
The Triumph of Types: Creating a Logic of
Computational Reality

Robert L. Constable
Cornell University

Abstract

Type theory plays an essential role in computing and information science. It is the
native language of several industrial strength interactive theorem provers including
Coq, HOL, Isabelle, MetaPRL, Nuprl, PVS, and Twelf. These provers are used for
building correct by construction software and for creating formalized mathematical
theories whose logical correctness is assured to the highest standards of certainty ever
achieved. Interactive provers have also been used to solve open mathematical prob-
lems, e.g. definitively proving the Four Color Theorem, finding constructive proofs
of Higman’s Lemma and Kruskal’s Theorem, and explaining the Girard paradox. The
accumulation of large libraries of formalized mathematical knowledge using provers has
led to the field of mathematical knowledge management. Constructive type theories for
constructive and intuitionistic mathematics serve as practical programming languages,
a connection imagined forty years ago yet only recently realized.

These intellectual contributions are matched by an elegant computing and information
technology that integrates programming languages, interactive provers, model check-
ers, and databases of formal knowledge. I believe that this integrated technology is
rapidly moving toward a singularity which will provide tools for thought to accelerate
scientific research and enrich education in ways computer scientists have only imagined
in our “wildest dreams.” The deep practical integration of computing and logic seen for
the first time in this research has made us aware in detail that there is a logical reality
to computation. This article will elaborate on that idea and its historical development.

The article also examines some design issues that have shaped modern implemented
type theories starting with the influence of Russell and Whitehead’s Principia Mathe-
matica and the seminal writings of L.E.J. Brouwer on the intuitionistic foundations of
mathematics. Interestingly, the proof assistants advance daily the goal for which Prin-
cipia was designed: to provide a comprehensive formalization of mathematics. Less
expected is the gradual validation of many of Brouwer’s insights and their realization
in the implemented type theories.

1

1 Introduction

1.1 Historical Background

Principia Mathematica (PM) of Whitehead and Russell [79] is a monumental work on sev-
eral accounts.1 It proposes to reduce classical mathematics to pure logic. It represents a
prodigious single-minded effort by authors of exceptional stature in philosophy as well as
mathematics. It exerted an influence on science and the philosophy of knowledge not fore-
seen at the time of its publication whose ramifications remain surprising and far reaching, as
in mathematics knowledge management. It spawned an extensive investigation of type the-
ories by many outstanding mathematicians, logicians, computer scientists, and information
scientists that continues to this day.

There is an excellent account of the early history of type theory in the book Foundations
of Set Theory [28]. An account up to 1940 can be found in [47], and a more up to date
perspective can be found in the book A Modern Perspective on Type Theory: From its
Origins until Today [48]. One may consider 1940 to be another important date in the
history of type theory since it was during that year that Church, one of the key players who
studied type theory in depth, produced his Simple Type Theory [16] which is essentially the
logical basis of the interactive theorem prover HOL [34, 38, 65, 39], today one of the most
widely used proof assistants. Church’s Simple Type Theory has played an influential role in
subsequent formalizations and extensions of type theory, largely because Church considered
a foundational theory based on functions [15] instead of sets, and this work gave rise to the
lambda calculus [6] and the typed lambda calculus [7], fundamental formalisms of computer
science used in providing the semantics of programming languages and the computation
systems of functional programming languages and proof assistants.

1.2 Types in logic and mathematics

The research of Frege [29, 26], Russell [70, 69, 79] and Whitehead [79] concerned the design
of a logical foundation for mathematics free from the known paradoxes and able to support
an extremely detailed comprehensive treatment of mathematics in a precise axiomatic logical
language. PM was created in that context, intended to be safe enough to avoid paradox
and rich enough to express all of the concepts of modern pure mathematics of its time in a
language its authors regarded as pure logic.

For Russell and Whitehead, type theory was not introduced because it was interesting
on its own, but because it served as a tool to make logic and mathematics safe. According

1Principia Mathematica of Whitehead and Russell [79] runs to one thousand nine hundred and seven
pages in three volumes, much of it written in symbolic logic. Volume I was published in 1910, and all
three volumes are still available newly printed. It provides a systematic detailed development of topics in
mathematics expressed in a rigorous (yet not completely formal) symbolic logic. It is a challenging book to
read because of its length, notation, and conceptual novelty. My copy is the ninth impression of the 1927
second edition. The jacket asserts ”No other book has had such an influence on the subsequent history of
mathematical philosophy.”

2

to Principia Mathematica page 37: Type theory “only recommended itself to us in the first
instance by its ability to solve certain contradictions. ... it has also a certain consonance with
common sense which makes it inherently credible”. This common sense idea was captured
in Russell’s definition of a type in his Principles of Mathematics, Appendix B The Doctrine
of Types [70] where he says “Every propositional function φ(x) – so it is contended – has,
in addition to its range of truth, a range of significance, i.e. a range within which x must
lie if φ(x) is to be a proposition at all,....” It is interesting that later in computer science,
types are used precisely in this sense: to define the range of significance of functions in
programming languages.

According to PM, statements of pure mathematics are inferences of pure logic. All com-
mitments to “reality” (Platonic or physical) such as claims about infinite totalities (infinite
classes), the interpretation of implication as a relation, the existence of Euclidean space, etc.
were taken as hypotheses. At the time of PM it appeared that there would emerge settled
agreement about the nature of pure inferences and their axiomatization. That was not to
be.

1.3 Computation in logic and mathematics

At the very time that Russell was working on the design of his theory of types [70], say
1907-1908, another conception of logic was born in the mind of L.E.J. Brouwer [41, 77]
circa 1907, a conception that would depart radically from the vision of Frege and Russell,
just as they departed from Aristotle. By the early 1930’s a mature expression of this new
semantics emerged from the work of Brouwer, Heyting, and Kolmogorov; it is now called the
BHK semantics for intuitionistic versions of formalisms originally developed based on truth-
functional semantics. BKH semantics is also called the propositions-as-types principle.2 By
1945 Kleene captured this semantics for first-order logic and Peano arithmetic in his notion of
recursive realizability based on general recursive functions [50]. By 1968, a formal version of a
comprehensive theory of types based on the propositions as types principle was implemented
in the Automath theories of de Bruijn and his colleagues [25, 63]. Unlike Kleene’s work, these
theories did not take advantage of the computational interpretation of the logical primitives
made possible by BHK, instead treating them formally as rules in the style of PM. Influenced
by Automath, Scott [71] built on the computational interpretation of propositions as types
using the lambda calculus in his 1970 sketch of a constructive type theory, a precursor to
the type theories of Per Martin-Löf.

1.4 The role of functions and analysis

I think it is fair to say that Frege, Russell, and Brouwer all agreed by 1907 that the notion of
function is central to mathematics and logic, as in propositional function – though Brouwer

2Some computer scientists call this fundamental principle the “Curry-Howard isomorphism” even though
it was not discovered first by either Curry or Howard and is not an isomorphism; however, Kleene, Curry, and
Howard, stressed formal aspects of the principle. Recent accounts of this principle mention the contributions
of twenty three logicians and computer scientists to its current formulation [74].

3

was not interested in logic per se. The key difference was that for Brouwer a function is a
mental construction and thus computable. For Frege and Russell a function is an abstract
logical notion made clear in the axioms and principles of logic. So Brouwer provided an
irreducible intuitive semantics while Frege, Russell, and de Bruijn provided axioms and
inference rules. Perhaps if Frege had developed his notion of the sense of a proposition more
completely, some version of construction might have emerged.

The concept of a function was also critical in the development of computer science both
in theoretical and applied work. By the 1960’s computer scientists were trying to gain intel-
lectual control over the process of programming and the design of programming languages
that would better support that process. The notion of function was central to languages
like Lisp [57] and to the topic that became a separate subfield, functional programming pro-
ducing languages such as Haskell, ML and others. In the case of functional programming,
the semantics was clearer than for programs with state and concurrent control. Moreover,
the notion of type provided a basis for both a precise semantics and elegant programming
logics. It was in this context that computer scientists and logicians created the type theories
that are deeply connected to Principia Mathematica and serve now as comprehensive logical
accounts of computing, computational mathematics, and programming logics.

As an illustration of the design issues, I will discuss later our efforts at Cornell to create
one such type theory, Computational Type Theory (CTT) [19], very closely related to two
others, the Calculus of Inductive Constructions (CIC) [24, 11] implemented in the Coq prover
[11] and widely used, and Intuitionistic Type Theory (ITT) [54, 55] implemented in the Alf
and Agda provers. All three of these efforts, but especially CTT and ITT, were strongly
influenced by Principia and the work of Bishop [12, 13] presented in his book Foundations
of Constructive Analysis [12].

1.5 Broadening the scope of computation

Brouwer’s computational interpretation of mathematical concepts led to several new funda-
mental ideas such as choice sequences, bar induction, the Fan Theorem, Brouwer ordinals,
and the Continuity Principle. Some of these notions, such as the Fan Theorem plus Conti-
nuity, led to results that contradicted classical analysis, such as the result that all functions
from reals to reals are uniformly continuous. And Brouwer is famous for his rejection of cer-
tain classical logical laws such as excluded middle, P∨ ∼ P . Kleene and Vesley formalized
intuitionistic mathematics in their book The Foundations of Intuitionistic Mathematics [49],
and their insights eventually led to a much clearer understanding of these new concepts and
enabled the integration of Brouwer’s ideas into modern computational type theories. This
process of understanding and integrating Brouwer’s insights into modern type theories and
into mainstream mathematics continues to this day [76, 78].

Bishop believed that Brouwer had articulated a core truth about mathematics but that
he pushed his views too far ahead for contemporary understanding and focused too much on
attacking “classical” methods; in so doing Brouwer eventually alienated colleagues unneces-
sarily. Bishop showed by example that constructivizing the standard notions of mathematics
allowed him to develop a very large part of analysis in such a way that it is computationally

4

meaningful and yet readable as ordinary analysis. All of Bishop’s informal theorems are
readable as mainstream (“classical”) mathematics, and yet all have computational mean-
ing, and indeed in most cases “numerical meaning” [13]. The success of Bishop’s program
posed a major challenge to logicians: to formalize the theory and logical language he used as
Kleene did for Brouwer’s ideas. Bishop’s logic appeared to involve a constructive set theory,
where sets carried their own equality relation. So considerable effort was spent in trying to
find the right formulation. One of the contenders was the type theory, ITT, formulated by
Martin-Löf in which types came equipped with a notion of equality specific to the objects
of the type, another was intuitionistic set theory IZF [62, 30]. Martin-Löf’s work focused
attention on the role of equality in type theory and led to the idea of quotient types in Nuprl
[19] and to a deep understanding of computational equality [45].

1.6 Types in programming

The notion of type is a central organizing concept in the design of programming languages,
both to define the data types and also to determine the range of significance of procedures
and functions.3 Types feature critically in reasoning about programs as Hoare noted in his
fundamental paper on data types [43]. The role of types in programming languages is evi-
dent in Algol 60 [80] and its successors such as Pascal and Algol 68 (where types were called
modes). One of the most notable modern examples is the language ML, standing for Meta-
Language, designed by Milner as an integral part of the Edinburgh LCF mechanized Logic
for Computable Functions [35, 72]. This ML programming language with its remarkably
effective type inference algorithm and its recursive data types is widely taught in computer
science. It also provides the metalanguage for several of the major interactive proof assis-
tants in service today, such as Agda [14], Coq [11], HOL [34], Isabelle [65], MetaPRL [42],
Nuprl [19], and Twelfth [67].

Type systems also play an important role in understanding program termination. For
example, in some formalizations of type theory [7], a typed term A must be strongly nor-
malizing, that is, it reduces to a value regardless of the order of reducing subterms. Some
modern types, such as intersection, were introduced for the purpose of characterizing strong
normalization.

1.7 Types in programming logics and computer-assisted reasoning

It is also the case that the subject of automated reasoning got its start with attempts of
Newell, Shaw, and Simon to automatically prove elementary theorems of Principia using
their Logic Theorist [64] program – another contribution to computer science which like that
of Hoare, Milner, and Scott was recognized by its highest honor, the Turing Award.

In the early 1980’s my colleagues and I in the PRL group designed Computational Type
Theory (CTT) and implemented it as the native logic of the Nuprl (“new pearl”) interactive

3This use matches Russell’s definition of a type as the range of significance of a propositional function.

5

theorem prover [19] and later in MetaPRL [42] as well.4 The theory CTT considerably
extended Per Martin-Löf’s Intuitionistic Type Theory (ITT) [54, 55, 56] adding set types,
quotient types, recursive types, partial object types (bar types) and others in the 90’s (see
[3]), and it employed his novel semantic method.5 This theory also realized a dream since at
least 1971 [18] to create a formal theory of constructive mathematics that is a combination
programming language and logic.6

During the CTT design process we also studied Principia Mathematica (PM) in some
detail – acquiring a copy of the entire three volume second printing and reading widely
about it and drawing inspiration from it. Like Martin-Löf we concluded that the notion
of orders from Principia was a clean way to avoid the known paradoxes associated with
overly inclusive collections and to include “large objects” like categories. We found Russell’s
argument in Principia Volume I that there could not be a single type of all propositions
completely compelling.

The PRL group built the Nuprl interactive theorem prover in 1984 as an extension of
λ-PRL which used the tactic mechanism of Milner’s Edinburgh LCF ; LCF is a formalization
of Scott’s theory of computing with partial recursive functions [72]. Nuprl-5 is in use today,
implementing a significant extension [4] of the 1984 theory based on the work of over twenty
Cornell PhD students as well as a number of students and researchers elsewhere, including
from Bundy’s automated reasoning group at Edinburgh University. The work of Joseph L.
Bates, who co-led the initial effort with the author, had a major impact on the design [8, 9].

Nuprl and its type theory CTT have contributed over the years several ideas that have
influenced modern implemented type theories and their applications in both mathematics
and computer science. It is the realization of our vision from 1971 [18] that formal systems
of constructive mathematics can be efficient programming languages. Here I will report on
some of those ideas with connections to PM and Brouwer’s writings. Our current techni-
cal understanding of PM and its relationship to Nuprl owes a great deal to the work of
Kamareddine, Laan, and Nederpelt [48].

Shortly after Nuprl was built, the first version of Coq was implemented and there was
extensive interaction between the groups at INRIA and Cornell, especially in establishing
the fundamental role of recursive types [59, 60, 58, 66]. Both systems have been used to
solve open problems in mathematics, the most well known is Gontheir’s definitive solution
of the Four Color Problem in Coq [33]. Another major open problem solution was Murthy’s

4The PRL group was started in the Computer Science Department at Cornell by Joseph and this author
in 1980 to study “Program Refinement Logics”, hence PRL. It has since evolved into a formal methods and
applied logic research group still active today. The use of a refinement style proof system is a hallmark of
the PRL systems, including MetaPRL, and is based on the PhD thesis of Bates [8]

5According to this method, a type was defined by giving its canonical (irreducible) values in a computation
system and saying when two such values are equal. Martin-Löf’s method built in the notion that any term
t′ that reduces to a canonical value t is equal to that value in its type. His method led us to the notion that
a type is like the structured sets of Bishop and could be defined as a partial equivalence relation over a set
of terms of a computation system [5].

6Before knowing of the work of Martin-Löf, I had been implementing a typed programming logic, called
V3 [21], using Kleene realizability. The generality and elegance of Martin-Löf’s methods and the ease of
implementing them in Lisp and ML, changed the course of our work on computational type theory at
Cornell.

6

constructive proof of Higman’s Lemma [61] which stimulated similar investigations and a
constructive proof of Kruskal’s theorem by Seisenberger [73].7

1.8 Design Choices circa 1980

By the 1970’s when computer scientists and logicians worked to formulate a comprehensive
logical account of programming logics and computational mathematics, there were many
more options in the design space than in 1907, and the case for a comprehensive foundational
language for ”pure classical mathematics” seemed to have been resolved in favor of set theory
(in one form or another).

The issue of avoiding paradox was also fresh on the minds of the theory architects because
in 1972 Girard had discovered a contradiction in Martin-Löf’s 1971 theory of types in which
he had postulated a universal type, Type, with Type ∈ Type. This is now known as Girard’s
Paradox [22, 44]. In response to this paradox, Martin-Löf introduced a predicative [27]
hierarchy of universes, Ui. These correspond to the orders in Principia.

At Cornell a key challenge for us was to reason about computation in all of its many forms,
to deal with intensional notions such as computational complexity and program structure.
However, it was also critical to interface to applications and pure mathematics. Applications
provide urgent goals and mathematics informs good computation in numerical analysis,
scientific computing, computational geometry, and a myriad of other subjects. Moreover,
as programming logics [51, 37] developed, they touched more concepts and methods from
logic. All of this activity brought to the forefront the possibility of a unified computational
semantics for logic, mathematics, and computing.

2 Type Theory Design Principles

We will examine the design issues that faced the logicians and computer scientists who
created and implemented the type theories that are now the native languages of several
modern proof assistants mentioned above. These proof assistants are rapidly advancing the
goals of Principia, at the rate of thousands of theorems per year, creating a new field called
mathematics knowledge management (MKM). These are not the only considerations in the
design space, but they illustrate issues closely related to Principia Mathematica and the
context in which it arose.

2.1 Sets versus Types

For a computer scientist, sets are not a universal data type. Church’s efforts [15] to base
a comprehensive foundation for mathematics on functions rather than sets led him and his

7Chetan Murthy joined the Coq team at INRIA and help build Coq version 8 which accounts for early
similarity between the systems even at the implementation level.

7

students to the lambda calculus [16] and to his simple theory of types (STT) [17]. This in
turn led McCarthy [57] and his students to define the programming language Lisp where
functions, atoms, and lists are the major data types. Lisp is one of the first functional
programming languages.

It makes sense to provide function types, atype → btype in any programming language,
rather than viewing functions as sets of ordered pairs. The same is true for numbers, arrays,
lists, sequences, trees, graphs, etc. – they are defined as data types, not encoded as sets.
Thus from the beginning, types were more appropriate for practical computation than sets.
It became natural to think of Set as one among many (data) types. Aczel [1, 2] has shown
how to define sets as types and provide a model of Constructive ZF set theory (CZF) inside
ITT. His semantics makes it possible to consider finite and infinite sets as elements of a type
Set at any universe Ui in ITT and CTT. The MetaPRL implementation of CTT includes
CZF sets.

On the other hand, it is useful to encode types as sets for some purposes, for example,
in order to make comparisons with set theory. The writings of Howe [46] demonstrate the
value of defining types as sets in order to relate the types of a classical theory such as HOL
to the types of a constructive theory.

2.2 Computational versus Axiomatic Semantics

Computation provides a meaningful account of large parts of mathematics and is essential in a
theoretical foundation for computer science. In contemporary terms, computational meaning
is given explicitly by reduction rules. Our ability as humans to execute small instances of
this semantics, and on that basis grasp it fully in principle, directly connects this approach to
what Brouwer called mental constructions. This computational meaning is captured well by
our intuitive and practical grasp of small step reductions as in Plotkin’s structured operational
semantics [68]. Not only that, but our ability to implement this semantics in software and
check the correct performance of computations with simple programs provides a concrete
realization of the meaning and a basis for computer assistance with complex intellectual
tasks.

Given the computer scientist’s goal of providing a foundational account of programming
logics, computational mathematics, as well as computing and information science (infor-
matics), it is natural to see whether a precise implementable account of Plotkin’s structured
operational semantics provides a semantic basis for such a theory. Martin-Löf’ [55] discovered
that it does; his ITT82 makes this case. ITT82 also leads to a philosophical view based on
actual computing that is congruent with the computer scientist’s experience of computation
and at the same time an instance of Brouwer’s ideas about the most basic mental construc-
tions – those that Bishop identified as fundamental for numerically meaningful mathematics.
Following Bishop, we can avoid dealing with other intuitionistic principles for the time being
and focus on those needed to support modern computational mathematics and informatics
[52, 75]. CTT’s extensions of ITT82 show how far we can go in this direction. In particu-
lar we can include elements of concurrent and distributed computing and computation on
streams and other co-inductive structures. Perhaps in the future, some of Brouwer’s less

8

clear intuitionistic principles will be seen as instances of precise new methods of computing
and reasoning about those new methods.

Computational content is present in the assertions of the constructive type theories, and
one of the features of CIC, CTT, and ITT is that implementing the proof machinery makes it
possible to find this content and execute it. This discovery has led to a new proof technology
for extracting computational content from assertions. That technology has proven to be very
effective in practice, and there is a growing literature on this subject which we do not explore
here, but there are references in survey articles such as [4].

The semantical basis of Principia Mathematica is clearly neither computational nor set
theoretic. It is based in our philosophical understanding of logical primitives in terms of
their truth values, and like Begriffsschrift, Principia treats these principles axiomatically.
As a result, the notion of function is treated axiomatically as well. What is striking about
ITT, and thus also about CTT and CIC as well, is that the Brouwer-Heyting-Kolmogorov
interpretation provides computational meaning to the logic. Thus Principia Mathematica
set the stage for the emergence of the propositions as type principle, the foundation of the
constructive proof assistants, by bringing logic and types together. To some logicians and
computer scientists, this principle is one of the deepest of the subject.

2.3 Extensional versus Intensional Equality

The types of programming languages have not been defined as mathematical objects in the
normal sense because a programmer’s definition does not require for every type a precise
notion of equality on its elements. For instance, equality of functions is left unspecified, and
for floating point numbers it is not sound programming practice to decide a branch point
based on exact equality of reals. Also it is not required to know whether two syntactically
different type definitions are equal, e.g. two different recursive data types. The definition
of type needed by the programmer and compiler writer is concerned with compatibility of
the data formats and machine representation of the data. Beeson [10] discusses “presets” as
types without an associated notion of equality; and programmers tend to think of types as
“structured presets.”

In mathematics, the definition of types clearly requires a notion of equality. We see
this in Bishop’s writings where he uses the term “set” rather than “type.” His notion of
equality is not the conventional set theoretic one because for Bishop each set comes with its
own equality, as he says on page 13 of Foundations of Constructive Analysis [12], “ Each
set A will be endowed with a relation of equality. This relation is a matter of convention,
except that it must be an equivalence relation.” It is this concept of equality that Martin-
Löf partially adopts in ITT and we fully adopted in CTT by defining the quotient type,
A//E, which associates the equivalence relation E with type A. This quotient type is very
important for capturing the style of Bishop’s mathematics and for treating the algebraic
notion of “quotient structures” in a computational manner. For example we use quotients
to define a computationally sensible notion of integers mod p, Zp and other such concepts.

Function equality is not extensional in programming logics with function types because

9

that would make type checking undecidable. However in the 1982 version of ITT, equality
is extensional in the sense that two functions f1 and f2 on a type A → B are equal iff for
all a of type A, f1(a) = f2(a) in B. This means that equality is not a decidable relation
on functions. Because the dependent types are defined with functions as components, the
equality of types in ITT82 and CTT is also not decidable. Consequently, membership in a
type, say a ∈ A, is not decidable either. Thus there is no type checking algorithm for ITT82
and CTT. In mathematics it is common to use extensional equality, but in programming it is
common to use intensional or structural equality ; so two functions are equal if their syntactic
form is the same. Indeed, we expect equal functions in a programming type to have the same
computational behavior, say the same cost (computational complexity), but extensionally
equal algorithms might have very different computational cost on some inputs, indeed the
seminal paper on computational complexity by Hartmanis and Stearns [40] is titled “On the
computational complexity of algorithms.” They do not say “of functions.”

2.4 Predicative versus Impredicative Types

In the book Foundations of Set Theory [28] on page 58 in discussing impredicativity [27],
the authors bring up concerns about impredicative definitions; they say on page 178 “The
fourth argument, and certainly the strongest one, refers to the nonconstructive character of
impredicatively introduced objects. We can hardly be said to have a clear idea of a totality
if the membership of a certain object in this totality is determinable only by reference to
the totality itself. ... it might occasionally give rise to antinomies and will in any case
cause great difficulties in the construction of models that would prove the consistency of the
system.” This viewpoint proved prescient when Girard discovered a paradox in Martin-Löf’s
first impredicative version of ITT. However, it also proved true that Girard was able to
introduce a new method of proof which established the consistency of an impredicative type
theory [31, 32] that eventually formed the basis for the Calculus of Constructions (CoC) [23]
implemented in the first version of the Coq prover. Coquand proved the consistency of CoC
using an extension of Girard’s method.

The Coq and Nuprl provers were youthful contemporaries circa 1984-88; they were the
two main experimental interactive proof assistants for versions of type theory based on
constructive logic and a computational semantics. From the start there were interesting
contrasts. CTT adopted the predicative universes of ITT73 while CoC was impredicative.
CTT adopted extensional function equality from ITT82 while CoC used intensional equality.
CTT’s computation system included the entire untyped lambda calculus, including the Y-
combinator, and is thus a Turing complete programming language, while CoC is based on a
class of total functions and was thus subrecursive. Unlike ITT82, CTT extensively exploited
the use of the Y combinator to create efficient programs. More striking however is that the
definition of the CoC existential quantifier was not constructive in the standard sense and
could not be strengthened without creating a contradiction. In addition, the inductive data
types did not justify a recursion combinator for computation in constrast to the recursive
types of CTT [19, 59]. These limitations motivated the design of the richer CIC logic [24, 11]
with its predicative hierarchy of sets and inductive types similar to CTT’s recursive types,
and thus its ties to PM.

10

2.5 Effectively Computable, Turing Computable, and Subrecur-
sive Computation Systems

Brouwer’s notion of computability is not formal and not axiomatic. It is intuitive and
corresponds to what is called effective computability. The Church/Turing Thesis claims that
all effectively computable functions are computable by Turing machines (or any equivalent
formalism, e.g. the untyped λ-calculus). There is no corresponding formalism for Brouwer
Computable. However, I believe that this notion can be captured in intuitionistic logics
by leaving a Turing complete computation system for the logic open-ended in the sense
that new primitive terms and rules of reduction are possible. This method of capturing
effective computability may be unique to CTT in the sense that the computation system of
CTT is open to being “Brouwer complete” as a logic. We have recently added a primitive
notion of general process to formalize distributed systems whose potentially nonterminating
computations are not entirely deterministic because they depend on asynchronous message
passing over a network which can only be modeled faithfully by allowing unpredictable
choices.

2.6 The Issue of Partial Computable Functions

A salient feature of Turing complete computation systems is that they must include non-
terminating computations, and thus partial computable functions. While ITT82 allows such
functions in its computation system, it does not provide rules for reasoning about them.
CTT provides a tentative constructive logic for computable functions based on [20]. Edin-
burgh LCF [35] provides classical rules for fixed point induction based on [72]. Neither of
these theories provides a fully adequate account of partial computable functions, and finding
a workable theory remains a perplexing subject of theoretical and practical interest. This
problem was not foreseen in the early days of type theory, and its resolution seems to require
understanding the range of significance of a partial computable function – a good challenge
for 21st century type theory.

References

[1] Peter Aczel. The type theoretic interpretation of constructive set theory. In A. MacIn-
tyre, L. Pacholski, and J. Paris, editors, Logic Colloquium ’77. North Holland, 1978.

[2] Peter Aczel. The type theoretic interpretation of constructive set theory: Inductive
definition. In Logic, Methodology and Philosophy of Science VII, pages 17–49. Elsevier
Science Publishers, 1986.

[3] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. Journal
of Applied Logic, 4(4):428–469, 2006.

[4] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. Journal
of Applied Logic, 4(4):428–469, 2006.

11

[5] Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types. In Gries [36],
pages 215–224.

[6] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Symantics, volume 103 of
Studies in Logic. North-Holland, Amsterdam, 1981.

[7] Henk P. Barendregt. Handbook of Logic in Computer Science, volume 2, chapter Lambda
Calculi with Types, pages 118–310. Oxford University Press, 1992.

[8] J. L. Bates. A Logic for Correct Program Development. PhD thesis, Cornell University,
1979.

[9] J. L. Bates and Robert L. Constable. Proofs as programs. ACM Transactions of
Programming Language Systems, 7(1):53–71, 1985.

[10] Michael J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1985.

[11] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment; Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. Springer-Verlag, 2004.

[12] E. Bishop. Foundations of Constructive Analysis. McGraw Hill, NY, 1967.

[13] E. Bishop. Mathematics as a numerical language. In Intuitionism and Proof Theory,
pages 53–71. North-Holland, NY, 1970.

[14] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda – a functional
language with dependent types. In Christian Urban Makarius Wenzel Stefan Berghofer,
Tobias Nipkow, editor, LNCS 5674, Theorem Proving in Higher Order Logics, pages
73–78. Springer, 2009.

[15] Alonzo Church. A set of postulates for the foundation of logic. Annals of mathematics,
second series, 33:346–366, 1932.

[16] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:55–68, 1940.

[17] Alonzo Church. The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematical
Studies. Princeton University Press, Princeton, 1941.

[18] Robert L. Constable. Constructive mathematics and automatic program writers. In
Proceedings of the IFIP Congress, pages 229–233. North-Holland, 1971.

[19] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, NJ, 1986.

[20] Robert L. Constable and Scott F. Smith. Computational foundations of basic recursive
function theory. Journal of Theoretical Computer Science, 121:89–112, December 1993.

[21] Robert L. Constable and D. R. Zlatin. The type theory of PL/CV3. ACM Transactions
of Programming Language Systems, 6(1):94–117, January 1984.

12

[22] Thierry Coquand. An Analysis of Girard’s paradox. In Proceedings of the First An-
nual IEEE Symposium on Logic in Computer Science, pages 227–236. IEEE Computer
Society Press, June 1986.

[23] Thierry Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95–120, 1988.

[24] Thierry Coquand and Christine Paulin. Inductively defined types. In Grigori Mints
Per Martin-Lf, editor, Conference on Computer Logic, volume 417 of Lecture Notes in
Computer Science, pages 50–66. Springer-Verlag, 1988.

[25] N. G. de Bruijn. The mathematical language Automath: its usage and some of its ex-
tensions. In J. P. Seldin and J. R. Hindley, editors, Symposium on Automatic Demon-
stration, volume 125 of Lecture Notes in Mathematics, pages 29–61. Springer-Verlag,
1970.

[26] Michael Dummett. Frege Philosophy of Mathematics. Harvard University Press, Cam-
bridge, MA, 1991.

[27] Solomon Feferman. Predicativity. In The Oxford Handbook of Philosophy of Mathemat-
ics and Logic, pages 590–624. 2005.

[28] A. A. Fraenkel and Y. Bar-Hillel. Foundations of Set Theory, volume 67 of Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd edition,
1958.

[29] Gottlob Frege. Begriffsschrift, a formula language, modeled upon that for arithmetic
for pure thought. In J. van Heijenoort, editor, From Frege to Gödel: A Source Book
in Mathematical Logic, 1879–1931, pages 1–82. Harvard University Press, Cambridge,
MA, 1967.

[30] Harvey Friedman. Set theoretic foundations for constructive analysis. Annals of Math,
105:1–28, 1977.

[31] J-Y. Girard. Une extension de l’interpretation de Gödel a l’analyse, et son application
a l’elimination des coupures dans l’analyse et la theorie des types. In 2nd Scandinavian
Logic Symposium, pages 63–69. Springer-Verlag, NY, 1971.

[32] J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types, volume 7 of Cambridge Tracts
in Computer Science. Cambridge University Press, 1989.

[33] Georges Gonthier. A computer-checked proof of the Four Colour Theorem. Preprint,
2005.

[34] Michael Gordon and Tom Melham. Introduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, Cambridge, 1993.

[35] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mecha-
nized logic of computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, NY, 1979.

13

[36] D. Gries, editor. Proceedings of the 2nd IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, June 1987.

[37] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Foundations of Com-
puting Series. MIT Press, Cambridge, 2000.

[38] John Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

[39] John Harrison. Handbook of Practical Logic and Automated Reasoning. Clarendon Press,
Oxford, 2009.

[40] Juris Hartmanis and R. Stearns. On the computational complexity of algorithms. Trans-
actions of the American Mathematics Society, 117:285–306, 1965.

[41] A. Heyting, editor. L. E. J. Brouwer. Collected Works, volume 1. North-Holland,
Amsterdam, 1975. (see On the foundations of mathematics 11-98.).

[42] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay,
Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz,
Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL
— A modular logical environment. In David Basin and Burkhart Wolff, editors, Proceed-
ings of the 16th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), volume 2758 of Lecture Notes in Computer Science, pages 287–303.
Springer-Verlag, 2003.

[43] C. A. R. Hoare. Notes on data structuring. In Structured Programming. Academic
Press, New York, 1972.

[44] Douglas J. Howe. The computational behaviour of Girard’s paradox. In Gries [36],
pages 205–214.

[45] Douglas J. Howe. Equality in lazy computation systems. In Proceedings of the 4th IEEE
Symposium on Logic in Computer Science, pages 198–203, Asilomar Conference Center,
Pacific Grove, California, June 1989. IEEE Computer Society Press.

[46] Douglas J. Howe. Semantic foundations for embedding HOL in Nuprl. In Martin Wirsing
and Maurice Nivat, editors, Algebraic Methodology and Software Technology, volume
1101 of Lecture Notes in Computer Science, pages 85–101. Springer-Verlag, Berlin, 1996.

[47] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. Types in logic and mathematics
before 1940. Bulletin of Symbolic Logic, 8(2):185–245, 2002.

[48] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern Perspective on Type
Theory: From its Origins until Today. Kluwer Academic Publishers, Boston, 2004.

[49] S. C. Kleene and R. E. Vesley. Foundations of Intuitionistic Mathematics. North-
Holland, 1965.

[50] S.C. Kleene. On the interpretation of intuitionistic number theory. J. of Symbolic Logic,
10:109–124, 1945.

14

[51] Dexter C. Kozen and Jerzy Tiuryn. Logics of programs. In van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 789–840. North Holland,
Amsterdam, 1990.

[52] G. Kreisel. Weak completeness of intuitionistic predicate logic. Journal of Symbolic
Logic, 27:139–158, 1962.

[53] Proceedings of the 6th Symposium on Logic in Computer Science, Vrije University, Am-
sterdam, The Netherlands, July 1991. IEEE Computer Society Press.

[54] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Logic Colloquium
’73, pages 73–118. North-Holland, Amsterdam, 1973.

[55] Per Martin-Löf. Constructive mathematics and computer programming. In Proceedings
of the Sixth International Congress for Logic, Methodology, and Philosophy of Science,
pages 153–175, Amsterdam, 1982. North Holland.

[56] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and Jan M.
Smith, editors, Twenty-Five Years of Constructive Type Theory, volume 36 of Oxford
Logic Guides, pages 127–172, Oxford, 1998. Clarendon Press.

[57] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–
70. North-Holland, Amsterdam, 1963.

[58] N.P Mendler. Predicative type universes and primitive recursion. In LICS91 [53], pages
173–184.

[59] P.F. Mendler. Recursive types and type constraints in second-order lambda calculus.
In Gries [36], pages 30–36.

[60] P.F. Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell University,
Ithaca, NY, 1988.

[61] Chetan Murthy. An evaluation semantics for classical proofs. In LICS91 [53], pages
96–109.

[62] J. Myhill. Constructive set theory. The Journal of Symbolic Logic, 40:347–382, 1975.

[63] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected Papers on Automath, vol-
ume 133 of Studies in Logic and The Foundations of Mathematics. Elsevier, Amsterdam,
1994.

[64] A. Newell, J.C. Shaw, and H.A. Simon. Empirical explorations with the logic theory
machine: A case study in heuristics. In Proceedings West Joint Computer Conference,
pages 218–239, 1957.

[65] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

15

[66] Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and properties.
In J. F. Groote M. Bezem, editor, Typed Lambda Calculi and Applications, Lecture Notes
in Computer Science. Springer-Verlag, 1993.

[67] Frank Pfenning and Carsten Schürmann. Twelf — a meta-logical framework for deduc-
tive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction, volume 1632, pages 202–206. Trento, Italy, July 7–10 1999.

[68] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Aarhus University, Aarhus University, Computer Science Department,
Denmark, 1981.

[69] Bertrand Russell. Mathematical logic as based on a theory of types. Am. J. Math.,
30:222–62, 1908.

[70] Bertrand Russell. The Principles of Mathematics. Cambridge University Press, Cam-
bridge, 1908.

[71] D. Scott. Constructive validity. In D. Lacombe M. Laudelt, editor, Symposium on
Automatic Demonstration, volume 5(3) of Lecture Notes in Mathematics, pages 237–
275. Springer-Verlag, NY, 1970.

[72] D. Scott. Lattice theoretic models for various type-free calculi. In Proceedings 4th
International Congress in Logic and Methodology and Philosophy of Science, pages 157–
87. North-Holland, Amsterdam, 1972.

[73] Monika Seisenberger. On the Constructive Content of Proofs. PhD thesis, Ludwig-
Maximilians-Universität, München, September 2003.

[74] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomoprhism. Elsevier,
2006.

[75] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, Amsterdam, 1996.

[76] A.S. Troelstra. Realizability. In S.R. Buss, editor, Handbook of Proof Theory, volume
137 of Studies in Logic and the Foundations of Mathematics, pages 407–473. Elsevier,
1998.

[77] Walter P. van Stigt. Brouwer’s Intuitionism. North-Holland, Amsterdam, 1990.

[78] Wim Veldman. Some applications of brouwer’s thesis on bars. In Bourdeau Heinzmann
Atten, Boldini, editor, One Hundred Years of Intuitionism (1907-2007), Publications of
the Henri Poincaré Archives, pages 326–340. Berkhäuser, Berlin, 2008.

[79] A.N. Whitehead and B. Russell. Principia Mathematica, volume 1, 2, 3. Cambridge
University Press, 2nd edition, 1925–27.

[80] N. Wirth and C.A.R. Hoare. A contribution to the development of ALGOL. Commu-
nications of the ACM, 9:413–432, 1966.

16

