
Math 249B. Geometric global class field theory

1. Introduction

Class field theory for global function fields K over finite constant fields k can be reformulated in purely
algebro-geometric terms, as a theory of finite abelian coverings of smooth projective algebraic curves over
finite fields (with controlled ramification over the base curve). That is, if X is the smooth projective
and geometrically connected curve over k for which k(X) ' K then one studies finite coverings X ′ → X of
smooth projective curves whose corresponding function field extension K ′/K is abelian. We have to interpret
ramification and the notion of modulus of K in purely geometric terms.

Lang and Rosenlicht showed that this point of view, properly formulated with the aid of (not necessarily
affine or projective) commutative algebraic groups, works over any perfect constant field k, not just finite
fields, and in particular there is such a theory for curves X over fields k of characteristic 0, such as number
fields (or C)! In fact, the Lang-Rosenlicht theory with k a number field was used by Faltings in his proof of
the Mordell conjecture. A caveat is required: there is an “ungeometric” feature (when k is not algebraically
closed) corresponding to finite abelian coverings X ′ → X arising from nontrivial abelian extensions of the
constant field (i.e., k(X ′) = k′ ⊗k k(X) for a finite abelian extension k′/k, which is to say X ′ = k′ ⊗k X as
schemes). The Lang-Rosenlicht theory cannot say anything explicit about this, since for a general perfect
constant field k it is hopeless to describe all possible k′/k (though for finite k it is not really a problem). In
other words, the quotient Gab

k of Gab
K must somehow be “ruled out” from intervening in an explicit way in

the theory with general perfect k. To do this, one has to somehow focus on coverings X ′ → X for which X ′

is geometrically connected over k, which is to say that k is algebraically closed in k(X ′). Or rather, one needs
to make sure that the theory keeps close track of geometric connectivity properties of various coverings.

This creates some mild complications, since it can happen for a pair of geometrically connected finite
abelian coverings X ′1 → X and X ′2 → X over k that the composite abelian covering X ′′ → X (corresponding
to the composite field K ′1K

′
2 over K) has X ′′ not geometrically connected over k. In this handout we will

not get into how this technical issue is handled in the proofs of the theory, and we refer the reader to Serre’s
book “Algebraic groups and class fields” for an exposition of the general theory. Unfortunately this book was
written entirely in the archaic Weil style of algebraic geometry (making it very hard to read). Below we focus
on giving an exposition of some main results in modern algebraic-geometric terms for geometrically connected
abelian coverings, and we assume the reader has a good background in algebraic geometry (including the
theory of Picard schemes). An excellent modern reference for the construction and structure of generalized
Jacobians is Chapters 8 and 9 of the book “Néron models”.

Remark 1.1. There is also a “geometric local class field theory”, due to Serre, which describes abelian
extensions of local fields with algebraically closed residue field (later generalized by Hazewinkel to any
perfect residue field). He takes the viewpoint of studying the group of local units as a pro-algebraic group
over the residue field, and replaces the role of the multiplicative group in the traditional local class field
theory with a kind of fundamental group for this pro-algebraic group of units.

2. Generalized Jacobians

Let k be a perfect field and let X be a smooth projective geometrically connected curve over X. Places
of K = k(X) that are trivial on k are in natural one-to-one correspondence with closed points of X. We
define a modulus m on K exactly as for global fields, except that we only use places that are trivial on k (as
is automatic when k is finite). Hence, a modulus is just another name for an effective divisor on X, and so
it can be viewed as a finite closed subscheme of X (whose multiplicities at the points of its support are the
corresponding exponents in the modulus).

Attached to any such m with degk(m) > 1 (i.e., m as a divisor is non-empty and and is not a k-rational
point) one can associate a projective and geometrically integral algebraic curveXm such that its normalization
is X → Xm and it has a single non-smooth point that is moreover k-rational with pullback in X equal to m (as
a scheme). Roughly speaking, we form Xm by scrunching m into a single k-rational point, and the rigorous
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construction is done by a ring-theoretic fiber product operation (which we omit). The map X → Xm is
universal for k-maps X → Y to arbitrary k-schemes such that m scheme-theoretically factors through Y (k).
The simplest example is when m = P +Q for a pair of distinct k-rational points P,Q ∈ X, in which case Xm

has a k-rational nodal singularity whose normalization has P and Q lying over the singularity. If m = 2P for
a k-point P of X then Xm has a cuspidal singularity. A more subtle example is m = P with degk(P ) = 2,
in which case Xm has a nodal singularity but its “tangent lines” at the singularity are not k-rational. (This
is like non-split multiplicative reduction for an elliptic curve.)

By work of Grothendieck (but known in an earlier less precise form by Weil’s contemporaries, such as Lang
and Rosenlicht), for any geometrically integral projective scheme Y over k there is a naturally associated
commutative k-group scheme PicY/k locally of finite type over k that (roughly speaking) classifies line bundles
on Y . Its formation commutes with any extension of the base field. This k-group is called the Picard scheme
of Y , and if char(k) > 0 it is generally non-reduced. However, when dimY = 1 it is always smooth (due to
cohomological reasons). The identity component Pic0

Y/k is quasi-projective and geometrically connected, and
the so-called component group PicY/k/Pic0

Y/k is an étale k-group scheme whose group of geometric points
is finitely generated (Néron’s Theorem of the Base). In case dimY = 1 the component group is the infinite
cyclic group Z (via the “degree” of line bundles) and so we can naturally label the connected components
as PicnY/k for n ∈ Z; the nth one “classifies” degree-n line bundles on Y , and by the k-group structure it has
a natural left action by Pic0

Y/k that is simply transitive and free (in the scheme-theoretic sense). In other
words, each PicnY/k is a principal homogeneous space for Pic0

Y/k (and in particular is geometrically connected
and quasi-projective over k). We will be interested in the case n = 1.

Example 2.1. If Y is a smooth curve then Pic0
Y/k is the Jacobian variety of Y . This is an abelian variety

whose dimension is the genus of Y . This has a very rich theory. When Y is not smooth then Pic0
Y/k is

generally not an abelian variety: roughly speaking, the singularities of Y contribute an “affine part”. There
are serious technical problems if k is not perfect (especially if the non-smooth locus has points that are not
étale over k), so suppose now that k is perfect. In this case, if Ỹ → Y is the normalization (so it is smooth, by
perfectness of k) then the induced “pullback” map PicY/k → PiceY /k identifies Pic0eY /k as an abelian variety

quotient of Pic0
Y/k modulo a smooth connected affine k-group.

In particular, Pic0
Y/k is affine if and only if Y has normalization of genus 0. For example, if Y is the nodal

curve obtained from P1
k by gluing 0 and ∞ to each other then Pic0

Y/k is isomorphic to the affine k-group
GL1. The general structure of the affine part can be understood in terms of the structure of the singularities
of Y (up to delicate issues related to the singular points perhaps not being k-rational; so really over k one
can describe what is going on). For example, nodal singularities contribute a torus in the affine part, whereas
more complicated singularities contribute unipotent pieces.

Now we focus our attention on the k-group varieties Jm = Pic0
Xm/k for a varying modulus m as above,

with k now assumed to be perfect. The k-group Jm is an extension of the Jacobian J = Pic0
X/k by a smooth

connected affine group Rm which depends on m. For this reason, we call the Jm’s generalized Jacobians of
X.

Example 2.2. In the special case k = C there is an analytic description:

Jan
m ' H0(X,Ω1

X/k(m))∨/H1(X − supp(m),Z);

in case m = 0 this recovers the classical analytic description of the Jacobian.

The focus of interest in the theory is to describe finite abelian coverings X ′ → X that are unramified
away from m and whose ramification structure is “no worse than m”. In case m = 0 this is the problem of
describing everywhere unramified finite abelian coverings X ′ → X, and it was known classically how this
should go, at least when X has positive genus (so there is an interesting theory) and X ′ is geometrically
connected over k: there should be a unique étale isogeny of abelian varieties J ′ → J with constant kernel
which pulls back to X ′ → X along a canonical map X → J . (The constancy of the kernel corresponds to
J ′ → J inducing a Galois extension of function fields over k, and not just over k.) Actually, this is slightly
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incorrect when k is not algebraically closed, since if X(k) = ∅ then there is no canonical map X → J along
which we can pull back the covering J ′ → J to get a covering of X. To get around this (since in practice we
do not want to assume X(k) is non-empty!), the right thing to work with is not a map X → J but rather
a canonical map X → J1 = Pic1

X/k. (If X(k) is non-empty we can use a k-rational point to translate J1

into J within PicX/k so as to recover the more traditional viewpoint .) So the principal homogeneous spaces
mentioned above are going to intervene due to the possibility that X(k) may be empty.

The aim of the Lang-Rosenlicht theory is to do for general m what the classical theory of the Jacobian
does for m = 0: describe finite abelian (and geometrically connected!) coverings of X in terms of étale
isogenies G → Jm (with constant kernel) of smooth connected commutative k-groups and compatible finite
étale coverings G1 → J1

m of principal homogeneous spaces. In this way the “class field theory” of K =
k(X) is expressed in terms of the theory of étale isogenies of commutative algebraic groups (and principal
homogeneous spaces for such groups), at least for the geometrically connected part. The theory of étale
isogenies to Jm can be studied by using the structure of Jm (especially its abelian variety quotient J and its
“affine part” Rm).

3. Main results

Consider X and m as above. Let Jnm = PicnXm/k for n ∈ Z. There is a canonical map

φm : X −m→ J1
m

defined functorially (on S-valued points for any k-scheme S) by x 7→ O(x) (where x is viewed as a section
of XS := X ×Spec k S → S supported away from mS and O(x) is the inverse ideal sheaf of this section). One
can show that if degk(m) > 1 then φm cannot be defined at any point of supp(m), so as a rational map from
X to J1

m its maximal domain of definition is in fact X −m.
The remarkable fact is that if G → Jm is an étale isogeny of smooth connected commutative k-groups

and G1 → J1
m is a compatible map of principal homogeneous spaces (so it becomes an abelian covering space

when ker(G→ Jm) becomes constant, such as over k) then in the pullback square

U ′

��

// G1

��
X −m

φm

// J1
m

the left side is not only an abelian covering when viewed over k but U ′ is geometrically connected over k. This
left side uniquely extends to a finite covering map X ′ → X of smooth projective geometrically connected
curves, and it is étale away from supp(m) so it is ramified at worst over the points in the support of m. In
fact, the multiplicities in m turn out to even “bound” how bad the ramification can be. This is all part of
the following main results of the theory.

The first result is an analogue for the φm’s of the Albanese property of Jacobians. It essentially classifies
rational maps from curves to smooth connected commutative algebraic groups.

Theorem 3.1 (Rosenlicht). Let X be a smooth projective and geometrically connected curve over a perfect
field k, and let S ⊆ X be a finite set of closed points. Let H be a smooth connected commutative k-group,
and let f : X − S → H1 be a map to a principal homogeneous space for H.

There exists a modulus m with supp(m) = X − dom(f) ⊆ S and a k-morphism f1
m : J1

m → H1 equivariant
with respect to a k-group map fm : Jm → H such that there is a commutative diagram

X − S

f ##FF
FF

FF
FF

F
φm // J1

m

f1
m

��
H1
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For any such m the maps fm and f1
m are uniquely determined, and there is a unique such m = f that divides

all others. In particular, every f is “classified” by a triple (f, ff, H
1).

Moreover, any geometrically connected abelian covering of H1 pulls back along f to a geometrically con-
nected abelian covering of X that is unramified outside of supp(m).

Theorem 3.2. Let k be a perfect field and let X be a smooth projective and geometrically connected curve
over k. Let π : X ′ → X be the finite covering map of smooth connected curves corresponding to a finite
abelian extension K ′/K of function fields (so X ′ may not be geometrically connected over k), and let S ⊆ X
be the ramification locus for this covering.

There exists a modulus m with support S and a connected finite abelian covering G1 → J1
m such that there

is a cartesian diagram
X ′ − π−1(S)

π

��

// G1

��
X − S

φm

// J1
m

There is a unique such modulus fπ which divides all others, in which case G1 is geometrically connected if
and only if X ′ is geometrically connected, and if k is finite then fπ is the least admissible modulus fK′/K in
the sense of class field theory for global function fields.

The formation of fπ commutes with any extension of the ground field F/k, in the sense that we take a sum
of moduli corresponding to the connected components of X ′ ⊗k F (each viewed as a connected finite abelian
covering of X ⊗k F ).

In case the ground field k is perfect, the essential difficulty in the proof of class field theory – proving
that the Artin map kills certain principal ideals – becomes easy to prove geometrically by means of the
interpretation of geometric points of generalized Jacobians in terms of generalized ideal class groups. (More
precisely, one has Jm(k) = Clm(K) when Br(k) = 1, as happens when k is finite but not when k is a number
field.)


