȳ|g ∈ G} thus for every edge wi we have an hi ∈ G such that

wi = hiyi, where yi = y and yi = ȳ. Passing this to the quotient we have

that Gyi = Gyi−1, suppose if yi = y, then there exists a g ∈ G such that

gy = yi−1, as G acts without inversion on X, we have that yi−1 = y = yi,

similarly if yi = ȳ, we have yi−1 = yi. Now let Pi = o(yi) = t(yi−1). Notice

that

hiPi = hio(yi) = o(hiyi) = t(hi−1yi−1) = hi−1t(yi−1) = hi−1Pi .

Thus, h−1
i−1hi ∈ GPi , hence there exists a gi ∈ GPi such that hi = hi−1gi.

Also gi /∈ Gy, suppose if gi ∈ Gy,

⇒ giy = y, using last equation we have that,

hiy = hi−1y ,

which is a contradiction, since

hiyi 6= hi−1yi−1 ,

where yi ∈ {y, ȳ}.
Notice that o(w0) = t(wn) is equivalent to writing that t(yn) = P0, which is
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also equivalent to

h0P0 = hnP0 = hn−1gnP0 = hn−2gn−1gnP0 = ...h0g1g2...gnP0 ,

that is g1g2...gn ∈ GP0 .

Thus, X contains a circuit if and only if we can find a sequence of vertices of

T with {Pi−1, Pi} = {P,Q} for all i and a sequence of elements gi ∈ GPi−Gy

(0 ≤ i ≤ n), such that g1g2...gn ∈ GP0 , thus there exist an element g0 ∈ GP0

g0g1...gn = 1 .

Thus we have the map fi : G′i → G is not injective, where i = (0, 1, ..., n),

and G′i is same as defined in Remark 2.7 of Theorem 2.5 taking A = Gy and

G′i = GPi −Gy, because

θg = Gn−1
y .(g0g1...gn) 7→ τP0(g0)τP1(g1)...τPn(gn) = g0g1...gn = 1 ,

where g = g0g1...gn and τPi : Gy → GPi are inclusion maps, which is a

contradiction, since it were a bijective map.

Hence, we have our result.

These two theorems together form the statement that X is a tree if and only

if GP ∗Gy GQ → G is isomorphism.

Definition 2.51. SL(2,Z) is a group consisting of all matrices of rank two,

whose entries are from set of integers and determinant is one.

Theorem 2.52. We want to establish that SL(2,Z) = 〈X, Y 〉, where

X =

[
0 1

−1 0

]

and

Y =

[
0 1

−1 1

]
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Proof. Since, X, Y ∈ SL(2,Z). Therefore, clearly

〈X, Y 〉 ⊆ SL(2,Z) .

Therefore, it suffices to show that SL(2,Z) ⊆ 〈X, Y 〉.
Let g ∈ SL(2,Z) such that

g =

[
a b

c d

]

where ad− bc = 1 and a, b, c, d ∈ Z. We want to show that

gXn1Y m1 ....XnkY mk = ±I .

This will imply that g ∈ 〈X, Y 〉. We want that |a| should be smaller than

|b|. If not then by applying following operation we can achieve this.[
a b

c d

][
0 1

−1 0

]
=

[
−b a

−d c

]
(Op 1)

[
0 1

−1 0

][
a b

c d

]
=

[
c d

−a −b

]
(Op 2) .

Let XY =

[
1 −1

0 1

]
= S−1, where S =

[
1 1

0 1

]
.

Suppose b 6= 0, we want to produce g′ =

[
a′ b′

c′ d′

]
from g, such that b′ = 0.

This can be done by the following operations[
a b

c d

][
1 −1

0 1

]
=

[
a b− a
c d− c

]
(Op 3) .

[
a b

c d

][
1 1

0 1

]
=

[
a b+ a

c d+ c

]
(Op 4) .

If b = ±na, then this could be done by repeated operation of (Op 3) and
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(Op 4).

If b 6= ±na, then apply (Op 3) and (Op 4) until we obtain g′ =

[
a′ b′

c′ d′

]
,

with |a′| > |b′|.
Now apply (Op1) to get[

a′ b′

c′ d′

][
0 1

−1 0

]
=

[
−b′ a′

−d′ c′

]
=

[
a′′ b′′

c′′ d′′

]
, such that |a′′| < |b′′| .

Now repeat this procedure to get

g′′′ =

[
a′′′ b′′′

c′′′ d′′′

]
, with b′′′ = 0 .

This implies a′′′d′′′ = 1 ⇒ a′′′ = d′′′ = ±1. Hence upto multiplying −I, we

have g′′′ =

[
1 0

c 1

]
.

Let Y X =

[
−1 0

−1 −1

]
, then

T = Y X.(−I) =

[
1 0

1 1

]
, T−1 =

[
1 0

−1 1

]
,

then we have g′′′ = T c ∈ 〈X, Y 〉.
Hence in this way we have A1, A2, ...., An ∈ 〈X, Y 〉 such that g(A1.A2....An) =

±I, which would imply that g ∈ 〈X, Y 〉. Hence we have the required result.

Theorem 2.53. Establish that SL(2,Z) ∼= Z4 ∗Z2 Z6

Proof. To show that SL(2,Z) is amalgamated product of two groups we need

to have

(1) A tree with a segment as a fundamental domain upon which SL(2,Z)

acts without inversion.

(2) Compute the stabilizers of the vertices and the edge of the fundamental

domain.
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SL(2,Z) acts on the upper half plane via Mobius transformation which is

given as

SL(2,Z)×HC→ HC

such that [
a b

c d

]
.z =

az + b

cz + d
,

where HC =upper half of complex plane. It is a well defined action. Let y

be the circular arc consisting of points z = eiθ for π
3
≤ θ < π

2
. Let

P = o(y) = e
iπ
3 and Q = t(y) = e

iπ
2 = i .

Let g ∈ SL(2,Z) = 〈X, Y 〉, then g = Xn1Y m1 .....XnkY mk , where n1, ....nk ∈
{0, 1} and m1, .....mk ∈ {0, 1, 2}. Thus to construct tree we just have to see

how does X,X2, Y, Y 2, Y 3 acts on P and Q, notice that

X.Q =

[
0 1

−1 0

]
.i =

−i
−1

= i

and

X.P =

[
0 1

−1 0

]
.eiπ/3 =

1

−eiπ/3
= ei2π/3 .

Now act X on X.P = ei2π/3. We get,

X.ei2π/3 =

[
0 1

−1 0

]
.ei2π/3 =

1

−ei2π/3
= eiπ/3 .

Moreover,

Y.o(y) = Y.P =

[
0 1

−1 1

]
.eiπ/3 =

1

−eiπ/3 + 1
= eiπ/3

Y.t(y) = Y.Q =

[
0 1

−1 1

]
.i =

1

−eiπ/2 + 1
=

1

−i+ 1
=

1

2
+
i

2
.
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Now again act Y on Y.Q we get,

Y.(Y.Q) =

[
0 1

−1 1

]
.(

1

2
+
i

2
) = 1 + i .

Now we have

Y.(1 + i) =

[
0 1

−1 1

]
.(1 + i) = i .

Now act X on Y.Q we have

X.(Y.Q) =

[
0 1

−1 0

]
.(1/2 + i/2) = −1 + i .

Also

Y.(X.P ) =

[
0 1

−1 1

]
.ei2π/3 = 1/2 +

√
3i/12 .

In this way we have constructed a following graph X which is in fact a tree

of which T is segment with P and Q as vertices and y as its edge and is

fundamental domain of X\SL(2,Z). .

y

P

Q

Fig. 2.15: Z4 ∗Z2 Z6

From Theorem 2.48 SL(2,Z) is isomorphic to amalgam of stabilizers of P

and Q over the stabilizer of y that is SL(2,Z) ∼= GP ∗Gy GQ. Thus all remain

is to compute stabilizers of P , Q and y.

First we compute GP = {g ∈ SL(2,Z)|g.P = P}. Let g =

[
a b

c d

]
∈
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SL(2,Z) such that

g =

[
a b

c d

]
and g.eiπ/3 = eiπ/3

Thus we have
aeiπ/3 + b

ceiπ/3 + d
= eiπ/3

⇒ aeiπ/3 + b = ce2iπ/3 + deiπ/3

⇒ (a− d)(cos(π/3) + isin(π/3)) + b = c(cos(2π/3) + isin(2π/3))

⇒ (a− d+ c)cos(π/3) + b+ i(a− d− c)sin(π/3) = 0

⇒ a−d+c
2

+ b = 0 and a = d+ c.

On substituting a = d + c in a − d + c + 2b = 0, we have c = −b. Now

substitute this in ad− bc = 1, we get

ad+ b2 = 1, only choices for b are b = 0 or b = −1 or b = 1.

Case 1

Suppose b = 0, then ad = 1, thus a = 1, d = 1 or a = −1, d = −1, Hence for

this case we have two matrices given as

g1 =

[
1 0

0 1

]
and g2 =

[
−1 0

0 −1

]
.

Case 2

Suppose b = 1, then c = −1 thus ad = 0, also we have that a = d + c, on

solving this we have a = 0, d = 1 or a = −1, d = 0, Hence for this case we

have following two matrices

g3 =

[
0 1

−1 1

]
and g4 =

[
−1 1

−1 0

]
.

Case 3 Now comes the last case when b = −1, thus c = 1, thus ad = 0, also

we have that a = d + c, On solving these we have that a = 0, d = −1 or
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a = 1, d = 0, thus for this case we have following two matrices

g5 =

[
0 −1

1 −1

]
and g6 =

[
1 −1

1 0

]
.

Hence We have that GP is cyclic group of order 6 generated by

Y =

[
0 1

−1 1

]
.

which is isomorphic to Z6, thus we have GP
∼= Z6.

Now we computeGQ = {g ∈ SL(2,Z)|g.Q = Q} , Let g =

[
a b

c d

]
∈ SL(2,Z)

such that

g =

[
a b

c d

]
and g.eiπ/2 = g.i = eiπ/2 = i ,

Thus we have that
ai+ b

ci+ d
= i ,

on solving this equation we have following (b+c)+(a−d)i = 0, which implies

that a = d, b = −c, also we have that ad−bc = 1, substituting a = d, b = −c
in this we have a2 + b2 = 1, Since a, b, c, d ∈ Z, hence it gives rise to these 4

matrices

g1 =

[
1 0

0 1

]
and g2 =

[
−1 0

0 −1

]
.

and

g3 =

[
0 1

−1 0

]
and g3 =

[
0 −1

1 0

]
.

Hence GQ is a cyclic group of order 4 generated by

X =

[
0 1

−1 0

]

which is isomorphic to Z4 that is GQ
∼= Z4.
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Now all remain is to compute Gy but its easy since we have

GP ∩GQ = Gy and hence Gy consist of these two matrices

g1 =

[
−1 0

0 −1

]
and g2 =

[
1 0

0 1

]

which is a cyclic group of order 2 generated by

−I =

[
−1 0

0 −1

]
.

which is isomorphic to Z2 that is Gy
∼= Z2.

Hence we have the required result

SL(2,Z) ∼= Z6 ∗Z2 Z4 .
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