MATH 396. PARACOMPACTNESS AND LOCAL COMPACTNESS

1. MOTIVATION

There is an extraordinarily useful weaking of compactness that is satisfied by virtually all “nice”
topological spaces that arise in geometry and analysis. To get started, consider R™ with its usual
topology. This is not compact, but if {U;} is an open cover then we can “refine” it in a manner
that still retains finiteness properties locally on the space. More specifically, for each x € R"™ we
can pick an open ball B, (r) contained in some Uj(,) with 7, < 1. For each integer NV > 0 finitely
many of the balls B, (x) cover the compact set By (0) — By_1(0), say B, (71),..., By, (zm), so
we may write {V} v} to denote these finitely many opens (with j running through a finite range
that depends on N and the U;’s).

As we vary j and N, the V; n’s certainly cover the whole space R™ (even the origin), and this
covering “refines” {U;} in the sense that every V; y lies in some U; (though many U;’s could fail to
contain any Vj y’s), and one more property holds: the collection {V; n} is locally finite in the sense
that any point € R™ has a neighborhood meeting only finitely many V; x’s. Indeed, since V; y is
a ball of radius at most 1 and it touches By (0) — By_1(0), by elementary considerations with the
triangle inequality we see that a bounded region of R™ meets only finitely many V; x’s. Thus, we
have refined {U;} to an open covering that is “locally finite”; this is weaker than compactness, but
often adequate for many purposes. It is this feature of R™ that we seek to generalize.

2. DEFINITIONS

Let X be a topological space.
Definition 2.1. The space X is locally compact if each x € X admits a compact neighborhood N.

If X is locally compact and Hausdorff, then all compact sets in X are closed and hence if N is a
compact neighborhood of = then N contains the closure the open int(/N) around x. Hence, in such
cases every point z € X lies in an open whose closure is compact. Much more can be said about
the local structure of locally compact Hausdorff spaces, though it requires some serious theorems
in topology (such as Urysohn’s lemma) which, while covered in basic topology books, are too much
of a digression for us and are not necessary for our purposes. We record one interesting aspect of
locally compact spaces:

Lemma 2.2. If X is a locally compact Hausdorff space that is second countable, then it admits a
countable base of opens {U,} with compact closure.

Proof. Let {V,,} be a countable base of opens. For each x € X there exists an open U, around x
with compact closure, yet some V,,,) contains  and is contained in U,. The closure of V) is
a closed subset of the compact U,, and so Vn(x) is also compact. Thus, the V,,’s with compact
closure are a countable base of opens with compact closure. |

Definition 2.3. An open covering {U;} of X refines an open covering {V;} of X if each U; is
contained in some (perhaps many) V.

A simple example of a refinement is a subcover, but refinements allow much greate flexibility:
none of the U;’s needs to be a V. For example, the covering of a metric space by open balls of radius
1 is refined by the covering by open balls of radius 1/2. We are interested in special refinements:

Definition 2.4. An open covering {U;} of X is locally finite if every x € X admits a neighborhood
N such that N NU; is empty for all but finitely many .
1



For example, the covering of R by open intervals (n—1,n+ 1) for n € Z is locally finite, whereas
the covering of (—1,1) by intervals (—1/n,1/n) (for n > 1) barely fails to be locally finite: there is
a problem at the origin (but nowhere else).

Definition 2.5. A topological space X is paracompact if every open coverings admits a locally finite
refinement. (It is traditional to also require paracompact spaces to be Hausdorff, as paracompact-
ness is never used away from the Hausdorff setting, in contrast with compactness — though many
mathematicians implicity require compact spaces to be Hausdorff too and they reserve a separate
word (quasi-compact) for compactness without the assumption of the Hausdorff condition.)

Obviously any compact space is paracompact (as every open cover admits a finite subcover, let
alone a locally finite refinement). Also, an arbitrary disjoint union [[X; of paracompact spaces
(given the topology wherein an open set is one that meets each X; is an open subset) is again
paracompact. Note that it is not the case that open covers of a paracompact space admit locally
finite subcovers, but rather just locally finite refinements. Indeed, we saw at the outset that R™ is
paracompact, but even in the real line there exist open covers with no locally finite subcover: let
U, = (—oo,n) for n > 1. All U,,’s contain (—o0,0), and any subcollection of U,,’s that covers R
has to be infinite since each U, is “bounded on the right”. Thus, no subcover can be locally finite
near a negative number.

In general, paracompactness is a slightly tricky property: there are counterexamples that show
that an open subset of a paracompact Hausdorff space need not be paracompact. Thus, to prove
that an open subset of R" is paracompact we will have to use special features of R"™. However,
just as closed subsets of compact sets are compact, closed subsets of paracompact spaces are
paracompact; the argument is virtually the same as in the compact case (extend covers by using
the complement of the closed set), so we leave the details to the reader. It is a non-trivial theorem
in topology that any metric space is paracompact! This can be found in any introductory topology
book, but we will not need it. Our interest in paracompact spaces is due to:

Theorem 2.6. Any second countable Hausdorff space X that is locally compact is paracompact.

Proof. Let {V,,} be a countable base of opens in X. Let {U;} be an open cover of X for which we
seek a locally finite refinement. Each x € X lies in some U; and so there exists a V,,(,) containing
r with V;, ;) € Ui. The V,,)’s therefore consistute a refinement of {U;} that is countable. Since
the property of one open covering refining another is transitive, we therefore lose no generality by
seeking locally finite refinements of countable covers. We can do better: by Lemma 2.2, we can
assume that all V,, are compact. Hence, we can restrict our attention to countable covers by opens
U, for which U, is compact. Since closure commutes with finite unions, by replacing U,, with
Uj<nU; we preserve the compactness condition (as a finite union of compact subsets is compact)
and so we can assume that {U,} is an increasing collection of opens with compact closure (with
n > 0). Since U, is compact yet is covered by the open U;’s, for sufficiently large N we have
Uy. If we recursively replace U,y with such a Uy for each n, then we can arrange that
Upy1 for each n. Let Ko = Ug and forn > 11let K, =U, —U,_1 =U, N (X —U,_1), s0
K, is compact for every n (as it is closed in the compact Un) but for any fixed N we see that Uy
is disjoint from K, for all n > N.

Now we have a situation similar to the concentric shells in our earlier proof of paracompactness
of R™, and so we can carry over the argument from Euclidean spaces as follows. We seek a locally
finite refinement of {U,}. For n > 2 the open set W,, = U,41 — U,_o contains K, so for each
r € K, there exists some V,,, C W,, around x. There are finitely many such V,,’s that actually
cover the compact K,,, and the collection of V,,,’s that arise in this way as we vary n > 2 is clearly
a locally finite collection of opens in X whose union contains X — Ug. Throwing in finitely many
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Vi’s contained in Uy that cover the compact U thereby gives an open cover of X that refines {U;}
and is locally finite. |

In the definition of a topological manifold, we imposed the condition of second countability (in
addition to the Hausdorff condition) on top of the condition of being a topological premanifold.
Since the connected components of a topological premanifold are open, second countability is equiv-
alent to two conditions: countability of the set of connected components and second countability
of each connected component (here we use countability of a countable union of countable sets).
Requiring that there be at most countably many connected components is a very mild condition
in practice (one never encounters natural examples that violate it), and our motivation for insist-
ing upon it is purely technical: in a later important theorem (Frobenius Integrability Theorem) it
will be necessary to require this property (essentially to rule out the possibility of an uncountable
disjoint union of points with the discrete topology). More specifically, the result that is guaranteed
(as will be seen later) by having at most countably many connected components is that a bijec-
tive C°°-map between C*°-manifolds whose “derivative” is injective must have C*° (and especially,
continuous!) inverse. Aside from the countability aspect of the set of connected components, the
following corollary shows that the second countability in the definition of a manifold could have
been replaced with other conditions, particularly paracompactness, and we would have obtained
an equivalent concept:

Corollary 2.7. Let X be a Hausdorff topological premanifold. The following properties of X are
equivalent: its connected components are countable unions of compact sets, its connected components
are second countable, and it is paracompact.

Proof. If {U,V'} is a separation of X and X is paracompact then it is clear that both U and V
are paracompact. Hence, since the connected components of X are open, X is paracompact if
and only if its connected components are paracompact. We may therefore restrict our attention to
connected X. For such X, we claim that it is equivalent to require that X be a countable union of
compact sets, that X be second countable, and that X be paracompact. By the preceding theorem,
if X is second countable then it is paracompact. By the self-contained first Lemma in Appendix
A of the text, since X is connected, Hausdorff, and locally compact, if it is paracompact then it is
a countable union of compacts. Hence, to complete the cycle of implications it remains to check
that if X is a countable union of compacts then it is second countable. Let {K,} be a countable
collection of compacts that cover X, so if {U;} is a covering of X by open sets homeomorphic to
an open set in a Euclidean space we may find finitely many U;’s that cover each K,. As there
are only countably many K,,’s, in this way we find countably many U;’s that cover X. Since each
U; is certainly second countable (being open in a Euclidean space), a countable base of opens for
X is given by the union of countable bases of opens for each of the U;’s. Hence, X is second
countable. |

We conclude by commenting on the metrizability of topological manifolds. It follows from Exer-
cise 1 in Chapter 3 that such spaces are automatically metrizable, but we will not need this result;
nonetheless, it shows a priori that the framework of the course text (where manifolds are assumed
to be metrizable, even though such a hypothesis is never really needed in the foundations and the
choice of a metric is completely artificial) is equivalent to the framework we use (aside from the fact
that we require manifolds to have at most countably many connected components, for technical
reasons to be explained later).



