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Introduction

The aim of this thesis is to present a proof of the functorial properties
of the Khovanov homology and to study the monodromy group of knots.
In this introduction we provide an overview of the context we are going
to work in and explain the underlying motivations.

The matematical context

Knots and the Jones polynomial. Knot theory is the best starting
point to outline the mathematical context of this thesis. Classical knot
theory is the study of the possible ways to smoothly embed a collection of
circles into R3, up to ambient isotopy of the space. A knot is the embedding
of a single circle. A link is a finite collection of knots, called components,
with disjoint image. The trivial knot is the embedding of a circle into a
plane. The unlink is a collection of disjoint circles in a plane.

An immediate question is: how can one tell if a given knot is, up to
ambient isotopy, trivial? Or more generally, given two knots, are they
equivalent? And if we consider links instead of knots? There are various
approaches to these problems. One of the most effective ones is the dia-
grammatic approach.

A link diagram is the projection
of a link into a plane satisfying
certain conditions: this projection
is one-to-one except for a finite
number of points. The points
where the projection fails to be
injective are double points and
at each double point is specified
which arc undercrosses and
which one overcrosses.

Figure 1. A knot diagram.

In 1920 Alexander proved that two link diagrams are related by a finite
sequence of oriented Reidemeister moves – see Figure 5 at page 7 – and
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iv INTRODUCTION

planar isotopies if and only if they represent equivalent links – see The-
orem 1 at page 6. This theorem allowed the introduction of combinatorial
invariants for knots and links.

In 1984 Vaughan Jones, see [VFRJones1], introduced a polynomial link
invariant J satisfying the following skein relation

(♠) q−1 · JL1(q)− q · JL(q) =
(

q
1
2 − q−

1
2

)
· JL0(q),

where L0, L1 and L are three oriented link diagrams which differ in a
small region where they look like, respectively, , and .

This literally caused a revolution. The words of Cromwell – in [Cromwell]
page 217 – may give an idea of the effect caused by the definition of this
new invariant.

“This discovery had a tremendous impact, and not only on
knot theory. Once it was known that the Alexander polynomial
invariant was not the only polynomial link invariant, people
started to search for more – some using combinatorics and oth-
ers following the algebraic route used by Jones. Close connec-
tions with physics generated a lot of interdisciplinary research,
and polynomial were defined via physical methods related to
statistical mechanics, were the Yang-Baxter equations provided
an analogue of the third braid relation, and quantum groups.”

Fifteen years later, in 1999, another major event in knot theory took place:
Khovanov’s categorification of the Jones polynomial – [KhovCat].

Categorification. The term categorification, coined by Louis Crane in
[Crane], describes the process of replacing sets by categories, functions
with functors, and equations by natural isomorphisms of functors satisfy-
ing additional properties called coherence laws. The result of this process
may reveal deep insights on the categorified object.

An example of categorification that may help the reader to understand
the basic idea behind this concept is given by the de Rham cohomology.
Let us consider the collection of all smooth surfaces, say S, for each ele-
ment of this collection we can compute the Euler-Poincaré characteristic
χ. We can categorify χ by replacing S with the category S , whose objects
are smooth surfaces and whose arrows are differentiable maps between
them, Z with the category M odZ of the graded Z-modules and χ – which
is a function between the set S and Z – with the de Rham cohomology –
which is a functor between S and M odZ. Moreover we can recover the
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categorified object from the categorification: χ is the result of the alternat-
ing sum

∑
i∈Z

(−1)irank(Hi),

where Hi is the i-th de Rham cohomology group.
Within the last few years, also thanks to Khovanov categorification

of the Jones polynomial, the importance of categorification raised, in-
volving various mathematical areas and leading to lots of interesting res-
ults. Categorification by itself goes behind the scope of our work, any
reader who wishes to know more on the subject can consult [Crane] or
also [Mazorchuk].

Khovanov homology. Khovanov’s idea, see [KhovCat], was to define
for each oriented link diagram D, a complex KH•,•(D) whose graded Euler
chatacteristic, i.e. the Laurent polynomial defined by the sum

∑
i,j∈Z

(−1)i(q)jrank(KHi,j(D))

is the Jones polynomial of D. The starting point for Khovanov’s construc-
tion is Kauffman’s state model of the Jones polynomial.

Figure 2. The res-
olution of a state

Given a link diagram D, a resol-
ution of one of its crossings is the
replacement of a crossing with
either , a 0-resolution, or ,
a 1-resolution. A state is the
choice of a possible resolution
for each crossing. The resolution
of a diagram with respect to a
state is the diagram obtained
by resolving all the crossings
according to the state.

In [Kauff2] Kauffman, using the skein relation (♠), proved that the
Jones polynomial could be written as a Z[q, q−1]-linear combination of the
Jones polynomials of the resolutions, whose coefficients are of the form
(−q)j and j depends on both the type of the resolution performed at each
crossing and the orientation of the diagram.

The Khovanov chain complex is defined from the cube of resolutions,
also called cube of smoothings. This is an n-dimensional cube whose vertices
are identified with the resolutions of D and whose edges are identified
with cobordisms between resolutions.
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If we replace each resolution of D with a graded module such that its
graded dimension is exactly the Jones polynomial of the associated resol-
ution and the cobordisms representing the edges with maps in such way
that the cube is skew commutative, it is possible to obtain the Khovanov
chain complex. The way to obtain a complex from a skew-commutative
cube is a general procedure which works in every abelian category, and its
described in [KhovCat] or in Chapter 1 Section 1.3.

TQFT. The way to replace a resolution with modules and cobordisms
with maps comes from the late ’80s. In his article [MAtiyah] Atiyah sug-
gested a set of axioms for topological quantum field theory which was in-
spired by the axioms for conformal field theory given by Segal, see [Segal],
and the geometric meaning of supersymmetry given by Witten, [Witten].

A n-dimensional TQFT is a monoidal functor between the category of
(n + 1)-dimensional closed smooth manifolds and n-dimensional cobord-
isms between them and the category M odZ. In simpler words, a (1 + 1)-
TQFT is just a way to replace a circle with a Z-module, a cobordism with
a map and the empty set with the ring Z, in such way that the glueing of
two cobordisms along the boundary corresponds to the composition of the
associated maps and the disjoint union correspond to the tensor product.

The use of any (1 + 1)-TQFT allows us to obtain new chain complexes
from the cube of resolutions. To define to a link homology theory, i.e. to
define a chain complex whose homology is a link invariant, in this way it
a few more hypotheses are necessary – see [KhovUniv]. In particular, it is
possible to obtain Khovanov homology theory from the cube of resolutions
by applying a particular TQFT.

Functoriality. Khovanov homology defines a functor from the category
of oriented link diagrams and oriented link cobordisms to the category of
bi-graded Z-modules and morphisms.

This statement could be refined: Khovanov homology gives a functor
between the category of link diagrams and boundary fixing isotopy classes
of link cobordisms to the projectivization of the category, i.e. the category
with the same objects but whose morphisms are considered only up to
sign, of bi-graded Z-modules and morphisms.

At this point a natural question arises: what happens if we drop the
condition on the fixed boundary? Is the functoriality preserved? The an-
swer to this question is known to be negative. Jacobsson, see [Jacobss],
proved that there are cobordisms ambient isotopic to cylinders which in-
duce automorphisms in Khovanov homology that are neither the identity
map nor its opposite. These cobordisms are described by movies that be-
gin and end with the same diagram and involve only planar isotopies and
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Reidemeister moves. The automorphisms associated to these cobordisms
form a group with respect to composition and this group is precisely the
monodromy group.

Outline of the paper

In Chapter 0 of this paper we introduce the basic concepts of knot
theory such as diagrams, oriented diagrams and sign conventions on the
crossings. In this chapter also the Jones polynomial is defined.

In Chapter 1 we summarize different constructions, as well as some
of their properties. The fundamental constructions we present are: the
cube of smoothings, Khovanov bracket, Khovanov chain complex and the
formal Khovanov chain complex. The approach we adopt is the same one
described in [BarNatan]. In this chapter is also sketched a proof of the
invariance of the formal Khovanov chain complex.

In Chapter 2 we prove the functoriality of the Khovanov homology.
We prove the result not only in the case of link diagrams but also in the
more general case of tangle diagrams. Section 1 provides an introduction
to the possible representations of knotted surfaces in 4-dimensional space.
In Section 2 the new categorical setting of our theory and the fundamental
tools that are necessary for the proof of the main result are presented.
Section 3 is devoted to prove of the main theorem: up to sign, the map
induced by two surfaces ambient isotopic relative to the boundary are
homotopy equivalent. A final section is dedicated to suggestions of further
readings.

Finally, Chapter 3 is devoted to the study of the monodromy group. In
Section 1 we prove the invariance, up to isomorphisms, of the monodromy
group. In Section 2 we describe two techniques that can be applied to the
explicit computation of the monodromy group. Section 3 is devoted to the
proof of the Rasmussen-Tanaka theorem. This result will be used for the
computations performed in Section 4. In the last section we describe the
limits of our approach and suggest a few possible ways to improve our
methods.



CHAPTER 0

Knot Theory

Whatever the twists and turns of a system of
threads in space, one can always obtain an
expression for the calculation of its
dimensions, but this expression will be of
little use in practice. The craftsman who
fashions a braid, a net, or some knots will be
concerned, not with questions of
measurement, but with those of position:
what he sees there is the manner in which the
theads are interlaced.

A. T. Vandermonde

The quote above is the first paragraph of [Vanderm]. This book, writ-
ten in 1771, deals with the position problem. This problem consists of
understanding in how many different ways we can place an object, for ex-
ample a system of treads or a necklace, in space. A way to state formally
the mathematical problem of position, in its most general version, is the
following.

Problem (Position problem). Given a topological space X and two sub-
spaces, say A and B, homeomorphic to a topological space Y . The subspaces A
and B are said to be of the same type in X if and only if there exists an isotopy
H of X , such that H(A, 1) = B. Classify all the types of spaces homeomorphic
to Y .

Knot theory deals with probably the simplest non-trivial instance of
this problem: when the space X is the usual 3-dimensional space R3 – or
its Alexandroff compactification S3 – and the subspaces are disjoint union
of circles – the so called links, or knots if the subspaces are homeomorphic
to a single circle.

A function that goes from the set of all possible subspaces of X that are
homeomorphic to Y , to another set – that might be a collection of vector
spaces, as well as a numeric set or, in general, the class of the objects of
a given category – such that two subspaces of the same type have the
same image is called an invariant. The aim of knot theory is to find easily
computable complete invariants, i.e. invariants such that if two links have
the same image then they are of the same type.

1



2 0. KNOT THEORY

Up to now a few complete invariants are known, such as the funda-
mental quandle or the peripheral system, and they are not easily comput-
able even for the simplest knots. So, it is generally preferable to find
incomplete invariants that are easier to compute, rather than hard-to-
compute complete ones.

Most of these incomplete invariants are in practice more than enough
to discern if two knots are or are not of the same type. Combinatorial
invariants are based on the study of knots and links diagrams which are,
roughly speaking, projections of knots and links onto a plane by applying
combinatorial techniques. Combinatorial invariants are easy to compute:
most of them can be calculated using a computer, and are very powerful.
Khovanov homology can be seen as a particular combinatorial invariant.

In this chapter we describe the basic definition and techniques of com-
binatorial knot theory. We will proceed as follows: in the first section we
formally define knots and links; in the second section we will add the
orientation to the picture. Finally, in the third section we will give an ex-
ample of a combinatorial invariant: the Jones polynomial. The latter is
deeply related with Khovanov homology.

Any reader who is interested in knot theory, even after they read this
chapter, can consult the fourth and last section of this chapter where we
will give some references.

1. Knots and links

1.1. Definitions. A knot can be thought of as a thin piece of rope,
knotted and with its ends glued together. A link is a collection of knots
that could be tangled and linked together. The formal definitions are given
below.

Definition 0.1. A knot K is a topological embedding of S1 in R3 or
S3. A link is a finite collection K1, ...,Km of knots, called components, with
disjoint images.

Two knots, say K and L, are equivalent – or of the same type – if exists a
continuous map

H : S3 × [0, 1] −→ S3,

such that ht(·) = H(·, t) is an homeomorphism, for each t ∈ [0, 1], h0

is the identity map of S3 and h1(K(S
1)) = L(S1); such a map is called

ambient isotopy. The previous definition formalizes the intuitive idea of
a continuous deformation of K(S1) which takes place in R3 into L(S1); as
time t passes the points of our knot as well as its surrounding, move –
continuously – in R3 until, at the final instant, they overlap the points of
the second knot.
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This is obviously an equivalence relation, so it partitions the set of
knots into classes called types, and indicated [K].

Two links K1, ...,Km and L1, ...,Lm are equivalent if and only if there
exists an ambient isotopy H and a permutation σ ∈ Sm, such that:

h1(Kj(S
1)) = Lσ(j)(S

1), for all j ∈ {1, ..., m}.
The unknot is a circle that lies in a plane; any knot which is equival-

ent to the unknot is said to be unknotted. Similarly, the unlink with m
components is a collection of m disjoint circles in a plane.

Remark. The equivalence between links is more than the equivalence
of the single components; we require the components to be deformed
together and without intersecting each other. An example of two non-
equivalent links with components of the same type is given by the unlink
with two components and the Hopf link shown in Figure 8 at page 86.

1.2. Tame and wild knots. Any mathematician with a little background
of topology knows that dealing with continuous maps, without any fur-
ther regularity hypotesis, leads to a variety of pathological cases. Knot
theory makes no exception: as things are now, there are knots far from
our intuitive concept and from the physical entities we are modelling in
knot theory; an example of such a knot is shown in the figure below.

Figure 1. A wild knot.

Knots like the one shown in figure are called “wild” – the one depicted
is actually mild wild, there are even worse examples. These knots, apart
from being far from our intuitive idea of a knot, have also bad combin-
atorial properties – which are essential in this work – and are difficult to
study.

There are different ways to rule wild knots out; the most common ap-
poraches are: requiring knots to be “sufficently regular”, i.e. C1 or smooth,
or forcing our knots to be “finite” in some sense. These approaches are
more or less equivalent, but the second one avoids technical difficulties
and needs less pre-requisites.
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Figure 2. Local picture of non-regular projections.

Definition 0.2. A polygonal knot is a knot whose image is given by a
finite number of points, called vertices, joined by a finite number of line
segments, called edges, such that: two edges intersects at most in a vertex
and each vertex is shared by exactly two edges. A polygonal link is a link
whose components are polygonal knots.

Any link, or knot, equivalent to a polygonal one is called tame, the
others are called wild. This distinction is important: most of the known
techniques, in particular those used in this paper, cannot be applied to
wild knots or links. From now on, all knots and links are supposed to be
tame. All knots which are sufficently regular are tame, in the sense of our
definition.

Proposition 1. Any knot of class C1, up to reparametrization, is tame.

This fact is basically due to the rectificability of C1 curves parametrized
by arc lenght; the proof of this proposition could be found in the appendix
I of [FoxCrom].

1.3. Diagrams. Knots in R3 or S3 are generally difficult to describe;
for this reason usually a knot is presented by a projection called diagram.
This diagrams allow us to use combinatorial techniques to study knots,
and also provide a way to compute effectively lots of invariants.

Just any projection would not work, so we must make some assump-
tions.

Definition 0.3. Given a polygonal link K1, ...,Km, we say that it is in
regular position with respect to a plane Π if the projection of

⋃
j Kj(S

1) is one
to one except for a finite number of double points, none of wich is the
image of a vertex. Any projection wich satisfies the properties just stated
is called regular projection.

Proposition 2. Given a knot K and a plane Π exists an arbitrarily small
rotation ρ of R3 such that ρ(K) is in regular position with respect to Π.
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This theorem and its proof could be found in the first chapter of
[FoxCrom]. As a consequence, every tame knot is equivalent to a poly-
gonal knot in regular position with respect to a fixed plane. Up to ambient
isotopy we can smooth out the vertices of our polygonal knots, as well as
those of the projections, so usually we will draw them without corners.

Definition 0.4. A link diagram is the image of a regular projection,
together with the information of which arc undercrosses at each double
point. The components of a link diagram are the images of the components
of the link.

A way to codify this information is to break the undercrossing arc as
shown in figure; this type of link diagram is also called broken diagram.

Figure 3. A diagram for the trefoil knot.

The image of a regular projection is a compact set, so, up to applying
ambient isotopy, this image can be taken to be contained in D2, i.e. the
unit disc of R2. This fact will be implicitly assumed in the rest of the
paper.

1.4. Tangles an local moves. Sometimes one has to deal with links
that have the same diagram,except in a small region of the plane, and
it may be useful to work only in that region “forgetting” the rest of the
diagram. To work in such a local context it is necessary to use tangles.

Definition 0.5. A tangle is the intersection of a link with a 3-disc D3.
The boundary set of a tangle is the – finite – set of points that lies in ∂D2.

A tangle T is said to be in regular position with respect to a plane Π if
and only if the original link is in regular position with respect to Π and
there are no crossings in the projection of the boundary set of T. The
projection of a tangle in regular position, together with the information of
which arc undercrosses at each crossing is called tangle diagram.

The tangle diagrams are contained in D2, which is the projection of
D3 onto a plane, and their boundary set, i.e. the itersection of the tangle
diagram with ∂D2, will be always considered linaerly ordered.
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A local move is the replacement of a tangle with another tangle having
the same boundary set. There are two different types of local moves: one
that changes the link type and one that does not. An example of moves of
the second type is given in Figure 4. These moves give us a way to relate
diagrams of equivalent knots.

Theorem 1 (Alexander 1920). Two links are equivalent if and only if there
exists a diagram H of the first one, and a diagram K of the second one, that are
related by a finite sequence of planar isotopies and Reidemeister moves.

R−1



R+
1




R2



R3



Figure 4. The unoriented Reidemeister moves.

2. Orientations

Knots, links and tangles are, technically speaking, topological 1-manifolds
– with boundary in the case of tangles – and, as a consequence, they ad-
mit an orientation. Orientations are, roughly speaking, just the choice of a
preferred direction of travel along each component.

Definition 0.6. An oriented link is a collection of knots K1, ...,Km, to-
gether with a fixed orientation on their image.

Considering our definition of knot equivalence, it turns out that two
copies of the same knot with different orientations may not be equivalent.
Any oriented knot that is equivalent to itself with the opposite orienta-
tion is called invertible. Knots that admit a diagram with less than nine
crossings are all invertible.

A choice of a orientation for the a link L induces an orientation on
each diagram of L. This orientation can be indicated with an arrow on
each component.

Also Reidemeister moves have an oriented version: there is more than
one oriented version for each unoriented move. Luckily, we can obtain all
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the possible oriented Reidemeister moves from the four moves depicted
in Figure 5 – see [Polyak] for the proof. In order to check that something
– e.g. a group, a chain complex, a polynomial ect. – is an oriented link
invariant, i.e. does not change if two oriented links are of the same type,
it is necessary, and also sufficent, to check the invariance under oriented
Reidemeister moves.

R−1



R+
1




R2



R3



Figure 5. The oriented Reidemeister moves.

Along with the concept of orientation on a diagram we have the concept
of positive and negative crossings – these are conventionally defined as in
Figure 6. The sign of a crossing is +1 if the crossing is positive and −1 if
the crossing is negative.

+ −
Figure 6. Positive and negative crossings.

Now we can define one of the simplest invariant for links with two
components. Given an oriented link diagram L with two components, say
A and B, the linking number of A and B, denoted by lk(A,B), is half the
sum of the signs of the crossings that are shared by A and B. It is an easy
exercise that the linking number is an oriented link invariant.

Definition 0.7. The writhe of an oriented diagram D, indicated with
w(D), is the sum of the signs of the crossings of the diagram D.

The writhe is neither a link nor a knot invariant because the second
and third oriented Reidemeister moves do preserve the writhe, while the
first move either raises – R+

1 – or decreases – R−1 – the writhe.
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When something – e.g. a group, a chain complex, a polynomial ect.
– is preserved by the second and the third Reidemeister moves, but not
necessarely by any version of the first move, we will call it invariant under
regular isotopies for links.

3. The Kauffman bracket and the Jones polynomial

In this section we define the Kauffman bracket polynomial and the
Jones Polynomial. Moreover, we will see how these two polynomials are
related.

Definition 0.8. The trivariate Kauffman bracket polynomial of a – unori-
ented – link diagram L is the polynomial 〈L〉 in the variables A, B, d,
defined recursively by the relations

(a) 〈©〉 = 1, where© denotes a single circle in the plane;
(b) 〈© t L′〉 = d〈L′〉, for every link diagram L′;
(c) 〈L〉 = A〈L0〉 + B〈L1〉, where the diagrams L0 and L1 are obtained

from L by replacing a crossing with, respectively, and .

If we consider a link diagram L, in the local picture near a crossing
there are four regions. Two of these local regions form a pair if they meet
only at the vertex. A pair is called positive if is the first pair swept by the
overcrossing arc under counterclockwise rotation. The non-positive pair is
called negative.

-

-
+ +

+

+
- -

Figure 7. The pairing of regions: the “+”s indicate the pos-
itive pair and the “-” the negative one.

Given a link diagram L the universe associated to L is the 4-valent
planar graph obtained by placing a vertex at each crossing of L and con-
sidering the arcs of L as the arcs of the graph. A state on a universe is
the choice of a pair of regions for each vertex. A resolution, or smoothing,
of a crossing in a diagram, or of a vertex in a universe, is one of the local
moves that replaces the crossing, or the vertex, with either or .

For each crossing a smoothing is called positive if the local regions of
the positive pair are merged together. Otherwise, the smoothing is called
negative.



3. THE KAUFFMAN BRACKET AND THE JONES POLYNOMIAL 9

Figure 8. The two possible resolutions of a crossing: on the
left the positive one and on the right the negative one.

Let L a link diagram and s a state of the associated universe. We
will denote with i(s) the number of positive pairs in s, j(s) the number of
negative pairs and |s| the number of circles we obtain by smoothing each
crossing according to the pair chosen, the collection of these circles will be
called smoothing relative to s.

Definition 0.9. Given a link diagram L and a state s, the weight of s in
L is the monomial defined as

〈L|s〉 = Ai(s)Bj(s).

Since the smoothings relative to the states are in one-to-one corres-
pondence with the summands in the expansion of the bracket, and since
the coefficent of the trivariate Kauffman bracket of the smooting relative
to a state s is exactly Ai(s)Bj(s) = 〈L|s〉, we have that

(1) 〈L〉 = ∑
s state

〈L|s〉 · d|s|−1.

The expression in (1) is called expansion of the bracket as a state summation.
The bracket is not invariant under regular isotopies for links. A few

computations – see [Kauff], pages 216-220 – show that necessary and suffi-
cent conditions for the invariance under regular isotopies of the Kauffman
bracket are

B = A−1, d = −(A + A−1).

The Kauffman bracket of a link diagram is the Laurent polynomial in the
variable A obtained from the trivariate Kauffman bracket by means of the
equations above.

Nonetheless, we do not have the invariance of the Kauffman bracket,
because the first move changes the bracket by multiplying it by either −A3

or −A−3, depending on the version of the first move we are considering.
To obtain an invariant of oriented links we set

fL(A) = (−A)−3w(L)〈L〉,

where L is an oriented link diagram and w(·) is the writhe. The Laurent
polynomial fL is called the Kauffman polynomial of L.
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From the Kauffman polynomial we can define the Jones polynomial J
of an oriented diagram as

JL(q) = fL(q−
1
4 );

As a consequence of the state summation formula in (1), we get the fol-
lowing result.

Proposition 3. For each oriented link diagram L the following state summa-
tion formula holds

JL(q) = ∑
s state

(−1)3w(L)q
i(s)−j(s)−3w(L)

4 (−q
1
4 − q−

1
4 )|s|−1,

where i(s) is the number of positive smoothings in s, j(s) is the number of negative
smoothings in s and |s| is the number of circles in the resolution associated with
the state s.

Remark. The Jones polynomial is usually defined by the following
identities
(a) J© = 1;
(b) if L is an oriented link diagram, L1 is obtained from L by replacing a

negative crossing c, , with a positive one, , and L0 is obtained by
replacing c with the smoothing , we have

q−1JL1 − qJL =
(

q
1
2 − q−

1
2

)
JL0 .

For a proof that the Jones polynomial just defined is the same as the one
previously defined, see [Kauff2].

4. Further reading

A very good book to get started with knot thory is [FoxCrom], where
a beautiful introduction to knots and links is given. This book treats only
a few arguments: the knot group, the Alexander polynomial and colora-
tions, but it is self contained and clear.

A book that gives just the ideas behind most of the constructions in
knot theory without being too technical is [Living1]. The strong point of
this book is the simplicity; the prerequisites are just a little background in
topology and the knowledge of some linear algebra.

One of the most complete books about knot theory is Dale Rolfsen’s
“Knots and Links”, [Rolfsen]. Finally, if one wants to know more about
the Kauffman bracket or combinatorial knot theory, can consult [Kauff].



CHAPTER 1

Khovanov Homology

In this chapter different constructions are summarized as well as some
of their properties; these are the fundamental constructions for the Khovanov
homology theory. We start with the definition of the smoothing cube,
a combinatorial object employed to define the Khovanov chain complex.
Following [BarNatan], after a discussion on cubes – inspired by [KhovCat]
– and a bit of abstract nonsense, we start the formal construction of the so
called Khovanov bracket, a complex over a suitable category.

Before proving the invariance – up to chain homotopy and in the
right category – of the bracket J·K, a little aside on the costruction of the
Khovanov complex is made. At first, we just say how the chain complex
could be defined from the bracket; afterwards, we investigate more deeply
the relations between the formal complex and the chain complex.

In the third section we provide a proof of the invariance of the Khovanov
bracket, using the already cited Bar-Natan’s approach; we deal with the
problem in a formal way by using planar algebras and local arguments
in order to conclude our proofs. In the same section, to be precise in
the concluding subsection, the grading and a graded version of the main
theorems are dealt with.

Finally, in the conclusive section, we describe – without too much de-
tail – different appoaches to the invariance of the Khovanov homology, as
well as other definitions, generalizations, and alternative constructions.

1. Khovanov bracket

The aim of this section is to introduce the Khovanov bracket; this is a
“formal complex”, in a sense described in the second subsection, based on
the combinatorial structure called smoothings cube.

1.1. The Cube. The cube of smoothings, as its name reveals, is a struc-
ture based on the possible resolutions of all the crossings in a tangle dia-
gram; so, in order to study this structure, one needs to make a few con-
siderations about the smoothings.

Let c be a crossing of a tangle diagram T . In the local picture of c
there are four regions; a couple of them is called are a pair if they meet

11
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only at the vertex. A pair is called positive if is the pair swept by the
overcrossing arc, under counterclockwise rotation, until the undercrossing
arc; otherwise, the pair is called negative.

B

B
A A

A

A
B B

Figure 1. The pairing of regions: the “A”s indicate the pos-
itive pair and the “B”s the negative one.

Any resolution of c is called accordingly to which pair of regions it
fuses: if the positive pair is unified, then the resolution is positive, other-
wise negative.

Figure 2. The two possible resolutions of a crossing: on the
left the positive one and on the right the negative one.

Let c1, ..., cn be an order for the crossings of T ; until the end of the
chapter we suppose this order fixed – unless otherwise stated. The ex-
ample we will use the most will be the trefoil diagram depicted in figure
3, in this case the order will be descending – c’est-à-dire, the first crossing
is on the top, while the third crossing is on the bottom of the diagram.

We can assign to each smoothing a vector of ones and zeros, called
splitting or smoothing vector, whose i-th entry is 0 if ci is resolved in a posit-
ive way and 1 otherwise. Viceversa, given a vector v – with n components
– of zeros and ones, we can associate to it a smoothing by splitting the i-th
crossing according to the i-th entry of v.

(1, 0, 0)

Figure 3. The smoothing corresponding to the vector (1, 0, 0).
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The bijective correspondence between smoothings and smoothing vec-
tors induces an identification of the resolutions of T with the vertices of
the n-dimensional standard cube in Rn – the set of all the points with co-
ordinates in {0, 1}, called vertices, together with the segments of straight
lines joining two vertices that differ by a single coordinate, called edges.

Definition 1.1. Let v be a vector in Rn; its lenght, denoted |v|, is the
sum of the absolute value of its coordinates. The length of a smoothing is
the lenght of the associated vector.

To obtain the smoothings cube we arrange the resolutions in columns
according to their length – i.e. two smoothings are in the same column if
and only if their lengths are the same – and place this columns in such a
way that the module increases from left to right. In this case “a picture is
worth a thousand words”, to quote Bar-Natan – [BarNatan] –, so a picture
of the smoothings cube of the trefoil is provided.

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

Figure 4. The cube of smoothings of a trefoil diagram.

The cube depicted in the previous figure has, between certain smooth-
ings, arrows. These arrows are the projection of the cube edges – so they
join smoothings that differ by a single coordinate – oriented in such a way
that they are directed towards the smoothing with higest module in the
couple.

Remark. The costruction just done works for any cube in a category,
see next section, and we call its result the standard projection.
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There is also a standard way to label arrows: to each one of them we
associate a vector, identical to its tail smoothing vector, except in the co-
ordinate that changes, where it has a ?. An example clarifies more than
just a description, so below is shown the labelling of an arrow in the tre-
foil’s cube.

(1, 0, 0)

(1, ?, 0)

(1, 1, 0)

Figure 5. Labeling of states and arrow in the trefoil’s cube.

In figure 4 there are two types of arrows: red ones and black ones;
those in red are the arrows whose - not yet defined - associated morphism
will carry a minus sign. In general, an arrow in a cube of smoothings
will be colored red if the star in its label is preceded by an odd number
of ones. This detail will be essential when defining the differential in the
Khovanov bracket: this choice of the sign ensure the skew-commutativity
of our cube and ththe fact that the composition of the differentials is zero.

Let v? be an arrow in the smoothings cube associated to T , with T a
link, from the resolution associated to v0 to the one associated to v1; an
example is shown below. The smoothings corresponding to v0 and v1 are
identical except in a small area near the crossing corresponding to the ? in
v?, where they are smoothed differently. A neighbourhood of this crossing,
which does not intersect other arcs or crossings, is called changing region
or changing disc.

(1, 0, 0)

(1, ?, 0)

(1, 1, 0)

Figure 6. The area in red represent the changing disc.
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The replacement of by – or viceversa, depending on the smoothed
crossing – can be seen as the passage through a saddle point in a cobord-
ism. The latter can be built as follows: take the cylinder over the resolution
associated with v0, remove the one over the changing disc and plug in a
saddle cobordism , – or , depending on the replacement – which
will be indicated with the symbol - resp. .

(1, ?, 0)

Figure 7. Two ways to represent an arrow: with the nota-
tion described and as a cobordism.

Everything said until now works just fine for knot and link diagrams,
but cobordisms between smoothing of tangle diagrams are a little trickier
to define.

Definition 1.2. A cobordism between tangle smoothings is a smooth sur-
face S, properly embedded in D2 × [0, 1], with the following properties:
(a) S ∩ ∂

(
D2 × [0, 1]

)
= ∂S.

(b) S ∩D2 × {i} = Ti, for i ∈ {0, 1}, is a tangle smoothing.
(c) T0 and T1 have boundary set B.
(d) S ∩ ∂D2 × [0, 1] = B× [0, 1].
T0 is the upper boundary, T1 is the lower boundary and ∂S \ (T1 ∪ T2) is called
vertical boundary.

If B = ∅, our cobordism turns out to be a cobordism between link
resolutions. If T is a tangle diagram, given two resolution of T , say v0

and v1, connected by an arrow, v?, we can repeat the above construction
and obtain a cobordism between tangle diagrams smoothings.

1.2. Cubes in categories. At the begining of this chapter we said that,
to formalize our construction, some abstract nonsense would be needed.

Remark. For the rest of the paper, if not explicitly stated otherwise,
the word “category” will mean “small category” – i.e. the objects and,
as a consequence, the morphisms form two sets instead of being proper
classes. Any reader that wishes to investigate more on categories may
refer to: [AdHerStr] or [MacLane].
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Definition 1.3. A cube in a category C is a collection of objects Vv ∈
Obj(C ), called vertices and indexed over the vertices of the n-cube, and
morphisms ξa, called edges and defined for each edge a of the cube, such
that: if a is the edge between v, u and |v|+ 1 = |u|, then:

ξa : Vv −→ Vu.

A cube is said to be commutative if for each square v00, v01, v10, v11 – i.e.
four vertices such that, for all i ∈ {0, 1}, there exist edges ai?, a?i such
that: ai? joins vi0 and vi1, and a?i joins v0i and v1i – the following diagram
commutes

Vv00

ξa?0
��

ξa0? // Vv01

ξa?1
��

Vv10 ξa1?

// Vv11

In this case we will say that the square v00, v01, v10, v11 commutes.

Our cube of smoothings is not yet a cube in the abstract (non)sense
just defined: we need a category where it could fit in; we will worry about
this in the next section, for now let us continue with categories and cubes.
Given a cube we will use the labelling for the arrows explained in the
previous subsection.

Definition 1.4. A pre-additive category is a category A together with a
family of operations {+A,B}A,B∈Obj(A ) such that:

(a) (A r(A, B),+A,B) is an abelian group, for all A, B ∈ Obj(A );
(b) the composition ◦A is bilinear.

Given an arbitrary category C its pre-additive closure is the category Cpa,
which is: C itself, if it is pre-additive to begin with; otherwise, Cpa has the
same objects as C , but the morphisms are given by the free abelian group
over A r(C ) and the composition is the bilinear extension of the original
composition.

Remark. Given a functor F : C −→ D , F extends to their pre-additive
closure in a natural way: by linear extension.

A cube in a pre-additive category is skew-commutative if, for each square
v00, v01, v10, v11, holds:

ξa1? ◦ ξa?0 + ξa?1 ◦ ξa0? = 0,

where 0 is the neutral element of A r(Vv00 , Vv11).
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Lemma 1. Let C be a commutative cube in the pre-additve category C . The
cube C, obtained from C by defining

ξv? = sign(v?)ξv? ,

where sign(v?) is (−1)k and k is the number of ones preceding the ? in the label
associated with v?, is skew-commutative.

Proof. Let v00, v01, v10, v11 be a square. To show the skew-commutativity
of this square we must take into account the position of the changing co-
ordinates: there are four possible cases, depending on the oddity of the
number of ones before the first changing coordinate and beween the two
changing coordinates; it is easy to see that the following relations hold

(2) sign(a0?) = −sign(a1?), sign(a?1) = sign(a?0).

By definition, we have the following equality:

ξa1?
◦ ξa?0

= sign(a1?) · sign(a?0)ξa1? ◦ ξa?0 =,

from the commutativity of C it follows

= sign(a1?) · sign(a?0)ξa?1 ◦ ξa0? =,

finally, from (2), we obtain

= −sign(a?1) · sign(a0?)ξa?1 ◦ ξa0? = −ξa?1
◦ ξa0?

Q.E.D.

Let C , D be two pre-additive categories. A functor F from C to D is
pre-additive if

F(n · f + m · g) = n · F( f ) + m · F(g),

for every f , g ∈ A r(C ) and m, n ∈ Z.

Proposition 4. Let C be a cube in C and F a pre-additive covariant functor
from C to D . The cube F(C), with vertices Wv = F(Vv) and edges ζa = F(ξa) –
where Vv and ξa are vertices and edges of C – is (skew) commutative if C is (skew)
commutative.

Proof. The assertion is immediate from the definition of covariant and
pre-additive functors.

Q.E.D.

In proposition 4, the covariance is necessary; otherwise we would have
needed to re-label the vertices and the arrows by switching ones and zeros
to obtain a true cube. Modulo this re-labelling of vertices and edges, the
proposition holds also for contravariant pre-additive functors.
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1.3. Complexes. Let C be a pre-additive category, a (cochain) complex
over C is a family of objects (Ωi)i∈Z, together with a family of morphisms
(di)i∈Z such that: di : Ωi → Ωi+1 and di ◦ di+1 = 0, for all i ∈ Z. The
morphisms di are called differentials while the Ωis are called (co)chain spaces.

A morphism between two complexes, say (Ωi, di) and (Γj, δj), is a family
of morphisms fi : Ωi → Γi+k – with k ∈ Z, called degree of f , indipendent
of i – such that:

δi+k ◦ fi = fi+1 ◦ di,

or, equivalently, the following diagram commutes

Ωi

fi
��

di
// Ωi+1

fi+1
��

Γi+k
δi+k

// Γi+k+1

for each i ∈ Z.
The composition of two morphisms f = ( fi)i∈Z and g = (gj)j∈Z is the

morphism defined by

( f ◦ g)i = fi+deg(g) ◦ gi;

and the neutral element for composition is given by the identity idΩ =

(idΩi)i.

Remark. Notice that the degree is additive with respect to the com-
position. In particular, if we compose two degree-0 morphisms we obtain
a degree-0 morphism.

Finite complexes and morphisms over a pre-additive category C form
themself a category, indicated as K om(C ). Sometimes a sub-category of
K om will be used; this sub-category, denoted K om0, has the same objects
as K om and its morphisms are the degree-0 morphisms in K om.

The aim of the chapter is to prove the invariance of the Khovanov
homology but, if we are not in an abelian category, one cannot properly
define the homology of a formal complex. Needless to say, the category we
are going to work with is not abelian, but, luckily, there is a condition for
chain complexes which implies having isomorphic homologies: the chain
equivalence.

Definition 1.5. Given two degree-0 morphisms F, G : Ω → Γ, with
Ω, Γ complexes, F and G are chain homotopic if there exists a degree −1
morphism P between Ω and Γ, such that:

Fi − Gi = δi−1 ◦ Pi ± Pi+1 ◦ di.
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The morphism P is called prism map, or chain homotopy map. Two com-
plexes Ω and Γ are said to be chain equivalent, or homotopy equivalent, if
there exist two morphisms

K : Ω→ Γ, H : Γ→ Ω,

such that K ◦ H and H ◦ K are degree-0 and chain homotopic to IdΩ, and
IdΓ, respectively.

Being chain equivalent is an equivalence relation in the category of
complexes and all the morphisms descend to the quotient – because they
commute with the differentials; so we can define the category of complexes
modulo homotopy K om/h – also K om0/h – as the category whose objects
and morphisms are the equivalence classes of the objects in K om – resp.
K om0 – with respect to chain equivalence.

1.4. The formal complex. Let B the boundary set of some tangle dia-
gram. The category C ob3(B) is the pre-additive closure of the category
C2(B); the latter is defined as follows: its objects are smoothings of tangle
diagrams having B as a boundary set , and the arrows are cobordisms
between tangle smoothings, considered up to boundary fixing isotopies.
The domain of a morphisms in C2(B) is its upper boundary, while the
codomain is given by the lower boundary.

Remark. According to the definitions of tangle and tangle diagram
we have given, also the empty set can be seen both as a tangle and as
a tangle diagram. The unique smoothing of this tangle diagram is the
empty smoothing, and this will be included as object in C2. Moreover, a
cobordism between two empty smoothings can be built in different ways,
e.g. a sphere, a torus or the empty cobordism, i.e. the empty set viewed as a
morphism in C2.

Consider S, S′, two cobordisms between tangle smoothings, their com-
position is possible if the lower boundary of S, is equal to the upper
boundary of S′ - or viceversa; in this case, S′ ◦ S is - up to boundary
fixing isotopies - the surface obtained by gluing together a tubular neigh-
bourhood of the lower boundary of S with a tubular neighbourhood of the
upper boundary of S′.
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Figure 8. Composition of two morphisms in C2.

Definition 1.6. Given a pre-additive category C , its additive closure – or
matrix category – denoted M at(C ), is the category defined by the following
properties:
(a) Obj (M at(C )) are formal finite – or empty – direct sums of objects of
C.

(b) Given C =
⊕n

i Ci, D =
⊕m

j Dj ∈ Obj (M at(C )), a morphism between
them is a m× n matrix

(
Fj,i
)
, with Fj,i ∈ A r(Ci, Dj).

(c) If C, D are object in M at(C ), A r(C, D) has a natural structure of
abelian group given by matrix addition.

(d) The composition of two morphisms
(

Fj,i
)

,
(
Gk,j
)

is given by the “mat-
rix multiplication” rule:((

Gk,j
)
◦
(

Fj,i
))

s,t = ∑
j

Gs,j ◦ Fj,t.

Remark. Any functor between pre-additive categories extends natur-
ally – not in the technical sense – to their additive closure.

Remark. The empty sum, also denoted 0, is an initial and also a final
object in M at(C ). The unique morphism from an object O to 0 is given
by the empty matrix, i.e. the matrix without entries, and this is also the
unique morphism with source 0 and target any other object; so A r(0, O),
as well as A r(O, 0), can be given the trivial group structure and its unique
element will be, with an abuse of notation, called 0.

Remark. Sometimes we will need to take the formal direct sum of
objects in M at(C ), and the result should be an object in M at(C ). In the
present setup this is not true: we cannot add an object

⊕
Ai to 0, because

0 is not an object in the original category. It is not difficult to solve this
problem: every time we add 0, the object we are adding it to remains
untouched.
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Now everything is set up; given an oriented tangle diagram T - with
boundary set B - we can consider any of its smoothings as an object in
M at(C ob3

pa(B)) and define:

JT Ki =
⊕

|S|=i+n−

S,

where |S| is the module of S. Moreover, to each arrow v? is associated a
morphism, denoted dv? , in M at(C ob3

pa(B)), so we can define:

di = ∑
|v0|=i+n−

sgn(v?)dv? ,

with v0 the tail of v?, i.e. the source smoothing, and sgn(v?) is +1, if there
is an even nuber of ones before the ?, in the notation described in the first
subsection, or −1, if that number is odd.

Remark. Most of the constructions described until now are indipendent
of the orientation of the tangle diagram; but, the previous definition de-
pends on the orientation: when we take the – direct – sum along the
columns we shift the complex by a n− on the right; whether a crossing
is positive or negative, depends on the chosen orientation. This shift is
indeed necessary to prove invariance.

Proposition 5. Let T be a tangle; di ◦ di+1 is zero.

Proof. The proof of this proposition consists of showing that without
signs the cube of smoothings, which is a cube in C ob3(B), commutes and
the assertion will follow from proposition 1. Given a square v00, v10, v01,
v11, the two compositions dv?0 ◦ dv1? and dv0? ◦ dv?1 are cylinders except in
two changing areas; in each changing area the cylinder over the changing
disc is replaced by a saddle. Because the compositions both start from
v00 and arrive at v11, the two cobordisms must have the same “type” of
saddles in the same changing areas;they only differ in the height of the
two saddle points. By standard Morse theory, the two saddles can be
“height re-ordered” by a boundary fixing isotopy.

Q.E.D.

The complex JT K = (JT Ki, di)i∈Z is called the Khovanov bracket of T .
The construction just described is pretty general. Given a skew-com-

mutative cube C in a pre-additive category C , we can see it as a cube in
M at(C ); considering its standard projection and taking the direct sum
along columns of the vertices and the sum along columns of the edges,
as done for the Khovanov bracket, one can define a formal complex JCK
which will be called the bracket of C.
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Moreover, if we have a functor F between two pre-additive categories,
once extended the functor to their additive closure and also to complexes,
we have JF(C)K = F (JCK) for every (skew) commutative cube C. In partic-
ular, if the Khovanov bracket is invariant under Reidemeister moves and
planar isotopies, that is to say is a tangle invariant, also its functorial image
is a tangle invariant.

2. Khovanov Complex

Now we want to define a chain complex of Z-modules from our formal
complex, so that we can compute homology. For some reasons, which will
be explained at the end of the chapter, in this section we will consider only
knots or links, and it is important to consider them oriented – at least in
the case of links.

2.1. Graded modules and quantum dimension. Before starting the
construction it is necessary to recall some algebraic definitions.

Definition 1.7. A (Z-)graded module (over a commutative ring R) is a
module M together with a decomposition:

M =
⊕
n∈Z

Mn,

where Mn is a (possibly trivial) submodule of M, for each n. An element
x ∈ M is called homogeneous of degree k if x ∈ Mk \ {0}.

Remark. Every ring, if unless stated otherwise, from now on will be
trivially graded – i.e. all its elements have degree 0.

Given two graded modules, say M and N, their direct sum, as well as
their tensor product, inherits the structure of a graded module naturally:

(M⊕ N)n = Mn ⊕ Nn,

(M⊗ N)n =
⊕

i+j=n

Mi ⊗ Nj.

Let M be a finitely generated graded module, say over Z – this is the
only case we shall consider – each Mn is a sub-module of M so its rank –
i.e. the dimension of the free part – is defined.

The graded (or quantum) dimension of M is defined as:

qdim(M) = ∑
n∈Z

rank(Mn)Tn;

while the graded Euler characteristic of M is

χg(M) = ∑
n∈Z

(−1)nrank(Mn)Tn.
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Notice that both the quantum dimension and the graded Euler character-
istic are Laurent polynomial in T; furthermore, the following equalities
hold

χ(M) = χg(M)[1], χg(M)[−T] = qdim(M)[T].

The basic properties of the graded dimension, which can be easily
verified, are listed below:

(1) qdim(M⊕ N) = qdim(M) + qdim(N);
(2) qdim(M⊗ N) = qdim(M) · qdim(N);
(3) qdim(Sk(M)) = Tk · qdim(M);

where Sk(M) is the k-degree shift of M, that is to say:

Sk(M) =
⊕
n∈Z

Mn−k.

2.2. From the bracket to the complex. Now we turn to the definition
of the Khovanov complex; this is based on the Khovanov bracket: to each
smoothing will be assigned a module and to each arrow a map. The sum
– direct sum in the case of modules – over a column will give us the chain
group, if we sum modules, and the differential when we sum arrows, in
accordance of what was previously done with the bracket.

Let V be the free Z-module generated by x−, x+, with grading induced
by:

deg(x+) = 1, deg(x−) = −1.

Given a resolution S to each circle we associate the module V and then
tensor over all the circles in S; so, if kS is the number of circles in S, we
obtain V⊗kS , then we apply a grade shift:

VS = SrS

(
V⊗kS

)
,

where rS is the sum |S|+ n+ − 2n−.

Definition 1.8. The i-th Khovanov chain group is the Z-module:

Ci,∗(D) =
⊕

|S|=i+n−

VS.

The integer i is called homological degree.

Remark. It is an easy exercise to see that the graded Euler character-
istic of the complex C∗,∗(D) =

⊕
i∈Z Ci,∗(D) is the unnormalized Jones

polynomial Ĵ (D). The latter is defined as

ĴL(q) = (q− q−1) · JL(q),

where J is the Jones polynomial defined in Chapter 0. [Hint: use the form
in state summation of J .]
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Every Khovanov chain group has, thanks to the grading of V, a natural
graded structure:

Ci,∗(D) =
⊕
j∈Z

Ci,j(D),

where j is called the quantum degree and is defined by

qdeg(x) = deg(x) + i + n+ − n−;

where: x is an homogeneous element of VS – with |S| = i + n− – and deg
is its degree in VS.

Now take a smoothing vector v0, and an arrow v? pointing from v0 to
v1. As observed in the previous section, there are two possible changes
from the tail to the head, depending on how many circles intersect the
changing region: the fusion of two circles or the splitting of a circle in two,
as shown below.

(1, 0, 0)

(1, ?, 0)

(1, 1, 0)

(1, 0, 1)

(1, ?, 1)

(1, 1, 1)

Figure 9. A fusion – on the top – and a splitting – on the
bottom – of circles.

In the Khovanov bracket, to the arrow v? is associated a cobordism dv?
given by a number of cylinders and a pair-of-pants surface. This cobord-
ism dv? is the identity cobordism – a cylinder – for all the circles except for
the circle(s) involved in the changing disc; here is the pair-of-pants that
takes care of the splitting or the fusion, depending on how it is directed:
upward or downward.
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fusion
sp

lit
ti

ng

Figure 10. A pair-of-pants surface.

Remark. The cobordisms drawn across the paper are always directed
downward, unless otherwise specified.

The map δv? , that we want to associate to the arrow v?, goes from Vv0

to Vv1 . Over each V corresponding to a circle that doesn’t intersect the
changing disc, it must be the identity map; while, on the V(s) correspond-
ing to the remaining circle(s) it must split V in V ⊗ V (resp. fuse V ⊗ V
in V); as a consequence of everything said until now, δv? is the tensor of
kv0 − 1 identity maps with a fusion – or splitting map.

The two latter maps, denoted m and ∆, respectively, are defined as
follows:

m : V ⊗V → V,

is such that:

m(x+ ⊗ x+) = x+, m(x+ ⊗ x−) = m(x− ⊗ x+) = x−, m(x− ⊗ x−) = 0;

while
∆ : V → V ⊗V,

is defined by

∆(x+) = x− ⊗ x+ + x+ ⊗ x−, ∆(x−) = x− ⊗ x−.

The i-th differential in the Khovanov complex is defined in a similar way
to what was done for the bracket:

δi = ∑
|v0|=i+n−

sgn(v?)δv? .

We can verify that the map defined just now is a differential and, con-
sequently, that the Khovanov complex is a complex, but we postpone this
matter until the next section.

2.3. TQFT. The construction of the Khovanov complex just given, is
incomplete; what we have done is sufficent to define a chain complex
but does not represent a fuctor yet: we do not know which morphism
is associated to, for example, a cap. In this condition even proving the
invariance – up to chain homotopy – could be challenging.
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The underlaying functor is an example of TQFT (acronym for Topolo-
gical Quantum Field Theory), which is a monoidal functor from the category
Cn, of (n − 1)-dimensional closed smooth manifolds and n-dimensional
cobordisms between them, to the category M od(Z); the word “monoidal”
means that it is a functor between categories “with tensor product” – called
monoidal categories – that respects this structure – i.e. commutes with ⊗
and sends unity object/morphism to unity object/morphism. The study
of generic TQFTs, as well as monoidal functors, goes beyond the scope of
this work; the interested reader may refer to [MAtiyah], [JohnPMay] or
[JacLurie]. In our case the definition turns out to be:

Remark. The category C ob3(∅) is in fact the pre-abelianized of C2, so
any functor defined over C2 extends by linearity to C ob3. Moreover, both
the mentioned categories can be given a monoidal structure by using as
tensor product the disjoint union and as unit object/morphism the empty
set.

Definition 1.9. A (1+ 1)-TQFT is a functor F from C ob3(∅) to M od(Z),
which satisfies the following properties:

(a) F(∅) = Z, F(∅cob) = idZ;
(b) F(S t S′) = F(S)⊗Z F(S′), for all S, S′ ∈ Obj(C ob3(∅));
(c) F(c t c′) = F(c)⊗Z F(c′), for all c, c′ ∈ A r(C ob3(∅));

where ∅cob is the empty set seen as 2-dimensional cobordism between ∅
and ∅.

A (1+ 1)-TQFT defines, and is defined by, a particular algebraic struc-
ture: a Frobenius algebra. If the interested reader wants to know more
about this structure then he – or she – can refer to: [LAbrams].

Definition 1.10. Let R be a domain. A (commutative finite dimen-
sional) Frobenius algebra over R is a finitely generated projective R-module
M together with two linear maps:

m : M⊗R M→ M, ε : M→ R,

called, respectively, multiplication and trace – or co-unit–, such that:

(a) m(u⊗ v) = m(v⊗ u).
(b) There exists an element e ∈ M for which m(v⊗ e) = v, for each v ∈ M.
(c) ≺ ·, · �: M×M→ R : (v, u) 7→ ε(m(v⊗ u)) is non degenerate.

Given a Frobenius algebra M we can define, using the fact that ≺ ·, · �
is non-degenerate, another map:

∆ : M→ M⊗R M,
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where ∆(v) = ∑i ui ⊗R vi is the unique element such that:

m(v⊗ y) = ∑
i
≺ vi, y � ui,

with vi and ui two bases of M. The map just defined, ∆, is called co-
multiplication. Finally, we can define also

ι : R→ M : 1R 7→ e;

which is called unity or unit map.

Remark. The structure (M, m, ∆, ι, ε) is not an Hopf Algebra.

Example 1. Let L be the Q-module generated by x+ and x−; L is given a
graded structure by grading x+ and x− as follows:

deg(x±) = ±1.

Take as multiplication on L the map m defined by

m(x+ ⊗ x+) = x+, m(x+ ⊗ x−) = m(x− ⊗ x+) = x−,

m(x− ⊗ x−) = x+;

and as a co-unit the map

ε(x+) = 0, ε(x−) = 1.

One could verify that ≺ ·, · � is non degenerate, which means that the maps
above define a Frobenius algebra structure on L. Carrying on the computations
we find out that the co-multiplication map ∆ is defined by

∆(x+) = x+ ⊗ x+ + x− ⊗ x+ − x+ ⊗ x+,

∆(x−) = x− ⊗ x− + x+ ⊗ x+,

and the unit is

ι(1) = x+.

Notice that neither ∆ nor m are degree homogeneous.

A TQFT is related with a Frobenius algebra in the following way:
the pair-of-pants surface correspond to the multiplication or to the co-
multiplication – depending if it is regarded as a fusion or as a splitting
cobordism. The map associated to a cap – the disc seen as cobordism
between the empty set and a circle, denoted – is the unit, while the co-
unit is associated to the disc but regarded as cup – i.e. cobordism between
the circle and the empty set, denoted .
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Figure 11. Relation between Frobenius algebras and TQFTs.

So our splitting and fusion maps are the Frobenius algebra’s maps
related to the applied TQFT. The unit and the co-unit, which were not
defined, can be obtained from the multiplication an co-multiplication; for
example, from:

∆(x+) = x− ⊗ x+ + x+ ⊗ x−,

, we obtain:

x+ = m(x+ ⊗ x+) = ε(m(x+ ⊗ x+))x− + ε(m(x− ⊗ x+))x+ =

= ε(x+)x− + ε(x−)x+,

by the indipendence of x+ and x−, we must have:

ε(x+) = 0, ε(x−) = 1.

While, the unity is easily determined:

ι(1) = x+.

The fact that we are applying a TQFT, for what we have said about
brackets of cubes and functors, implies that the Khovanov complex is the
bracket of the cube obtained from the cube of smoothings via a covariant
pre-additive functor; in particular, it is a complex.

3. Invariance

Let T an oriented tangle diagram. We supposed that an order of the
crossings of T was fixed in order to obtain the correspondence smoothing-
smoothing vectors. Our construction is based on this correspondence. A
change of order has the effect of changing the level of the smoothings
within a column at the level of cube, and of change in the order of the sum
in K ob. These changes produce an isomorphic complex. So the invariance
under the change of ordering is easily proven. The invariance we want is
the invariance for tangle type: if we perform a Reidemeister move on a
tangle the complexes before and after the move must be equivalent.
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3.1. Local moves. If we proved the invariance – up to chain homotopy
– of the Khovanov bracket as things are now, we would prove that the
Khovanov homology is invariant, and that would also mean every TQFT
generates a link homology theory. This is false: the fact our theory is a
link invariant depends on the TQFT applied. For example, if our TQFT as-
sociates to a circle the graded module A, the fact that J·K is a link invariant
implies that the characteristic of the complex is indipendent of the chosen
diagram; in particular, the complexes associated to the two representations
of the unknot shown below must have the same Euler characteristic.

Figure 12. Two diagrams of the unknot.

The associated chian groups would be respectively:

0 −→ A −→ 0, 0 −→ A⊗ A −→ A −→ 0,

so we must have:

rank(A) = −rank(A) + rank(A⊗ A) = rank(A)2 − rank(A),

which implies
rank(A) = 2.

The rank of A is not the only property our theory must satisfy. From
abstract considerations, see [KhovUniv], it turns out that any TQFT that
gives rise to a link homology theory must satisfy:

ε(ι(1)) = 0,

and also
ε(m(∆(ι(1)))) = 2;

these are called S-relation and T-relation, respectively, and their geometric
counterpart is drawn below.

ι ∆ m ε

= 2

ι

ε
= 0

Figure 13. S and T local relations.
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A TQFT trasforms the disjoint union in tensor products so, as a con-
sequence, the S and T relations imply that any cobordism containing a
sphere – or a torus – as connected component is the 0 morphism – resp. 2
times the cobordism without the torus.

A third geometric relation, which can be algebraically interpreted in
different ways, is the 4-Tu relation shown in the figure below.

=+ +

Figure 14. The 4-Tu relation.

The picture above is meant to be read in the following way: if we
intersect a surface with a 3-disc, in such way that the boundary of the
intersection are 4 circles, the sum of the surface obtained by replacing
the inner part of the disc with the first configuration in figure 14, and
the same surface with the inner part of the disc replaced by the second
configuration is equal to the sum of the surfaced obtained, with the same
technique, from the third and the fourth configurations. A complete proof
that at least our TQFT satisfies this relation is given in [Tamburr]; this
proof is divided into cases, depending on how many circles “come from”
the upper boundary of the cobordism, and consist on the computation of
the maps generated by discs and tubes in each configuration.

The category C ob3(B) modulo the local relations S, T and 4-Tu, is
denoted C ob3

`(B); from the fact these relations hold we have that our TQFT
descends to a functor from C ob3

` to M od(Z).

3.2. Planar algebras. Now we want to introduce the “main tool” for
demonstrating the invariance: the planar algebras. These will allow us
to “patch up” the “local” proofs of the invariance, i.e. the proofs for the
tangle diagrams involved in the Reidemeister moves – to obtain the invari-
ance for all possible tangles.

A k-tangle, with k ∈ N positive, is a tangle diagram whose boundary
set is the set of the 2k-th roots of unity – a 0-tangle is, by definition, a
link. The set of k-tangles is denoted by T (k); while the set of the oriented
k-tangles is T (k), where k is a vector whose entries are in {±1}: the i-th
coordinate is 1 if an arc begins there, and −1 if it ends there.



3. INVARIANCE 31

Figure 15. An oriented 4-tangle in T (-1,-1,-1,+1,-1,+1,+1,+1).

A planar arc diagram is a k-tangle without crossing with a number of
open balls removed – called holes. These holes are usually ordered and
have marked points on their boundary, corresponding to the intersection
of the strands with the boundary of the hole. These marked points are
called inner gates, while the marked points on the boundary of the tangle
are called outer gates. In the oriented version we can give a sign to the
inner gates as well: if a strand begins in an inner gate then the sign will
be −1, otherwise +1.

Remark. The sign convention for the inner gates is opposite to the sign
convention for the outer gates.

The set of all the planar arc diagrams – p.a.d. – is denoted by D , or
D(k; k1, ..., kh) if we want to emphasize the number of outer gates – k – and
the number of inner gates in the i-th circle – ki, for i ∈ {1, ..., h} with h the
number of holes. The oriented version is similar but each ki is replaced by
ki, where the latter is a vector carrying the signs of the inner gates in the
boundary of the i-th hole.

-

+

-+

-

+-

+

-+

-

+

+-

+-+

-

Figure 16. An oriented planar arc diagram.

A special class of planar arc diagrams is given by the so-called identity
diagrams – an example of which is shown below. The identity diagram
with 2k strands – or, equivalently, with 2k outer gates – is denoted by Ik.
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The oriented version is almost identical, but with the strands oriented; the
notation is the same with k replaced by k, a sign vector for the outer gates.

Figure 17. The I3 diagram.

Before giving the definition of planar algebra, it is necessary to intro-
duce the most important example in the subject: the planar arc algebra –
p.a.a. This is given by: the collection of all the tangle spaces {T (k)}k∈N,
the collection of all the planar arc diagrams D , an action of the planar
arc diagrams over the tangle spaces – which is described below – and a
composition rule for diagrams with an associative property.

The action of the planar arc diagrams over the tangle spaces is, as one
could expect, just given by filling the holes with tangles.

Let D ∈ D(k; k1, ..., kn) be a planar arc diagram; D defines a map

D : T (k1)× · · · ×T (kn) −→ T (k),

such that D(t1, ..., tk) is the tangle obtained by shrinking – or enlarging – ti
to the dimension of the i-th hole and, paying attention to match the order
of the i-inner gates with the boundary set of ti, fill the i-th hole with ti.

The action of the oriented diagrams over the oriented tangles is defined
just in the same way, with the additional condition that the signs of the
gates must match.

Moreover, we can compose the diagrams using the same technique,
and the following associativity property is almost tautological:

(3) D� C(t1, ..., ti−1, t̄, ti+1, ..., th) = D(t1, ..., ti−1, C(t̄), ti+1, ..., th),

where t1, ..., t̂i, ..., th are tangles with the correct boundary and t̄ is a tangle
vector such that (3) makes sense. The above equation just means that
composing the diagrams and letting the result act over tangles is the same
as composing the actions. A planar arc sub-algebra – p.a.s.-a. – is a subset
of the diagrams set D ′, which acts over a family of subsets S (k) ⊆ T (k),
so that each S (k) is closed under the action of D ′; moreover, the latter



3. INVARIANCE 33

must be closed under the composition � and must contain the identity
diagrams for every non-empty tangle set.

Example 1.1. There are few examples of p.a.s.-a. that must be kept in
mind:
(a) a first example is given by the smoothings planar algebra; this is defined

as the sub-algebra of the p.a.a. with diagram set all the planar arc
diagrams, so D ′ = D , with the same action and composition; what
changes is the tangle set: we consider as S (k) the set of all crossingless
k-tangles.

(b) The k-tangle algebra has as tangle sets S (h): T (k) if h = k, otherwise
S (h) is the empty set. The diagram set is given by all the diagrams
that have k outer gates and, for each hole, k inner gates.

(c) The k-smoothing algebra has as tangle sets – resp. as diagram set – the
intersection of the tangle sets – resp. diagram sets – of the previous
two p.a.s.-a.

Definition 1.11. An unoriented planar algebra – p.a. – is a collection of
sets, {Pk}k∈N, together with a family of operators {OD}, indexed over
the diagram set of a planar arc sub-algrebra, and a composition product
�, such that:

(a) if D : Tk1 × · · · × Tkh → Tk then OD : Pk1 × · · · ×Pkh →Pk;
(b) OD�(D1×...×Dh) = OD � (OD1 × · · · ×ODh);
(c) OIk = IdPk ;
(d) if D 6= D′ then OD 6= OD′ .

If we take the oriented diagrams, instead of the unoriented ones, as index-
ing set for the planar operators and we replace N with sign vectors, i.e.
k-uples of ±1, the result will be an oriented planar algebra.

In fewer words: a planar algebra is given by a set of planar operators –
i.e. the family {OD} – that acts over a collection of tangle spaces – the family
{Pk}k∈N – such that the composition of the operators and their action are
compatible with the identifications of OD with D, and of Pk with a subset
of the set Tk.

Remark. In a more formal language, a planar algebra P is a colored
operad which is isomorphic to the operad of planar arc sub-algebra. An
enthusiastic reader who wants to know more on the subject can consult
the original paper by Vaughan Jones [VFRJones]; a faster, and perhaps
clearer, introduction on the subject can be found in [BWebster].

Given two planar algebras, say

({OD}D∈D ′ , {Pk}k,�), ({QD′}D∈D ′′ , {Rk}k,�′),
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a planar algebras morphism Ψ between them is given by a family of maps:

ψk : Pk → Rk,

plus a map:

ψ : D
′ −→ D

′′
,

such that:

(4) ψk(OD(T1, ..., Th)) = Qψ(D)(ψk1(T1), ..., ψkh(Th)).

For our purposes we need a somewhat stronger definiton of planar
algebra: the one we just gave is a ”set-theoretic” notion, but we need to
work also over complexes. This requires the Pk to be (free) Z−modules
and the operators OD to be multilinear maps – also p.a. morphisms will
be required to be multilinear.

This extension does not pose a real problem: we can define our algebra
over the basis of our (free) Z-modules, and take the multilinear extension
of the operators. The reader could verify that all the properties of the
definition remain satisfied.

A non-trivial example of planar arc algebra is given by the morph-
isms of C ob3

` ; this is defined as follows: its planar operators are the
cylinders over the planar arc diagrams, the tangle spaces are the family
{A r

(
C ob3

`(k)
)
}k∈N, the action is given by filling the holes of the cylinders

D× [0, 1], where D ∈ D is a planar arc diagram, with tangle cobordisms,
and the composition of two operators is given by the cylinder over the
composition of the associated planar arc diagrams. An example of the
action is shown in the figure below, for further examples the reader may
refer to [BarNatan] page 1465.
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× [0, 1]

Figure 18. Commutativity between composition and the
planar arc operator action in the planar algebra of cobor-
disms.

As shown in figure, the following relation holds

D(c1 ◦ c2, d1 ◦ d2) = D(c1, d1) ◦ D(c2, d2),

for every c1, c2, d1, d2 ∈ A r(C ob3) and D ∈ D any two-holed diagram;
this only means that plugging in two cobordisms in D× [0, 1], taking an-
other copy of D × [0, 1] and plugging in other two cobordisms, compos-
able with the first two cobordisms, and finally put the results one atop the
other, is the same thing as composing the cobordisms and plug the result
in the “holes” of D× [0, 1].

Definition 1.12. The category K ob(k) is defined as the sub-category
of K om

(
M at(C ob3

`(k))
)

given by all the finite complexes, i.e. all the
complexes with at most a finite number of non-zero chain spaces.

Theorem 2. The following results hold:

(a) K ob has a natural planar algebra structure;
(b) J·K descends to a planar algebra morphism between the p.a.a. and K ob;
(c) J·K descends to a planar algebra morphism between the p.a.a. and K ob/h, i.e.

K om modulo chain equivalences.
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Proof. This proof, only skecthed in [BarNatan], will be detailed here.
The first step will be to extend the planar algebra structure of both Obj(C ob3

`)

and A r(C ob3
`) to, respectively, Obj(M at(C ob3

`)) and A r(M at(C ob3
`)).

Any object of M at(C ob3
`(k)) is a – possibly empty – formal direct sum

like
Oj = S1

j ⊕ ...⊕ S
rj
j , Si

j ∈ Obj(C ob3
`(k));

given a diagram D ∈ D(k; k1, ..., kn) we define the corresponding planar
operator, denoted D as well, by

D(O1, ..., On) =
r1⊕

i1=0

· · ·
rn⊕

in=0

D(Si1
1 , ..., Sin

n ),

which is nothing more than the multilinear extension of the operator D
defined over Obj(C ob3

`); in particular, D(0, ..., 0) = 0.
The composition of the operators, defined as the operator induced by

the composition, satisfies the required associativity property almost trivi-
ally. In the same way we extend over the morphisms of M at(C ob3

`(k)) the
planar algebra structure of A r(C ob3

`(k)).
Now, take Ωi complexes in K om(ki), i ∈ {1, ..., n}, and D as above;

also in this case we must define how D acts over the spaces K om(ki). The
idea is to define D as “tensor product” of complexes; so the operator OD

is defined as

(OD (Ω1, ..., Ωn))
r =

⊕
i1+...+in=r

D(Ωi1
1 , ..., Ωin

n ),

over the chain spaces, and as

di1,...,in =
n

∑
j=1

(−1)∑
j
1 it D(Id

Ωi1
1

, ..., d
ij
Ωj

, ..., IdΩin
n
),

OD(d)r =
⊕

i1+...+in=r

di1,...,in ,

for the differentials. We need to check that:

OD (Ω1, ..., Ωn) = ((OD (Ω1, ..., Ωn))
r , OD(d)r)r∈Z

is indeed a complex; this is just a routine verification, and could be done
by mimicking the proof that the tensor product of cochain complexes is a
cochain complex.

Remark. The finiteness of the complexes in K ob was used in order to
obtain complexes in K ob: the sum⊕

i1+...+in=r

D(Ωi1
1 , ..., Ωin

n ),
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is a priori infinite, because the indices range over Z, and so, in general, is
not an object in M at(C ob3

`). But, because the complexes in K ob are finite,

only finitely many Ω
ij
j are non zero and, consequently, the sum is finite.

Is a bit tedious, and does not provide any insight, to check that all the
properties of planar algebra; for this reason we will check only the asso-
ciative property (3), emphasizing where the finiteness of the complexes in
the definition of K ob is used.

Let D, D′ two planar arc diagrams with D as above and

D′ ∈ D(k1; h1, ..., hm),

which implies
D� D′ ∈ D(k; h1, ..., hm, k2, ..., kn);

given Θj ∈ K ob(hj) and Ωi ∈ K ob(ki), for j ∈ {1, ..., m} and i ∈ {2, ...n},
we can compute

(QD (QD′ (Θ1, ..., Θm) , Ω2, ..., Ωn))
r =

=
⊕

i1+...+in=r

D((QD′ (Θ1, ..., Θm))
i1 , Ωi2

2 , ..., Ωin
n ) =

=
⊕

i1+...+in=r

D

 ⊕
j1+...+jm=i1

D′
(

Θj1
1 , ..., Θjm

m

)
, Ωi2

2 , ..., Ωin
n

 =

by the definition of the planar algebra extension to the matrix category, we
have

=
⊕

i1+...+in=r

⊕
j1+...+jm=i1

D
(

D′
(

Θj1
1 , ..., Θjm

m

)
, Ωi2

2 , ..., Ωin
n

)
=

=
⊕

j1+...+jm+i2+...+in=r

D
(

D′
(

Θj1
1 , ..., Θjm

m

)
, Ωi2

2 , ..., Ωin
n

)
=

the property (3) for the smoothings planar algebra implies

=
⊕

j1+...+jm+i1+...+in=r

D� D′
(

Θj1
1 , ..., Θjm

m , Ωi2
2 , ..., Ωin

n

)
=

= (QD�D′ (Θ1, ..., Θm, Ω2, ..., Ωn))
r .

In a similar way we can proceed with the differentials. Obviously, the
identity diagram behaves as the identity of a complex.

Now that we have defined a planar algebra structure over K ob, we
have to show that the bracket descends to a planar algebra morphisms
between K ob and the planar arc algebra; to do so we must verify that:

J·Kk : T (k)→ K ob(k),
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satisfies (4). Because every planar arc diagram can be seen as the composi-
tion of two-holed diagrams, and because (3) holds, is sufficient to prove the
assertion for this type of diagrams. Take D ∈ D(k; k1, k2), Ωi ∈ K ob(ki)

and Ti ∈ T (k) – with i ∈ {1, 2} – such that:

Ωi = JTiK.

We want to show that

D(Ω1, Ω2) = JD(T1, T2)K;

let us verify it only for the chain modules, the proof for the differentials
is almost identical. Now, we can suppose D(T1, T2) to have the crossing
ordered in such way that the crossings of T1 come before than the crossings
of T2; so, any splitting vector v can be seen as (v1, v2), with vi splitting
vector, see page 12 of this paper, for Ti, such that:

|v| = |v1|+ |v2|,

and, viceversa, every pair of splitting vectors defines a splitting vector for
D(T1, T2); it is also clear that the splitting Sv, associated to the vector v, can
be also obtained by using D to compose the splittings S1

v1
, S2

v2
of T1, T2,

given by, respectively, v1, v2. So we have

JD(T1, T2)Kr =
⊕

|v|=r+n−

Sv =
⊕

|v|=r+n−

D(S1
v1

, S2
v2
) =

if we denote ni
− the negative crossings of Ti, we also have:

=
⊕

(|v1|−n1
−)+(|v2|−n2

−)=r

D(S1
v1

, S2
v2
) =

by definition of the bracket,

=
⊕

(|v1|−n1
−)+(|v2|−n2

−)=r

D(Ωv1−n1
−

1 , Ω|v2|−n2
−

2 ) =

by a simple change of index

=
⊕

i+j=r

D(Ωi
1, Ωj

2) = D(Ω1, Ω2)
r.

As for the last point of the theorem, it is sufficent to verify it for two-
holed diagrams; in this case, the assertion is implied by the fact that dia-
gram of two equivalent complexes are equivalent, and the chain equival-
ences are given by the “diagram of the chain equivalences” defined as for
the differential in the diagram of complexes. This is also a routine verific-
ation that we leave to the reader. We provide a hint: is necessary to use
the fact, stated before the definition of K ob at page 35, that the action of
the planar operators and the composition of cobordisms commute.
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Figure 19. Invariance under R1.

Q.E.D.

3.3. Invariance of J·K. Finally, to conclude our proof, we must show
that for the diagrams involved in the Reidemeister moves we have invari-
ance. All the proofs of these facts are well known, so we will not carry
on all the computations; instead, we will sketch the proofs, stressing the
details that will be used afterwards, and redirect the reader to [BarNatan]
for the complete versions.

Proposition 6. The two complexes J K and J K, shown in figure 19, are
homotopy equivalent.

Proof. The proof of this theorem is pretty standard and direct. One
defines the maps directly and verifies that they do the trick; in figure 19

is drawn a diagram containing the two complexes J K and J K, the
underlined smoothings are those with homological grading 0.

The maps in figure 19 are defined as:

F0 = − H1 =

d0 = G0 =

and the maps di, Gi, Fi, Hi+1 are defined to be 0 for each i 6= 0. The
commutativity of F and G with the differential is almost immediate, so we
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turn directly to the verification that F and G are homotopy equivalences.
It follows immediately from the T relation that the composition G ◦ F is
the identity for J K.

The remaining composition is a bit more difficult: we must verify two
cases F1 ◦ G1 = Id1 + d0 ◦ H1 and F0 ◦ G0 = Id0 − H1 ◦ d0; the first is
immediate, while the second verification uses the 4-Tu relation depicted
in figure 14.

Q.E.D.

Proposition 7. The two complexes J K and J K are homotopy equi-
valent.

Proof. This proof is similar to the previous one, so we refer the reader
directly to [BarNatan] – Theorem 1, Invariance under the Reidemeister R2,
pages 1458-1459.

Q.E.D.
A little bit more machinery is needed to prove the invariance under the

third move. This proof is from [BarNatan], and is inspired by the original
proof of the invariance for regular isotopies of the Kauffmann bracket.

Definition 1.13. Let Ω, Θ be two complexes. A morphism F : Ω → Θ
is a strong deformation retract if there exist G : Θ → Ω and a prism map
K : Ω→ Ω, see page 18, such:

(a) F ◦ K = 0 and K ◦ G = 0.
(b) G ◦ F = Id
(c) F ◦ G = K ◦ d + d ◦ K + Id

In this case G is called inclusion in a deformation retract.

Remark. Actually, does exists a strong defomation retract G between
the complexes J K and J K, a picture of this morphism is shown in
figure 6, page 1459, [BarNatan]. A modified version of this morphism will
be used to prove the invariance under the third Reidemeister move.

Definition 1.14. Let Ω, Θ be a two complexes and F : Ω→ Θ a morph-
ism. The cone over F is the complex Γ(F), defined by:

Γ(F)i = Ωi+1 ⊕Θi, di
Γ(F) =

(
di+1

Ω 0
Fi di

Θ

)
The cone is well defined becuse of the commutativity of F with the

differential. Now the proof of the invariance under the third move rest
upon two lemmas, which we are not going to demonstrate. This lemmas
give us a way to relate the third and the second move, in such way that
the first will follow from the latter.
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Lemma 2. The following relations hold

(a) J K = Γ( J K ).
(b) J K = Γ( J K )[−1].

where ·[·] is the shift of complexes defined by: Ω[s]i = Ωi+s, J K is the saddle
morphism between the complex J K and the complex J K, and di

[s] = di+s.

Lemma 3. Given four complexes Ω0, Ω1, Θ0, Θ1, and morphisms F0, F1,
G0, G1, Ψ as in the following diagram

Ω1

F1 **

Ψ
��

Θ1G1

oo

Ω0
F0 // Θ0
G0

jj

then the following statements hold

(a) if F1 is a strong deformation retract with inclusion G1 then: the cones Γ(Ψ)

and Γ(Ψ ◦ G1) are homotopy equivalent;
(b) if G0 is a strong deformation retract with inclusion F0 then: the cones Γ(Ψ)

and Γ(F0 ◦Ψ) are homotopy equivalent.

The proofs of the lemmas can be found in [BarNatan] – Lemma 4.4
and Lemma 4.5 at pages 1460-1462, respectively. Now we can conclude
the proof of the invariance.

Proposition 8. The two complexes J K and J K are homotopy equival-
ent.

Proof. The complex J K can be seen as the cone over the morphism
ΨR = J K, shown in the figure below. This fact can be proved dir-
ectly by computing the chain groups and differentials of the cone complex
explicitly, and comparing the result with the complex J K.

Notation. With the symbol J K we denote the map between the
complexes J K and J K, which is everywhere the identity, except
from the crossing indicated with where it behaves as the saddle map.
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⊕

⊕

Figure 20. The representation of the complex correspond-
ing to the right side of the third move as a cone.

By direct computation, one can see that the complex J K is the cone
over J K, in accordance with the previous case.

The top layer of the cube in figure 20 is the complex J K, which
deformation retracts over J K via the inclusion in a defomation retract
generated by the second Reidemeister move – see the remark at page 40.
This defines an inclusion in a deformation retract ΦR, depicted in figure
21, from J K to the bottom layer of the cube in figure 20.

⊕
ΦR

Figure 21. The morphism ΦR.

Thanks to lemma 8, we can say that our original complex is the cone
over the morphisms ΦR. Everything just said can be restated for J K, but
exchanging ΦR with ΦL, illustrated in figure 22. We get that J K is the
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cone over the morphism ΦL; but this two maps are obiouvsly homotopic
and, thanks to lemma 2, this concludes the proof.

⊕
ΦL

Figure 22. The morphism ΦL.

Q.E.D.

3.4. Grading the bracket. Now the last thing to do is introduce the
grading into our construction. The Khovanov complex is, in fact, bi-
graded while the bracket has only the homological grading; by simply
applying the TQFT without a grade shifting we lose the information on
the quantum grading. We can, with a little help from abstract nonsense,
define the formal grading and create a new graded complex from which
we can immediatly obtain the Khovanov chain complex with the quantum
grading and all.

Definition 1.15. A graded category is a pre-additive category with a Z

action over objects and morphisms, called shift, and a notion of degree for
the latters, such that:

(a) deg(IdO) = 0, for each object O.
(b) deg( f ◦ g) = deg( f ) + deg(g), for every pair of morphisms f , g for

which the composition makes sense.
(c) Given two objects, O1, O2, and denoted Sk the k-degree shift, then

A r(Sk(O1),Sh(O2)) = A r(O1, O2),

and, if Sh
k ( f ) ∈ A r(Sk(O1),Sh(O2)) is the k-source h-target shift of f ,

the following holds:

deg
(
Sh

k ( f )
)
= deg( f ) + h− k.
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Each pre-additive category admits a graded closure – with respect to a
grading of the morphisms group, the latter seen as a Z-module. As in
the previous constructions we leave the category untouched if it is already
graded; otherwise, we take as objects the pairs (m, O), for each m ∈ Z and
O object, and we can define a grading on the morphisms by taking them
as a graded group, and shifting in such a way that the property (c) of the
grading is satisfied.

Once we have a graded category we can extend the graded structure to
its matrix category by giving the degree d to a matrix whose entries are all
morphisms of degree d; any matrix can be seen as a linear combination of
“homogeneous matrices” so this gives the structure of graded module to
the morphisms. The k-shift of a vector of objects V is the vector containing
the k-shifted entries of V. In a similar way we can extend our grading to
the category of complexes.

To define a graded structure over K ob(k) it is sufficent to give a grad-
ing to the morphisms of C ob3(k), verify that the local relations are grade
homogeneous – so that the graded structure descens to a graded structure
over C ob3

`(k) – and, finally, additivity under “horizontal” and “vertical”
composition of cobordisms.

Definition 1.16. Let C ∈ A r(C ob3(k)) be a cobordisms between tangle
smoothings. The degree of C is defined as

deg(C) = χ(C)− k,

where χ(·) is the Euler characteristic. Remind that k is half of the vertical
boundary components of C.

Remark. We have to grade also the empty set, as it represent a morph-
ism in C ob3(∅), so we define

deg(∅) = 0;

this choice is not arbitrary, but descends from the request of the additivity
with respect to planar algebra operations.

Simple computations show that

deg( ) = deg( ) = −1, deg( ) = deg( ) = +1,

so, once we verify both “vertical ” and “horizontal” additivity of the de-
gree, we can conclude that the S relation and T relation are grade pre-
serving. More tedious, but not difficult, is to check that the 4-Tu is grade
homogeneous; we will treat only a case, that is when two discs lay in the
lower boundary and the other two in the upper boundary. In this case
we have a cylinder plus a cap and a cup this rises the degree by two; on
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the other side of the = there are two cups/caps plus an horizontal tube.
The horizontal tube is given by compositon of a (closed) saddle plus a
cup/cap, so there is a 2-degree shift.

The additivity property mentioned above can be verified, for example
by triangulating the cobordisms. Finally we can define a graded complex,
called Khovanov formal complex, and denoted Khi,j(T ), as:

Khj(T ) = Sj+n+−n−(JT Kj)

now the Khovanov (algebraic) chain complex can be seen as direct applic-
ation of the TQFT to the formal Khovanov complex.

All the results obtained for the bracket can be extended and adapted
for the complex just defined; these results are collected in the theorem
below.

Theorem 3. Given a tangle diagram T , the following hold:

(a) The differential of Kh is of degree 0;
(b) The TQFT introduced in the previous section is a degree 0 functor between

C ob3
` graded and M odgr(Z);

(c) Kh is a tangle invariant up to degree 0 homotopy equivalence;
(d) Kh defines a degree 0 planar algebra morphism between T (k) and K om(k),

for each k ∈N.

Proof. The theorem follows from 2 by simple degree computations
and from the fact that the number of crossings, as well as the number of
positive and negative crossings, is additive under the action of planar arc
diagrams.

Q.E.D.

4. Alternative definitions and generalizations

So far we defined the Khovanov bracket and the Khovanov chain com-
plex, and sketched a proof of their invariance under Reidemeister moves.
The construction of the Khovanov complex we have given is the stand-
ard one. Another definition, more combinatorial, is given by Jacobsson in
[Jacobss], where he proves the invariance and the yet-to-be-defined func-
toriality. The advantage of Jacobsson’s definition is that it is easier to
handle in actual computations.

The invariance can be proven, even using the standard definition, in
different ways: for knot and links different proofs of the invariance can
be found in [KhovCat] – which uses cubes – and in [EunSLee] – a direct
proof. To be precise, Khovanov introduces his homology using as a base
ring Z[c], and demonstrates the invariance in this case; the construction
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of Bar-Natan, even the bracket, can be adapted to reproduce the original
construction – see [BarNatan] page 1483.

A generalization of our construction – i.e. the algebraic chain complex
– for tangles can be found in [KhovTan1]; this construction is fundament-
ally different from the one we have described for links: Khovanov associ-
ates to (m, n)-tangles – which are tangles in a box whose boundary lays in
the union of two edges: an “input” edge, where there are m points of the
boundary, and an “output” edge, with the remaining n boundary points
– an (Hn, Hm)-modules bi-graded chain complex, with {Hn}n a family of
rings, which coincide with the standard construction for (0, 0)-tangles.

A different homology, based on the Khovanov complex, was defined
by Lee in [EunSLee]. Starting form the Khovanov chain complex she
defines a (1, 4)-bidegree map Φ; the sum of this map with the Khovanov
differential is a differential for the chain complex and gives rise to a link
homology theory – with the loss of the quantum grade. This theory still
comes from a TQFT which respects the S, T, 4-Tu relations, hence our
proof of the invariance works for Lee’s homology as well. To be precise,
Lee’s theory comes from the TQFT associated to the Frobenius algebra de-
scribed in example 1 at page 27; the loss of the quantum grade can be de-
duced from the fact that both the multiplication and the co-multiplication
are not degree homogeneous. It turns out, see [PTurner] for further refer-
ences, that Khovanov and Lee’s theories are the only relevant link homo-
logy theories that could be defined from the bracket via TQFT.



CHAPTER 2

Functoriality

The Jones polynomial represent a powerful and easily computable in-
variant for links, but Khovanov homology is at least as powerful as the
Jones polynomial: we can obtain the Jones polynomial as the graded Euler
characteristic of the Khovanov homology – see page 23. Moreover, there
are knots with the same Jones polynomial but different Khovanov homo-
logy; hence Khovanov Homology is a strictly stronger invariant than the
Jones polynomial.

Being a better invariant is not the main advantage of the Khovanov
homology over the Jones polynomial. What makes Khovanov homology
interesting are its functorial properties: if we consider two oriented link
diagrams and a cobordism – embedded in a certain 4-dimensional space
– between them, the latter induces a morphism between the Khovanov
homologies of the two diagrams. Moreover, up to sign, the morphism is
totally determined by the ambient isotopy class relative to the boundary
of the chosen cobordism.

The aim of this chapter is to prove the above-mentioned functoriality of
Khovanov homology; to be precise we will prove the result for Khovanov
formal complexes of tangle diagrams. The first section of this chapter
provides an introduction to knotted surfaces in a 4-dimensional space and
their representation.

Afterwards, in the second section, we will introduce the new categor-
ical setting of our theory: the categories C ob4 and M ov. Always in the
second section, we define canopoleis, a tool that we will use to reduce our
proofs to local ones, and describe how to associate to a cobordism between
tangles a map between the Khovanov formal complexes of its boundary.

Finally, the third section is devoted to the proof of the main theorem,
that is to say: we will prove that, up to sign, the map induced by two am-
bient isotopic, relative to the boundary, surfaces with the same boundary
are homotopy equivalent.

A fourth section, at the end of the chapter, is devoted to generaliza-
tions, alternative proofs of the main statement and further constructions.

47
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1. Cobordisms

The source categories we are going to define are strictly related with
cobordisms between links or, more generally, tangles. So, to give a proper
description of those categories and to have some tools to verify the func-
toriality of Kh, we need to describe the cobordisms between tangles and
their representations. The outline of this section is the following one: after
a brief description of the cobordisms between links and tangles, we intro-
duce a way to represent them through “movies”. Further on we describe
how these cobordisms, and their movies, are related with Khovanov ho-
mology. Finally, we describe a set of “movie moves”, i.e. equivalences
between two movies of cobordisms related by isotopies, that will be essen-
tial to prove the functoriality of Khovanov homology.

1.1. Generic cobordisms. Let L and L′ be two oriented link diagrams,
each of which contained in D2 × (−ε, ε). A link cobordism between them
is a smooth, oriented, compact surface Σ, neatly1 embedded in (D2 ×
(−ε, ε))× [0, 1] such that:

(a) L = ∂Σ ∩ (D2 × (−ε, ε))× {0}, as sets.
(b) L′ = ∂Σ ∩ (D2 × (−ε, ε))× {1}, as sets.
(c) ∂Σ = L ∪ L′.
Where the overline means that the orientation is inverted. We will refer to
L as the source link, or starting link, for Σ; while L′ will be called target link,
or ending link.

The definition in the case of tangles is similar; the only thing we must
take into account is the boundary of the tangle.

Definition 2.1. A tangle cobordism Σ is a smooth oriented surface neatly
embedded in D2 × (−ε, ε)× [0, 1], that satisfies the following properties:

(a) Ti = Σ ∩D2 × (−ε, ε)× {i}, for i ∈ {0, 1}, is an oriented tangle with
boundary B× {0} × {i};

(b) ∂Σ = T0 t T1 t B× {0} × (0, 1);

T0 is the source, or starting, tangle while T1 is the target, or ending, tangle.

A surface Σ, embedded in D2 × (−ε, ε)× [0, 1], is in generic position if
and only if the following conditions are satisfied:

(a) Σ is neatly embedded;
(b) its boundary is transversal to the boundary of D2 × (−ε, ε)× [0, 1];
(c) the singular points in the image of the projection

p : D2 × (−ε, ε)× [0, 1]→ D2 × {0} × [0, 1],

1An embedding ι :M ↪→ N is neat if and only if ι(∂M) = ∂N ∩ ι(M).
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Figure 1. A Whitney umbrella point, indicated in red, seen
from two different points of view.

are only double points, triple points and Whitney umbrella points;
(d) the singular points listed above appear only in the interior of the sur-

face;
(e) double and triple points of self-intersection are trasversal;
(f) Whitney umbrella points appear only as isolated boundary points of

double point sets;
(g) triple points appear as trasverse intersections of double point loci.

Without loss of generality, up to small perturbations by ambient iso-
topies, in the image of p we can suppose triple and Whitney umbrella
points, as well as local maxima or minima of the double point loci with
respect to the projection π described below, to “happen” at different “time
levels”, i.e. there is at most one of the listed singular points in D2× {0} ×
{t}, for each t .

Any surface in generic position could be represented by a surface dia-
gram; this is an analogue of a link diagram: after projecting our surface to
D2 × [0, 1], one introduces the information of which “surface strand over-
crosses” along double point loci, or near triple points, by means of broken
surface diagrams, see [CaSaRie] or also [CaSa1].

In this work we are not interested in broken surface diagrams; non-
etheless, there it is an important fact about diagrams that needs to be
recalled: two surfaces in generic position are isotopic if their diagrams are
connected by a finite number of Roseman moves and ambient isotopies of
the diagrams, see [Rosem].

Definition 2.2. A surface immersed in D2 × (−ε, ε) × [0, 1] is said to
be time generic if and only if the “time projection”

π : D2 × (−ε, ε)× [0, 1]→ [0, 1],

is a Morse function with distinct critical values for distinct critical points.

Let Σ be a generic tangle cobordism – possibly a link cobordism – in
D2 × (−ε, ε) × [0, 1], i.e. both time generic and in generic position. The
counter image of a regular time value t, with respect to π|Σ, is an embed-
ded smooth compact orientable, possibly disconnected, 1-manifold whose
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boundary B lies in D2 × {0} × {t}; that is to say a tangle with boundary
set B.

Moreover, the projection of this tangle on D2 × {0} × {t}, contains
only isolated double points of traverse self intersection; otherwise, in the
surface diagram there would be either non-isolated triple points or points
with multiplicity higher than three, which is absurd because the surface Σ
is in generic position.

If t is a critical value then, as a result of the intersection of Σ with
π−1(t), we obtain either a tangle with a single point of trasverse self-
intersection or a tangle union a single point, depending on the index of
the critical point.

Definition 2.3. Let Σ be a generic link, or tangle, cobordism; the Σ-still,
or simply still, at the instant t is the oriented link diagram, possibly with
singularities if t is a critical value for π, obtained by projecting π−1(t) ∩ Σ
onto D2 × {0} × {t}. The still at instant t, when t is a critical time value,
will be called by us scenery change.

Remark. With the exception of the starting still, we will suppose the
stills to be oriented in the opposite way respect to the orientation induced
by the cobordism. With this convention, a cylinder is represented by a
sequence of identical stills; otherwise, all the stills would have had the
opposite orientation respect to the starting still.

1.2. Movies. Given a generic surface Σ, the set of all Σ-stills provides
a complete description of Σ. Such a description is not easy to handle be-
cause it is composed by infinitely many stills. We can reduce considerably
the amount of stills needed without loosing any topological information;
the result of this reduction will be a collection of finitely many stills that
provides a good representation of Σ, this collection will be called movie.

Let us begin by reducing the stills near a critical time value t. At the
instant t we have a scenery change, and for a sufficiently small interval of
time I all we can see is a tangle diagram that undergoes a single trans-
formation: in few small areas that do not involve crossing, called changing
areas, the local picture changes by a single Morse modification, or Morse
move; these are the local moves shown in Figure 2. So we can summarize
all the stills relative to I by three stills: one before the Morse modifications,
one relative to the scenery change – the red stills in the figure below – and
a still representing the diagram after all the Morse moves. Sometimes we
will omit the stills relative to the scenery changes.

Now we have to reduce the number of stills between two scenery
changes to finitely many; basic Morse theory tells us that in this inter-
val all we can see is a diagram that undergoes through a finite sequence of



1. COBORDISMS 51

Birth move Death move Fusion move I Fusion move II

Figure 2. Movie representation of the – unoriented – Morse moves.

planar isotopies and Reidemeister moves; each one of these modifications
can be condensed in two stills one “before” and one “after”.

As already said at page 48, up to small perturbations, far from the
boundary of the surface, we can suppose that the Reidemeister moves and
the planar isotopies “happen” to a diagram at different time levels. With
this hypothesis two consecutive stills of our movies are related by exactly
one of this local moves:

(a) a Morse move;
(b) a Reidemeister move;
(c) the rotation of one or more closed components of the tangle;
(d) the movement of an arc;
(e) the permutation of two closed components of the tangle.

Each one of the moves listed above is represented, in the movie, as a
couple of stills: a “before” still and an “after” still. The portion of the
embedded surface between two such stills can be seen as a morphism
from the Khovanov formal complex of the “before” still to the Khovanov
formal complex of the “after” still; these morphisms are, in the order, the
following ones:

(a) The Birth move is associated to the cap

J K : Kh(∅)→ Kh(©),

to the Death move is associated a cup

J K : Kh(©)→ Kh(∅);

while to the fusion moves are associated the saddles

J K : Kh ( )→ Kh ( ) , J K : Kh ( )→ Kh ( ) ;
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(b) to the Reidemeister moves are associated the morphisms used to prove
the invariance of the Khovanov homology. For the first and second
move the reader could refer to the previous chapter, third section,
while for the third move one could see [BarNatan], p. 1463, where
the morphism between the two formal complexes is detailed.

(c) the rotation of one or more closed components of the tangle has no
effects, unless the diagram is symmetric with respect to that rotation,
in which case permutes the circles in the diagram.

(d) the movement of an arc has no effect;
(e) the permutation of two closed components of the tangle, has the effect

of permuting the circles in each smoothing.

Some of the moves described above seem to be trivial, like the rotation
of closed components or the motion of an arcs, but, even if their effect at
level of Khovanov homology is trivial, the presence or the absence of one
of those moves may change the ambient isotopy class of the surface we are
representing. For example, at page 5 of [CaKaSa] – Fig. 1.2 – is shown the
movie of an unknotted torus where a trefoil component is rotated by π/3
radians; the same movie without the rotation represent a knotted torus
instead of an unknotted one.

1.3. Movie moves. In [CaSaRie], Carter, Saito and Rieger introduced a
full set of Reidemeister-type moves for movies, the so called movie moves.
These moves include all the movie version of the Roseman moves, plus
another set of moves that do not affect the topology of the surface diagram.

To the set of moves displayed in the Figures 3, 4 and 5 we can add
other movie moves obtained from the ones given by one, or more, of the
following operations:

(1) reading the move from bottom to top, or from right to left;
(2) reflecting all the stills of a move with respect to the x-axis;
(3) reflecting all the stills of a move with respect to the y-axis;
(4) changing all the crossings.

Our set of movie moves is not complete, also counting the moves ob-
tained by performing the operations listed above; nonetheless, the moves
provided are fit for our purposes. Any reader eager for details about
movie moves can consult the article [CaSaRie], where the full set movie
moves is carefully explained, or can read either of the – beautiful – books
[CaKaSa] or [CaSa1], where are described different ways to represent a
surface embedded in a 4-space, as well as various techniques to study
them. In particular, in the first chapter of both the above-mentioned books,
is provided a detailed description of the movies.
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Figure 3. First group of movie moves. These are known
as the Elementary String Interactions, and they consist in
a Reidemeister move and its inverse. We label them, from
left to right, as Ia, Ib, IIa, IIb and III.

Figure 4. Second group of movie move, also known as cir-
cular movie clips. We label them, from left to right, as IV,
V, VI, VII and VIII.
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Figure 5. Third, and last, group of movie move. We label
them, from left to right, as IX, X, XI, XII and XIII.

The movie moves shown, graphically speaking, can be divided in two
main types: movie moves that involve only one movie and movie moves
that involve two movies; this second type of movie moves should be read
as follows: if M is a movie involving a sequence represented in one of the
two sides of a move, than the surface Σ′ represented by the movie obtained
from M by the replacement of the mentioned sequence with the sequence
on the other side of the move is ambient isotopic, relative to the boundary,
to the surface represented by M.

The moves that involve only one movie should be interpreted simil-
arly: in this case the “other side” of the move is represented by a sequence
of identical copies of the first still of the movie shown.

The following result is a modified version of a result of Carter and
Saito – see [Jacobss], page 1235 – and will be fundamental to prove the
functoriality of the Khovanov formal chain complex.

Theorem 4. Let M and N be two movies representing generic tangle cobord-
isms, say Σ and Γ respectively, embedded in D2× (−ε, ε)× [0, 1]. Then Σ and Γ
are ambient isotopic relative to the boundary if and only if M and N are related by
a finite sequence of movie moves, or their modifications through operations from
(1) to (4), and interchange of distant critical points. In this case M and N are
said to be equivalent.

We should spend few words on the meaning of “interchange of dis-
tant critical points”. Let us consider a movie M whose first still is a
diagram D, then from a still to its subsequent a single small area that
undergoes through a change. One can consider the corresponding area in
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the first still, this area will be called t-changing area in D, where t is the
instant where the change happens; given two instants, say t0 and t1, the
t0-changing area in D and the t1-changing area in D are said to intefere,
if there is sequence of t-changing areas in D that connects them, and that
cannot be shrunk to be non intersecting.

Figure 6. Two t-changing areas that do interfere.

Given two non-interfering t-changing areas in D, say A and B, such
that the changes in A happen before the changes in B, then the movie M′

obtained from M by making the changes in B happen before the changes
in A describes a surface ambient isotopic, relative to the boundary, to the
surface described by M. In this case we sya that M′ is obtained from M by
interchange of distant critical points.

As for most of the constructions in this work, any description by
words is less clear than a picture; so in Figure 7 is shown an example of
two movies obtained one from the other by interchange of distant critical
points.

2. Categories of tangles and canopoleis

In this section we will introduce the main tools needed to state and
prove the theorem about the functoriality of Khovanov homology. This
section will develop as follows: in the first subsection we introduce the
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Figure 7. Two movies related by interchange of distant crit-
ical points.

notion of canopolis which is a kind of generalization of the concept of
planar algebra; later on, in the second subsection, we define the new geo-
metric categories that will play the role of source category for the functor
Kh0, defined in the third and last subsection.

2.1. Canopoleis. A canopolis, roughly speaking, is a planar algebra of
categories with some ”functorial properties”. Canopoleis were introduced
first in [BarNatan] to prove the functoriality of Khovanov homology, and
represent an essential tool to study ”geometric complexes” like Kh or J·K.

Canopoleis will play the same role played by planar algebras in the
previous chapter, and they represent a good way to avoid cumbersome
abstract nonsensical constructions. Many proofs in this section are similar,
if not identical, in spirit to the ones in the section regarding planar algeb-
ras; for this reason some of them will be omitted and the reader will be
referred to the corresponding theorems for planar algebras.

Let P = {Pk}k∈K be a planar algebra; we have suppressed the indic-
ation of the operators {OD}D∈D ′ , because further on we will be working
with different planar algebra structures at the same time and, to avoid
cumbersome notation, we will denote the operator associated to the planar
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diagram D with the same symbol. So we will invite the reader to pay at-
tention to which operator is used and when.

Definition 2.4. A canopolis – over P – is a collection of categories
{C (k)}k∈K, together with a planar algebra structure over {Obj(C (k))}k∈K
and one over {A r(C (k))}k∈K, such that:
(a) the two structures of planar algebras over {Obj(C (k))}k∈K and over
{A r(C (k))}k∈K are isomorphic to P ;

(b) if fij : Aij → Bij , with j ∈ {1, ..., m}, and

D : Ti1 × ...×Tim → Ti,

then
D( fi1 , ..., fim) : D(Ai1 , ..., Aim)→ D(Bi1 , ..., Bim);

(c) planar algebras operations commute with the composition

D( fi1 ◦ gi1 , ..., fim ◦ gim) = D( fi1 , ..., fim) ◦ D(gi1 , ..., gim);

The first and the second properties, we call the latter compatibility, al-
low us to visualize morphisms as cans, whose top is the source and whose
bottom is the target, and to see diagrams as containers where the cans can
be inserted to fill the holes.

The third property ensures the functoriality of planar algebra opera-
tions; in terms of cans we can say that piling up cans – that corresponds
to the composition in the category – and then putting them in a container
– which visually represents the planar algebra composition – is the same
thing as piling them up in the container.

Both the properties and the visual image just given should sound fa-
miliar to the reader; we encountered two examples of this structure in
the previous chapter: the families {C ob3(k)}k∈K and {C ob3

/`(k)}k∈K are
examples of canopoleis over the planar algebra of planar arc diagrams.

Some result of the previous chapter can be restated in this, more gen-
eral, contest.

Theorem 5. Given a canopolis {C (k)}k∈K of additive categories, then the
family {K om(C (k))}k∈K has a natural structure of planar algebra. In addition,
this structure descends to a planar algebra structure over {K om/h(C (k))}k∈K.

This theorem has been proven in the previous chapter: the proof is
exactly the same of that the first point of theorem 2. The following result
regarding the category of complexes over a canopolis will be useful later
on.

Proposition 9. Let {Ck}k be a canopolis of additive categories. Let us con-
sider

C, D ∈ Obj(K om(Ck1)), E ∈ Obj(K om(Ck2)),
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and a two-holed diagram D ∈ D(k1, k2; k); given two homotopic morphisms

F, G : C → D,

the morphism D(F, IdE) and D(G, IdE) are homotopic.

Proof. Remember that we extend the planar algebras structures over
additive categories by making the diagrams multilinear. So, if H is the
prism map for F and G then

D(F, IdE)−D(G, IdE)− dD(D,E) ◦ D(H, IdE)−D(H, IdE) ◦ dD(C,E) =

= D(F− G, IdE)−D(dD, IdE) ◦ D(H, IdE)− ε · D(IdD, dE) ◦ D(H, IdE)+

−D(H, IdE) ◦ D(dC, IdE)− (−ε) · D(H, IdE) ◦ D(IdC, dE) =

where ε is ±1, depending on which chain group we are considering, see
the previous chapter for details,

= D(F− G− dD ◦ H − H ◦ dC, IdE) = D(IdC, IdE) = IdD(C,E).

Q.E.D.

Definition 2.5. A canopolis morphism, between two canopoleis {C (k)}k
and {C ′(k)}k over the same planar algebra, is a collection of functors

Fk : C (k)→ C ′(k),

that respects planar algebra operations; that is to say:

D(Fi1( f1), ..., Fim( fm)) = Fi(D( f1, ..., fm)),

for all the diagrams, indices and all the maps for which the expression
above makes sense.

2.2. New geometric categories. We cannot define a functor without
telling its source and target category; hence we need to define the proper
categorical setting to our theory. The aim of this section is to define two
equivalent “geometric” category, non in a technical sense, whose the ob-
jects are tangle and such that we can define a new functor from these
categories to K ob, that associate to each tangle its Khovanov formal chain
complex.

The first category we are going to define is called C ob4(B). This
category is the category whose objects are tangles in D2 × (−ε, ε) with
boundary set B and whose morphisms are generic tangle cobordisms in
D2 × (−ε, ε) × [0, 1]. To avoid any ambiguity later on, we suppose each
component of the tangles to have a region near a crossing marked.

The composition of two morphisms in C ob4(B) is given by the cobord-
ism obtained by gluing the two cobordisms together, similarly to what was
done for C ob3 in the previous chapter, paying attention to match both the
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boundary set and the marked regions. The latter condition is necessary
to rule out the symmetries in the diagram so that the composition can be
unambiguous. It is easy verification that C ob4(B) is indeed a category.

We can endow the set of morphisms in C ob4, i.e. the disjoint union
of C ob4(B) for all possibles boundary sets B, with the structure of planar
algebra in a natural way. Let D be a planar arc diagram in D(B1, ..., Bk; B),
and ci ∈ A r(C ob4(Bi)), for i ∈ {1, ..., k}, we define D(c1, ..., ck) to be the
generic tangle cobordism obtained by placing each cobordism in the holes
of the cylinder D×{0}× [0, 1]. The composition of two planar operators is
defined as the cylinder over the composition of the corresponding planar
arc diagrams.

It is easy to verify that the planar algebra structure just defined, to-
gether with the natural planar algebra structure of the tangles, define a
canopolis structure over the planar arc algebra of the planar arc diagrams
on C ob4. Moreover, this structure descends to a canopolis structure on
C ob4

/i(B), which has the same objects as C ob4 but the morphisms are con-
sidered up to boundary fixing ambient isotopies of D2 × (−ε, ε)× [0, 1].

Remark. When we write C ob4(k) we mean the category C ob4(B) where
B is the set of the 2k-th roots of unity; while C ob4 will mean, from now
on, the disjoint unipon of C ob4(k), for all k ∈N.

A combinatorial version of C ob4
/i(k) can be obtained by considering,

as objects, the – oriented – k-tangles, and, as morphisms, movies – with
oriented stills – of generic k-tangles cobordisms. Here a structure of planar
algebra over the morphisms can be obtained by defining the operator D as
the one that takes two movies, say M and N, of the same length – we can
always extend a movie to the desired length: it is sufficient to add more
copies of a single still – to a movie whose still at the time t corresponds
to the composition of the time t stills of M and N via D – se the picture
below.

This structure of planar algebra, together with the natural structure
of planar algebra of the tangle diagrams, defines a canopolis structure on
the category just defined; the latter will be denoted by M ov(B). One can
consider the category M ov/m(B), obtained from M ov by considering its
morphisms up to movie moves and exchange of distant critical points.
As a consequence of Theorem 4 the following result, whose easy proof is
omitted, holds.

Proposition 10. There is a natural isomorphism of canopoleis between M ov/m
and C ob4

/i; this is given by associating to a cobordism a movie presentation and
to a movie the rebuilt surface.
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2.3. The functor and grading. Now we will define our functor: Kh0

is a functor defined from C ob4, or M ov, to K ob, and associates to each
tangle T its Khovanov chain complex Kh(T ), and to each generic cobord-
ism – or to a movie – the associated morphism in Khovanov homology.

It is not difficult to see this is a functor; our claim, which is also the
main result of this chapter, is that this functor descends to a – degree
preserving – canopolis morphism from C ob4

/i to K ob/±h, i.e. the project-
ivization of K obh. We must consider the projectivization because the two
sides of some movie moves induces the same morphism only up to sign;
we will discuss the sign problem in the next chapter.

Grading will be intensively used in the follow up, so we need a defin-
ition of canopolis that includes the grading.

Definition 2.6. A graded canopolis is a canopolis whose “cans”, i.e. the
elements of the morphism sets belonging to the categories that compose
the considered canopolis, are graded and such that the grading is additive
with respect to both composition and planar algebra operations.

We can grade C ob4, and also M ov, by giving to a generic cobordism
Σ the grade:

deg(Σ) = χ(Σ)− k,

where k is half the number of connected components of the vertical bound-
ary.

Remark. Each Morse move either increases – birth/death move – or
decreases – fusion move – the degree by one.

It is a simple verification that the degree is additive for both types of
composition, and thus C ob4 and M ov are given the structure of graded
canopoleis.

3. The main theorem

In this section we give the proof of the following statement:

Claim. The functor Kh0 descends to a degree preserving canopolis morph-
isms between C ob4

/i, or its combinatorial counterpart M ov/m, and K ob/±h, the
category K ob/h whose morphisms are considered only up to sign.

This statement is also known as functoriality of Khovanov homology; to
be precise this is a geometric version involving formal complexes but, of
course, it becomes the corresponding statement for Khovanov homology
once a TQFT – with corners, in the case of tangles – is applied.



3. THE MAIN THEOREM 61

This section is divided in three parts: the first one contains a few pre-
liminary results needed by the other two parts; the second part is dedic-
ated to prove that the first and second group of movie moves are in the
“kernel” of our functor, that is to say both sides of the movie moves in-
duce the same morphism – up to homotopy and sign – at the chain level.
Finally, in the third, and last, part we verify the statement for the third
group of moves.

3.1. Some preliminary results. Following Bar-Natan – [BarNatan] –
we begin with the definition of “having no automorphism” for tangles.

Definition 2.7. A tangle diagram is called Kh-simple if every degree 0
automorphism of Kh(T ) is homotopic to ±IdKh(T ).

Lemma 4. The empty set, seen as a the empty knot, is Kh-simple.

Proof. The only non-zero degree 0 automorphisms of Kh(∅) are, up
to sign, the torus and the empty cobordism. The first one corresponds to
multiplication by 2, and so it is not an isomorphisms over Z, which leaves
∅ as the sole morphisms that is non null; as the empty set represent the
identity for the diagram ∅, this concludes the proof.

Q.E.D.

Now we want to show that a particular class of tangles, the pairings,
are Kh-simple; a pairing is a tangle diagram without crossings and without
closed connected components.

Lemma 5. Any pairing is Kh-simple.

Proof. Any degree 0 morphism is a Z-linear combination of degree 0
cobordisms, so we begin by classifying the latters.

If Σ is a degree 0 cobordism, by definition, its Euler characteristic must
be equal to half the number of its vertical boundary components; any
handle attached to the vertical curtains decreases the degree by two, this
implies that, to maintain degree 0 we must add two spherical components
for each handle, but, for the S relation, then our cobordism represent the
0 morphism.

So we must have only vertical curtains with possibly disjoint closed
connected components. Each component with genus higher than one – so
with negative Euler characteristic – must be balanced against a number of
spherical components so, as before, our cobordism is 0. The only remain-
ing possibility is to have curtains and a number of disjoint tori, whose
Euler characteristic is 0; by the T relation, we can substitute each torus
with a multiplying factor of 2. But, as we are using Z as base ring, the
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tori cannot be allowed if we want Σ to represent an invertible surface; this
concludes the proof of the lemma.

Q.E.D.

As one could expect, being Kh-simple does not depend on the diagram
chosen.

Lemma 6. If T and T ′ are two diagrams of the same tangle then T is Kh-
simple if and only if T ′ is Kh-simple.

Proof. By the invariance of Khovanov homology, the two diagrams
have homotopy equivalent Khovanov complexes. Let F be the homotopy,
from Kh(T ) to Kh(T ′), induced by a sequence of Reidemeister moves that
transforms T in to T ′, and let G be its up-to-homotopy inverse.

If α : Kh(T ) → Kh(T ) is a degree 0 automorphism and T ′ is Kh-
simple, then F ◦ α ◦ G =: α′, which is a degree 0 automorphism of Kh(T ′),
must be, up to homotopy, ±IdKh(T ′); thus we have

α ∼ G ◦ F ◦ α ◦ G ◦ F = G ◦ α′ ◦ F ∼ ±G ◦ F ∼ ±IdKh(T ).

Q.E.D.

Now we must find a way to reduce our tangles to pairings; the trick
is to show that if we remove a crossing from a simple diagram then the
result will be simple. Then we can prove that if our diagram is simple
adjoining a crossing gives a simple diagram.

We will say that T ′ is obtained from T by the addition of a crossing if
T ′ = D(T ,X ), where X is the diagram of a crossing and D is the planar
arc diagram in Figure 8. Similarly, we will say that T ′ is obtained from
T by the removal of a crossing if T is obtained from T ′ by the addition of a
crossing.

Proposition 11. Given a Kh-simple tangle diagram T , any tangle diagram
obtained from T by the addition of a crossing is Kh-simple.

Proof. Let X be the diagram of a crossing. If α : Kh(T ) → Kh(T ) is
a degree 0 automorphism then α′ = D(α, IdX ), where D is the diagram
shown in Figure 8, is a degree 0 automorphism of Kh(T ′), hence homo-
topic to ±Id.

Let X−1 be the mirror image of X; then the diagram D(D(T , X), X−1)

is equivalent to T via a second Reidemeister move. The map that converts
D(X, X−1) = – or , depending on which type of crossing is X – in

induces an homotopy equivalence Ψ between Kh(D(T ,D(X, X−1)) =

Kh(D(D(T , X), X−1)) and Kh(T ). We have

α ∼ Ψ ◦ D(D(α, IdX), IdX−1) ◦Ψ−1,
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...

Figure 8. The diagram D, also called connected sum diagram.

thanks to Proposition 9, we have

Ψ ◦ D(D(α, IdX), IdX−1) ◦Ψ−1 ∼ Ψ ◦ D(±IdD(T ,X), IdX−1) ◦Ψ−1,

hence

α ∼ Ψ ◦ D(±IdD(T ,X), IdX−1) ◦Ψ−1 ∼ ±Ψ ◦ IdD(T (T ,X),X−1) ◦Ψ−1 ∼ ±IdT .

Q.E.D.

By putting together the two previous results, it is immediate the fol-
lowing corollary.

Corollary 1. A tangle diagram T is Kh-simple if and only if any tangle
diagram T ′, obtained from T by the addition of a crossing, is Kh-simple.

3.2. First and second group of movie moves. The first group of movie
moves are those corresponding to the Reidemeister moves, and it can be
easily dealt with.

Theorem 6. The movies Ia, Ib, IIa, IIb and III correspond, via Kh0, to the
identity map.

Proof. The movies listed in the statement correspond to doing a Re-
idemeister move and its inverse, which induce maps that are homotopic to
the identity – this is the invariance of Kh under the Reidemeister moves.

Q.E.D.

The second group of movie moves is composed by the so called circular
movie clips; these are given by movies whose starting still is identical to the
ending still, and no morse moves are perfomed.

Theorem 7. The movies IV, V, VI, VII and VIII induce, via Kh0, the identity
map.

Proof.
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Figure 9. A way to transform, by the addition of crossings,
the starting still of move VIII in to a Kh-simple diagram.

Figure 10. A way to transform, by the addition of cross-
ings, the starting still of move IV in a Kh-simple diagram.

To prove the statement it is sufficient to show that the first still of each
movie comes from a Kh-simple tangle diagram by addition or the removal
of crossings. Figure 9 shows how the first still of move VIII is related to
a tangle diagram equivalent to a pairing, by addition of crossings, and
hence is Kh-simple by Lemmas 5 and 6 and Corollary 1.

Remark. With the same technique used for move VIII, one can prove
that any braid is Kh-simple.

In a similar way, the starting still of move IV can be related by addition
of crossings to a Kh-simple diagram, as shown in figure 10.

The other moves begin with either with a pairing or a crossing, so the
starting still represents a Kh-simple diagram. The fact that the starting
still, which is the same as the ending still, is Kh-simple implies that the
automorphism of Khovanov homology induced by each circular movie
clip is ±Id; the latter are also the morphisms induced by the identity
movie and its formal opposite – remember that we are considering pre-
additive categories.

Q.E.D.
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Remark. The same argument used for the moves from IV to VIII works
also for the first group of movie moves.

Remark. The ninth move can be seen as a circular movie clip, and so
the argument used above works also for this move. Moreover, there is
no need to add or remove crossings, because the starting tangle of both
sides is a pairing, hence Kh-simple. the reason why move IX is in the third
group instead of the second one, is because it involves Morse moves (a
birth move and a fusion I move, hence its grade is zero).

3.3. The third group of movie moves. The last group of movie moves
is composed of movie moves that involves Morse moves. This implies that
there is a grade change during the reproduction of the movies involved.
Move IX can easily be dealt with by the same argument used for moves
from IV to VIII, as we said in the second remark at page 65. The remain-
ing moves induce maps that are of degree ±1 and involve non Kh-simple
tangles – those that involve a loop, in general, are not Kh-simple, as we
will see in the next chapter. So it is not possible to apply the same ar-
gument used for the second group of movie moves to moves from X to
XIV.

To prove the statement for moves XI and XIII, we need a new geometric
relation which is a consequence of the 4-Tu relation, depicted at page 30.

Remark. The relation in the Proposition 12 is called neck cutting, or
NC, relation. This relation should be interpreted in the same way we in-
terpreted the 4-Tu in the previous chapter. Let us consider a morphism in
C ob3, which is a certain surface Σ embedded in D2 × [0, 1]. If we consider
the intersection of a 3-disk D with our surface Σ, such that ∂D ∩ Σ is the
disjoint union of two circles; then two times the surface Σ \ Int(D) ∪ c,
where c is a cylinder between the two circles in ∂D ∩ Σ, is equal to the
sum of the surface obtained from Σ \ Int(D) by gluing the fist cobordism
on the right side of the equality in NC along the circles in ∂D∩Σ, with the
cobordism obtained, with the same technique, from the second cobordism
on the right side of the equality in NC.

Proposition 12. If the 4-Tu holds, then also the relation depicted below holds
in C ob3.

2 = +

Proof. The proof of this proposition is straightforward: just apply the
4-Tu relation to the cobordism drawn below.
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Figure 11. To obtain the NC relation is sufficient to apply
the 4-Tu to the cobordism in figure.

Q.E.D.

Remark. If we require the morphism sets of C ob3 to be theRmodules,
where R is a commutative ring where 2 is invertible, instead of abelian
groups and the matrices in M at to be R linear, then the NC relation will
be equivalent to the 4-Tu.

Theorem 8. The right and the left sides of movie moves X and XI induce, up
to sign and homotopy, the same morphism via Kh0.

Proof. One can simply compute the maps induced by the left and right
side of X, and of XI. In both cases, the difference – or the sum, depending
on whether the move changes the sign or not – between the map induced
by the left side and the map induced by the right side is just a version of
the neck cutting relation proved above.

Q.E.D.

Theorem 9. Both sides of move XII induce the same morphism via Kh0, up
to sign and homotopy.

Proof. If one consider the chain group Kh0
( )

, which is composed
by the direct sum of a circle on the right union a curtain, plus a circle on the
left union a curtain. One can easily compute the maps induced between
the Khovanov complexes. Figure 12 shows the explicit computation of
the map for the left side of this move, the other map can be calculated
similarly. In the end both maps consist in the sum of a curtain union a cap
on the left and a curtain union a cap on the right, this implies that the two
induced maps are the same.

Q.E.D.

Theorem 10. The left side of move XIII induces, via Kh0, the same morphism
as the right side of the same move, up to sign and homotopy.

Proof. If one compute explicitly the maps induced by the left and the
right sides, one will obtain none other than the maps ΦR and ΦL, see page
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Figure 12. Computation of the map induced by the left
side of move XII

42 and page 43, used to prove the invariance under the third Reidemeister
move of the Khovanov homology; as already noticed, the two maps ΦR

and ΦL are homotopic.

Q.E.D.

Finally we can complete the proof of our statement.

Theorem 11 (Functoriality of the formal Khovanov complex). The func-
tor Kh0 descends to a degree preserving canopolis morphisms between C ob4

/i, or
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its combinatorial counterpart M ov/m, and K ob/±h, i.e. the category K ob/h
whose morphisms are considered only up to sign.

Proof. That Kh0 is a degree preserving canopolis morphism between
C ob4, or its combinatorial counterpart M ov, and K ob/h is a consequence
of Theorem 3 point (d). The fact that when we mod out by the isotopies –
or movie moves – the grade is preserved, is due to the fact that the morph-
isms induced by either sides of the movie moves are degree homogeneous.
Finally, Theorems from 6 to 10, as well as the second remark at page 65,
almost complete the proof of our claim. The only remark left is that both
side of the mirror image, the reflected version with respect either the x
or y axis, as well as the rewind, i.e. the move read from bottom to top or
from right to left, of the movie moves we have shown induce the same
morphism via Kh0; this could be done by using the same arguments used
for the corresponding moves from Ia to XIII.

Q.E.D.

4. Foreword

In this last section we will describe results related to Theorem 11. An
alternative proof of that statement can be found in [Jacobss]. This proof is
done by a straightforward argument: Jacobsson computes, for each move,
the morphisms induced by both sides and compares them. The notation
used by Jacobsson allows him to carry out the computations without two
much sweat. Moreover, he is able to find which moves preserve the sign
and which moves change the sign; a small and incomplete list is given
below, for further reference see [Jacobss].

To “fix” this sign problem Scott Morrison, David Carter and Kevin
Walker in [ClaMorWa] defined another invariant, similar to the formal
Khovanov chain complex described in chapter 1, using disoriented sur-
faces instead of oriented ones. Their construction depends on a parameter
ω, which is a fourth root of unity, and is such that for the value ω = i we
obtain a new theory which is completely functorial; while, for ω = 1, we
can recover the original theory.

In his paper [KhovTan2], Khovanov proves that his invariant for
(m, n)−tangles, obtained via a TQFT with corners, is functorial. His proof
is similar to the one described in this chapter – which is the [BarNatan]
approach – at least in spirit. On the other hand, Khovanov does not use
the canopolis formalism and make use of heavy machinery derived from
abstract non-sense such as 2-categories.

Our proof of the functoriality, as it is given at geometrical level, adapts
also to Lee theory – see [BarNatan], page 1483.
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Move number as shown mirror rewind
Ia, Ib, IIa, IIb, III same same same

IV opp – opp
V same same opp

VI pos curl – opp opp
VI neg curl – same same

VII opp opp same
VIII same – same
IX same – same
X opp same same
XI opp same same
XII same – opp
XIII opp – same

Table 1. Table of signs for the movie moves.





CHAPTER 3

Monodromy

In the previous chapter we defined a functor Kh0, from the category
C ob4 to the category K ob, and we have shown that this functor is also well
defined on the quotient C ob4

/i; in fact we proved a stronger statement: Kh0

descends to a graded canopolis morphism between C ob4
/i and K ob.

In this chapter we are going to analyze the obstructions to define Kh0

on the quotient C ob4
/I , which is the category with the same objects as C ob4

and whose morphisms are isotopy classes of generic tangle cobordisms;
these obstructions come from the existence of surfaces, whose boundary
is given by two copies of the same tangle, that are ambient isotopic to a
cylinder – of course, not relatively to the boundary – and whose induced
maps in Khovanov homology are neither the identity nor its opposite.

Given a link diagram D, all the cobordisms with boundary two copies
of D and ambient isotopic to a cylinder, form a subgroup of the endo-
morphisms group of D in C ob4; this group was called by Jacobsson, see
[Jacobss], the monodromy group. Since its introduction the monodromy
group has been largely ignored: to the author’s knowledge, no one has
invstigated this group.

The aim of this chapter is to pursue the study of the monodromy
group. In the first section we will formally define the monodromy group
of a link diagram and show that the isomorphism class of this group does
not depend on the chosen diagram, hence it defines a link invariant.

In the second section we present some results that will help us to expli-
citly calculate the monodromy groups of some links. In the third section
we prove the Rasmussen Tanaka theorem, which will be fundamental to
our computations.

The fourth section contains the computation of the monodromy groups
for the unknot, the unlink with two components and the unlik with three
components.

The concluding section is dedicated to the description of the partial
computations of the monodromy group of the Hopf link; here we describe
the limits of our techniques and some possible ways to overcome them.

71
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1. Definiton and invariance

Let D be an oriented link diagram, seen as an object of M ov. A circular
movie starring D is a movie whose first and last still is D and that does not
involve any Morse move. Circular movies with starting and ending dia-
gram equal to D represent unknotted cylinders in D2× (−ε, ε)× [0, 1]. Ex-
amples of circular movies were given in the previous chapter: the second
group of movie moves – the so called circular movie clips – are circular
movies. Now we can formally introduce the object of our study.

Definition 3.1. The algebraic Khovanov monodromy group of an oriented
link diagram D is the set of all the automorphisms of the Khovanov ho-
mology KH•,•(D), associated to circular movies via Kh0 and the Khovanov
TQFT1. This group will be denoted byMon(D).

Remark. One could also consider the geometric monodromy group of an
oriented link diagramD. This group is given by all the equivalence classes,
modulo movie moves, of circular movies starring D with the composition
of movies – seen as morphisms in M ov – as operation. This is indeed a
group and, a priori, gives more information than the algebraic Khovanov
monodromy group. The study of the geometric group goes beyond the
scope of this work.

The name Khovanov is not written in vain: the use of Lee’s TQFT2, in-
stead of the Khovanov one, would have led to different results. From now
on, we will drop both the name “Khovanov” and the adjective “algebraic”
and refer toMon(D) simply as monodromy group.

As the circular movies do not contain any Morse move, they involve
only Reidemeister moves and planar isotopies. Both Reidemeister moves
and planar isotopies are associated, via Kh0, to morphisms that are homo-
geneous of degree 0 with respect to both the homological and the quantum

1This is the TQFT used, in Chapter 1, to define Khovanov homology. Just to be clear,
this TQFT associates, to a single circle, the free Z-module V generated by x+ and x−. V is
given a grading by the formula

deg(x±) = ±1.

The multiplication m is defined by:

m(x+ ⊗ x+) = x+, m(x+ ⊗ x−) = m(x− ⊗ x+) = x−,

m(x− ⊗ x−) = 0;

and the co-multiplication map ∆ is such that

∆(x+) = x+ ⊗ x+ + x− ⊗ x+,

∆(x−) = x− ⊗ x−.

Finally, the co-unit is defined by ε(x−) = 1 and ε(x+) = 0.
2The TQFT defined in Chapter 1, Example 1 at page 27.
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degrees. Because the Khovanov TQFT preserves the gradings – both ho-
mological and quantum – we have that all the elements ofMon(D) are of
degree 0 with respect to both degrees. An obvious consequence of these
considerations is the following lemma.

Lemma 7. A Kh-simple – see page 61 for the definition – diagram has trivial
monodromy.

The inverse implication may not be true. Let D be an oriented link dia-
gram, Aut0(D) is the set of all the degree 0 automorphisms of KH•,•(D),
obtained from movies whose first and last stills are copies of D. The set
Aut0 together with the composition is a group, and the monodromy group
is a subgroup of Aut0.

Geometrically speaking, Aut0 consists of the morphisms associated
to possibly knotted cylinders3 with boundaries given by two copies of
the same diagram. It is personal impression of the author that the maps
induced by Kh0 and Khovanov TQFT, do not “perceive” the knotting of
the surfaces; in particular, the following statement is believed to be true.

Conjecture. Given an oriented link diagram D, it is true that

Mon(D) = Aut0(D).

We can use both the groups Aut0 andMon to study knots and links.

Theorem 12. The isomorphism classes ofMon(D) and Aut0(D) are a link
invariants.

Proof. Let D and D′ two diagrams of the same link. By Reidemeister
theorem there is a finite sequence of planar isotopies and Reidemeister
moves that trasforms D into D′; let Φ the map induced by this sequence
in Khovanov homology. Given an element ϕ ∈ Mon(D), we have that
Φ ◦ ϕ ◦Φ−1 is the map associated to a circular movie starring D′, obtained
by playing the movie associated to Φ−1, which is the rewind of the movie
associated to Φ, then the movie associated to ϕ, which is a circular movie
starring D, and, finally, the movie associated to Φ.

In this way we found a group homomorphism between Mon(D) to
Mon(D′), which is given by the conjugation by Φ. This homomorphism is
clearly invertible, its inverse being the conjugation by Φ−1, hence a group
isomorphism. The same proof works for Aut0.

Q.E.D.
3These are surfaces with boundary D t C, whose Euler characteristic – that is also the

degree of the associated map – is 0. Moreover, it exists a surface with boundary C t D
such that if we glue the two surfaces along C, then the result is a cylinder over D. THe
only possibility is that these surfaces are disjoint union of cylinders.
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2. Calculation techniques

This section is dedicated to the description of the techniques that will
be used to compute monodromy groups in the next section. The tech-
niques are fundamentally two: an algebraic technique, based on the fact
that the maps considered are degree homogeneous, and a geometric tec-
nique, based on the knowledge of which maps are associated to closed
surfaces.

LetM be a finitely generated bi-graded Z-module and letMi,j be the
submodule of M composed by its elements of bi-degree (i, j). The fact
that M is finitely generated implies that only a finite number of Mi,j is
non-zero and that eachMi,j is finitely generated.

Let us fix a set of generators for Mi,j {αk
i,j}k, with k ∈ {1, ..., m} and

m = m(i, j); we may suppose m to be as little as possible. This gives us a
set of generators forM, given by the union of all these sets of generators.
Moreover, we can fix an ordering on this set of generators by using the de-
gree i first, and then the degree j.For elements that have the same degrees
i and j, just choose an arbitrary order. Now we can express every Z-linear
map ϕ fromM to itself by an integer matrix Mϕ.

Remark. The matrix Mϕ may not be unique because of the presence
of torsion. As an example, consider M = Z/5Z and ϕ = IdZ/5Z. In this
case, the matrix associated to ϕ is just an integer number. All the numbers
of the form 5h + 1, with h ∈ N, describe the same application ϕ. To limit
the ambiguity in the choice of the matrix it is sufficient to choose as entry
the integer which has the least absolute value, and if there are two, then
we will take the positive one.

Let ϕ be a bi-homogeneous, i.e. homogeneous with respect to both de-
grees, endomorphism of M. Then a matrix Mϕ associated to ϕ is of the
form:  A1 0 0

0
. . . 0

0 0 As


where each Ai is a matrix representing the effect of the map on the i-
th module. The reason this matrix should be block diagonal lies in the
homogeneity of ϕ with respect to the i-grading. On the other hand, we
can repeat the same reasoning on each block Ai, using the j-grading, hence
obtaining that also the Ai’s should be block diagonal.

In this way, taking as M the Khovanov homology of a certain dia-
gram, one can find a matrix group that admits Aut0, and hence Mon, as
a subgroup.
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The second technique is more “geometric” and is based on the follow-
ing result from Rasmussen, see [Rasmus], and Tanaka, see [Tanaka].

Theorem (Rasmussen-Tanaka). Given a closed connected surface Σ embed-
ded in D2 × (−ε, ε) × [0, 1], we have either KJ(Σ) = ±2, and this happens if
and only if Σ is a torus, or KJ(Σ) = 0, for all the other surfaces.

The KJ(Σ) in the previous proposition is the Khovanov-Jacobsson number
of Σ and is defined as the number that represents the map induced by the
closed surface Σ, via Kh0 and Khovanov TQFT, from Z to Z.

The result itself will be proven in the next section. For now let us
assume this result as given and proceed to describe how it is related to
monodromy.

Our technique consists of creating a movie of a closed surface that
involves the given diagram to compute the monordomy. Then we replace
this diagram with a circular movie starring it, we compute the induced
map and, by the Rasmussen-Tanaka theorem, this map should be either
±2 or 0. In this way we obtain conditions on the possible morphisms in
Aut0 orMon.

3. The Rasmussen-Tanaka theorem

One of the main tools at our disposal is the Rasmussen-Tanaka the-
orem for closed surfaces. This theorem asserts that the maps induced
in Khovanov homology, via Kh0 and the Khovanov TQFT, by a closed
connected surface are either the 0 map or the multiplication by a factor
of ±2. This result has been proven independently, in 2005, by Tanaka,
see [Tanaka], and Rasmussen, see [Rasmus]. Our proof is the one given
by Tanaka, which uses the Bar-Natan construction. The proof given by
Rasmussen is based on Lee Theory.

Let us begin by defining a Frobenius algebra over Z[T]. Let B be the
free Z[T]-module of rank 2 – this condition is forced if we want to obtain
a link homology theory, see Chapter 1 – generated by v+ and v−, and
graded with the following conventions

deg(T) = −4, deg(x+) = 1, deg(x−) = −1.

To obtain a Frobenius algebra we must define the multiplication m1, the
co-multiplication ∆1, the unit ι1 and the co-unit ε1. These maps are defined
by

∆1(x+) = x+ ⊗ x− + x− ⊗ x+, ∆1(x−) = x− ⊗ x− + T · x+ ⊗ x+,
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m1(x+ ⊗ x+) = x+, m1(x− ⊗ x+) = m1(x+ ⊗ x−) = x−,

m1(x− ⊗ x−) = T · x+;

ε1(x−) = 1, ε1(x+) = 0;

ι1(1) = x+.

As a consequence of the definitions just given, we have that:

(5) m1 ◦ ∆1(x+) = 2x−, m1 ◦ ∆1(x−) = 2T · x+.

This TQFT was defined by Bar-Natan – see [BarNatan], Section 9.2 –
and also by Khovanov, the F3 in the paper [KhovUniv]. We will call it
Bar-Natan TQFT and denote it by F3.

Notice that all the maps are grade homogeneous, hence the resulting
cohomology, called Bar-Natan cohomology and denoted by BN•,•(·), is bi-
graded.

Definition 3.2. The Bar-Natan number, denoted BNn(·), of a closed
surface embedded in D2 × (−ε, ε)× [0, 1] is the number associated to the
surface via Kh0 and the Bar-Natan TQFT.

We can simply recover Khovanov theory from Bar-Natan theory by
setting T = 0; in particular, the following equality holds

BNn(Σ)|T=0 = KJ(Σ),

where KJ(Σ) indicates the Khovanov Jacobsson number of Σ.
Let us denote by ψBN

Σ the map induced by the link cobordism Σ,
via Kh0 and Bar-Natan TQFT, between the Bar-Natan cohomologies of its
source and ending tangles. Clearly, we have

ψBN
Σ (1) = BNn(Σ),

for every closed surface Σ.
Given Σ, a generic closed surface in D2 × (−ε, ε)× [0, 1], one can con-

sider a point p on Σ and a unknotted disc small neighbourhood U of p.
By removing this small neighbourhood we can view Σ \U as a cobordism
between the empty set and the trivial knot, or from the trivial knot to the
empty set. Let

ϕΣ
1 : BN•,•(∅)→ BN•,•(©), ϕΣ

2 : BN•,•(©)→ BN•,•(∅),

be the maps obtained by removing U from Σ, and applying Kh0 and Bar-
Natan TQFT, then we have

ψBN
Σ = ϕΣ

2 ◦ ι1 = ε1 ◦ ϕΣ
1 .
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More generally, for every couple of closed surfaces Σ1 and Σ2, the follow-
ing holds:

ψBN
Σ1]Σ2

= ϕΣ1
2 ◦ ϕΣ2

1 .

Definition 3.3. A surface in D2× (−ε, ε)× [0, 1] is said to be unknotted
if and only if it bounds a solid torus of genus g.

From the Equation (5) the following lemma follows immediately:

Lemma 8. For any unknotted surface Σ, of genus 2m + 1 ≥ 0, we have that

BNn(Σ) = 2 · (4T)m;

while, if the genus of Σ is 2m, with m ≥ 0, it holds

ϕΣ
2 (x−) = ±α · Tm;

To prove the Rassmussen-Tanaka theorem we will need the two facts
about knotted surfaces. The first one is the following.

Fact (Unknotting theorem). Any knotted surface may be unknotted by at-
taching a finite number of 1-handles.

The proof of this result can be found in both [Kamada] and [HosKa].
The minimum number of 1-handles needed to unknot a surface is called
unknotting number, see [HosKa] for more.

A move on surface diagram that we need is the ribbon move shown in
Figure 1. The movie version of the left side of the ribbon move is given by
playing the movie on the left side of Movie Move XII and then the movie
on its right side; while the other side of the ribbon move is the movie
obtained by playing the right side of Move XII and then its left side. By
the functoriality of Kh0 we obtain that the map associated to each side of
the ribbon move is the same, up to sign. The second fact we are going to
use is the following.

Fact. Any 1-handle on a surface-knot is ribbon move equivalent to a trivial
1-handle.

This fact can be found in [CaSaSa], proof of Theorem 1, page 2780.
Now we can finally state and give Tanaka’s proof of the following

theorem on the Bar-Natan number.

Theorem 13 (Tanaka). For any surface Σ of genus g ≥ 0, we have the
following:

(1) if g is even, then BNn(Σ) = 0;
(2) if g is odd, then BNn(Σ) = ±2gT

g−1
2 .
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Figure 1. Ribbon move.

Proof. The map ϕBN
Σ has degree χ(Σ) and T is graded −4. If g is even,

Lemma 8 tells us that ϕΣ
2 sends x− to an integer multiple of Tg/2. Then,

since it holds
ψBN

Σ = ϕΣ
2 ◦ ι,

hence the degree of ψBN
Σ is −4g/2 + 1 + 1, which is different from 0 or

any power of −4. Because the Bar-Natan cohomology of the empty set
has only elements of degree 0 and powers of −4, we must have ψBN

Σ = 0,
which implies BNn(Σ) = 0.

Let us suppose g to be odd. In this case, the following equality holds:

BNn(Σ) = ±αT(g−1)/2,

for a certain α ∈N. The above equation implies

ϕΣ
2 (x+) = ±αT(g−1)/2.

To prove the statement it is sufficient to show that±α = 2g. Let us consider
an unknotted surface Γk of genus k. We have that

ψBN
Σ]Γk

(1) = ϕΣ
2 ◦ ϕΓk

1 (1) = ±αT(g−1)/2 · (4T)(k−1)/2;

for k even and greater than the unknotting number of Σ, we have that Σ]Γk
is equivalent, up to a finite sequence of ribbon moves, to Γg+k. Since the
ribbon moves do not change the map induced in Bar-Natan cohomology
by our surface, we have the following equation

αT(g−1)/2 · (4T)(k−1)/2 = ±2(4T)
(g+k)−1

2 ,

that leads us to the equality ±α = 2g.

Q.E.D.

From the Tanaka theorem and the equality BNn(Σ)|T=0 = KJ(Σ), we
immediately have as a corollary the Rasmussen-Tanaka theorem.

Corollary 2 (Rasmussen-Tanaka theorem). Given a closed connected sur-
face Σ embedded in D2 × (−ε, ε) × [0, 1], we have either KJ(Σ) = ±2, which
happens if and only if Σ is a torus, or KJ(Σ) = 0, for all the other surfaces.
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4. Monodromy groups

In this section we compute the monodromy groups in the case when
our link is an unlink. Let us begin with the simplest case of unlink: the
unknot. In this case, it is not difficult to compute the group Aut0, and
show that it is equal to the monodromy group.

Proposition 13. The group Aut0 of the unknot is isomorphic to Z/2Z.

Proof. Let us consider the trivial diagram of the unknot U1. The
Khovanov chain complex of this diagram is composed by a single non-
trivial group: C0,•(U ); hence, its homology complex coincides with the
chain complex.

The generators of C0,•(U ) = KH0,•(U ) are x+ and x−. Any linear map
from KH0,•(U ) = KH•,•(U ) to itself can be represented, with respect to
the basis x+, x−, as a 2× 2 integer matrix, say

A =

(
a b
c d

)
.

As A represents a degree 0 automorphism, by the consideration made
in Section 2, A should be diagonal, equivalently c = b = 0. Because the
map associated to A is invertible and we have no torsion, A should be
unimodular. So we get a, d = ±1.

To prove the statement it is sufficient to show that the only matrices A
we can obtain are ±I2, where In denotes the n× n identity matrix.

We know that the matrices ±I2 are realizable by circular movies. All
that is left is to rule out the other two possibilities. It is sufficient to
prove that we cannot change the sign of only one of the two generat-
ors. Either generator will do, because if A is the matrix associated to an
automorphism that changes the sign of the second generator, i.e. x−, then
−A = −I2 · A is also an element of Aut0; hence, if we can change the sign
of a generator, leaving the other untouched, then we can also obtain the
automorphism that changes the sign of the other one.

Let us suppose that there is an oriented link cobordism between U0

and itself that induces a map ϕ that changes the sign of x+ while leaving
x− untouched. Let us call M a circular movie that induces ϕ via Kh0 and
Khovanov TQFT.

Let us consider the movie N shown in Figure 2. This movie starts with
a birth move, then a Fusion I, which actually splits, move is performed on
the circle just born. The Fusion I move splits the newly born circle in two
circles; our movie goes on by leaving one of these circles untouched, while
the other one takes part in the movie M. At the end of this performance,
we have again a couple of circles. Now a fusion moves between these
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M

Figure 2. A movie representing a torus that involves the
movie M.

circles takes place, and the two circles became a single circle. Finally, a
death move is performed on the only circle left.

This movie describes a torus; hence, by the Rassmussen-Tanaka the-
orem, the map it induces should be multiplication by ±2. But if we com-
pute the map directly we obtain:

1 ι7→ x+
∆7→ x+ ⊗ x− + x− ⊗ x+,

then ϕ sends x+ ⊗ x− + x− ⊗ x+ to

x+ ⊗ x− − x− ⊗ x+
m7→ 0 ε7→ 0;

which is absurd.
Q.E.D.

As the monodromy group contains Z/2Z as a subgroup, because the
identity and minus the identity are always realizable, and Mon is a sub-
group of Aut0, the following corollary is immediate.

Corollary 3. The monodromy group of the unknot is trivial.

The following statement holds – see [Jacobss], pages 1231-1234, for the
proof.

Proposition. The knot 818 has non-trivial monodromy.

As a consequence, we obtain that the monodromy is a non-trivial in-
variant. Let us raise the difficulty level a bit by adding more components.

Let us fix an ordering of the basis elements of the Khovanov homology
complex associated to any trivial unlink diagram Un, i.e. the diagram of
the unlink with only disjoint © components, all of them with the same
orientation, whose centres lie on the same line and the components are
ordered from left to right.

1 2

· · ·

n

Figure 3. The diagram Un with an orientation on the components.
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Because there are no differentials, the Khovanov homology of such a
diagram is the same as its Khovanov chain complex. The latter consist on
a single non-zero group which is the free Z-module generated by the 2n

elements of the form

vi1...in := xi1 ⊗ · · · ⊗ xin , i1, ..., in ∈ {+, −};

the quantum grade of such an element is n− 2k, where k is the number
of minus signs among i1, ..., in. For each quantum degree d = n − 2k,
we have (n

k) elements of that degree. Hence, to represent the elements of
Aut0(KH(Un)) by matrices we have to fix an ordering for each quantum
grade.

So we choose the ordering + > −, on the set {+, −}; and, in case
vi1...in and vi1...in have the same quantum grade, set

vi1...in > vj1...jn ⇐⇒ (i1, ..., in) >lex (j1, ..., jn),

where >lex indicates the lexicographic order.
Now we can proceed with the computation of the monodromy of the

unlink with two components.

Proposition 14. The monodromy group of the unlink with two components
is isomorphic to (Z/2Z)2.

Proof. If we consider U2 as diagram for the unlink with two compon-
ents, i.e. the diagram depicted in Figure 3 with n = 2, and the ordering
on the generators of KH•,•(U2) described at page 81; by the grade argu-
ments illustrated in Section 2 we have that all morphisms in Aut0(U2) are
represented by matrices of the form

B =


α 0 0 0
0 a1,1 a1,2 0
0 a2,1 a2,2 0
0 0 0 β

 .

By computing the determinant of B we get:

αβ · Det(A) = Det(B), with A =

(
a1,1 a1,2

a2,1 a2,2

)
.

Since B is unimodular, because it represents an automorphism, and we are
working over the integer ring we must have: α, β = ±1 and A ∈ G l(2, Z).
We want to show that the only matrices A ∈ G l(2, Z) that may represent
elements ofMon are those of the form(

0 ±1
±1 0

)
,

(
±1 0
0 ±1

)
.
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Let MA the movie of a cobordism whose associated map ϕA is represented
by the matrix

B =

 ±1 0 0
0 A 0
0 0 ±1

 , with A =

(
a1,1 a1,2

a2,1 a2,2

)
.

S2

S1

MA

E2

E1

E3

Figure 4. The movie N1.

Consider the movie N1 in Figure 4. This movie defines a map

ϕ1 : V ⊗V −→ V ⊗V ⊗V,

given by:
ϕ1(v++) = αv++− + a1,1v+−+ + a2,1v−++,

ϕ1(v+−) = a1,1v+−− + a2,1v−+−,

ϕ1(v−+) = a1,2v+−− + a2,2v−+− + βv−−−,

ϕ1(v−−) = βv−−−;

where α and β are, respectively, the (1, 1)-entry and the (4, 4)-entry of B.
To get a system of equation we have to complete N1 to the movie of

a closed connected surface. In order to do so, is necessary to understand
the position of the red circle, i.e. the one that comes from S1, at the end of
N1: this circle could be in either positions E1 or E2 depending on whether
or not MA permutes the two components of U2. Let σ ∈ S2 ' Z/2Z be
the permutation such that the circle in position S1 is in position Eσ(1) at
the end of N1.

Figure 5. A torus cap and its movie version Ta.
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Let N2 be the movie obtained from N1 by capping S1 with a cap and
S2 with a torus cap. Its associated map is

ϕ2 : Z→ V ⊗V ⊗V,

1 7→ 2 · ϕ1(v+−).
In order to get a closed surface from N2, we can either fuse E1 and E2 and
put a cup on E3 or fuse E3 with Eσ(1) and put a cap on Eσ(2). The surface
obtained has a boundary component, if we put a cup on it the result is in
both cases a torus. Thus we get the system of equations:{

2 · (a1,1 + a2,1) = ±2
2 · aσ(1),1 = ±2

.

The solution of this system is

a1,1 = ±δ1
σ(1), a2,1 = ±δ2

σ(1);

where δi
j is the Kronecker delta, i.e. the function which is 1 if i = j and

0 otherwise. Consider the movie N3 obtained from N1 by capping S2,
instead of S1, with a cap and S1 with a torus cap. Its associated map is

ϕ3 : Z→ V ⊗V ⊗V,

1 7→ 2 · ϕ1(v−+).
We can get a closed surface from N3 by proceeding in the same way as in
the case of N2. We can either fuse E1 and E2 on the result and put a cup
on E3 or fuse E3 with Eσ(1) and put a cap on Eσ(2). The surface obtained
has a boundary component, if we put a cup on it the result is in both cases
a torus. Thus we get the system of equations:{

2 · (a1,2 + a2,2) = ±2
2 · aσ(2),2 = ±2

.

Remark. The term β vanishes because it is the coefficient of v−−− that
becomes 0 when we fuse a pair of circles.

the solution of this system is

a1,2 = ±δ1
σ(2), a2,2 = ±δ2

σ(2).

This leaves us with determining exactly which are the sign combination we
can realize. By using the movie in Figure 2 with the third still replaced by
MA and Rasmussen-Tanaka theorem, one can rule out the cases of mixed
signs in A, i.e. all the non-zero entries have the same sign.

In other words, the possibilities for the matrix A are:

±
(

0 1
1 0

)
, ±

(
1 0
0 1

)
;
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If we suppose that the element α of matrix B and the non-zero entries
of the matrix A have different signs, then the movie in Figure 6, which rep-
resent a torus, is associated to the 0 morphism – which is absurd by the
Rasmussen-Tanaka theorem. The same argument works for β: if we sup-
pose β and the non-zero entries of A to have different sign, then the movie
shown in Figure 7 represents a torus with Khovanov-Jacobsson number 0.

Figure 6. The movie of a torus that involves the circular
movie M.

So we have obtained that all the elements of Mon(U2) have matrices
of the form

B(σ) = ±

 1 0 0
0 Aσ 0
0 0 1

 , with Aσ =

(
δ1

σ(1) δ1
σ(2)

δ2
σ(1) δ2

σ(12)

)
,

where σ ∈ S2. The matrices of this form with the matrix multiplica-
tion are a group which is isomorphic to Z/2Z⊕S2 ' Z/2Z⊕Z/2Z.
Moreover, we can realize all these matrices by exchanging the components
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of U2 and/or using a movie whose associated map is −IdKH•,•(U2). Hence,
Mon(U2) ' Z/2Z⊕Z/2Z.

Figure 7. The movie of a torus that involves the circular
movie M.

Q.E.D.
It is our opinion that the proof of the previous proposition can be

adapted to prove the following.

Conjecture. The monodromy group of the unlink with n-components is
Z/2Z⊕Sn, where Sn is the group of permutations of n elements.

5. Conclusions and further possibilities.

Our computations are limited to the unlinks. This is due to the fact
that, performing the technique based on the Rasmussen-Tanaka theorem
on more complicated knots or links could be quite challenging. For the
Hopf link, for example, this tecnique proved itself to be useless. Let H be
the oriented diagram of the Hopf link shown below.
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Figure 8. The Hopf link.

The formal Khovanov complex associated to the diagram H is

⊕

C0C−1C−2

Figure 9. The formal Khovanov chain complex of H.

If one considers the generators of the Khovanov homology ofH, then it
is possible to describe the possible elemetns of the groupAut0 by matrices.
Considered that the integral Khovanov homology of the Hopf link has
non-trivial groups on bi-degrees (−2,−2), (−2, 0), (0,−2) and (0, 0), where
the homology groups are Z. Hence, by the grade argument described in
Section 2, the possible matrices associated to the morphisms in Aut0 are
those of the form

B =


±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1


Now we should understand which are the possible combinations of signs,
but at least we found out thatAut0(02), and henceMon(02), is a subgroup
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of (Z/2Z)4. One can consider the planar isotopy given by the π-rotation
of the diagram in Figure 8, this rotation exchanges the components. A few
computations show that its effect, up to sign, in Khovanov homology is
described by the matrix

A =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ,

and this tells us that Mon(H), and hence Aut0(H), has Z/2Z⊕Z/2Z

as a subgroup. Unluckily, we cannot proceed any further. It is our belief
that there are no other matrices neither in Aut0 nor in Mon. All of our
attempts to use the Rasmussen-Tanaka theorem here failed.

A possible way to compute properly the monodromy groups and to
obtain a more powerful version of the techniques used here, is to com-
pute the monodromy in Bar-Nathan theory and relate it to the Khovanov
monodromy. In a certain sense we wish to extend the approach of Tanaka
to the computation of the monodromy. A further possible approach could
be to consider the Khovanov theory over Q instead of Z. In this context we
could use other invariant such as Jacobsson’s Lefschetz polynomial – see
[Jacobss], Section 6, page 1249 – to narrow down the possibiles morphisms
inMon.
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