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These notes are based on léctures which T gave in Prolessor Veblen's
Seminar during the spring of 19,9, In these twoe years some of the materdal
have been further eclarified and some problems solved, An attempt is made
to include & few of the latest results. As a 2onsequence the presentation
given here is hardly the original form, particularly in Chapters III and
IV,

It is my plessure to expregs here my thanks ‘o Professor Veblen for
hia Interest 1in ﬁhis works I wish also to aclmewledge my privilege of having
frequent conversstions with Andre Weile An unpublished manuscript of hia

has preatly influenced the presentation in Chapter III.
5. Ca c" April Eh’ 1951



Chapter I
Gensra)l FNotioms on Differentiable Manifolds
This ohapter pives e sumary, for later applications, of scme notions
and resuits on the topology of differentlable manifolds amd the slgebra of

extarior differential forms, PFroofs mrs only indioated in the aimple canes.

#or lengthy pruefs we content curselves by giving a reforones,

1, FHeomology and oohomelogy groups of an abstraot occmplex

AR abstrno? ocomplex K 18 a collection of cells {a‘;} » Wlth She
fallowlng propertien;

1) To emoh oell there iz msacolsted a non~negative integer, its
dimension (which will be denoted by the superssript}, and to two cslla of

consecutive dimemsiops G}, a';'l. there 13 asacoisted an integer

[G': s G;-l ]+ thelr incidence number.

r
i

suah that [a‘;' ' c;’l] + 0.

r=-1

2) To & aell ¢ thore exiats only & finite mumber of oells ﬂ'j .

r+l r+1
i ] FJ

iooidonee munmbere satisfy the relation

3) To two cells & whose dimensions differ by two, the

r+l r r r~1.
(1) Zrelion oo - o,
It ia of suoh en abebtract oompleox that we shall define the homology and

cohomolopy Eroups.

Let G be an sbellan group., A finite aum

% T Lo hid ,)\1&5

is called & ohain, r being its dimension. if



- r
4z Z/ql TyeMyt @
is another r-dimensional chain, we define addition by
r
{2) nr+dr-2()\1+/ui)cri.
With this eddition all r-dimensional chaina form a group C (K. G}.

To the chaing & bourmslary operation is defined, by

-5 r . hN r _r=l, r=1
(3) 20, 21_ ST iZ Joliei el
v
By definition the boundary ecperation pommtes with the eddition of cheins:
(4) ’b(ord'dr] 'T:‘Iﬂr*adr.
ao that 1t defines 8 homomorphlsm
(5) B o (K 8)—3C (K G)-

Elements of the kernel of this homomorphism, that is, chains whose bounderieas
are zero, are called cycles. Ths r«dimenatonal oyoles form a subgroup
2 (K, 6} C CL(Ks G)s

It follows from Froperty 3) of K thet the boundary operetion has the
proparty:
(6) LT

go thet the boundery of a chein is a cyole, celled = bounding oycla. All

r-dimensionsl bounding cycles form e subgroup Br{K, g) C Zr(K. G}a
The difference group

B, (K, G) - zr(K, ¢) = B (¥, 3)

is oalled the r-dimenaionel homology group of K, with coaffloisnt proup C.
Lat ﬂr'(l{}l be the group of r-dimensional eheins of K, with integer
coeffioients, end let ¢ be 2 topologloml groups A linear funetlion over

l}r{K), with values in G, is cellad an r=dimensional cochein. An




r=dimensional acchain E’r gatisfiea tharafore tha oomditions;
r T r
1) yle +a )= y{o)+ y @),

i r '. r
2) ¥ (=0} = =¥ (o).
1t 5% am y¥ are two rcoshains, we define their sum 8" + ¥ to be
the oochain gliven by
(1 (BTeyT e = pTLe) + F T (o)
With thiz addition mll the r-cochalns form a group G (Ks G)e

of an r-cochain !.'r an {(r+lj=cochain can be definsd, salled ita

ooboundary, by means of the relasticn

() ercor-rl} - ¥ ¢ 1)

he soboundary opsration commutes with the addition of ogoheins:
(9) TR DEETURES

srd therefore defines a homomorphlism

r+l

(IU} 3 1 Cr(Kr G}*—-‘"G (Er G’)t

A oochein whose coboundery is gerc is ¢alled & cooycle, The r-cooyoles
form the kernel of the homomorphism & and henca & subgroup Z (K, G) < d(x, ak

It follows from (6) and (8} that
(11) 837 « o,

30 that the ooboundery of a coohain is a oocyele, All r-dimensional

oobeundariea form a subgroup Br{K. G) < Zr(l{. Gle Their difference group

#(x, 6) = z5(x, &) - B (%, @)

ia oalled the r-dimensicnel ¢ohomolegy group of K, with cosf fioiant group G.



An importgnt pert of alpebraio topology consists in the Identification
of the homolegy and cohomelogy groupa of diffqrant oomplexaa constructed from
a spage. For instanece, the main theorsm in the topulogpy of polyhedra
agserta that thes complex ef its ainguler cells and the ecmplex of its
simpllcial decomposition heve igomorphic homeology and cohemolegy groups.

Lot ¥ and K' be two oomplexes, A& rmapping f of the callas of K inte

the oells of K' is onlled s chein mapping, if it covmubes with the boundary

oparation:

(12} ro2 =21,
It Pfollowa thet a chaln mapping induces the horiomorphisma
£ zr(x. G)——-azr(K'. Gl
f; Br(K. 6) =B (k7. &),
and hence the homemorpinlsm
{12) f: Hr(‘:{, G} —-—;Hr{l-’.'_- Gl
To the chain mepping £ we ern defluy a dusl mapping
(14) oy IR, 0O (K, 6)
as follows: Iet y‘r £ C{K's G)a Then
(18) (g2 Y e ) = ¥ T (E(e )
It is sagily verifiasd that the dunl eochain mapping commutes with the

odbaundary operation
(18) fx b = o,

Henca therps resulte the dusl horimornhism

(17) £r: B (87, @)—3H (K, G).

This fact will play an importent role in diffevential geometry. Refarence:

S« Eilenberg, Singular homclepy theory, Vol. 45, 407-447 (1944).



2. Froduct theory

In order to davelop w satisfectory product theory for a complex scme

.a,dditional notions and assumptiong pre nacessary,

A cell d‘;-l is ¢alled g face of CF:, if the ingidence number
[a{; 5‘;‘1] y{ 0. In genaral, dr-p 1s called a, fece of sr, if either p = 0

gnd the two oelile sre identisal or p > O ard there exists s sequence of cells

G,r-p- crr-[:'ﬂ. Tnuy &% guch that each ia s Tdoe of the next ons. The

r
i

star st 6':: is the subecaomplex of all c¢ells having rr:.: as a fece. A eyole is

celled boundery-like, if it is elther of dlmension > © or ia of dimensilan @

clogure E’; of & sall & 1s the subaomplex Formed Ty mll its feesz. The

and haa the sum of its coefficients equal to zerc.
we shall first use the ring of lntogers as the cceffielent ring fop
tha product theory. Denote by [ the O~dimensional cochain which has the

valua one for every (-cell,

Two further eonditione will now be imposad on the complex in the

establishment of e product theory:

(1) Every boundary~like cycla in 5‘2 bounds a chain in E"‘;.

{11} I is & coeyela,

For aimplicity the notumtion ﬁ‘: wiil be used to denots at the sems iime

tha call d‘z, tha ohain 1- 0'1;., ard th? cu~Main which hes the walue 1 for

6’: and ¢ for other celle of dimensicm r. More generally, the notatiom

Z)\i ﬂ'; will poeasionally he ussd to demsto tho cochain having the wvalue

?\1 for 6‘; and the wilue sure fer olher culls.
Tha cup product of two cochnaing of Cimonsions r and 5 18 & cochein of

dimension r+ & which zpiisTied the U'ollwiig acoditicns:

v - Y r 23 T B
{Ulj (."Gl ';",J'GR}U ! =.f&'|'_1_1-", 3 "'fﬂgu Z ¥
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) !
(ApTY 8 =BT A E®) » A (8T UE"), N = integer

vz) S(ATU ¥ =8 TUY 4 (1) pRed
(Ls) 6‘: L d'; is & oochain which hae the velus zero fopr any cell
JUTHICTWE
T I r
(U4) I fi-riUI__'ﬂﬂj_'

Thaorem 1 (Fundemsotal Existence end Uniqueness Theorem) 'The oup
product of ocoohaind induces & multiplioation of vohamology classes. For m
complex satisfying the vonditions (I}, (II) there exists m multipiloation
of eochains which fulfills the comditions (\J 1) = ((U4)s Any twe kinds
of multiplications with these properiies lead to the eams multiplication
of the cohomolopy olassos,.

ist R be & ocommtative ring and censider the chaina and cochaine with
R a8 coaffioient group. The oup product of ﬂm coghaina

A € (X, R), ¥ € c®(K. R) is defined by the ocorditions;
1 B UV is bilinesr in both veriables;

2, 12 Ad" € (K, R})s me” € ¢*(K) R), then
ATy U (me®) = Xpu(eTud®),
let X, K' be wimplicial complexes, and f; K—K' & simplicinl mepping.
If f'»; Hr{!'i', R}—}Hr(i{. R) is the dual homomorphism of the eohomolopy

Eroups, then

(13) f*{/gr}u f*(h’l} =f¢(ﬁlu\6r}_
This is called Hopf'e invsrae homomorphism, whioh cen be described by gimply

Baying that the dual homomorphism pressrves the cup product,



T

Theorsm 2 {Topologieal invariance). let P be a polyhedra and K its
simplicial decompositicn., There exiats between the oochomclogy proups of X
and the ocohomology groups of the singuler complax of F an igomorphidn which
preserves the cup predust, |

For later applications wa shall only be intergated im the oame that R
is sither the ring of integers or the real field or the finite field mod 2,
We shall therafore assume thei R 1s the ring of integers or a fisld., Than,

+3

if /Gr, ﬁ' are oochains and o' © & chain (all with coeffiscients in R), the

reletion
(19) AT (¥t Ty = (AT U ST,
for/@.r arbitrary, definea s chein h" M cﬂn of dimensien r, oalled the oep
produst of 35 and &' 9, Under our assunption for R &« ocup product determines
& oap product, and vice veraa.

18t M be s manifold, oriented If R 18 the ring of integers erd otherwlse
if R is the fleld mod 2, In both cases there is a fundamental oyole which
we alzo dencte by i{. Define
(20) 0¥ « " n L.
Then & sesteblizshes an isomorphism between Hr{ii. B) amd Ha-rtm' R}s For

w, € nr(m. R)su_ € Hs(ri. Ris define

1

(21} | u, 0 U, e(a u,,

. ¥ enlua).

Theorem 3. The product w,ou, of hemology classes on o menifold dafined
by {21) is identical with the interseotion olase of u and u_.

This theorem fives the connsction betwsen product theory and intersecticn
theory.
Reference: H. Whitney, (n products in & complex, Annals of Math. Vol. 39,
397-432 (193s),

For tho unigueness in Theorem 1 we have to assume thet the ocmplex K is also

atar~finite and theat the cochaine under oconsideration ere finits.



3. 4in exampla
i8 an illustretion we acpeider the n-~dimensional real projective aphce
F” and vteke 28 cosfficlent fisld the field mod 2, P contains e aeguence aof

projactive spacea of lower dAmenaions

P le 225 > pr > P,

and has a callular subdivision consisting of the cells

P, gl ot b B°, PR
It ia emsy to verify that each of those oella is & cycle and Hr(Pn, Iz}a
Hr(Pu. Iz), n2r>0o, are cyolio groups of order twoe. Fithout dangsr of
confusion we can dencte the generstor of Hr[Pn. Ia} by P end the generator
of ' (F's 1,) by ¥ .

fe ghall prove that the oohomology ring of F* ie

) = {1, 307 590 (% s 50
when the superscripts outzide the parenthescs denote powera in the sense of
the oup produect, /e notice that the lsomorphism & maps Sr into Pn-r’ s0
that 'S‘r{.Pr} = I{I[Pn-r. Pr) = 1. By applying induction on r we suppese

{5}"(1’"} = 1 and then find

&3y ") = 8(x) L ) = @@ U eTHE) - T Y
- Pn-r-l.

r+l iz the generator of Hr+l(Pn. Ia) and hence the above

This proves that (S]
form of the cochomology ring of =,

L} let g Pr-l—ﬂ-}Pn']' be & contlmicus mapping such that the induced
homomorphism 5 oarries a projection line (that ia, the homolegy class of it)
into & projeotive line. Then n 2 r.

Proof. Let 'S? a.:id T be the gensretors of the cohomology rings of Pr-l

and Pn'l respeotively, Then



g*(g }(P1) = 5lg(pr)) = x{p) = 1.

It follows that E*(S} - g- Since z)'n =, we have

n n n, _

£« (g*(5))" = gr(5™) = ou
Hence n Z Ts
B) Lot 7y erer By be continuous ofd funchbions in X;. sees X, defined on
the sphere,

xz+1--p+x2-li
1 r

If n<r, the funotions Bpe =eee By have B common fere on the sphere.

Proof. GSuppoSe there be no comaon zerc. /e cen then asgume that

2 2
5.1+ iii+gn 1.

Tha functions Ei - gl(xl, TIE xr}. 1 = l. vowy Iy then define & mﬁppim:; of a
sphere Sr-l into a sphere Sn—l and, after identifying the antipodal paira of

both aphares, & mapping o: Pr_l-——éfp-l

« HNoreover, since the functions Ei are
odd, the mapping ; hes the property thaet it cerries the homology clase of A
projection line into the homology cless of e projective line. But this
gontradicts il}e

¢) (Borsuk-Tilam) Ist mn n-aphere 5" be mapped sontimuously into the
n=~dimensionsl Euelidean spece En. There exists in Sn ot leest nns.pair of

antipodel points whioh are mapped into the same point of En.

proof. Let Xpa weer X be the coordinates of E . Suppose the mapping be

xi = fi{P)J P e Sn,’ i-= 1; snay I
Denote by p# the antipodel point of po Put

6(P) = £, (p) = £,(p*).
From B} it follows thet gi(p) heve « com.on zero p . At this p wo have

fi{po} = fi{Pg}l i = 13 [N N ] s
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44 hlgetre of s vector spaas

The differentiable manifolds which will be our later conoern have the
property that there la aszsociated st each p.oini: & finlte dimencicnal vector
sproa. The atudy of the algebrmic properties of the wveotor apace and of
various aszaolated wector apeces will therelore constitute g ABCSABAry
.prerequialte for later developmenta.

We denote by v or ¥ en n-:iimemionnl veator space over the real field,
Te ¥ thers la sssocieted its duel spece ¥+, the spaece of all linser functioma
ovor T, end the relation between ¥V and V> is reoclprocal. & shall dencte
slemanta of ¥V by xmall Gothlc letters and alements of V+ Ly amall greek lettex
Then of (¥2) orou4d, M e v, of €Vr, 18 B real mﬁhor.

Consider the direct product

?(kp 1) ® T aes IV W VR 4us ZV=
e g \‘\u_—-"_"\wﬂ-—-—!"} .

k £
i tenaor of type (k,£) is a multilineer fumotion in v({k, £), with reel

values, that is, a real=walued function linear in sech arpument when the
other k + £ « 1 arguments are kept fixed. k is orlled the covariant order and

.Etha contravarient order. The tensor is celled covarliant or contrevarlant,

when £« 0 or k = 0 and is in general celled mixed. Coverlant (contrevarient}
tonsors of order cne ere omlled coverisnt (contrevarisnt) vectore. Given e
tenser £ of type (k. ﬂ} end a tensor y of type (k*, £t), we dafins £ x ¢ to

ba the tensor of type (k+k', £+ £r) by the 10lation

" , {rr E}(%].””. ’Ekl ’?gk"'].””"% Iéci'-k';ﬁl"""‘"ﬂ,'“ﬁ#l“'"mﬂq-ﬁs
2

- f(/lgl..... 'fgk;al.-ro;ﬂ/ﬁ}g{‘fgk*,laon-. ,gk“'k';ctf LA Cﬁl'€+£'), .

With a patural addition all tensors of type (X, ,E] form a vector space of

dimension nh'g. Because ol the duallity batween V and ¥+ the apece of all
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covariant vectora cur be identifled with V+* and the space of all contraveriant
vaohors with ¥ ipaalt-

A tensor ma% havs the property of symmetry or anti-symmetrys. For
simplicity take a covarient tensor of order two, given by f{?f ,y}]. Tha

tonsor la oalled symmetrio or enti-symmetric, eoccording ms f{'? ’ %?) - f{%?.'gﬂ

or 2(Y %? ) - - f(ﬁQ ,’%ﬁ) holds. From a given covariant [contravariant)

tenscr  of crder k wa can consiruct its symmetrized or alternated tensor

respectively by the squetions

(23) ()4 yrever 4) =y 5. Pl e )

1
@) Mg g T 2 €y TGy e gy )

where the surmations ere sxtended over mll permutetions 11. tens 1k of

1, ecus k &nd 173 = %+ 1 or ~ 1 aocording ae i_4 esey 1k la an evan op

illliik 1

odd permutetion of 1, sees k.

of particular luportance will be the vector apeces ﬁr. r= 1, sees n,y of
snti~symmetric or elternating tensors of order (r, 0). Iet A° be the {one=
dimensional) vector spece iscmorphic to the real field, and let

(25) AR VLR TR UL

Then A 15 & vector aspace of dimension 2",
We shall convert & into & ring by defining e multiplication whigh has the
properties;

1) It is distributive,
{21‘.}:] f{\(gl + gz) - rhﬂl + f"‘"gzi

(ry + fa}Ag = £ynE * £, AR
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2) 1r £ € &Y, g € 4%, then
(27} fAg=T(fx gl

With this multipllcetion the vector space i becomes e ring (of dimenaion Zn}.

called the Gressmann ring essoclated to V., in element of the Grassmann ring

whioh telongs to one of the A?'a, that is, whesa other components in the

direct sunmand ere zero, is ¢slled hemogeneous dimenslonal or ap alternating

form, It follows from definition that if £ A%, g 4%, then

(28) fage (1) % AL,
If ﬂli. i*=1s veup u, form & base in V+* (which is then identifisd to £'}, &

basge in the sssocieted Grassmenn ring will be formed by the eloments

(29} 1! 0\’-1, ui a “’j{i{jjl Milht{jhmk{i{j{k]'."' mlf\uah.u"\ﬁ(n.

which are 2" in number .
We gshall ;ive two theorema in the Crassmann ting, whioh ere partioulerly
usafvl later on,
&) Let wie seey o € Vi THON Wy, eaey w,, are linearly dspendent, if
ard only if
W) A e AW 0.

This cen either be proved by induotion on r, or by choosing & bass

ﬂli, t =1, svvy nin ¥, writing
W“irﬁ 0’-,3"1,;";1‘,
g ie1 ai i

end cbeserving that
lill LN 3

(30) *""*-Jl"'\L nre -"\wr" Z U-i d'i-
1,€ eea<t, 1'** “p

1i
r

ril..- rir
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) If u.ll. vees W 2r8 linsarly independent and TT! C Tr, 8= 1, cun, 1,
gpe such that

r .
(31) af:. T A, =0
then
{32) T, - i“ ta, s

] | gt

where
(33) "st = %s®

& tenaorial form of prder (k, £ ) end degres r is s mltilinear funotion
of V(k,ﬂ}, with values in A", Cleerly, all tensorial forms of given crder
and degree form a vector zpace.

There is an operation, called the tensor product, whish palra two sballan

groups (end hence two weotor spmces) into an abelian groups Let A and B be

two abelian groups, with the elements a, and bi respectively. Teke tha

b
finite sums of the formal products Z_ aihi. ™wo such suma are celled
equivalent, if cne can be transformed into the other by b finite number of
the following olsmentery tranaformetions: 1) (ai+n{}bi = ;b +ajb.;

) 8, (b + hi} = a,b, +a,b!; 3) addition or deletion of &,D or O.be Among the

3Byt 8401
squivalence olaeses so gbtained we omn define an additien which, for ths
represontatives, 1las defined just by adding the terms formally. The egquivalence
olagaes with sush an emddition form e group, called the tensor product of A

snd B and to be dencted by A(0 B.

Bs Differentiable manifolds

& (topelegloal) menifold M 1s sald to heve n differentiable strusture,

Af the following conditions are satisfied:
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1} Thare 1= an open aovering {Ui} pf I suah that for sash § there
exists a homsomorphism Qi of an n-0ell E into Ugs
2) For any two open sots U,, T.r.j ‘of the covering the mapping
93191(3)' 8 -Qzl{uinujj. of § into § is differentiable of clats ¢ > 0.

A menifold with & dlfferentinble structures is gelled & differentiable

ranifold, r (> O0) being ite olaan, U, sre called ccordinate neighborhoods;

the soordinutes in E 'e;l{ﬂiJ Aare onlled leooal oocrdinetes.

on & differentlabla manifold of olase r we can define diffarentiable
funetions of clasa r. They are resl-valued functions which are differentiabla
of sless r in eeoh svordinate neighborhood, it being suffiolent to have the
property at every polnt p reletive to one of the ocordinete neighborhoods
sontaining p.

Iet p € M, and D(p} the family of differentiable functions of clasa r at
P» 4 tangent veator ab p is @ mapping = 4 3 D(p}--9R (reel field),
satisfying the conditions;

1) 42 $e linear, that is, for any £, g€ D(p} and any real numbers a, b,
we have A40(af+bg) * & 42 (L)+b #2(g).

2) /748 @ differantiation, that is, for any £, g & D{p).
#{fg) = £(p) 2 (g) + &{p) #2{2).

If M is of dimension n, ths tengent veotors at p form & vector space TP

of dimenslon n, called the tan;ent space at p. To this space the considera=

tiong of the lest aeation will apply, 8o that we cep scnalder its dual apaae,
the speces of tensors of different types, end the Grassmenn ring, ste. et

FP be the apace of tersors of a definite type mssoointed to TP, and let

X= U F »
pem P
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4 patursl topology can be delined in X, so that X becomes & topologieal space.

% i5s then called e tensor bundle over jl. There fa & neturel mepping, called

projection,
\I/ H J'C—-—-—}h-
defined by
F ) = p.
yiF,) = p

s ghall pive tho relatlon of tha tensors defined here with those of
classieal differantial geometry. Kor definiteoness consider & tensor = of
type (1, 1)+ Lot xl. vees X be B system of local ccordinates at p. For

£ € D(p) define
af
Nyr) = (—_T) s 1 =1, seay ns
-2/ p
Then ?Li ere veotors and s#pan the tanpent spnos Tp' In the dual space TE of

Tp we choose the hase ﬂii deflined by
1

’ c:Li(?Lj) = éj.

e put
by — J
%i - _';{”vird )!

which ars called the somponents of = reletive to the local toordinate system

! be another system of local cocrdinates at pe Put

3 3;5-) Wb (2%

a LX), 221,

J oyl /P 3 DI/ P
Y

xi. Suppose X

I

5o that

%a;b‘; = Zj:b;a.i = 5;.

Thon we have by definition, for the vectors 1Li' SLi relative to tha cooprdinate

system ;i.

L - %:hifaj, &b - zja;.xj.

It followa tiet the cemponents of == relative to the locel eoordinete system

i
x° are
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€ £, Jck
(34) ed o 7 pla .
i i TS

These are the well-kicwn equationy of trenstformation in olassigal differentisl

reometrye

8, rfultiple integrels
For the theory of multipls inteprals on a differentisble manifold M we

have to gonsider ithe bundle of Grassmamn rings ever 1, which is the unien of

the gressmenn rings nsszvoimted to the ten ent spaces Tp. p &Y, with e

neturel topolopgy. Je dencte by Ap the irassmann rin; &assoecioted to p, and lat
A - glﬁ_. L differential polynomiel is & epping s : I'—a LA such that the
prnje££ian of wip}sy p e 1., is p itseil, The neppin, i3 escumed t¢ be locally
differentiable of class 2 €. If wi(p), p el., is a Form of degres r, W ig

called & difrerentiel forn of dejrec r.

“e snell define en opsration d, called extérior differentietion, which

cerries difierentlial ﬁclynﬂmiﬁls inte difJerential polynomiels, by the
fellowin, proporties:
1) d{we + &) =dew + 38,
2) dfw A B)=dwabr (-1} w AdG,
where w ig e Jil'rsrentisl form of depree r.
8) If f is & scelar (that is, & diflerential form of depree zero),
df is the coverient vector such thet
df (#1) = 3{f)
holds for avery contravariant vector
4} For avery scalmr £
d(dr) = c.
In terma or 8 lgecal coordineis swstial xi we can Luke s & base for j.' the

, . i .
difrerentials dx™, i = 1, ..., n, which are coveriant vectors defined by
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(35) ax (#0) = w{x ),

47 boing wny contravarient vector. Tien a bese for 1¥ is farmed by

il iz ir
d:{ Adx f\‘y.f\dx ’ il L4 iz{ T irl

g0 thot o differential form of depree r een be written

_ i i i
{36} w = Z &y cord dx *Adx PA enax ©

il-ﬂi ...C.ir 1

where the coafiicionts may be mszumed tuv be anti-symretric,

]

It rollows frou 2) enc 4), by induction on the derres r, thed
i i i
d-(d.'{ lﬂ X zf\a-odx r} = (e

Theref'ore wo hetvs the lormula

i i
(37) dw = D de, , Adx DAL AT
i.< !-o{i l..' Fy
e r
“je alsc have, by 3),
(38) ar = 2 2L 4.3,
i 'axl

Concarning the oxterior diftcrentiation of differentiel forms two faots
are of importones:
L)  For any differential form o,
{33) df{dw) = Q.
B) let £3 [ "=—3i' be 8 aifferentinble meppin, of ¢ manilold | into a
manifald ive f induess s differentiol rap ing df of the tan unt space ‘I‘p of !
et p into tie ten_ ont spaco Tp" ' = f{p)s The duel mapping £+ of 4f is a

lingour mepping of tie Grossrenn ring 4, at pr inte I\P. Then

p'l
{40} fri{dw) = a(frwj,
In octher vords, erterior differentintion cormrutes with the indueced dual

repping of & mapping of cne differertiesble mwaifuld into sncther.

i differcntial form w is called axpet, if duwr = ¢, and is enlled derived,

if trere axisis m differsrtial form © such that w = d&,. It followe from
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{39) that every derived form is sxaot

Differential forms oen be taken am inteprends of multiple interels in
the manifold, ‘he detaila of a satlsfactory iﬁtegration theory will be too
long to be reproducad ﬁarwq For simplicity we take s celluler deuompbsitinn
K of 1: whish ia so0 Tine that sach csll belen,s to a ocordinete neighborhood.
Lot w be & éifferential form of degree r and G, an r-chain of K. By the
aguation
(41) w(o_) = {w,

r

W defines & cochain of dimenaion r, with real coefficients. in importent link
of exterior differentistion with cohomology theory is now the generaiired

Stokesa! formule,

(42} _ _}nw = j duwa.

o, 'bcr
In other words, if w 1is (or defines) & cochain, dw ls its coboundery, end
i & oooycle, if dw = Q.

The study ol the ring of differentisl forms and ita exterior differentia-
tion is justified by the following fundemental theorem dua to de Rham:

Theorem. 18t if be a vompret differentiabla manifold, To every sohomclogy
cleas of }, with real coefricients, there exlsts en exact differentisl form
which defines a cotycle belonging to this cless. The cchomology cless con=
taining the product {in the sense of the Grassmann ring} of two exact |
differentiel forms is the cup product of the classes whioh contain the factors.
Example, The de Rham thaorem esserte the existence of e differential form,
while in conorete ceses it is imroriant to construct the forms expllieitly,
and the ones with simple propertiss. Consider the unit n-sphere in en

1

(o+l)=dimensionel Huclidean space T, Hn(Sn. A) =< R, 8o that we wish to

construot the sxact differsntiel form whioh definee e generator of ¥ (8, R}
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Lot 0 Le the center of Sn. and consider the frames 01\,1 esr 1k n+l
formad by O ard n+l mituelly perpendicular uni‘_t veotors in a d&finita
orientation. Identify a point of 3" with the ernd=-point of ﬂ'ml' end put

(43} win"'l - (d1il TLi}t i - 1|- Ay n.

n+l

whers the produect in the right-hand side is the sealer preduct. in Bnﬂ. Tha

difrerentiel [orn

i
(44} w-—wlmln...mw

.
On nn+l

where Dn is the erea of S, has the property that the velue of ita integral

over & fundemental cycle of §" 18 + 1. lience w defines & penerator of

n, n
(s

H ] R}l

1 and let 47(p}. P & Zl be & sontipuous

Let E be m hypersurfeoe in En*
vector f1sld on 2 » Choose 1"'111-1 to be parellel to 4%(p}e Then f(p)} * 1"'11#1
definea a mapping f; E——) Sn; I1ta induced dual mepping £+ maps w into a
differentisl form f#w in Z . The integral
(45) | ff*w - '_fw

§ r(z)

is equal to the index of the vector field. It is the Kronecker integral.

Reference: Hodpe. Theory and ipplicetions of Harmonie Integrals.
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Cheptar I1

Riomannian ienifolds

This chapter is devoted to the theory of Rienennian menifolds, and in
particular to the Gauss=pPonnet fermuis which, for & compect orientable
Riomernnian menifeld, expresses its Euler~Foinceré characteristic s en
integral of & scalar invarient over the manifold. /e begin with the study
of Niemannian menifolcs imbaﬁded In an Puclidean space, because this case
appeels more to geomatricsl intuitium and usually furnishes = first test
for properties in jeneral Lismannisn menifolds, To simplifly the fermulas

reposted indices always denote sunmaiion.

1, Hiemannian menifolds in Buclidean space

lat En+E e an oriented suelidean space'of dimension n+N. EE+H isB
transformed transitively by the group of :otions. e call a freme the figure
p?Ll...ILn+H formed by a peoint p and an ordered set of n+N¥ rutuelly
perpend icular unit vectors throuph pe. The set of Irames has the property
thet there sxistis orme and only ore motion which carries ome frame to another.

It ean thersfore be mede & differontiable nenifold isomorphic to the proup

of rotions,

=k
Jince “he vectors are in Fuelidesh steve, we car wirite

dp = efm. ”'J':.=II
(1)

iy, = Cpttp

* . : . s
e epree in this section to use the lellowin renges of indirces:

‘.I.';, a, ce l' YR n+I’; iy l,.f'fi ::J(-'= 1: swny H; T, 8 7 n“‘l. LERN] i+,
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The differential forms G&. EIE are in the menifgld of frames and satisly
L =

(2} B _+8, =0

sinca

d(dp) = d{diL ) = 0,

we derive from {1} thnt

= s
da b E'B eBh '

{(3)
48,5 % @ 0" Bgp?

Forrilas (3} are celled the erustions of structure of the iuclidean spnco.

et M be an n-dimensicnal menifoeld, differantially imledded (of elnss
4 . 7
E 3) in En+L. 2 has & Riemsnnion metrie, irduced by En+r. To atudy M we

o sugh that p € M, and

consider the sutmenilold o the frames p;Ll "'TLn+I

lLl, ...,1{.n ere the tengent vectors of I st p. This submenifold is
' *
mapped inte the manifold of frewes by the irclusien mapping ¢+ let L be

its dual napping of differentiel forns, and let

&
o= ; ) ¢ .
(4} P R R/

*x

nince L commitas with Loth exterior differentimtion and rultipliestion of
the Gressmann ring, we heve

{5) du_:raLuﬁ{/\fgr=g.

It fellows that

| W e A wl. ' _
(6) o p r o I ! )‘rc‘:f‘i f\r(f,ci -

The second equation of (3) gives

{7} Q. = gy e f’!'mfﬁ s
: i .
vhera
-'0-" = - ra [ PSR- [ l/\ |")Z_:|
(8) el e Ao }rﬁ?f“er*% F
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ile shall prove thet _ﬂ_mﬁ depends only on ths Rismennisn metria
of M. The prool depends on the follewing

lemma, Thera exista only one &et of Wap which are anti=symmetrie

in its indices and which satisfy the sequations

d, = g N by T

Proof.s Suppose & second set J"’ﬁﬂk elso possesses these properties,

Then
Wa Ny = Wpa) = 0,
and we havae
Wpet =Wou = Py Wy s
whera Pfsmﬂ' ig aymmetric in /3 Y. Sipce :Em{- u.}gd e anti=-symmetric

in/g sy & and LOI are linearly independent, ‘?4"-“5' is anti=-symmetrio in
A OLe it a three-indexsd symbol symmetric in cne pair and anti=symmetrie
in snother is zero., Hence JJ/GO'. - wﬁm a

Cur astetement that R depends only on the Riemannian metric of M
o3 P ¥ :

than follows from the lemme. f)-u/a will te oallad the curvature forms.

Zquetions (8) are the (auss equetions. The quadratic differential forms

(2) $ o =W W, e )\mﬁ%u_}a

ere oalled the gecond fundemental forms of M.

We shall maks two applications of the above forrulas,
£} Let N = 1, 6o that 11 is & closed hypersurfece. The normals LY
dafine & vector field over M, whose imdex ls, sgcording to Kroneckar'ta
integral forrula,

e 1 jm U-J [ .............1 j
I o 1n+l """ non+tl  nld . ¢
n n L

i (LW
N 11'.'11'1 i n+1lt. inn+1 ]

1
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whare Dn i3 the area of the n-dimensjional unit hypersphere, If n is even,

the integrend can be writtan
n

T
= (-1) Eal...inﬂ*i g ...D‘i 30

L Lad
1. 0%]sas inn"’l 142 n-l n

& .
dpreedy )
¢nd depends only on tha metric in i On the other hund, 1% ¢rn be proved
thet 1« }X , whors X _is the Fuler-Peinerre chiresteristic of 1. e et

therefore the Gnuss=-Eomnet formule for e hypersurfeaoce;

n
z .
(10) EFE'I'}O-L Ei-i‘n‘ii fn, 1 "Rl
n 1" 1tactt n~ln
B) Iet m(p)} be the mipimum rumber of linear differentisl forms in whioch

the socond fundementel forms ér can be expressed. m(p)} is obviously equael

to the number of linecrly independent equations in the system

LT

Foom =

We pat m = Yex m(p)s Then we have the theorem:
p &N
Let ¥ bte o closed manifold of dimension n, differentially imbedded

in Emﬁ. Then m 2> n.

Proof. 'le toke e fixed point O end & Pixed system of cogrdinete exes
‘”,.: through O For p € 11 let 5 = Bf:z (squere of the distence Op}s Then 8

attains e maxirum at a point P,- Writing
= Lo
Cp x&? Lt

wa have

4 ds = x,dx “E;dp ,
2 245
> 5
3 4% = dapdp + Op 4°p = Uy &+ Op 4 pe

AL Po vie hevae
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since ty, wre linecrly indcpendont, the first equation implios

OB lig = O
How

;-r}l p = (hea) (Bt ) + @r(:l;wrj ’
o thot the ineguulity impliss
-
w, W+ @ r(nprl.r} < O

If m< n=l, there exists st lenst = direction in M for which @ P 0 wnd
r.long this direction we heve

(i, i, g G,
which contrediets tho positive dofiniteness of the guedrstic differsntial
form in the left-hend sida.

From this theorem we shell deduse the following theorem which was

first proved by Tompking:

& closed [lct Riemennien monifeld of dimension n connot be

isometrieclly imbedded in = Tuelidecn spres of dimgnsion 2n-1,

Ireaf. e suppese that such an inbedding exists, 8o that N = n=1.
By the lust theorem it suffices tc prove thet m < n~l.
Suppose that m = n. Consider the wvectors

~ .3 =
*I- ij (hlijl ‘Illlk\

Nij}
in an H~dimensional Dueclidean space, By (8) the flctness of the induced
motric implies thet
x e “ = ?-ﬂ w7
where the products in the perentheses sre scalar products of vectors (in the

euxiliery ¥-space)s Since m = n, the matrix of vectors

Ve Oy
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nss the preoperty that no eolumn is e linear contimuetien of the other
polumns. ' also observe thet the conditions (#*) remein invariant, if we
pdd to & column & linecr combinetion of tie other coluwns mnd if' we permute
the columne.

3ince N = n-1, the wvectors ﬁﬁlk are linearly dependent. By applying
the mbove elementpry traonsformetions on the columns, we cen essume qlﬂln = 0.
The veoctors %Ain span a linear space of dimensien > 1, &nd condition (*)
implies that 3ﬂll' vesy Eﬁin-l are porpeadioular te thia linaar_space, and
hence belong to m linenr space of dinention < n=2. It follows that
¥y

there is no lineer combinetion of the columna'Wain_l,:?oin which ig zaero,

""'%aln-l ara lineerly deperndent and we can mssume ﬁf&nnl = Du 3ince

tha veetors Hain-l’ yﬂin span & linsar space of dinension 3 2. The above

precess can agein be epplied, and finally we prove that ]f; = 0 and P‘Jﬂik = Qe

ke
Bi%t this is p contradiction, and the theorem follows.
Remerks. The above ergument can be applied to establish the following
slightly more pensral theorenm:
et k[p}. bo the minimum number of linear differentiel forms in terms
of which the curveturs forms ‘(l'ij a6t p can be expressed, and let
k= mgxrk{rd1 Ther & ¢losed Diemannian manifeold of dimension n can not Yo
i
iaaﬁﬂtrically imbedded in an Luelidean space of dimension Zn-k-l.

2« Imbedding and rigidity problems in Zuclidean spece

Iet ' bo an abstrect Riemennipn manifold, that is, g differentiable

manifold with & positive definite symmetric coverient temsor field ef the
second order or, what is the seme, a positive definite {ordinary) guadratie

differantial forms ™wo abstract Riemannian menifelds are iscomeiric, if they

are differentially homecmorphie end if under the homeconorphism the

difrapential formz are napped to eesh other,
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Conqerning the relations betwsen abstract Riemannian manifolds end
submanifolds of an Euclidean spece, two problems naturelly arise;

1) Imbedding problem; Is an abstract Riemannisn manifold isometric
to a submanifeld in an Euelidean spaca?

2) Rigidity problem: Lire two iscmetric submenifolds in an Ruclidean
gpace necessarily eongruent or symmetriof

fur knowlaedge of ths first problem is oxtremely meegre. It is not
known whether the hyperbolic plane {that is, the two-dimensional R. . with
Gaussian curvature = =1} can be imbedded in an Luclideen space of sufficiently
high dimension,

The purpose ol this seotion is to study the rigidity problem for e
hypersurface in Euclideen space. The most lnteresting case is that ef
surfacea in three-dimsisional RBuslidean space, sbout which the rigidity
theorom wes first proved by Cohn-Vossen under the further assumption that
the surfacea are convex. We shall prosent a proof due to G. Herglot:z and
apply thia ides %0 prove a peneralizaetion of e theorsm of christoffsel,

We use the notaticn of the last section, with 1 = 1, Twe
hypersurfaces are now given in En+1 and we dencte the quantitlies for the
secord hypersurfece by the ssme symbols with dashes. From the isometry of
the hypersurfaces if follows that the homeomorphlam b betwean them can ba
extendad into a homecmorphism h' between the wanifolis of their tengent

fremes such that
{11) W, = ht* Wy,
ht* being apain the dual homomorphism on the differential forms under h'.

Teking the exterior derivative of thie squetion and applying the

1emma.cf the last section, we get
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(12) Weg g = 112 Wy
pnother exterior differentiation gives

(13) ﬂdﬁ = htk ﬁ%

Put

(14} }\09'3_ ﬁ)\nﬂﬂ,ﬁ ! AL‘!G i h”}\n*lﬂfs '
ahd osonsider the matrices

(15) N (Agad s AN = (Nigg) s

gondition (13) signifies in matrix languspe that corresponding two-rowed
determinants of the metrices A end ' are egquals, If n 3 § mnd the ranks of
A and A are.? 2, we oonolude that A' = + A, which implies that the

hypersurfaces are congruent or symmetric,

More interesting is therefore the omse n = 2, about whioh we shall prove

the following theorem:

Theorem 1. (Cchn-Vossen.) 7Two closed oonvex surfeces in EE whioh are

isometrie are congruent or symmetrio.

Froofs lie put
v = (Pu,) »
Wyt " W
Then we have
dyy =W * 1%y * ¥y
dyy = @y * ¥ Mgy T Fyage

- = t - " T ¥ - 1
g, 0y = FpWi,) ¥ A WL = AL+ (W AWy = WagA )
- 1 1 1 1 - [ ]
{{’\ 1 * A2 * V(AR At A gy 2)“12’\12)} WAy

Introduce the mean and Gaussian curvatures
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- . - 32
B= g (A *Rgp) s K2 A hgs = Ao, eto.
and define
. -l>\l "'A }\ -h
J= A A e A n' e azA LAY mapa 1} 1172 M2
11722 z2” 11 12712 At oo At

From the ebovs formale we have, on integrating ovar the surface M,

Z jﬂlds " SstdS'ﬂ Qy

whera 45 = wlhuz ia tho slemant of ares of W« In particular, if we idantify

Ejﬂds -I-JEySKﬁS = O
Subtrecting, wa get

P S N Y
25 HdS - ZJ’ g = J-ys{J—zx} dg = = SFE 11 “'11 12 iz a5
MeMe A M|

the surfaces M end E,

We can choose the oripin inside M, so that ¥y < On Sinca K > 0, the intagrand

in the ripht-hend side of the equation is ¥ 04 It follows that

SH NS -j_ths'-g, C.

By symmetry we must elso have

gﬁlds - Sﬁdsg Ge

r ;
SH'dS - BHdS = 0,

Tharefora

and

- » -
),y At ra At
5 15, )
I TREAPRNNAY SUR PO
But thls is possible, only when

ApT A Aet A Mgt A

Hance tha two gurfeces ara congruent,
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Theorem Z. Let two convex closed hypersurfaces i and H in En+l ba

differentisbly homeomorphie such that at corresponding points the third

fundemental forms and the sums of the principal redii of ecurvature pra squal.

Then If end il &re eonpruant or symmetric,

For n = 2 this theorem is due to Christoffel, Its goneralizaticn to
arbitrary n was mede by Xubotm. The clascical proof, dus to /. Hurwitz,
makes use of spherical hermonles,

Proofs By definition the third fundamental form of M is

2 2
]]I = Lun*l'l * aes ¥ wn+1'n .

Since the total curvature of M is = O, we havs (Amﬁ) 7( 0 and we can write

g = ;gu/_x, uﬁ n+l?
whera ('E‘i’ﬁ} is the inverse matrlxz of (}‘Pﬂ,ﬁ}' Ey considering the normel
forme of these matrices under orthogonal tr;.nafﬂrmations, it is onsy to sea
that L H’Eﬂioi is the sum of the prineipel radii ef curvature.
Suppose thet Il and Y are two convex hypersurfuces satisf{yinpg the

hypotheses, Using the notetions of the preef of Theorem 1, we find

A{En o Yo W) AL FALEE TN ]
ol lio-tﬁl'-n “1%2 d3n+1 u‘,otnn‘fl

“EI.(_;L o (U&f\u}d f\{’_}_}u n+1/\o-- ﬂ'.l& n,‘_l"b’nﬂéu _— Y "'\'*'*),LGﬂﬁ'“ﬁ
n ) 1 n o‘l

1***n 1 2 3
Wa nel
a{&o{l”.mn(’eul g o E'E' 1,,,2 * :’rr.-l-l%adln.mnE;iInLlI wﬁ1n+1"\"'n"inn+1'
wharas &U\l'.‘ﬁn is +1 ar -1 accordin; as '::{l. ...,mn form an even or ‘odd

Perrutntion of 1, e, N, and is ctherwise zera, Ve denote by
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Aoy A&J

dv = o nn+l

in+l
the element of volume of the spherical image of M. It follows from the last
formile by integratien that

j[h?:éf&m%ﬁ =L ,fmﬁ) * Vol %'-_E;ﬁ}

ol 17
the integration being teken over M, Taking ¥ = M, we et

| o #p
Vaing the econdition L' = L, we get

2
m{:’?a . xS
By symmotry between M and M we have a similar relation with faﬁ and ’fﬂ;‘fﬂ

interchanged, Combinlng theae two relationa we can write

/ ' =
j Z A ™ L3 o fdﬂ 'gﬂﬂ
i i av = o,
o Vsl Aap o
whera the summation under the integral sign is teken over all combinations of

.c.',, /5 4 with mf‘,e. Mt
Boat = Iuo )Ly, =L -%RE‘& S A By ~Ayg) %)::E L. F
=Tz Z(‘g&m *’Eﬂ(d) a

it follows that &

J{ Zfﬁuﬁ 'fﬂ '%é(in‘m -,fm}zldv=a.

m:p,ﬂ
Bince the integrand ia < O, this ls pcssible only when it 1s identically zers,

which pives
£
"gaxp = 'Ea/a-

From thie it follows that [ and If are congruent.
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5 Affine connestion and absolute differantistion
In order that differentintion ¢f tensors be defined om a differentisble
menifold M, whieh will ba intrinaic, that 1a, independent of the choice of

1coal ccordlnates, we shall need an sdditional struoture, an affine oonnmstion,

To def'ina the affine connection we aonsider the apace X of all ordered
pats of n linsarly independent tangent vectors with the s@a erigin (of. §5,
Chapter 1). Again denote by \{J : X ~3 !l the projeotion, Relative to a base
overy such set of vectors can be identified with an element of the group G of
all o xn regular metricea. It foliows that, corresponding to e no.wdina.te

nelghborhood U, there ls s homeomorphisn

(26) 9. uxe Y D),

salled p coordinate funmotion, such that

(17) WP peg)*p + PEV, g €8s

It pe UAY, there ars matrices &H-‘?‘(P) defined by

Puips gyylele) =P ylrr &) + g €G

We supposs the elements of gﬂ?(p] to be dilferentiable functions, and put

(18) S v " EUﬂ-.rl‘ﬂEU'.r"

8o that £ qy 15 =8 nxn matrix of lineer differential forms. In UM VAW
w8 hava

(19) Ow ™ E;nlffe I;TWFEW * Oy

An affine connestion is defined, by giving in every coordinate

Wighborhoed U, a matrix @ of linesr differentinl forms, such that, in UV,
(ZU} S‘ w ) = -1 (Fe -
‘s v Sy VY ibuy

It 19 ensily verified that this definition is compatible,
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Wwe put
9 L vqw +w AW
(21) g "% 1 S ¢
so that -D-U is en nxn metrix of gquadratic differential forms, A little

caloulatien will pive

(22) i v EJ% 'nugw'

We shall call QU the curveture metrix of the affine connactjon,

To define mbeolute differentiation lat T be a finite-dimenaional vegtor
epace and let R be a linear representation of G in T, that ia, & homomorphism
of G ilnto the group of linear endomorphisma of T. We consider entitiea of the
form {(py, U, t), p € U, t &€ T, where U is a coordinats neighborhood, Two
such sntitles (p, U. t}, (p', ¥V, t') are called equivelant, if p = p!,
pEUNY, t = R(gmr)t'. 4 netural topology can be defined in the set of suol

squivalence classes, and the space 8o obtained ls omlled the tensor bundlae

of type R(G)s A tensor of type R(G) ia a cross segtion of thls bundle, end

i thus dafined in egch coordinate neighborhood U by t = fU(P) €7, and is
guch that fU(p} = R{E;Uv}f?(p} for p £ U AV, Mora genarally, we can conslder
the tensor preduct T@Ar of T snd the vestor space of exterior differentiml
forma of degrea r, operated on by a linear representation of G. & orcsa
maction in this btundle is cmlled e tensoriel difi‘;rantial form of degres r
and type R{G)s It is thus defined in each coordinate nelghborhood U by
t = £.(p) £ TOA" and e suoh that f(p) ~ Rgy )y (P)s P € UNT

We take a base in T@f and consider its linear endomorphiams sa
matrices, Rt

T = R(e) 4R(c)

which 1s then a metrix of linear differentiml forms. It is mlec left
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invarieng, so that its slemantes ars linesr oorbinations with constant
ooeffiolenta of the Maurer«Cartan forms of Ge We dencte the mabtrlx by I(NU).
whan the Maurepr-Certen forms ara replaced by the oufﬂaponding forma of ths
ascnnectioms (In torms of a base the Uaurar-Certen forma of a linear group osn

be sonsidered as the elements of an m xn matrix.) Pt

(23) Df, = &f, ¢ n(wu)fu.

Then we have, in U A ¥,
- i)
day = By *y Yoy
’ [} T u} - ﬂJ

dR{g; ) _R(Ea_w)ll{ 7! = R(@ R(ge, )

and 1t follews that
Dfy; = R(gmrjﬂfv.

Hemoe DI‘U is a tenaorlasl form of typo R{G) and degree r + l, We oeall DfU the

abeoluts differentisl of £ e

To every diffsrentiable menifcld there is naturally defined s tenaor
of type (1, 1}, which dafines the identity mapping of the tangent veotors,
Far geomstrical ressons we dencte it by dp. The affine oammotion is salled

without toraion, if

D{dp) = Q.
In e ocordlinate melghborhowd U put
4) = . 3 ik
Then wo have

@) =,

and dp hes ths scmponants dxi with respect to the coordinmte system whooe
soordinate waotoras are tangent vectora to the parametrired coordinete ourves.
The oondition for the effine comneotion to be without torsion then becowmas

rikdxif\dxk' o o [ - [‘ii.



4s Rlemannlan matrle
A difforentiable manifold M is oalled Riemsnnian, if thare is given &
guadratic differentinl form

a5 - gijdx?dxj.

Vie shall alweys assume thia form to be positive definites. Tt is clear that

the quadratis differential form defines s goslar product in each tangent
epace, so that we osn talk about the length of a vector, the angls batwesn
two veotars with the sams orirgin, stoe,

The group G in $he deliniticon cof an affine connectlon plays an important
_ro].o. Somatimes the matrioces By o0 be 50 chosen that they belong to a
sebgroup of @« In particuler, if the subgroup is the orthogonal group, then

em"
iz cnlled & meatyrical conmwetion,

is enti-aymmetric. If uJU is also anti-symmetrioc, the saffine copnection

The fundamental theorem on local Riemannian geometry ie the followlng:

Theorsm. On & Rlemsnnilan menifold there is exac¢tly one metrical

oonneotion without tersion.

To prove this theorem we llrst notice thet in e coordinate nelighborhood
U, dnz can bs written am a sum of squarem:

e g 2
de wl"'Cil"“anl

It follows that we oan choese G to ba the osrthogenal group. <, dafines e

i
tensorial fom of dogree 1, Llat (wij) be the metrix in U, whioh defines
the metrioal eonneetion. The condition that the cennection 1s without torzion

givas

(EA} Dwi - .d-{-di +CU.'I.J Fa lld‘j =

By the lamma of §l o set of “’13 = hwji santlafying these conditions is unigque.
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To preve tha existenoe write

{25} 4w = 0.

1 T AW Ny e Ay YA,

It is sufficient to put

{26} f- ] LY

g "7 (hpgy t Ayt AW
This proves the thesrem.
We can derive from the above oconsldsratlions the theory of ourvatures

of a Rlemannian manifolé. In faot, exiterior differentiation of {24) gives

(Ao, + wij A uJJkJA ul " 0.

We therefore put

Q& WA Wy ﬂ.ik,

with

n‘ik'“‘wk 0. nik *.n‘ki

From the last equation it-follows that ﬂik le of the form

J

whan ei.kj doos not econtaln LIJ'E. But then we see that 91”

k, J and is skew-gymmetrio in 1, k. Therefore em = 0 apd we heva

ﬂik - giij Wit Rypgp Wyt

iz symmetrio in

ik " Ryygp Wy Ny
st us surmarize the fundamental equetlions for loeal Riemannien geometry

in the followinpg form

e R
dwik a -U.lijh mjk +ﬂ1k
(21)

iy F W 0 ﬂik+ﬂki

n

ik " RapggWp Awy o Rypgs Y By, T 00 Ryppyt Ryygg T 00
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Thane equntlml-wili be called the squations of structure of the Riomann SPATE.

‘Q'ﬂ: are aalled the ourvaturs forms, Rik 23 gives sssantially what 1is

inewn an the Rlemann=Christeffel ourvature tensor,

Applying exterior differentiation to the firat two equations of (27),
wa pet
wj A ﬂdi - Ul
- ‘n'i;] A wjk-l- wnnﬂ i +al) LN T

Thess are oalled the Hiapchl identitiesn,

Ovar & Rispennien manifold M there are nasgelated different tensor

tundles, The more importent cnes are: 1) the principal bundle, the bundle

of ull frames Bllyes -]Ln, where ﬂ'i ere mutually perpendioular unit veotors
at p; 2) the bumile of unit tangent veotors, We dencts their total spaces

by I(n) and X{l} reapeotively. [There are matural projections
(29) PO My oy,

defined by
wﬂ'I(P1L1‘.'TLn) bl pTLnl

and wp put

(s1) o wl,d Lpn..].'

Thase prujou‘l:ional induge dunl mappings of tha diffarential forma in
the inverss direction. Owr problem ia to datermine the differential Torma
in I(‘} snd 1(1). whioh are duam}l lmagas of differential forms in 1(1] ar M,
ento whioh they have been projected. Dlerhaps the simplest way to do this ia

t5 sxeming the offeot of a ohangs of frame., We put
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whers {uik} is en orthogonal matrix, so that 11.,; are now frames, Denote the
differsntial forms relative to 1L; by the eame syubols but preceded with -

asteariska, Then we find

- * L
W, muwp s Wy T u, W

dw, = qu ﬂ(-duikujk +“ikuj2w.8*k)'
s0 that
Lt = du,.u - TR e
i Pl IR P B
It follows that
- i .
diddyy * g N T 0y f iz’
and hence tha.{'.
- =
(33} ﬂik “13“1:2‘0‘3,3'

From {33) we &ea that the following ere forma in ;{(n) whioh are dual

ime.gea of forms in M:
a‘i"" ﬂij.nji'
Lg - ﬁij ﬂjkﬂkﬂﬂfi '

and more generally, ‘{}'ém' 4m < ne Ve shall dencte by the same aymhoia the

{34}

originale of these forms in M, end we say simply that these forms are in M.

If ¥ is orientable, we can restrlot ours_elrau to the frames
Plqees ity whosa orilentaticns are coherent with an orientation of the menifold.
Then two frames at a polnt p are relsted by a proper orthogonal transformation,

snd we can assome (uij] to be properly orthogensl. In this cesa the form

(s6) p,o€, . AL N, 4

1.-#.1“ ilizll. n"'l "

r

whioh exists when the manifold is of even dimensions, is alen in M.
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By the Blanchi identities it oan bs verified that ‘&o" &4:!. are
slosed, A nain theorem in d¢ifferentlal gesomstry in the imrge seaerts that
their occhomelogy classes depend un].y: on the differsntiabla atructure of the
manifolde

We ahall add the following remarks:

A) if )i is the Buolidemn speoce with ths Euclidesn metric, then ﬂij =0

aud u.}i. W, . are the Mamrer~(artan forms of the group of motions, This can

ij
be sesn by oomparing the disouseion of this sectlon to §l.

B) The relation of our presentation to tha% of classical Rismannian
goometry can be given as follows: Let sikjf be the Rismann=-Christoffel
tensor in tha olesaloal assnss, and leot ‘Il,i have the components u]:' {relative

to the coordinete system xJ]. Then

(36) -n- "uus

£
o de‘jf\ ax? .,

mq]

4, The Ceuss-Bormat form;le
In thia section we mesume our Riemannian manifold M to be compact and

-orientables With £y defined by (35), put

(-]P;ZF—E-— éo g 1f n = 2p ip even
(37) a L

a) M if n is5 odd.
The Gauss~Bomnet formule states that

(58} . jﬂ“ K(H}'
K

where 3\(11) 18 the Euler~Poincars cherasteriatic of M.
We shall meke uss of the projections as defined in (28) end ahall

deduce differential forme whieh are in x{l}. Parform o change of franes which
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loaven g‘}Ln umltarudg'
(35) W = vag s ¥
whars (“o(,cs ) is properly orthﬁgnﬂnl. Denocting the quantilties formed from tha
naw frames by the peme notations preceded with asterlisls, we get

x
(40) “on™ Mg

ﬂ“‘/éibb‘a‘uﬁﬁgﬂﬂ'tf .

Define

@k-ﬁi L e 1 w

giee o, at
(41)

n-1 1
- E{k-rl)E n lloﬂ ,_n_ V) v aiad 1
\I/k Hyree %pmr” 9% For-1%2K  T2kn® Fopez® o

waw A »
212k o™ ® -1t

where kK = 0, 1, sue,y [-!21-}- 1, [;-] * largest integer < g-. if n is odd, @ [;.]

ia glso defined. By oonranticn we sot

{42) \I/-I = \P[E_] = Q.

Using (40} it is-easily verified that ‘? " and ?k'- of degrees n~l and n
(1)

respeetively, are differential forms in X

By exterior differentlation we have

¢ - k€ dﬂ ﬂ llinh () .y
. Olyves® 3 By, Dok 2e-Par Fope® ""J"*n-l"’l

4

walt ] n

* (n-Ek-l}ﬁ ﬂ 4..[]- dw fad e ) '
Byrestly 4% Hope1®ey  Copa1® Nopesd n-l

This exterior differentlation l2 carried wut in :({n). But as the resulting
forms are in x(l}' the terms involving ma{g mist cancel with each othar.

Hence we immediastaly get _
- n=-2k-1
(43} ¢ @ k q/k-l * ZTE+T) \Pk'

) greek indices in this sectlon run from 1 to n-1,.
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Bolving for 'P ' ¥ get
{)k = d®t r k=0, 1, vess [;1 -1,

i‘h&r L)

x A 2lane 2 X2
D= L U et B k00 b v -,

If n is even, say = Zp, then we have
d®P—1 - \}‘P'l-

where

i 41 4

=ng . Ju
Vs S Rt NS M o o n-11n

It n 18 odd, say = 2q+1, then
d@q-l = \yq-l'

fut in this cpss we have also

d tﬁq - .q[q-'],'

ac that .
a(®,., - @q] « 04

By defining

2 Pi_l -] A 1 @ s 0= 2p,

T‘JP Mg 113:l¢(2F'2’\'1}2p+1}\| )\
(#0) T[ - .

1 e (q) s A" 1,
met g T ()8 e

we therefore get
(45) Coam =ML,

TP is & differential form in 1{1) whose oxterior darivetive is in M.
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Iat £ be the (n=1)~dimensional akeleton of e oellular descmposition
of M. It is well-known that & oontimious non-zere veotor field can ba defined
in ln-l. Vo extend -this fleld laver N, with the posalbility of Introducing
s number of limolated singularities whers the vector le zero. Drew al.bwt each
. singulartty s small aphere with redjus & , end call M, the domaln of these
spharen. Tl;a vootor fleld defines s mapping £: W - HE-'_" Iu), with
‘-FI. & ldentity. Applylng the Theorom of Stokes, we get

5.“.-5-{1 --S‘dﬂ -,:-jTT -1+l’l,
S PR P £{u-M ) iU )
where I ls the sum of indices of the weotor field (cf. §6, Chapter I}, and

- 0 a8 &3 0« It follows that, as ¢ — 0,

"jfL -1

This shows that I is independent of thw oholos of the vector fleld. By
considering a particular field, we verify that it 1s equal %o the Euler-

Poincware oharsoteristio 7&(1!] of M. Hence the formuls is proved.
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Chapter III

Theory of Cennoctioms

We shall develop in this chapter the theory of connsctions in a
fiber bundle in the sense of Elie Cartan. Its modern treatment was [irst
carried cut by Ehreamann and Weil. OQur mein theorem consists in giving a
relationship betwsen a cheracteristic homomor phi sm defined by topologienl
preperties of the fiber bundle end & homomorphism defined by ths local
properties of the comnestlon. As we shall see, the (euss-Bonnet formula

for a compact orienteble Riemann menifeold is & corollery of this theorem.

l. Hosume on fiber tundles

There are now svalleble several accounts of the gomeral theory of
fiber bundles, in particulsr, N. E. Steenrodis lorthooming book. We can
tharefors restriet ourselves to & resume of the notions wnd resulws which
ara necesshry ror our. purpose. To conform with some nmotations surrently
in use (st lesst in Princeton}, we change our previsus notetion by intep-
shenging 8 ard X, so that B will pe the bundle end X the base sphce.

Ist F be & space acted on by s topologieal group G of homeomorphisms.

A fiber tundle with the diroctor space F end strustural group G consists

of topolegical spaces B, X and & mapping Y of B onto ¥, togother with

ths following;
1) X is covered by a family of neighborhoods {Ih*} » callsd ths

ceordinate neighborhoods, and to each Ug_ thare is a homsomorphism (a

coordinate funetion), Lﬁk Py X F-—> (-j"'{{uwL Yo with H’LH* {(x, y) =

I-I&Uo{ ;}'E':Fi
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2) As = conaequence of 1) & polnt of *'P—I {Ud\} has the coordinatea
(x4 y}s and a point of W*'(Ud}r\ Uﬁ) has twe sats of coordinates {xz, y)
and (x, yt}, setisfying ¥, (x, y) = P, (x, y%)+ It is required thet
Ea‘!’b (x): :,r}__.;. ¥ is & conbinuous mapping Ed*;j of Ua& ~\ U,@ into
s

The spaces X oand B are called the base spage and the bundle respeo=

tivaly. Easch subset y-! {x) € B is celled a fiber.

Sinse we wish to allow chanres of coordinete nelipghborhoode end
coordinatc funetions in e bundle, an squivalence reletion is introduced.
Twe bundles (B, X}, {B', X} with the same buse space and the eame F, G
ara celled equiwvalent, if, {Unl.!tpa\ }. {‘Id“ ' Qﬂk’} being respectively
their coordinate noighherhoods pnd coordinate functiona, there is e
fiber~preserving homecmorphism T:B—» BT such thet the mapping h, ., {x):
¥ —» y' defifed by B (x, vy} = T 4;50( (%, ¥t) is & continuous nmpi)ing of
Un{ ~ Vo into G.

An irportant cpermtion on fiber bundles is the gonstruetion frem a
given bundle of other bundles wlth the same structural group, in parti-
eular, the principal [iber btundle which hes G as direcior speco eotegd
upon by 5 itself es tho group aof left translatlons. It cen be defined
ea Tollows: For x & X lot G, be the totality of all maps (Pd‘ E(x):

F— Y -li:x) dofined by y —» P, {x, gly)}s v& Fr €& G, relative ©o

8 coordinate neighborhoot U, eontalning . G_ depends only on Xe Lat
B = Uy e 49 ond define the mepplng We*: B+ — X by q}*(Gx} = x and tha
eoordinsto funetions q); {x, g) = (Pﬂh g(x}. Topologlte B* such that
the r-,_‘*;fs define homoomorphisms of U, % G into B=. The bundle (B*, X}

g8 obtaincd is celled & principal fiber bundle. This eonstruction ia

an operition on the equivelencs classes of bundles in the senag that two



rihﬁr bundles are equivalont if and only if their prinoipsl fiber

tundles are equivalente Similerly, an inverse operation ean be defined,
whioh will permit wa to eonatruost bundlss wiﬁh & given primoipal tundle
and having es direatorifpaae & piven spece moted upon by the structural

group. G» Such bundles eare called associete bundlee. An important

property of the prinoipal fiber bundle is that B* 1s aoted upen by @
a8 right transzliaticns,

Iet Gt be & subgroup of G. I the mappings B p ! Uyn Uy — G
have their imepges in GV for overy palr of coordinate nelghbarhoode U,
and Uj! with.a non-empty intersection, woe say that the bundle -hes the
etructural group G'. A tundle 1s called trivial, if it 1s equivalent
to o bundle with e structural group which consiats of the unit olement
bnly.

A oross -seeticn of u bundle is a mepping f:X—> B sugh that ¥ r

iz ths ldentity. Using this notlon, it iz essy to ssteblish the follow-
Ing atatomenta, of which the eegond is & conssguence of the [irst;
| 1} & tundle with the éroup G i3 equivelent to & bundle with the

group G' C G, if end only 1f tho msacciate bundle having G/G!' es
director space has & oross assotion,

Z) A bundle is .trivial if and only if its prineipal tundle has
A crosm Section,

Sappese a tundle ba givon, with the above notetions. ILst £ be
6 mapping of & spaoo ¥ into X. The noighborhoods {r’l (U&;]} than
form a eovering of Y end coordinate functions qtki : f-l uhﬁ ] =
p—>rt (Ux ) Tl (U, ) o8n bs defined by LP,(‘();., vhm x4y
(£{n}s y)s This dofines & fibor bundle ¥ x Y (1 (y)) ovor ¥, with

tha aams diroetor space F and the spme group G. The now bundle ia
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maid to be induced by the mepping f.
This msthod of generating new fiber bundles from a glven bundla

ig vory ueaful, particularly ic the caso when a sowcalled universal
bupdle existsa. Lot the director spaua:and the group ¢ be given end
fixed for our present ommsldorations. A bundle with the base speoce
Ib is onlled univ&rael relative t¢ a apasce X, if every bundle over X
is oquivelent to & bundle induced by s mapping X — X, and if two auch
inducad bundlas are equivalent when end only when the mappings are
homotepio. I, for a space X, there exists m universal bundle with
the base spaca X , then the clesses of bundlea over X &re in one-one
correspondenss with tho homotopy classes of mappings I-—%-Ko, ga that
the enumersticn of the bundles aver X reduess to o homotopy olasgifice-
tion problam,

For our purpees the exiastonoce of & univerzsl btundle has mnother
eonsequence. Lot H(X , R)» H(X, R) dencte the oohomalogy rings of the
ApAQSS xo. X respoctively, with tho oceffloient ring Re It follows

from the abovs that the induced duml homomorphlsem
ht; R(X . R}) —>» H(X. R}

is completely determined by the bundle., ht' will be oalled the chare

pcteristio homemorphism, jta image hI(H(xﬁ. R)) ¢ H{X, R) the

ghareoteristio ring, and an element of the charscteristic ring e

charasteristio (ochomology) clase.

A necessary and suificient ceondition thet & bundls is univeraasl
relative to all polyhadra of dimension n 1s that its prineipal bundle
B antlefics the conditions: Tf"-_ (B) = 0, 0% i% 1, whore ‘T'("O(E) =
meong thet B is conngeted. The prosf of this thoorem can ha found in

Stoenrodte hook or in: S. 8. Chern and Y. Sun, The imbodding thearem
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for fiber btundles, Trans.hmor.Meth.Soc. 67, 286=303 (1348},
When e universal bundle oxists, it may not be unisua. Howover, we
shall show thet the characteristic homemorphism 1ls indepemdont of the

ohoise of tho universal bundle by proving the theorem: ot W_: B —>X,,

q;; EBJ'f* X} be two univorsal prineipal bundles roletive to camplexas

of dimension n. Therso are one=opo isomorphisms

Hr(XO, G} = H‘r {KE:I G}; r% o,

For simplieity we nosume X, snd X' to be cellular comploxes.
tonota by Xﬁ and Xén thoir n-dimoneionel ekeletone. Sinee evory contin-
uous mapping is homotopic te s collular mepping, tho sub-bundles over

12. Xén oen bo indused rospectively by mappings

£: K 3 X ErX) > X .

o

It followa that these sub-bundles are equiVﬂient to bundiles induced by
the mappings gf and fg. BSince tho given undles are univeraal, we con=
adude that pgf epd fg ero homotopic te the identity mepping. This proves
the theorem, Tha thoorem is velid under more general assumptions of the
bese space of thd universel bundles, The proof will then meke uso of tha
singular. complex end is more complicated.

Wo zhell show that a universel bundle axists whenevor the boso
space X iz compect and the structural group ie a conncetod Lis group.
hecording®to & thoorem dus to E. Carten, Melcev, Iwasuwe, and Mostow,
2ll £ho waximel compact subgroups of u connected Liv proup G sre eonju-
. gate to each other mnd tho homogenoous apage G/ Gl ig homeomorphic to
an Buclidaen spuce, where G, is e maximal compect subgreup., (Cf. in
particuler, K. Im.seawn, On scme typus of topologleal groups, annmals of

Meth. 50, p. 530 (1849)). Using this thsorem, it follows thot cvory
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bundlo with the group G 1s equivalent %c o bundle with the group G, and

1
that two bundlos with the group & aro equivalent when and only when thoir
squivalont bundles with the group {}1 aro oguivelent reletive to Gl' in
other words, 80 long as thoe aquivelonoe eclesses of bundlos mre goneernod,
wo cont replace G by its maximal compact subgroup Gl.
Gl being r campect Lie group, it cen be consldered as o subgroup of
the rotetion group R{m) in m veriables, Imbed Rim) ez & subgroup of
R{m+n+1} whioch operates an the first m wvariebles, while R(n+l} opcrates

on the lest n+tl verisbles. Then we have
R(mn+l) 2 6 XR(EA) D I x R(n+l),
where 1m denctes the group of the ldontity. By the naturel projection
‘P:_ R{mtn+l) / I, X R(n#l} —> R(men+l) / G % Rinel),

wo get & prineipal fiber bundie with the group ¢. It is univereal rela-
tive Yo ecoaplexcs of dimension n, sinece, by the covering homotopy thoorem,

all hemotopy groupe of tho bundle up to the dimension n inolusive .ere zorc.

2+ Copnections

¥o oconsider n fiber bundlie nnd edopt the netation of the lemst section.
For the purpose of differential geameiry the following assumptions will be
made: 1} By X, F are differontiable msnifolds; 2} G 45 a Lie proup whish
aots difforantiably on F; 3) the projeotion of B onte ¥ is difforontishla,

1et L(G) be the Lis elgebre of G. L{G)} is invarisnt undor the loft
tronslations of G, while tha-right trenslations end tho inner automorphisma
of G induce on L{G) a group of linesr ondomorphisms ad{G), called the

ad joint g.-oup of G+« Rolative Yo a base of L(G} thero are tho loft=invar=

fant linear differential forms (J* and tho right-ioveriant linear diffor-

entinl forms T i, each set consisting of linearly independent f{orms whoso
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number is equel to tho dimension of G. A fundamsntal theorem on Lio

groups agserts that their axterior derivatives are given by

awt - 3 Y O'Ifkwjx\wk.

gk J
(1}
4 1 k€ & 3, k' dinm C.
ARt = -2 D cjkTT"A p{
i
where °jk eru the so~ealled comstants of strueture, Thoy Gre anti-

aymnetrie in the lowar indices and satisfy tho Jeoobi reletlons obtained
by axpreasing thet tho oxtorior derivative of tho right=hand sida of (1)

is oqual fo zero:

(2} b {Gij cﬁf.+ c;k c,m'\j + cij\ cg"k Yy =0,

This teing seid sbout the struetural group G, the dutl meapping
of the mapping B qﬁfﬂ\ 9@ —=3 § earries u,i Lnd Tti into lineer
differontial forms in U~V whi;ch we shall denete by "“Ji.f_‘:“ rnd
T[:ﬁ: respootively, Sinco Eovy “ Ba s By in Uy Uy~ Uy s wa
havo

e——

i

T %—“-d €0)5 Wi * Wpg
3) | L
- 1 Fas - 1 -
Ty " Tan *2% Baa)y Ty

We oen also interprot “43fb a8 o vector-velued lincer differcntial form
in Uy M Us . with values in L{G), end shall dun;ta it simply by 5{4;3'
when 8¢ interproted,

The pgeneralizetion of the notlon of & tonsor ficld in clessicel
differenticl geomotry leads to the following situation, Iet E boe &

vector gpace ected an by a roprezentation M{(G) of G. & tensoriasl
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differentlsl form of degres r and typs M(G) is an exterior differentisl

form u, of degres r in each coordinets neighborheod 1, , with values in

E, guch thet, in Uﬁm UKB U, - M(Edk,-’?s) u',',b + The sxterjor derivative

du, of u, is in general not s tensorlal differentinl form. Io recover

its tensorlal cherpoter, & conmection is introduced ints the flbar bundle.
A connection in the flber bundle 1s & set of linesr differential

forma e'o_.\ in U » with values in L{G), such that

{4} wl?l‘;?‘ - "d-d{gﬂﬂ:'@ﬁ +elrr'!,'
1t follows fram (3) that such relations are consistent, in U AUz AUy

With the help of s connectlon absoclute or coverient diffsrentintion can

be delfined s follows: Iot M(X), Xe L(G],_ be the representation of the
Lie elpetre L(G) induced by the representation M(G) of G. M{G) being e
lineer pgroup, the elemsnts of M{X) oen bs identified with linwar endo=
morphisms in E. If a base is chosen in the wvector spmce E, both K(G)
and H{X) can be represented by matrices. lorcover, we can teke as their
alements differentinl forms with walues in L{G}. ith this understanding
squatlion (1) goes under the homomorphic meoping ¢ —s M{G} into tho
aemueticon

di (E;\fg} = W (Eﬁf.}) T(oyg)-N{e, Ixu (Em@}-
Thig, together with the equation obtained by exserior differentiation

of uy = M(Em«.,ﬁ u 3 shows that
£
(5) Du, =duy +H (8 )nv,

is o tensorial differentisl form of derree r + 1 and the sams type M{G).
It 15 casy to prove that & cormection can always be dofined in e
fiver vundle. In fact, lat {Uﬁ} te a finite or counteble covering of

X by ceordinete neighborpoeds. There exista an open covering f:_v;a,i of
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X; such that ¥, C U« Wo define tho connection in Vi + .0 + V, b¥

induction on x « If the emnection has been defined in Vy + et VA_ -1
B, is given in Ve M) (V) + eus * 1&.-1) and is consistent thore becauge
of (4)s By an glemﬂntary extepnsion theorem, E%« exiats in Vi such thaet
it becemes the pre-amssigned form in ¥V M (vl e+ Y _1} and is zare
in XU, . Trus we define a connection relative to the covering {‘{,«} .
H; shgll pive a second proof of the existence of a conncetion at the end
of this seotion.

The shove definition of a conneotion mpkes use of the ecordinete
neighbﬁrhuods end i3 antirely analytic, Wo shall give squivalent but
intrinsic definltions and &t the same timo interpret the definition
gaometrically.

For this purpose we gonsider the prinelpsl bundle, whose bupdle
apace we agm denote by B. If (x, s}, {x, t), s, t & G, aro the co-
ordinates of a point of B relatiwve to the coordinubte neighborhooda
Ux and Uy respoctively, we have g, . ¢ = s+ Sinco the left=inveriant -
differential forms of G can be regerded as the components of such a form
{0} with valuea in L{G), the form ad(s} S + (W is e linear differenticl
form in Y, w G, with values in L{¢}. From (4} we can verify that in

U Uf} this differential form 1s equal to tha same form constructed
from Uf3. The set of these differential forms defines thorefore an
L{G)=valued linear differentisl ferm in B, which we shall denote by
“(b), pe B. Since B is acted on by & as right trenslations, wo can
study the offect of such e translation on ¥ (b), and we find P(bg) =

‘ad{gulﬁ P {(b)se This laeds te the following definitioé of & connestion:

A comnection in a fiber bundle is definod by am L{G)-velued lingar

diffcrential form in the prinoipal fiber bundle having tho prepertios:
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1) Under right transletienz it i transformod acoording te the adjeint
group, P(>g) = ad{g *) P (0); 2) 1t is traneformed by tho dusl
mapping of the identity mapping of m fiter into the bundle Ilnto the
laft=invariant form of the fiber. The seoond property has o sonse,
bacuusa.a fiber in tho orincipel bundle has & group structure dofined
up to & loft-t-gnsletion.

Sinen en I{QT;;Eiucd linoar differential form ecan bo interpreted
a5 & linenr maﬁping cf;ﬁh; tengent space of B inte L{G), it lollows
from thoe nhove definition that & sdnnection is a liresr mapping at

every point of B such thet: 1) overy tenpont voetor is napped inte

B tanpent voctnr to tho fibor; 2) ovory tanpoent vector o the fiber
remaing inwverisnt; 3) the mapping is invariant under right transletione.
It is an elerantary thoorem of linoer alpebra $het under such a mapHing
the 3ot of tanront mctors which a?c mappod into rero form e linear sphoe
pamplomentary €0 the tanpent spaco of the fiber, A comnection therefora
gives rise to e fumily of tanﬁogt subsfces in the principal fiber
bundle whieh ars *ravsversnl- to the fibors {that is, whioch span with

tho tangont seece of the fiber tho tengent space of tho bundle) and

are invariant urd;r right transletions.

From these gpomctricnl considerations it Follows aaail& that we
can define & connecticn in B homoreneous space whose group i5 e somi=
simple Tie =rosps. In fackt, lot R be & semi-simple Lie proup and H e
g¢losod subgroun of R, Then R is a prineipal fibar bundla over th with
the dirsetor spose He 1% i known thet & positive definltu Riememnien
motrio enm bo Awfined in R, which 1s both left and right invariont.
Jsing this metric, wi ocun define & mrpping which maps a tangent veotor

of R te its orthosonel vrojeetioen in the fiber through the erigin of
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the vector. This mapping sntisfios the three oomditions abova and

thorefore defines & comeetion In the bundls.

In particulsr, it follows that we oan d'of_ina a gonnection in tha
particular un:iwraal bundls chossn ab;wo. et fi X'-3 X be & mapping
whieh inducos a bundle ovor X'. _If the originel bundle has & connection
given by the differential form &, in U, the dual mapping £ of £
carrios 8‘5_‘ inta £* .8  in i‘-l (Ug,‘) for which the relation correspending
to {¢) 1s valid. fThe forms £+ & thsreforo define an induced oconnootion
in the induccd bundle. Since every bundls ie oguivelsnt to one induced
by mapping ite base speoe into the base space of & univorssl bumile and
sinoe the latter hes & connection, it follows that & connection cen be
defined in any bundle, This gives s seocond preof of the stetement that

s connootion cen always be defjned in a bund.la.

3. Looel theory of connections; the curveture tensor
To study the loaal properties of the connection we egein meke uas
of a bage of the Lie slgsbra, relative to whick the ferm £, has the

oomponents @i « We put
i i j k . ;
(8) @“dem‘ﬁ‘;,ik"jksif\@m 154, j, k% dim 6.

The form @‘*, whose componorts rolative to the bese are @i . i3
thon en extoricy quedratie differontiel form of dogree 2, with values
in L(G}. It is easy to verify that @ = ad{ga‘ﬁ) ®/3 in U
MUz Tho (H) 1s therefore define o tensérial diffsrential form of

degrec 2 and typo od(G), oelled the curvotura tensor of the connection.

The following forpulas for absolute differentiatioa can easily

he vorifiod:
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F (@), )= (8, +T (g%

(7} B (ﬁlx.; 0,
p® u, =¥ ¢ Cgl* Jﬁ\uak;

The socand relation is known as the Blenchl identity. It shows that

cbzolute differsntistion of the curveture tenadr does not pgive further
inverionis,

It follows from our idtringic definition of ccnnéation that a
cﬁnnaction in & bundlo glves rise to o connoction in ewery bundle of
its equivalopes class, so that we cen Epoak of a connection in an equi-
valenoo aiass of undles. The conmectlons in two equivalant tandlea are
eallod eguivalent, tf they define the seme conrection in the oleas of
bundlsae

Moro intereeting is the notion of local vguivalonecs of two connsc-

ticne, Givon two bundlss with the samo structural group and with a

conrection defincd in each Wandle., Tho structures partaining to the

aaconﬁ burdle we donotc by the seme notation with dashes. Wa shall

dofine the notiocn that tha conmoctions ere aqulivelent at & point x &€ X
and o point xt & X' In fach, let U, end U‘_}"‘ ba coordinate noighbor-
hooda conteining x and x' respectively. The two conneetions ars sald to

be eguivalent at x and x! if; 1) there oxist opon aets V, V' satisfying
X& VLU » xt & VI Uatt ; ®) thero exist e differentizble homeomeorphism

:: ¥ ¥t gnd a diffcrontieblo mapping g1 V =+ G 8uch thot

Ou = grw+ adlg) (£+ G0
We can verify thet this conditicn is indspendent of the ohoice of Vs pod

Ut yes Instead of meking this verification wo c¢an slso formulate the
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definition in an intrinsic form. We shell ssy that & mapping 1:

Lf-—l(v} ——-;-qi'l{v!) is edmissible if there la o mapping l,: V—» 'I.F'. such
thet 1 '4-'1(:) “ kfﬂf']‘{l,.‘-:x}} end thet the mepping g —y g7 defined by
lkPaJ.. (x, g} = t{;ﬂ (A (x), g') s & loft tronsletion of G. Clearly the
last oondition 1s Independent of tho choice of the coordinate neighbor-
hoods U, end Y!, in the definition. Remambering that B comnection gives
rise to an L(#)~valued linesr differential form “F({b),b &B in the princi=
pal tundle B, we oan formulate tho definition of local oguivnlence of two
sonneotionz as fellows: The two connecticns erd eguivelsnt ot x end x!

Af thore are noighhorhecds ¥ end ¥ of x and x! respactivaly such that
cthere iz on edmissible homeomorphism botwoen Q-"l{v) end If-{-v*-]'{‘hl'!]' urder
which {F fb) and ip'(b'} ore sgunl. The sguivelones of the ;wﬂ definitiona
chnn be ensily verified by nnking use of (3).

A comnsotion le eellsed locally flat et x € X if Eix = Jinc
neighborhood of x (relative to & coordincte neighborhood U, containing x)
or is eguivalent to cne with thia property. It follows that o nocassary
and sufficiont conditicn for e connection to ba losally flat at x is thot
there exist an opan a6t ¥ containing x and conteinsd in n coordipate
naighborhood Uy end & mepping & of ¥V into G suoh that EBG* v fEgdin Ve
When n comnection is locelly flat at x, the curveture tensor vanishes in
a neighberhood of x. conversoly, when tﬁa curvature tensor is zoro, it
follows from the theorem of Frobenius that the system of differantial

oquations

6

o —i‘;wﬂﬂ'
whore the mapping £ is the unknown function, is complotely integreble,

Benece f exists in & neighborhood of x and tho connection is f£lat ot x.
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Ae & flrst instance of ths problem concerning the reiationship
between properties of a bundle with those of the comnections which can
be dafined on it, we considar the case that the comnection is everywhers
flat, Then, bty Frobenlua's Theorem, there exists to every coerdinate
neigh‘borhnbd Uﬂ( a mapping fd : Uy ==» 0O such t-hat‘ igi[-w =g < In g(n uﬂ
we define ga:ﬁ - L %/6 %1. Then we have E:_:gaw = ¢, which in turn
implies that the mepping g;bd is consiant 1n every comnected component
of qﬁ M 153' These mappings %};3 define & bundle over X equivalent
to B. Ii followa that the bundle will not be affected if we replace the
topolegy In G by the discrete tepélogy. OSuch a fiber bundle 18 a cover-
ing space. Il X 1is simply connected, B 12 a topﬁlogical product of G and
X. 1In general, E is a product of the connected component of G and a
covering of X. Thua the flatneas of a connection implies topologicsal

propertles of the bundle,

e The hnmnmnrﬁhism.h and 1tas independence of connection
We ¢onsider a fiber bundle (B,X}, with a structural group G which
ie a [ie group, and we assume that a copneeilon iz glven in the bundle,
A real-valued multilineer function P(Y,, +++ , ¥,), with arguments

T

1t s ‘Ik e L(G), is called invariant, if

P(ad(a)rl, see hd(n)Ik) - P(Yi, e, Tk) for all a e Q,
Replacing a by an infinitesimal transformation, the conditicn of imvariance
impliea

(8} é P(Y].’ ”'., 31-1’ {zsri]s Ii'!'l’ ety Ik) = 0,

whers Z 1s any element of L(G), If G is conuected, condition (B) 4is

squivalent to the definition of invariance, Inatead of tnking'ti todbe
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in L{Q), we can take them to be L(0)-valued exterior differential forms

of degree p,+ If, therefors, ¥, are tansorial differential forms of
k
degree Py and type ad{d}, P iz a diffarential fﬂ!’l‘n of degres 22 p

e 1

fined in the whole manifeld X.
We can define the bracket operation [2,W), where %,W are L{0)-

valued exterior differential forms. In faot, let zi, wh be the components

of Z,W relative to a base of L{G)» The components 2 cf‘j-k 72J A W dofine
3,k

an L{0)uvalued differential form which is independent of the cholce of the

base and will be denoted by [Z,W]. The degree of [Z,W) iz the aum of the
degreex of 2 and W,
The formula (8) can be generallzed to the case that Z,Y, are diffsr-

1
© ential forms, In particular, when Z ia a linesr L(G)-valued differential

form and Py - dim Yi, we have
. k 1+o|| 1= .
(9} Z ‘:"1} lP{Ila A 1_1! {Z,Ii}, Ii"’l’ T, Ik} = O

im]
We now suppose our invariant functions P to be symmetris in thelr

arguments and call them for simpllcity invariant Ig_g_;l_y_g_'tgm'!.ala. We shall

make them intc a ring, By the definitlon eof addition
{10} {P + Q){Il’ e ]_"k} - F('Il, ee Yk) * Q(Y].’ sen Ik)"

.all invarisnt polynomials of degree k form an abelisn group, Let I(Q) be
the direct sum of these abelisn groups for all k > 0., If P and Q arel
invariant polynomials of degrees k and 1 respectively, we define their
product PQ 4o be an invariant polynomlal of degree k + 1 given by

(1) (RQX{Tyy vy Y -%ZP(Iil, AP ST 16 “IRPRLLTYS NIV P

where the aumetion la extended over all permutaticns of the vactors Ii end
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B 1s the number of #uch permutations, This definition of multiplication,

tegether with the dlatributive law, makes I(G) into a commtative ring,
the ring of invariant polynomisls ef G, '

Let P be an irvariant polynemial of degree k and st us substitute
for 1&:.? arguments the curvature tensor @ .of the connection, Then
p(@} « P((H), ++« ,(H)) 12 » differential form in X, of degree 2k. Its
axterior derivative ia, by the Bianchi identity {72] and by the observa-
tion that the absolute derivative a»f & product follows the same rule as
the exterior derivative, |

aP((H) = D P ((E)) = o,

Hence P{@} ia & olosed differential form and defines, according te the
de Rham theory, an element of the schomology ring H(X) of X having az coe
efficient ring the fisld of real numbers. We phall denote the resulting

mapping by
{123 h: I(G) === H{X).

It is clesr that the ring operations in I{G) are so defiped that h i¢ &
ring homomcrphiam. MNotice that I(G) dependa only on G and that h is
defined wlth the help of a cormection in the bundle,

Concerning the homemorphism h the following theorem of Weil la

fundemental: h 18 independent of the cholce of the commeotion. In other
words, two different connhecticns in the bundle glve rizs te the gsame hamo-
morphien ha

We proceed to give Weills proof of this theoreﬁ. Let two connac-
tions be glven in the same bundle, defined by the differentisl forms Gﬂ
and ﬂni raspectively. Then u_ = Bﬁ -%2 1s a linear differential form

of the type ad(Q), and their curvsture tensors are related by the formula

13) @ = (1) - Du « 3{u,ul.
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h
The theorem will be proved, if we express P{@} - P(@) as an exterior

derivative. For this purpose we introduce the notaticns
{14) P{Y) = P(Y, +=« , Y), Q(Z,Y) = B(Z,Y, =+, ),

where Y,7 are L{(})-valued differential forms., With an auxiliary variable

%t we put

F(t) = P(W-t¥-t22)-P(W).
Then

FI{(t) = -k Q(T+24Z,W-2%-t%3),
and we have .
(15} P(W=Y=2}-P(W) = «k flq(r+2tz, w-tr-t?z:mt.

0

Making use of (9) and the relationa

(16) e = ~{(R), ul, [[u,u],u] = O,

we get the formula

(27) | dQlu, @-tm—f[&,u]} = Q(Du + ¢ [u,ul, @~tm-§2[u,u]}.
.

Integrating with respect to t frem 0 t¢ I, we find

)
- (18) &R, (1,0, 5 (w,u]) = R(ED-P((®)),
where R is defined by
_ - 1
(19} R(V,W,Y,2} = =k/ Q{V,I-.Ltl’-tgz}dt.

o

This proves the theoream.

Another conséquence can be derived from the abwove consliderations.
We consider the principal bundle B and the L{G)-valued linear differential
r
form LP which defines the connection.. Recalling the definition of LP in

terms of a coordinate neighborhood, we immediately get

(20) a4y -%[:‘p,-.p]=§,
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where @ s an L(3)-valued quadratic differential forn in B, which, in a

coordinate neighborhsod U, , has the representation ad{s)@ |+ Manipula-
ticna similar to those in the above preol then glve the formula:

{21} | dR { ‘-P'(IJ', d\F! - % [\P:LP 1) = "Pféjc

Since P(@u) :ls- clearly the dusl image of the form P(@} in X, it follows
that Y *p(@] 18 cohomologons to zero in B. We identify G with a fiber
of B and denote the inclusion mapping by 311G -«» B, Then

i*ﬂfﬁa:(}.’: d‘P: -51 [4€,4]) i3 closed and.defines an element of H{G), which
ia definad up to an element of i#H{B}. . The result is a group hMmMm.

(e2) t: I(0) - H{G)/ 1+H(B)

which maps the polynomlal P into an element of the quotient group on the
right-hand side having as representative the differential form

e, Qlw, d&)), where
1 o k=1
=k [ {~t + 1)
0

Gk dt.

We notice that 1» ¥ = 0J,

5, The homomorphiem h for the univeraal bundle
The results of the last smection csn in particuler be applied to the
wiiversal bundle

R(m+n+l)/ I 11xru:m+1) e R(min+l)/ GKR{n+L)

considered in §1.  In this case we denote the base space by X, and the
homemorphlism h by

h, = I(G) w-m H(Io}.
The purpose of thim section 1s to prove the theorem: In the dimensionse

<n, ha is a8 one-gpna lscmorphlem.
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X, being a homogeneous space, the structure of the ring H{Io} can
be studied by t-he‘ method of integral invarisnta of Elle Cartan (Cf.
E., Cartan, Sur les inverients intégraux de oertains espaces homogenes
¢los et lea propriétés topologiques de ces espsces, Annsles de la Soc.
Pol. de Math. t. B, pp. 181-22%, 1925). The main 1deas and results are
as follows: Iet G/K be the homogencous space, G a compact Lie group of
dimension r and X a elosed subgroup of dimension s of 3, The Lis algebra
L(X) is then a subalgebtra of L(G). In the dual vector spsce L#(G) of L{G)
there is determined a subspace M#(X} consisting of all the elements of
1#(G} which are perpendicular to L(K). The adjolnt group ad(G) acts om
both vecter spaces L{¢) and I*{G), Its subgroup ad(K), sonsisting of the -
linear enddmorphim ad{a), a e K, leaves L(K) and M#{(K) invarlant, If
we identify the space Ix#(G) wlth the space of left-inveriant linear
differential forms (Msurer-Cartan forms), a base &Jl, seve 3 {0 in L{G)
oan te go chosen that maﬂ, veey (), BPAN l-!#(E} and that the system of
ddfferantial equationa

W ™ Tt =Wy m 0

18 completely integrable, Since ad(K) leaves M#{K) lnvariant, 1% induces
a group of linear endcmorphisms on M*(K) and on the exterior algebra
A (M#(K)) of te(K): Denote by R(G/K) the subring of A (M(K)) conslst~
ing of all slements invariant under the actisn of ad(K). L;-arl:.an proved
::hat R(K) is stable under exterior differentia:tion and that its cohomology
ring (that is, the guotlent ring of the subring of closed forms over the
1deal of derived forma) 1s iscmorphic to the cohomology ring of the space
a/K.

Returning to our preblem, consider the rotation group R{m} in which

G is imbedded as a subgroun. A positive definite Rlemann metric can be
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defined in R{m}, which is invariant under both left and right translationas.

If we choose the Maurer-Cartan forms of R(m) such that the ds° of the
Riemann metric is equal to the smm of thelr squares, the constants of strue-
ture will be antl=symmetrlic in all three indices.

Teo the base space of our universal bundie we now apply the method

of Caprtan. We agree an the following ranges of indicess
1go, /3, ¥sm ml € rys,b g mndl, 1 g 4,B,C % w0+l
1gA,m,V < dim R(m)-dim G, 1 g i,J,k < dim C.

Setting ¥ = CAR(n + 1) and remambering that our underlying group 13 here
R{m + n + 1), we see that the vector space M#(K) is spanned by Ly, , wﬂf )
where L) opan the space ¥#{C) in L*(R(m)). Fer a e T % R{n + 1) the

:L_nduced endomerphism of ad{z) on (\) e iz given by

wd'r\ ) ZB g Wi gt
where (ars) iz a proper orthogonal matrix. Now the sowcalled first main
theorem on vector invariants asserts that any integral rational invarlant
of a system of vectors under the rotation group is an integral rational
function of their scalar products and their determinants. It follows
that in order that a form of degree £ n genmerated by T AU be Iinvar-

lant under ad(K), it must contain d, , in the combinations

(23) ﬂdﬁn-gmdrhﬁhr.
By the equations of Maurer-Cartan for A{m + n + 1) these forms satisly
the relations

4

W o ZX‘*‘J&«;““J,@*-{L%@'

We take in Lz{R(m)} a base (ei,t)\) such that: 1) Ty span M#(G); the

inveriznt Riemann metrilc d£|2 is equal to the sum of the aguares of Gi,'E:\ »
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8o that the constants of structure are anti-symmetric in all three indices,

We then have

1 1 ' . i
48, = % 2 O, AS, +x D &, @
1% ®13k 5 Mk Emivci;ﬂ-tﬁﬂ VRS IR

1 i
‘,-niﬂl:}“'ﬁ S * EE"’ c)\fmu't}nﬂtd*‘ -T.;\ ’
where (gi’TA } are related to the set {L-.L‘ﬁ} by a non-singular linear

transformetion. By introducing the forms

1 . Bl T
(2L} sy 2. ¢ AT +{ﬁ) y 1y = > T AT+ 1, ,
@i E‘ij W 1 A ﬁ;’ﬂ,\o’ c.:"ufnl) o VoA

iﬂvtfn

we can writa

(25}

The ring of invariant forms is generated by 1, T,, ®i.’ Ty,

The feorms Qi are in R(m + n + 1), but can be regarded to be in the
bundle R{m + n + 1)/ I X R(n + 1), because thers are uniquely determined
forms In the latter of which they are the duzl images under the natural
projection. Regarded as in the bundle, these forms Qi vefine a connectlon,
of which @ N is the curvature tensors Relative to this comnnectlon an
absclute differentiation is defined in M:(G)} in which ad(3) =cts. Since
T, can be regarded aa an M#(G)-valued linear differential ferm in X o 1t
has an absolute derivative which is 2 quadratic differential form of the

same type. We find
To describe the ring of invariant forms gemerated by 1, {, ,@,

T AL eonsider real-velued multilinear functions
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P(‘%l, thay X2 21,---,Zp; wll-u,‘.-i’q),ffa,zbs M—!.‘(K}, HCE L"!-(‘G),

which are anti-symmetric in the Yfs, and symmetrie in the Zts and in the

W's, and are invariant under the action of ad{1}e

P(ad{a)fl,vit,ad(a}Ik; ad{a]Zl,i--,ad(a)Ep; ad (a}Wi,...,ad(a}Wq)
(27)

HP(Y -.I, Y

1! by, zpi I'Jl:"°1wq)n

et 31:
An invariant form P(T, T,{E}) is ottained, by substituting ' for each ¥,

T for each Z, and (ﬁ) for each Wy The degree of the form is k + 2{p+q) and
the form itself is said to ve of type (k,p,q)s A4S in the case of the ring
of Ilnvariant polynemials these funetions P can be made into & ring by the
definition of an additien and a multiplication in such a way that one gets
a ring homomorphism under the svbstitution Zescribed ahowve, Denote by R
the ring of differential ferms P{7, T, (E}]. If D denotes the absolute
differentiation relative to the crrnecition defined above, we have, for

P =R,

(28) LT, 1, () e(T, T, ().

It follows that R is stable under I and that the derived ripre relative to

D is isemorphie in the dimensions< n to the cchomolagy rine TFFOJ.

Under D we have
(29) p{H =0, DI=o,
the first being the Bianchi identity and the sccond following from a

similar calgulation. UWe shall prove:r Fer P e R with IP = 0 thers exist

Ry P1 € R such that

P(‘,’:” Ty @jEEQ'*Plf@};

where Pl is of type (0,0,q1).
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The prodf foliows an ldea of algebraic topology in the construc-
tion of & hometopy operator. We define an operator f in R which is an
anti=-derivation (that is, a differential operétor with £f{ab} =
£{ade + (~1)7 af(b),r = dim(a) and is such that

fTa0, £T=T, £t® = 0

Then we have

1 . L
{DL+ET)T = po T, (nf+fD;13==3;5 ,(DE+D) () = 0.

Now P 1s a sum of terms of types (k,p,ql. We can assume P to be homo-
geneous in the sensze that k + 2(p+q) = const, Ameng the torms of P let

m be the larpest value for k+p. Then thsz valve of k+p in each term of
Pari {fD+DE)P
k+p

1s smaller than m, Since DP = 0, we prove the above statement by induc-
tion on m,

It follows fhat every class of H(In) contains zs a representative
a differential form p{(ﬁ)) of the type (0,0,q9'). Since the latter ia
elearly never a derived form in R relative to D, the mapping zo estas
blished 1s a one-ons isomﬂrphism.- Thus the thecrem stated in the begin-

ning of this section iz completely proved,

&+ The fundamental theorem

We consider a fiber bundle with a Lle group as structural group
and having as base space a differentiable manifold. A cennection 1s
supposed to be defined in the bundle, The problem on the relationship
tetween properties of the comnection and tepolegieal properties of the
bundle can be described as follows:

Let G, be a maximal compact subgroup of the strudtural group Ga

1

Since an invarjant polynemial under ¢ is an invardiant polynomial under
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G there 418 a natural homomorphism
(30) & 1 I(8) - 1(ay).
We have also deflned a homomeorphism

h: TI{6) -~» H(X),

which, ascording to the theorem of Well, %s independent of the cholce of
the connectiens On the other hand, the bundle defines a characteristic

homomerphlam
hts H{xﬂ} ==» H(X).

By the theorem of the last section H{IG) is isomorphie to I(Gl) in the

dimensions < n. The characieristie homomorphism can therefore be written
hty T{a) -~ H(X}.

(ur fundamental theorem agserts that

{31} h=htg .

Let us netice that h is defined by the connection, h' by the topological
properties of the bundle, and ¢F by the relation between the groups G and
Gl.

To prave thils theorem we observe that the bundle 1s equivalent to
one with the structural group Gl' Define a comneetion in the bundle with

the group G Bince L{Glj 1s a subalgebra of L{G), the ;onnectiun can be

1°
regarded as relative to the group G. Using this connection, we see that
the two sides of {31) are identlcesl.

An fmportant partlevlar case of the theorem is one for which G is
itself compact. Then h 1s 4dentical with the characteristic homomorphism,
In particular, it follows that if a comnection can be defined in the

bundle which is locally flat, then the characteristic ring 1s zero.
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Another consequence of the theorem is that the kermel of & 4:. I(Q}
is mapped into zero hy he On the other hand, as we shall aee later from
examples, ¢ 18 not necessarily onto, |

The deseription of fhe homemorphiom & depends on the study of the
relotion between the Lle slpebras L(0) and L(G]_), and the echomology struc-
tore ~f these Lie algebras., Thelr stody has recertly been succegsfully
¢gavricd cul by He Cartan, Chevalley, Korzul, ard Well, (Cf. Koszul, J. L.,
H-rrlogle et cohomeclogie des algehres de Lie, Pull. Socs Math, de France

73, 654127 (1950))
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Chepter IV

Bundles with the Classiss} Greups as Structwral Croups

Fiber bundies which have as structural groups the classical groups,
namely the orthogenzl groups the rotation group, the unitary group, and
the symplectic group, play an important role in problems of gewnetry., In
fact, such bundles include'th;me naturally asasoclated to differentlable
manifelds and complex manifelds, When a HRlemann metric 1a glven an a
differentiable menifeld or an Hermitian metric on a complex manifold, the
metricas will define intrinsically connestions in the tangent bundles, and
the determination of the characteristic homomarphism by the connection.
glves rise to a relationship between the tangent burdie and the metric.
Moreover, at least at the preaent stage, we have a betterrhlwledge of
the characteristis hommsorphisms of such bundlies, This chapter will be

devoted to the study of these particular cases,

1. Homology groups of Grassmamn manifalds

Let R(n),0{n),U{n) denste respectively thc rotation group, the
orthogonal group, and the unitery group in n variables, Far bpundles with
these groups as structural groups and with bage spaces of dimension < k,
universs]l bundles are raspectively given by

R(n+N)/R(N) -—-> R{n+#N)/ R{n) X R(X), K € N1,
(1} R{n#N)/R{N) =<-» R{0#N}/ RN} M {R{n) X R(N}, k g W1,
U{n#H)/U(N) ---» U(n+N)/ Uln) X 4N}, kg 2N,

7
That these are universal bundles follsws simply from the vanishing of
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homctopy groups of dimenaions r, 0 < T < k, of the bundle,

In order to desoribe the characieristic homomorphism, 1% is there-
fore necessary to study the homology prepertles of the base spaces of
4hese bundles, While this gives rise to & new treatment in the easzae af
real coefficients, it ia wider in scope in the sense that more general
coeffictents can be taken into conslderation, Geometrleally theas base
spaces are the so-called Crassmenn manifolds and are respectively: 1)
the manifold'ain,H,R) of oriented nedimensisnal linear spaces through a
point in a real Euclidemn space E°  (R) of dimension n#N; 2) the marifold
G(n,N,R} of nonworiented n~dimensional linear spaces through a polnt in a
real Euclidean space En+H{R} of dimenelon n#d; 3) the manifold G(n,N,C)
of n—dimeneionsl linear spaces through & peint in a complex Ewclidean
Bpace En+ntﬂ) of dimension n+N, The homology groups of the Grasgmann
manifolds have been studied by Fhresmann who defined celluler decomposl-
tiona which we proceed to deseribe,

As the three cases admit a common treatment, we shall adopt the
gponvention to denete the Grassmann manifold by G{n,N} znd the Euclidesn
sypace by En+H’ when the results in questicn are valld for 211 three cases,

Let © be a point of BN, the n-dimensional linear spaces ihrough
which conxtitute the Gressmann manifeld G{n,N} under consideration. Take
through O a sequenoe of lihear spaces

a1+1 8, +2 ah+n

(2) bl cL? caeincL™ ? D<cd cernca <N
:!:Li unu’

whose superscripis are the dimensions. The set of all elements X of
G(n,N), 1.8,y n~dimensionsl linear spaces through 0, satisfying the condi-

ticns &i+1
dim(ani }::i, i‘l’iiu’n’
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is called a Schubert variely, to be denoted by {al sae an}. The Schubert
varieties have the following properties:

41
1) dim (ay «-+8) = Eéi a o

2} (al ses an) depends on the ehoice of the sequence (2),

However, relative to the same get of integers a., **+ , B¢ with

12
R AN - A, § N, the Schubert varletjes defined by djfferent

sequences (2) are equivalent under the group of motions aboud 0 in En+H.

3} If a > condition (Ci} is a consequence of (Ui+1}.

1"
L} Define the open Schubert variasties:

{3) (al ‘s an}# - (al ars an) - :E:(al ies ai-lai'I e an)'

iﬂl,u--,n
ay_q < 2y
If the asgquences usad in the definition of the Schubert varieties are

shosen frem a fixed sequence of linear spaces

(L) 0c 1t er? ¢ oene ¢ PUL LBty

the open Schubert varieties form a family of disjoint subzets of O(n,N),
which cover G{n,N).

5) An open Schubert varlety is an open cell in the case of
G{n,N,R) and G(n,N,C) and 1z the unlon of two open cells in the case of
G(n,N,R).

The properties 13,2),3),L) are sasily verified, We shall give a
procf of 5), Let (al e an)* be the open Schubert variety, defined by
means of the sequence {L). The statement being clear for n = 1, we

aseume fts truth for n=1 and give the proof by inductian on n, If a= ity
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we bake & hyperplans X through O snd not containing LY. For X « (8,0 eea, )
we have dim(X(} K) = nel, Moreovar, X e (al-;-a-n)* if and only if
INE« {12 an]'*, the latter being defined by means of the soquance
in which K interascts the sequence {4), Hence the theoram fallows by our
Inductlion hypothesis.

Suppose now that a, >0 We take a hyperplans M satisfying the
conditionat 1) ®ry 1% 181 2) K intersects 131*2, +or, 1) Loprec.

tively In the linsar EpaAOOS

" 2
) L e

+1

Put X' = XA M, ToXALMT, If X e (3 oo o )%, then

dim X' = nel, dim ¥ w 1,
and we have
+1
yi oy

Yel - ’I|G($2|¢- an)'l.[.,

the latter being dafined by the sequence (5}, Conversely, the Y and Xt
satisfying the last conditions span an X & (a.l an)#. Since the locus
of T is an a;-cell, the theoren follows by induction, _
Since b (irssomann m‘thirolﬂ 13 sn algekraic variety, it follows rrom
general theorems en the covering of algebralc varistles by complexes that
it has & simplicial decampomition of which our cellular decomposition Im k)
iz o consolidetion. The additive homology siructure can therefore be detor=
mined by the boundary relotions of cwr cellwlar decomposition. To deterw
nine the boundary relsiions we must first aerient the open cells. For
@{n,K,0) the opan cells have a complex structure which determines &
natural orientations ZLet {8y -« a ) denote the chain carried by the
criented open cell and also the cochain taking the value one for this

chadn and the value sero for other chains of the same dimension. Then we
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have:

&) The boundary relaticns of the cellular decomposition of G(n,N,GC)
defined in 4} are .
(6) 2 (ay e a)m0, S{a ++a)=o,
Tt follows that the (8, =+» 2, ), 053, §a,§ +» g2 g N, form a hamo-
logy or cohomelogy base of G(n,N,C}s In particular, all Bettl mumbers of
odd dimension are were,

Concerning the rea)l Grassmam manifelds we first observe thatl
E(n,H,R) ig a covering space of G{n,N,R). An element X - (31 vaw an}ﬂ is

spanned by the vectors

a i-l-i -] i+i'1‘
gii = (xiA) £ L =L ’ 1= 11 16 I3 A m 1, e, n+ﬂ,

where Xip ars tha components of ; 1 in a coordinate syastem having the
linear spaces in the sequence (L} as the coordinate linear spaces. More-

over, we have .

n
-7 = A0,
A 1=1 1 ai-lrj_

In the case of 'E{n,N,R), (al an)-ﬁ- consists of two open ¢ells, to be
a~d + o 'II- LN ‘I- 'T ] o 1 d
denoted by {al an} end {ay a ) ard defined rosmcctively hy
\?-I
O = 0and A < 0. In order t0 detemine the veniovs r‘-’, WLLCRElY,
]

we alsp masume

xiai+i = 1, xi ﬂj*j = G, j L i, i= 1, ¢-.:n’ j - 1, "',h—l
for (al see A }+,
(7)
xk ak+k = i, xn an*n 1, xi aj"':l o, J <1,
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The remaining x's, namely,

x

Ill,u -,Ila',x.zl, ,I%a:x,%a;‘_,z,.- "x%ﬂ.z"'l’ 33.!., 3 3+2,il|xﬂ,u uo,xnan+n-1,

then form a goordinate gystem on each of the open cells. We arient the
ppan cell by the above lexicographie order of the coordinates, In this
way the cells of E{n,H,H) are oriented, By projecting inte G(n,N,R) by
the covering mapping, we orient the cells of G(m,HN,R), This orientation
of tha cells has the property that under a covering transfcrmati?n in
'E‘r'(n,N,R} which transforms an X EE(H,ﬁ,R} into the same linear space with
the opposite orlentation, the oriented cell (al - an)+ goes into the
orlented cell {al-'- aﬂ)", and vice rersa,

It 15 clear that the incldence number of two cells iz zere, unless
they are of the forms (al...ai-r-l...an)t and (al anj:. Dencting these
cells hy Em+1 and B respectivel:;r, we shall determine thelr incldence
number by the following process: Let an element X of E' be determined by

the vectors ? N normalized by the conditions (7)s Fut Fi ? toe L
a

where eai+1 1s the (ai+i)th coordinata veetor, For t > 0, t and the
coordinates in B provide a system of cocrdinates In Em+l. When Em"-l is
oriented by thiz crdered system of cocrdinates, 1t has -E" as 1ts boundary,
Since_the relation betWEeﬁ the two systems of ccordinetes 1z easily deterﬁ
mnined, ws find the incldence number between F and Eml. The result may
Ye swmerdized by the following theorem:

7) The beundary relatiens of ﬁ‘(n,ﬁ,ﬁ} are

n-i+1 a, +l

+ g
a(al-.an)*uZ(-l}al Y1) (ot )+ (a).0a,m18 )7,
(8) _
a +--+g a,+] n=-1+1

plageer) =2 (1) 1 D (ayealiaa L) (agesgmliae ),
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a_tsetn n—-1 a +]

§(ag.0a )3 (-1) 1 i[( 1) (ay..a,41002,) +.:..1)i (80041008 )7,

a +».+a a+l
5(a1..an}‘-2(- iyt (a.l..a. +1..a ) +(-1) (a Jeea4loea )7l
The boundary relations of G{n,N,R} are
2, +emta n=1+1 a,+l
a(al...a ) -Z (-1) 1[(.-1) #{a 1)1 ]{al..ai-l...an},
{s) a +--+a n-1 a +l
Slajeeea) =2, (15 ML 1T ageeayrlona )

In all these Ffarmulas the sums In the right-hand sldes are taken for
4 @ 1, *++ ,n such that the symbols have a sense, that 1z, that the inequale
ities in (2) are satlsfied, '

Having the boundary relations, the determination aof Lhe additive
homology structure is a purely combinaterial problem, For definiteness
we shall carry thiz out for the cnhomelopy groups of dimensions < N of
G{n,N,R), Ve shall call cochains of the type (ay --» a, ) glementary
cochains. Fer such an elementary cochain define two seta of integers bk,ik,

ty the cendltions

aym are =ail < ail"'l“ asr = ﬂil.,iz"‘ ver = ailhdig-flh e a11+“+is’
(10) . LA M
bl = ail, #ain ,hﬂ n ai1+'"+ iB -
sa that
Dﬁ'bl{bz': {bsg N,
{1n)

l g 11" awe ’15 ’- il+. b +is = n.
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Every elementary onchain determines therefore two sequances of non=negative
integera (b, *° ’ba)’ {11, *+ ,i,), satiafying the relations (11}, and is
deheﬁnined hy them, According to the nature af these sequences the elemen=
tary cochaing are classlfied intn three kinds: 1) It is of the First kdind
if al11 the b*a and its are sven or if bys --,‘bE, 1,2, *r,1, are even and
by » 0; 2) Tt 18 of the second kind 1f b ., by, 4 4, tee, i, are even
and 'bk ia odd; 3) It is of the third kind if 'ﬂk, -",hs, ilﬁ-l’ '_.’ia are
even, B, £ o, and 1, 1a odd, It follmws from (§) that an elementary oo-
chain of the first kind is an integral c¢acycle. Moreover, if y is an

elementary cochain of the second kind, with ‘bk < N, we have
% Sy~ T z elem, cochains of second kind,

where = 13 an elementary cocholn of the third kind cbtained frem ¥ by re-
rlacing bk by bk + 1. This correspondence between y and s s one-one,

As stated avove, we restrict surselves to the study of cochains of
dimension r < ¥. From the sbove remark we hawve the follow®ng consequences:
1) A cochaln of dimension r is a lirear combination of cochalns
x, ¥, %’ 6jrv'l, where % | s & linear combination of coshains of
dimension r of the first kind and y7, },Y-l thase of cochains of dimen~
slons r, r-l1 respectively of the second kind, A sum A xf+ﬁyf+u'%dyv'1-o
anly if !\ =M =) = Q 1 2) yv is & cocycle only if it is zero,.

! Tt follows that an Integral goc¢ycle of dimension r is of the fom

_1"

x %5}!*‘"1 and that the latter 1s a ccboundary only when X' =0, yv 0.

We have therefore the theorem;

BY An integral nohnmology base of dimension r < N is fermed by

x7, %Syrql © runs oever the elementary cochalns of dimension r
y-1

of the first idind ana ¥

s Where x

thoge of dimension r-1 of the second kind,
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_ Weak ceheamnlogy and oohemology with coefficlents in a finite field’

have an even simpler structure. They arelgl.van by tha theoprem: h

§) A1l elementary eochaing (nl e a'n} of dimeneion r are ococycles
and form a cobomelagy base mod 2, All elementary essycles of the first
ind of dimensdon r < N form a cohomology base with rationsd coefficients
and with ceefficients mod p 2 3.

Since the dimenpion of an elememtary cocycle of the first kind is
a maltiple of 4, a cncycle of dimension r such that r £ 0 (b), r < N, s
cohemologous to O in ratiensl ceefficdents or in coefficients med p > 3.

Bafure conoluddng thls section, it may be of interest Yo show how
a formula of Whnitney can be derived from the boundary relations (8). On
‘G{n,N,E) we conslder the cochaln

W = (000 \1_\'_1_)'+ w (Oree0 1e0e1)”
¢ 5
From (B) wa get
S = {(ul)ri»l-} Wl

Henco W 1a a cocyele if r i odd and is a cocycle mod 2 if r i even,
Moreover, wa have _
(12) v L 2 5

Yhen & bundle over X is induced by a mapping X --h’{f(n,N,R), the
 cohomology clasees of fit % are called the Stiefel.Whitney clagsses. In
that context the shove formula was firet glven by Whitney.

If X 13 an crientable differentiable mmﬁi"old of dimension n and

B 1s the tangent bundle over X, it can be verified that
(13) . () X = A (O

18 equal to the Euler-Pc-:anaré characterdstic of X,
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2, Differemtial ferms in Grassmann manifelds

The Grasgmarn manifolds are compact homogeneous spaces acted on
trénsitively by & compact Lle group. It foilaws that the methed of
integral invariants deserlbed in §5, Chepter IIT, i= applicsble and that
1% is possible to describe the cohomvlogy classes with real coefficlents
by invariant differentlal forma. We shall set up this relationship in
this section. Because of the different features of the results we divide
the discussions into casess

Case A, Complex frassmann manifolds Glr,N,Ch.

The Meursr-Cartan forms LJAB’ A, B=1, «»+ ,n#i, of the unitary

group U{n+N)} are the €lements of an Hermitian matrix, We put
(1h) -‘-L-ik - Zr. wirmrk 3 i’ ¥ o= l, *es.n, r= n-‘-l’ vea n+j

From these diffeprential forms we construct the following forms:
Q - (‘P, L] ’ 'R ) -
- Z S 1 pmp q]. qm)_.{ Lplq]_ _(]_ mqm’

z
l- L3 & [N ] 4 % b
(15) P S5 Wpq <l o

!

Dy Zﬂpﬁ"zﬂ PRy T -(mep'.‘l.

vhere py, ***,p ie a permutation of q;, *++ ,q,, the summstion ig over

&1l such permutations and zll Pys Tt sPp T 1, *-* ,n, and 5 (pl, P
IR »q,) 18 the Eronecker index, equal to +1 or -1 according as the
permutation is even or odd. These can be regarded ag differential forms
in G{n,N,C) in the sense that thore are unlquely detcrmined forms in
G(n,N,C) of which they are the dusl Images under the natural projection
U{n+i} =-» G{n,N,C}. It is clear that aach of the three sets of forms in

{15) can be expressel as pelynomials of the forms of another, with numori-
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cal coefficisnts, A simple direct computation shows that the forms dbh
are closed, so that the same 1s true of the forms @P m and_%%nf Moreaver,
hy)the first main theorem ~n vector invariants:fnr thé unitary group, it
follews that every invariant form in i{n,N,C) 1la a polyromial in the farms
of ene af the three sets, with numerleal coefficlents.

An invariant differential form (L of degree r in G(n,V,C} defines
a cochain Xr apenrding to the eqguatlen 'bj' z2 = j; L1, z = any r=dim cyele,
H iz a cocycle if AL is closed. We say that {). belongs to the coho-
moelogy class of X +« Of interest iz therefore the qﬁestion of deciding the
cnhumoiogy clasz to which & given closed form beleongs. Concerning this we
have the follewing theorer:

Theorem 1. The form'zﬁi%jfzjmml gp " ﬁelungs to the class
(0*++0 L+-+1)., The f""’“(’ﬁ%"—_‘“{)‘mﬁ @m belongs to the class (U'=+0 m).

To prove this theorem we shall integrate the forms over the Schubert
varieties. We introduce, for a Schubert variety 5, the integers bk’ ik’
defined in {10), (11), so that its dimension is 2m = 2{b111+*r-+bsis). If
X belongs to the cerresponding open Schubert variety, we define a linear

space of dimension i.+i +--*+ik by

L7z
+oenti 1 +ree4i b
YH kn:‘:ﬁ El k k.'k#l, “-nw ,S.
i Feoeut] i +eradqi #+h ’
Then we have ¥ c E k k, k=1, **- ,s, and
i i +1 { 4o
iteyl 2oy ¢ = 1.
Tefine the vectors @1y bt ’ei1+"'+13, fl’ ey fb1+"';hh’ which form
an orthongrmal syster and which are such that: 1} e, --- ,e,
. . I I 4saai
11+---+;|__k 1 ke
span Y 3 21 ey ses e .- s T e ser, £ ans
il+t » .+ik+bk J. ’ 11+ +'1_k b1+ +bk—l+l b1+ +‘bk
span B s K= L, ree,n,
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We now notice that the group U{n+N) can be 1dentifisd with the
space of orthonormz] ayatems of vectors or fr_mea, each element te the
frame to which 1% carries the coordinate frame. If we dencte the frame
by ey, = 28 fl’ tae ,fﬂ, we have

oagy? i = l, see N, V& n*]_’ [y ’n,q.N

{18) cdir = de, -

where the product in the right-hend side 1z the scalar product.
To integrate a differentiz] form over 3 we shall find what it re-
duces on 5, under the sbove cholee of vecteors. Every polynomial of degres

m in (L 44 Teduces on § to & multiple of the form

m (Tr(deP Ty ) (dep +1p))
(1.?} kﬂl’t-f"s rogi,+...+ik_1+l,---,il+...+ik

o -'bl_l.s - l+‘bk-1+1’ e -'bl-'-’ . +bk

Tt follows that the form

RN

ﬂ "
P19 P

Ny,

redutes to 2 non=zero form on S only vwhen the set Pys *'" 5Py contalna
b i, indices among il+12+-“+ik‘_l+1, s ,il+12+---+ik, kawl, «- ,5,
We apply this criterion to the forms b , & defined in (15).
In the case of q’m’ it is clear that the suimation can be restricted to
the 1lndices Pys *** 5P which are mutually distinct. Hence its integral
over 3 will be non-2erc, only when 8 hag the symbol (0 *++ O 1 +»+ 1},
- As for the forms @ n’ we firat observe that @ 0" 0, if m > N.

In fact, in this case, §m 15 a sum of terms as
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Z W‘plr qulm pzrw rq, et wpmsl lr"qum"
{pyerop)m(gye )
Py» B, Y 11- ~te,h

where the index r occurs at least twlce and is not summed, The sum changes
its slgn, when um and qu are interchanged. Since the summation 1s
1 2
taken over all Pys tor P < 1y ""*,n, we have @m =0, for m = N.
We shall next prove that .

S§m"0: }i_ai“m:

i=1
(ajerra )

fa ¥ 0. This will be done by induction ori N. For N = 1 it 15 easily
verifled. OSuppose the statement %e true for W-1. If a < H,} 5 lies in a

~ complex Fuwclldean space of dimension n#i=1 and the result follews from our
induction hypothesis. If g, - W, we hava n ::- N and the result f'ollcrws from
the lemma of the last paragraph, Thus it follows ihat the integral of é n-
over 5 is non-zerg only when 3 has the symbal (0 =++ O m)

It remains to evaluate these in.tegrals. The Schubert variety
(0 sse O o 1) consists by definition of all n~dimensional planes threugh

m
a fixed "™ and belonging to E™N. Let ey, <o+ o . be a frame in B -

o+l

such that ©ip 4rv 5e, o Span B and that e, s+ 2%, span X, a general

1!
glement of 5. Then qf " reduces mn 5 -to the form

.. 2 '
(-1)"(md)" T 0 41,0 Yo 01"
ranemE] e,

The lattber may be cﬁnsidéred as the measyre of all lines lying in the space
L gy gt orthegonal to B Gimilarly, the Schubert variety (0-++0 m)

consgists of all X containing & fixed En-:L and conteined in a fixed En+m.
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tn this the form é@'m reduces to

@ T el

Tentl, r e, mn

In each case the evaluation of the integral in guestion reduces to the
determination of the velume of G(1,m,C).

Let gl be the commlex Fuelldean spnee sueh that G{l,m,C) is the
manifold of 211 lines threuprk the origln O of EF+1. 4 vector in EFﬁl can
be written as v = vt +J. .1 vit, where vt and vt are real vectors, To v
we can therefore.associate in a real Buclidean space R of dimension 2m+2
the veetnrs |

Ty = (vtyvit), glv) = (wvityvi),

: \
The relation betwecn the scalar products :lnlEm+1 and R 1s glven hy

va = F(viE(n) ~ JoL £} glv)
= g{v)g(w) + J=1 g(w) £(v).

It follews that the vectors f{ei),gfsi], 1 a1, ¢+» ,;m+l, associated to

the vectors 2 of a frame in Em+l form a frame in the resl Fuclidean space

R,
A= the wvolume eloment in G{I,m,C) we can take
AT
Vg, B
Ginee

wml,iuijmﬂ = E-r:i f:df(ﬁm_!_l}'f{“i:'j(dffem_!‘l}'g(ei});

we find by substitution

A A I @t derte ) er(e L ale, ).

i=1,205,m
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To integrate this over G(1,m,C) we consider the unit hypersphere 52m+1

described by the end-points of the vecters v satisfying vv = 1. G{1,m,C)
1s obtained by ifdentifying 21l v which differ frem each othexr by a ecalar
factor of absolute value 1. In other words, 82m+% can be fibered by

eircles with G{l,m,C) as base space. It was shown in Chapter I that the

2],

valume element of 5 ia

i.JI.’TEdf(Bml)-f(Ei)](l‘.‘.fl:em+1}-g(ei)}-(df(em+1}cg(em+1]}’ if we identify

¥ with e ..
m+] . :
To evaluate its integral over 3 we fix a point of G{I,m,C) and integrate
over the fibver, giving
ey | 2T
UERRORE 7 SN A AN
2f-1 e

21, C)

Since the volume of sEm+1 i3 known to he
i
by, 2™
V{3 = 3
mi
we get
L et
G{1,m,C) mi

This completely proves our Theorem 1,

Case B. Real Grassmann marifolds G{n,N,R}.

A5 we ghall show in the next section, 1 multiplioative base of the
cohomology ring up to dimensions < N, will be formed by each of the sets
of cohcmology glasses hawving the symbols

. .
?11 = fD s 2 naw 2}, = 1’ an s [%n],

{18)
?J"'ks (O ....4 0 2k 21,;)’ k= 1_, P , [%'-N].
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The PLR will be'called the Pontrjagin clapses and thelr images in the base
space of a gphere bundle the Pontrjlagin characteristic classes, As in the
complex case we take the Maurer~Cartan forms of the orthogonal group Ofn + Hi
which are elements of a skew-symmetrlc matrix: (GA.B:}’ We put

(19) ﬂ.ij = % ﬁiﬂw;tj s i, 3=, ***m,

and from these we congtruct the forms
et

Y, 2SSt ayeg) [ el

i pm%,
(20) o
2 = ~
@gm =>' 8 (Py+oFpi t:.|.1---:lm}_{"}_pl,:l1 ..._(]_pmqm,

vhere the s&mﬁtion convegntion is as above, These forms can be regarded
as differential forms in G{n,N,R) and sre invariant under the action of
6{n,H,R) by the orthogonal group O(n + K). Be::ause of the skew=gymmetTy
of _ﬁ_ 5 in 1ts two indices, it can be seen that §[/ om? @ are zero,
when m is cdd, The relatlion between these formz and the gchomology classes

of G{n,N,R) 13 glven by the following t.heuram: '
L

‘Theorem 2. The form ——m——qf ine belongs fo the class P~ and
{27 (2K}
the form "_"_'21:_'—_ gp L £ the class to the class

(2T {2kl

Tt is of course possikbls te prove this theorem My a process gimilar
to the one used ln the complax case. However, a simpler and more conceptual
procedure would be to reduce the proof Lo the complex case.

We assume ‘the real Euclidean space of dimensieon o+l to be imbedded in
the complex Fuclidean space of the same (complex) dimension:

finﬂq - I'E‘.n+H

This induces a mapping

f i G{n’H’R) e o G{n,H,c)I
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2m =Zm
Dencte by C° and C° respectively the clasges having the aymbools

(0 +»« 01 *++ 1) and {0 »»+ & m). Then we have tha lemma:
W

Lemma, Under the mapping f,

(1) =) O s modd
' (»1)“}"%, m even,

0 ,» m odd

—

£ -
(-1}“"1:72“1, n even

Before proceeding to the proof, we remark that tae Schubert varietles
¢™ and B2 being complex manifolds, have erientationz definad by thelr
complex structure, so that the real cohomology classes with the same symbols
are well defined. The stataemeni:s fer m odd are trivial, because the non-
zero clesses of G{n,N,R) have as dimensions multiples of L. We shall give
the proof for f= C?m, m even, the proof cencerning the expression for
£# T, m even, being similar.

Betwean two Schubert varieties of complementary dimensions on
G{n,N,C) wa ean define thelr intersection number or Krenscker index., It
can be proved that

XI ((bl bos hn),(n—an, ---,N-al)} =0 or 1,

according as (‘bl 'hn] 45 diztinct from {al A an) or not, {Cf. next

section.) Denste by S the Schubert variety having the symbol

E'ﬂl_l o Nl__]; “Iic-ll N).
Fa

It reduces to show that
n
il (S’ f(al naw &nj) - 0, %lai = ]-I.k,

unless (&1 ves an} = Phk, and that in the latter case the Kronecker index
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18 (-1)¥.
The first statement 13 easy to prove. In fact, we have, by dafini-

tien, W 2k-1y.

5= {x l COMp.. dim, (X1 E ;21:}.

Lk ; _
It (al see an) F P77, the fact that the a's are even implies that an-2k+l'0
If ¥ 15 an elemsnt of Gf{n,N,R) balonging to the corresponding Schubert
variaty, Y must contain 2 flxed linear space of dimensien n-2k+1l, and £(¥)
contains a fixed linear space Af complex dimension n-2k+l. When the lattar

is chosen tc te in general pesition with aard oty

; they will have only the
erigin in common, by dimensicn considerations. It followa that 5 and
£ szl an)) sre then get-thecretically disjeint and hence that thelr
Intersection number is zero,

To prove the second statement we sha.ll determine the set-thecretical

interarction of § and f(Phk). The latter consists of all n-dimensional
linear spaces Y satlisfiying
~ ot T
Rl T

whereni:nhzk and “‘#E}:H-2 are fixed linear spaces of real dimensiens n=2k and

n + 2 respectively. Let nf:EINE

be the linear space orihogonal thEn-Ek in
?+2. ¥ 1s then determined by a linear space ? of real dimension 2k in
#ﬁﬂﬂz. Denate Ty En'ak, En+2, E2k+2 the complex linear spaces determined
hymEn"Ek, AEME » EEH? respectively. Since EN-I-Ek-l is in genersl posltion
with them, we have

-2k ~ pitek-1 0,

En+2 - EN+‘2k--1 - L2k+l, say.

Tn order that f£({Y) belongs t¢ 5, 5 wust belong to LEkﬂ'n T2 put
2K+ 4
L ana ¥ E both belonging to B 2: have exactly one linear space of

real dimensicn 2k in common, It follows that 5 and I(Phk) have exactly
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ane clament In conmon,

By using s lecal coordinate system, wh&sa details we zhall not glve
here, we verify that the intersection number 1slactuaily equal ta'{-l)k.
This completes the proof of the lemra.

We new observe that under the mapping [ we have

Bflyy=Lo g
Hence Theorem 2 1s an imradlats conaeﬁue 1z of Theorem 1 and the abpve lsmna,

Rémark. The marping £ induces a wnitary bundle ever G{n,W,R}. It is
equivalent to the Whitney product of the universal tundle over G{n,N,R} with
itself. For if e, "erse, are n vechtors in an element X of G{n,N,R), then
£(X) will be spamned by ei,JT:i 2y i=1, ***,n. Thus £(X) can be consid-
ered as the vector srale spanned by two coples of X, with the orthogonal
group acting caherently.

Singe a sphere hundle can always be lnduced Ey mapping its base spata
into G{n,N,R), this relationship is valid for a gensral sphere bundle, Ve
express 1t by saying thét the Whitney square of a sphere bundle has an
almost complex structure. The above lemma then gives the relationship
between bthe real characteristic ring of a gphere tundls with that of the
almoat complex structure of its Whitney square. This result is uzeful in
differential geometry, where the primary concern is the real characteristic

Ping .

3e Multiplieative properties of the cohomelogy ring of a Grassmann manifold
Since G{n,¥,C) has no torsion, it is sufficient to determine the

multiplication in the real cohemolopy ring, Fer both G{n,N,C) and G{n,N,R},

when the coefficlent ring is the real field, the cohomolegy classes can be

described by differentlal forms and their multiplication by the sexterior
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multipllcation of the latter, According to the general theory déscribed

in §5, Chapter III, these differentin) forms can be supposed to be invar-
iant uncder the acticns of the unitary group and the rotation group respec-
tively, For dc.f‘initeneés of deseription take the case of G(n,N,C). Apply-
ing the so-callrd first main theorem’on vector invariants under the unitary
group {Weyl, Classical Oroups, pe U5) and using an argument of §5, Chap. IIT,
1t follews that an invariant differential form of degrec < 2N is a polﬁumial
of f_h&m, M1, ¢+ N, and hence a npolymenizl of —&r‘/m’ mal, ¢+ N, with
constant coefficients. Jince ell these differenticl fo-ms are of even degree,
it follows from Cartants theorem that they are cleosed and are not cohomologous
to zere unles=s identically coual 4o zero,

" The case of G{n,N,R) can be described in a similar nmanner. Hers we
restrict ourselves to clasges of dimenaioq;f M. Everylinvariant different-
ial farm of degres < N 1s a polynomial of ? om T of @Em with constant
coefficlents, OSuch a form has as degree a multiple of L. For E{n,H,E]

there exlsts for aven n the further invariant form

e

o
Dy, -0
LY -in 1112 i i ?

n-1"n

{22) ~ &,
2i' Ell

corresponding to the determinatt in vector invariants.

For coefficient vings other than the real field, more topological
methods have to be employed to describe fhe multirlicative structure of the
cohomelogy rings. We shall 1llustrate this method by determining the coho-
molegy ring of G(n,N,R) mod 2,

 In this case evary cochain (al res an) ia 2 cocyele and all these
gymbols ferm an independent cohomology base. We shall use the convention

of cmittlng the zeros of such a symbol, thus defining
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(233-) ] (ai'l-l 1.-1 an} = {D LR ﬂ ai.'.l s a an}
and
(23b) (@) = 1, {c)} = 0, if ¢ < Du

Using the same symbols to denote alse the cohomelogy classes, the main

multiplication formula to be proved 1s
f?h) (al e w En) u (h) [ 2 (bl L bn}j
where the summation is extended over all combinations bl, AL ’bn’ such that

0gbo, €b, g+ <b 5N,

1 2 n

(25) 3y b S, (e oW, i), 0t

n n
Stk
= ie]

Formula {24} implies the following multiplication formula:
(al} {31"1) YN tal - I]"-l:]

(a,41) (a,} »*'+ (a, = ©2)

2
(26) (ay ***a) -

(3,45 T)(a,72) ** (a)

where the right-hand side is to be expanded by the laplace development with
cup product as multiplication, This is easily proved by induction on n.
In fact, assuming the truith of the formula for n-l and expanding the deter-

minant aceording to the first colwmn, we see that the determinant is aqual

to n

Egi (ai+1-1)1j (alnl..-ai_l-l ai*l.,..an).

Using (2L}, it con be seen that the sum is equal to the left=hand slde of

(26).
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since the multiplicatién by cup product is agsoclative, formulas
(2h) and (28) together give the multiplication of any two cohomology

clas8es,
We shall prove %he formuts (2;) by estsblishing a corresponding

Formula on Intersection numbers, Consider first the cycles
(2?) (bl e bn}’ {N""an’ sav I N-a-ljln

Suppese that ithey are defined by two sequences of linear spaces in general
position:

Ei c ‘E2 C ene C EnJ

Fl < F2 c c Fn’

(28)

whoze dimensions are given by
dim Ei - hi+i,

dim F “ Nea tneidl, 1w 1, +*0 ,n,

n=1+1

In order that the two cycles have an element X in common, we must have
dim (X NE) 2 1,

dim (X F ) > n-i4l,

n-1+1

Since these two intersections both belong to X, they intersect in a linear
space of dimension > 1, It follows that the gsame is true of Ei and Fn i+i'

Hence we have '
(bi+1) + {H—ai+n-i+l} > Nantl,

or bi 3 8¢
On the other hand, by making use of a coordinate system, we can
_errange that (al sae an} and {N—an 1o H—al) intersect in exactly one

vlement and have there the intersection number 1. It follows that when
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(hl ree bn} and (H-m.n ven N-al} are of complementary dimensions, thelr
intersection number iz 1 or O according as (al ree an) iz equal %o
[:bl e bn:l or not. ..
Using this result, 1t is seen that formula {24) is equivalent to

the statement that the Intersection number of the three cycles
{29) {bl bn]l, (N—an N—al}, (N=h W #ee 1)

is one if the conditions (25) are satisfied and is otherwise zero., We
have shown in the above that in order' the intersection number be non-zero
1t is necessary that a, < bi'

Suppese that these necessary conditions are satisfisd., We put

My = EPF 5410 Py =B OF

i=1, *=* ,n,

and let M be the space spanned by Ml, Y. W Since dim M = bi-ai+1, we
heve dim ¥ < h + n, and this dimension i1s equal to h + n, if any two dis.
tinet Hi have only the point O In common. An element X belenging to. the
interseetion of the first two cycles of (29) meets each M, in 2 linear

space of dimension » 1. Such an X must therefore belong to M. It follows
that in order that the thres cycles in (29} have a non-ampty intersection

we mugt have dim ¥ = h + n. A necessary condition for this is Hirﬁ Mi+1 = (O

¢ ain P,, this condition implies P, = 0. Bu = b -
Sines both ecrbain Pl, this confdition implies 5 0. Bubt dim Pi bi &i+l’

B0 that we hav: b'i. T,

1t re-sirs Lo éhcw twat when the comditiens {25) are satisfied, the
thrge cr-les 3n {29) have the intersertion numﬂer onss In fact, it can be
arranged thaf. they have exacily one elemont in common and we verify the
Interseciion to be sinple. For detalls, compare 5, Ckern, M the multipli-
!

cation in the eherachoriztis ring of a sphere huacle, Annzic of Math. U9,

360-372 {1548). We rerark that the proof given above is a rligh® eimplicaw
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tion of the cne given in this paper,
From the above multiplication formulas we gan draw a nuiber of con-
sequences. The coefflcient ring is always the field mod 2.
1) We introduce the classes |

wiu{CI [N ] Dl"‘ l},lf_:i'sﬂ,.

{30) - (), 1<k,

o
Wo= W0 e,

Applying (2h) we get the formula

(31) S wiywtioig, vso
O, ¥=-H=<ign

Thie permits us to express the wis in terms of the Wts, and vice versa.
2) Every vohomology class of G{n,N,R) is a polynomisl in ﬁk,
k=0, =+ ,N, and i3 a polynomisl In wi, i=0, **" N
This follows from {26) and (30).

3) There is a natural homeomorphism
1 G{n,H§,R) ~-» G{N,n,R},

wnder which an n-dimensional linear space is mapped into its N-dimenslonal
arthogonal space, Denote the classes of G(N,n,R) by thc same gymbels with

dashes. The dual homomorphism induced by f is given ty

Fut e, 1a1, o,
{32)
= ks 7, k=1, LN

To prove this, we show that both sides have the ssme value over any
homology class, an argument which has been applled several times before,

We shall omit the detaills here.
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4} There is no non-trivial relation hetween the wi, i= G; v oon
or the ;k, k=0, *** ,N. When the ¢lasses WK are concerned, we see this
from (26), In fact, let F{W) be a polynomial in Ek, which 1s 2 sum of
terms of the form

i .
71 w 2. e , 11+-c-+1r = d,say.,

We introduce an erdering of soch terms by defining

;f-il ves TiP < ;,"kl can #{s’

ifr<sorr =3, 11 =:k1, avs ’it = kf’ it+1ﬁ kt+1‘ Relative te this
ordering let T s Y be the largest term with noh-zers coaffiéient in
F(¥), We now carry out the multiplicetion by writing F(W) as a sum of
Schubert symbols. From the form of (26} 1t is observed that the expansion
containe the term {m1 taw mr} with non-zero coefficient. Since thas Schubert
symbols are homologically independent, it folldws that the class F(w) 15 not .
zero, unless the pelynomial 1s identically zerac.

The statement concerning wi follows from a consideration of q(N,n,R].

L, GSome applicaticns

It goes without saying that our interest in Grassmann manifolds lles
. in the fact that thelr study laads to a description of the characteristic
homomarphism of a general sphere bundle or of a general differentiable
manifold. A sphere bundie (B,X), whose base gpace is of dimension < N, can

alwzays be induced by a mapping
f: x - G{H,H,R),

which 1s determined up to a homotopy.. For any cchomelogy class 3J of
{n,N,R) the class fﬂé’ is therefore an invariant of the bundle. The geo-

metric interpretation of such invariants was given by Ponirjagin and later
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by the author (Pontrjsgin, C. R. Doklady), 35, 3k-37 {15h2); Mat. Sbornik
N.3., 2L(56), 129-162 {15L9); Chern, Proc.Nat.hcad,Sci., U3A, 33, 78-82
(19L73). Tt consists 4in their {dentification with cohomology olasses do-
fined in obhstruction theory. We shall ecarry this out for the claases
e

To the bundle (B,X) of (n-1)-spheres over X with the orthogonal
;X2

whose fibers are the Stiafel manifolds Vn »’ belng the manifolds of
’

group as the structure group we conslder 1ts assoclate bundle (En

ordered sets of p mutually perpendicular unit vectors in an n-space. It
is known that vn’p is comnected and that its first non-vanjishing homotopy
group is of dimension n-p, which 1s infirite c¢yclic if n~p is even or p=l
and is otherwlse cyelic of order 2. Suppese X be.a simplicial complex, and

xk ita k-dimensional skeleton. According fto a well-known procedure duc to

Sticfel, Whitney, and Steenrod, a erossesection can be defined over X P

To such a ercss-section h we define an (n-p+l)-dimensional cochain SOEL

ag follows: To an (nep+l)eccil & , H’-lfd‘) iz homromorphic te 4 % Vh .
L]
Ly taking its projection Into vn p? the cross=secetion h/3 o defines a
’
mapping of an (n=p)=-sphere into ¥V, and hence an element of T (V. ).
TP N=p " N,p

Thiz we take to be the walue of cn-p+1 for &3 ., The coshzin cn-p+1 5

o
definad is to be understood with local cocfficients In the sense that the
homotopy groups WT;-p{vn,p] related to difforent cells are comnected by
isomerphisme. This cochain iz a cocycele and its cohanology class is inde-
pendent of the choice of the cross-section h over X' P, (For detalls,
cf, Steenred, Fibre Pundlez, 155-183.] We e¢all it the primary shstructiocn
class of tho bundle,

Each of the proups 1Tn~p{vn,p}’ whether infinite cyclle or cyclie

of order 2, can be mapped homomorphically inte the cyeliec group of order
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Z,IE, such that a generateor of the former goes into a generator of the
n=p+l
’

latter. Applying this homomorphism to the primery cbstruction c we

7et a cohomology claas En-p+l, with coefficlents in I, Since the homomor-

. =n=-p+l
phism commutes with the isomorphisms of the local groups, the class ¢ _
is an ordinary cchomology clasa. It will be cslled the reduced primary
obstruction. A theorem due to Pontrjiagin can de stated as follows:

Theorem 1. W« £ o g 1= 1, ",

To prove this theorem, notice that 1t is sufficient to establish it
for the universal bundle. In ™ o take & system of p linearly indepen-
dent vectors, ssy the first p coordinate vectors ey, «+° ,e . To an element

B
X of G(n,N,R) let x, be the orthogonal projection of e, in X. If gUTH-p
is the linear space orthogonal to 8 3 1 =1, +++ ,p, it 1s seen that the

vectors x,, 1 = 1, *** ,p, are linearly dependent if and only if X satis-

i.’
fles the condition dim (X Rn+ﬂhp} z n=p+l, The latter form the Schubert
variety (N=1 *-* N-1 N *++ N) of dimension nNe (n=p+1), whose Aual cohomology
clags 1s WH'S: .1 It follows that il X dﬁes not belong to this Schube;t
variety, a field of p linearly independsnt vectors can be defined in X,
By a well-lmowr orthogonalization process they can be taken to be mutually
perpendicular, The remaining part of the proof can be achieved by taking
a simplicial decomposition of G(n,N,R) such that the Schubert wariety in
question is a submcomplex apd caleulating the reduced primary obstructien
relative to this crogs-section,

As a second appliaation'we shall discuse the gquestlon of relations
between the characterlistic classes. USince the characteristic homomorphi sm
f* preserves multiplication, relations between the cohomoleey classes on

G{n,M,R) remain valid for the characteristic classes. As an illustration

we shall glve a proof of a theorem of Pontrjagin on a relaticn between ihe
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characteristie classes eof a four-dimensional manifeld (that 12, relative
to its tangent bundle).

Related to thiz question 1= the question whéther there are relabtiorn
between the characterisilc classes. With coefficlenta mod 2 it follows
Tram L), §3 that there 1s no nontrivial relation between the Wis, However,
the question’assumes a different aspect if the bundle is not a general one,
in particular, if it 13 the tangent bundie of a differentiable manifold or
the normzl bundle of an imbedded differentiable manifold in an Euclidean
_space. The following thecrem is due to Whitkey, but proved in a different
way:

Theorem 2. For the tangent bundle of & compact orientable rR-dimen-

sional differentiable manifold, the characteristic class W' = 0, the go-

.efficiants telng mod 2.

We imbed X differentiably in an Euclidean space of dimension
n+N:Xc En+H. Conslder the normal bundle of X and denote ita character-
istic ¢lasses by dashes, By dimension considerations we have Hfr = 0,

r: n+ 1, It alsc follows from dimension considerations that an ¥-n field
of normal vectors can be defined over X, because the primary cbsiruction,
being a cohomology class of dimension n + 1, is zero. We take such z field
and consider the bundle 4 of 1ts normal spaces of dimension n over X, Let
A! be the bundle of (n-1)-spheres over X obtained from 4 by taking the unit
aphere'in each fiber. We assert that the bundle (4!,X) has a cross-section.
In fact, A! can be reallzed as a small tube of unit vectors about X,

Suppose its fiber F be ~— O in At. Let D be 2 disc of unit vectors with F
ag its boundary. Then D + C, Hheré-ﬂ is a chain in At with F as boundary,

is a cycle in the Fuclidean space having with X the intersection mwber 1,

But this contradictd the fact that such & cyele is ~o 0 in Enfw. It follows
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that no £iber of A' is ~_ 0 in A%, and that this is true with any co-
efficient group. Ry 3 theorem of Gysin (ﬁOmm.Hath.Halv. 1@,'61-122 (19h2);
cf. also Chern and Spanier, Proc.Nat.Acad,Sci. 36, eL8-255 (1950)), the
primary obsiruetion class of the bundle ls zero. ﬁence the bundle (Af,X)
has a crosé-aedtinn.

tm the other hand, it is clear that the characteristic claasga of
(A7,X) are the same az thosa of the normal bundle over L. Hence Wi e 0
and, by 3}, §3, we have W om0, _

Let X be now a compact orientable {ourwdimensional manifold, and Ph
its charactertstic class which has the symbol £ (22). The follewing
theorem was gtated by Pontrjagin:

Theorem 3. With coeffieclents med 2,

(33) P« a0,
Since the manifold is orientable, we have W. =~ 0. Equations (31)

then give

™.,

Wawao,

ﬁhq-wl‘+(w2)2-o.
On the other hand, (26) gives

B+ w22 a 0.

Combining these eguations and uging Theotem 2, we get (33},

The protlem of showing that the characteristic classes of & differ-
entlable manifold are non=trivial is undoubbedly of intersst. In particular,
the questlon has Qeen raized whether there exists an orlentable differentiable
manifold with & non=zero Stiefel-Whitney clase (Steenred, Fibro Bundles,

pe 212}. We shall give such an example (Wu Wen-tsun, C.R.Acad,Paris,?30,
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508=511(1950) )

Let Hh be the complex projectlive plane, and th I its topolsgical
product with the unit interval, so that its points can be represented as
(pyt), B = Hh, t & I. Identify (ﬁ,O} and (p,1), where p is the conjugate
complax point of p. The resulting space N is a S~dimensional orlentable
mandfold. To see this, let L be a'complex projective line in Mh. The
conjugation T : p ~-» p, which maps a point p of Hh to its conjugate
complex point p, preserves the orientation of Hh and reveraeé the crienta-
tion of L. The space Mh has a cellular decompoaltion consisting of the -
h—call'o“h - Hh-L, the 2-cell 5‘2 a L --50, and the O-cell Ju, where
Jn is a polnt of L. Denoting by I' the open unit interval, we see that

M has a cellular decomposition with the cells 5%, o2, o, =1,

< -Ex I',l d‘hx It, The above remark ow the conjugaticn gives the following
incidence relations

L
{ It) = C,
(30) 'a s 4

2 (2% I1) = + 2 &

In particular, the first relation implies that N is an orientable manifold,
If, as usual, we use the same notetion to denote both a chain and a co-

¢ 2 . 55-2;-’, It iz an integral

chain, then £° = (j‘g is a eocyele mod 2 and C
eoryeld, .

We shall show that the class W of N is # 0. We first consider
the space Mh. Its characteristic classes can be determined directly Yy
suitably chasen fields of vectors. Just to show the usefulness of some
recent results of Wu {C.R.Paris, loc.cit.], we shall find them as follews:
Qur coefficlents are mod 2, Since the Steenrod squares define homemorphigms

and sinoe Mh is a manifold, thefe exist uniquely determined cohomology
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classes Ul, UE, of dimensjons 1 and 2 respactively, satlsfying
{35) 50’y = U T, 5qu2 = TPy 1-2,

where IE or Ij is sn arblirary class whoseldimEnsion iz pgiven by the super-
seripts Then we have ths formula
1

(36 w3 sf ) TP

p=l
Since Hh i&# orientable, we have Wl = (3, Notics that HE(Hh) and Hh(Hh]
ere bolh cyclic of order two. The above formula shows thet H2 and Wh are
the non~zers elements.

We can therefore defins'a 3-field on M with a single singularity
in L. From this a i-field can be constructed in N by taking as the fourth
vector the one in the direction of I. Hence the class WE of N is # O,
Using Whitneyis formula
(37) o wa3 bu

we find W £ O for N.

The manlfold N is S;d;mensional. But ¥ X 51 1z G-dimensional, and
its chararteristic class Wa is also A O, The latter canget the?efcre havs
an almost complex structure.

45 a third application of owr results, we mention the fact that the
characteristic classes give rise to necessary cénditions that a differen~
tiable manifold can be differentimbly imbedded in & certain Euclidean space.
Clearly we have the theoremp

Theorem he  In order that a cormpact differentisble manifold of dimen-

zion n can be cifferensiably imbedded in rn Puclidesn space of dimension

n + ¥, it s peangzary that

A el sl W oy sl
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(38) ﬁr-ﬂ, rx>N+1,
{39} B . g, 2k 2 N+ 1,

By means of the multiplication formulas these conditions can be
transformed into a different form. In partieular, (38} gives, for N = 1,

the conditions

{hoy W (wljr » T = 1,2, "7 0,
apd, for N = 2, the onditiona

(hlj Wr+Hr-lHl+Hp2(w?+(Hl)2}=O,35r§n.

It i3 of courge peoasible to have similaf conditions for larger values of
N. Notice alse that (40) permits us to express all W as polynomiala'of
h'l and (L41) permits us to express alt W as polynondials of W and Wz.
The conditions {41} have some easy consequences which would perhaps We
gslmoler to apply to practical problems. In fact, if in addition wl = 0,
then {41) implies '

(L1a} W (wz)r y 2r<n.

If in addition WE a O (without necessarily having Hl = 0), (41} implies

WhT, e % 2 (39,
(51b) Wom

o, »= 2(3).
We proceed to apply these conditions to the real projective apace
T ® of n dimensions. We have showm heft;re that its c¢ohomolopgy groups
mod 2 are
H(TT™ =1, Ogrsn
Moreover, if j ls a generator of H {‘n'n), then (4 }r is a generator of
i ('TTn.}, the power being in the sense of the cup product. The Stiéfel-

Whitney clasaes of J] " have been determined by Stiefel (Comm.Math,Helv,
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13, 201-218)., They are
n+l T
W= ) (A

We now suppose that these classes satisfy the conditions (h4l), Since
n+l, _ n+l, ned n+l
is also even, This neany that H2 = Q implies w3 = 0, and by (L1b}, that

, the condition that (ngl

Y 1s even implies that
Wl = 0, Then all the W's are 0. Hence W2 = ¢ dmplies all H2 = 0. Suppose
next Ha F 0. It W - 0, we derive from (Lla) that W = 0 or not accnrding
as r 1s odd or even. If W' # Q, then w2+(wl}2 = O and from (L1) we see
that no W is = O for 0 g T € n. It follows that if WT B can be differen-
tiably imbedded in En+2, n must be a pesitive integer satisfylng one of

the follewlng conditions

n+l 2

(1) 2 1« £ £% seet®L ()

1+ tn+1 , (E]

1+ 42 4 gl +...+t“+1,{2)_

An elementary arpument shows that these conditions are respectively equi-
valent to the conditions that n be of one of the forms: 1) n = ok -2,
k22 2n=2%21, k22 3) n=25-3, k>3

We get thercfore the theorom:

Theorem 5. A real projective space of dimension n cannot be differ-
entiably imbedded in En+2, if n is not of one of the forms: i} n = Zk =2,
k22 2)n=25.1, k32 3}n-ék-3,k;3.

Further applications of our criteria can be made, in particular,
the application of conditicns {39} to the imbedding of the complex pro-
Jective space in an Euclidean space. It may be remarked that eonditions

{39) are expressed in terms of cohsmology classea with real coefficlents.
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As characteristic classes with real coefficlents they can be represented
by differentisl formz obitained from a Riemann metric. There i3 no diffi.
culty in finding the actual expressions. ‘Thus we get in this way criteria
that a Riemann manifold cannot be imbedded in a certaih Fuclidean space in
terms of curvature properties of the manifold. These criteria are parti-
cularly useful, when the Riemann manifeld admits a transitlve group of

transformatlions,

5. Tuality Theorems

An cperation on sphere bundles which has various geomeirical applica-
tions was introduced by Whitney. Let (EI,X) and (BE,X) be tiro princibal
bundles cver the same base space X, whose structural groups are erthogonal
groups Ofnl}, D{nz) in n, and n, variables respectively. Then the group
O(nl} x:oanJ can be imbedded in 0(n1+n2), and we get a bundle over X with
O{nl+n2} as siructural group, called the product of the giﬁen bundles,
Denate hy‘wr, Phk the Whitney and Pentr]apin characteristic classes of the
product bundle and by W, Plik, Wy s Plz*k
recall here that the Wis are with coefficlents med 2 and the ®'s with real

those of the given bundles. We

coefficients., The so-called duality theorems desl with relations between
the characteristic classes of the three bundles. More precisely, they
express the classes of one of these bundles 1ln terms of thoze of the other

two, To express this relationship we introdnce the polyiomials

1l
Wit = o wWE T

=0

Eal
W oe 1,

(L2}
pt) = 3o (LXK, 50 2,

with the irdependent variable t. Then we have the following formulas
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W(t) = W (80, (L),
(Li3) 1 P

of which the first one 1s due to Whitney.
The proof of both formulas can be reduced to the case of universal

bundles, fellowing an idea of Wu Wen-~tsun. Take an Euclidean space
n, +n, +N.+§ n. +N n,+N

E 17271 2, spannedfby two Buclidean spaces B 1 and E 2 2, with H

1
sufficiently large. Let G = G{n,, N ), g, = G(n s, N.) e the Grass-
2 n N na, - 1 e 2 "2
mann manifelds in E 1 and E 22 respectively, and G = G(nl-*ng,]*llﬂlg}

+n, tN. *N
thdt in Enl 271 2. An element in Gl and an element in [}2 apan an element

and N

in G, thus giving rise to a mapplng

! r: G

. )

Denote the projectlons of Gl‘x GE inte its two factors by

Py Gl A G2 - Gl’

o, ¢ Gl)'i. G —wex» G,

2 2

Suppose the two given btundles be lnduced by the mappings
hl T S Gl’ h2 HE T GQ.
We compose these two mappings into a mapping

h X —.--}- [}l)( Gz,

defined by h{x} = (hl(x), hE(x]}, x @« X, so that the two bundles are
induced by the mappings plh and th. _Then the tundle over X induced by
the mapping fh 45 their product, T is therefore suffidient to prove
the formulas {L3) for the characteristic classes In Glx GE relative o

the bundles induced bty fthe mappings Py» pE, and £,
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Let us restrict curselves to the proof of the first formula of (i1).
Denote the classes in G, Gl, G2 by Hr, wz, wg respectively. It will be
gufficient to prove the follewing formula .

r
4 p # i #  pei

ey £ %plwl@)pzwg .
To prove this, we show that both sides of this equation have the same walue

for any homology class of Gl}{ G, of dimension r. 5Such a class is of the

2
Tarm %y fi zr k, where z? and zg"k are homology classes of Gl and G2

respectively. OSuppose, for instance, that z o (1 e+ 1) A representative
k
Schubert variety of this class will consist of linear spaces which contain

a fixed linear space of dimensicn n.~k+l. The linear spaces of a Schubert

1

variety of the class zr'k contain a2 fixed linear space of dimsnsion ng-(r-k}.

2
A linesr space spanned by them will then contain a linear space L0 of

dimension n,+n,_ ~r+l, This condition 1z therefore satisfied the Iinear
e AL

i

spaces of a representative c¢ycle of the class f(z?,k’z;'k\. Te prove that

W has the walue { for f[zi k’z;’k}, we notlce that the salue is also the

2 172
N HN, ver Ky +N }, which consists of all 1inear spaces of dimension n,+n, in

l_.gﬁ‘,-—-«—._________‘/ 2
n1+n -1

a fixed linear space of dimension H1+N2+r-l. Wren this is in general

position with LDJ they have only the origin O in common., Hence the inter-

interasetion number of the latter with the cycle {N N =1 v N N =1
I W

seqtion number 1s sctually zero,

It remains to show that w' has the value 1 ®When zi and z;-k are of
the forms 2z, = (1 ++ 1), z, = (1 +++1., This will be reduced to the cal-
culation of an intersection number. Ws shall omit the details here,

S0 far we have gtudied the additive and multiplicative homology
structures of Grassmann manifolds in order to get concluslons on the

characteristic classes of sphere bundles. Hecently it has been found
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ﬁseful to study other topologlcal operatiens in the Grassmann manifold
(Cf., for instance, Wu Wen~tsun, C.R. Paris 230, 918-920 (1950}), in
particular, the Steenrod squaring operations, It has been found possible
to express the Steenrod squares of the Stiefel-Whitney classes as their
guadratic polynomtals, The formulas are

(LS. Sqr‘l-\'s z (ﬁ-r+t-— ) Hr"t' 1"1s-l-’l:-y syr>0,
£t

wWhere (1;) iz the binomial coefficlent reduced mod 2, with the following

conventions:

” {§)=o, iIfp<aqg, g0,

=1, if g = 0,
Let n-1 be the dimensicn of the spheres. We prove (LS) by inductien
" on n, For n =1 it is trivial. Suppose therefore that (LS} is true for
burdles of spheres of dimensinn < n-1l, It is sufficient to prove thisz on
the veiversal bundle over G = Z(n,N) = C{nl+n2, K We use the above
hetation and Lake n o= n=1, n, = 1l; =so thalt therc iz a mapping
f: Gl){ GE === (I,
We put
T
g2 _ .. I.5 Surttel - q+'t
Fr=k;qvf+%( N ) et

and denote the corresponding expressions far the bundles over Gl’ G2 Ly

£ ] = . - a
F{ P F respectively. Tnen we find

£ = 5qT W ":Z {S'T:“" T T
=0

iy

- +t.,1 e .

W D1 @i X T G @)
- =0

u

i
)
! H

orl
)
l._l
4
=]
P
Lr 3
U]
'_I
":?'4‘#
+
m
m
y.d
—
._.
I'\}
hy
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which is zero by our induction hypothesis. But by (LL) £° 1a an isomerphism
in the dimensiona g Hl’NE' Hence FT° u'o, and {L5) 1s proved.

The interest in the formwla (LS} 1lies in the fact that it enablea us
to formulate necessary conditions that a éphere bundle I1s a tangent bundle,

In fact, we introduce the cchomology claszes U of Wu by the equations

@) W 8PP 40

pz0

which completely determine U Comparing with the equation {36), we have
the following theorem:
4 necessary condltion for a sphere bundle to be a tangent bundle is

the vanishing of the following classes of Wus:

(48) =0, p>3,

te]l being the dimension of the spheres.

6, An application to projective differential geometry

We shall conclude these notes by glving an applicatioh of a different
kind, naﬂely, to a problem of projection differential geomstry.

Let P be the three-dimensional real projectivé gpace, and E the four-
dimensional space of its lines. We define a ruled surface in P to be a
differentiable mapping f: 31 --» E of a circle igtc E such that no two
lines intersect. In our early notation E wag written as G(2,2), The

x

mapping £ therefore induces a tupdle of circles owver 57 and the ruled

aurface 1s a realization of the bundle space in F. Since ar 1(E]-:: IE’
there are two such bundles according as the mepping f defines the zero or
non=zere elemant of "Trle}, the ruled surface being homeomorphic to a
torus and a Klein bottle respectively, We shall prove the follewing

theorem due to Wut
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& rMiled gurface in P is homeomorphic te a torus,
In other words, the non-crlentable bundle cannot be realized as a
ruled surface in P, | |
To prove this theorem let us recall that if x,, i = 1, *** ,b, ere
the homogeneous coordinates in P, the Plicker coordinates Pij of 2 line

Joining the points x are defined by

32 Ty
{113} pi"} L x'lyj —— xjyi s 1, .j - 1, P ,h‘

These cocrdinates p 13 are homogeneous and satisfy the ldentity .

(SD ) pl?p 3 hﬁnphzwlhpgj = O
Instead of these we introduce another setb of coordinates by
£ T 3 = =
Plo ™ 31 % M1 Pp3 2,71 P, =75+
{51} | .
Py ™ 71" Tl’phz"?e"fz’ st'?3"3 3*

Then the identity (50) becomss
2 2,%2 p2.,.n2,.,:2
(52} ?1"'?2"?3_ Q_l*lgitj.‘
The cooprdinates ? i | " being still homsgenecus, we can normalize them
so that

(52) §§+'§g+;’§=1,r{2 e

1t S *agT

The normalized coordinates are determined up to 2 sign., We Tan therefore
take two spheres (two-dimensional) Sl, SE and represent the lines of P as
pairs af points of these spheres such that the pairs {?‘, no, % *,f} *),
where ‘?5 *, r}* are the aniipodal peoints of rﬁ s '/, determine the same line,
If we take the'lines to be oriented, then the oriented lines are in one-one

correspondence with the pairs of points of the two spheres.
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The mapplng £ will be represented by a pair of curves 3 (t),

h {t}, &g t < 1, such that

(;{0}37(0)) = (?(1):}}(13 Qr (;(D}:Q(O}) - {é*{l];;‘;*(l}}-

The bundle 1s crientable or non-orientable, according as the first or
second case haphens, Suppose now that the second ia the case. Denote by

dl,d2 the spherical distances on the two spheres, and write
d—l(t:t‘} = d-j.(?(t):'% {t1) Is
dz':t':t') - de{l'_} {t), ') (tv)" ).
Then we have
a, (0,)+d (t,1) = d,(0,1),
8,(0,4)+d,{t,1) = d,{0,1).
An elementary argument #ill then give the follewing lemma: There exist
two values 0g t <1, 0= tt g 1, with t # ¢, (t,t') # (¢,1), such that
dy (t,21) = dy(t,80),
In terma of the coordinates thls can be written
~ - - !
EROEMUI RO NN ROENCD Y NOTRIDIY ML NCHE
IROL NS
which 15 the cendltion that the lines cnrr&aponding to the parameters %,t!

intersect. But this contradicts our asswmption that no two distinet lines

intersect,



