Weight systems which are quantum states

CARLO COLLARI

Dipartimento di Matematica Università di Pisa

The algebra of horizontal chord diagrams

We can compose horizontal chord diagrams with the same number of Wilson lines

This endows the space

 $\mathscr{D}_n = \mathbb{C}\langle \mathsf{chord} \mathsf{ diagrams} \mathsf{ on } n \mathsf{ Wilson lines} \rangle$

with the structure of non-commutative unital associative $\mathbb{C}\text{-algebra}.$

The algebra of horizontal chord diagrams

The algebra of horizontal chord diagrams is defined as

$$\mathscr{A}_n = \frac{\mathscr{D}_n}{\mathscr{I}}$$

where \mathscr{I} is the ideal generated by elements of type (2T) and (4T), which encode the so-called infinitesimal braid relations.

The \star -algebra of hcds

The algebra \mathcal{A}_n can be endowed with an anti-linear involution

*-Algebras

Let *C* be a commutative ring endowed with a ring involution $\overline{\cdot} : C \to C$. A *-*algebra*, or *involutive algebra*, over *C* is a unital associative *C*-algebra \mathcal{O} together with an involution $\star : \mathcal{O} \to \mathcal{O}$, such that:

(A1) $(1_{\mathscr{O}})^* = 1_{\mathscr{O}}$; (A2) $(z \cdot a + w \cdot b)^* = \overline{z} \cdot a^* + \overline{w} \cdot b^*$, for all $z, w \in C$ and $a, b \in \mathscr{O}$; (A3) $(ab)^* = b^*a^*$, for all $a, b \in \mathscr{O}$.

A morphism of *-algebras is a morphism of algebras which commutes with *.

Given a group G, the group ring $\mathbb{C}[G]$ has a natural structure of \star -algebra given by setting

$$\left(\sum_{i=1}^k z_i \cdot g_i\right)^{\star} = \sum_{i=1}^k \overline{z}_i \cdot g_i^{-1},$$

for all $z_1, ..., z_k \in \mathbb{C}$ and $g_1, ..., g_k \in G$.

Remark

The involution \star defined above is the (conjugate of the) antipode of the Hopf algebra $\mathbb{C}[G]$, whose co-multiplication and co-unit are given by

$$\Delta(g) = g \otimes g$$
 and $\varepsilon(g) = 1 \in \mathbb{C}$,

for each $g \in G$.

*-Algebras

Remark

More generally, given an Hopf algebra H the (conjugate of the) antipode endows H with the structure of \star -algebra.

Actually, we have that

$$\mathscr{A}_n \simeq \mathrm{H}_*(\Omega \mathrm{Conf}_n(\mathbb{R}^3))$$

This identification endows \mathscr{A}_n with the structure of Hopf algebra, and \star -corresponds to the (conjugate of the) antipode.

Horizontal chord diagrams and observables

Sati and Schreiber observed that, under hypothesis H, the topological sector of the phase space of certain brane intersections is homotopy-equivalent to $\bigsqcup_n \Omega \text{Conf}_n(\mathbb{R}^3)$.

Horizontal chord diagrams and observables

Sati and Schreiber observed that, under hypothesis H, the topological sector of the phase space of certain brane intersections is homotopy-equivalent to $\bigsqcup_n \Omega \text{Conf}_n(\mathbb{R}^3)$.

Thus, the identification

$$\mathscr{A} = \bigoplus_{n} \mathscr{A}_{n} \simeq \mathrm{H}_{*}(\bigsqcup_{n} \Omega \mathsf{Conf}_{n}(\mathbb{R}^{3}))$$

gives an interpretation of \mathscr{A} as quantum observables.

Quantum states

Given a \star -algebra of observables \mathcal{O} , a *quantum state* (or, simply, *state*) is linear map

 $\varphi: \mathscr{O} \to \mathbb{C}$

such that $\varphi(\mathbf{x} \cdot \mathbf{x}^{\star}) \geq 0$, for all $\mathbf{x} \in \mathscr{O}$, and $\varphi(1_{\mathscr{O}}) > 0$.

Quantum states

Given a ★-algebra of observables *O*, a *quantum state* (or, simply, *state*) is linear map

 $\varphi: \mathscr{O} \to \mathbb{C}$

such that $\varphi(\mathbf{x} \cdot \mathbf{x}^{\star}) \geq 0$, for all $\mathbf{x} \in \mathscr{O}$, and $\varphi(1_{\mathscr{O}}) > 0$.

A *weight system* on horizontal chord diagrams is, by definition, a (complex) linear function from \mathscr{A} to \mathbb{C} .

Quantum states

Given a ★-algebra of observables *O*, a *quantum state* (or, simply, *state*) is linear map

 $\varphi:\mathscr{O}\to\mathbb{C}$

such that $\varphi(\mathbf{x} \cdot \mathbf{x}^{\star}) \geq 0$, for all $\mathbf{x} \in \mathscr{O}$, and $\varphi(1_{\mathscr{O}}) > 0$.

A *weight system* on horizontal chord diagrams is, by definition, a (complex) linear function from \mathscr{A} to \mathbb{C} .

Question: which weight systems are quantum states?

The main ingredients in the definitions of Lie algebra weight system on \mathcal{A}_n are

The main ingredients in the definitions of Lie algebra weight system on \mathcal{A}_n are

i. a (finite-dimensional complex) Lie algebra ${\mathfrak g};$

The main ingredients in the definitions of Lie algebra weight system on \mathscr{A}_n are

- i. a (finite-dimensional complex) Lie algebra ${\mathfrak g};$
- ii. an $ad\mbox{-invariant}$ non-degenerate bi-linear form $\langle\cdot,\cdot\rangle$ on $\mathfrak{g};$

The main ingredients in the definitions of Lie algebra weight system on \mathscr{A}_n are

- i. a (finite-dimensional complex) Lie algebra ${\mathfrak g};$
- ii. an $ad\mbox{-invariant}$ non-degenerate bi-linear form $\langle\cdot,\cdot\rangle$ on $\mathfrak{g};$
- iii. an ordered collection of finite-dimensional g-representations $\underline{\rho} = (\rho_1, ..., \rho_n)$, called *labelling* where $\rho_i : \mathfrak{g} \to \operatorname{End}(V_i)$ for each i = 1, ..., n.

The main ingredients in the definitions of Lie algebra weight system on \mathscr{A}_n are

- i. a (finite-dimensional complex) Lie algebra \mathfrak{g} ;
- ii. an $ad\mbox{-invariant}$ non-degenerate bi-linear form $\langle\cdot,\cdot\rangle$ on $\mathfrak{g};$
- iii. an ordered collection of finite-dimensional g-representations $\underline{\rho} = (\rho_1, ..., \rho_n)$, called *labelling* where $\rho_i : \mathfrak{g} \to \operatorname{End}(V_i)$ for each i = 1, ..., n.

The basic idea is to associate to each horizontal chord diagram $C \in \mathscr{A}_n$ an element in $End(V_1 \otimes \cdots \otimes V_n)$, and then take the trace to obtain a complex number.

Fix an orthonormal basis (with respect to $\langle \cdot, \cdot
angle$) for \mathfrak{g} , say $e_1,...,e_d$.

Fix an orthonormal basis (with respect to $\langle \cdot, \cdot \rangle$) for \mathfrak{g} , say $e_1, ..., e_d$. To each chord $C_{i,j} = [(i,j)] \in \mathscr{A}_n$ we are associating the element

$$\widetilde{W}_{\underline{\rho}}(C_{i,j}) = \sum_{r=1}^{\dim(\mathfrak{g})} \mathrm{Id}_{V_1} \otimes \cdots \otimes \overset{i\text{-th pos.}}{\rho_i(e_r)} \otimes \cdots \otimes \overset{j\text{-th pos.}}{\rho_j(e_r)} \otimes \cdots \otimes \mathrm{Id}_{V_n} \,.$$

Fix an orthonormal basis (with respect to $\langle \cdot, \cdot \rangle$) for \mathfrak{g} , say $e_1, ..., e_d$. To each chord $C_{i,j} = [(i,j)] \in \mathscr{A}_n$ we are associating the element

$$\widetilde{W}_{\underline{\rho}}(C_{i,j}) = \sum_{r=1}^{\dim(\mathfrak{g})} \mathrm{Id}_{V_1} \otimes \cdots \otimes \stackrel{i\text{-th pos.}}{\rho_i(e_r)} \otimes \cdots \otimes \stackrel{j\text{-th pos.}}{\rho_j(e_r)} \otimes \cdots \otimes \mathrm{Id}_{V_n} \,.$$

It can be shown that $\widetilde{W}_{
ho}$ induces a well-defined morphism of algebras

$$\widetilde{W}_{\underline{\rho}} \colon \mathscr{A}_n \to \operatorname{End}(V^{\otimes n}).$$

The corresponding Lie algebra weight system is given by setting

$$W_{\underline{\rho}}(C) = \operatorname{Tr}(\widetilde{W}_{\underline{\rho}}(C)),$$

for each $C \in \mathscr{A}_n$.

Consider $\mathfrak{g} = \mathfrak{gl}_2$, $\langle A, B \rangle = \operatorname{Tr}(AB)$, and take $\rho_1 = \rho_2 \colon \mathfrak{gl}_2 \to \operatorname{End}(\mathbb{C}^2)$.

Consider $\mathfrak{g} = \mathfrak{gl}_2$, $\langle A, B \rangle = \operatorname{Tr}(AB)$, and take $\rho_1 = \rho_2 \colon \mathfrak{gl}_2 \to \operatorname{End}(\mathbb{C}^2)$. $x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

The matrix of $\langle \cdot, \cdot
angle$ with respect to the basis id_2, x, y, h is

$$M_{\langle\cdot,\cdot\rangle} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

An orthonormal basis for $\langle \cdot, \cdot
angle$ is given by

$$e_1 = \frac{\mathrm{id}_2}{\sqrt{2}}$$
 $e_2 = \frac{(x+y)}{\sqrt{2}}$ $e_3 = \frac{\mathrm{i}(x-y)}{\sqrt{2}}$ $e_4 = \frac{h}{\sqrt{2}}$.

Thus, we can explicitly compute $\widetilde{W}_{\rho,\mathbb{C}^2} : \mathscr{A}_2 \to \operatorname{End}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ with respect to the basis for $\mathbb{C}^2 \otimes \mathbb{C}^2$ given by $e_i \otimes e_i$, with the lexicographic order.

$$\begin{split} \widetilde{W}_{\mathfrak{gl}_2,\mathbb{C}^2}\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right) &= \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{array} \right) + \\ &+ \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{array} \right) + \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} . \end{split}$$

The standard \mathfrak{gl}_n -weight system

More in general, one can show that the construction of Lie algebra weight systems with $\mathfrak{g} = \mathfrak{gl}_N$, $\langle A, B \rangle = \operatorname{Tr}(AB)$, and $\rho_1 = \rho_2 = \dots = \rho_n$ the defining representation, assigns to the chord $C_{i,j} \in \mathscr{A}_n$ the transposition $\tau_{ij} \in \mathfrak{S}_n \subset \operatorname{End}((\mathbb{C}^N)^{\otimes n})$. It follows that for $C \in \mathscr{A}_n$

 $W_{\mathfrak{gl}_N,\mathbb{C}^N}(C) = N^{\# \operatorname{number of cycles in } \sigma(C)},$

where $\sigma(C) \in \mathfrak{S}_n$ is the permutation associated to *C* obtained by associating to each chord the corresponding transposition.

Theorem [Corfield, Sati and Schreiber, '21]:

The $(\mathfrak{gl}_N, \mathbb{C}^N)$ -weight systems are quantum states.

Proof:

Theorem [Corfield, Sati and Schreiber, '21]:

The $(\mathfrak{gl}_N, \mathbb{C}^N)$ -weight systems are quantum states.

Proof:

Theorem [Corfield, Sati and Schreiber, '21]:

The $(\mathfrak{gl}_N, \mathbb{C}^N)$ -weight systems are quantum states.

Proof:

Thus we want to study the function

$$W_N\left(\sum_i z_i \sigma_i\right) = \sum_i z_i N^{\text{#cycles}(\sigma_i)}$$

Thus we want to study the function

$$W_N\left(\sum_i z_i\sigma_i\right) = \sum_i z_i N^{\text{\#cycles}(\sigma_i)} \sim \sum_i z_i e^{-\ln(N)d_C(\mathrm{id},\sigma_i)}$$

where d_{C} is the shortest path metric in the Cayley graph of (\mathfrak{S}_{n} , transpositions).

Thus we want to study the function

$$w_N\left(\sum_i z_i\sigma_i\right) = \sum_i z_i N^{\text{#cycles}(\sigma_i)} \sim \sum_i z_i e^{-\ln(N)d_C(\mathrm{id},\sigma_i)}$$

where d_C is the shortest path metric in the Cayley graph of (\mathfrak{S}_n , transpositions). The eigenvalues of the above function are well-known:

- 1. these are parametrised by partitions of *n*;
- 2. the eigenvalue associated to λ has multiplicity $(\chi^{(\lambda)}(\mathrm{id}))^2$;
- 3. the eigenvalue corresponding to λ can be computed explicitly and is

$$\frac{n!}{\mathit{N}^n\chi^{(\lambda)}(\mathrm{id})}\cdot \mathrm{\#ssYT}_\lambda(\mathit{N})\geq 0$$

The tensor product of two representations of a Lie algebra is defined as

$$(\rho \otimes \rho')(g)[v_1 \otimes v_2] = \rho(g)[v_1] \otimes v_2 + v_1 \otimes \rho'(g)[v_2]$$

Thus

$$\widetilde{W}_{\mathfrak{g}}\left(\begin{array}{c} \bullet\\ \rho_{1}\otimes\rho_{2}\end{array}\right)=\widetilde{W}_{\mathfrak{g}}\left(\begin{array}{c} \bullet\\ \bullet\\ \rho_{1}\rho_{2}\end{array}\right)+\left(\begin{array}{c} \bullet\\ \bullet\\ \rho_{1}\rho_{2}\end{array}\right)$$

The *i*-tensor splitting

$$\Delta_{\underline{i}}:\mathscr{A}_n\to\mathscr{A}_{\sum_i i_i}$$

with $\underline{i} = (i_1, ..., i_n) \in \mathbb{N}^n$, is obtained by replacing the *r*-th strand with i_r parallel strands, and replacing each chord with the sum of all possible "lifts" of said chord in the new horizontal chord diagram.

The *i*-tensor splitting

$$\Delta_{\underline{i}}:\mathscr{A}_n\to\mathscr{A}_{\sum_j i_j}$$

with $\underline{i} = (i_1, ..., i_n) \in \mathbb{N}^n$, is obtained by replacing the *r*-th strand with i_r parallel strands, and replacing each chord with the sum of all possible "lifts" of said chord in the new horizontal chord diagram.

Theorem [C., '22]:

Let $\underline{\rho} = (\rho_1, ..., \rho_n)$ be a \mathfrak{gl}_N -label where $\rho_i \in {Alt^k(\mathbb{C}^N), Sym^k(\mathbb{C}^N)}_k$. Then, $W_{\mathfrak{gl}_N, \underline{\rho}}$ is a quantum state.

Proof:

We can decompose $W_{\mathfrak{gl}_N,\rho}$ as follows

$$\mathscr{A}_n \overset{\Delta_{\underline{\rho}}}{\longrightarrow} \mathscr{A}_{|\underline{\rho}|} \overset{\sigma}{\longrightarrow} \mathbb{C}[\mathfrak{S}_{|\underline{\rho}|}] \overset{\cdot \epsilon_{\underline{\rho}}}{\longrightarrow} \mathbb{C}[\mathfrak{S}_{|\underline{\rho}|}] \overset{\mathsf{w}_{\mathbb{N}}}{\longrightarrow} \mathbb{C} \; .$$

Where $c_{
ho}$ encodes the action of Young symmetrisers.

Theorem [C., '22]:

Let $\underline{\rho} = (\rho_1, ..., \rho_n)$ be a \mathfrak{gl}_N -label where $\rho_i \in {Alt^k(\mathbb{C}^N), Sym^k(\mathbb{C}^N)}_k$. Then, $W_{\mathfrak{gl}_N, \underline{\rho}}$ is a quantum state.

Proof:

We can decompose $W_{\mathfrak{gl}_N,\rho}$ as follows

$$\mathscr{A}_n \overset{\Delta_{\underline{\rho}}}{\longrightarrow} \mathscr{A}_{|\underline{\rho}|} \overset{\sigma}{\longrightarrow} \mathbb{C}[\mathfrak{S}_{|\underline{\rho}|}] \overset{\cdot \epsilon_{\underline{\rho}}}{\longrightarrow} \mathbb{C}[\mathfrak{S}_{|\underline{\rho}|}] \overset{\mathsf{w}_{\mathbb{N}}}{\longrightarrow} \mathbb{C} \; .$$

Where $c_{\underline{\rho}}$ encodes the action of Young symmetrisers. While the map $\sigma \circ \Delta_{\underline{\rho}}$ is a morphism of \star -algebras, the map $c_{\underline{\rho}}$ is not – for any choice of ρ which is not $\mathbb{C}^{\mathbb{N}}$.

Theorem [C., '22]:

Let $\underline{\rho} = (\rho_1, ..., \rho_n)$ be a \mathfrak{gl}_N -label where $\rho_i \in {\operatorname{Alt}^k(\mathbb{C}^N), \operatorname{Sym}^k(\mathbb{C}^N)}_k$. Then, $W_{\mathfrak{gl}_N, \underline{\rho}}$ is a quantum state.

Proof:

We can decompose $W_{\mathfrak{gl}_N,\rho}$ as follows

$$\mathscr{A}_n \stackrel{\Delta_{\underline{\rho}}}{\longrightarrow} \mathscr{A}_{|\underline{\rho}|} \stackrel{\sigma}{\longrightarrow} \mathbb{C}[\mathfrak{S}_{|\underline{\rho}|}] \stackrel{\cdot \mathfrak{c}_{\underline{\rho}}}{\longrightarrow} \mathbb{C}[\mathfrak{S}_{|\underline{\rho}|}] \stackrel{w_N}{\longrightarrow} \mathbb{C} \; .$$

Where c_{ρ} encodes the action of Young symmetrisers.

While the map $\sigma \circ \Delta_{\underline{\rho}}$ is a morphism of \star -algebras, the map $c_{\underline{\rho}}$ is not – for any choice of $\underline{\rho}$ which is not \mathbb{C}^N . For every possible label $c_{\underline{\rho}}^2 = c_{\underline{\rho}}$. Under our hypothesis on the ρ_i s we have that $c_{\underline{\rho}}^{\star} = c_{\underline{\rho}}$. These facts ensure us that the composition $w_N \circ c_{\underline{\rho}}$ is a state. \Box

Thank you!