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1. Introduction

These notes, an introduction to the subject, develop basic, classical properties of configu-

ration spaces as well as pointing out several natural connections between these spaces and

other subjects. The main topics here arise from classical fibrations, homogeneous spaces, con-

figuration spaces of surfaces, mapping class groups and loop spaces of configuration spaces,

together with the relationships of these objects to simplicial groups and homotopy groups.

Properties of the simplicial setting of homotopy groups are analogous to features of the

Borromean rings or ‘Brunnian’ links and braids.

The confluence of structures encountered here is within low dimensional topology, as well

as homotopy theory. These structures appear in a variety of contexts given by knots, links,

homotopy groups and simplicial groups. Thus some homological consequences are developed,

together with a description of how these results fit with linking phenomena in Section 20.

The structure of a simplicial group and ∆-group, which arise in the context of configura-

tion spaces, are also described below. Connections to homotopy groups show how classical

congruence subgroups arise in this context and coincide with certain natural subgroups of

braid groups occurring in geometric group theory. These structures date back to the 1800’s

[48].

These notes are intended as a short introduction to a few basic properties and applications

of configuration spaces. Much excellent as well as beautiful work of many people on this

subject has been deliberately omitted because of space and time restrictions. The author

apologizes to many friends and colleagues for these omissions.

The author would like to thank several friends for help in the preparation of these notes,

notably Liz Hanbury who did a wonderful job of proof-reading, Benson Farb, Jon Berrick,

Sam Gitler, Larry Taylor, Yan Loi Wong and Jie Wu.
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A more thorough development of configuration spaces is a book in preparation with Sam

Gitler and Larry Taylor. One final remark: Sections 16 through 21 give a revised version of

notes in [21].
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2. Basic Definitions

The first definition is that of the configuration space.
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Definition 2.1. Let M denote a topological space. Define the configuration space of ordered

k-tuples of distinct points in M as the subspace of Mk given by

Conf(M,k) = {(m1,m2, . . . ,mk) | mi 6= mj for all i 6= j}.

The symmetric group on k-letters, Σk, acts on Conf(M,k) from the left by

σ(m1, . . . ,mk) = (mσ(1), . . . ,mσ(k)).

One basic example is given next.

Example 2.2. This example gives classical properties of the configuration space of points

in the plane R2 which is also regarded as the complex numbers C. In this case, Artin’s braid

group with k strands, Bk, as well as Artin’s pure braid group with k strands, Pk, defined in

Section 8 below, arise naturally.

If M = R2, then Conf(R2, k) is a K(Pk, 1) and Conf(R2, k)/Σk is a K(Bk, 1) with proof

first given in [32, 37] as well as sketched as Theorem 12.2 below. This example arises in the

context of classical polynomials in one complex variable. Consider the space of unordered k-

tuples of points in the complex numbers Ck/Σk, a space well-known as the k-fold symmetric

product. A point in Ck/Σk may be regarded as the set of roots {r1, . . . , rk}, possibly repeated,

of any monic, complex polynomial of degree k in one indeterminate z over C.

There is a homeomorphism

Root : Ck/Σk → Ck

for which

Root({r1, . . . , rk}) = p(z)

where

p(z) =
∏

1≤i≤k

(z − ri).

Thus the space of complex polynomials p(z) = zk + ak−1z
k−1 + · · · + a1z + a0 is identified

by this homeomorphism which sends the roots of p(z), {r1, . . . , rk}, to the point in Ck with

coordinates (ak−1, . . . , a0), the coefficients of p(z), where the aj are given, up to sign, by the

elementary symmetric functions in the ri.

The subspace Conf(C, k)/Σk of Ck/Σk is homeomorphic to the space of monic, complex

polynomials p(z) = zk +ak−1z
k−1 + · · ·+a1z+a0 for which p(z) has exactly k distinct roots.

The classical homeomorphism sends an equivalence class [r1, . . . , rk] ∈ Conf(C, k)/Σk to the

polynomial

p(z) =
∏

1≤i≤k

(z − ri).
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Features of the inverse of this homeomorphism are one of the main topics in classical Galois

theory. Further features of Conf(C, k)/Σk concerning the homotopy groups of the 2-sphere

will be addressed in Section 20.

Example 2.3. The configuration space Conf(Rn, k) is homeomorphic to

Rn × Conf(Rn −Q1, k − 1)

where Q1 is the set with a single point given by the origin in Rn. An extension of this fact

is given in Example 2.6 below.

Notice that Conf(Rn, 2) has Sn−1 as a strong deformation retract with one choice of

equivalence given by

A : Sn−1 → Conf(Rn, 2),

the map defined on points by the formula A(z) = (z,−z) for z in Sn−1, where Sn−1 is

regarded as the points of unit norm in Rn. A map

B : Conf(Rn, 2)→ Sn−1

is defined by the formula

B((x, y)) =
(x− y)

|x− y|
.

Observe that B ◦ A is the identity, and A ◦ B is homotopic to the identity via a homotopy

leaving Sn−1 point-wise fixed.

Example 2.4. Some features of configuration spaces for a sphere are listed next.

(1) The configuration space Conf(Sn, 2) is homotopy equivalent to Sn with one choice of

equivalence given by the map

g : Sn → Conf(Sn, 2)

for which g(z) = (z,−z).

(2) Let τ(Sn) denote the unit sphere bundle in the tangent bundle for Sn. There is a

homotopy equivalence E : τ(Sn)→ Conf(Sn, 3) defined on points (z, v) by

E(z, v) = (z, exp(v), exp(−v)).

Furthermore, this map is a fibre homotopy equivalance as implied by Theorem 3.2

below [32, 31].

(3) Properties of the tangent bundle and normal bundle for a smooth manifold M arise

repeatedly in [20] where cofibre sequences are developed for configuration spaces

given in terms of Thom spaces of associated normal bundles. Similar features arise

in Totaro’s spectral sequence [77].
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Example 2.5. A classical fact is that the configuration space Conf(S2, 3) is homeomorphic

to PGL(2,C), as for example, stated as Lemma 9.3 below. It follows that the configuration

space Conf(S2, k + 3) is homeomorphic to the product PGL(2,C) × Conf(S2 − Q3, k) for

all k ≥ 0, for which Q3 denotes a set of three distinct points in S2. The group PGL(2,C)

has SO(3) as a maximal compact subgroup and is thus homotopy equivalent to the real

projective space RP3. This case was basic in [5, 11].

Example 2.6. If G is a topological group, then there is a homeomorphism

h : Conf(G, k)→ G× Conf(G− {1G}, k − 1)

where h(g1, . . . , gk) = (g1, (g1
−1g2, . . . , g1

−1gk)). Thus if k ≥ 2, there are homeomorphisms

Conf(R2, k)→ R2 × (R2 − {0})× Conf(R2 −Q2, k − 2)

where Q2 = {0, 1} ⊂ R2 [32, 31, 15].

Natural variations are listed next. The first, a fibre-wise analogue of Conf(M,k) has been

used to give certain natural K(π, 1)’s and to provide an application of a classical ‘incidence

bundle’ [11] to produce computations of the cohomology of certain discrete groups.

Definition 2.7. Let α : M → B be any continuous map. The fibre-wise configuration space

Confα(M,k)

is the subspace of Conf(M,k) given by

Confα(M,k) = {(m1, . . . ,mk) | mi 6= mj for all i 6= j and α(mi) = α(m1) for all i, j}.

Given the projection map for a fibre bundle β : E → B with fibre X, define the incidence

bundle of k points in E to be

Confβ(E, k).

There is a natural projection

π : Confβ(E, k)→ B

which, with mild restrictions given in the next example, is fibration with fibre Conf(X, k).

One example is listed next.

Example 2.8. Let G be a topological group which acts on the left of a space M and thus

diagonally on Conf(M,k). Consider the Borel construction for Conf(M,k) given by

EG×G Conf(M,k)
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together with the natural projection maps

γ : EG×GM → BG

and

γk : EG×G Conf(M,k)→ BG.

Then the natural map

EG×G Conf(M,k)→ Confγ(EG×GM,k)

is a homeomorphism. If G is a compact Lie group, then the natural projection map

EG×G Conf(M,k)→ BG

is a fibration with fibre Conf(M,k), as implied by [64]. A more general setting arises with

the proof of Theorem 3.2 in Section 6.

In Sections 8 through 11, we will use this example in the special case of

η : BSO(2) = ESO(3)×SO(3) S
2 → BSO(3)

to obtain K(π, 1)’s closely connected to mapping class groups. In this case, the group

π = π1(Confη(BSO(2), k)/Σk)

is isomorphic to the group of path-components of the orientation preserving group of diffeo-

morphisms of S2 which preserve a given set of k points [11], i.e., the mapping class group

for a punctured 2-sphere.

A small modification to principal U(2)-bundles gives a K(π, 1) for which π is the mapping

class for genus two surfaces, see Example 9.10 below.

Example 2.9. Consider the natural action of O(n) on Sn−1. Regard O(k) as the subgroup

of O(n+ k) given by O(k)× 1n, and O(n) as the subgroup of O(n+ k) given by 1k ×O(n).

Let V (n + k, k) denote the Stiefel manifold O(n + k)/O(k) and Gr(n + k, k) denote the

Grassmann manifold O(n+ k)/O(k)×O(n).

Consider

V (n+ k, k)×O(n) S
n−1

as the total space of a fibre bundle with projection

γ : V (n+ k, k)×O(n) S
n−1 → Gr(n+ k, k)

and with fibre Sn−1. The associated incidence bundle is

γq : V (n+ k, k)×O(n) Conf(Sn−1, q)→ Gr(n+ k, k)
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with fibre Conf(Sn−1, q).

One result from [11] is that the ‘incidence bundle’

∪k→∞V (3 + k, k)×O(3) Conf(S2, q)/Σq

is a K(π, 1) where π is a Z/2Z extension of the mapping class group for a 2-sphere which

has been punctured q times, for q ≥ 3. The mapping class group for the punctured 2-

sphere is the fundamental group of an analogous bundle where Gr(3 + k, k) is replaced by

O(3 + k)/(O(k)× SO(3)), the subject of Section 9 here.

A third construction is given next.

Definition 2.10. Let Γ be a group which acts freely and properly discontinuously on the

space M so that the projection map

M →M/Γ

is the projection map in a principal Γ-bundle. Define the orbit configuration space

ConfΓ(M,k) = {(m1, . . . ,mk) | miΓ ∩mjΓ = ∅ for all i 6= j}.

The group Γk acts on ConfΓ(M,k) (from the left) by the formula

(γ1, . . . , γk)(m1, . . . ,mk) = (γ1 ·m1, . . . , γk ·mk).

Example 2.11. If S is a surface homeomorphic to S1 × S1, then

S = R2/Γ

where Γ = Z⊕ Z or any parameterized lattice in C. If S is an orientable surface of genus g

with g > 1, then S is the quotient of the upper half-plane H2 by the fundamental group of

the surface. The spaces ConfZ⊕Z(R2, k) and ConfΓ(H2, k) were studied in [85, 63, 14] where

Γ is a Fuchsian group. In addition, further useful properties of ConfΓ(M,k) were developed

in [85].

3. Fibrations

Throughout this section M denotes a topological manifold with Top(M) the group of

homeomorphisms of M , topologized with the compact-open topology. The purpose of this

section is to introduce two theorems first proven in [32] with a small modification below in

terms of homogeneous spaces as well as classifying spaces of certain homeomorphism groups.

In the special case for which M is a closed orientable surface, the theorems in this section

are used in sections 8 through 11 below to construct certain natural K(π, 1)’s associated to

the mapping class group of a surface.
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Definition 3.1. The group Top(M) acts diagonally on the configuration space Conf(M,k).

Thus if f : M →M is an element in Top(M), then the action

θ : Top(M)× Conf(M,k)→ Conf(M,k)

is defined by the formula

θ((f, (m1, . . . ,mk))) = (f(m1), f(m2), . . . , f(mk)).

Let Qk = {q1, . . . , qk} denote the underlying set of points obtained from a fixed point

~q = (q1, . . . , qk) in Conf(M,k). The subgroup of elements in Top(M) which point-wise fixes

the set Qk is denoted Top(M,k) here. There is an induced map

ρ~q : Top(M)/Top(M,k)→ Conf(M,k)

defined by

ρ~q(f) = (f(q1), . . . , f(qk)).

The action specified by θ gives rise to natural fibre bundles as given in the next two

Theorems which are proven in Sections 7 and 6, with original sources [32, 31].

Theorem 3.2. Assume that M is a topological manifold without boundary.

(1) The group Top(M,k) acts on Top(M) by composition (from the left). The natural

quotient map

Top(M)→ Top(M)/Top(M,k)

is the projection map for the principal Top(M,k)-bundle

Top(M,k)→ Top(M)→ Top(M)/Top(M,k).

(2) The induced map ρ~q : Top(M)/Top(M,k)→ Conf(M,k) is a homeomorphism.

(3) The homotopy theoretic fibre of the natural map

BTop(M,k)→ BTop(M)

is Conf(M,k), and, if G = Top(M), then EG ×G Conf(M,k) is homeomorphic to

BTop(M,k).

Observe that the natural projection maps

pi : Mk →Mk−1

which delete the i-th coordinate restrict to maps on the level of configuration spaces

pi : Conf(M,k)→ Conf(M,k − 1).

The second theorem is as follows [32, 31].
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Theorem 3.3. If M is a manifold without boundary, the natural projection map

pi : Conf(M,k)→ Conf(M,k − 1)

is a fibration with fibre

M −Qk−1.

Corollary 3.4. Assume that M is a manifold without boundary, and I = (i1, . . . , ir) is

a sequence of integers with 1 ≤ i1 < i2 < · · · < ir ≤ k. Then the natural composite of

projection maps pI = pi1 ◦ · · · ◦ pir is a fibration

pI : Conf(M,k)→ Conf(M,k − r)

with fibre

Conf(M −Qk−r, r).

Remark 3.5. Several related remarks concerning features of Theorems 3.3 and 3.2 and their

proofs are given next.

(1) Theorem 3.3 was stated and proven in a classical paper by Fadell-Neuwirth [32].

The result also follows from earlier work of R. Palais who was addressing a different

question analogous to Theorem 3.2 [62]. Elegant further developments are in the

book [31].

(2) The proofs below are those of [32, 31] with a small addition concerning principal

fibrations.

(3) Additional hypothesis on M , such as M = Rn×N , imply that the collection of groups

π1(Conf(Rn ×N, k)), k ≥ 1, form a simplicial group (see Section 16 for the concept

of simplicial group). The group π1(Conf(Rn × N, k)) is regarded as the (k − 1)-st

group in the simplicial group, see [5] and Section 16 below.

One basic example is given by the collection π1(Conf(R2, k)) = Pk, k ≥ 1, a

simplicial group denoted AP• in section 19. This simplicial group is closely tied to

the homotopy groups of the 2-sphere [21].

For general M , the collection of fundamental groups π1(Conf(M,k)), k ≥ 1, admit

the structure of a ∆-group, with the ∆-structure induced by the projection maps

pi : Conf(M,k) → Conf(M,k − 1). This idea is developed in [5]; in the special case

of M = S2 there is a connection with the homotopy groups of the 2-sphere. These

structures are also described in section 16 below, as well as [83].

(4) In the case of the simplicial group {π1(Conf(Rn×N, k))} for M = Rn×N , consider

the kernel of the induced map on fundamental groups

π1(pk) : π1(Conf(M,k))→ π1(Conf(M,k − 1)).
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These kernels inherit the structure of a simplicial group isomorphic to Moore’s sim-

plicial loop space construction [61] applied to the simplicial group {π1(Conf(Rn ×
N, k))}. Thus, the natural projection maps in Theorem 3.3 also naturally give

Moore’s simplicial loop space for these simplicial groups, a point described in Sections

19, 20, and 21 below.

The main feature here is that the fibres of the projection maps

pi : Conf(M,k)→ Conf(M,k − 1)

give a precise topological analogue for the group-theoretic process of forming a simpli-

cial loop space from a simplicial group. Thus these projection maps are informative

for other subjects.

4. On cross-sections for configuration spaces

The purpose of this section is to describe certain cross-sections for the projections maps

pi : Conf(M,k)→ Conf(M,k− 1) when they exist for direct reasons. These maps are useful

in what follows below.

Example 4.1. The first natural case is given by cross-sections for the projection maps

pk : Conf(M × Rn, k)→ Conf(M × Rn, k − 1).

A section is specified by

σk : Conf(M × Rn, k − 1)→ Conf(M × Rn, k)

with

σk((m1, r1), . . . , (mk−1, rk−1)) = ((m1, r1), . . . , (mk−1, rk−1), (m1, L~e1))

where

L = 1 + maxi||ri||

and ~e1 = (1, 0, . . . , 0).

Notice that a direct variation of this map applies to give sections for the projection maps

pk : Conf(ζ, k)→ Conf(ζ, k − 1)

where ζ is an n-plane bundle over M which supports a nowhere vanishing cross-section

σ : M → ζ for the bundle projection p : ζ →M . See the next example.
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Example 4.2. Define

σk : Conf(ζ, k − 1)→ Conf(ζ, k)

by the formula

σk((z1, . . . , zk−1)) = (z1, . . . , zk−1, λσ̂(z1))

where

σ̂(z1) = σ(z1)/|σ(z1)|
and λ = 1 + maxi|σ(zi)|.

Next consider a manifold without boundary M , together with a fixed subset Q ∈ M

consisting of a single point.

Example 4.3. The projection maps

pk : Conf(M −Q, k)→ Conf(M −Q, k − 1)

admit cross-sections up to homotopy [32].

Example 4.4. An example for which the projection map

p3 : Conf(M, 3)→ Conf(M, 2)

does not admit a cross-section is given by M = S2. Observe that Conf(S2, 3) is homeomor-

phic to PGL(2,C), a classical fact stated as Lemma 9.3 below. Since PGL(2,C), SO(3),

and RP3 are homotopy equivalent, there does not exist a section for p3 : Conf(S2, 3) →
Conf(S2, 2) as H2(S2) = H2(Conf(S2, 2)) = Z, but H2(Conf(S2, 3)) = H2(RP3) = {0}.

Similarly, the projection maps p3 : Conf(S2n, 3)→ Conf(S2n, 2) do not admit sections for

all n > 0 as Conf(S2n, 3) is homotopy equivalent to the unit sphere bundle in the tangent

bundle of S2n with H2n(Conf(S2n, 3)) = {0}, and H2n(Conf(S2n, 2)) = Z.

5. Preparation for Theorems 3.2 and 3.3

Lemma 5.1. Assume that M is a non-empty manifold without boundary, of dimension at

least 1. Then Top(M,k) is a closed subgroup of Top(M).

Proof. Given any point f in the complement of Top(M,k) in Top(M), there is at least one

point qi in Qk that is not fixed by f . Since M is Hausdorff, there is a non-empty open set

U in M that does not contain qi. An open set in the complement of Top(M,k) in Top(M)

containing f is given by the set of continuous functions that carry the point qi into U . The

lemma follows. �

The next definition is given in [76] on page 30.
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Definition 5.2. Let H be a closed subgroup of a topological group G with natural quotient

map p : G→ G/H. A local cross-section of G in H is a continuous function

f : U → G

for U an open set in G/H such that

pf(x) = x

for every x ∈ U . To be more precise, such a continuous function f is also called a local

cross-section of G in H over the open set U . A local cross-section over a point x ∈ G/H is

a local cross-section of G in H over some open set U with x ∈ U ⊂ G/H.

The next theorem is given in Steenrod’s book ‘The topology of fibre bundles’ [76], page

30.

Theorem 5.3. Let H be a closed subgroup of G and assume that the map p : G → G/H

admits local cross-sections over every point x ∈ G/H. Then the projection map

BH → BG

is the projection map in a fibre bundle with fibre given by the space of left cosets G/H.

Remark 5.4. Steenrod’s proof gives a homeomorphism

EG×G G/H → BH

under the conditions of the theorem. A statement and proof of this fact is recorded next for

completeness.

Theorem 5.5. Let H be a closed subgroup of G and assume that the map p : G → G/H

admits local cross-sections over every point x ∈ G/H. Then the natural map

π : EG×G G/H → BH

is a homeomorphism.

Proof. Let G/H denote the space of left cosets ∪g∈GgH. Let X be any space that has a

right G-action that is free and properly discontinuous, thus the projection p : X → X/G is

a principal G-bundle. Notice that G acts on the product X ×G/H via the formula

γ · (x, g) = (x · γ−1, γ · g).

Furthermore there is a natural map

q : X ×G/H → X/H
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defined by

q(x, gH) = [xḡ],

the class of xḡ in X/H which is independent of the choice of ḡ ∈ gH. Since

q(x · γ−1, γ · g) = q(x, g),

there is an induced map

π : X ×G G/H → X/H

defined by the equation π([x, gH]) = q(x, gH).

A second map α : X → X ×G G/H, defined by the equation

α(x) = [x, 1H],

passes to quotients

β : X/H → X ×G G/H.
The composites π ◦ β and β ◦ π are both the identity. Thus the map

q : (X ×G G/H)→ X/H

is a homeomorphism. Steenrod’s theorem follows by setting X = EG with the identification

BH = EG/H. �

Remark 5.6. Steenrod showed that the natural quotient map π : G→ G/H is the projec-

tion in a principal fibre bundle in case H is a closed subgroup of G and the map has local

sections [74]. Similarly, if the map π is the projection in a bundle, then it has local sections.

Thus local sections are necessary as well as sufficient in order that π : G → G/H be the

projection in a principal fibre bundle, in case H is a closed subgroup of G.

The proofs of Theorems 3.2 and 3.3 depend on the next lemma. Here, let Dn denote the

n-disk, the points in Rn of Euclidean norm at most 1, with interior denoted
o

Dn and with

the origin in Dn denoted (0, 0, . . . , 0). The map θ in the next lemma was useful in [32], the

article by Fadell and Neuwirth, while the formula here is given explicitly in [85].

Lemma 5.7. (1) There is a continuous map

θ :
o

Dn ×Dn → Dn

such that θ(x,−) fixes the boundary of Dn point-wise and

θ(x, x) = (0, 0, . . . , 0)

for every x in
o

Dn.
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(2) If M is a topological manifold without boundary, then there exists a basis of open

sets U for the topology of Conf(M,k) together with local sections φ : U → Top(M)

such that the composite U → Top(M) → Top(M)/Top(M,k) → Conf(M,k) is a

homeomorphism onto U .

(3) The natural map ρ~q : Top(M)/Top(M,k) → Conf(M,k) given by evaluation at a

point ~q = (q1, . . . , qk) ∈ Conf(M,k) is a homeomorphism.

Proof. Define

α :
o

Dn → Rn

by the formula α(x) = x/(1 − |x|), and so α−1(z) = z/(1 + |z|). Let ∂(Dn) denote the

boundary of Dn.

For a fixed element q in
o

Dn, define

γq : Dn → Dn

by the formula

γq(y) =

{
y if y ∈ ∂(Dn),

α−1( y
1−|y| −

q
1−|q|) if y ∈

o

Dn.

Define θ :
o

Dn ×Dn → Dn by the formula

θ(q, y) = γq(y).

Notice that θ is continuous, and θ(q, q) = (0, 0, . . . , 0). Thus part (1) of the lemma follows.

To prove part (2), consider a point (q1, q2, . . . , qk) in Conf(M,k) together with disjoint open

discs
o

Dn(q1),
o

Dn(q2), . . . ,
o

Dn(qk) where
o

Dn(qi) is a disc with center qi. (There is a choice of

homeomorphism in the identification of each such open disc with an open coordinate patch

of M ; this choice is suppressed here.) Let

U =
o

Dn(q1)×
o

Dn(q2)× · · · ×
o

Dn(qk)

Observe that U is an open set in Conf(M,k) and that the sets U give a basis for the topology

of Conf(M,k) as the (q1, q2, . . . , qk) range over the points in Conf(M,k).

Define

φ : U → Top(M)

by the formula

φ((y1, y2, . . . , yk)) = H

for H in Top(M) where (y1, y2, . . . , yk) is in U =
o

Dn(q1)×
o

Dn(q2)× · · · ×
o

Dn(qk), and H is

the homeomorphism of M given as follows.
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(1) H(x) = x if x is in the complement in the disjoint union
∐

1≤i≤k

o

Dn(qi), and

(2) H(x) = θ(qi, x) if x is in Dn(qi).

Clearly H is in Top(M) as the two parts of the definition for H agree on the boundary

of Dn(qi). To finish part (2) of the lemma, it suffices to check that φ is continuous. Notice

that all spaces here are locally compact, and Hausdorff. Thus it follows that φ is continuous

if and only if the adjoint

adj(φ) : U ×M → M

defined by the formula

adj(φ)(u,m) = H(u,m)

is continuous. Then continuity of φ follows at once from the continuity of H. The second

part of the lemma follows.

To finish the third part of the lemma, it must be checked that the natural map

ρ : Top(M)/Top(M,k)→ Conf(M,k)

is a homeomorphism. Notice that part 2 of the lemma gives local sections

φ : U → Top(M).

Thus consider the composite λ : U → Top(M)/Top(M,k) given by the composite p ◦ φ
where p : G→ G/H is the natural quotient map. Notice that λ : U → λ(U) is a continuous

bijection, and λ(U) = φ−1(U). Thus λ(U) is open, and the map φ is open. Thus ρ is open,

and hence a homeomorphism. The lemma follows. �

6. Proof of Theorem 3.2

By Lemma 5.1, Top(M,k) is a closed subgroup of Top(M). Furthermore, local sections

exist for Top(M)→ Top(M)/Top(M,k) by Lemma 5.7. Thus there is a principal fibration

Top(M,k)→ Top(M)→ Top(M)/Top(M,k).

The first part of the theorem follows.

In addition, the natural evaluation map Top(M) → Conf(M,k) factors through the

quotient map Top(M)→ Top(M)/Top(M,k). Thus, the induced map

ρ~q : Top(M)/Top(M,k)→ Conf(M,k)

is a homeomorphism by Lemma 5.7. Part 2 of the theorem follows.

The third statement in the theorem follows at once from Theorems 5.3, and 5.5.
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7. Proof of Theorem 3.3

The statement to be proven is that if M is a manifold without boundary, then the natural

projection map

pi : Conf(M,k)→ Conf(M,k − 1)

is a fibration with fibre homeomorphic to

M −Qk−1

where pi denotes the projection map which deletes the i-th coordinate. To prove that pi is a

fibration, it suffices to check that the map is locally trivial, by a theorem of A. Dold [73]. It

suffices to check the result in case i = k by applying the permutation which swaps i and k.

Consider the projection which deletes the last coordinate

pk : Conf(M,k)→ Conf(M,k − 1).

The inverse image of the point (q1, . . . , qk−1) ∈ Conf(M,k− 1), p−1
k ((q1, . . . , qk−1)), is home-

omorphic to M −Qk−1 with Qk−1 = {q1, . . . , qk−1} because the natural inclusion

ιk : M −Qk−1 → p−1
k ((q1, . . . , qk−1)),

defined by the equation ιk(m) = (q1, . . . , qk−1,m), is a homeomorphism.

Consider the point (q1, . . . , qk−1) in Conf(M,k − 1) together with disjoint open discs
o

Dn(q1), . . . ,
o

Dn(qk−1) with centers qi. Then consider the open set

V =
o

Dn(q1)× · · · ×
o

Dn(qk−1).

To show that pk is locally trivial, we need to show that the following holds. Given any

point ~q = (q1, . . . , qk−1) in Conf(M,k − 1), there is an open set V , containing ~q, together

with a homeomorphism

Φ : V × (M −Qk−1)→ p−1
k (V )

for which there is a commutative diagram

V × (M −Qk−1)
Φ−−−→ p−1

k (V )

p

y pk

y
V

1−−−→ V

where p is the natural projection map.
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We will now define Φ. The definition given is exactly that of [32] or [31] and is given by

the formula

Φ((m1, . . . ,mk−1),mk) =

{
(m1, . . . ,mk−1,mk) if mk /∈ ∪1≤i≤k−1D

n(qi), and

(m1, . . . ,mk−1, θ(mi,mk)) if mk ∈ Dn(qi)

where the map θ is that of Lemma 5.7. That Φ is a homeomorphism and the theorem then

follow.

8. Surfaces, braid groups and connections to mapping class groups

The subject of this section is basic properties of braid groups of surfaces as well as their

connections to mapping class groups. Throughout this section S denotes a surface, possibly

open or possibly non-orientable. The definition of the braid group of a surface is given next.

Definition 8.1. Let S denote a surface.

(1) The k-stranded braid group for S is

Bk(S) = π1(Conf(S, k)/Σk).

(2) The k-stranded pure braid group for S is

Pk(S) = π1(Conf(S, k)).

(3) In case S = R2, let Bk, respectively Pk, denote Bk(R2), respectively Pk(R2).

Remark 8.2. Useful consequences of the definition of the (pure) braid groups rely heavily

on the fact that S is a surface. In this case, the natural inclusion

i : Conf(S, k)→ Sk

does not induce an isomorphism on the level of fundamental groups, a feature which has

been proven to be quite useful. Vershinin has written an informative survey of braid groups

of surfaces in [78].

However, in case N is a manifold of dimension at least 3, the natural inclusion

i : Conf(N, k)→ Nk

does induce an isomorphism on fundamental groups. Thus to obtain interesting structures

which are analogous to braid groups of surfaces in the case of manifolds of dimension at least

3, new constructions are required.

Constructions which provide non-trivial analogues of braid groups for any space M are

defined in [19]. The definition arises by considering the structure of the space of ‘suitably

compatible maps’ (S1)n → Conf(M,k) which provides an alternative definition of the braid
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group of a surface, and which extends in a natural way to give analogues of braid groups

for any manifold M . These analogues of braid groups have their own version of Vassiliev

invariants as well as other natural properties, and are reminiscent of Fox’s torus homotopy

groups [36], but with further global structure. One version is the group of pointed homotopy

classes of pointed maps [Ω(S2),Ω(Conf(M,k))], a group with tractable structure in case all

spaces have been localized at the rational numbers. In the case of [Ω(S2),Ω(Conf(R2m, k))]

for m > 1, the ‘rationalization’ of this group is isomorphic to the Malĉev completion of Pk
[19].

Theorem 8.3. If S is a surface not equal to either S2 or RP2, and Qi = {q1, . . . , qi} is

a sub-set of S having cardinality i, possibly zero, then Conf(S − Qi, k) and consequently

Conf(S −Qi, k)/Σk are K(π, 1)’s.

Proof. Notice that S as well as S − Qi are both K(π, 1)’s. An induction on k using the

fibrations in Theorem 3.3 implies that Conf(S −Qi, k) is a K(π, 1), as follows.

Since S−Qi is a surface not equal to either S2 or RP2, it follows that S−Qi is a K(π, 1).

The inductive step is to observe that there is a fibration

Conf(S −Qi, k)→ S −Qi

with fibre given by Conf(S−Qi+1, k− 1), by Theorem 3.3. Since Conf(S−Qi+1, k− 1) and

S −Qi may be assumed to be K(π, 1)’s, it follows that Conf(S −Qi, k) is also a K(π, 1).

Furthermore, the natural quotient maps Conf(S, k)→ Conf(S, k)/Σk are projections in a

covering space. Thus, Conf(S, k)/Σk is also a K(π, 1) and the theorem follows. �

Remark 8.4. In case S is the surface S2 or RP2, then constructions of K(Bk(S
2), 1) and

K(Bk(RP2), 1) are derived in Section 9. These spaces are given by total spaces of various

natural choices of fibre bundles obtained from the natural SO(3)-actions on either S2 or

RP2.

One (classical) definition of the mapping class group for a closed, orientable Riemann

surface S with fundamental group π1(S) is the group of outer-automorphisms Out(π1(S))

[55], page 175. An alternative definition is given by the group of path-components of the

orientation preserving homeomorphisms of the surface. Useful variations are given next

which are obtained by restricting to homeomorphisms which leave certain subspaces of S

fixed.

Definition 8.5. Let S be a closed orientable surface of genus g with a given point ∗ in S.

(1) The mapping class group Γg is the group of path-components of the orientation

preserving homeomorphisms of S, Top+(S).
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(2) The mapping class group Γkg is the group of path-components of the orientation

preserving homeomorphisms of S which leave a set of k distinct points Qk in S

invariant, and is equal to π0(Top+(S, k)). The pure mapping class group PΓkg is the

kernel of the natural homomorphism Γkg → Σk.

(3) The pointed mapping class group Γk,∗g is the group of path components of the orien-

tation preserving homeomorphisms which (i) preserve the point ∗, and (ii) leave a set

of k distinct points in S − ∗, invariant, Top+(S, {∗}, k). The pure pointed mapping

class group PΓk,∗g is the kernel of the natural homomorphism Γk,∗g → Σk. We use

Top+(S, {∗}) to denote the group of orientation preserving homeomorphisms which

leaves the point ∗ fixed.

(4) If, in addition, m disjoint disks are given in S together with k distinct points in

the complement of the union of these disks, then define Γkg,m as the group of path-

components of the orientation preserving homeomorphisms of S which leave the set

of k distinct points invariant, as well as the boundaries of all m disks fixed point-wise.

Remark 8.6. Definition 8.5 provides a definition of the ‘pure pointed mapping class group’

PΓk,∗g and the ‘pointed mapping class group’ Γk,∗g . The remarks here give some motivation

for this variation as there are several natural applications as illustrated next.

First, consider the function spaces of all continuous maps Map(S,X) together with the

subspace of pointed continuous maps Map∗(S,X) for a pointed space X. The homology of

the space Map∗(S,X) is sometimes much more accessible than that of the ‘free mapping

space’ Map(S,X). One case in point is where S is Sg a closed, orientable surface of genus g,

andX is S2L, an even dimensional sphere. The homology of the function space Map∗(Sg, S
2L)

is easily accessible while that of Map(Sg, S
2L) is complicated.

In these cases, the group Top+(Sg) acts naturally on the function space Map(Sg, S
2L).

Consider the homotopy orbit space ETop+(Sg)×Top+(Sg) Map(Sg, S
2L). There is a ‘pointed-

version’ given by

ETop+(Sg, {∗})×Top+(Sg ,{∗}) Map∗(Sg, S
2L).

One application is that the homology of all of the groups Γkg are given at once by the

homology of the space ETop+(Sg)×Top+(Sg) Map(Sg, S
2L) with a degree shift depending on

the choices of L and k [12]. The actual computations do not appear to be accessible even in

the cases g = 0, 1.

An analogous result is satisfied for the homology of the ‘pointed version’ given by the

space ETop+(Sg, {∗}) ×Top+(Sg ,{∗}) Map∗(Sg, S
2L). In this case, the homology of all of the

groups Γk,∗g are given at once by the homology of this space with a degree shift depending
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on the choices of L and k [12]. However, these homology groups are much more accessible

in the ‘pointed’ case, as given in [12].

In the case of g = 1, the cohomology of this space was worked out and gives the cohomology

of Γk,∗1 in terms of classical modular forms. This case is also addressed in Section 10.

A classical theorem concerning the homeomorphism group and diffeomorphism group of a

closed orientable Riemann surface Sg of genus g is stated next [27, 28]. Let Diff+(Sg) denote

the group of orientation preserving diffeomorphisms. The next theorem follows from results

proven in [27, 28]. That is, the group of path-components for Diff+(Sg) and Top+(Sg) are

isomorphic, and the components of the identity have the same homotopy type. The author

would like to thank Benson Farb for a late Saturday night e-mail conversation regarding this

point.

Theorem 8.7. The natural inclusion

Diff+(Sg)→ Top+(Sg)

is a homotopy equivalence.

In what follows, the groups Diff+(Sg) and Top+(Sg) will be used in different ways in

which these differences are stated explicitly. The groups Top(Sg) and Top+(Sg) act on the

configuration space of points in Sg, Conf(Sg, k), diagonally. A useful ‘folk theorem’ gives (1)

there are natural K(π, 1)′s obtained from the associated Borel construction (homotopy orbit

spaces) for groups Top(M) acting on configuration spaces, and (2) these configuration spaces

are analogous to homogeneous spaces in the sense that they are frequently homeomorphic

to a quotient of a topological group by a closed subgroup.

Namely, let G be a subgroup of Top(M), and consider the diagonal action of G on

Conf(M,k) together with the homotopy orbit spaces

EG×G Conf(M,k)

and

EG×G Conf(M,k)/Σk.

In case M is a surface, these constructions frequently give K(π, 1)’s where the group π is

given by certain mapping class groups. Three different cases which depend on the genus of

the surface are given in the next three sections.

A remark concerning orientations is listed next. Observe that Sg has an orientation re-

versing involution which leaves k points invariant. Consider the natural map

h : Top(Sg)→ Aut(H2(Sg))
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defined by

h(f) = f∗ : H2(Sg)→ H2(Sg).

This map satisfies the following properties.

(1) The map h surjects to Aut(H2(Sg)) = Z/2Z.

(2) The map h restricts to a surjection h|Top(Sg ,k) : Top(Sg, k)→ Aut(H2(Sg)).

(3) The kernel of h is Top+(Sg) while the kernel of h|Top(Sg ,k) is Top+(Sg, k).

(4) Thus the natural map

Top+(Sg)/Top+(Sg, k)→ Top(Sg)/Top(Sg, k)

is a homeomorphism.

This point is recorded in the following lemma (which of course is a special case).

Lemma 8.8. Assume that Sg is an orientable surface of genus g. The natural map

Top+(Sg)/Top+(Sg, k)→ Top(Sg)/Top(Sg, k)

is a homeomorphism.

9. On configurations in S2

The natural actions of SO(3) on S2 by rotations, as well as on RP2 by rotation of a line

through the origin in R3, are applied in this section to give K(π, 1)’s where the groups π

are certain mapping class groups. We will also make use of the group S3, the connected

double cover of SO(3), and its action on Conf(S2, q) through the diagonal action of SO(3)

on products of S2.

The purpose of this section is to derive properties of the configuration spaces Conf(S2, k)

as well as the spaces

ESO(3)×SO(3) Conf(S2, k)/Σk.

The first theorem in this direction is due to Smale who proved the following result [72].

Theorem 9.1. The natural inclusions

SO(3) ⊂ Diff+(S2) ⊂ Top+(S2)

are homotopy equivalances.

Smale’s theorem has the following consequences as pointed out in [11, 6].

Theorem 9.2. If q ≥ 3, then
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(1) the space

ESO(3)×SO(3) Conf(S2, q)/Σq

is a K(Γq0, 1), and

(2) the space

ESO(3)×SO(3) Conf(S2, q)

is a K(PΓq0, 1).

A slightly stronger version of Theorem 9.2 is obtained from the next classical lemma,

proven by considering cross-ratios, for which S2 is regarded as the space of complex lines

though the origin in C2, namely CP1. Consider the evaluation map

e : PGL(2,C)× Conf(CP1, 3)→ Conf(CP1, 3)

defined by the equation

e(α, (L1, L2, L3)) = (α(L1), α(L2), α(L3))

where Li are 3 fixed, distinct lines through the origin in C2 with (L1, L2, L3) a point in

Conf(CP1, 3) and α is an element in PGL(2,C).

Lemma 9.3. The restriction of the map

e : PGL(2,C)× Conf(CP1, 3)→ Conf(CP1, 3),

to the subspace

PGL(2,C)× {(L1, L2, L3)},
for any point (L1, L2, L3) in Conf(CP1, 3), is a homeomorphism. Thus PGL(2,C) is home-

omorphic to Conf(CP1, 3).

A cruder version of Lemma 9.3 which exhibits a homotopy equivalence rather than a

homeomorphism follows directly from Theorem 3.3 as follows.

Lemma 9.4. Restrict the map

e : SO(3)× Conf(CP1, 3)→ Conf(CP1, 3)

defined by the equation

e(α, (L1, L2, L3)) = (α(L1), α(L2), α(L3))

to the subspace

SO(3)× {(L1, L2, L3)}
for any point (L1, L2, L3) in Conf(CP1, 3). This restriction is a homotopy equivalence.
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Proof. Since SO(3) is path-connected, it suffices to check the lemma for the points in S2

given by

(1) L1 = (1, 0, 0),

(2) L2 = (0, 1, 0), and

(3) L3 = (0, 0, 1).

The map

E : SO(3)→ Conf(S2, 3)

defined by the equation

E(α) = (α(L1), α(L2), α(L3))

gives a morphism of fibrations

SO(2)
E|SO(2)−−−−−→ S2 −Q2y y

SO(3)
E−−−→ Conf(S2, 3)y y

S2 β−−−→ Conf(S2, 2)

where Q2 = {L1, L2} with β : S2 → Conf(S2, 2) defined by

β(α(L1)) = (α(L1), α(L2)).

The induced maps on the fibre E|SO(2) : SO(2) → S2 − Q2, as well as on the base,

β : S2 → Conf(S2, 2), are homotopy equivalences by inspection. Since the right-hand side is

a fibration by Theorem 3.3, the lemma follows.

�

Lemma 9.5. The spaces

ESO(3)×SO(3) Conf(S2, 3),

and

EPGL(2,C)×PGL(2,C) Conf(S2, 3)

are contractible.

Remark 9.6. The preceding lemma gives a special case of Theorem 9.2 for q = 3 in which

the group π is the trivial group.
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Proof. It suffices to check that the space ESO(3)×SO(3) Conf(S2, 3) is contractible as SO(3)

is the maximal compact subgroup of PGL(2,C) and the inclusion SO(3) ⊂ PGL(2,C) is a

homotopy equivalance.

Since the natural map

E : SO(3)→ Conf(S2, 3)

is a homotopy equivalence by the proof of Lemma 9.4, and is also SO(3)-equivariant by

construction, the result follows as ESO(3)×SO(3) SO(3) is contractible. �

The proof of Theorem 9.2 is given next with an application to the cohomology of the

associated mapping class groups [11].

Proof of Theorem 9.2. There are two steps to the proof of this theorem. The first is that if

q ≥ 3, then the resulting space ESO(3)×SO(3) Conf(S2, q) is a K(π, 1). The second step is

to work out the fundamental group π of the space in question.

Assume that q ≥ 3 and observe that the natural projection map to the first three coordi-

nates

p(1, 2, 3) : Conf(S2, q)→ Conf(S2, 3)

is SO(3)-equivariant by inspection of the definitions. In addition, the map p(1, 2, 3) is a

fibration with fibre Conf(S2−Q3, q− 3), by Theorem 3.3. Thus the induced projection map

ESO(3)×SO(3) Conf(S2, q)→ ESO(3)×SO(3) Conf(S2, 3)

is a fibration with fibre Conf(S2 −Q3, q − 3).

On the other-hand, the space ESO(3) ×SO(3) Conf(S2, 3) is contractible by Lemma 9.5.

Thus the inclusion Conf(S2 −Q3, q − 3) ⊂ ESO(3)×SO(3) Conf(S2, q) is a homotopy equiv-

alence. Furthermore, the space Conf(S2 − Q3, q − 3) is a K(π, 1) by Theorem 8.3 as

S2 − Q3 is a surface which is not S2 or RP2. Thus Conf(S2 − Q3, q − 3) and consequently

ESO(3)×SO(3) Conf(S2, q) are K(π, 1)’s.

The final step is to show that if q ≥ 3, the spaces

ESO(3)×SO(3) Conf(S2, q),

and

ESO(3)×SO(3) Conf(S2, q)/Σq

are respectively K(PΓq0, 1), and K(Γq0, 1). Thus it suffices to work out their fundamental

groups.

To carry out this step, it is useful to note that by Theorem 9.1, the natural inclusions

SO(3) ⊂ Diff+(S2) ⊂ Top+(S2)
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are homotopy equivalances. Furthermore, by Theorem 3.2, there is a fibration sequence

Top(S2, q)→ Top(S2)→ Conf(S2, q)→ BTop(S2, q)→ BTop(S2).

Since the induced map

Top+(S2)/Top+(S2, q)→ Top(S2)/Top(S2, q)

is a homeomorphism by Lemma 8.8, it follows that there is a homotopy equivalence

ESO(3)×SO(3) Conf(S2, q)→ BTop+(S2, q).

�

Remark 9.7. A similar argument, given in the thesis of J. Wong [80], gives the contruction

of K(π, 1)’s where π is the braid group of either S2 or RP2. Furthermore, Wong used these

spaces to work out the cohomology of the associated braid groups.

Theorem 9.8. Assume that q ≥ 3.

(1) The space ES3×S3Conf(S2, q)/Σq is a K(Bq(S
2), 1). Furthermore, the space ES3×S3

Conf(S2, q) is a K(Pq(S
2), 1).

(2) The space ES3 ×S3 Conf(RP2, q)/Σq is a K(Bq(RP2), 1). Furthermore, the space

ES3 ×S3 Conf(RP2, q) is a K(Pq(RP2), 1).

In addition, an attractive presentation of the braid group Bk(S
2), the fundamental group

of Conf(S2, k)/Σk, is given in an elegant paper by Fadell and van Buskirk [33, 3].

Remark 9.9. The spaces ES3 ×S3 Conf(S2, q)/Σq and their fundamental groups are inti-

mately connected with mapping class groups. One connection is to a group ∆2g+2 ⊂ Γ0
g

called the hyper-elliptic mapping class group, which is the centralizer of a certain choice of

involution of Γ0
g. There is a central extension

1→ Z/2Z→ ∆2g+2 → B2g+2(S2)→ 1.

The group ∆2g+2 is the fundamental group of a bundle arising from complex 2-plane

bundles and associated configuration space bundles, a point described in the next example.

Geometrically, a K(Γ0
2, 1) can be obtained by ‘twisting together’ actions of S3×S1 to give

an action of U(2) on Conf(S2, k)×Σk
S1. This is addressed in the next example.

Example 9.10. The variation of the above construction for ∆2g+2 is described in this ex-

ample as developed in [11]. This construction gives models for certain mapping class groups.

There are three ingredients here:
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(1) The group π = Z/2Z is the center of SU(2) while SO(3) is the quotient SU(2)/π.

Furthermore U(2) is a quotient of SU(2) × S1 obtained from this action as follows.

Regard Z/2Z as the central subgroup of S3 × S1 generated by (−1,−1). Then form

the central quotient SU(2)×Z/2Z S
1. There is an isomorphism of groups

SU(2)×Z/2Z S
1 → U(2),

a construction given in work of Atiyah, Bott, and Shapiro known as Spinc(3).

(2) Define an action of the product S3 × S1 on S2 × S1 by requiring that (i) S3 act on

S2 through the natural action of rotations by SO(3), and (ii) the group S1 acts on

itself as follows:

(α, β) = α2 · β.
(3) The diagonal action of S3×S1 on Conf(S2, k)×Σk

S1 descends to an action of U(2).

Consider the Borel construction of this action. One result of is that

EU(2)×U(2) Conf(S2, k)×Σk
S1

is a K(π, 1). If k = 6, then this space is a K(Γ2, 1) [11]. Furthermore, if k = 2g + 2 for g

even, then the fundamental group of EU(2)×U(2) Conf(S2, k)×Σk
S1 is the centralizer of the

class of a hyper-elliptic involution in Γg which is denoted ∆g.

Consider the fibration

ESO(3)×SO(3) Conf(S2, q)/Σq → BSO(3)

with fibre Conf(S2, q)/Σq. Then consider the long exact homotopy sequence for this fibration

together with the fact that π1(BSO(3)) is isomorphic to Z/2Z to prove the following theorem

[3].

Theorem 9.11. If q ≥ 3, then there is a central extension

1→ Z/2Z→ Bq(S
2)→ Γq0 → 1.

A similar result applies to the spaces

EU(2)×U(2) Conf(S2, k)×Σk
S1.

Theorem 9.12. If g is even with g ≥ 2, there are central extensions

(1) 1→ Z/2Z→ Γ2 → Γ6
0 → 1, and

(2) 1→ Z/2Z→ ∆g → Γ2g+2
0 → 1.
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Remark 9.13. Any such central extension is determined by a characteristic class. The

characteristic class in the case of Theorem 9.12 naturally arises from a Spinc(3)-structure

implicit in the underlying topology of the diffeomorphism group [11].

10. On configurations in S1 × S1

A second special case arises with configuration spaces for surfaces of genus 1, the subject

of this section. Since the upper half-plane is closely connected to the structure of this

configuration space, as well as to the applications below, such as the structure of certain

‘Brunnian braid groups’ as given in the Appendix, Section 23, some introductory information

on it is listed next.

Let H denote the upper half-plane, the complex numbers with strictly positive pure imag-

inary part. The group SL(2,Z) acts on H by fractional linear transformations where

M =

(
a b

c d

)
is in SL(2,Z), and

M(z) =
az + b

cz + d
for z ∈ H.

The orbit space H/SL(2,Z), important in classical number theory and the theory of

automorphic forms [71], has the feature that the projection map

q : H→ H/SL(2,Z)

has singular points and is not a covering projection. In this case, the action of SL(2,Z) is

not free.

The action by the kernel Γ(2, r) of the mod-r reduction map ρr : SL(2,Z)→ SL(2,Z/rZ)

is free in case r ≥ 2. Furthermore, the group Γ(2, r) is isomorphic to a finitely generated

free group in case r ≥ 2 [48, 71]. For example, if p is an odd prime, Γ(2, p) is a free group

on 1 + p(p2 − 1)/12 letters while Γ(2, 2) is a free group on 2 letters [38]. Furthermore, the

group Γ(2, 4) is isomorphic to the 4-stranded Brunnian braid group Brun4(S2), as described

in Section 23.

Observe that there is a map

Φ : Top+(S1 × S1)→ SL(2,Z)

defined by sending an element f ∈ Top+(S1 × S1) to the isomorphism

f∗ : H1(S1 × S1)→ H1(S1 × S1),
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regarded as an element in GL(2,Z) of determinant +1.

There is an analogous map

Φg : Top+(Sg)→ Sp(2g,Z)

defined by the equation

Φg(f) = f∗ : H1(Sg)→ H1(Sg)

where Sg is a closed orientable surface of genus g. In this case, the value of Φg(f) is an

element in GL(2g,Z) which preserves the cup-product structure for the cohomology of Sg
and is thus an element in Sp(2g,Z).

For convenience, let T 2 denote the torus S1×S1. Recall that the group SL(2,Z) also acts

on T 2 = S1 × S1 with action defined by the equation

M(u, v) = (uavb, ucvd)

for (u, v) ∈ T 2. Notice that this action preserves the point (1, 1) and thus restricts to an

action on T 2 − {(1, 1)}, a space which is denoted T̂ 2 here. Furthermore,

M((u, v) · (u′, v′)) = M((u, v)) ·M((u′, v′))

since S1 is abelian. Furthermore, observe that this action, on the level of the first homology

group H1(T 2) = Z⊕ Z, is precisely the ‘tautological’ action of SL(2,Z) on Z⊕ Z.

Notice that there is an induced homomorphism

E : SL(2,Z)→ Top+(T 2)

defined by the equation E(M)(u, v) = M(u, v). A lemma using this information and conve-

nient for the proof of Theorem 10.6 below, is stated next.

Lemma 10.1. The function

E : SL(2,Z)→ Top+(T 2)

is a continuous homomorphism. Furthermore, this map splits the natural map

Φ : Top+(T 2)→ SL(2,Z)

with Φ ◦ E given by the identity self-map of SL(2,Z).

Variations obtained by ‘twisting together’ configuration spaces on the one-hand give

K(π, 1)’s for π = Γk1. On the other-hand, the resulting K(Γk1, 1)-spaces have real cohomology

groups which are given in terms of classical modular forms. This section is an exposition

of the connection between these analogues of configuration spaces with cohomology given in

terms of modular forms. The first theorem in this direction is developed next [12].
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It is now convenient to focus on the space Diff+(S1 × S1) in order to appeal directly to

results of Earle and Eells [27], keeping in mind that the natural inclusion

Diff+(S1 × S1) ⊂ Top+(S1 × S1)

is a homotopy equivalence by Theorem 8.7. Notice that S1 × S1 acts by rotations on each

coordinate in T 2, giving elements in Diff+(S1×S1) which are isotopic to the identity. These

rotations are in the kernel of

Φ : Diff+(S1 × S1)→ SL(2,Z),

with this kernel denoted S̃1 × S1. Earle and Eells prove that the natural inclusion

S1 × S1 → S̃1 × S1

is a homotopy equivalence [27]. Thus there is a fibration

BΦ : BDiff+(S1 × S1)→ BSL(2,Z)

with fibre B(S̃1 × S1) which is homotopy equivalent to (CP∞)2. This information will be

used to prove the next result.

Theorem 10.2. Assume that k ≥ 2. The spaces

EDiff+(S1 × S1)×Diff+(S1×S1) Conf(T 2, k)/Σk,

and

ETop+(S1 × S1)×Top+(S1×S1) Conf(T 2, k)/Σk

are both K(Γk1, 1).

A proof is given by the following sequence of lemmas.

Lemma 10.3. The spaces ETop+(T 2)×S1×S1T 2, and ETop+(T 2)×
S̃1×S1

T 2 are contractible.

Thus EDiff+(T 2)×S1×S1 T 2, and EDiff+(T 2)×
S̃1×S1

T 2 are contractible.

Proof. Observe ET 2 ×T 2 T 2 is contractible and so ETop+(T 2)×S1×S1 T 2 is also.

Next, consider the natural inclusion ι : S1×S1 → S̃1 × S1 to obtain a map of orbit spaces

ETop+(T 2)×S1×S1 T 2 → ETop+(T 2)×
S̃1×S1

T 2

which is a homotopy equivalence. Since ETop+(T 2)×S1×S1 T 2 is contractible, so is

ETop+(T 2)×
S̃1×S1

T 2.

The lemma follows. �
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Lemma 10.4. The space

ETop+(T 2)×Top+(T 2) T
2

is a K(π, 1) where π is isomorphic to SL(2,Z).

Proof. Observe that there is a fibration

ETop+(T 2)×Top+(T 2) T
2 → BSL(2,Z)

with fibre

ETop+(T 2)×
S̃1×S1

T 2.

Since ETop+(T 2)×
S̃1×S1

T 2 is contractible by 10.3, the lemma follows. �

Lemma 10.5. If k ≥ 2 then the space

ETop+(T 2)×Top+(T 2) Conf(T 2, k)

is a K(π, 1).

Proof. Consider the natural first coordinate projection map

ETop+(T 2)×Top+(T 2) Conf(T 2, k)→ ETop+(T 2)×Top+(T 2) T
2

with fibre Conf(T̂ 2, k − 1).

The base of this fibration, ETop+(T 2) ×Top+(T 2) T
2 is a K(SL(2,Z), 1) by Lemma 10.4,

and the fibre Conf(T̂ 2, k − 1) is also a K(π, 1) by Theorem 8.3. It follows that

ETop+(T 2)×Top+(T 2) Conf(T 2, k)

is a K(π, 1) for all k ≥ 1. �

Proof of Theorem 10.2. By Lemma 10.5, the space

ETop+(T 2)×Top+(T 2) Conf(T 2, k)

is a K(π, 1) for all k ≥ 2. Thus the space ETop+(T 2) ×Top+(T 2) Conf(T 2, k)/Σk is also a

K(π, 1) as the action of Σk on ETop+(T 2)×Top+(T 2) Conf(T 2, k) is free.

Furthermore, by Theorem 3.2 ETop(T 2) ×Top(T 2) Conf(T 2, k)/Σk has fundamental group

given by π0(Top(T 2, k)). In addition, ETop+(T 2)×Top+(T 2) Conf(T 2, k)/Σk has fundamental

group given by π0(Top+(T 2, k)) by Lemma 8.8. �
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The next theorem gives information about the pointed mapping class group with k marked

points, Γk,∗g . Let 1̂ denote the element (1, 1) ∈ T 2 with T̂ 2 = T 2 − {1̂}. The above remarks

imply that the natural action of SL(2,Z) on T 2 restricts to an action on T̂ 2. The next theo-

rem gives information about ESL(2,Z)×SL(2,Z)Conf(T̂ 2, k)/Σk which has had computational

utility [12].

Theorem 10.6. Assume that k ≥ 1. The space

ESL(2,Z)×SL(2,Z) Conf(T̂ 2, k)/Σk

is a K(Γk,∗1 , 1).

Proof. By Lemma 10.5, the space

ETop+(T 2)×Top+(T 2) Conf(T 2, k)

is a K(π, 1) for all k ≥ 2. Thus the space ETop+(T 2) ×Top+(T 2) Conf(T 2, k + 1)/(1 × Σk)

is also a K(π, 1) as the action of 1 × Σk on ETop+(T 2) ×Top+(T 2) Conf(T 2, k + 1) is free.

Furthermore, the fundamental group of ETop+(T 2)×Top+(T 2) Conf(T 2, k+1)/(1×Σk) is Γk,∗1

by Theorem 3.2.

To finish the proof of the theorem, it suffices to exhibit a homotopy equivalence

Γ(k) : ESL(2,Z)×SL(2,Z) Conf(T̂ 2, k)/Σk → ETop+(T 2)×Top+(T 2) Conf(T 2, k+ 1)/(1×Σk).

To define the map Γ(k), first consider the action of SL(2,Z) on T 2 obtained from the

homomorphism

E : SL(2,Z)→ Top+(T 2)

of Lemma 10.1. From this, we see that Top+(T 2) is a semi-direct product of SL(2,Z) and

S̃1 × S1.

Now define a map

γk : Conf(T̂ 2, k)→ Conf(T 2, k + 1)

by the formula

γk((z1, . . . , zk)) = (z1, . . . , zk, 1).

Next consider the natural quotient map

ρ : ESL(2,Z)×SL(2,Z) Conf(T 2, k + 1)→ ETop+(T2)×Top+(T2) Conf(T 2, k + 1)

pre-composed with the map 1× γk; we let

µ : ESL(2,Z)×SL(2,Z) Conf(T̂ 2, k)→ ETop+(T2)×Top+(T2) Conf(T 2, k + 1)
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be given by

µ = ρ ◦ (1× γk).
Since the map µ is equivariant with respect to the action of Σk on the source and 1× Σk

on the target, that µ is a homotopy equivalence then implies that the induced quotient map

Γ(k) is also a homotopy equivalence and the theorem follows.

That µ is an equivalence follows from a comparison of fibrations as given next. First

consider the commutative diagram

E ×SL(2,Z) Conf(T̂ 2, k)
π−−−→ BSL(2,Z)

1−−−→ BSL(2,Z)

1×γk

y 1

y y
E ×SL(2,Z) Conf(T 2, k + 1)

π−−−→ BSL(2,Z)
1−−−→ BSL(2,Z)

ρ

y BE

y 1

y
E ×Top+(T2) Conf(T 2, k + 1)

π−−−→ BTop+(T2)
BΦ−−−→ BSL(2,Z)

for which π : EG×G X → BG denotes the natural projection map.

Thus there is a morphism of fibrations

Conf(T̂ 2, k)
1−−−→ E ×SL(2,Z) Conf(T̂ 2, k)

π−−−→ BSL(2,Z)

1×γk

y ρ◦(1×γk)

y y1

E ×
S̃1×S1

Conf(T 2, k + 1)
1−−−→ E ×Top+(T2) Conf(T 2, k + 1)

BΦ◦π−−−→ BSL(2,Z).

for which the induced map

1× γk : Conf(T̂ 2, k)→ E ×
S̃1×S1

Conf(T 2, k + 1)

is an equivalence by observing that

(1) the projection

E ×
S̃1×S1

Conf(T 2, k + 1)→ E ×
S̃1×S1

T 2

is a bundle projection with fibre Conf(T̂ 2, k),

(2) the space

E ×
S̃1×S1

T 2

is contractible (by Lemma 10.3), and

(3) the induced self-map of Conf(T̂ 2, k) is the identity, by inspection.

The theorem follows. �
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Remark 10.7. (1) The bundle projection BDiff+(S1 × S1) → BSL(2,Z) with fibre

B(S1 × S1) = (CP∞)2 was first exploited in a beautiful paper by Furusawa, Tezuka,

and Yagita who showed that the real cohomology of BDiff+(S1 × S1) was given

in terms of classical modular forms [40]. They also determined the torsion in the

cohomology of BDiff+(S1 × S1)

(2) The naturally associated orbifold H×SL(2,Z) Conf(S1 × S1, q) has cohomology which

is that of ESL(2,Z)×SL(2,Z) Conf(S1×S1, q), as long as the primes 2 and 3 are units.

(3) The real cohomology of ESL(2,Z)×SL(2,Z) Conf(T̂ 2, k)/Σk, and thus the cohomology

of Γk,∗1 , was worked out in [12] where the answer is given in terms of ranks of certain

modular forms. In addition, fixing the dimension of the cohomology group while

letting k increase gives a ‘stable answer’ which is equal to the ranks of certain Jacobi

forms computed by Eichler and Zagier [30], by a direct comparison. This particular

interpretation also gave the cohomology groups (more easily) with coefficients in the

sign representation.

11. On configurations in a surface of genus greater than 1

The purpose of this section is to focus on the configuration space of surfaces Sg of genus g

greater than 1. One distinguishing feature in this case is the result of Earle and Eells which

proves that

BDiff+(Sg)

is a K(π, 1), namely, each path-component of Diff+(Sg) is contractible [27]. Again, the

spaces

Theorem 11.1. Assume that Sg is an orientable surface of genus g ≥ 2. Then

(1) ETop+(Sg)×Top+(Sg) Conf(Sg, k)/Σk is a K(Γkg , 1), and

(2) ETop(Sg)
+ ×Top+(Sg) Conf(Sg, k + 1)/{1 × Σk} is a K(Γk,∗g , 1).

Proof. First consider ETop+(Sg) ×Top+(Sg) Conf(Sg, k), the total space of a bundle over

BTop+(Sg) with fibre Conf(Sg, k). Since BTop+(Sg), and Conf(Sg, k) are K(π, 1)’s, so

is ETop+(Sg)×Top+(Sg) Conf(Sg, k) as well as ETop+(Sg)×Top+(Sg) Conf(Sg, k)/H where H

is any subgroup of the symmetric group on k letters. Thus both

ETop+(Sg)×Top+(Sg) Conf(Sg, k)/Σk,

and

ETop+(Sg)×Top+(Sg) Conf(Sg, k + 1)/{1 × Σk}
are K(π, 1)’s.
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To finish, it suffices to identify the fundamental groups of these spaces. Notice that by

Theorem 3.2, (i) the fundamental group of ETop+(Sg) ×Top+(Sg) Conf(Sg, k)/Σk is Γkg , and

(ii) the fundamental group of ETop(Sg)
+ ×Top+(Sg) Conf(Sg, k + 1)/{1 × Σk} is Γk,∗g . �

Remark 11.2. Many of these results appeared in a slightly different form in [42, 69, 70],

with the exception of the K(π, 1) properties.

12. Loop spaces of configuration spaces

The subject of this section, as well Sections 14 through 15, is basic properties of loop

spaces of configuration spaces. A subsequent section, Section 21, lists overlapping features

describing connections of these structures to low dimensional topology, homotopy theory and

number theory.

First recall the definitions of free loop spaces, and pointed loop spaces.

Definition 12.1. Let X denote a topological space.

(1) Define the free loop space of X to be

L(X) = {f : S1 → X | f is continuous},

topologized with the compact-open topology.

(2) If X has a base-point ∗, define the pointed loop space of X to be

Ω(X) = {f : S1 → X | f is continuous and f(1) = ∗}

for 1 ∈ S1 ⊂ R2 with Ω(X) topologized as a subspace of L(X).

(3) The topology on both L(X) and Ω(X) is the compact-open topology. A more conve-

nient, as well as more general, choice of topology is given by the associated compactly-

generated topology. However, this generalization will not be emphasized here.

One way to view ΩConf(M,k) is through the graph of a function

f : [0, 1]→ Conf(M,k)

given by

graph(f) : [0, 1]→ [0, 1]× Conf(M,k)

with

graph(f)(t) = (t, f(t)).
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Figure 1. Picture of a braid in PN+1.

Notice that in case M = R2, then graph(f) is an embedding whose image is exactly a braid

which starts at (0, f(0)) and quits at (1, f(1)). These graphs represent the precise physical

meaning of a braid, see Figure 2.

Notice that by definition, the group of path-components satisfies the properties

π0(Ω(Conf(R2, k)) = Pk

and

π0(Ω(Conf(R2, k)/Σk)) = Bk.

Furthermore, the spaces Conf(R2, k), and Conf(R2, k)/Σk are K(π, 1)’s by Theorem 8.3.

The next classical result follows at once [32, 37].

Theorem 12.2. The unordered configuration space Conf(R2, k)/Σk is a K(Bk, 1) and the

ordered configuration space Conf(R2, k) is a K(Pk, 1).

One result proven here gives the structure of the homology of the pointed loop space of

Conf(Rm, k), a result which reflects elementary properties of linking invariants for pairs of

linked spheres. This setting of linking is developed in two ways below. One way is by looking

at the way in which these constructions extend to invariants of classical links. The second

way is by looking at how the algebras associated to these linking invariants correspond to

certain spectral sequences in homotopy theory, as elucidated in the section on simplicial

groups, Section 16. This section will start with motivating examples and then continue with

the proofs of some basic theorems. A summary of how and where these results fit in is given

in the section ‘Other connections’, Section 21.
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Recall the following facts. The projection maps

pk : Conf(Rm, k)→ Conf(Rm, k − 1)

admit cross-sections σ defined by the formula

σk(x1, . . . , xk−1) = (x1, . . . , xk−1, w)

where

w = M(~e1)

where e1 is the unit vector (1, 0, . . . , 0) and M = 1+max1≤i≤k−1||xi||. Furthermore, the fibre

of pk is Rn −Qk−1 which is homotopy equivalent to ∨k−1S
m−1.

Next recall the following classical lemma with proof given in [66].

Lemma 12.3. Let

p : E → B

be a fibration with fibre F and ι : F → E the inclusion of the fibre in the total space, for

which E,B, and F are path-connected spaces. If p admits a cross-section (up to homotopy),

then Ω(E) is homotopy equivalent to

Ω(B)× Ω(F ).

One consequence of the existence of the cross-sections σk above, and Lemma 12.3, is stated

next.

Proposition 12.4. Assume that M is a manifold without boundary, of dimension m ≥ 2

such that the natural first coordinate projection

p1 : Conf(M,k)→M

admits a section. Then there is a homotopy equivalence∏
0≤i≤k−1

Ω(M −Qi)→ ΩConf(M,k).

If m ≥ 3, then there is a homotopy equivalence∏
1≤i≤k−1

Ω(∨iSm−1)→ ΩConf(Rm, k).

Proof. Since the projection p1 admits a cross-section by hypotheses, it follows from Lemma

12.3 that there is a homotopy equivalence

Ω(M)× ΩConf(M −Q1, k − 1)→ ΩConf(M,k).

�
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The homology of the loop space of certain configuration spaces is worked out next. One

reason for including this computation is that it appears in several different natural mathe-

matical contexts. A second reason is that the homology of ΩConf(Rm, k)) arises in terms of

Vassiliev invariants of pure braids as developed by Toshitake Kohno [50]. It then turns out

that these structures are intimately tied to the homotopy groups of spheres, as described

below, and then to certain natural structures involving derivations of free Lie algebras, as

described in several sections below. Since the Lie algebras encountered here are free as mod-

ules over the integers, the definitions given next will be restricted to free modules over the

integers.

Certain graded Lie algebras are basic here. The first one is the free Lie algebra generated

by a graded free abelian group V . First recall that any graded, associative algebra A inherits

the structure of a Lie algebra with the bracket

[−,−] : A⊗ A→ A

defined by the formula

[a, b] = a · b+ (−1)|a||b|b · a

for elements a and b of degree |a| and |b| respectively.

Definition 12.5. Let V denote a graded free abelian group with T [V ] the tensor algebra

generated by V . Then

L[V ]

is the smallest sub-Lie algebra of T [V ] generated by V .

A related Lie algebra arises which is universal for the (graded) ‘infinitesimal braid rela-

tions’, also known as the ‘horizontal 4T -relations’, or the ‘Yang-Baxter Lie algebra relations’,

as in [49, 52, 13, 31]. That is the largest Lie algebra over a fixed commutative ring R for

which the ‘infinitesimal braid relations’ are satisfied.

Definition 12.6. Fix a strictly positive integer q. Define

Lk(q)

to be the free (graded) Lie algebra over the integers Z generated by elements Bi,j of degree

q, k ≥ i > j ≥ 1, modulo the graded infinitesimal braid relations:

(i): [Bi,j, Bs,t] = 0 if {i, j} ∩ {s, t} = ∅,
(ii): [Bi,j, Bi,t + (−1)qBt,j] = 0 if 1 ≤ j < t < i ≤ k, and

(iii): [Bt,j, Bi,j +Bi,t] = 0 if 1 ≤ j < t < i ≤ k.
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T. Kohno [49] gives a slightly different description of these relations as follows: Introduce

new generators Bj,i of degree q, k ≥ i > j ≥ 1 with the relations Bi,j = (−1)qBj,i. Then

Kohno’s description of the above relations simplifies to (i), and (ii) above with distinct i, j,

and t.

These relations appear as special cases in the Vassiliev invariants of braids [52, 13]. They

also arise in the study of the KZ (Knishnik-Zamolodchikov) equations as integrability condi-

tions for certain flat bundles [10], as well as in work of Kohno [49, 52], and Drinfel’d [25, 26]

on the Kohno-Drinfel’d monodromy theorem [10]. The next theorem, an algebraic reflection,

was proven in [13, 31] where the notation PrimH∗(ΩConf(Rm, k); Z) denotes the module of

primitive elements (in a torsion free Hopf algebra).

Theorem 12.7. If m ≥ 3, the homology of ΩConf(Rm, k) is torsion free and there is an

isomorphism of Lie algebras on the level of the module of primitives:

Lk(m− 2)→ PrimH∗(ΩConf(Rm, k); Z).

Furthermore, the universal enveloping algebra of Lk(m− 2),

U [Lk(m− 2)]

is isomorphic to

H∗(ΩConf(Rm, k); Z)

as a Hopf algebra.

There is more topology behind this theorem. The loop space ΩConf(Rm, k) is homotopy

equivalent to a product of loop spaces∏
1≤i≤k−1

Ω(∨iSm−1),

thus it is natural to construct representative cycles. It is these cycles, in dimension m −
2, which represent the elements Bi,j. In addition, this geometric decomposition has the

following algebraic consequence. There are embeddings of Lie algebras

gj : Lj(m− 2)→ H∗(ΩConf(Rm, k))

such that the natural additive extension⊕
1≤j≤k−1

Lj(m− 2)→ PrimH∗(ΩConf(Rm, k))

is an isomorphism, but does not preserve the structure as Lie algebras. The failure to

preserve the Lie algebra structure is important in applications.
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13. Planetary motion in configuration spaces

The purpose of this section is to give pairs of naively linked spheres in Rm which correspond

to ‘planetary motion’ and which reflect properties of the loop space of a configuration space.

To illustrate, start with Conf(Rm, 3), and regard Sm−1 as the standard locus of points in Rm

of norm equal to one. There is a map

γ : Sm−1 × Sm−1 → Conf(Rm, 3)

defined by

γ(v, w) = (0, v, v + w/4).

Observe that one may regard 0 as the coordinates of a sun S0 with v the coordinates of a

planet Pv in orbit about the sun S0, and with v + w/4 the coordinates of a moon in orbit

around the planet Pv.

These maps, as well as analogous maps obtained by permuting the coordinates

(0, v, v + w/4),

induce relations in the homology of the loop space of the configuration space by considering

Ω(γ) : Ω(Sm−1 × Sm−1)→ Ω(Conf(Rm, 3)).

These relations give precisely the ‘horizontal 4T relations’ or ‘infinitesimal braid relations’

as stated in Definition 12.6.

14. Homological calculations for Rm

The purpose of this section is to give the computation stated in Theorem 12.7. Recall

that Conf(Rm, k) is (m− 2)-connected and that the algebra

H∗(Conf(Rm, k); Z)

is generated by classes Ai,j, k ≥ i > j ≥ 1, of degree m − 1 [15, 20]. Thus the homology

suspension induces an isomorphism

σ∗ : Hm−2(ΩConf(Rm, k); Z)→ Hm−1(Conf(Rm, k); Z)

for m > 2.

Definition 14.1. Define the homology class Bi,j to be the unique class specified by

σ∗(Bi,j) = Ai,j∗,

the dual basis element dual to Ai,j with k ≥ i > j ≥ 1.
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Alternatively, the classes Bi,j are represented by maps of spheres, as described in the next

section. Furthermore, commutation relations for the Bi,j are obtained by (1) exhibiting

maps

γ : Sm−1 × Sm−1 → Conf(Rm, 3),

(2) looping the map γ, and (3) using the commutativity of the two fundamental cycles in

H∗((ΩS
m−1)2; Z).

The maps γ : Sm−1 × Sm−1 → Conf(Rm, 3) correspond to naive planetary motion as given

in the previous section. These relations are analyzed in the next section.

15. On spheres embedded in the configuration space

The purpose of this section is to give pairs of spheres in Rm which will reflect homological

properties of the loop space of a configuration space. Fix integers s, t, and ` such that

k ≥ s > t ≥ 1, k ≥ ` ≥ 1, with ` 6∈ {s, t}.

Definition 15.1. Define a map

γ(s, t, `) : Sm−1 × Sm−1 → Conf(Rm, k)

by the formula

γ(s, t, `)(u, v) = (x1, . . . , xk)

with ‖u‖ = ‖v‖ = 1 such that

(1) zi = (4i, 0, 0, . . . , 0) for k ≥ i ≥ 1,

(2) xi = zi if i 6= {s, t}, and

(3) xs = z` + 2v, xt = z` + u.

Notice that (x1, . . . , xk) is indeed in Conf(Rm, k).

Next, recall that the class Ai,j is defined by the equation

Ai,j = π∗i,j(ι)

where πi,j : Conf(Rm, k)→ Conf(Rm, 2) denotes projection on the (i, j) coordinates and ι is

a fixed fundamental cycle for Hm−1(Sm−1) [15, 20]. Furthermore,

Ai,j = (−1)mAj,i

by inspection. The notation of Definition 15.1 is used in the proof of the next lemma.

Lemma 15.2. (1) If {i, j} ∩ {s, t, `} has cardinality 0 or 1, then

γ(s, t, `)∗(Ai,j) = 0.
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(2) If {i, j} ∩ {s, t, `} has cardinality 2, then

(a) for ` < t < s,

γ(s, t, `)∗(Ai,j) =


ι⊗ 1 if j = ` and i = t,

1⊗ ι if j = ` and i = s,

1⊗ ι if j = t and i = s ,

(b) for t < ` < s,

γ(s, t, `)∗(Ai,j) =


(−1)mι⊗ 1 if j = t and i = ` ,

1⊗ ι if j = t and i = s,

1⊗ ι if j = ` and i = s ,

(c) for t < s < `,

γ(s, t, `)∗(Ai,j) =


(−1)mι⊗ 1 if j = t and i = ` ,

1⊗ ι if j = t and i = s ,

(−1)m1⊗ ι if j = s and i = ` .

Proof. Notice that if {i, j} ∩ {s, t, `} = ∅, then πi,j ◦ γ(s, t, `) is constant. If {i, j} ∩ {s, t, `}
has cardinality 1, then all but one of the xr coordinates are constant. Furthermore,

πi,j ◦ γ(s, t, `)(u, v) = (xi, xj)

where either

(1) xi = zi and xj = z` + 2v with i 6= `,

(2) xi = zi and xj = z` + u with i 6= `, or

(3) xi = z` + 2v or z` + u with j 6= `.

In either of these three cases πi,j ◦ γ(s, t, `) is null-homotopic. Thus, part (1) follows.

Part (2) is obtained by considering three cases. One case is listed as the others are similar.

Thus assume that t < s < `.

Case 1: j = t and i = `.

In this case πi,j ◦ γ(s, t, `)(z, w) = (y` + z, y`). This last map is evidently homotopic to the

map which sends (z, w) to (y`, y` − z) and thus Ai,j pulls back to (−1)mι⊗ 1.

Case 2: j = t and i = s.

In this case πi,j ◦ γ(s, t, `)(z, w) = (y` + z, y` + 2w). By shrinking z to 0, this last map is

homotopic to the map which sends (z, w) to (y`, y` + 2w). Hence Ai,j pulls back to 1⊗ ι.
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Case 3: j = s and i = `.

In this case πi,j ◦ γ(s, t, `)(z, ω) = (y` + 2w, y`) which is homotopic to the map that sends

(z, w) to (y`, y` − w). Hence Ai,j pulls back to (−1)m1⊗ ι. �

Let γ denote a fixed choice of fundamental cycle for Hm−1(Sm−1). Consider the natural

basis for Hm−1(Conf(Rm, k)) obtained by taking the linear duals Ai,j∗ to the elements Ai,j
in Lemma 15.2.

Lemma 15.3. (1) If ` < t < s, then

γ(s, t, `)∗(i⊗ 1) = At,`∗ , and

γ(s, t, `)∗(1⊗ i) = As,`∗ + As,t∗ .

(2) If t < ` < s, then

γ(s, t, `)∗(i⊗ 1) = (−1)mA`,t∗ , and

γ(s, t, `)∗(1⊗ i) = As,`∗ + As,`∗ .

(3) If t < ` < s, then

γ(s, t, `)∗(i⊗ 1) = (−1)mA`,t∗, and

γ(s, t, `)∗(1⊗ i) = As,t∗ + (−1)mA`,s∗ .

Next consider the two ‘axial’ inclusions Sm−1 → Sm−1 × Sm−1. Passage to adjoints gives

two classes xi in Hm−2(Ω(Sm−1)2; Z) such that H∗(Ω(Sm−1)2; Z) is isomorphic to the tensor

product of tensor algebras T [x1]⊗ T [x2], as an algebra, where

[x1, x2] = x1x2 − (−1)mx2x1 = 0.

Thus Ωγ(s, t, `)∗ = [x1, x2] = 0 by naturality. The infinitesimal braid relations arise by

applying this formula to Lemma 15.3.

Corollary 15.4. If m ≥ 3, then the following relations hold in

H∗(ΩConf(Rm, k); Z) :

(1) [Bi,j, Bi,t + (−1)mBt,j] = 0 if 1 ≤ j < t < i ≤ k.

(2) [Bt,j, Bi,j +Bi,t] = 0 if 1 ≤ j < t < i ≤ k.

Proof. By Lemma 15.3, and the definition that Bi,j is the unique element such that σ∗Bi,j =

Ai,j∗, the following holds:
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(i) If ` < t < s, then

Ωγ(s, t, `)∗(x1 ⊗ 1) = Bt,`, and

Ωγ(s, t, `)∗(1⊗ x2) = Bs,` +Bs,t .

(ii) If t < ` < s, then

Ωγ(s, t, `)∗(x1 ⊗ 1) = (−1)mB`,t, and

Ωγ(s, t, `)∗(1⊗ x2) = Bs,t +Bs,` .

(iii) If t < s < `, then

Ωγ(s, t, `)∗(x1 ⊗ 1) = (−1)mB`,t, and

Ωγ(s, t, `)∗(1⊗ x2) = Bs,t + (−1)mB`,s .

Thus part (i) gives [Bt,`, Bs,` + Bs,t] = 0 for ` < t < s. This is a restatement of equation

(2). In addition, part (iii) gives

[B`,t, (−1)mBs,t +B`,s] = 0 if t < s < ` .

This is a restatement of equation (1). The corollary follows. �

Proposition 15.5. If m ≥ 3 and {i, j} ∩ {s, t} = ∅, then

[Bi,j, Bs,t] = 0

in H∗(ΩConf(Rm, k); Z).

Proof. If {i, j} ∩ {s, t} = ∅, then define

θ : Sm−1 × Sm−1 → Conf(Rm, k)

by the formula

θ(u, v) = (x1, . . . , xk)

where the xi are defined by the formula (1) xv = zv for v 6∈ {i, j, s, t}, (2) xj = zj,

xi = zj + u, (3) xs = zs, and (4) xt = zs + v. Then

θ∗(ι⊗ 1) = Ai,j∗ and

θ∗(1⊗ ι) = As,t∗ .

Furthermore, (Ωθ)∗(x1 ⊗ 1) = Bi,j and (Ωθ)∗(1 ⊗ x2) = Bs,t. Since [x1, x2] = 0, it follows

that [Bi,j, Bs,t] = 0 by naturality. �
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One way in which these relations arise is through the structure of the projection maps

pi : Conf(M,k)→ Conf(M,k−1), and ‘doubling maps’ σi : Conf(Rm, k)→ Conf(Rm, k+1).

These maps correspond to the structure of a simplicial object as developed next. The role

of the Lie algebras which satisfy the ‘horizontal 4T relations’ will be described below in this

framework.

16. Simplicial objects, and ∆-objects

This purpose of this section, as well as Sections 17 through 21, is to give descriptions of

naive properties of configurations spaces and their relationship to simplicial groups. We will

consider specific concrete cases which on the one hand give classical structures for describing

the homotopy groups of the 2-sphere. The natural connection to the homology of the pointed

loop space of the configuration space, given in Theorem 12.7, is also described. One of the

main features here is the interplay between the structure of the braid groups, the homology

of the loop space of certain configuration spaces, and the Bousfield-Kan spectral sequence

associated to the homotopy groups of a simplicial group.

The goal of subsequent sections is to describe the connections between the fundamen-

tal groups of configuration spaces, homotopy groups of spheres, Vassiliev invariants and

T. Kohno’s Lie algebra arising from the infinitesimal braid relations.

Before embarking in this direction, an overview will be given to clarify the connections

here. First, consider the projection maps out of configuration spaces

pi : Conf(M,k)→ Conf(M,k − 1)

which are defined in this section by deleting the i-th coordinate. These projection maps

satisfy the compatibility condition

pi ◦ pj = pj−1 ◦ pi

in case i < j. With mild conditions concerning base-points for the space M , the analogous

formulas are satisfied on the level of fundamental groups with

pi∗ ◦ pj∗ = pj−1∗ ◦ pi∗

in case i < j.

This compatibility property is precisely the condition for a collection of groups to form a

∆-group, as first developed in [65] and defined below. In addition, in the case M = Rm, the

projection maps, together with certain additional maps, give the collection of fundamental

groups of the configuration spaces the structure of a simplicial group, also defined below.
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The basic combinatorial invariant framework is that of a ∆-set and simplicial set, which

model the combinatorics of a simplicial complex. Basic properties of simplicial sets appear

in the excellent references [61, 22, 4, 57, 83].

Definition 16.1. A ∆-set is a collection of sets

K• = {K0, K1, . . .}

with functions, face operations,

di : Kt → Kt−1 for 0 ≤ i ≤ t

which satisfy the identities

didj = dj−1di if i < j.

A ∆-group is a ∆-set for which all di : Kt → Kt−1 are group homomorphisms.

A natural example of a ∆-group arises from the pure braid groups Pn(S) = π1(Conf(S, n))

for a path-connected surface S, as follows, see [5].

Example 16.2. There are (n+ 1) homomorphisms

di : Pn+1(S)→ Pn(S),

with 0 ≤ i ≤ n, where di is obtained by deleting the (i+ 1)-st strand of a braid in Pn+1(S).

The homomorphisms di are induced on the level of fundamental groups of configuration

spaces by the projection maps

pi+1 : Conf(S, n+ 1)→ Conf(S, n)

given be deleting the (i + 1)-st coordinate. These satisfy the identities pi ◦ pj = pj−1 ◦ pi
for i < j and induce the structure of ∆-group on the collection π1(Conf(S, n)), n ≥ 1, for a

path-connected surface S, as recorded in the next Definition, see [5].

Definition 16.3. Let S be a connected surface. Define

∆•(S)

by

∆n(S) = Pn+1(S),

the (n + 1)-st pure braid group for the surface S. By the previous example (together with

a check of base-points), ∆•(S) is a ∆-group.
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In case S = CP1 = S2, the associated ∆-group gives basic information about the homotopy

groups of the 2-sphere [5]. In case Sg is a closed oriented surface, the ∆-group ∆•(Sg) does

not admit the structure of a simplicial group as given in the next definition. (See Example

4.4.)

Definition 16.4. A simplicial set is

(1) a ∆-set

K• = {K0, K1, . . .}
together with

(2) functions, degeneracy operations,

sj : Kt → Kt+1 for 0 ≤ j ≤ t

which satisfy the simplicial identities

didj = dj−1di if i < j, sisj = sj+1si if i ≤ j, and

disj =


sj−1di if i < j,

identity if i = j or i = j + 1,

sjdi−1 if i > j + 1.

A simplicial-group

G• = {G0, G1, . . .}
is a simplicial-set for which all of the Gi are groups with faces and degeneracies given by

group homomorphisms.

Example 16.5. Two examples of simplicial sets are given next.

(1) The simplicial 1-simplex ∆[1] has two 0-simplices < 0 > and < 1 >. The n-simplices

of ∆[1] are sequences < 0i, 1n+1−i > for 0 ≤ i ≤ n+ 1. The non-degenerate simplices

are < 0 >, < 1 >, and < 0, 1 >.

(2) The simplicial circle S1 is a quotient of the simplicial 1-simplex ∆[1] obtained by

identifying < 0 > and < 1 >. There are exactly two equivalence classes of non-

degenerate simplices given by < 0 >, and < 0, 1 >. Furthermore, the simplicial circle

S1 is given in degree k by

(a) a single point < 0 > in case k = 0, and

(b) n + 1 points < 0i, 1n+1−i > for 0 ≤ i < n + 1 in case k = n for which < 0n+1 >

and < 1n+1 > are identified.
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In what follows below, it is useful to label these simplices by

yn+1−i =< 0i, 1n+1−i >

for 0 < i ≤ n+ 1 with y0 = sn0 (< 0 >).

Classical, elegant constructions for the standard simplicial n-simplex ∆[n] as well

as the n-sphere are given in [4, 22, 57, 83].

Homotopy groups are defined for simplicial sets which satisfy an additional condition

known as the (Kan) extension condition.

Example 16.6. A simplicial group G• = {G0, G1, . . .} always satisfies the extension condi-

tion, as shown in [61].

An example of a simplicial group obtained naturally from Artin’s pure braid groups is

described next.

Example 16.7. Consider ∆-groups with ∆n(S) = Pn+1(S) as given in Example 16.2 for

surfaces S. Specialize to the surface

S = R2.

In this case, there are also n+ 1 homomorphisms

si : Pn+1 → Pn+2,

with 0 ≤ i ≤ n, where si is obtained by ‘doubling’ the (i+1)-st strand. The homomorphisms

si are induced on the level of fundamental groups by the maps for configuration spaces

Si : Conf(R2, n+ 1)→ Conf(R2, n+ 2)

defined by the formula

Si(x1, . . . , xn+1) = (x1, . . . , xi+1, λ(xi+1), xi+2, . . . , xn+1)

where λ(xi+1) = xi+1 + (ε, 0) for (ε, 0) a point in R2 with

ε = (1/2) · min
t6=i+1

||xi+1 − xt||.

The homomorphisms di and sj satisfy the simplicial identities [21, 5].

Thus the pure braid groups, in the case S = R2, provide an example of a simplicial group,

denoted

AP•,

with

APn = Pn+1

for n = 0, 1, 2, 3, . . ..
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Consider a pointed topological space (X, ∗). The pointed loop space of X, Ω(X), has

a natural multiplication coming from ‘loop sum’ which is not associative, but homotopy

associative. Milnor proved that the loop space of a connected simplicial complex is homotopy

equivalent to a topological group [60]. James [47] proved that the loop space of the suspension

of a connected CW-complex is naturally homotopy equivalent to a free monoid as explained

in [43], page 282. Milnor [58] realized that the James construction could be translated

directly into the the language of simplicial groups as described next.

Definition 16.8. Let K• denote a pointed simplicial set (with base-point ∗ ∈ K0 and

sn0 (∗) ∈ Kn ). Define Milnor’s free simplicial group F [K]• by

F [K]n = F [Kn]/sn0 (∗) = 1

for which

F [K]

denotes the free group generated by the set K.

Then F [K]• is a simplicial group with face and degeneracy operations given by the natural

multiplicative extension of those for K•. In addition, the face and degeneracy operations

applied to a generator give either another generator or the identity element.

Example 16.9. An example of F [K]• is given by K• = S1
• , the simplicial circle. Notice

that F [S1]n = F [y1, . . . , yn], the free group on n generators, by Example 16.5.

Milnor defined the geometric realization of a simplicial setK• = {K0, K1, . . .} for which the

underlying topology of K• is discrete [59]. Recall the inclusion of the i-th face δi : ∆[n−1]→
∆[n] together with the projection maps to the j-th face σj : ∆[n+ 1]→ ∆[n] [4, 22, 57].

Definition 16.10. The geometric realization of K• is

|K•| = (
∐

Kn ×∆[n])/ ∼

where ∼ denotes the equivalence relation generated by requiring

(1) if x ∈ Kn+1 and α ∈ ∆[n], then (di(x), α) ∼ (x, δi(α)), and

(2) if y ∈ Kn and β ∈ ∆[n+ 1], then (x, σj(β)) ∼ (sj(x), β).

Theorem 16.11. If K• is a reduced simplicial set (that is K0 is equal to a single point {∗}),

then the geometric realization |F [K]•| is homotopy equivalent to ΩΣ|K•|. Thus the homotopy

groups of F [K]• (as given in [61] and Definition 16.6) are isomorphic to the homotopy groups

of the space ΩΣ|K•|.



INTRODUCTION TO CONFIGURATION SPACES 49

Example 16.12. Consider the special case of K• = S1
• . Then the geometric realization

|F [S1]•| is homotopy equivalent to ΩS2, and there are isomorphisms

πn(F [S1]•)→ πnΩS2 ∼= πn+1S
2.

A partial synthesis of this information is given in Sections 19, 20, and 21.

17. Pure braid groups, and Vassiliev invariants

The section addresses a naive construction with the braid groups arising as a ‘cabling’

construction. This construction is interpreted in later sections in terms of the structure of

braid groups, Vassiliev invariants of pure braids as developed by Toshitake Kohno [49, 51],

associated Lie algebras and the homotopy groups of the 2-sphere [21, 5, 81].

Recall from Definition 8.1, Bk denotes Artin’s k-stranded braid group while Pk denotes

the pure k-stranded braid group. Furthermore, the group Bk is the fundamental group of

the orbit space

Conf(R2, k)/Σk,

and the pure braid group Pk(S) is the fundamental group

π1(Conf(S, k)).

The pure braid groups Pk and Pk(S
2) are closely related to the loop space of the 2-sphere

as elucidated below in Section 16. Similar properties are satisfied for any sphere, as described

in Section 21. We will now start to address this point.

Figure 2. The braid xi in PN+1.
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Consider the free group on N letters FN = F [y1, . . . , yN ] and elements xi in PN+1 for

1 ≤ i ≤ N , with xi given by the naive ‘cabling’ pictured in Figure 2 above. The braid

x1 with N = 1 = i in Figure 2.1 is Artin’s generator A1,2 of P2. The braids xi yield

homomorphisms from FN to PN+1,

ΘN : F [y1, . . . , yN ]→ PN+1

defined on generators yi in FN by the formula

ΘN(yi) = xi.

The maps ΘN are the subject of [21] where it is shown that ΘN : FN → PN+1 is faithful

for every N . Three natural questions arise: (1) Why would one want to know whether Θn is

faithful, (2) are there sensible applications and (3) why is Θn faithful? The answers to these

three questions provide the main content of this expository article.

18. On Θn

This section addresses one reason why the map Θn is faithful [21]. The method of proof is

to appeal to the structure of the Lie algebras obtained from the descending central series for

both the source and the target of Θn. The structure of these Lie algebras is reviewed below.

Recall the descending central series of a discrete group π, given by

π = Γ1(π) ≥ Γ2(π) ≥ · · ·

where Γi(π) is the subgroup of π generated by all commutators

[[· · · [[x1, x2]x3] · · · ]xt]

for t ≥ i with xi ∈ π. The group Γi(π) is a normal subgroup of π with the successive

sub-quotients

gri(π) = Γi(π)/Γi+1(π),

which are abelian groups, having additional structure as follows [55].

Consider the direct sum of all of the gri(π) = Γi(π)/Γi+1(π) denoted

gr∗(π) = ⊕i≥1Γi(π)/Γi+1(π).

The commutator function

[−,−] : π × π → π,

given by

[x, y] = xyx−1y−1,
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passes to quotients to give a bilinear map

[−,−] : grs(π)⊗Z grt(π)→ grs+t(π)

which satisfies both the antisymmetry law and Jacobi identity for a Lie algebra.

Remark 18.1. The abelian group gr∗(π) is both a graded abelian group and a Lie algebra,

but not a graded Lie algebra as the sign conventions do not work properly in this context.

This situation can be remedied by doubling all degrees of elements in gr∗(π).

The associated graded Lie algebra obtained from the descending central series for the

target yields Vassiliev invariants of pure braids, by work of Kohno [49, 51]. This Lie algebra

has been used by both Kohno and Drinfel’d [25] in their work on the KZ equations. The

Lie algebra obtained from the descending central series of the free group FN is a free Lie

algebra, by a classical result due to P. Hall [41, 67].

The proof described next yields more information than just the fact that ΘN is faithful.

The method of proof gives a natural connection of Vassiliev invariants of braids to a classical

spectral sequence abutting to the homotopy groups of the 2-sphere. Sections 19, 20, and 21

below provide an elucidation of this interconnection.

A discrete group π is said to be residually nilpotent provided⋂
i≥1

Γi(π) = {identity}

where Γi(π) denotes the i-th stage of the descending central series for π. Examples of

residually nilpotent groups are free groups, and Pn.

Lemma 18.2. (1) Assume that π is a residually nilpotent group. Let

α : π → G

be a homomorphism of discrete groups such that the morphism of associated graded

Lie algebras

gr∗(α) : gr∗(π)→ gr∗(G)

is a monomorphism. Then α is a monomorphism.

(2) If π is a free group, and gr∗(α) is a monomorphism, then α is a monomorphism.

Thus one step in the proof of Theorem 18.3 below is to describe the map

Θn : F [y1, y2, . . . , yn]→ Pn+1

on the level of associated graded Lie algebras

gr∗(Θn) : gr∗(F [y1, y2, . . . , yn])→ gr∗(Pn+1).
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Recall Artin’s generators Ai,j for Pn+1 together with the projections of the Ai,j to gr∗(Pn+1),

labeled Bi,j [21]. The next theorem was proven in [21] by a direct computation.

Theorem 18.3. The induced morphism of Lie algebras

gr∗(Θn) : gr∗(F [y1, y2, . . . , yn])→ gr∗(Pn+1)

satisfies the formula

gr∗(Θn)(yq) = Σ1≤i≤n−q+1<j≤n+1Bi,j.

Examples of this theorem are listed next.

Example 18.4. (1) If q = 1, then

gr∗(Θn)(y1) = B1,n+1 +B2,n+1 + · · ·+Bn,n+1.

Thus if q = 1, and n = 3,

gr∗(Θ3)(y1) = B1,4 +B2,4 +B3,4.

(2) If q = 2, then

gr∗(Θn)(y2) = (B1,n+1 +B2,n+1 + · · ·+Bn−1,n+1) + (B1,n +B2,n + · · ·+Bn−1,n).

Thus if q = 2, and n = 3,

gr∗(Θ3)(y2) = (B1,4 +B2,4) + (B1,3 +B2,3).

(3) In general,

gr∗(Θn)(yq) = Vn−q+2 + Vn−q+3 + · · ·+ Vn+1

where

Vr = B1,r +B2,r + · · ·+Br−1,r.

Thus if q = 3, and n = 3,

gr∗(Θ3)(y3) = B1,2 +B1,3 +B1,4.

To determine the map of Lie algebras with a more global view, the structure of the Lie

algebra gr∗(Pn) is useful, and is given as follows. Let L[S] denote the free Lie algebra over Z
generated by a set S. The next theorem was given in work of Kohno [49, 51] and Falk-Randell

[34].
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Theorem 18.5. The Lie algebra gr∗(Pn) is the quotient of the free Lie algebra generated by

Bi,j for 1 ≤ i < j ≤ n given by

gr∗(Pn) = L[Bi,j| 1 ≤ i < j ≤ n]/I

where I denotes the 2-sided (Lie) ideal generated by the infinitesimal braid relations listed

next:

(1) [Bi,j, Bs,t] = 0, if {i, j}∩{s, t} = ∅.
(2) [Bi,j, Bi,s +Bs,j] = 0.

(3) [Bi,j, Bi,t +Bj,t] = 0.

Remark 18.6. The Lie algebra in Theorem 18.5, apart from a natural degree shift, is

precisely the one arising in Theorem 12.7 and gives the homology of the loop space of the

configuration space. We will see below, in Section 20, that this same Lie algebra gives the

E1-term of the Bousfield-Kan spectral sequence abutting to certain homotopy groups.

A computation with these maps gives the following result of [21]. Further connections

regarding this result are elucidated in Sections 19 and 21.

Theorem 18.7. The maps Θn : F [y1, y2, . . . , yn] → Pn+1 on the level of associated graded

Lie algebras

gr∗(Θn) : gr∗(F [y1, y2, . . . , yn])→ gr∗(Pn+1)

are monomorphisms. Thus the maps Θn are monomorphisms.

Remark 18.8. Two remarks concerning Θn are given next.

(1) That Θn is a monomorphism identifies F [y1, y2, . . . , yn] as a free subgroup of rank n

in Pn+1. However, there are other, natural free groups of rank n in Pn+1. These arise

from the fibrations of Fadell and Neuwirth given by the projection maps

pi+1 : Conf(R2, n+ 1)→ Conf(R2, n)

which delete the (i+1)st coordinate and have fibre of the homotopy type of an n-fold

wedge of circles ∨nS1 [32].

Recall that di : Pn+1 → Pn denotes the map induced by pi+1 on the level of

fundamental groups. The kernel of di is a free group of rank n.

The image of Θn has a contrasting feature: Any composite of the natural projection

maps, dI : Pn+1 → P2, precomposed with Θn,

F [y1, y2, . . . , yn]
Θn−−−→ Pn+1

dI−−−→ P2,

is a surjection.
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(2) The combinatorial behavior of the map gr∗(Θn) is intricate even though the definition

is elementary as well as natural. For example, various powers of 2 arise in the

computation of the map

gr∗(Θn) : gr∗(F [y1, y2, . . . , yn])→ gr∗(Pn+1)

for n > 2. One example is listed next.

Example 18.9. Θ3([[[y1, y2]y3]y2]) = −[[[γ1, γ2]γ3]γ2] + 2[[[γ1, γ3]γ2]γ2] + δ where δ is inde-

pendent of the other terms with γ1 = B1,4 +B2,4 +B3,4, γ2 = B3,4 and γ3 = B2,4 +B3,4. At

first glance, these elements may appear to be ‘random’. However, this formula represents a

systematic behavior which arises naturally from kernels of certain morphisms of Lie algebras.

The crucial feature which makes the computations effective is the ‘infinitesimal braid

relations’. In addition, the behavior of the map gr∗(Θn) is more regular after restricting

to certain sub-Lie algebras arising in the third stage of the descending central series [21].

Finally, the maps Θn also induce monomorphisms of restricted Lie algebras on passage to

the Lie algebras obtained from the mod-p descending central series [21].

19. Pure braid groups of surfaces as simplicial groups and ∆-groups

The homomorphism Θn : F [y1, y2, . . . , yn]→ Pn+1 which arises from the cabling operation

described in Figure 2 satisfies the following properties.

(1) The homomorphisms Θn : F [y1, y2, . . . , yn] → Pn+1 give a morphism of simplicial

groups

Θ: F [S1]• → AP•

for which the homomorphism Θn is the restriction of Θ to F [S1]n.

(2) By Theorem 18.7, the homomorphisms Θn : F [y1, y2, . . . , yn] → Pn+1 are monomor-

phisms and so the morphism Θ: F [S1] → AP• is a monomorphism of simplicial

groups.

(3) There is exactly one morphism of simplicial groups Θ with the property that Θ1(y1) =

A1,2.

Thus, the picture given in Figure 2 is a description for generators of F [S1]n in the simplicial

group F [S1]•. These features are summarized next.

Theorem 19.1. The homomorphisms

Θn : F [y1, y2, . . . , yn]→ Pn+1
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(‘pictured’ in Figure 2) give the unique morphism of simplicial groups

Θ: F [S1]• → AP•

with Θ1(y1) = A1,2. The map Θ is an embedding. Hence the n-th homotopy group of F [S1],

isomorphic to πn+1(S2), is a natural sub-quotient of APn. Furthermore, the smallest sub-

simplicial group of AP• which contains the element Θ1(y1) = A1,2 is isomorphic to F [S1]•.

On the other-hand, the homotopy sets for the ∆-group ∆•(S
2) also give the homotopy

groups of the 2-sphere, via a different occurrence of F [S1]•. The homeomorphism of spaces

Conf(S2, k)→ PGL(2,C)× Conf(S2 −Q3, k − 3),

for k ≥ 3 and where Q3 denotes a set of there distinct points in S2, is basic for the next

theorem [5].

Theorem 19.2. If S = S2 and n ≥ 4, then there are isomorphisms

πn(∆•(S
2))→ πn(S2).

The descriptions of homotopy groups implied by these theorems admit interpretations in

terms of classical, well-studied features of the braid groups as given in the next section. An

extension to all spheres is given in [21], as pointed out in Section 21.

20. Brunnian braids, ‘almost Brunnian’ braids, and homotopy groups

The homotopy groups of a simplicial group, or the homotopy sets of a ∆-group, admit a

combinatorial description, as discussed in Lemma 20.3 below. These homotopy sets are the

set of left cosets Zn/Bn where Zn is the group of n-cycles and Bn is the group of n-boundaries

for the ∆-group.

Recall Example 16.2 in which the ∆-group ∆•(S) is specified by ∆n(S) = Pn+1(S), the

(n+ 1)-stranded pure braid group for a connected surface S. The main point of this section

is that the n-cycles Zn are given by the ‘Brunnian braids’ while the n-boundaries Bn are

given by the ‘almost Brunnian braids’, subgroups considered next which are also important

in other applications [56].

Definition 20.1. Consider the n-stranded pure braid group for any (connected) surface

S, the fundamental group of Conf(S, n). The group of Brunnian braids Brunn(S) is the

subgroup of Pn(S) given by those braids which become trivial after deleting any single

strand. That is,

Brunn(S) =
⋂

0≤i≤n−1

ker(di : Pn(S)→ Pn−1(S))
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for which

di = (pi+1)∗ : Pn(S)→ Pn−1(S).

The ‘almost Brunnian’ (n+ 1)-stranded braid group is

QBrunn+1(S) =
⋂

1≤i≤n

ker(di : Pn+1(S)→ Pn(S)).

The subgroup QBrunn+1(S) of Pn+1(S) consists of those braids which are trivial after deleting

any one of the strands 2, 3, . . . , n+ 1, but not necessarily the first.

Example 20.2. Consider the simplicial group AP• with

APn = Pn+1

for n = 0, 1, 2, 3, . . . as given in Example 16.7.

In this case, notice that that the map d0 : QBrunk+2 → Brunk+1 is a split epimorphism.

Thus the homotopy groups of the simplicial group AP• are all trivial.

An inspection of definitions gives the next lemma.

Lemma 20.3. Let S denote a connected surface with associated ∆-group ∆•(S) (as given

in Example 16.2). Then the following hold.

(1) The group Brunn+1(S) is equal to the group of n-cycles Zn(S).

(2) The group of boundaries Bn(S) is d0(QBrunn+2(S)).

(3) There is an isomorphism

πk(AP•)→ Brunk+1/d0(QBrunk+2).

Furthermore, πk(AP•) is the trivial group.

(4) There is an isomorphism of left cosets which is natural for pointed embeddings of

connected surfaces S

πk(∆∗(S))→ Brunk+1(S)/d0(QBrunk+2(S)).

Properties of the ∆-group for the 2-sphere S = CP1 = S2 is the main subject of [5] where

the next result is proven.

Theorem 20.4. If S = S2 and k ≥ 4, then

πk(∆•(S
2)) = Brunk+1(S2)/d0(QBrunk+2(S2))

is a group which is isomorphic to the classical homotopy group πk(S
2).

Furthermore, if k ≥ 4, there is an exact sequence of groups

1→ Brunk+2(S2)→ Brunk+1(R2)→ Brunk+1(S2)→ πk(S
2)→ 1.
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Remark 20.5. Recently, the authors have proven (unpublished) that the Brunnian braid

group Brun4(S2) is isomorphic to the principal congruence subgroup of level 4 in PSL(2,Z)

[5]. (This fact is checked in the appendix here.)

This identification may admit an extension by considering the Brunnian braid groups

Brun2g(S
2) as natural subgroups of mapping class groups for genus g surfaces. The subgroups

Brun2g(S
2) may embed naturally in Sp(2g,Z) via classical surface topology using branched

covers of the 2-sphere (work in progress). It seems reasonable to conjecture that this is

correct.

The next lemma follows by a direct check of the long exact homotopy sequence obtained

from the Fadell-Neuwirth fibrations for configuration spaces [32, 31].

Lemma 20.6. If S is a surface not homeomorphic to either S2 or RP2, and k ≥ 3, then

Brunk(S) and QBrunk(S) are free groups. If S is any surface, and k ≥ 4, then Brunk(S)

and QBrunk(S) are free groups.

Example 20.7. One classical example of a Brunnian braid group is Brun4(S2) which is

isomorphic to the principle congruence subgroup of level 4 in PSL(2,Z), as given in Section

21 below.

Lemma 20.8. If k ≥ 3, then Θk(Fk) ∩ Brunk+1 as well as Θk(Fk) ∩ d0(QBrunk+2) are

countably infinitely generated free groups.

The standard Hall collection process or natural variations can be used to give inductive

recipes rather than closed forms for generators. T. Stanford has given a related elegant

exposition of the Hall collection process [74]. The analogous process was applied in joint

work of Ran Levi and the author to give group theoretic models for iterated loop spaces

(available on Levi’s website).

The connection to the homotopy groups of S2, as well as to the Lie algebra attached to

the descending central series of the pure braid groups, is discussed next.

Theorem 20.9. The group Θk(Fk)∩d0(QBrunk+2) is a normal subgroup of Θk(Fk)∩Brunk+1.

There are isomorphisms

Θk(Fk) ∩ Brunk+1/Θk(Fk) ∩ d0(QBrunk+2)→ πk+1S
2.

The method of proving that the maps Θn : F [y1, y2, . . . , yn]→ Pn+1 are monomorphisms

via Lie algebras admits an interpretation in terms of classical homotopy theory. The method

is to filter both simplicial groups F [S1]• and AP• via the descending central series, and then

to analyze the natural map on the level of associated graded Lie algebras.
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On the other-hand, the Lie algebra arising from filtering any simplicial group by its de-

scending central series gives the E0-term of the Bousfield-Kan spectral sequence for the

simplicial group in question [4]. Similarly, filtering via the mod-p descending central series

gives the classical unstable Adams spectral sequence [4, 22, 81].

Thus the method of proof of Theorem 18.7 is precisely an analysis of the behavior of the

natural map Θ : F [S1]• → AP• on the level of the E0-term of the Bousfield-Kan spectral

sequence. This method exhibits a close connection between Vassiliev invariants of pure

braids and these natural spectral sequences. The next result is restatement of Theorem 18.7

proven in [21].

Corollary 20.10. The maps Θn : F [y1, y2, . . . , yn]→ Pn+1 on the level of associated graded

Lie algebras

gr∗(Θn) : gr∗(F [y1, y2, . . . , yn])→ gr∗(Pn+1)

are monomorphisms. Thus the maps Θn induce embeddings on the level of the E0-term of

the Bousfield-Kan spectral sequences for E0(Θ): E0(F [S1]•)→ E0(AP•).

21. Other connections

Connections to other spheres: The work above has been extended to all spheres, as

well as other connected CW-complexes [21]. One way in which other spheres arise is via the

induced embedding of free products of simplicial groups

ΘqΘ : F [S1]• q F [S1]• → AP• q AP•.

The geometric realization of F [S1]• q F [S1]• is homotopy equivalent to Ω(S2 ∨ S2) by

Milnor’s theorem stated above as 16.11. Furthermore, Ω(S2 ∨S2) is homotopy equivalent to

a weak infinite product of spaces Ω(Sn) for all n > 1.

Connection to certain Galois groups: Consider automorphism groups Aut(H) where

H is one of Fn, the pro-finite completion F̂n or the pro-` completion (̂Fn)`. Certain Galois

groups G are identified as natural subgroups of these automorphism groups in [2, 23, 25, 26,

45, 46, 68]. One example is Drinfel’d’s Grothendieck-Teichmüller Galois group G = ĜT , a

subgroup of Aut(F̂2).

Let Der(LR[Vn]) denote the Lie algebra of derivations of the free Lie algebra LR[Vn] where

Vn denotes a free module of rank n over R a commutative ring with identity. Two natural

morphisms of Lie algebras, which take values in Der(LR[Vn]), occur in this context, as follows.

Properties of the infinitesimal braid relations, as stated in Theorem 18.5 above, give a

second natural map

Ad : gr∗(Pn+1)→ Der(LZ[Vn])
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whose kernel is precisely the center of gr∗(Pn+1) [17]. Combining this last fact with Theorem

18.3 gives properties of the composite morphism of Lie algebras

gr∗(Fn)
gr∗(Θn)−−−−→ gr∗(Pn+1)

Ad−−−→ Der(LZ[Vn]).

Proposition 21.1. If n ≥ 2, the induced morphism of Lie algebras

Ad ◦ gr∗(Θn) : gr∗(F [y1, y2, . . . , yn])→ Der(LZ[Vn])

is a monomorphism.

In addition, certain Galois groups G above are filtered with induced morphisms of Lie

algebras

gr∗(G)→ Der(L
bZ[Vn])

where Ẑ denotes the pro-finite completion of the integers. One example is G = ĜT with

gr∗(ĜT )→ Der(L
bZ[V2]),

as given in [23, 45, 46, 68].

This raises the question of (i) whether the images of

Ad ◦ gr∗(Θ2),

and

gr∗(ĜT )

in Der(L
bZ[V2]) have a non-trivial intersection, or (ii) whether this intersection is meaningful.

22. Questions

The point of this section is to consider whether the connections between the braid groups

and homotopy groups above are useful. Some natural, as well as speculative, problems are

listed next.

The combinatorial problem of distinguishing elements in the pure braid groups has been

well-studied. For example, the Lie algebra associated to the descending central series of the

pure braid group Pn has been connected with Vassiliev theory and has been shown to be a

complete set of invariants which distinguish all elements in Pn [51]. Furthermore, these Lie

algebras have been applied to other questions arising from the classical KZ-equations [49, 25]

as well as the structure of certain Galois groups [45, 23, 25, 26].

Question 1: One description of homotopy groups is given in Theorem 20.9. This relation

is coarser than that given by Vassiliev invariants. Give methods of understanding this coarser

relation.
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Question 2: Consider Brunnian braids Brunk. Fix a braid γ with image in the kth

symmetric group Σk given by a k-cycle. For any braid α in Brunk, the braid closure of α ◦ γ
is a knot. Describe features of these knots or those obtained from the analogous constructions

for Θk(Fk−1)∩Brunk. Where do these fit in Budney’s description of the space of long knots

[8]?

Question 3: Give combinatorial properties of the natural map Brunk+1(R2)→ Brunk+1(S2)

which provide information about the cokernel. Two concrete problems are stated next.

(1) Give group theoretic reasons why the order of the 2-torsion in π∗(S
2) is bounded

above by 4 and why the p-torsion for an odd prime p is bounded above by p.

(2) If k+ 1 ≥ 5, the image of Brunk+1(R2)→ Brunk+1(S2) is a normal subgroup of finite

index.

This fact follows from Serre’s classical theorem that πk(S
2) is finite for k > 3 and

Theorems 19.2 and 20.4, proven in [5].

Do natural features of the braid groups imply this result?

Question 4: Let Fn denote the image of Θn(Fn). Observe that the groups QBrunn+2 ∩
Fn+1, and Brunn+1 ∩ Fn are free. Furthermore, there is a short exact sequence of groups

(Extension 1) : 1→ Fn ∩ d0(QBrunn+2)→ Fn ∩ Brunn+1 → πn+1S
2 → 1

as well as isomorphisms

Fn ∩ Brunn+1/(Fn ∩ d0(QBrunn+2))→ πn+1S
2,

by Theorem by 20.9.

Consider the Serre 5-term exact sequence for the group extension given by Extension 1

directly above to obtain information about the induced surjection

H1(Fn ∩ Brunn+1)→ πn+1(S2).

This 5-term exact sequence specializes to

H2(πn+1(S2)) → H1(Fn ∩ d0(QBrunn+2))πn+1(S2)

→ H1(Fn ∩ Brunn+1) → πn+1(S2)

where Aπ denotes the group of co-invariants of a π-module A. Thus πn+1(S2) is a quotient of

the free abelian group H1(Fn∩Brunn+1) with relations given by the image of the co-invariants

H1(Fn) ∩ d0(QBrunn+2)πn+1(S2).

Give combinatorial descriptions of the induced map on the level of the first homology

groups

H1(Fn ∩ d0(QBrunn+2))→ H1(Fn ∩ Brunn+1).
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A similar problem arises with the epimorphism Brunn+1(S2) → πnS
2 with kernel in the

image of Brunk+1(R2) for n+ 1 ≥ 5.

Question 5: Let L[V ] denote the free Lie algebra over the integers generated by the free

abelian group V . Let Der(L[V ]) denote the Lie algebra of derivations of L[V ] and consider

the classical adjoint representation

Ad: L[V ]→ Der(L[V ]).

Recall that the map Θk : Fk → Pk+1 induces a monomorphism of Lie algebras

gr∗(Θk) : gr∗(Fk)→ gr∗(Pk+1)

where gr∗(Fk) is isomorphic to the free Lie algebra L[Vk] with Vk a free abelian group of rank

k. In addition, properties of the ‘infinitesimal braid relations’ give a representation

ρk : gr∗(Pk+1)→ Der(L[Vk])

appearing in work on certain Galois groups [45] (with the integers Z replaced by the pro-finite

completion of Z).

Identify Fk with Θk(Fk) in what follows below. Give methods to describe combinatorial

properties of the composite

gr∗(Fk ∩ Brunk+1)
gr∗(ik)−−−−→ gr∗(Fk)

gr∗(Θk)−−−−→ gr∗(Pk+1)
ρk−−−→ Der(L[Vk])

where ik : Fk ∩ Brunk+1 → Fk is the natural inclusion. Let Φk+1 denote this composite.

When restricted to gr∗(Fk) = L[Vk], this map is a monomorphism. Give methods to describe

the sub-quotient

Φk+1(gr∗(Fk ∩ Brunk+1))/Φk+1(gr∗(Fk ∩ d0(QBrunk+2))).

Question 6: Assume that the pure braid groups Pn(S) are replaced by either their pro-

finite completions P̂n(S) or their pro-` completions. Describe the associated changes for the

homotopy groups arising in Theorems 19.2, 20.4, or 19.1. For example, is the torsion in these

homotopy groups left unchanged by replacing Pn(S) by P̂n(S)?

23. Appendix: Brunnian braids and principal congruence subgroups

The Brunnian braid group has features in common with the Borromean rings dating back

at least to Carlo Borromeo in 1560. Related structures for Brunnian links are given in [56].

The purpose of this section is to record an observation concerning Brunnian braid groups

for the 2-sphere and to pose a related question as well as to describe a starting point to

appear in joint work with Berrick, Wong and Wu.
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Recall that there are classical maps

r : B4 → B3

and

Θ : B3 → SL(2,Z).

The map r : B4 → B3 is defined by the formula

r(σi) =

{
σi if i = 1 or i = 2 ,

σ1 if i = 3.

The map

Θ : B3 → SL(2,Z)

is defined by the formula

Θ(σ1) =

(
1 0

−1 1

)
and

Θ(σ2) =

(
1 1

0 1

)
.

The map Θ arises from a map of B3 to the mapping class group for genus 1 surfaces, SL(2,Z),

obtained via two Dehn twists along two circles which intersect in a single point [3].

Recall that Γ(2, r) denotes the kernel of the mod-r reduction map

ρr : SL(2,Z)→ SL(2,Z/rZ)

(in Section 10). Similarly, let PΓ(2, r) denote the kernel of the mod-r reduction map

ρr : PSL(2,Z)→ PSL(2,Z/rZ).

The following is the main result of this section in which D8 denotes the dihedral group of

order 8.

Theorem 23.1. The classical maps

r : B4 → B3

and

Θ : B3 → SL(2,Z)

induce maps which give



INTRODUCTION TO CONFIGURATION SPACES 63

(1) a homomorphism B4(S2)→ PSL(2,Z) together with a short exact sequence of groups

1→ D8 → B4(S2)→ PSL(2,Z)→ 1,

(2) a homomorphism P4(S2) → PΓ(2, 2) together with a split short exact sequence of

groups

1→ Z/2Z→ P4(S2)→ PΓ(2, 2)→ 1

with an isomorphism

P4(S2)→ Γ(2, 2),

and

(3) a homomorphism Brun4(S2)→ PΓ(2, 4) = Γ(2, 4) which is an isomorphism.

The previous theorem may admit an extension to other Brunnian braid groups

Brun2g+2(S2).

Preparation for this possible extension is given by two digressions, one concerning the ‘hy-

perelliptic mapping class group’ given by the central extension ∆2g+2, described in Example

9.10. The second digression concerns principle congruence subgroups.

Recall the ‘hyperelliptic mapping class group’ ∆2g+2, a subgroup of Γg the mapping class

group for genus g surfaces. By 9.10 or [11], there is a central extension

1→ Z/2Z→ ∆2g+2 → B2g+2(S2)→ 1.

This extension, as well as information about its characteristic class, is given in [11]. A con-

struction for the classifying space B∆2g+2 arises from complex 2-plane bundles as described

in Example 9.10 or [11], given by

EU(2)×U(2) Conf(S2, 2g + 2)×Σ2g+2 S
1

for g even.

Definition 23.2. Given n ≥ 3, define

(1) Xn = EU(2)×U(2) Conf(S2, n)× S1, and

(2) Yn = EU(2)×U(2) Conf(S2, n)×Σn S
1 with

(3) qn : Xn → Yn the standard Σn-cover.

Then there are n natural projection maps

pi : Xn → Xn−1

which are also bundle projections with fibre S2−Qn−1 for which Qn−1 denotes a set of (n−1)

distinct points in S2 by Theorem 3.3.



INTRODUCTION TO CONFIGURATION SPACES 64

Define

Brunn(X)

as the intersection of the kernels of the induced maps

pi∗ : π1(Xn)→ π1(Xn−1)

for 1 ≤ i ≤ n.

Further, define P∆2g+2 as the kernel of the natural map ∆2g+2 → Σ2g+2.

Then consider the classical maps

∆2g+2 → Γg → Sp(2g,Z).

Notice that mod-2 reduction gives a map

ρ2 : Sp(2g,Z)→ Sp(2g,Z/2Z)

and that the composite map

∆2g+2 → Sp(2g,Z)→ Sp(2g,Z/2Z)

factors through

Σ2g+2 ⊂ Sp(2g,Z/2Z).

The second digression concerns classical principle congruence subgroups of Sp(2g,Z) as

follows where one example is the kernel of the map ρ2 : Sp(2g,Z)→ Sp(2g,Z/2Z).

Definition 23.3. Let

ΓSp(2g, r)

denote the principle congruence subgroup of level r, the kernel of the mod-r reduction map

ρr : Sp(2g,Z)→ Sp(2g,Z/rZ).

Regarding SL(2,Z) = Sp(2,Z), the kernel of ρr : SL(2,Z)→ SL(2,Z/rZ), denoted Γ(2, r)

above, is equal to ΓSp(2, r).

A sketch of a possible natural extension of Theorem 23.1 is given next. This sketch consists

of 5 steps.

(1) Consider the classical map

∆2g+2 → Γg → Sp(2g,Z)
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and the ‘mod-2 reduction map’ Sp(2g,Z)→ Sp(2g,Z/2Z) together with the compos-

ite map ∆2g+2 → Sp(2g,Z) → Sp(2g,Z/2Z). Restricting this composite to P∆2g+2

gives a factorization of the composite

P∆2g+2 → Sp(2g,Z)

through ΓSp(2g, 2) as described above.

(2) Inspection of n elements {x1, . . . , xn} in ΓSp(2g, 2) gives that their commutator

[[· · · [[x1, x2], x3] · · · , ]xn] is in the principal congruence subgroup of level 2n in Sp(2g,Z),

ΓSp(2g, 2n). This fact is a special case of the statement that the commutator

[x, y]

of an element x in the principal congruence subgroup of level p, and an element y in

the principal congruence subgroup of level q, is in the principal congruence subgroup

level pq [24].

(3) A direct computation gives an isomorphism

Brun2g+2(X)→ Brun2g+2(S2)× Z/2Z.

(4) Observe that Brun2g+2(X) is generated by commutators of length at least (g + 1) as

an iterated application of the fibrations pi : Xn → Xn−1 together with the analogous

argument in [21] in the case of pure braid groups. Thus the image of Brun2g+2(X) in

Sp(2g,Z) lies in the principle congruence subgroup of level 2g+2.

(5) It is natural to conjecture that Brun(S2, 2g + 2) is isomorphic to a subgroup of

ΓSp(2g, 2g+1) in Sp(2g,Z), thus extending Theorem 23.1.

If this conjecture is, in fact, correct, is there some natural additional geometry associated

to the homotopy groups of ΩS2, arising from this connection to ΓSp(2g, 2g+1), which informs

on the associated homotopy groups?

A proof of Theorem 23.1 is given via a sequence of lemmas.

Lemma 23.4. The image of the natural map

π1(Conf(S2, 4))→ π1(Conf(S2, 3)4)

is exactly

⊕3Z/2Z.

Thus the 4-stranded Brunnian braid group

Brun4(S2),
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which is the kernel of π1(Conf(S2, 4))→ π1(Conf(S2, 3)4), is equal to the kernel of

P4(S2)→ ⊕3Z/2Z.

Proof. Recall that there are homeomorphisms

θq : PSL(2,C)× Conf(S2 − {0, 1,∞}, q)→ Conf(S2, q + 3)

given by

θq(ρ, (z1, z2, . . . , zq)) = (ρ(0), ρ(1), ρ(∞), ρ(z1), ρ(z2), . . . , ρ(zq)).

In addition, the group Brunn(S2) is the kernel of the map

π1(Conf(S2, n))→ π1(Conf(S2, n− 1)n)

induced by the n different choices of projection maps

pi : Conf(S2, n)→ Conf(S2, n− 1)

where the projection pi deletes the i-th coordinate. Thus the map

π1(Conf(S2, 4))→ π1(Conf(S2, 3)4)

is given by

Z/2Z× F2 → ⊕4Z/2Z.
The next step is to identify the image.

It suffices to check the behavior of the map

R2 − {0, 1} → Conf(S2, 3)4

where R2 − {0, 1} is identified as the subspace of Conf(S2, 4)) given by

{(∞, 0, 1, z) | z ∈ R2 − {0, 1}}

because the free group of rank 2, F2, is given by the image of this map on the level of

fundamental groups.

Notice that the image π1(Conf(S2, 4))→ π1(Conf(S2, 3)4) is exactly ⊕3Z/2Z as follows.

(1) The induced map p1∗ : π1(Conf(S2, 4)) → π1(Conf(S2, 3)) is an isomorphism by

comparing θ1 and the projection maps. That is, p1((∞, 0, 1, z)) = (0, 1, z) represents

a generator γ1 of π1(Conf(S2, 3)) in π1(Conf(S2, 3)4).

(2) The induced map p2∗ : π1(Conf(S2, 4)) → π1(Conf(S2, 3)) is an epimorphism by

comparing θ2 and the projection maps. That is, p1((∞, 0, 1, z)) = (∞, 1, z) which

carries a generator x of F [x, y] in π1(Conf(S2, 4)) to an independent generator γ2 in

π1(Conf(S2, 3)4).
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(3) The induced map p3∗ : π1(Conf(S2, 4)) → π1(Conf(S2, 3)) is an isomorphism by

comparing θ3 and the projection maps. That is, p1((∞, 0, 1, z)) = (∞, 0, z) which

carries a generator y of F [x, y] to an independent generator γ2 in π1(Conf(S2, 3)4).

(4) The induced map

p4∗ : π1(Conf(S2, 4))→ π1(Conf(S2, 3))

is trivial as p4((∞, 0, 1, z)) = (∞, 0, 1) which is constant.

The lemma follows.

�

Lemma 23.5. The kernels of the natural maps

SL(2,Z)→ SL(2,Z/4Z)

and

PSL(2,Z)→ PSL(2,Z/4Z)

are equal.

Proof. Observe that there is a commutative diagram

{1} −−−→ Γ(2, 22) −−−→ PΓ(2, 22)y y y
Z/2Z −−−→ SL(2,Z) −−−→ PSL(2,Z)y1

y y
Z/2Z −−−→ SL(2,Z/4Z) −−−→ PSL(2,Z/4Z)

�

Lemma 23.6. The map

Θ : B4 → SL(2,Z)

induces a map

Φ : B4(S2)→ PSL(2,Z)

together with a commutative diagram
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Z/2Z −−−→ P4(S2) −−−→ PΓ(2, 2)y y y
K −−−→ B4(S2) −−−→ PSL(2,Z)y1

y y
⊕2Z/2Z −−−→ Σ4 −−−→ PSL(2,Z/2Z)

where K denotes the kernel of the map

Φ : B4(S2)→ PSL(2,Z).

Proof. Observe that the kernel of

B4 → B4(S2)

is generated by the two elements (σ1σ2σ3)4 and (σ1σ2)3. Furthermore

Θ((σ1σ2)3) = −Id

where

−Id =

(
−1 0

0 −1

)
.

In addition,

Θ((σ1σ2σ3)4) = Θ((σ1σ2σ1)4) = Θ((σ1σ2)6) = Id.

Thus there is an induced epimorphism

Φ : B4(S2)→ PSL(2,Z)

together with the commutative diagram stated in the lemma.

Notice that

(1) the kernel of Σ4 → PSL(2,Z/2Z) is ⊕2Z/2Z, generated by the images of the two

elements A = σ2σ1σ
−1
3 σ2 and B = σ1σ

−1
3 .

(2) the kernel of P4(S2)→ PΓ(2, 2) is generated by the image of the element C = (σ1σ2)3.

(3) The elements A, B, and C generate a subgroup of B4(S2) isomorphic to D8 by a

direct check.

The lemma follows.

�
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One proof of Theorem 23.1 is as follows. To check the first assertion, the kernel of the

natural epimorphism

B4(S2)→ PSL(2,Z),

denoted K in Lemma 23.6, is isomorphic to D8. Thus, the first assertion follows.

By the proof of Lemma 23.6, there is a central extension

1→ Z/2Z→ P4(S2)→ PΓ(2, 2)→ 1

(as the Z/2Z is generated by (σ1σ2)3). Since PΓ(2, 2) is free on two generators, the extension

is split. Notice that this is overkill as Lemma 23.4 has been re-proven. By inspection, there

is a commutative diagram

{1} −−−→ Brun4(S2) −−−→ PΓ(2, 22)y y y
Z/2Z −−−→ P4(S2) −−−→ PΓ(2, 2)y1

y y
Z/2Z −−−→ ⊕3Z/2Z −−−→ ⊕2Z/2Z

where the rows and columns are all group extensions (using the fact that PΓ(2, 2) is generated

by the two matrices

x =

(
1 2

0 1

)
and

y =

(
1 0

2 1

)
.

This suffices.
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[46] , On the embedding of Gal(Q̄/Q) in ĜT , in: The Grothendieck Theory of Dessins d’Enfants,

London Mathematical Society Lecture Notes Vol. 200, Cambridge Univesity Press, 1994.
[47] I. James, Reduced product spaces, Ann. of Math. 62(1955), 170-197.
[48] F. Klein,Gesammelte mathematische Abhandlungen, Springer-Verlag, Berlin, 1923.



INTRODUCTION TO CONFIGURATION SPACES 72

[49] T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, Cont. Math.
78(1988), 339-363.
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