
Math 396. Stokes’ theorem with corners

1. Motivation

The version of Stokes’ theorem that has been proved in the course has been for oriented manifolds
with boundary. However, the theory of integration of top-degree differential forms has been defined
for oriented manifolds with corners. In general, if M is a manifold with corners then ∂M is not
a manifold with corners. For example, if M = [0, 1]3 is the unit solid cube in R3 then ∂M is
problematic at the vertices. Nonetheless, in our early development of the theory of manifolds with
corners we saw how to naturally stratify M into locally closed subsets Mr consisting of points whose
index of singularity is r (with index r at a point meaning that the point has a neighborhood that is
isomorphic to a neighborhood of the origin in [0,∞)r ×Rn for some n ≥ 0). In particular, we saw
that the locus M≤r of points with index ≤ r is an open subset of M that is naturally a manifold
with corners.

As a special case, M≤1 is a manifold with boundary. For example, if M is a polygonal region in
the plane then ∂M is the boundary polygon that is not a manifold with corners (since a 1-manifold
with corners has to be a 1-manifold with boundary), but M≤1 is the complement of the vertices
and its boundary is the union of open boundary segments of the polygon with the vertices deleted.
Hence, by working with M≤1 we are led to formulate a natural version of Stokes’ theorem in the
setting of manifolds with corners:

Theorem 1.1. Let (M,µ) be an oriented manifold with corners and with constant dimension
n ≥ 1. Choose a compactly supported ω ∈ Ωn−1

M (M), and give ∂(M≤1) the induced orientation ∂µ
as the boundary of the manifold-with-boundary M≤1. The (n − 1)-form ω is absolutely integrable
on ∂(M≤1) and

∫
M,µ dω =

∫
∂(M≤1),∂µ ω.

The hypothesis of compact support for ω on M is inherited by dω, so dω is absolutely integrable
over M . However, the pullback of ω to ∂(M≤1) is generally not compactly supported, and so the
absolutely integrability of this (n−1)-form over ∂(M≤1) has content. (As an example, if M = [0, 1]2

is the unit square then ∂(M≤1) is the non-compact union of the four open edges with endpoints
deleted. A 1-form f(x, y)dx pulled back to ∂(M≤1) generally does not have compact support.)
The preceding theorem, which one may call “Stokes’ theorem with corners”, is used all the time
in practice without hesitation. For example, one computes an integral over an oriented polygonal
planar region as an integral over the oriented bounding polygon (with vertices deleted).

Since the locus M≥2 of points with index ≥ 2 is a closed set of measure zero in ∂M , it is
immaterial for the calculation of integrals (in the sense discussed in the handout on integration over
manifolds) how we treat M≥2 for computational purposes. It is reasonable to ask if there is a Stokes’
theorem on more singular spaces, such as cones or general algebraic sets (zero loci of multivariable
polynomials) in Euclidean space. One can partially axiomatize exactly what properties are required
to push through the method of proof, but in practice one usually just adapts the argument to the
case at hand via a suitable limit process. We will say nothing further here on formulation of Stokes’
theorem beyond the context of manifolds with corners. In the next section, we explain how to prove
Theorem 1.1 by copying the proof in the case of manifolds with boundary.

2. Proof of Theorem 1.1

The main problem in the proof of Theorem 1.1 is that we have to also verify the absolute
integrability of ω over ∂(M≤1) during the proof. Other than this issue, the method of proof will be
rather much the same as in the case of manifolds with boundary.
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Let {Ui} be a locally finite open covering by connected coordinate charts and let {φi} be a
subordinate partition of unity with compact supports. The boundaries ∂((Ui)≤1) are a locally fi-
nite open covering for ∂(M≤1) and {φi|∂((Ui)≤1)} is a subordinate partition of unity with generally
non-compact supports (since ∂(M≤1) is generally not closed in ∂M , except when M is a manifold
with boundary). However, we know from the earlier handout on integration over manifolds that
ω is absolutely integrable over ∂(M≤1) if and only if each ωi = (φiω)|∂((Ui)≤1) is absolutely inte-
grable over ∂((Ui)≤1) ((or equivalently, over ∂(M≤1)) with

∑
i

∫
∂((Ui)≤1) |ωi| < ∞, in which case∑

i

∫
∂((Ui)≤1),∂µ ωi is absolutely convergent and equal to

∫
∂(M≤1),∂µ ω.

Let us suppose that Theorem 1.1 is known for the Ui’s, so since φiω is compactly supported in
Ui (with support contained in the compact support of φi) it follows from our assumption of the
theorem for Ui that φiω has absolutely integrable pullback over ∂((Ui)≤1) with∫

∂((Ui)≤1),∂µ
φiω =

∫
Ui,µ

d(φiω) =
∫

M,µ
d(φiω).

Since the support of ω is compact in M , it meets only finitely many Ui’s. Hence, φiω vanishes
for all but finitely many i. For each i we know that φiω over ∂(M≤1) is supported inside of the
open subset ∂((Ui)≤1), so absolute integrability over this open subset is equivalent to absolute
integrability over ∂(M≤1). We conclude that φiω is absolutely integrable over ∂(M≤1) for all i.
Adding this up over the finitely many i such that φiω is not identically zero on M , it follows that
the finite sum

∑
φiω = ω has absolutely integrable pullback over ∂(M≤1) and that∫

∂(M≤1),∂µ
ω =

∫
∂(M≤1),∂µ

∑
i

φiω =
∑

i

∫
∂(M≤1),∂µ

φiω =
∑

i

∫
∂((Ui)≤1),∂µ

φiω,

where we suppress the “pullback” notation and we note that all but finitely many terms in each
sum is equal to 0.

By the assumption that Theorem 1.1 is known for the Ui’s, we may rewrite our formula as∫
∂(M≤1),∂µ

ω =
∑

i

∫
Ui,µ

d(φiω) =
∑

i

∫
Ui,µ

(dφi ∧ ω + φidω) =
∑

i

∫
M,µ

dφi ∧ ω +
∑

i

∫
M,µ

φidω

since φidω and dφi ∧ ω vanish for all but finitely many i and are compactly supported in Ui.
The final sum is

∫
M,µ dω, so it remains to prove that the sum of the

∫
M,µ dφi ∧ ω’s is equal to

0. This goes exactly as in the proof of the usual Stokes’ theorem, namely using the equality of
the finite sum

∑
i(dφi ∧ ω) with the wedge product (

∑
i dφi) ∧ ω against the locally finite sum∑

i dφi = d(
∑

i φi) = d(1) = 0. Hence, we get the desired result over M when it is assumed to hold
over the Ui’s.

We have now reduced the problem to the case when M is a connected open subset U in a standard
sector Σ = [0,∞)r ×Rn−r in Rn for some 0 ≤ r ≤ n, and since ω has compact support in U we
can use “extension by zero” to consider it as a compactly supported form on Σ. By connectivity
of U , ±µ are the only two orientations on U . Hence, replacing µ with −µ if necessary allows us
to assume that the orientation on U is the standard one arising from how it sits as an open in a
sector in Rn. Since ∂(M≤1) = ∂(Σ≤1) ∩M , it follows that we may replace U with Σ exactly like
in our earlier proof of Stokes’ theorem for manifolds with boundary.

The boundary ∂(Σ≤1) is covered by the disjoint open loci

∂Σi = (0,∞)i−1 × {0} × (0,∞)r−i ×Rn−r

for 1 ≤ i ≤ r in ∂Σ, so from the handout on integration over manifolds we have that ω is absolutely
integrable over ∂(Σ≤1) if and only if it is absolutely integrable over each ∂Σi (with 1 ≤ i ≤ r)
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that that in such cases
∫
∂(Σ≤1),∂µ ω =

∑
i

∫
∂Σi,∂µ ω. Hence, our goal is to show that ω is absolutely

integrable over ∂Σi for 1 ≤ i ≤ r and that
r∑

i=1

∫
∂Σi,∂µ

ω =
∫

Σ,µ
dω

where µ is the standard orientation arising from Rn. We may uniquely write

ω =
n∑

j=1

fjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

with each fj a smooth compactly supported function on Σ, so dω =
∑n

i=1(−1)j−1∂xjfjdx1∧· · ·∧dxn

and hence ∫
Σ,µ

dω =
∫

[0,∞)r×Rn−r

n∑
i=1

∂xjfj .

The only term in

ω|∂Σi
=

n∑
j=1

fj |∂Σi
d(x1|∂Σi

) ∧ · · · ∧ ̂d(xj |∂Σi
) ∧ . . .d(xn|∂Σi

)

that does not necessarily vanish is for j = i (since xi|∂Σi
is constant), and the sign of the coordinate

system {x1|∂Σi
, . . . , xi−1|∂Σi

, xi+1|∂Σi
, . . . , xn|∂Σi

} with respect to the boundary orientation on the
open locus ∂Σi in ∂(Σ≤1) is (−1)n times the sign (−1)n−i of the orientation of the coordinate system
{x1, . . . , xi−1, xi+1, . . . , xn, xi} with respect to the orientation µ on Σ arising from the standard
orientation (i.e., trivialization of tangent bundle) on Rn. This combines to give a sign of (−1)i, so

r∑
i=1

∫
∂Σi,∂µ

ω =
r∑

i=1

∫
(0,∞)i−1×(0,∞)r−i×Rn−r

(−1)ifi(x1, . . . , xi−1, 0, xi+1, . . . , xn).

For f ∈ C∞([0,∞)r ×Rn−r) with compact support we need that
∫
[0,∞)r×Rn−r(−1)i−1∂xif = 0

if i > r and that∫
[0,∞)r×Rn−r

(−1)i−1∂xif = (−1)i

∫
(0,∞)i−1×(0,∞)r−i×Rn−r

f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

otherwise. For i > r, we use Fubini’s theorem to compute the integral over [0,∞)r×Rn−r (or really
just over a big compact box containing the support of f) as an interated integral with innermost
integration taken over xi-lines with all other coordinates held fixed. Since i > r, these inner
integrals are instances of the integral

∫∞
−∞ h′(t)dt with h ∈ C∞(R) a compactly supported smooth

function. Such integrals vanish, by the Fundamental Theorem of Calculus.
For 1 ≤ i ≤ r, our problem is to prove∫

[0,∞)r×Rn−r

∂xif = −
∫

(0,∞)i−1×(0,∞)r−i×Rn−r

f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

We may replace [0,∞)r with (0,∞)r on the left side since [0,∞)r × Rn−r has boundary that is
a closed set of measure zero in Rn. Using Fubini’s theorem to shift the integration over the ith
coordinate to the inside, it remains to note that (by the Fundamental Theorem of Calculus)∫

(0,∞)
(∂xif)(c1, . . . , ci−1, t, ci+1, . . . , cn) = −f(c1, . . . , ci−1, 0, ci+1, . . . , cn)

for c1, . . . , ci−1, ci+1, . . . , cr > 0 and cr+1, . . . , cn ∈ R.


