
Math 210C. Examples of maximal compact subgroups

1. Introduction

It is a general fact (beyond the scope of this course) that if G is a Lie group with finitely
many connected components then: every compact subgroup of G is contained in a maximal
one (i.e., one not strictly contained in a larger compact subgroup), all maximal compact
subgroups K ⊂ G are G-conjugate to each other, and K meets every connected component
of G with G0 ∩ K connected and itself a maximal compact subgroup of G0. Nearly all
treatments of the story of maximal compact subgroups of Lie groups in textbooks only
address the connected case, but Hochschild’s book “Structure of Lie Groups” (see Chapter
XV, Theorem 3.1) does treat the wider case with π0(G) merely finite (possibly not trivial);
I don’t think one can deduce the case of finite π0(G) from the case of trivial π0(G). Cases
with π0(G) finite but possibly non-trivial do arise very naturally as the group of R-points of
affine group varieties over R.

In this handout, we address a few classes of examples for which such K and their conjugacy
can be verified directly. Some aspects of the technique used below actually play an essential
role in the treatment of the general case (but we don’t have time to get into that, so we refer
the interested reader to Hochschild’s book for such further details).

2. The definite cases

The basic building blocks for everything below emerge from two cases: GL(V ) for a finite-
dimensional nonzero vector space V over R and GL(W ) for a finite-dimensional nonzero
vector space W over C. We know by Gram-Schmidt that GL(V ) acts transitively on the set
of all positive-definite (non-degenerate) quadratic forms q on V (this just expresses that all
such q become “the same” in suitable linear coordinates), so the compact subgroups O(q)
of GL(V ) constitute a single conjugacy class. Likewise, GL(W ) acts transitively on the set
of all positive-definite (non-degenerate) hermitian forms h on W (this just expresses that all
such h become “the same” in suitable C-linear coordinates), so the compact subgroups U(h)
of GL(W ) constitute a single conjugacy class.

We claim that every compact subgroup of GL(V ) lies in some O(q), and every compact
subgroup of GL(W ) lies in some U(h). It is elementary to check that a compact Lie group
(so finite π0; why?) has no proper closed C∞-submanifold of the same dimension with
the same number of connected components (why not?). Hence, it would follow that the
compact subgroups O(q) ⊂ GL(V ) are all maximal and likewise for the compact subgroups
U(h) ⊂ GL(W ), since we know from HW1 that such inclusions are closed C∞-submanifolds.

Remark 2.1. As an exercise, the interested reader can then deduce similar results for SL(V )
and SL(W ) using SO(q) and SU(h) (retaining conjugacy properties because O(q) · R>0 →
GL(V )/SL(V ) and U(h) · R>0 → GL(W )/SL(W ) are surjective, where R>0 is the evident
central subgroup of such scalars in each case).

So let K be a compact subgroup of GL(V ). We seek a positive-definite q : V → R such
that K ⊂ O(q). Choose a positive-definite inner product 〈·, ·〉0 on V . We want to make a
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new one that is K-invariant by averaging. If K is a finite group then this can be done as a
genuine average: make a new bilinear form

〈v, w〉 =
1

#K

∑
k∈K

〈kv, kw〉0.

(also works if we omit the scaling factor 1/#K). This is manifestly K-invariant by design,
and positive-definite. In the more meaty case that K is not finite (but compact), one has to
use a Haar measure on K. So let us briefly digress to record the basic existence/uniqueness
results on Haar measures (which for Lie groups we will later build via differential forms).

If G is any locally compact Hausdorff group, a left Haar measure is a regular Borel measure
µ on the topological space G with the invariance property µ(gA) = µ(A) for all Borel sets
A ⊂ G and all g ∈ G. (If we use Ag then we speak of a “right Haar measure”.) For example,
if G = Rn then the Lebesgue measure is a left Haar measure. As another example, if G
is a discrete group (e.g., a finite group with the discrete topology) then counting measure
mG (i.e., mG(A) = #A ∈ Z≥0 ∪ {∞}) is a left Haar measure. The “regularity” condition
in the definition of a Haar measure is a technical property which avoids some pathologies,
and imposes in particular that µ(U) > 0 for non-empty open subsets U ⊂ G and µ(C) <∞
for compact subsets C ⊂ G. (For example, counting measure mG on any G is a translation-
invariant Borel measure but if G is non-discrete then there exist infinite compact C ⊂ G
and mG(C) =∞, so mG is not regular and thus not a Haar measure if G is non-discrete.)

The basic result about left Haar measures µ is that they exist and are unique up to an
R>0-scaling factor (and likewise for right Haar measures). For Lie groups we will construct
them using differential forms. For many interesting groups the left Haar measures are also
right Haar measures, in which case we call G unimodular. We’ll later show that compact
groups are unimodular (as are important non-compact Lie groups such as SLn(R), Sp2n(C),
and so on, but we will not need this). In case G is compact, regularity implies µ(G) is both
finite and positive, so we can scale µ by 1/µ(G) to arrive at µ satisfying µ(G) = 1. This
“normalized” property removes all scaling ambiguity and so pins down a canonical (left) Haar
measure in the compact case, denoted µG. For example, if G is finite then the normalized
(left) Haar measure is µG(A) = #A/#G; i.e., µG assigns mass 1/#G to each element of G.

Coming back to a compact subgroup K of GL(V ), we use Haar measures to prove:

Lemma 2.2. There exists a K-invariant positive-definite inner product 〈·, ·〉 on V .

Proof. Pick a positive-definite inner product 〈·, ·〉0. We will make a K-invariant one by
averaging that initial choice in the sense of integration over K against a right Haar measure
µK (which happens to also be a left Haar measure, though we don’t need that):

〈v, w〉 =

∫
K

〈kv, kw〉0 dµK .

(The integrand is a continuous function of k, so the integral makes sense and converges since
K is compact.) This new pairing is certainly bilinear and positive-definite (why?), and it
is K-invariant precisely because µK is a right Haar measure (replacing v and w with k0v
and k0w respectively for some k0 ∈ K amounts to translating the integrand through right-
translation against k0, so the right-invariance of µK ensures the integral is unaffected by this
intervention of k0). �
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Remark 2.3. The preceding argument would run into difficulties if we tried to build a K-
invariant non-degenerate symmetric bilinear form with an indefinite signature: the problem is
that the integration construction would not have positive or negative-definiteness properties,
and so we would not have a way to ensure the end result is non-degenerate (or even to control
its signature).

This K-invariant inner product 〈·, ·〉 corresponds to a K-invariant positive-definite qua-
dratic form q on V , so K ⊂ O(q). That does the job for GL(V ). In the case of GL(W ), we
can likewise build a K-invariant positive-definite hermitian form h on W (so K ⊂ U(h)) by
exactly the same K-averaging method beginning with an initial choice of positive-definite
hermitian form on W . In particular, as with definite orthogonal groups, the compact sub-
groups U(h) ⊂ GL(W ) are maximal.

As as we noted in Remark 2.1, it follows immediately from our results for GL(V ) and
GL(W ) that we get analogous results for SL(V ) and SL(W ) using SO(q) and SU(h) (with
positive-definite q on V and h on W ).

3. Indefinite orthogonal groups

Now we fix a quadratic form q : V → R with signature (r, s) with r, s > 0, so O(q) '
O(r, s) is non-compact. Let n = r + s. The technique from HW1 in the positive-definite
case adapts with only minor changes in the indefinite case to yield that O(q) is a closed
C∞-submanifold of GL(V ). Can we describe its maximal compact subgroups and see the
conjugacy of all of them by a direct method? The answer is “yes”, and the key input will
be the spectral theorem, combined with the analysis of compact subgroups inside GLm(R)
in the previous section for any m > 0 (e.g., m = r, s). First we build a conjugacy class
of compact subgroups of O(q), and then check that they are maximal and every compact
subgroup lies in one of these.

Consider a direct-sum decomposition

V = V + ⊕ V −

for which q|V + is positive-definite, q|V − is negative-definite, and V + is Bq-orthogonal to V −.
Such decompositions exist precisely by the classification of non-degenerate quadratic spaces
over R: we know that in suitable linear coordinates q becomes

∑r
j=1 x

2
j −

∑n
j=r+1 x

2
j , so we

can take V + to be the span of the first r such basis vectors and V − to be the span of the
others in that basis.

For any such decomposition, choices of orthonormal bases for the positive-definite spaces
(V +, q) and (V −,−q) give a description of q as

∑d
j=1 y

2
j −

∑n
j=d+1 y

2
j for linear coordinates

dual to the union of those two bases, with d = dimV +. Hence, d = r by the well-definedness
of signature, so dimV + = r and dimV − = n− r = s. We thereby get a compact subgroup

O(V +)×O(V −) ⊂ O(q)

that is a copy of O(r) × O(s). (Here we write O(V ±) to denote O(±q|V ±).) By using the
closed C∞-submanifold GL(V +)×GL(V −) ⊂ GL(V ) (visualized via block matrices), we see
that O(V +)×O(V −) is a closed C∞-submanifold of GL(V ) which is contained in the closed
C∞-submanifold O(q) ⊂ GL(V ), so O(V +)×O(V −) is a closed C∞-submanifold of O(q).
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We claim that these subgroups constitute a single O(q)-conjugacy class, and that these
are all maximal, with every compact subgroup of O(q) contained in one of these. First we
address conjugacy:

Lemma 3.1. If (V +, V −) and (U+, U−) are two such pairs for (V, q) then each is carried to
the other by an element of O(q).

Proof. We have isomorphisms of quadratic spaces

(V +, q|V +) ⊥ (V −, q|V −) ' (V, q) ' (U+, q|U+) ⊥ (U−, q|U−)

(where (W ′, q′) ⊥ (W ′′, q′′) means W ′⊕W ′′ equipped with the quadratic form Q(w′+w′′) =
q′(w′) + q′′(w′′); it is easy to check that W ′ and W ′′ are BQ-orthogonal with Q|W ′ = q′ and
Q|W ′′ = q′′). But (V +, q|V +) and (U+, q|U+) are positive-definite quadratic spaces with the
same dimension r, and likewise (V −,−q|V −) and (U−,−q|U−) are positive-definite quadratic
spaces with the same dimension n− r = s.

By the Gram-Schmidt process, any two positive-definite quadratic spaces over R with the
same finite dimension are isomorphic (as quadratic spaces), so there exist linear isomorphisms
T± : V ± ' U± that carry ±q|V ± over ±q|U± . Hence, the linear automorphism

V = V + ⊕ V − T+⊕T−' U+ ⊕ U− = V

preserves q (why?) and carries V ± over to U±. This is exactly an element of O(q) ⊂ GL(V )
carrying the pair (V +, V −) over to (U+, U−). �

We conclude from the Lemma that the collection of compact subgroups O(V +)×O(V −) ⊂
O(q) (that are also compact Lie groups) constitute a single O(q)-conjugacy class. Thus,
exactly as in the treatment of the definite case, considerations of dimension and finiteness
of π0 imply that such subgroups are maximal provided that we can show every compact
subgroup K ⊂ O(q) is contained in one of these.

In other words, for a given K, our task reduces to finding an ordered pair (V +, V −) as
above that is stable under the K-action on V . To achieve this, we will use the spectral
theorem over R. We first choose a K-invariant positive-definite inner product 〈·, ·〉 on V ,
as we have already seen can be done (in effect, this is just applying our knowledge about
the maximal compact subgroups of GL(V ) and that every compact subgroup of GL(V ) is
contained in one of those). Let’s use this inner product to identify V with its own dual. For
our indefinite non-degenerate quadratic form q : V → R, consider the associated symmetric
bilinear form Bq : V × V → R that is a perfect pairing (by non-degeneracy of q). This gives
rise to a linear isomorphism Tq : V ' V ∗ via v 7→ Bq(v, ·) = Bq(·, v) which is self-dual (i.e.,
equal to its own dual map via double-duality on V ) due to the symmetry of Bq.

Composing Tq with the self-duality ι : V ∗ ' V defined by the choice of 〈·, ·〉, we get a
composite linear isomorphism

f : V
Tq' V ∗ ' V ;

explicitly, f(v) is the unique element of V such that Bq(v, ·) = 〈f(v), ·〉 in V ∗. The crucial
observation is that f is self-adjoint with respect to 〈·, ·〉 (i.e., f is self-dual relative to ι); this
is left to the interested reader to check as an exercise (do check it!). Thus, by the spectral
theorem, f is diagonalizable. The eigenvalues of f are nonzero since f is an isomorphism.
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(Typically f will have very few eigenvalues, with multiplicity that is large.) But 〈·, ·〉 is
K-invariant by design, and Bq is K-invariant since K ⊂ O(q), so f commutes with the
K-action (i.e., k.f(v) = f(k.v) for all k ∈ K and v ∈ V ). Hence, K must preserve each
eigenspace of f . For v in the eigenspace Vλ for a given eigenvalue λ of f , we have

2q(v) = Bq(v, v) = 〈f(v), v〉 = 〈λv, v〉 = λ〈v, v, 〉 = λ||v||2

where || · || is the norm associated to the positive-definite 〈·, ·〉. Hence, q|Vλ is definite with
sign equal to that of λ.

If V + denotes the span of the eigenspaces for the positive eigenvalues of f and V − denotes
the span of the eigenspaces for the negative eigenvalues of f then q|V ± is definite with sign
±, each of V ± are K-stable, and V +⊕ V − = V . Hence, (V +, V −) is exactly an ordered pair
of the desired type which is K-stable!

It follows similarly to the cases of SL(V ) that for indefinite q on V with signature (r, s)
that SO(q) has as its maximal compact subgroups exactly the disconnected compact groups

{(g, g′) ∈ O(V +)×O(V −)) | det(g) = det(g′)} ' {(T, T ′) ∈ O(r)×O(s) | det(T ) = det(T ′)}
(and that every compact subgroup of SO(q) lies in one of these).

4. Indefinite unitary groups

Now we consider a complex vector space W with positive finite dimension n and an
indefinite non-degenerate hermitian form h on W of type (r, s) with 0 < r < n and s = n−r.
As in the indefinite orthogonal case, the technique from HW1 for positive-definite hermitian
forms adapts to show that U(h) is a closed C∞-submanifold of GL(W ).

Inside U(h) there are compact subgroups U(W+) × U(W−) ' U(r) × U(s) for W± ⊂ W
complementary subspaces on which h is definite with sign ± and that are h-orthogonal to
each other. Similarly to the orthogonal case, these are closed C∞-submanifolds of U(h)
and necessarily dimCW

+ = r and dimCW
− = s with orthonormal bases of (W±,±h|W±)

yielding a description of h as

h(w,w′) =
n∑
j=1

εjwjw
′
j

where εj = 1 for 1 ≤ j ≤ r and εj = −1 for r + 1 ≤ j ≤ n.
An argument similar to the orthogonal case shows that U(h) acts transitively on the set of

such ordered pairs (W+,W−) (using there is only one isomorphism class of positive-definite
hermitian spaces of a given finite dimension). The spectral theorem for self-adjoint operators
over C (rather than over R) then enables us to adapt the technique in the orthogonal case
(exerting some extra attention to the intervention of conjugate-linearity) to deduce that any
compact subgroup K ⊂ U(h) is contained in U(W+) × U(W−) for some such ordered pair
(W+,W−). We have directly proved the expected results for compact and maximal compact
subgroups of U(h) in the indefinite case akin to the case of orthogonal groups.

It follows similarly to the case of SL(W ) that for indefinite h on W with type (r, s) that
SU(h) has as its maximal compact subgroups exactly the connected compact groups

{(g, g′) ∈ U(W+)×O(W−)) | det(g) = det(g′)} ' {(T, T ′) ∈ U(r)×U(s) | det(T ) = det(T ′)}
(and that every compact subgroup of SU(h) lies in one of these).


