Von Neumann Algebras Form a Model for the Quantum Lambda Calculus arXiv:1603.02133 [cs.LO]

Kenta Cho Abraham Westerbaan
Radboud University, Nijmegen
iCIS | Digital Security
Radboud University

> QPL 2016
> 9 June 2016

We present ...

A denotational model for

the Quantum Lambda Calculus [Selinger \& Valiron 2000s]

by
von Neumann Algebras
[von Neumann (with Murray) '30s-'40s]

We present ...

A denotational model for
higher-order quantum programming language
the Quantum Lambda Calculus [Selinger \& Valiron 2000s]
by
von Neumann Algebras
[von Neumann (with Murray) '30s-'40s]

We present ...

A denotational model for
higher-order quantum programming language

the Quantum Lambda Calculus [Selinger \& Valiron 2000s]

by
generalisation of matrix algebras e.g. $\mathcal{M}_{n}=\mathbb{C}^{n \times n}$
von Neumann Algebras
[von Neumann (with Murray) '30s-'40s]

Quantum Lambda Calculus

Quantum Lambda Calculus
\approx linear lambda calculus + quantum primitives

Quantum Lambda Calculus

Quantum Lambda Calculus \approx linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

Quantum Lambda Calculus

Quantum Lambda Calculus
\approx linear lambda calculus + quantum primitives
qubit type, preparation, measurement, unitary transformation
(Unlike Quipper, no manipulation of quantum circuits)

Quantum Lambda Calculus

Quantum Lambda Calculus
\approx linear lambda calculus + quantum primitives
qubit type, preparation, measurement, unitary transformation
(Unlike Quipper, no manipulation of quantum circuits)

- Type system is based on linear logic with the exponential modality "!"
- Each input can be used only (at most) once, unless it has a duplicable type $!A$

Quantum Lambda Calculus

Quantum Lambda Calculus
\approx linear lambda calculus + quantum primitives
qubit type, preparation, measurement, unitary transformation
(Unlike Quipper, no manipulation of quantum circuits)

- Type system is based on linear logic with the exponential modality "!"
- Each input can be used only (at most) once, unless it has a duplicable type ! A
- Studied extensively by Selinger and Valiron in 2000s

Syntax of Quantum Lambda Calculus

We follow [Selinger \& Valiron '06, '09] (with \oplus type, without recursion)

Type $A, B::=$ T | qbit $|!A| A \multimap B|A \otimes B| A \oplus B$
Term $M, N, L::=x|*|$ new \mid meas $|U| \lambda x . M \mid M N$

$$
\begin{aligned}
& \text { | let }\langle x, y\rangle=N \operatorname{in} M \\
& |\langle M, N\rangle| \operatorname{inl}(M) \mid \operatorname{inr}(N) \\
& \mid \operatorname{match} L \operatorname{with}(x \mapsto M \mid y \mapsto N)
\end{aligned}
$$

Syntax of Quantum Lambda Calculus

We follow [Selinger \& Valiron '06, '09] (with \oplus type, without recursion)

$$
\begin{aligned}
& \text { Type } A, B::=\top \mid \text { qbit }|!A| A \multimap B|A \otimes B| A \oplus B \\
& \text { Term } M, N, L:: x|*| \text { new } \mid \text { meas }|U| \lambda x . M \mid M N \\
& \mid \text { let }\langle x, y\rangle=N \operatorname{in} M \\
&|\langle M, N\rangle| \operatorname{inl}(M) \mid \operatorname{inr}(N) \\
& \mid \text { match } L \text { with }(x \mapsto M \mid y \mapsto N)
\end{aligned}
$$

Syntax of Quantum Lambda Calculus

We follow [Selinger \& Valiron '06, '09] (with \oplus type, without recursion)

$$
\begin{aligned}
& \text { Type } A, B::=\top \mid \text { qbit }|!A| A \multimap B|A \otimes B| A \oplus B \\
& \text { Term } M, N, L:: x|*| \text { new } \mid \text { meas }|U| \lambda x . M \mid M N \\
& \mid \text { let }\langle x, y\rangle=N \operatorname{in} M \\
&|\langle M, N\rangle| \operatorname{inl}(M) \mid \operatorname{inr}(N) \\
& \mid \text { match } L \text { with }(x \mapsto M \mid y \mapsto N)
\end{aligned}
$$

Examples of typing:
$\checkmark x:$ qbit, $y:$ qbit $\vdash\langle x, y\rangle:$ qbit \otimes qbit

Syntax of Quantum Lambda Calculus

We follow [Selinger \& Valiron '06, '09] (with \oplus type, without recursion)

$$
\begin{aligned}
& \text { Type } A, B::=\top \mid \text { qbit }|!A| A \multimap B|A \otimes B| A \oplus B \\
& \text { Term } M, N, L:: x|*| \text { new } \mid \text { meas }|U| \lambda x . M \mid M N \\
& \mid \text { let }\langle x, y\rangle=N \operatorname{in} M \\
&|\langle M, N\rangle| \operatorname{inl}(M) \mid \operatorname{inr}(N) \\
& \mid \operatorname{match} L \operatorname{with}(x \mapsto M \mid y \mapsto N)
\end{aligned}
$$

Examples of typing:

$$
\begin{aligned}
& \checkmark x: \text { qbit, } y: \text { qbit } \vdash\langle x, y\rangle: \text { qbit } \otimes \text { qbit } \\
& \mathbf{x} x: \text { qbit } \vdash\langle x, x\rangle: \text { qbit } \otimes \text { qbit }
\end{aligned}
$$

Syntax of Quantum Lambda Calculus

We follow [Selinger \& Valiron '06, '09] (with \oplus type, without recursion)

$$
\begin{aligned}
& \text { Type } A, B::=\top \mid \text { qbit }|!A| A \multimap B|A \otimes B| A \oplus B \\
& \text { Term } M, N, L:: x|*| \text { new } \mid \text { meas }|U| \lambda x . M \mid M N \\
& \mid \text { let }\langle x, y\rangle=N \operatorname{in} M \\
&|\langle M, N\rangle| \operatorname{inl}(M) \mid \operatorname{inr}(N) \\
& \mid \text { match } L \text { with }(x \mapsto M \mid y \mapsto N)
\end{aligned}
$$

Examples of typing:
$\checkmark x:$ qbit, $y:$ qbit $\vdash\langle x, y\rangle:$ qbit \otimes qbit
X x : qbit $\vdash\langle x, x\rangle:$ qbit \otimes qbit
$\checkmark x:!A \vdash\langle x, x\rangle:!A \otimes!A$

Models of Quantum Lambda Calculus

A (denotational/categorical) model of a language consists of a category \mathbf{C} and an interpretation $\llbracket-\rrbracket$: types $A \quad \longmapsto \quad$ objects $\llbracket A \rrbracket \in \mathbf{C}$ well-typed terms

$$
x: A \vdash M: B
$$

$$
\longmapsto \quad \text { arrows } \llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \llbracket B \rrbracket \text { in } \mathbf{C}
$$

Models of Quantum Lambda Calculus

A (denotational/categorical) model of a language consists of a category \mathbf{C} and an interpretation $\llbracket-\rrbracket$: types $A \quad \longmapsto \quad$ objects $\llbracket A \rrbracket \in \mathbf{C}$
well-typed terms

$$
x: A \vdash M: B
$$

$$
\longmapsto \quad \text { arrows } \llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \llbracket B \rrbracket \text { in } \mathbf{C}
$$

Models of quantum lambda calculi are nontrivial!

Models of Quantum Lambda Calculus

A (denotational/categorical) model of a language consists of a category \mathbf{C} and an interpretation $\llbracket-\rrbracket$: types $A \quad \longmapsto \quad$ objects $\llbracket A \rrbracket \in \mathbf{C}$
well-typed terms

$$
x: A \vdash M: B
$$

$$
\longmapsto \quad \text { arrows } \llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \llbracket B \rrbracket \text { in } \mathbf{C}
$$

Models of quantum lambda calculi are nontrivial!

- Selinger \& Valiron introduced a quantum lambda calculus with its operational semantics in 2005

Models of Quantum Lambda Calculus

A (denotational/categorical) model of a language consists of a category \mathbf{C} and an interpretation $\llbracket-\rrbracket$: types $A \quad \longmapsto \quad$ objects $\llbracket A \rrbracket \in \mathbf{C}$
well-typed terms

$$
x: A \vdash M: B
$$

$$
\longmapsto \quad \text { arrows } \llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \llbracket B \rrbracket \text { in } \mathbf{C}
$$

Models of quantum lambda calculi are nontrivial!

- Selinger \& Valiron introduced a quantum lambda calculus with its operational semantics in 2005
- The first model was obtained by Malherbe in 2010 using presheaf categories

Models of Quantum Lambda Calculus

A (denotational/categorical) model of a language consists of a category \mathbf{C} and an interpretation $\llbracket-\rrbracket$: types $A \quad \longmapsto \quad$ objects $\llbracket A \rrbracket \in \mathbf{C}$
well-typed terms

$$
x: A \vdash M: B
$$

$$
\longmapsto \quad \text { arrows } \llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \llbracket B \rrbracket \text { in } \mathbf{C}
$$

Models of quantum lambda calculi are nontrivial!

- Selinger \& Valiron introduced a quantum lambda calculus with its operational semantics in 2005
- The first model was obtained by Malherbe in 2010 using presheaf categories
- Two other models (both accommodate recursion)
- [Hasuo \& Hoshino, LICS'11], via Gol
- [Pagani, Selinger \& Valiron, POPL'14], applying quantitative semantics

Previous and our approaches

One reason that designing such a semantics [of QLC] is difficult is that quantum computation is inherently defined on finite dimensional Hilbert spaces, whereas the semantics of higher-order functional programming languages [...] is inherently infinitary.
[Pagani, Selinger \& Valiron '14]

Previous and our approaches

One reason that designing such a semantics [of QLC] is difficult is that quantum computation is inherently defined on finite dimensional Hilbert spaces, whereas the semantics of higher-order functional programming languages [...] is inherently infinitary.
[Pagani, Selinger \& Valiron '14]

Previous and our approaches

One reason that designing such a semantics [of OLC] is difficult is that quantum computation is inherently defined on finite dimensional Hilbert spaces, whereas the semantics of higher-order functional programming languages [...] is inherently infinitary.
[Pagani, Selinger \& Valiron '14]

Previous approaches:

Fin. dim. structure $\mathbb{C}^{n}, \mathcal{M}_{n}$

Construction

presheaf Gol
quanti. sem.

Model

Previous and our approaches

One reason that designing such a semantics [of OLC] is difficult is that quantum computation is inherently defined on finite dimensional Hilbert spaces, whereas the semantics of higher-order functional programming languages [...] is inherently infinitary.
[Pagani, Selinger \& Valiron '14]

Previous approaches:

Fin. dim. structure $\mathbb{C}^{n}, \mathcal{M}_{n}$

Construction

> presheaf Gol
> quanti. sem.

Our approach: simply use von Neumann algebras, an infinite dimensional generalisation of matrix algebras

Von Neumann algebras

- A von Neumann algebra (aka. W^{*}-algebra) is a *-algebra ('ring') of operators on a Hilbert space which is closed in a suitable topology
- Developed by von Neumann and Murray in a series of papers "On rings of operators" in 1930s-1940s

Von Neumann algebras

- A von Neumann algebra (aka. W^{*}-algebra) is a *-algebra ('ring') of operators on a Hilbert space which is closed in a suitable topology
- Developed by von Neumann and Murray in a series of papers "On rings of operators" in 1930s-1940s
- Examples: $\mathcal{B}(\mathcal{H}) ; \mathcal{M}_{n_{1}} \oplus \cdots \oplus \mathcal{M}_{n_{k}} ; \mathbb{C}^{n}$

Von Neumann algebras

- A von Neumann algebra (aka. W^{*}-algebra) is a *-algebra ('ring') of operators on a Hilbert space which is closed in a suitable topology
- Developed by von Neumann and Murray in a series of papers "On rings of operators" in 1930s-1940s
- Examples: $\mathcal{B}(\mathcal{H}) ; \mathcal{M}_{n_{1}} \oplus \cdots \oplus \mathcal{M}_{n_{k}} ; \mathbb{C}^{n}$
[The theory of von Neumann algebras] generalizes many familiar facts about finite-dimensional algebra, and is currently one of the most powerful tools in the study of quantum physics.
[P. R. Halmos 1973]

Interpretation of types in v.N. algebras

Type $A, B::=\top \mid$ qbit $|!A| A \multimap B|A \otimes B| A \oplus B$

Interpretation of types in v.N. algebras

Type $A, B::=$ T | qbit $|!A| A \multimap B|A \otimes B| A \oplus B$

$$
\begin{aligned}
\llbracket \top \rrbracket & =\mathbb{C} & & \text { complex numbers } \\
\llbracket q \mathrm{qi} \rrbracket \rrbracket & =\mathcal{M}_{2} & & 2 \times 2 \text { matrices } \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket & & \text { tensor product of v.N. alg. } \\
\llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket & & \text { direct sum of v.N. alg. }
\end{aligned}
$$

Interpretation of types in v.N. algebras

Type $A, B::=$ T \mid qbit $|!A| A \multimap B|A \otimes B| A \oplus B$

$$
\begin{aligned}
\llbracket \top \rrbracket & =\mathbb{C} \\
\llbracket \mathrm{qbit} \rrbracket & =\mathcal{M}_{2} \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =? ? \\
\llbracket!A \rrbracket & =? ?
\end{aligned}
$$

complex numbers
2×2 matrices
tensor product of v.N. alg. direct sum of $\mathrm{v} . \mathrm{N}$. alg.

Interpretation of types in v.N. algebras

$$
\text { Type } A, B::=\mathrm{T} \mid \text { qbit }|!A| A \multimap B|A \otimes B| A \oplus B
$$

$$
\begin{array}{rlrl}
\llbracket \top \rrbracket & =\mathbb{C} & \mathrm{c} \\
\llbracket \mathrm{qbit} & =\mathcal{M}_{2} & 2 \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket & \mathrm{te} \\
\llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket & \mathrm{~d} \\
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket} & \\
\llbracket!A \rrbracket & =\ell^{\infty}(\mathbf{v N}(\llbracket A \rrbracket, \mathbb{C}))
\end{array}
$$

complex numbers
2×2 matrices
tensor product of $\mathrm{v} . \mathrm{N}$. alg.

$$
\llbracket A \oplus B \rrbracket=\llbracket A \rrbracket \oplus \llbracket B \rrbracket \quad \text { direct sum of v.N. alg. }
$$

Set $\underset{\mathrm{vN}(-, \mathrm{C})}{\stackrel{\ell^{\infty}}{\longleftrightarrow}} \mathrm{vN}^{\mathrm{op}} \underset{\mathcal{F}}{\stackrel{\mathcal{J}}{\longleftrightarrow}} \mathrm{vN}_{\mathrm{CPsU}}^{\mathrm{op}}$

Interpretation of types in v.N. algebras

$$
\text { Type } A, B::=\mathrm{T} \mid \text { qbit }|!A| A \multimap B|A \otimes B| A \oplus B
$$

$$
\begin{array}{rlrl}
\llbracket \top \rrbracket & =\mathbb{C} & \mathrm{c} \\
\llbracket \mathrm{qbit} \rrbracket & =\mathcal{M}_{2} & 2 \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket & \mathrm{te} \\
\llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket & \mathrm{~d} \\
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \backslash \llbracket B \rrbracket) \cdot \llbracket A \rrbracket & \\
\llbracket!A \rrbracket & =\ell^{\infty}(\mathbf{v N}(\llbracket A \rrbracket, \mathbb{C}))
\end{array}
$$

$$
\llbracket A \oplus B \rrbracket=\llbracket A \rrbracket \oplus \llbracket B \rrbracket \quad \text { direct sum of v.N. alg. }
$$

$$
\text { Set } \underset{\mathrm{vN}(-, \mathrm{C})}{\stackrel{\ell^{\infty}}{\rightleftarrows}} \mathrm{vN}^{\mathrm{op}} \underset{\mathcal{F}}{\stackrel{\mathcal{J}}{\longleftrightarrow}} \mathrm{vN}_{\mathrm{CPsU}}^{\mathrm{op}}
$$

How does this work?

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a monad
- La
comonad

Categorical structures for the OLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t. $\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- La
comonad

Categorical structures for the OLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- La
comonad

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- La linear exponential comonad

Categorical structures for the OLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- L a linear exponential comonad
- a categorical model of the exponential modality "!"

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- L a linear exponential comonad
- a categorical model of the exponential modality "!"
- $\mathcal{K} \ell(T)$ contains the category \mathbf{Q} [Selinger '04]

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- La linear exponential comonad
- a categorical model of the exponential modality "!"
- $\mathcal{K} \ell(T)$ contains the category \mathbf{Q} [Selinger '04]
- Quantum operations between fin. dim. algebras

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- La linear exponential comonad
- a categorical model of the exponential modality "!"
- $\mathcal{K} \ell(T)$ contains the category \mathbf{Q} [Selinger '04]
- Quantum operations between fin. dim. algebras
- To interpret quantum primitives

Categorical structures for the QLC

A concrete model of the OLC [Selinger \& Valiron '09] is:

- (\mathbf{C}, \otimes, I) a SMC with finite coproducts $(\oplus, 0)$
- T a strong monad with a Kleisli exponential \multimap s.t.
$\mathbf{C}(A \otimes B, T C) \cong \mathbf{C}(A, B \multimap C)$
- cf. Moggi's computational lambda calculi
- La linear exponential comonad
- a categorical model of the exponential modality "!"
- $\mathcal{K} \ell(T)$ contains the category \mathbf{Q} [Selinger '04]
- Quantum operations between fin. dim. algebras
- To interpret quantum primitives
- and certain conditions (e.g. L preserves \otimes, \oplus)

Our model

comonad $L \longrightarrow(\mathbf{C}, \otimes, I) \longleftarrow T$ monad

Our model

$$
\text { Set } \underset{\mathbf{v N}(-, \mathrm{C})}{\stackrel{\ell^{\infty}}{\underset{~}{~}}} \mathbf{v N} \mathbf{N}^{\mathrm{op}} \underset{\mathcal{F}}{\stackrel{\mathcal{J}}{\stackrel{\perp}{\longleftrightarrow}}} \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}
$$

Our model

(Opposite categories of)

- vN: v.N. algebras and normal unital *-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N}_{\mathrm{CPsu}}$: v.N. algebras and normal completely positive subuntial (CPsU) maps

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N P P U}$: v.N. algebras and normal completely positive subuntial (CPsU) maps

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N P P U}$: v.N. algebras and normal completely positive subuntial (CPsU) maps
quantum processes/operations

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}$: v.N. algebras and normal completely positive subuntial (CPsU) maps
- $\mathbf{v N} \subseteq \mathbf{v N} \mathbf{N P S U}$
quantum processes/operations

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}$: v.N. algebras and normal completely positive subuntial (CPsU) maps
- $\mathbf{v N} \subseteq \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}$
quantum processes/operations
Goal. $\mathbf{v N}^{\text {op }}$ forms a concrete model of the QLC.

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}$: v.N. algebras and normal completely positive subuntial (CPsU) maps
- $\mathbf{v N} \subseteq \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}$

Goal. $\mathbf{v N}^{\text {op }}$ forms a concrete model of the QLC.
(1) $\mathbf{v N} \mathbf{N}^{\mathrm{op}}$ is symm. mon. via tensor products \otimes and \mathbb{C}

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}$: v.N. algebras and normal completely positive subuntial (CPsU) maps
- $\mathbf{v N} \subseteq \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}$

Goal. $\mathbf{v N}^{\text {op }}$ forms a concrete model of the QLC.
(1) $\mathbf{v N} \mathbf{N}^{\mathrm{op}}$ is symm. mon. via tensor products \otimes and \mathbb{C}
(2) $\mathbf{v N} \mathbf{N}^{\text {op }}$ has coproducts given by direct sums \oplus

Our model

(Opposite categories of)
structure-preserving maps

- vN: v.N. algebras and normal unital
*-homomorphisms (aka. normal MIU-maps)
- $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}$: v.N. algebras and normal completely positive subuntial (CPsU) maps
- $\mathbf{v N} \subseteq \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}$

Goal. $\mathbf{v N}^{\text {op }}$ forms a concrete model of the QLC.
(1) $\mathbf{v N} \mathbf{N}^{\mathrm{op}}$ is symm. mon. via tensor products \otimes and \mathbb{C}
(2) $\mathbf{v} \mathbf{N}^{\text {op }}$ has coproducts given by direct sums \oplus

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathrm{vN}^{\text {op }}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op} \mathrm{p}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathbf{v N}^{\text {op }}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathrm{vN}^{\mathrm{op}}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem to $(-) \otimes \mathscr{A}: \mathbf{v N} \rightarrow \mathbf{v N}$

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathrm{vN}^{\mathrm{op}}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op} \mathrm{p}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem to $(-) \otimes \mathscr{A}: \mathbf{v N} \rightarrow \mathbf{v N}$
(1) vN is complete, locally small

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathrm{vN}^{\text {op }}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem to $(-) \otimes \mathscr{A}: \mathbf{v N} \rightarrow \mathbf{v N}$
(1) vN is complete, locally small
(2) $(-) \otimes \mathscr{A}$ preserves limits

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathbf{v N}^{\text {op }}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem to $(-) \otimes \mathscr{A}: \mathbf{v N} \rightarrow \mathbf{v N}$
(1) vN is complete, locally small
(2) $(-) \otimes \mathscr{A}$ preserves limits $\left(\bigoplus_{i} \mathscr{B}_{i}\right) \otimes \mathscr{A} \cong \bigoplus_{i} \mathscr{B}_{i} \otimes \mathscr{A}$

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathbf{v N}^{\text {op }}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op} \mathrm{p}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem to $(-) \otimes \mathscr{A}: \mathbf{v N} \rightarrow \mathbf{v N}$
(1) vN is complete, locally small
(2) $(-) \otimes \mathscr{A}$ preserves limits $\left(\bigoplus_{i} \mathscr{B}_{i}\right) \otimes \mathscr{A} \cong \bigoplus_{i} \mathscr{B}_{i} \otimes \mathscr{A}$
(3) Solution Set Condition

A result of Andre Kornell

Theorem (Kornell 2012). The SMC $\left(\mathbf{v N}^{\text {op }}, \otimes, \mathbb{C}\right)$ is closed. Namely: for any v.N. alg. \mathscr{A}, \mathscr{B} there is $\mathscr{B}^{* \mathscr{A}}$ (called the free exponential) s.t.

$$
\mathrm{vN}^{\mathrm{op}}(\mathscr{C} \otimes \mathscr{A}, \mathscr{B}) \cong \mathrm{vN}^{\mathrm{op}}\left(\mathscr{C}, \mathscr{B}^{* \mathscr{A}}\right)
$$

- Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem to $(-) \otimes \mathscr{A}: \mathbf{v N} \rightarrow \mathbf{v N}$
(1) vN is complete, locally small
(2) $(-) \otimes \mathscr{A}$ preserves limits $\left(\bigoplus_{i} \mathscr{B}_{i}\right) \otimes \mathscr{A} \cong \bigoplus_{i} \mathscr{B}_{i} \otimes \mathscr{A}$

3 Solution Set Condition
Warning: we do not know a good description of the free exponential. (Even $\mathcal{M}_{2}{ }^{* \mathcal{M}_{2}}$ is hard!)

Monad part (right-hand side)

Monad part (right-hand side)

(1) The previous talk by A.W.:

- The inclusion \mathcal{J} has a right adjoint \mathcal{F} (via AFT)
- $\mathcal{K l}(\mathcal{F} \mathcal{J}) \cong \mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}$
$\left(\right.$ since $\left.\mathbf{v N}^{\mathrm{op}}(\mathscr{A}, \mathcal{F} \mathcal{J} \mathscr{B}) \cong \mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}(\mathscr{A}, \mathscr{B})\right)$

Monad part (right-hand side)

(1) The previous talk by A.W.:

- The inclusion \mathcal{J} has a right adjoint \mathcal{F} (via AFT)
- $\mathcal{K l}(\mathcal{F} \mathcal{J}) \cong \mathrm{vN}_{\mathrm{CPsU}}^{\mathrm{op}}$
$\left(\right.$ since $\left.\mathbf{v N}^{\mathrm{op}}(\mathscr{A}, \mathcal{F} \mathcal{J} \mathscr{B}) \cong \mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}(\mathscr{A}, \mathscr{B})\right)$
(2) $\mathbf{v N} \mathrm{N}_{\mathrm{CPsU}}^{\mathrm{op}}$ contains Q (in fact, $\mathbf{f d v N}_{\mathrm{CPsu}}^{\mathrm{op}} \simeq \mathrm{Q}$)

Monad part (right-hand side)

(1) The previous talk by A.W.:

- The inclusion \mathcal{J} has a right adjoint \mathcal{F} (via AFT)
- $\operatorname{Kl}(\mathcal{F} \mathcal{J}) \cong \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$
$\left(\right.$ since $\left.\mathbf{v N} \mathbf{N}^{\mathrm{op}}(\mathscr{A}, \mathcal{F} \mathcal{J} \mathscr{B}) \cong \mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}(\mathscr{A}, \mathscr{B})\right)$
(2) $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$ contains Q (in fact, $\mathbf{f d v N _ { \mathrm { CPsU } }} \simeq \mathrm{Q}$)
(3) $\mathcal{F} \mathcal{J}$ is a strong monad, since \mathcal{J} is strict monoidal

Monad part (right-hand side)

(1) The previous talk by A.W.:

- The inclusion \mathcal{J} has a right adjoint \mathcal{F} (via AFT)
- $\operatorname{Kl}(\mathcal{F} \mathcal{J}) \cong \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$
$\left(\right.$ since $\left.\mathbf{v N} \mathbf{N}^{\mathrm{op}}(\mathscr{A}, \mathcal{F} \mathcal{J} \mathscr{B}) \cong \mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}(\mathscr{A}, \mathscr{B})\right)$
(2) $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$ contains Q (in fact, $\mathbf{f d v N _ { \mathrm { CPsU } }} \simeq \mathrm{Q}$)
(3) $\mathcal{F} \mathcal{J}$ is a strong monad, since \mathcal{J} is strict monoidal
(4) Kleisli exponential $\mathscr{A} \multimap \mathscr{B}:=(\mathcal{F} \mathcal{J} \mathscr{B})^{* \mathscr{A}}$

Monad part (right-hand side)

(1) The previous talk by A.W.:

- The inclusion \mathcal{J} has a right adjoint \mathcal{F} (via AFT)
- $\operatorname{Kl}(\mathcal{F} \mathcal{J}) \cong \mathbf{v} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$
$\left(\right.$ since $\left.\mathbf{v N} \mathbf{N}^{\mathrm{op}}(\mathscr{A}, \mathcal{F} \mathcal{J} \mathscr{B}) \cong \mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}(\mathscr{A}, \mathscr{B})\right)$
(2) $\mathbf{v N} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$ contains Q (in fact, $\mathbf{f d v N _ { \mathrm { CPsU } }} \simeq \mathrm{Q}$)
(3) $\mathcal{F} \mathcal{J}$ is a strong monad, since \mathcal{J} is strict monoidal
(4) Kleisli exponential $\mathscr{A} \multimap \mathscr{B}:=(\mathcal{F} \mathcal{J} \mathscr{B})^{* \mathscr{A}}$
- $\mathbf{v N} \mathbf{N}^{\mathrm{op}}(\mathscr{C} \otimes \mathscr{A}, \mathcal{F} \mathcal{J} \mathscr{B}) \cong \mathbf{v} \mathbf{N}^{\mathrm{op}}\left(\mathscr{C},(\mathcal{F} \mathcal{J} \mathscr{B})^{* \mathscr{A}}\right)$

Linear exponential comonads

Linear exponential comonads

= Categorical models of the exponential modality "!"

Linear exponential comonads

= Categorical models of the exponential modality "!"
A comonad L is linear exponential when endowed with a comonoid structure on each object $L A$:

$$
L A \longrightarrow L A \otimes L A \quad L A \longrightarrow I
$$

(suitably compatible with the comonad structures)

Linear exponential comonads

= Categorical models of the exponential modality "!"
A comonad L is linear exponential when endowed with a comonoid structure on each object $L A$:

Contraction
 (Duplication)

$L A \longrightarrow I$

(suitably compatible with the comonad structures)

Linear exponential comonads

= Categorical models of the exponential modality "!"
A comonad L is linear exponential when endowed with a comonoid structure on each object $L A$:

Contraction
 (Duplication) $L A \longrightarrow L A \otimes L A \quad L A \longrightarrow I$
 (suitably compatible with the comonad structures)

Weakening
(Discarding)

Theorem (Benton). If we have a symm. mon. adjunction between a SMC and a cartesian monoidal category as in

$$
(\mathbf{B}, \times, 1) \underset{{ }_{G}}{\stackrel{F}{\perp}}(\mathbf{C}, \otimes, I)
$$

then the comonad $F G$ on \mathbf{C} is linear exponential.

Comonad part (left-hand side)

Comonad part (left-hand side)

(1) $\mathbf{v N}(-, \mathbb{C})$ is a hom-functor

Comonad part (left-hand side)

(1) $\mathbf{v N}(-, \mathbb{C})$ is a hom-functor
(2) For each set $X, \ell^{\infty}(X)=\{$ bounded $\varphi: X \rightarrow \mathbb{C}\}$ is a v.N. algebra, giving a functor ℓ^{∞}

Comonad part (left-hand side)

(1) $\mathbf{v N}(-, \mathbb{C})$ is a hom-functor
(2) For each set $X, \ell^{\infty}(X)=\{$ bounded $\varphi: X \rightarrow \mathbb{C}\}$ is a v.N. algebra, giving a functor ℓ^{∞}
(3) The dual adjunction Set $\rightleftarrows \mathbf{v} \mathbf{N}^{\text {op }}$ via "swapping arguments" $f(x)(a)=g(a)(x)$ for $f: X \rightarrow \mathbf{v N}(\mathscr{A}, \mathbb{C})$ and $g: \mathscr{A} \rightarrow \ell^{\infty}(X)$

Comonad part (left-hand side)

(1) $\mathbf{v N}(-, \mathbb{C})$ is a hom-functor
(2) For each set $X, \ell^{\infty}(X)=\{$ bounded $\varphi: X \rightarrow \mathbb{C}\}$ is a v.N. algebra, giving a functor ℓ^{∞}
(3) The dual adjunction Set $\rightleftarrows \mathbf{v} \mathbf{N}^{\text {op }}$ via "swapping arguments" $f(x)(a)=g(a)(x)$ for $f: X \rightarrow \mathbf{v N}(\mathscr{A}, \mathbb{C})$ and $g: \mathscr{A} \rightarrow \ell^{\infty}(X)$
(4) Set is cartesian $(\times, 1)$

Comonad part (left-hand side)

(1) $\mathbf{v N}(-, \mathbb{C})$ is a hom-functor
(2) For each set $X, \ell^{\infty}(X)=\{$ bounded $\varphi: X \rightarrow \mathbb{C}\}$ is a v.N. algebra, giving a functor ℓ^{∞}
(3) The dual adjunction Set $\rightleftarrows \mathbf{v} \mathbf{N}^{\text {op }}$ via "swapping arguments" $f(x)(a)=g(a)(x)$ for $f: X \rightarrow \mathbf{v N}(\mathscr{A}, \mathbb{C})$ and $g: \mathscr{A} \rightarrow \ell^{\infty}(X)$
(4) Set is cartesian $(\times, 1)$
(5) Set $\rightleftarrows \mathbf{v} \mathbf{N}^{\mathrm{op}}$ is monoidal: $\ell^{\infty}(X \times Y) \cong \ell^{\infty}(X) \otimes \ell^{\infty}(Y)$

Comonad part (left-hand side)

(1) $\mathbf{v N}(-, \mathbb{C})$ is a hom-functor
(2) For each set $X, \ell^{\infty}(X)=\{$ bounded $\varphi: X \rightarrow \mathbb{C}\}$ is a v.N. algebra, giving a functor ℓ^{∞}
(3) The dual adjunction Set $\rightleftarrows \mathbf{v} \mathbf{N}^{\text {op }}$ via "swapping arguments" $f(x)(a)=g(a)(x)$ for $f: X \rightarrow \mathbf{v N}(\mathscr{A}, \mathbb{C})$ and $g: \mathscr{A} \rightarrow \ell^{\infty}(X)$
(4) Set is cartesian $(\times, 1)$
(5) Set $\rightleftarrows \mathbf{v} \mathbf{N}^{\text {op }}$ is monoidal: $\ell^{\infty}(X \times Y) \cong \ell^{\infty}(X) \otimes \ell^{\infty}(Y)$
(6) $\ell^{\infty}(\mathbf{v} \mathbf{N}(-, \mathbb{C}))$ is linear exponential by Benton

forms a concrete model of the QLC, in the sense of S.\&V.

forms a concrete model of the QLC, in the sense of S.\&V.
Interpretation of types

$$
\begin{aligned}
\llbracket \top \rrbracket & =\mathbb{C} \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}
\end{aligned}
$$

$$
\begin{aligned}
\llbracket q b i t \rrbracket & =\mathcal{M}_{2} \\
\llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket \\
\llbracket!A \rrbracket & =\ell^{\infty}(\mathbf{v N}(\llbracket A \rrbracket, \mathbb{C}))
\end{aligned}
$$

forms a concrete model of the QLC, in the sense of S.\&V.

Interpretation of types

$$
\begin{aligned}
\llbracket \top \rrbracket & =\mathbb{C} & \llbracket q b i t \rrbracket & =\mathcal{M}_{2} \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket & \llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket I \rrbracket} & \llbracket!A \rrbracket & =\ell^{\infty}(\mathbf{v N}(\llbracket A \rrbracket, \mathbb{C}))
\end{aligned}
$$

Interpretation of terms
Well-typed term $x: A \vdash M: B$ is interpreted by

- a Kleisli map $\llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \mathcal{F} \mathcal{J} \llbracket B \rrbracket$ in $\mathbf{v N} \mathbf{N}^{\text {op }}$

forms a concrete model of the QLC, in the sense of S.\&V.

Interpretation of types

$$
\begin{aligned}
\llbracket \top \rrbracket & =\mathbb{C} & \llbracket q b i t \rrbracket & =\mathcal{M}_{2} \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket & \llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{*} \cdot[A \rrbracket & \llbracket!A \rrbracket & =\ell^{\infty}(\mathbf{v N}(\llbracket A \rrbracket, \mathbb{C}))
\end{aligned}
$$

Interpretation of terms
Well-typed term $x: A \vdash M: B$ is interpreted by

- a Kleisli map $\llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \mathcal{F} \mathcal{J} \llbracket B \rrbracket$ in $\mathbf{v N}{ }^{\text {op }}$
- i.e. a map $\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ in $\mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}$

forms a concrete model of the QLC, in the sense of S.\&V.
Interpretation of types

$$
\begin{aligned}
\llbracket \top \rrbracket & =\mathbb{C} & \llbracket q b i t \rrbracket & =\mathcal{M}_{2} \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket & \llbracket A \oplus B \rrbracket & =\llbracket A \rrbracket \oplus \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{*} \llbracket[\rrbracket & \llbracket!A \rrbracket & =\ell^{\infty}(\mathbf{v N}(\llbracket A \rrbracket, \mathbb{C}))
\end{aligned}
$$

Interpretation of terms
Well-typed term $x: A \vdash M: B$ is interpreted by

- a Kleisli map $\llbracket A \rrbracket \xrightarrow{\llbracket M \rrbracket} \mathcal{F} \mathcal{J} \llbracket B \rrbracket$ in $\mathbf{v N} \mathbf{N}^{\text {op }}$
- i.e. a map $\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ in $\mathrm{vN}_{\mathrm{CPsU}}^{\mathrm{op}}$
- i.e. a normal CPsU-map $\llbracket B \rrbracket \rightarrow \llbracket A \rrbracket$
(quantum process!)

Examples of interpretations

$$
\llbracket!T \rrbracket \cong \llbracket T \rrbracket=\mathbb{C}
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top)
\end{aligned}
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!T \rrbracket & \cong \llbracket T \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit}=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus T) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$.

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

$$
\llbracket A \multimap B \rrbracket=(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

$$
\llbracket A \multimap B \rrbracket=(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}=? ?
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

$$
\begin{aligned}
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}=? ? \\
\llbracket!(A \multimap B) \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left((\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}, \mathbb{C}\right)\right)
\end{aligned}
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

$$
\begin{aligned}
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}=? ? \\
\llbracket!(A \multimap B) \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left((\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}, \mathbb{C}\right)\right) \\
& \cong \ell^{\infty}(\mathbf{v N}(\mathcal{F} \mathcal{J} \llbracket B \rrbracket, \llbracket A \rrbracket))
\end{aligned}
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

$$
\begin{aligned}
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}=? ? \\
\llbracket!(A \multimap B) \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left((\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}, \mathbb{C}\right)\right) \\
& \cong \ell^{\infty}(\mathbf{v N}(\mathcal{F} \mathcal{J} \llbracket B \rrbracket, \llbracket A \rrbracket)) \\
& \cong \ell^{\infty}\left(\mathbf{v N}_{\mathrm{CPsU}}(\llbracket B \rrbracket, \llbracket A \rrbracket)\right)
\end{aligned}
$$

Examples of interpretations

$$
\begin{aligned}
\llbracket!\top \rrbracket & \cong \llbracket \top \rrbracket=\mathbb{C} \\
\llbracket!\mathrm{bit} \rrbracket & \cong \llbracket \mathrm{bit} \rrbracket=\mathbb{C}^{2} \quad(\text { bit }:=\top \oplus \top) \\
\llbracket!\mathrm{qbit} \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)\right) \cong\{0\} \quad \text { initial in } \mathbf{v N} \mathbf{N}^{\mathrm{op}}
\end{aligned}
$$

since $\mathbf{v N}\left(\mathcal{M}_{2}, \mathbb{C}\right)=\varnothing$. This is as expected, because there is no valid typing judgement $\vdash M$: !qbit.

$$
\begin{aligned}
\llbracket A \multimap B \rrbracket & =(\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}=? ? \\
\llbracket!(A \multimap B) \rrbracket & =\ell^{\infty}\left(\mathbf{v N}\left((\mathcal{F} \mathcal{J} \llbracket B \rrbracket)^{* \llbracket A \rrbracket}, \mathbb{C}\right)\right) \\
& \cong \ell^{\infty}(\mathbf{v N}(\mathcal{F} \mathcal{J} \llbracket B \rrbracket, \llbracket A \rrbracket)) \\
& \cong \ell^{\infty}\left(\mathbf{v N}_{\mathrm{CPsU}}(\llbracket B \rrbracket, \llbracket A \rrbracket)\right)
\end{aligned}
$$

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$
- There exists an adjunction $\mathbf{C v N}{ }^{\text {op }} \leftrightarrows \mathbf{v N}{ }^{\text {op }}$, which does not give a linear exponential comonad

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$
- There exists an adjunction $\mathbf{C v N}{ }^{\mathrm{op}} \leftrightarrows \mathbf{v N}^{\mathrm{op}}$, which does not give a linear exponential comonad
- In fact, any comonoid in the SMC $\mathbf{v N} \mathbf{N}^{\mathrm{op}}$ (or $\mathbf{v} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$) must be of the form $\ell^{\infty}(X)$

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$
- There exists an adjunction $\mathbf{C v N}{ }^{\mathrm{op}} \leftrightarrows \mathbf{v N}^{\mathrm{op}}$, which does not give a linear exponential comonad
- In fact, any comonoid in the SMC $\mathbf{v N} \mathbf{N}^{\mathrm{op}}$ (or $\mathbf{v} \mathbf{N}_{\mathrm{CPsU}}^{\mathrm{op}}$) must be of the form $\ell^{\infty}(X)$
- C^{*}-algebras do not work similarly, since Cstar $^{\text {op }}$ is not a closed SMC

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$
- There exists an adjunction $\mathbf{C v N}{ }^{\text {op }} \leftrightarrows \mathbf{v N}^{\text {op }}$, which does not give a linear exponential comonad
- In fact, any comonoid in the SMC $\mathbf{v N}^{\mathrm{op}}\left(\right.$ or $\left.\mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}\right)$ must be of the form $\ell^{\infty}(X)$
- C^{*}-algebras do not work similarly, since Cstar ${ }^{\text {op }}$ is not a closed SMC
- \otimes does not distribute over infinite \oplus

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$
- There exists an adjunction $\mathbf{C v N}{ }^{\text {op }} \leftrightarrows \mathbf{v N}{ }^{\text {op }}$, which does not give a linear exponential comonad
- In fact, any comonoid in the SMC $\mathbf{v N}^{\mathrm{op}}\left(\right.$ or $\left.\mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}\right)$ must be of the form $\ell^{\infty}(X)$
- C^{*}-algebras do not work similarly, since Cstar ${ }^{\text {op }}$ is not a closed SMC
- \otimes does not distribute over infinite \oplus
- Our model is adequate wrt. the operational semantics

Remarks

- Duplicable types ! A are interpreted by $\ell^{\infty}(X)$, rather than arbitrary commutative von Neumann algebras such as $L^{\infty}(X, \mu)$
- There exists an adjunction $\mathbf{C v N}{ }^{\text {op }} \leftrightarrows \mathbf{v N}{ }^{\text {op }}$, which does not give a linear exponential comonad
- In fact, any comonoid in the SMC $\mathbf{v N}^{\mathrm{op}}\left(\right.$ or $\left.\mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}\right)$ must be of the form $\ell^{\infty}(X)$
- C^{*}-algebras do not work similarly, since Cstar ${ }^{\text {op }}$ is not a closed SMC
- \otimes does not distribute over infinite \oplus
- Our model is adequate wrt. the operational semantics
- Laborious but straightforward, since our language does not contain recursion

Conclusions

Von Neumann algebras are powerful enough to interpret Selinger \& Valiron's Quantum Lambda Calculus, via the adjunctions:

Future work:

- Recursion
- $\mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}$ is dcpo-enriched, but $\mathbf{v N}{ }^{\mathrm{op}}$ is not
- Understand the interpretation of \multimap better

Conclusions

Von Neumann algebras are powerful enough to interpret Selinger \& Valiron's Quantum Lambda Calculus, via the adjunctions:

Future work:

- Recursion
- $\mathbf{v N}_{\mathrm{CPsU}}^{\mathrm{op}}$ is dcpo-enriched, but $\mathbf{v N}{ }^{\mathrm{op}}$ is not
- Understand the interpretation of \multimap better

Thank you!

