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Using tensor products, we will give a slick proof that any two splitting fields of a poly-
nomial are (non-canonically) isomorphic over the base field.

Theorem 1. Let K be a field and f(X) ∈ K[X] be nonconstant. Any two splitting fields
of f(X) over K are K-isomorphic.

Proof. Let n = deg f ≥ 1 and let L1 and L2 be splitting fields of f(X) over K, so

L1 = K(α1, . . . , αn), L2 = K(β1, . . . , βn),

where the αi’s and βj ’s are full sets of roots of f(X). (Some αi’s and some βj ’s may be
repeated since f(X) might not be separable.) We want to show there is a field isomorphism
L1 → L2 which fixes the elements of K.

Since L1 and L2 are not zero, the ring L1 ⊗K L2 is not zero because the tensor product
of nonzero vector spaces is not zero. Since L1/K and L2/K are algebraic, we can write
L1 = K[α1, . . . , αn] and L2 = K[β1, . . . , βn]. Thus L1 ⊗K L2 is generated as a K-algebra
by the 2n elementary tensors {αi ⊗ 1, 1 ⊗ βj}. Pick a maximal ideal m in L1 ⊗K L2 and
consider the composite map

L1 → L1 ⊗K L2 → (L1 ⊗K L2)/m,

where the first map is x 7→ x ⊗ 1 and the second map is the natural reduction. Both are
K-algebra homomorphisms, so the composite is as well. Since L1 is a field, the composite
map is injective, so we can regard (L1⊗KL2)/m as a field extension of L1. The αi’s are a full
set of roots of f(X) in L1, so the only roots of f(X) in (L1⊗K L2)/m are the αi⊗1 mod m.
Each 1 ⊗ βj mod m is a root of f(X), so 1 ⊗ βj ≡ αi ⊗ 1 mod m for some i. Therefore
(L1⊗K L2)/m is generated as a K-algebra by all αi⊗1 mod m, which proves the above map
L1 → (L1 ⊗K L2)/m is surjective, and hence is a K-algebra isomorphism.

We get a K-algebra isomorphism L2 → (L1⊗K L2)/m in a similar way. Composing L1 →
(L1 ⊗K L2)/m with the inverse of L2 → (L1 ⊗K L2)/m gives us a K-algebra isomorphism
from L1 to L2. �

Remark 2. Each αi ⊗ 1 and 1 ⊗ βj in L1 ⊗K L2 is a solution to f(t) = 0. This typically
gives us 2n solutions to f = 0 in L1⊗K L2 when f(X) is separable,1 so we should anticipate
a collapsing of these roots into each other when we reduce L1 ⊗K L2 modulo a maximal
ideal and get a field, where f(X) always has at most n roots.

It might at first seem curious that the construction of a K-algebra isomorphism L1 → L2

succeeded using any maximal ideal in L1 ⊗K L2. In fact, different maximal ideals provide
us with all the different isomorphisms. Let’s look at an example before proving the general
result.

1This isn’t always true: if αi ∈ K then αi is some βj and αi ⊗ 1 = 1⊗ αi.
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Example 3. Two splitting fields for X2−2 over Q are L1 = Q[T ]/(T 2−2) and L2 = Q(
√

2)
(a subfield of R). There are two Q-isomorphisms L1 → L2, determined by the identification
of T in L1 with ±

√
2 in L2. The tensor product of L1 and L2 over Q is

L1⊗QL2 = Q[T ]/(T 2−2)⊗QQ(
√

2) ∼= Q(
√

2)[T ]/(T 2−2) = Q(
√

2)[T ]/(T −
√

2)(T +
√

2).

Using the Chinese remainder theorem,

Q(
√

2)[T ]/(T−
√

2)(T+
√

2) ∼= Q(
√

2)[T ]/(T−
√

2)×Q(
√

2)[T ]/(T+
√

2) ∼= Q(
√

2)×Q(
√

2),

where T on the left corresponds to (
√

2,−
√

2) on the right. The ring Q(
√

2)×Q(
√

2) has
two maximal ideals, {0}×Q(

√
2) and Q(

√
2)×{0}. The quotient by each of these maximal

ideals is isomorphic to Q(
√

2), with one sending T to
√

2 and the other sending T to −
√

2.

Theorem 4. With notation as in the proof of Theorem 1, the set of maximal ideals in
L1 ⊗K L2 is in bijection with the set of K-algebra isomorphisms L1 → L2.

Proof. We want to describe a bijection between the sets

{K-algebra isomorphisms L1 → L2} ←→ {Maximal ideals in L1 ⊗K L2} .

From K-algebra isomorphism to maximal ideal: Let L1
ϕ−−→ L2 be a K-algebra isomor-

phism. To construct from ϕ a maximal ideal in L1⊗KL2, we will construct a homomorphism
from L1⊗K L2 onto the field L2 and then take its kernel. The function L1×L2 → L2 where
(x, y) 7→ ϕ(x)y is K-bilinear, so there is a K-linear map

L1 ⊗K L2
fϕ−−−→ L2

where fϕ(x ⊗ y) = ϕ(x)y. This is onto since fϕ(1 ⊗ y) = y. A computation shows fϕ
is multiplicative on products of elementary tensors, so fϕ is a K-algebra homomorphism.
Since fϕ is surjective and L2 is a field, the kernel of fϕ is a maximal ideal. Set Mϕ = ker fϕ.

From maximal ideal to K-algebra isomorphism: Let m be a maximal ideal in L1 ⊗K L2.
We will construct from m a K-algebra isomorphism L1 −→ L2. By the proof of Theorem 1,
the natural composite maps

L1 → L1 ⊗K L2 → (L1 ⊗K L2)/m and L2 → L1 ⊗K L2 → (L1 ⊗K L2)/m

are K-algebra isomorphisms. Call the first composite map ψ1,m and call the second one

ψ2,m. Set ψm = ψ−1
2,m ◦ ψ1,m, so ψm is a K-algebra isomorphism from L1 to L2.

We will now show ϕ  Mϕ and m  ψm are inverses of each other: ψMϕ = ϕ and
Mψm = m.

Starting with ϕ, that ψMϕ = ϕ means ψ1,Mϕ = ψ2,Mϕ ◦ϕ as maps L1 → (L1⊗K L2)/Mϕ.
For

ψ1,Mϕ : L1 −→ L1 ⊗K L2 −→ (L1 ⊗K L2)/Mϕ

the effect is x 7→ x⊗ 1 7→ x⊗ 1 mod Mϕ. For

ψ2,Mϕ ◦ ϕ : L1 → L2 −→ L1 ⊗K L2 −→ (L1 ⊗K L2)/Mϕ

the effect is x 7→ ϕ(x) 7→ 1 ⊗ ϕ(x) 7→ 1 ⊗ ϕ(x) mod Mϕ. Therefore we need to show
x⊗ 1 ≡ 1⊗ ϕ(x) mod Mϕ. Recall that Mϕ = ker fϕ, so this congruence amounts to saying
fϕ(x ⊗ 1) = fϕ(1 ⊗ ϕ(x)). From the definition of fϕ we have fϕ(x ⊗ 1) = ϕ(x) · 1 = ϕ(x)
and fϕ(1⊗ ϕ(x)) = ϕ(1)ϕ(x) = ϕ(x).
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Starting with m, that Mψm = m means ker fψm = m. We will show the diagram

L1 ⊗K L2

fψm

zz

redn.

((
L2

ψ2,m

// (L1 ⊗K L2)/m

commutes. Then since ψ2,m is an isomorphism, the kernels of the two maps out of L1⊗K L2

would be equal, so ker fψm = m.
To verify commutativity of the diagram, it suffices (by additivity of all the maps) to focus

on elementary tensors x⊗ y in L1 ⊗K L2, where we want to check

ψ2,m(fψm(x⊗ y))
?
= x⊗ y mod m.

The left side is

ψ2,m(fψm(x⊗ y)) = ψ2,m(ψm(x)y)

= ψ2,m(ψm(x))ψ2,m(y)

= (ψ2,m ◦ ψm)(x)ψ2,m(y)

= ψ1,m(x)ψ2,m(y)

= (x⊗ 1) mod m · (1⊗ y) mod m

= x⊗ y mod m.
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