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Let A be an n × n matrix with entries in C.

If x is a non-zero vector with Ax = λx , then x is an
eigenvector for A with corresponding eigenvalue λ.

A is diagonalizable if Cn admits a basis of eigenvectors of A.

Fact: Almost every n × n matrix with complex entries is
diagonalizable.
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Theorem (Rayleigh-Ritz)

Let A be an n × n Hermitian matrix with entries in C.

Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then

λ1 = inf
‖x‖=1

x∗Ax and λn = sup
‖x‖=1

x∗Ax .

Corollary

Let A = (ai ,j) be a complex n × n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(i) λ1 ≤ aj ,j ≤ λn for all j = 1, 2, . . . , n , and

(ii) λ1 ≤
1

n

n∑
i ,j=1

ai ,j ≤ λn.



Theorem (Rayleigh-Ritz)

Let A be an n × n Hermitian matrix with entries in C. Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A.

Then

λ1 = inf
‖x‖=1

x∗Ax and λn = sup
‖x‖=1

x∗Ax .

Corollary

Let A = (ai ,j) be a complex n × n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(i) λ1 ≤ aj ,j ≤ λn for all j = 1, 2, . . . , n , and

(ii) λ1 ≤
1

n

n∑
i ,j=1

ai ,j ≤ λn.



Theorem (Rayleigh-Ritz)

Let A be an n × n Hermitian matrix with entries in C. Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then

λ1 = inf
‖x‖=1

x∗Ax and λn = sup
‖x‖=1

x∗Ax .

Corollary

Let A = (ai ,j) be a complex n × n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(i) λ1 ≤ aj ,j ≤ λn for all j = 1, 2, . . . , n , and

(ii) λ1 ≤
1

n

n∑
i ,j=1

ai ,j ≤ λn.



Theorem (Rayleigh-Ritz)

Let A be an n × n Hermitian matrix with entries in C. Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then

λ1 = inf
‖x‖=1

x∗Ax and λn = sup
‖x‖=1

x∗Ax .

Corollary

Let A = (ai ,j) be a complex n × n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(i) λ1 ≤ aj ,j ≤ λn for all j = 1, 2, . . . , n , and

(ii) λ1 ≤
1

n

n∑
i ,j=1

ai ,j ≤ λn.



Theorem (Rayleigh-Ritz)

Let A be an n × n Hermitian matrix with entries in C. Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then

λ1 = inf
‖x‖=1

x∗Ax and λn = sup
‖x‖=1

x∗Ax .

Corollary

Let A = (ai ,j) be a complex n × n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(i) λ1 ≤ aj ,j ≤ λn for all j = 1, 2, . . . , n

, and

(ii) λ1 ≤
1

n

n∑
i ,j=1

ai ,j ≤ λn.



Theorem (Rayleigh-Ritz)

Let A be an n × n Hermitian matrix with entries in C. Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then

λ1 = inf
‖x‖=1

x∗Ax and λn = sup
‖x‖=1

x∗Ax .

Corollary

Let A = (ai ,j) be a complex n × n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(i) λ1 ≤ aj ,j ≤ λn for all j = 1, 2, . . . , n , and

(ii) λ1 ≤
1

n

n∑
i ,j=1

ai ,j ≤ λn.



Theorem (Cauchy’s Interlacing Theorem)

Let A ∈Mn(C) be Hermitian, and let B ∈Mn−1(C) be a
principal submatrix of A.

If

λ1 ≤ λ2 ≤ · · · ≤ λn

are the eigenvalues of A and

µ1 ≤ µ2 ≤ · · · ≤ µn−1

are the eigenvalues of B, then
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λ2 ≤

µ2 ≤

· · ·

≤

λn−1 ≤

µn−1 ≤

λn.
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A =

2 1 4
1 2 1
4 1 2



Is A positive semi-definite? No. The principal submatrix

B =

[
2 4
4 2

]
has negative determinant, and hence has a negative
eigenvalue. Cauchy’s interlacing theorem implies that A too
has a negative eigenvalue.

Corollary

If A ∈Mn(C) is positive semi-definite, then every principle
submatrix must have non-negative determinant.
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If A = (ai ,j) is an n× n matrix with entries in C, then for each
i = 1, 2, . . . , n, we define

• Ri :=
∑

j 6=i |ai ,j | and

• Di := {z ∈ C : |z − ai ,i | ≤ Ri}.

Definition

The sets D1,D2, . . . ,Dn are called the Gershgorin disks of A.

Theorem (Gershgorin Circle Theorem, 1931)

Let A be an n× n matrix with entries in C. The eigenvalues of
A belong to the union of its Gershgorin disks.
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Proof.

Choose x 6= 0 so that Ax = λx . Let xi be the largest entry of
x (in modulus).

Ax = λx

⇒
n∑

j=1

ai ,jxj = λxi

⇒
∑
j 6=i

ai ,jxj = (λ− ai ,i)xi .

Thus,

|λ− ai ,i | =

∣∣∣∣∑
j 6=i

ai ,jxj
xi

∣∣∣∣ ≤∑
j 6=i

|ai ,j | = Ri .
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Corollary

Let A = (ai ,j) be an n × n complex matrix. If∑
j 6=i

|ai ,j | < |ai ,i |

for all i , then A is invertible.

Such a matrix is called strictly diagonally dominant.
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Additional remarks:

(1) We could have used the columns of A rather than the
rows to make our disks. Why? Because A and AT have
the same eigenvalues!

(2) More generally, we could have used the disks from SAS−1

to approximate the eigenvalues of A.



Additional remarks:

(1) We could have used the columns of A rather than the
rows to make our disks.

Why? Because A and AT have
the same eigenvalues!

(2) More generally, we could have used the disks from SAS−1

to approximate the eigenvalues of A.



Additional remarks:

(1) We could have used the columns of A rather than the
rows to make our disks. Why?

Because A and AT have
the same eigenvalues!

(2) More generally, we could have used the disks from SAS−1

to approximate the eigenvalues of A.



Additional remarks:

(1) We could have used the columns of A rather than the
rows to make our disks. Why? Because A and AT have
the same eigenvalues!

(2) More generally, we could have used the disks from SAS−1

to approximate the eigenvalues of A.



Additional remarks:

(1) We could have used the columns of A rather than the
rows to make our disks. Why? Because A and AT have
the same eigenvalues!

(2) More generally, we could have used the disks from SAS−1

to approximate the eigenvalues of A.



A =


2 −1 1 −1
1 −3 1 1
0 1 −5 −1

−1/2 0 −1 4



Row radii Column radii



A =


2 −1 1 −1
1 −3 1 1
0 1 −5 −1

−1/2 0 −1 4



Row radii

Column radii



A =


2 −1 1 −1
1 −3 1 1
0 1 −5 −1

−1/2 0 −1 4



Row radii Column radii



A =


2 −1 1 −1
1 −3 1 1
0 1 −5 −1

−1/2 0 −1 4



Row radii Column radii



Any n × n matrix A has n Gershgorin disks and n eigenvalues
(counting multiplicities).

Is it always the case that each disk contains exactly one
eigenvalue?

No...But we get something almost as good!

Theorem

Let A = (ai ,j) be an n × n matrix with entries in C.

If Di1 ,Di2 , . . . ,Dik are k Gershgorin disks of A that are disjoint
from the remaining n − k disks, then their union contains
exactly k eigenvalues of A (counting multiplicities).

In particular, this means that each disk does contain exactly
one eigenvalue when the disks are disjoint.
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Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t

, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A

and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



Proof.

For t ∈ [0, 1], let At be the matrix A with the off-diagonal
entries scaled by t, so

A0 = diag(a1,1, a2,2, . . . , an,n),

A1 = A.

As t increases from 0 to 1, two things happen:

(i) the Gershgorin disks inflate to the disks of A and

(ii) the eigenvalues vary continuously while always remaining
in the disks.

Since the disks of At that inflate to Di1 ,Di2 , . . . ,Dik never
intersect the remaining disks, the k eigenvalues in these disks
never have a chance to leave!



But seeing is believing, am I right??
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Corollary

Let A = (ai ,j) be an n × n matrix with real entries. If

|ai ,i − aj ,j | ≥ Ri + Rj

for all i 6= j , then the eigenvalues of A are real.
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Let’s see if we can improve the Gershgorin approximation.

Rather than considering each row individually, we can consider
two at a time.

Definition

Let A = (ai ,j) be an n × n matrix with entries in C. For each
i , j = 1, 2, . . . , n with i 6= j , define

Ki ,j := {z ∈ C : |z − ai ,i ||z − aj ,j | ≤ RiRj}.

The sets Ki ,j are called Brauer’s ovals of Cassini.
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Theorem (Brauer, 1947)

Let A be an n × n matrix with entries in C.

(i) The union of the ovals of Cassini contains the eigenvalues
of A.

(ii) The union of the Gershgorin disks contains the ovals of
Cassini.

Proof.

If z ∈ Ki ,j , then |z − ai ,i ||z − aj ,j | ≤ RiRj . If RiRj = 0 then
z = ai ,i or z = aj ,j . Otherwise, we have

|z − ai ,i |
Ri

· |z − aj ,j |
Rj

≤ 1.

Hence |z − ai ,i | ≤ Ri or |z − aj ,j | ≤ Rj .
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ovals as opposed to n disks.

• The ovals are harder to draw (and harder to code in
Maple!)
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Remarkably, considering more than two rows at a time doesn’t
work!

The union of the sets

Ki ,j ,k := {z ∈ C : |z − ai ,i ||z − aj ,j ||z − ak,k | ≤ RiRjRk}

for i , j , k distinct may not even contain the eigenvalues of A.

A =


1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1



R1 = 1
R2 = 1
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Final remarks:

• A slight improvement on the Gershgorin theorem can be
used to show that all matrices of the form

2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2


n×n

are invertible.

• Versions of Gershgorin’s theorem hold for partitioned
matrices and for matrices of operators.
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Thank you!


