ISOMORPHISM OF SPLITTING FIELDS

KEITH CONRAD

Using tensor products, we will give a slick proof that any two splitting fields of a poly-
nomial are (non-canonically) isomorphic over the base field.

Theorem 1. Let K be a field and f(X) € K[X] be nonconstant. Any two splitting fields
of f(X) over K are K-isomorphic.

Proof. Let n =deg f > 1 and let Ly and Ly be splitting fields of f(X) over K, so
LlZK(Oél,...,an), LQZK(Bla"'aﬁn)u

where the o;’s and j;’s are full sets of roots of f(X). (Some a;’s and some f(;’s may be
repeated since f(X) might not be separable.) We want to show there is a field isomorphism
L1 — Lo which fixes the elements of K.

Since L; and Lo are not zero, the ring L1 ®x Lo is not zero because the tensor product
of nonzero vector spaces is not zero. Since L1/K and Lo/K are algebraic, we can write
Ly = Klag,...,a,] and Ly = K[f1,...,0s]. Thus L1 @k Lo is generated as a K-algebra
by the 2n elementary tensors {a; ® 1,1 ® 3;}. Pick a maximal ideal m in L1 ® g Ly and
consider the composite map

Ly — L1 ®k Ly = (L1 @k Lo)/m,

where the first map is £ — z ® 1 and the second map is the natural reduction. Both are
K-algebra homomorphisms, so the composite is as well. Since L is a field, the composite
map is injective, so we can regard (L1 ®x Lo)/m as a field extension of L;. The «;’s are a full
set of roots of f(X) in Ly, so the only roots of f(X) in (L1 ® x L2)/m are the o;; ® 1 mod m.
Each 1 ® 8; mod m is a root of f(X), so 1® f; = o; ® 1 mod m for some . Therefore
(L1 ®K Lg)/m is generated as a K-algebra by all a; ® 1 mod m, which proves the above map
Ly — (L1 ®k L2)/m is surjective, and hence is a K-algebra isomorphism.

We get a K-algebra isomorphism L — (L1 @k L2)/m in a similar way. Composing L; —
(L1 ®k L2)/m with the inverse of Ly — (L1 ® Lo)/m gives us a K-algebra isomorphism
from L to Ls. ]

Remark 2. Each o; ® 1 and 1 ® 3; in Ly ®k Lo is a solution to f(t) = 0. This typically
gives us 2n solutions to f = 0 in L1 ®x Ls when f(X) is separable,! so we should anticipate
a collapsing of these roots into each other when we reduce L; ® Lo modulo a maximal
ideal and get a field, where f(X) always has at most n roots.

It might at first seem curious that the construction of a K-algebra isomorphism L; — Lo
succeeded using any maximal ideal in Lj ® g Lo. In fact, different maximal ideals provide
us with all the different isomorphisms. Let’s look at an example before proving the general
result.

IThis isn’t always true: if a; € K then «; is some f; and a; ® 1 = 1 ® .
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Example 3. Two splitting fields for X2 —2 over Q are L; = Q[T]/(T%—2) and Ly = Q(V/2)
(a subfield of R). There are two Q-isomorphisms L; — Lo, determined by the identification
of T in L, with £+v/2 in Ls. The tensor product of L; and Lo over Q is

Li©q Ly = QIT)/(1%—2) 2 Q(V2) = Q(V2)[T]/(T%~2) = QV2)[T]/(T - V2)(T+V2).
Using the Chinese remainder theorem,
QWV2)TI/(T—V2)(T+V2) = Q(V2)[T]/(T—V2)x Q(V2)[T]/(T+V2) = Q(V2) x Q(V2),

where T on the left corresponds to (v/2, —v/2) on the right. The ring Q(v/2) x Q(v/2) has
two maximal ideals, {0} x Q(v/2) and Q(v/2) x {0}. The quotient by each of these maximal
ideals is isomorphic to Q(\/i), with one sending 7" to v/2 and the other sending T to —v/2.

Theorem 4. With notation as in the proof of Theorem 1, the set of maximal ideals in
L1 ®k Loy is in bijection with the set of K-algebra isomorphisms L1 — Lo.

Proof. We want to describe a bijection between the sets
{K-algebra isomorphisms L; — Lo} +— {Maximal ideals in L1 ®p Lo} .

From K-algebra isomorphism to maximal ideal: Let L; s Lybea K -algebra isomor-
phism. To construct from ¢ a maximal ideal in L1 ® i Lo, we will construct a homomorphism
from L1 ®k Lo onto the field Ly and then take its kernel. The function L1 x Ly — Lo where
(z,y) — @(x)y is K-bilinear, so there is a K-linear map

Ly @k Lo e, Lo

where f,(z ® y) = @(x)y. This is onto since f (1 ® y) = y. A computation shows f,
is multiplicative on products of elementary tensors, so f,, is a K-algebra homomorphism.
Since f,, is surjective and Lo is a field, the kernel of f, is a maximal ideal. Set M, = ker f.

From maximal ideal to K-algebra isomorphism: Let m be a maximal ideal in L; ® Lo.
We will construct from m a K-algebra isomorphism Ly — Lo. By the proof of Theorem 1,
the natural composite maps

L1 — L1 [S4)7¢ LQ — (L1 XK Lz)/m and L2 — L1 XK L2 — (L1 XK Lg)/m

are K-algebra isomorphisms. Call the first composite map 11 n and call the second one
Yo m. Set Py = @bz_é 0 1,m, SO ¥ is a K-algebra isomorphism from L to Lo.

We will now show ¢ ~» M, and m ~ oy, are inverses of each other: ¢y, = ¢ and
Mwm =m.
Starting with o, that ¢ns, = ¢ means 91,17, = 12,01, 0 as maps Ly — (L1 ®x La) /M.
For
VYim,: L1 — L1 @k Lo — (L1 @k La)/M,

the effect is 2 = r® 1 — 2 ® 1 mod M,,. For
vaMLP ow: L1 — Lo — L1 Qg Lo — (L1 RK L2)/M<p

the effect is * — ¢(z) = 1 ® p(z) = 1 ® p(x) mod My,. Therefore we need to show
z®1=1® p(r) mod M,. Recall that M, = ker f,, so this congruence amounts to saying
folz®1) = fo(1 ® ¢(x)). From the definition of f, we have f (z ® 1) = p(x) -1 = p(x)
and f,(1® @(x)) = p(1)e(z) = ¢(z).
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Starting with m, that My, = m means ker fy,, = m. We will show the diagram

L1 ® Lo
Loy - (L1 ®K La)/m

commutes. Then since 13 1, is an isomorphism, the kernels of the two maps out of L1 ® g Lo
would be equal, so ker fy,, = m.

To verify commutativity of the diagram, it suffices (by additivity of all the maps) to focus
on elementary tensors * ® y in L; ®g Lo, where we want to check

)
Yom(fym (2 ®y)) = 2 ® y mod m.
The left side is

Vom(fyu(@@y)) = Yom(m(z)y)

P2,m (m (7)) 2,m(y)

(th2,m © thm) (2)2,m(y)
P1,m(2)P2,m(y)
(x®1)mod m- (1 ®y) mod m
= z®ymodm.



