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The aim of this lecture is to give a discussion of the main results and ideas 
concerning a certain aspect of the so-called differential geometry in the large 
which has made some progress in recent years. Differential geometry in the large 
in its vaguest sense is concerned with relations between global and local prop
erties of a differential-geometric object. In order that the methods of differential 
calculus may be applicable, the spaces under consideration are not only topo
logical spaces but are differentiable manifolds. The existence of such a differ
entiable structure allows the introduction of notions as tangent vector, tangent 
space, differential forms, etc. In problems of differential geometry there is usu
ally an additional structure such as: (1) a Riemann metric, that is, a positive 
definite symmetric covariant tensor field of the second order; (2) a system of 
paths with the property that through every point and tangent to every direction 
through the point there passes exactly one path of the system; (3) a system of 
cones of directions, one through each point, which correspond to the light cones 
in general relativity theory, etc. Among such so-called geometric objects the 
Riemann metric is perhaps the most important, both in view of its'rôle in prob
lems of analysis, mechanics, and geometry, and its richness in results. In 1917 
Levi-Civita discovered his celebrated parallelism which is an infinitesimal trans
portation of tangent vectors preserving the scalar product and is the first ex
ample of a connection. The salient fact about the Levi-Civita parallelism is 
the result that it is the parallelism, and not the Riemann metric, which accounts 
for most of the properties concerning curvature. 

The Levi-Civita parallelism can be regarded as an infinitesimal motion be
tween two infinitely near tangent spaces of the Riemann manifold. I t was Elie 
Cartan who recognized that this notion admits an important generalization, 
that the spaces for which the infinitesimal motion is defined need not be the 
tangent spaces of a Riemann manifold, and that the group which operates in 
the space plays a dominant rôle. In his theory of generalized spaces (Espaces 
généralisés) Cartan carried out in all essential aspects the local theory of what 
we shall call connections [1; 2]. With the development of the theory of fiber 
bundles in topology, begun by Whitney for the case of sphere bundles and de
veloped by Ehresmann, Steenrod, Pontrjagin, and others, [8; 19], it is now pos
sible to give a modern version of Cartan's theory of connections, as was first 
carried out by Ehresmann and Weil [7; 22]. 

Let F be a space acted on by a topological group G of homeomorphisms. A 
fiber bundle with the director space F and structural group G consists of topo
logical spaces B, X and a mapping x// of B onto X, together with the following: 

(1) X is covered by a family of neighborhoods {Ua}, called the coordinate 
397 
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neighborhoods, and to each Ua there is a homeomorphism (a coordinate func
tion) <pa: UaX F-* Tp~l(Ua), with yp<p«(x, y) = x,x e Ua ,y € F. 

(2) As a consequence of (1), a point of ^_1(t/a) has the coordinates (x, y), and 
a point of yf^CUd fl Uß) n a s two sets of coordinates (x, y) and (x, yf), satisfying 
<pa(x, y) = <Pß(x, y'). It is required that gaß(x): yf —» y be a continuous mapping 
of Ua fl Uß into G. 

The spaces X and B are called the base space and the bundle respectively. 
Each subset ^(x) C B is called a fiber. 

This definition of a fiber bundle is too narrow in the sense that the coordinate 
neighborhoods and coordinate functions form a part of the definition. An equiva
lence relation has thus to be introduced. Two bundles (B, X), (Bf, X) with the 
same base space X and the same F, G are called equivalent if, {Ua , <pa], {Vß , dß} 
being respectively their coordinate neighborhoods and coordinate functions, 
there is a fiber-preserving homeomorphism T: B —> B' such that the mapping 
haß(x): y —> yf defined by 8ß(x, y) = T<pa(x, y') is a continuous mapping of 
Ua fi Vß into G. 

An important operation on fiber bundles is the construction from a given 
bundle of other bundles with the same structural group, in particular, the prin
cipal fiber bundle which has G as director space acted upon by G itself as the 
group of left translations. The notion of the principal fiber bundle has been at 
the core of Cartan's method of moving frames, although its modern version 
was first introduced by Ehresmann. It can be defined as follows: For x Ç X, 
let Gx be the totality of all maps <pa,g(x) : F —> ^(x) defined by y —» <pa(x, g(y)), 
y € F, g £ G, relative to a coordinate neighborhood- Ua containing x. Gx depends 
only on x. Let B* = IL* Gx and define the mapping ^*: B* —> X by $*(Ga) = x 
and the coordinate functions <pa(x, g) = <pa,g(x). Topologize £* such that the 
4j>*'s define homeoinprphisms of Ua X G into B*. The bundle, (B*, X) so obtained 
is called a principal fiber bundle. This construction is an operation on the equiva
lence classes of bundles in the sense that two fiber bundles are equivalent if and 
only if their principal fiber bundles are equivalent. Similarly, an inverse opera
tion can be defined, which- will permit us to construct bundles with a given prin
cipal bundle and having as director space a given space acted upon by the 
structural group G. An important property of the principal fiber bundle is that 
B* is acted upon by G as right translations. 

For the purpose of differential geometry we shall assume that all spaces under 
consideration are differentiable manifolds and that our mappings are differen
tiable with Jacobian matrices of the highest rank everywhere. In particular, 
the structural group G will be assumed to be a connected Lie group. For sim
plicity we suppose our base space X to be compact, although a large part of 
our discussions holds without this assumption. 

The implications, of these assumptions are very far-reaching indeed. First of 
all we can draw into consideration the Lie algebra L(G) of G. L(G) is invariant 
under the left translations of G, while the right translations and the inner auto
morphisms of G induce on L(G) a group of linear endomorphisms ad(G), called 
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the adjoint group of G. Relative to a base of L(G) there are the left-invariant 
linear differential forms a/ and the right-invariant linear differential forms 7r*, 
each set consisting of linearly independent forms whose number is equal to the 
dimension of G. A fundamental theorem on Lie groups asserts that their exterior 
derivatives are given by 

dw -= — - _C cJ*V A «*, 

dw = + - _ C c}kw3 A *•*, i,j, lc = 1, • • -, dim G, 

where c}k are the so-called constants of structure which are antisymmetric in 
the lower indices and which satisfy the well-known Jacobi relations. 

Returning to our fiber bundle, the dual mapping of the mapping gaß: Ua 0 
Uß —> G carries w* and wl into linear differential forms in Ua fl Uß , which we 
shall denote by calß and irlß respectively. Since gay = gaßgßy in Ua fi Uß fi Uy , 
we have 

(2) W«7 = S ^(gßyYjWaß + ü)ßy . 
3 

We can also interpret wL/3 as a vector-valued linear differential form in UaC\ Uß, 
with values in L(G), and shall denote it simply by o)aß when so interpreted. 

The generalization of the notion of a tensor field in classical differential geom
etry leads to the following situation: Let E be a vector space acted on by a repre
sentation M (G) of G. A tensorial differential form of degree r and type M(G) 
is an exterior differential form ua of degree r in each coordinate neighborhood 
Ua, with values in E, such that, in Ua fl Uß , ua = M(gaß)uß . The exterior 
derivative dua of wa is in general not a tensorial differential form. I t is in order 
to preserve the tensorial character of the derivative that an additional structure, 
a connection, is introduced into the fiber bundle. 

A connection in the fiber bundle is a set of linear differential forms 0« in Ua, 
with values in L(G), such that 

(3) ü)aß = -a,d(gaß)da + 0ß, mUaCiUß. 

I t follows from (2) that such relations are consistent in Ua H Uß Ci Uy . As can 
be verified without difficulty, a connection defines in the principal fiber bundle 
a field of tangent subspaces transversal to the fibers, that is, tangent subspaces 
which, together with the tangent space of the fiber, span at every point the tan
gent space of the principal bundle. It follows from elementary extension theorems 
that in every fiber bundle there can be defined a connection. As there is great 
freedom in the choice of the connection, the question of deciding the relationship 
between the properties of the bundle and those of the connection will be our 
main concern in this paper. _ 

Let us first define the process of so-called absolute differentiation. Let M(X), 
X 6 L(G), be the representation of the Lie algebra L(G) induced by the repre-
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sentation M(G) of G. Then we have 

(4) dM(gaß) = M(gaß)M(dß) - M(Oa)M(gaß). 

I t follows that if we put for our tensorial differential form ua of degree r and type 
M(G) 

(5) Dua = dwa + M(0a) A Ua , 

the form Dua will be a tensorial differential form of degree r + 1 and the same 
type M(G). 

To study the local properties of the connection we again make use of a base 
of the Lie algebra, relative to which the form 0a has the components 6a . We put 

(6) ©I = ddi + lj2 c}h0a A t in Ua . 

The form ®a , whose components relative to the base are ® a , is then an exterior 
quadratic differential form of degree 2, with values in L(G). It is easy to verify 
that ®a = &d(gaß)@ß in Ua^Uß . The ©a's therefore define a tensorial differ
ential form of degree 2 and type ad(G), called the curvature tensor of the con
nection. In a manner which we shall not attempt to describe here, the curvature 
tensor and tensors obtained from it by successive absolute differentiations give 
all the local properties of the connection. In particular, the condition ®a = 0 
is a necessary and sufficient condition for the connection to be flat, that is, to 
be such that Qa = 0 by a proper choice of the coordinate functions. 

The following formulas for absolute differentiation can easily be verified: 

M(®a) = dM(6a) + M(ea)\ 

(7) D®a - 0, 

D\a = M(®a)Ua . 

Such relations are known in classical cases, the second as the Bianchi identity. 
We now consider real-valued symmetric multilinear functions P(Y1, • • • , Yk), 

Yi Ç L(G), i = 1, • • • , k, which are invariant, that is, which are such that 
P(ad(a)F x , • • • , ad(a)Ffc) = P(Y1, • • • , Yk) for all a € G. For simplicity we 
shall call such a function an invariant polynomial, k being its degree. By the 
definition of addition, 

(8) (P + Q)(Y1, • • • , Yk) = P(Y1, - •. , Yk) + Q(Y,, • • • , Yk), 

all invariant polynomials of degree k form an abelian group. Let 1(G) be the 
direct sum of these abelian groups for all fc i_ 0. If P and Q are invariant poly
nomials öf degrees k and I respectively, we define their product PQ to be an 
invariant polynomial of degree k + I given by 

(9) (PQ)(F1, • • -, Y^) = 1 Z P(Ytl, ••-, YikMYik+l, • • •, Yik+l), 
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where the summation is extended over all permutations of the vectors Y,-, and 
N is the number of such permutations. This definition of multiplication, to
gether with the distributive law, makes 7(G) into a commutative ring, the ring 
of invariant polynomials of G. 

Let P € 1(G), with degree fc. For Yi we substitute the curvature tensor ®. 
Then P(@) = P(®, • • • , © ) is an exterior differential form of degree 2fc, 
which, because of the invariance property of P, is defined everywhere in the base 
space X. From the Bianchi identity (72) it follows that P(@) is closed. There
fore, by the de Rham theory, P(®) determines an element of the cohomology 
ring H(X) of X having as coefficient ring the field of real numbers. This mapping 
is a ring homomorphism 

(10) h: 1(G) -* H(X) 

of the ring of invariant polynomials of G into the cohomology ring of X. I t is 
defined with the help of a connection in the bundle. 

Our first main result is the following theorem of Weil: h is independent of the 
choice of the connection [22]. In other words, two different connections in the 
fiber bundle give rise to the same homomorphism h. To prove this we notice 
that if 6a and 6a are the linear differential f orms defining these connections, their 
difference ua = Ba — 6a is a linear differential form of type ad(G), with values 
in L(G). With the help of ua Weil constructs a differential form whose exterior 
derivative is equal to the difference P(®') — P(®), for a given invariant poly
nomial P. Another proof has been given recently by H. Cartan, by means of 
an invariant definition of the homomorphism h. 

Our next step consists in setting up a relationship between this homomorphism 
h and a homomorphism which is defined in a purely topological manner. This 
requires the concepts of an induced fiber bundle and a universal fiber bundle. 

Let a mapping/: F—»Xbe given. The neighborhoods {/"^(C/«)} then form a 
covering of Y and coordinate functions (pa: /

_1(C/a) X F —» f~l(Ua) X ^(Ua) 
can be defined by <pa(ri, y) = y X (pM(v)> 2/)- This defines a fiber bundle Y X 
^_1(/(7)) over Y, with the same director space F and the same group G. The 
new bundle is said to be induced by the mapping /. If the original bundle has 
a connection given by the differential form 6a in Ua , the dual mapping /* of / 
carries 0« into/*0« mf~l(Ua) for which the relation corresponding to (3) is valid. 
The forms f*6a therefore define an induced connection in the induced bundle. 

This method of generating new fiber bundles from a given bundle is very useful. 
Its value is based on the fact that it provides a way for the enumeration of fiber 
bundles. In fact, let the director space and the structural group G be given and 
fixed for our present considerations. A bundle with the base space X0 is called 
universal relative to a space X if every bundle over X is equivalent to a bundle 
induced by a mapping X —> X0 and if two such induced bundles are equivalent 
when and only when the mappings are homotopic. If, for a space X, there exists 
a universal bundle with the base space Xo, then the classes of bundles over X 
are in one-one correspondence with the homotopy classes of mappings X —> X0 , 
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so that the enumeration of the bundles over X reduces to a homotopy classifi
cation problem. 

It is therefore of interest to know the circumstances under which a universal 
bundle exists. A sufficient condition for the bundle over X0 to be universal for 
all compact spaces X of dimension less than or equal to n is that the bundle* BQ 
of its principal fiber bundle have vanishing homotopy groups up to dimension 
n inclusive: 7r*(J3o) = 0, 0 __ i __ n, where the condition TT0 = 0 means connected
ness. 

Under our assumptions that X is compact and that G is a connected Lie group, 
bundles can be found such that these conditions are fulfilled. First of all, accord
ing to a theorem due to E. Cartan, Malcev, Iwasawa, and Mostow, [12; 14; 15]? 

G contains a maximal compact subgroup G± , and the homogeneous space G/Gi 
is homeomorphic to a Euclidean space. This makes it possible to reduce prob
lems of equivalence, classification, etc. of bundles with the group G to the corre
sponding problems for Gx. Since G\ is a compact Lie group, it has a faithful 
orthogonal representation and can be considered as a subgroup of the rotation 

1 group R(m) operating in an m-dimensional Euclidean space Em. Imbed Em in 
an (ra + n + 1)-dimensional Euclidean space FJm^n+1 and consider the homo
geneous space B = R(m + n + l)/(Im X R(n + 1)) as a bundle over X0 = 
R(m + n + l)/(Gi X R(n + 1)), where Im is the identical automorphism of 
Em, and R(n + 1) is the rotation group of the space En+1 perpendicular to Em 

in Em+n+1. This is a principal bundle with Gi as its structural group. By the 
covering homotopy theorem we can prove that Wi(B) = 0, 0 __ i __ n. In this 
way the existence of a universal bundle is proved by an explicit construction. 

Suppose that a universal bundle exists, with the base space X 0 . Let H(X, R) 
be the cohomology ring of X, relative to the coefficient ring R. Since the classes 
of bundles over X are in one-one correspondence with the homotopy classes 
of mappings X —> X 0 , the homomorphism hr : H(XQ, R) —»iï(X, R) is completely 
determined by the bundle, h! will be called the characteristic homomorphism, 
its image h'(H(XQ, R)) C H(X, R) the characteristic ring, and an element of 
the characteristic ring a characteristic cohomology class. It will be understood 
that the coefficient ring R will be the field of real numbers whenever it is dropped 
in the notation. 

The universal bundle is of course not unique. However, given any two bundles 
which are universal for compact base-spaces of dimension less than or equal to 
n, it is possible to establish between their base spaces Xo and Xo a chain trans
formation of the singular chains of dimension less than or equal to n which gives 
rise to a chain equivalence. From this it follows that up to the dimension n 
inclusive, the cohomology rings of X0 and X0 are in a natural isomorphism. The 
characteristic homomorphism is therefore independent of the choice of the 
universal bundle. Although this conclusion serves our purpose, it may be re
marked that, in terms of homotopy theory, a stronger result holds between Xo 
and Xo, namely, they have the same homotopy-n-type. From this the above 
assertion follows as a consequence. 
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A knowledge of H(Xo, R) would be necessary for the description of the char
acteristic homomorphism. Since elements of dimension greater than n ( = dim X) 
of Jff(Xo , R) are mapped into zero by dimensional considerations, H (Xo , R) 
can be replaced by any ring which is isomorphic to it up to dimension n inclusive. 
On the other hand, it follows from the discussions of the last section that the 
choice of the universal bundle is immaterial, so that we can take the one whose 
base space is X0 = R(m + n + l)/(Gi X R(n + 1)). Using a connection in this 
universal bundle, we can, according to a process given above, define a homo
morphism ho = I (Gi) —» H(Xo) of the ring of invariant polynomials of Gi into 
H(Xo). XQ being a homogeneous space, its cohomology ring II(XQ) with real 
coefficients can be studied algebraically by methods initiated by E. Cartan and 
recently developed with success by H. Cartan, Chevalley, Kozsul, Leray, and 
Weil [13]. Thus it has been shown that, up to dimension n, IIQ is a one-one iso
morphism. We may therefore replace H(Xo) by I(Gi) in the homomorphism 
hf and write the characteristic homomorphism as 

(11) hf\ I(Gi)-> H(X). 

This homomorphism hf is defined by the topological properties of the fiber 
bundle. 

On the other hand, the homomorphism h: 1(G) —> H(X) defined above can 
be split into a product of two homomorphisms. Since an invariant polynomial 
under G is an invariant polynomial under Gi , there is a natural homomorphism 

(12) o-: / (G)-^I (Gi) . 

Since Gi can be taken to be the structural group, the homomorphism 

(13) lh: J(Gi) -> H(X) 

is defined. Now, a connection with the group Gi can be considered as a connec
tion with the group G. Using such a connection, we can easily prove 

(14) h = ha. 

Our main result which seems to include practically all our present knowledge 
on the subject consists in the statement: 

(15) h' = h . 

Notice that W is defined by the topological properties of the bundle and hi by 
the help of a connection, so that our theorem gives a relationship between a 
bundle and a connection defined in it, which is restrictive in one way or the 
other. In particular, when the structural group G is compact, we have Gi = G 
and a is the identity, and the characteristic homomorphism is in a sense de
termined by the connection. For instance, it follows that the characteristic 
ring of the bundle has to be zero when a connection can be defined such that 
h(I(G)) = 0. 
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A proof for this theorem is obtained by first establishing it for the universal 
bundle. Under the mapping/: X —>X0it is then true for the induced bundle and 
the induced connection. Using the theorem of Weil that h is independent of the 
choice of the connection, we see that the relation is true for any connection in 
the bundle. 

A great deal can be said about the rings of invariant polynomials 1(G), I(Gi} 
and the homomorphism <r. When the structural group is compact, such state
ments can usually be proved more simply by topological considerations. In 
the other case we have to make use of the cohomology theory of Lie algebras. 
As we do not wish to discuss this, we shall restrict ourselves to the explanation 
of the corresponding topological notions. For this purpose we shall first discuss 
compact groups, that is, we begin by confining our attention to Gi . 

We first recall some results on compact group manifolds. All the maximal 
abelian subgroups are conjugate and are isomorphic to a torus whose dimension 
is called the rank of the group. By an idea due essentially to Pontrjagin [16] we 
can define an operation of the homology classes of Gi on the cohomology classes 
of Gi . In fact, ra: Gi X Gi —> Gi being defined by the group multiplication, the 
image m*yk of a cohomology class of dimension fc of G imder the dual homo
morphism ra* can be written m*yk = 2 ^î X vTr. The operation of a homology 
class c of dimension s _S fc on yk is then defined as i(c)yk = ^2iKI(c, Ui)vki~\ 
We call this operation an interior product. A cohomology class yk of Gi is called 
primitive if its interior product by any homology class of dimension s, 1 ^ s ^ 
fc — 1, is zero. The homology structure of compact group manifolds (with real 
coefficients) has a description given by the following theorem of Hopf and 
Samelson [11; 18]: (1) all primitive cohomology classes are of odd dimension; 
(2) the vector space of the primitive classes has as dimension the rank of G; (3) 
the cohomology ring of Gi is isomorphic to the Grassmann algebra of the space 
of primitive classes! v 

The primitive classes play a rôle in the study of the universal principal fiber 
bundle ^ : BQ—»X0 . Identify a fiber ^(x) (x (E X0) with Gi , and let i be the 
inclusion mapping of Gi into BQ. If yk is a cocycle of X0 , \//*yk is a cocycle of B0 . 
Since BQ is homologically trivial, there exists a cochain /3fc_1 having \p*yk as co-
boundary. Then i*ßk~x is a cocycle in Gi whose cohomology class depends only 
on that of yk. The resulting mapping of the cohomology classes is called a trans
gression. I t is an additive homomorphism of the ring of invariant polynomials of 
Gi into the cohomology ring of Gi and it carries an invariant polynomial of degree 
fc into a cohomology class of dimension 2fc — 1. Chevalley and Weil proved that 
the image is precisely the space of the primitive classes. 

When the group G is noncompact, the consideration of its Lie algebra allows 
us to generalize the above notions, at least under the assumption that G is semi-
simple. H. Cartan, Chevalley, and Koszul have developed a very comprehensive 
theory dealing with the situation, which can be considered in a sense as the alge
braic counterpart of the above treatment. Among their consequences we men
tion the following which is interesting for our present purpose: The ring of in-
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variant polynomials under G has a set of generators equal to the rank of G; 
these can be so chosen that their images under transgression span the space of 
primitive classes of G. 

Using the fact that the cohomology theory of Lie algebras and transgression 
can be defined algebraically, and therefore for G, we have the following diagram 

H (G) - £ * H(GÙ 

1(G) JU 7(Gi). 

I t is not difficult to prove that commutativity holds in this diagram. Hence the 
image under a depends on the image under i* of H(G), that is, on the "homo-
logical position" of Gi in G. In general, <r[I(G)] ^ I(Gi). 

There are relations between the characteristic cohomology classes in our 
definition and the classes carrying the same name in the topological method of 
obstructions but we cannot discuss them in detail. The latter come into being 
when one attempts to define a cross-section in the fiber bundle (that is, a map
ping / of X into B, such that \[/f is the identity) by extension over the successive 
skeletons; they are cohomology classes over groups of coefficients which are the 
homotopy groups of the director space. As we shall see from examples, it is 
sometimes possible to identify them by identifying the coefficient groups. In 
general, however, our characteristic classes are based on homological considera
tions, while those of obstruction theory are based on homotopy considerations. 
Their rôles are complementary. 

We shall devote the rest of this lecture to the consideration of examples. Al
though the main results will follow from the general theorems, special problems 
arise in individual cases which can be of considerable interest. To begin with, 
take for G the rotation group in m variables, and suppose that a connection is 
given in the bundle. This includes in particular the case of orientable Riemann 
manifolds with a positive definite metric, the bundle being the tangent bundle 
of the manifold and the connection being given by the parallelism of Levi-
Civita; it also includes, among other things, the theory of orientable submani -
folds imbedded in an orientable Riemann manifold. 

By a proper choice of a base of the Lie algebra of G = R(m), the space of the 
Lie algebra can be identified with the space of skew-symmetric matrices of 
order m. The connection can therefore be defined, in every coordinate neighbor
hood, by a skew-symmetric matrix of linear differential forms 0 = (6a), and its 
curvature tensor by a skew-symmetric matrix of quadratic differential forms 
© = (®ii)- The effect of the adjoint group is given by ad(a)@ = A® lA, where 
A is a proper orthogonal matrix and lA is its transpose. 

The first question is of course to determine a set of generators for the ring of 
invariant polynomials; using the fundamental theorem on invariants, it is easy 
to do this explicitly [23]. Instead of the invariant polynomials we write the 
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corresponding differential forms: 

As = ®ili2 • • • ®iah , s = 2, 4, • • • , ra + 1, ra odd 

(16) As = ©ii <s • • • ©*, *i , s = 2, 4, • • « , ra — 2, m even 

Ao = ^ . . . ^ ©ilt-2 • - - e ^ i . , ra even, 

where repeated indices imply summation and where e^...^ is the Kronecker 
tensor, equal to + 1 or —1 according as ii, • • • , im form an even or odd per
mutation of 1, • • • , ra and otherwise to 0. Since the rank of R(m) is (m + l ) /2 
or ra/2 according as ra is odd or even, we verify here that the number of the 
above generators is equal to the rank. They form a complete set of generators, 
because they are obviously independent. 

I t follows that the cohomology classes determined by these differential forms 
or by polynomials in these differential forms depend only on the bundle and not 
on the connection. As a consequence, if all these differential forms are zero, the 
characteristic ring is trivial. The differential forms in (16) were first given by 
Pontrjagin [17]. 

For geometric applications it is useful to have a more explicit description of 
the base space of a universal bundle. This is all the more significant, since it 
would then allow us to study the characteristic homomorphisms with coefficient 
rings other than the field of real numbers. Our general theory gives as such a 
base space the Grassmann manifold 

Xo = R(m + n + l)/(R(m) X R(n + 1)), 

which can be identified with the space of all oriented ra-dimensional linear spaces 
through a point 0 of an (ra + n + 1)-dimensional Euclidean space ]<jm+n+l

m 

The homology structure of Grassmann manifolds has been studied by Ehres-
mann [9, 10]. A cellular decomposition can be constructed by the following proc
ess: Take a sequence of linear spaces 

O C ^ C / C - C Em+n C Em+n+1. 

Corresponding to a set of integers 

0 â ai _; o2 _i • • • __ am _| n + 1, 

denote by (a_ • • • am) the set of all ra-dimensional linear spaces £ £ Xo such that 

dim ft fl ti****) ^i, i = 1, • • • , ra. 

The interior points of (ai • • • am) form two open cells of dimension a\ + 
+ dm. These open cells constitute a cellular decomposition of X 0 , whose in
cidence relations can be determined. From this we can determine the homology 
and cohomology groups of X 0 . In particular, it follows that the symbol 
(öi • • • üm)^ can be used to denote a cochain, namely, the- one which has the 
value + 1 for the corresponding open cells and has otherwise the value zero. 
The characteristic homomorphism can then be described as a homomorphism of 
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combinations of such symbols into the cohomology ring H(X, R) of X. When 
R is the field of real numbers, the result is particularly simple. In fact, a base for 
the cohomology groups of dimensions less than or equal to n consists of cocycles 
having as symbols those for which all a* are even, together with the cocycle 
(1 • • • 1) when ra is even. 

This new description of the characteristic homomorphism allows us to give a 
geometric meaning to individual characteristic classes. In this respect the class 
A'((l • • • 1)), which exists only when ra is even, deserves special attention. 
In fact, the bundle with the director space $w - 1 = R(m)/R(m — 1) constructed 
from the principal bundle is a bundle of (ra — 1)-spheres in the sense of Whitney. 
For such a sphere bundle, Whitney introduced a characteristic cohomology class 
Wm with integer coefficients. It can be proved that Wm, when reduced to real 
coefficients, is precisely the class hf((l ••• 1)), On the other hand, the latter 
can be identified on the universal bundle with a numerical multiple of the class 
defined by the differential form A0. Taking the values of these classes for the 
fundamental cycle of the base manifold, we can write the result in an integral 
formula 

(17) Wm- X = c f Ao o , 
X 

where c is a numerical factor and X denotes a fundamental cycle of the base 
manifold. For a Riemann manifold, Wm • X is equal to the Euler-Poincaré 
characteristic of X and our formula reduces to the Gauss-Bonnet formula [3]. 

We introduce the notations 

p 4 k = ä ' ( O . . . 0 2 • • • 2 ) 

2fc times 
(18) 

p4& = ä'(O . . . 0 2fc 2fc) 
Xm = h'(l • • • 1), ra even, 

where the symbols denote also the cohomology classes to which the respective 
cocycles belong. By studying the multiplicative structure of the cohomology 
ring of Xo, we can prove that the characteristic homomorphism is determined 
by the classes P4 \ *m, 4fc ^ dim X or the classes P\ x", 4fc __ dim X. 

We shall mention an application of the classes Pik. Restricting ourselves for 
simplicity to the tangent bundle of a compact differentiable manifold, the 
conditions Pik = 0, 2fc ^ n + 2, are necessary for the manifold to be imbeddable 
into a Euclidean space of dimension m + n + 1. We get thus criteria on the 
impossibility of imbedding which can be expressed in terms of the curvature 
tensor of a Riemann metric on the manifold. 

The second example we shall take up is the case that G is the unitary group. 
Such bundles occur as tangent bundles of complex analytic manifolds, and the 
introduction of an Hermitian metric in the manifold would give rise to a con
nection in the bundle. 
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The space of the Lie algebra of the unitary group U(m) in ra variables can be 
identified with the space of ra X ra Hermitian matrices A (*Ä = A). A con
nection is therefore defined in each coordinate neighborhood by an Hermitian 
matrix of linear differential forms 0 = (Bi3) and its curvature tensor by an 
Hermitian matrix of quadratic differential forms ® = (®u). Under the adjoint 
group the curvature tensor is transformed according bo ad(a)@ = A®lA, A 
being a unitary matrix. Using this representation of the adjoint group, a set of 
invariant polynomials can be easily exhibited. We give their corresponding 
differential forms as 

(19) A* = ®ili2 • • • ®ikil, fc = 1, • • • , ra. 

Since they are clearly independent and their number is equal to the rank ra of 
U(m), they form a complete set of generators in the ring of invariant poly
nomials. 

As in the case of the rotation group the complex Grassmann manifold X0 = 
U(m + n)/(U(m) X U(n)) is the base space of a universal bundle, whose study 
would be useful for some geometric problems. The results are simpler than the 
real case, but we shall not describe them here. A distinctive feature of the 
complex case is that a set of generators can be chosen in the ring of invariant 
polynomials whose corresponding differential forms are 

(20) *r = (2TT (-l)m)m-r+1 (m - r+ l ) l ^ 5 ( i l * ' ' im^H ; j l ' " ^ - ^ 

• (H) (H) r = 1 • • • W7 

where d(ix • • • im-r+i ; ji • • • jm-r+i) is zero except when j \ , • • • , jm-r+i form 
a permutation of i\, • • • , im-r+i, in which case it is + 1 or — 1 according as the 
permutation is even or odd, and where the summation is extended over all 
indices ii, • • • , im_r+i from 1 to ra, This set of generators has the advantage that 
the cohomology classes determined by the differential forms have a simple 
geometrical meaning. In fact, they are the classes, analogous to the Stiefel-
Whitney classes, for the bundle with the director space U(m)/U(m — r). As such 
they are primary obstructions to the definition of a cross-section and are there
fore more easily dealt with [4]. Substantially the same classes have been in
troduced by M. Eger and J. A. Todd in algebraic geometry, even before they 
first made their appearance in differential geometry [6; 20]. 

The situation is different for bundles with the rotation group, since the Stiefel-
Whitney classes, except the highest-dimensional one, are essentially classes 
mod 2 and therefore do not enter into our picture. However, there is a close 
relationship between bundles with the group R(m) and bundles with the group 
U(m). In fact, given a bundle with the group R(m), we can take its Whitney 
product with itself, which is a bundle with the same base space and the group 
R(ra) X R(m). The latter can be imbedded into U(m), so that we get a bundle 
with the group U(m). Such a process is frequently useful in reducing problems 
on bundles with the rotation group to those on bundles with the unitary group. 
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We shall take as last example the case that the group is the component of the 
identity of the general linear group GL(m) in m variables. A connection in the 
bundle is called an affine connection. An essential difference from the two pre
vious examples is that the group is here noncompact. 

The Lie algebra of the group GL(m) can be identified with the space of all 
ra-rowed square matrices, so that the curvature tensor in each coordinate 
neighborhood is given by such a matrix of exterior quadratic differential forms : 
© = (©*)• The effect of the adjoint group being defined by ad(a)@ = A ® A"1, 
a G GL (m), it is easily seen that a set of generators of the ring of invariant poly
nomials can be so chosen that the corresponding differential forms are 

(21) Ms = 6ÎÎ • • • ©î1 , s = 1, • - - , ra - 1. 

According to the general theory it remains to determine the homomorphism of 
the ring of invariant polynomials under GL(m) into the ring of invariant poly
nomials under its maximal compact subgroup, which is in this case the rotation 
group R(m). It is seen that Ms, for even s, is mapped into As, and, for odd s, 
is mapped into zero. The class defined by A0 does not belong to the image of the 
homomorphism. This fact leads to the interesting explanation that a formula 
analogous to the Gauss-Bonnet formula does not exist for an affine connection. 

Perhaps the most important of the bundles is the tangent bundle of a dif
ferentiable manifold. We mentioned above the identification of a certain char
acteristic class with the Euler-Poincaré characteristic of the manifold, at least 
for the case that the manifold is orientable and of even dimension. Beyond this 
very little is known on the relations between topological invariants of the mani
fold and the characteristic homomorphism of its tangent bundle. Recently, 
contributions have been made by Thorn and Wu which bear on this question 
[21; 25]. Although it is not known whether a topological manifold always has a 
differentiable structure, nor whether it can have two essentially different dif
ferentiable structures, Thorn and Wu proved that the characteristic homo
morphisms of the tangent bundle, with coefficients mod 2 and with coefficients 
mod 3, are independent of the choice of the differentiable structure, provided 
one exists. Briefly speaking, this means that such characteristic homomorphisms 
are topological invariants of differentiable manifolds. The proof for coefficients 
mod 3 is considerably more difficult than the case mod 2. 

For bundles with other groups such questions have scarcely been asked. 
The next case of interest is perhaps the theory of projective connections derived 
from the geometry of paths. In this case the bundle with the projective group 
depends both on the tangent bundle and the family of paths. It would be of 
interest to know whether or what part òf the characteristic homomorphism is a 
topological invariant of the manifold. 

Before concluding we shall mention a concept which has no close relation with 
the above discussion, but which should be of importance in the theory of con
nections, namely, the notion of the group of holonomy. It can be defined as 
follows: if o) is the left-invariant differential form in G, with values in L(G), 
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and if Ba defines a connection, the equation 

(22) 0« + w = 0 

is independent of the coordinate neighborhood. When a parametrized curve is 
given in the base manifold, this differential equation defines a family of integral 
curves in G invariant under left translations of the group. Let x £ X and con
sider all closed parametrized curves in X having x as the initial point. To every 
such curve G let a(G) be the endpoint of the integral curve which begins at the 
unit element e of G. All such points a(C) form a subgroup H of G, the group of 
holonomy of the connection. 

Added in proof: The details of some of the discussions in this article can be 
found in mimeographed notes of the author, Topics in differential geometry, In
stitute for Advanced Study, Princeton, 1951. 
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