
Math 210B. Group cohomology and group extensions

1. Motivation

There is a general principle (best learned through experience with many examples) that when
cohomology (of various sorts) is used to classify obstructions to constructions then H2 classifies
isomorphism classes of structures (up to suitable equivalence) and H1 acts simply transitively on
the set of (equivalence classes of) automorphisms of a given structure. Thus, for example, when we
have vanishing theorems for H1 (which occurs in some important situations) then structures being
studied do not have “non-trivial” automorphisms. In this handout we make this vague principle
precise in the setting of group cohomology.

Let G be a group, and let M be a G-module. Consider exact sequences of groups

1→M → E → G→ 1

in which the left action by G = E/M on M induced by E-conjugation on the commutative normal
subgroup M is the given G-module structure on M . (For example, we could take E to be the
semidirect product E = M oG with the action gmg−1 = g.m (using the evident inclusion M ↪→ E
and quotient map E � G modulo M .) An isomorphism between two such extensions (with the
same G and M) is defined to be a commutative diagram

1 // M // E′

' f

��

// G // 1

1 // M // E // G // 1

in which f : E′ → E is a group isomorphism restricting to the identity on M and inducing the
identity on the common quotient G. Of course, if f is merely assumed to be a group homomorphism
respecting the extension structures in this way then it is automatically an isomorphism (by a simple
diagram chase).

In this handout, we will see that H2(G,M) is naturally identified with the set of isomorphism
classes of such extensions of G by M . But we emphasize that just as this particular group coho-
mology depends very much on the G-module structure on M , it will be essential that we have fixed
the G-action induced on M from the extension structures that we consider. For example, if M has
trivial G-action then H2(G,M) is the set of isomorphism classes of central extensions of G by M
(i.e., exact sequences as above for which M is in the center of E), but if we modify the G-module
structure on M to be nontrivial then H2(G,M) completely changes in general and likewise the class
of extensions of G by M that we are considering completely changes too. So don’t forget that the
G-action on M in the exact sequences which we consider has been specified in advance!

2. Interpretation of H2

To describe the possible exact sequences as above (inducing a given G-action on M !), let us
first describe E as a set: we choose a set-theoretic section s : G → E to the given quotient map
π : E � G, so the M -cosets of E have a unique representative s(g) for varying g ∈ G. We do not
assume s(1) = 1. As a set, we have a disjoint union decomposition

E =
∐
g∈G

M · s(g) = M ×G,

where M · s(g) = π−1(g). To describe the group structure on this disjoint union, we note that
the subgroup structure on M has been specified (with 1 ∈ M as the identity for the group law on
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E) but s(1) may not equal the identity of E, so we cannot expect the element (0, 1) ∈ M × G to
correspond to the identity of the group law.

As far as the composition law on E is concerned, what needs to be defined is s(g1)s(g2) for
g1, g2 ∈ G, since the way that s(g) acts on M by conjugation within E (i.e., s(g) ·m · s(g)−1 for
g ∈ G and m ∈ M) has been specified in advance. Since π is to be a group homomorphism, we
must have s(g1)s(g2) ∈ π−1(g1g2), which is to say s(g1)s(g2) = cg1,g2s(g1g2) for a unique cg1,g2 ∈M .
(Note in particular that s(1) = c1,1.) Thus, there is a function c : G×G→M such that the group
law on the set E = M ×G is defined by the rule

(m, g)(m′, g′) = (m+ g.m′ + c(g, g′), gg′).

The condition that this be associative says

(2.1) g.c(g′, g′′)− c(gg′, g′′) + c(g, g′g′′)− c(g, g′) = 0,

and this relation forces c(1, g) = c(1, 1) and g.c(1, 1) = c(g, 1) for all g ∈ G (by specializing
g = g′ = 1 and g′ = g′′ = 1). The condition in (2.1) is exactly the 2-cocycle condition: it says
c ∈ Z2(G,M). Also, if we change s to another section s′ : G → E, which is to say we replace s
with s′ = f · s for a function f : G → M then c is replaced with c′ = c + df , or in other words
c′− c ∈ B2(G,M). Hence, the class [c] ∈ H2(G,M) is independent of s and so depends only on the
isomorphism class of the given extension structure E of G by M .

Conversely, given c satisfying (2.1) and defining a composition law on E = M ×G as indicated
above, one checks that (−c(1, 1), 1) is a 2-sided identity element for this composition law and that
the maps M → E defined by m 7→ (m−c(1, 1), 1) and E → G defined by (m, g) 7→ g are compatible
with the composition laws. Finally, one checks that (−g−1.m− c(g−1, g)− c(1, 1), g−1) is a 2-sided
inverse to (m, g) (using that g.c(g−1, g) − c(1, g) + c(g, 1) − c(g, g−1) = 0 with c(1, g) = c(1, 1)
and c(g, 1) = g.c(1, 1) for all g ∈ G). Thus, we have constructed a group extension of G by M
inducing the given G-module structure on M via conjugation on the extension structure. Moreover,
if we replace c with any 2-cocycle c′ representing the same cohomology class then the new extension
structure thereby constructed is isomorphic to the one constructed from c. (Explicitly, if c′ = c+df
and E′ denotes the group extension structure on M×G defined via c′ then the asserted isomorphism
E′ ' E as group extensions is (m, g) 7→ (m+ f(g), g).)

The preceding considerations provide a natural bijection between the set H2(G,M) and the set
of isomorphism classes of group extensions of G by M inducing the given G-module structure on
M via conjugation on the group extension. Note that in H2(G,M) there is a distinguished element,
the origin, and this is represented by the 2-cocycle c = 0. Hence, the corresponding group extension
is easily seen to be the semidirect product E = M o G associated to the given G-action on M ,
where E is given its evident extension structure.

2.1. Automorphisms and H1. Having interpreted degree-2 group cohomology in terms of iso-
morphism classes of group extensions, we now interpret degree-1 group cohomology in terms of
automorphisms of a fixed such group extension. To this end, consider an automorphism of a group
extension

1→M → E
π→ G→ 1,

which is to say an automorphism f : E ' E respecting the extension structure. We write Aut(E)
to denote the set of such automorphisms (the extension structure on E being understood from
context). One trivial example of such an automorphism is conjugation γm : E ' E by some
m ∈ M . We say that two automorphisms f1, f2 : E ' E of this extension structure are equivalent
if f1 = γm ◦ f2 for some m ∈M ; we then write f1 ∼ f2, and [f ] will denote the equivalence class of
f in Aut(E).
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There is a natural action of H1(G,M) on Aut(E)/∼ as follows. If ξ ∈ H1(G,M) and c : G→M
is a 1-cocycle representing the cohomology class ξ, then for any f ∈ Aut(E) it is easy to check
that c.f : x 7→ c(π(x)) · f(x) is another such automorphism of E as a group extension. (It is a
group automorphism of E since it is clearly a group homomorphism from E to E that induces the
identity automorphisms on the subgroup M and on the quotient G = E/M .). Moreover, if we
change the choice of representative c for ξ then this automorphism of E changes up to equivalence
as just defined. Hence, we get a well-defined pairing

H1(G,M)× (Aut(E)/∼)→ Aut(E)/∼
via ([c], [f ]) 7→ [c.f ]. One checks (on HW10) that this really is an action of the group H1(G,M) on
the set Aut(E)/∼.

Rather interestingly, the verification that the equivalence class of c.f only depends on the equiv-
alence class of f (and the cohomology class of c) shows that this action by H1(G,M) is simply
transitive on Aut(E)/ ∼. This is part of HW10. In particular, if H1(G,M) = 0 then all automor-
phisms of E as a group extension are necessarily of the trivial type arising from conjugation by an
element of M ! This is useful in conjunction with vanishing theorems for degree-1 G-cohomology
(of which we shall see a couple of examples in important cases with G a Galois group).


