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WHY S DINENSIONS 

In supersymmetry the consideration of theories in dimensions 
D :> 4 has been very fruitful. In particular the supersymmetric N=4 
Yang-Hills theory has been derived from the N=l supersymrnetric Yang­
Mills theory in 10 dimensions (Cliozzi, Scherk & Olive, 1977 ; 
Brink, Scherk & Schwarz, 1977), More recently, starting from the N=l 
supergravity in II dimensions (Crcmmcr, Julia & Scherk, 1978) the 
N=8 supergravity in 4 dimensions has been derived with its unexpected 
symmetries E7 global x SU(8) local (Crcmmer & Julia, 1978 and 1979). 

l.'e Would like today to conccntrille on supergravities in 5 di­
mensions for essentially four reasons : 

(i) For extended supergravitics (especially ~·8) the structure 
is simpler in 5 dimensions than in 4 di~ensinns because all the 
invariances are inv;lrianccs of the L1grnngian instead of invnrianccs 
of equations of motion. (This is related to the duality tr.1ns(orm­
ations on vector fields for the theories in 4 dimensions). This could 
therefore lead to a better understanding of these extended super­
gravities. 

(ii) From the theories in 5 dimensions we c.1n obtain spontaneous­
ly broken supersymmetric theories in 4 dimensions by a generalized 
dimensional reduction (Scherk & Schwarz, 1979). In particular, 
spontaneously broken N=8 supergravity \o.lith 4 mass parameters has 
been constructed in this way (Cremmer, Scherk & Schwarz, 1979). 

(iii) The knovlcdgc of the theory on-shell in 5 dimensions allows 
one to have an off-shell formulation in 4 dimensions modulo some 
differential constraints on the fields using the dimensional re­
duction by Legendre transformation (Sohnius, Stelle & West, 1980), 
In particular, an off-shell formulation of extended N~S supersymmetry 
has been derived (Cremmer, Ferraril, Stelle & West, 1980). 

(iv) From the ''Lagrangian builder" point of vie!J it shows how 
the conjecture of the bosonic symmetries allows one to construct 
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the complete theory up to a few coefficients. 

The plan of my talk will be the following 

{I) I shall give some notation and definitions of symplectic 
spinors in 5 dimensions, 

{2) I shall give the particle contents of all supergravities in 
5 dimensions. 

(3) I shall briefly recall some facts about global and local 
symmetri~s in supergravity. 

(4) The main part of the talk will be devoted to the description 
and construction of the N•8 supergravity in 5 dimensions. 

{5) Finally, I shall give the consistent sets of truncation 
which lead to the N•6, 4 and 2 supergravities in 5 dimensions. 

2 SYI4PLECfiC SPINORS 

The metric of the 5-dimensional spacetime is 

?r,. = (~ ,-)-,-.,~-) 

TheY matrices are defined by their anticornmutation relations 

{Yr,'~'>! = 2 h 

'loJ "(1 J ¥l..J Ya 
2
are the same as in 4 dimensions and are pure 

imaginary. Since ('5''l) • +I we must define 

'('+ =A. Ys which is real. 
This shows that there are no Majorana spinors in 5 dimensions. 

Yo and "t''i' are antisymmetric and ""t,.J ~~.) l"~ are &}'1111!1etric. 
The five '11 matrices are related by 

"'( r,t~v- =- E,.,t""v 

where "'('r~t' ..... v-- is the totally antisyrnmetric product of "'lf r ¥~ 
)(" Y..,. ~.,. and f "~t.._,; is the usual Levi-Civita symbol with 5 
indices { t 01234 .. +J). 

In 5 dimensions the N extended supersymmetry algebra can only 
be defined for even N and it has a natural isomorphism which is the 
USp{N) symplectic symmetry (compact) 

( i'i' r.>b l - ..!1. ~b (¥"') ? 
t•~)"'"pJ- ~ ...... 
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(/'""• 0 ... 4; c( • 1 ... 4; ct.• J.,,N) 

The charges 
generalized 

C? ~ (and consequently the 
Majorana condition 

spinor fields) satisfy a 

where c~ 

.. I> 

.. ,-,• .. 
c:;> o< = C.s '1'"' 

satisfies cs ¥,..c5-' 

q" = (9:fl(. 
t 

= 't_,. 

..S't is the real symplectic metric and is used to raise or lower 
indices 

b 
<;> .. = ...Sl.,.b q 

- -'<> 
from which we deduce 9o. : .l2. o.'b q =- I!R"t' '6'. 

We can choose C5 : --6o 1{5 , In this case the symplectic spinors are 
defined by 

'\>" =- '"lfs \.9 .. )" 
From these definitions we deduce the important property of bilinear 
expressions in Fermi fields : 

- ~ b - "f..b'l. 0 U/~ 
l.\' 't)>, • • •. '6'J'M '/( - }'M .. • • p, O ... M 

) 

Finally let us give the Fierz transformation in 5 dimensions : 

6,.cz. 6a. £4 -::.- ~fl.., e., f:3 E.z + ~ ... l,E'.,. E.!o y~" €.2- i ~,. Yr:f:.4t E~ 1~"!.t2~ 

3 SUPERCRAVITIES IN 5 DniF.NSIONS 

The physical st.1tes of 2N extended supersymmetric massless mul­
tiplels in 5 dimensions arc classified by USp(2N) (compact) as the 
states of the massive multiplet with central charge in 4 dimensions. 
It is the 5th dimension which is related to the central charge in 
4 dimensions. 

In the simplest multiplets, the representations of USp(2N) 
appear are the antisymmctric and traceless tensors ~0~~ • m 

,..., Rc.bc.,, rn 
-IL ~b .:: 0 

which 
wi lh 

with m ~ N • For N < m~ 2N an antisymetric traceless tensor is 
autom.1tically zero because the Levi-Civita tensor with 2N indices 
cnn be vri tten in terms of Jlo.b 
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EA...,tt.1 .... a.Z~<~·..,a.lN rv ..!lr ...... a.2S?.,b • ., .... Jlca Q,. ) 
L ~ ...... ,lN 

The fields also satisfy the same kind of generalized reality condi­
tion as the spinor charges 

A "" ,.. 
~ a.bc. 

= (A,. ,b)"' 

-o 5 ("f..~·< ) * 
The lowest spin supermultiplet for 2N supersymmetry has states 

from spin s up to s=N (SU(2) is the little group of Lorentz group 
in 5 dimensions) and has the following content 

s=N s=N-1/2 s"'N-1 ,.o 

<\> t• <jl•b 4>tl~ .. a..,.,. 

c.b ..• 
where all~ are antisymmetric and traceless. 
Other multiplets can be obtained by combining this multiplet 
states of angular momentum J and an arbitrary representation 
USp(2N} (Ferrara & Zumino, 1979). 

with 
of 

This allows a simple construction of the representations of ext­
ended supergravities in 5 dimensions. They are given, in the follow­
ing table, as well as the lowest spin supermultiplet. 

' 2 3/2 I I /2 0 group 

N=B I 8 27 48 42 USp(S) 

l I 6 
I 1,+ l 14 I +(J ,,, 

f USp(6) N"'6 
(J·j>®ll 6 " 14' J 

l {J: I) 
4 I• I 4 

N"'4 \ l1Sp(4) 
® {I '• ;] 

l I 2 I ~ USp(2) N•2 
(J"'~) 

2 ® I I 2 I 

As in 4 di~cnsions the N•8 supergravity multiplet is also the 
lowest spin supcrmultiplet. 

4 C!.OBI\1. A~D LOCAL S't1-NETR!ES IN SUPERCRAVlTY 

The dimensional reduction shows that for m..oximal extended super-
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gravities in D dimensions obtained from N~l supergravity in II di­
mensions (Cremmer & Julia, 1979 ; Cremmer, 1980), the theory is in­
variant under the product of a non-compact global group and a compact 
local group 

SL{II- D,R)global x SO(II- D)local 

SO(II- D)local acts on Fermi fields and scalar fields. 
SL(I I - D,R)glohal acts on tensor fields and scalar fields. 
The scalar fields which come from the metric in II dimensions arc 
described by the coset GL(II- D,R)/SO(II- D) {after a Weyl re­
sraling). We expect that all scalar fiPlds can be described in this 
geometric way by a coset G/H (i.e. a mHtdx of G defined up to a 
local transformation of H) as the vielbein e~ is described by 
the coset GL(D,R)/SO(D- I, I). If G is non compact, there is no 
problem of positivity if II is the maximal compact subgroup of G. The 
symmetries G nnd H can he conjecturc,d by simple counting arguments 
if we remember thnt H is the maximal group linearly realised on all 
fields. (This II is the diagonal subgroup of G 

1 
b 1 x H1 1 J 

H H ~ H) g o a oca 
global x global · 

We shall give belo~.o.• the content and the symmetries of maximal 
supergravities in 0=9 ... 3 after duality transformations which convert 
a p tensor field into a (D - 2 - p) tensor field 

0=9 

I er 
~ 

D-"8 

1 e; 
0=7 

1 e r 
~ 

0=6 

I e r 
# 

0=5 

1 e; 

GL(2, R)global ® S0(2)local 

2 1.\' , lAP"( ' -r 2A _.v • )A_,... , 4 A , 3 scalars 

E)(+
3

)=SL(3,R) X SL(2,R)global ®[SO()) x S0(2)) local 

, 2lf,..., JA_..."~, 3A,;A'( , 6A_... 6 ~ , 7 scalars 

E
4

(+
4

)=SI.(S,R)global ® SO(S)local 

, 4 '-t.., 5Apv , lOA./"' 

ES(+S)=SO(S, S)global (81 

, 4~, ~, .16A_... 

16 "f. 14 scalars 

S0(5) x SO(S) local 

20 -y, , 25 scalars 

E6(+6)global ® 

8 ~ , 27A_,. 

USp{8)1ocal 

48 "f. , 42 scalars 

0=4 El(+7)global ® SU(8)1ocal 

1 e; , 8 lf,.. , 28Ar , 56 "f.. - , 70 scalars 

O:J ES(+B)global ® SO(I6)1ocal 

1 e; ' 16~·- 128 '/<' 128 scalars 

6 

E. CREHHER 

Let us note that in 3 dimensions there is no degree of freedom for 
the graviton and the gravitinos, The underlined tensor fields need 
duality transformations to form a representation of the global group. 
The global symmetry will not be a symmetry of the Lagrangian but only 
of the equations of motion : the symmetry will exchange the Bianchi 
identity for the field strength of the tensor with its equation of 
motion. 

It has been seen that in 4 dimensions, for all extended super­
gravities, the scalar fields are described by a coset, the local 
symmetry being U(N). In the same way, we can conjecture that all 
extended supergravities in 5 dimensions have a global sy.Rmetry G 
and a local symmetry USp(2N), the scalar fields being described by 
G/USp(2N), This gives the following table 

N•8 

N•6 

E6 (+ 6)global ® USp(S)local 

su::(6)global ® USp(6)local 

N•4 USp(4) x R global cg) USp(4)1ocal 

N=2 USp (2) global ® USp(2)loca 1 

5 N•S SUPERGRAVITY IN 5 DIMENSIONS 

As we have seen, the free partie!\ ~pectrum is described by the 
fields ~~" J I}(,.. fl. J A """•'b 1 "(..Jo,. and ~· ' where o. •I.,, 8 and these 
fields are pseudoreal in the sense previously defined, completely 
antisy11lmetric and traceless in the internal USp(S) indices. 

We have seen that we expect the theory to have a global symmetry 
E and a local symmetry USp(8). Let us first briefly describe E

6
• IF has 78 generators and the fundamental representation has dimen­

sion 27. We are interested in the non-compact form which has 42 
non-compact generators and 36 compact ones which generate the max­
imal subgroup USp(S), The 27 representation acts in the vector apace 
spanned by r~t\ ( t:/

1 
(1 • I ... 8) such that 

2 J~ ; - ~ ~~ = l2·~l' 

.n~" -z"'l'> = 0 ) i!_,l' = .n., • .!'2~· 2 "IS 

and the infinit~simal transformations of E
6 

are given by 

o "2 ~":: "" r zYI'_,. 1\fl-t ~"· -t 2'"1' t' c-t, 
~ 

where " "t 
metric and 
real 

is .1n ·antihermiti.1n matrix such that 1\c~..l( is sym­
'!t:.Lf\J'S is totally antisymmetric, traceless and pseudo-

z ~P><f ,... )* 
::, \.,4 Mj\ -~ 
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The.!g is no quadratic invariant for 

~I\ 2o<~ is not invariant for 

from 27 x 27 where 27 is spanned by 

E
6 

: 27 x 27 f) 1 in particular 

E
6

. We can form an invariant 
~~~ 

?"'" =- ?"C' = - ~2~~)· ' 
- ~r 

.n..,~ c = 0 

which transforms under E6 by 

c( """tt\ ~ - ..-): .._...tn,l'5""' 

bz"~ = /\ "z ...,.f'\ v? -«- ~n 

~~ 2_<>1flo is an invari:mt under E
6

• 

Both 'i.tl'- 2'.,.1\ and ~I" 2-.,(1. are invariant under the subgroup 

USp(8), There exists a trilinear invariant for E
6 

: 27 x 27 x 27 •\+ .. 

~f' -.f £" 
J":.% .!21'12 .!2Hz. .)2>-o< 

These properties of E6 
are all we need to obtain the general struct­

ure of the theory. 

The fields of the N•S supergravity are : 

-the graviton e r, an element of GL(5,R)/S0(4, 1) 

- the 8 gravitin;s t., CL '"'hich are in the representation 8 of 

USp(S) and singlets fnr E6 
- the 27 vector fields A;!..(6 which are singlets for USp(S) and in 

the 27 representation of E 

- the 48 spin 1/2 fields ~--~ '"'hic:h are in the representation 48 

of USp(8) and singlets for E
6 

1$.1:1 

- the 42 scalar fields •,.:i 11 be described by an element Vol(\ _ 

of the coset E ( 6 
/USp(8) {78 - 36 .. 42). It transforms as 27 

under E
6 

and 29 tn~cr USp(8), The indices r:JJ f.> =1 ••• 8 are the 

'curved' indices ot E6 
and o.., P =\,. ,8 are the flat indices of 

USp(S) and 'V'd~ 0 is a 27-bein connecting these two groups. 

The self-interaction of the sc:alnr fields is des..:ribed by a non 

linear 6" -model associated to the coset Er/USp(8) am\ therefore by 

the Lagrangian 

" where 'It' 

i 5 N 
oi .~ "" "t J/1 

D~ ,(~ D V ob 
Tr (:;; D,.. V' )

2 

is the inversC of 1i' 
N o!(> •,. <./ G ,j d C J 1_ cd 

IIi o.b ·v"f'> = ~ ('i.~ ~b- "~ ~, + ~ n.~o n 

0~ is the covariant deriv'htive with respect to USp(B) using the 

associated connexion SJ..,_ o. • Since there is no kinetic term for 

Jl~"'b we can solve its equations of motion. Since 'It' is an elem­

ent of E
6 

we have the following decomposition for 'V-'~,...'11' 

which is 1n the Lie algebra of E6 
N Jf' b 

'I) <J ;),.,. 'It,.~ .. = 2 cv "' b1 
J'o(< 'i &J 

f' o.b 
"1' #- eJ 
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where q,... cA. belongs to the Lie algebra of USp(8) 

in the orthogonal part to USp(8) {with respect to 

For .Q./"- we get 

.52 b ,......... = c;>_,. ~ b 

The Lagrangian then becomes 

z 
1.5 N \ P~ ~"<J \ 

and 
the 

~ .-..bu/ is 
Killing metric). 

b 
C\?....o. nnd ~ .. ~(J arc obviously inv.1riant under t:

6
. 1f we restrict 

ourselves to th(· sc;l1.1r fil·lds, .1s in th" c.1Si.' of ;;em•ral relativ­

ity, we tan describe them hy n metric 'f}o(l.
1
t'f inste.1d of the 27-bein 

~I'.,;. (to be corr.parcd to ~ ... .,. and e_.... r). The metric is invari­

ant under the local group USp(8) and covariant under E
6

. It is given 

by 

~o(~, t! = .)- .. b cd 
"I' J2 .. fl-oJ '\lr• 

and is characterized by the property 

'J,~~, tf = 'J H, -<(l 

The Lagrangian is then written as 

js rv '"() a v·(q·')"at> 
)J- d't>IP I '(f u rJ I 

T~:is r::c-·tric :oust also bt• used to describe the interaction of 

the v~ctor fi~lds since tl•ere is 110 quadratic invariant for E
7

. The 

generalized "kinetic" ter1:1 fc,r tl•e vectors is then given by 

dv' "' 
a F ~~ f 11 >-( v~ 

d'oo:;(l.) lt »V 1;'1' j 8 
/,sin 11 dim(•nsions tht•rc illsn exists il trilinc.H- i>lUj;t• invari,lnt 

('nupli11i'. (up tc' n tr"~ta\ derivative) of the vr~cturs which is required 

hy SIIJH'rsy:!::wtry. Sinu~ thvrr• is :1 trilincnr Eh invarinnt J, we do 

not n<·ed the scdnr 1wtric (nor the metric tensor 'i}_...v ) 

,..v~¢A (\"6 'i.~ ':lo( 

iv' N ~ :;/."'~ s.. n-<,F~~ SL,, A, 

Th<c cmqd i:1;·.s to tlw fl·rr~ions can no longer be described by the 

rnl·trit, l'IJt I'<.''J'Iirt.' tL<c 27-b(·in'V' , Tbt• "kintetic" terms for the 

fermi(\:1ic fields lf',...0 nnd '")<,.1:;.< will be covo.rinnt with respect 

to tlw l"c:ll 1.(\re:\lz grn:lf' S0(4, I) ... :i~ll tlll' cc,~nexion w.....,.,.. 5 
and 

tbe local );roup USp(8) t.'llh lli.c conncx1011 C?....-o. 

0 'l' ~ IIJ ~· r.. • , "' • ) b 
.#- ~ ;::. \ ,.._ b - 'r,_.. b -t '4 LV,..f'S '( ~ b t~ 

0 "!•""- _ I 7J 0b. _ 3n [, o!. w yrs 1A ) ...,bgd 
.)." - \ ..... a "Y;.o. 6 -t lt- ..... c-s 0 d 1\ 
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As usual there exists a Noether-type coupling required by super­
symmetry 

p a\,cJ u; ~'""""i. ~ I J"'a. 0 bl:.d 

The coupling of fermions to F~v«~ must occur only through the E
6 invariant (and scalar unde-r the general coordinate t-ransformation) 

F 4-0 V a.b F «r;, ""' v 
r''i. = clf3 ~" e r e s 

Let us note that c/-v'2 can be written as 

iv• "' (Fr:b / 
F .b . 

but ..-~ 1n no longer a curl. 

Th<:! supersymmctry transformation laws b~ arc conjectured to 
be covariant with respect to USp(8) and E

6
. Therefore 6(. and S"lf> 

are now defined up to numerical coefficients, quartic fermionic terms 
for ci and trilinear fermionic terms for b LJ";..<t and b"f.a.~tx:. . 
In particular all Lhc tlOn-polynominl structure in tl1e sralar fields 
is fixed, Supersyuun£!try is used to get rid of the remaining arbit­
rariness. 

(i) Numerical coefficients (and Lorentz structure) in bt.y andb'j 
arc determined by checking the supersymmetry invariancc of if.. in 
the terms of the type € 'f .J e "'f.. 

(ii) Quartic terms in of <1nd trilinear terms in ~If and ~1-
are determined in two independent ways : 

- we require supercovariant equations of motion for fermionic 
fields 

- we require the closure of the supersymmetry algebra on the bo­
sonic fields 

[~~,'<.1 = 'bG .,. Oe' +~c.,. 'iiv<p<~l.,. bo<~J 
where ¢G is the general coordinate transformation, :;l:J a new 
supersymmctry transformation, ~L. a local Lorentz transformation, 

~ u- (R) a local USp(8) transformation and OVCAJ an Abelian gauge 
transTgrmation on the V<_>c::tor fields. At this sta)~C only the "f..'t 
terms i;~ el. are still undetermined, They arc determined by checking 
~J in the terms of the type 6 '1-1 or by looking at the closure 

on fermionic fields which requires the fermionic equations of mution. 

The Lagrangian is then written, (we have put K•l) 

.J • - • -"'f .. ~ o-"Co'"a F"~ P. vi e--1ot = .. ; R('-'J)- i lf_ "{ Dv lfCL - 'i a d <t.qo,,-.:i ,PV fq 
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. -o\, ~ J>V P. P. ..... d 
.. .._ "1. "t D~ "f..~.c .,.. ~ ~ ..... 1ocd v 

e·l ~~Vf<X ..- )~ IFf. IL ,, )"( • -• ,. l<d 
- _ c (r,.. ,. '1.~.-) "i If'-" ,. .. ..!.. l{.~ocd t rtr 'X 

'I~ gr, 

',,.bF'"{-t "( t•'t. '\' .. i. ru<..-tf"' :1. ~ ¥"'"'"'1 -1-lf -"'/\ ~v 1.1' 4. , rl b + '12 ,. ( • •be T '1 ..c<O l"o 

-t<·lf~ 

c/lt represents the quartic fermionic terms, Except for the 'fit 
terms it !,.s not euough to replace w_rs.J P1.,.\oc.G and F...b by 
~) '!:i£1 .> ~ (...., means supercovariant extension) to 
reibsorb2.all th~qunrtic terms. For completeness we give 4 below 

-•~ .r-<•""'' n.~bv -c· rsw• -~~ ,, 1 C: «o," • ij;l 'l' ' ,C• 1 •r, '\'~h- 'f 'I \ 4 ~ ( •rs "'rb 

e·l f ... v(',.>.- 4. - b -1 - eQ. II' -'o UJ 
.,. ~ '~'c '1'.-4 'l'~ "6,'1'..,"- ;r '!' 'l'. 'I' c '~b 

-. i [ q e·~> ~ •• ip~ ~ .. '~-cb -2 ;:yc•"6.,.'f'r4 'i'~b"(il -~'fb) 
.1. "i~'" y~ "('~ '" ;:;:; 'Y. + '2'f'1 ~~c. -. C• C"'b 

i [')"'"~'~"' -.d -""' ... -· *!16 •bc'l' ..-.. 't.o~-'1< "6'l<o~o,'l'c'l'ro 
- co\,.c )S'..,.tcr - d ) .ot\. ~•be '1'( 25'~ 'fQ"J 

.. .l['ii'"'<t'"-:1•'')"'" ;; "' 31 • • _. 'c• , ... 
~'l"'' ( _ ¥ <'\ "(' ,.~t yf,o~ T '!.tAd(< )'l<ol .1. ~'' "(, '\',j 

•i 'i-" (¥'''~ ,~··~"-~,.,.¥·~ 2ht'~2··"•''h" "<¥ "( "':1 1 d 0 o'o tc ,., 't'~ 

_.!. "i..~,,"( "'.J ;;: ( .. ,¥ .. 1"6"'~)'-"e 
· ,r, <• \..: • .!e ~ .. ' '" 

1 [- r be -d ..., ...,.c, 
-+ - l "'~-••• "( "/. e 'I '• 0 r r l!o .r 

- rs b< -d elo - "',.J"6 "/. e"f. r, lrs"f. • 

.. .1 1 "t'· "' .. ~, ;:; "'( "f..f~ 1 "' .. , ~ •els rs 
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SUPERGRAVITIES IN 5 DIMENSIONS 

The supersymmetry transformation laws are given by 

:5e r - -. ,.~ "'"' 
J.4. - L t=' !J \)O>Q. 

~"" <"'\)" (- - • ) 
V <d o ~PJob ::. -2 i\""2 ~ 'l(be.l) +! -l2t•b E..,"' cd) 

'b A·~ - 2 · t"11 (c; • .yb ..1. E: y; r-t.•~) 
,._ -' "'1 "1.-,.+212- c_,.. 

1 • )~" b - ·""'- r •) b b'\',.. .. =,o~Lw o.+~. )6b-~Frs.sl• ~·2Y~ € 

+ifi(?.€"'1'''1< €."¥''1'' ...-"f.~) J; ~ obe- ,... r &c 

'2)- •lo<d - • -..!.. 1'1(,.+ 'r;. ~J 'l<.~o.ll'')C - ,. (l ..... "' 'f. .., ......... 
12 i2 C4".-.. dlr,._rJ. ~Lt " 

"" d ('~-'\. .... ~ ~"t.,c. :U P...,ob<.lC- :i '6 (Frs,_o~<)+~~bFrHjdeJ 
.... ~·· 

- 1' -,fJ 
-t>Lli[ 3€~")(~&- ")(b<J~ -£~· "):!d@..Jl.h<l 

~ - I ~ ~ -lfd r ~ E ~' "((")(...,!+"'-"f. 'f"f-1..,.._, - r 2 t• -, :!. • -r-., 
-,1 ..,., r -,IJ rs 

ti¥rs~') t•' "'Xb9P- ~~"' Y "!~~~ 

with : 

" • ·r-·r -·'( -. 1 · _...,. "'~,.= ......... (e) .,.1 '~'~ s'Yr.-'l'r ,.'l', .... '!',!','l',..c;,:~ ~ .. .,. .... 
" - 3 - e ) ~.1,.1 = ':.~,.a + 2ii'2 t 'f~!o- 'llbed) +;; ~ '1'(,"1- cd] 

F('",l, : Ft<ol, - 2i[ if(!< '1'.~,1 .,. i .!10 1, \f<''l'.-c-* 'l[:"~'.-]''l..~ J 
Let us note that since p·'dt/ has no component in USp(S),~.M&b 
is supercovat'iant by itself but ~ llllotcl is not, 

The fermionic equations of motion are : 

, ""( .., '" _.: p v~"yr bed . .- f ~F be - ... 1f ~ ,,.. + - .... b.J • 'X ... .i. "& r 'lC.,, • 
3~ +fz "' 

- :1. ( .L yfJ'~ 'f"'r") 'lC.~.,: 'ilbJ~~. "'Xc cle = 0 
~·~ G 
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· v•-' N ' v~v ("'J F"' ) ~ 0 o23.,. l'o.b.: T ~ o f\ (a.b ,....., c]J - 7roce ~ 
6 ,.. 

~ ' "' - ·'· t• - V' .• ~l-- Zol ¥ ')(•(...>, "f,'3p1¥r '1. "-¥ "f.o~e~ 'l:qld'~"'"' 
1 -AO"' ;::; vt'" N .. ~~ J - Q + 24- ~. 1'.,.\,c ,. ef!J o "' - Tr·~ -l:c -

"' ~ ..0~ lf'v).a. and ..0,..... "1 .. ~ are supcrcovari.1nt extensions of ~t.\'YJ.Q.. 
and O...,."'t .. \.( defin.cd such that their variation by supersyiiUlletry has 
no derivative of!:. 

The algebra of supers~mctry is given by 

['be:,> 'bE) = 'b« l ~) .,. 155 ( e').,. 'be 12" l ;;;IIS,t~Y'~ ~) .,.'ii,"J \ v"") 

with 
1 . -c ... 
,...::-c.E.., o~€.2 c 

~'·= -!.'<f~.,. i2 (>~ •• •,e~·\r-G,._'t(E,.."J(·><~() 
'2. ~~_., '" -•(v•~ "~)b 

rs== Wtrs .,..!:.. r.,.l)"a.bfl 0rs +~\: ~.s. t2. 
' ?. ' 

1 - '6 -· t"'-b'd - <:;; cSlA fs,~ 4b " C.d ~ 

"' - -G. ~... bc.d +f. <e,. ('ir,!, .,.,,, ?,. )e2b 'X cd o "' 

1\ b _ c<" 6 _,.[IE: t•');~rd<!_?. Jib'z "'""f) 
o.. - ~ T t.... - \ t - "'2~ 

~ ,_ 
•(6 "f. ' - " ~) J '1" cde] +;; ~~ E,~ e~ -e1eof, 

o1~ ~ "~ ::;.." -4 6 
U ;=-~ f\~ ..-2i ·u ~!, <£, E2 

\<Je have seen that the conjectured E
6 

global ® USp(8) local was the 
clues to construct the N=8 supergravity in 5 dimensions. There still 
remain some complications in the quartic ferminnic terms. This C011ld 
be a sign that there is still some structure to be discovered. Wl' 
can hope that it would be easier to discover it in 5 than in ~ 
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dimensions. Another problem could also be more easily solved in 5 
dimensions : the construction of the multiplet containing the conn­
exion of USp(8) ~ • b . This is of crucial importance in 4 dimen­
sions \o'here we conjectured that the local SU(8) could become dynam­
ical at the quantum level (Cremrner t. Julia, 1979, 1980). Some con­
jectures have been made on this multiplet \o'hich could lead to a grand 
unified model based on SU(5) \o'ith 3 families (Ellis, Gaillard, Maiani 
& Zumino, 1980; Zumino, 1980). 

6 SUPERGRAVITIES N=6, 4, 2 

In order to derive supcrgravitics N=6, 4, 2 from N=8 by consist­
ent truncations, it is useful to choose a particular representation 
for ..2.c:o.~ namely 

0 d 

52.~., = I 't~f 010 
. l~ 0 

We shall describe the consistent truncations for N=6, 4, 2 and give 
the complete results only for N=Z. 

6. 1 N=6 Supergrnvily 

The invariance of the theory is su::(6)global x liSp(6). t>e note 
by a. =1 ... 6 the indices of USp(6) and bye\ =1 ... 6 the indices of 
su::C6)b we ke1f the ;~elds1}~7s· ')(o.\:.c., "'f.q_ 78 , A_..."' 11 , :}} , "'•r • 1'1)-"'78 • V""fl and 78 . (For 1r we have <llso to usc the 
loca USp(8) 1nvariance before making the truncation). We must take 
the traceless condition for N=8 into account 

2 Jl. A 78 
78 ~ ... 

this implies that for 
q and P remain 

-l(l S2,r- Ar 

v·•u v p 

b 
<\) >'-~ .) f' 

.J-4 .... bc.d ) 

with the trace conditions 

• 0 

(N=S) only the following components 

t:.b;s ( ~ H•~) 
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6b h ,. p 
J'2. ..J" _.,.bed = 0 

alop 0 
l ..n. ..... ~;, = 

.\o f' 
.52. ......... t.c::.d 

'f~ p + 2 .5l ,.. ~sed :0 

and ~-~G-J totally antisymrnetric : this is equivalent to an anti­
symmetric ~ .. b traceless which can be identified to ~.lo"l:~ cor­
responding to the 14 scalar fields ( f;...J,cJ N C...~cddl' r ... ~~ ). 
The theory is invariant under the N=6 supersymmetry obtained by 
restricting € to 6 ct (C7=,s .. o), The content of the theory is as 
expected I gravitoo ~,. , 6 gravitinos c..t' .... 4 

, 14+1 vector fields 
APw~, \4+6 spinor fields and 14 scalar fields, 

6.2 N=4 Supergravi ty 

The symmetries arc (USp(4) x ~global ® USp(4)local. We keeplt' 
(c. •1 .•• 4); p.;f\ ( cJ. =!.,.4) ~ ..... with the condition "" 

·~ A"' Sl."'l' ~_,.. + lt .!2s6 ,. = 0 

as well as A~ 78 ,\,.fined for N=6 in terms of A olj1 and A 
56

. ln the 
same \o'ay \o'C keep r-r.,~o.;: and 'l's,c:." ("';( 4 ~'d being f~ction oft he previous 
ones) .... ith the condition 

c.b 1. '' rv ..Q. ']:'~be +lf".J2. "s'c = 0 

d 
This corresponds to 4 spin 1/2 since ""f.aloc N~J "'/.. from 
which we deduce "'t. s~c ....,'A,, On 'V 1111 .. .b we make the same truncation 
as on Apolj1o. This implies, for ~...J..cd and~ '"'d , the relation 

~b p s~ 
.,n. .J.<.o~cd+Lt.sl. ~scad =0 

This corresponds lO 1 scalar field : ~ a\u·J N E'~,J <P 

\, ~ .~.. N .Jl...lo "' 
The rema-ining Q.)A..,. has the form V~t:l .... V" .,.,here V" is an elem-
ent of USp(4) and therefore being a pure gauge it can be reabsorbed 
by redefining the fermionic field with the USp(4) transformation 
The theory is invariant under N=4 supersymmetry with parameter Ec. . 
The content is I graviton, 4 gravitinos, 5+1 vector fields, 4 spin 
1/2 fields and I scalar field. 

6.3 N•2 Supergravi.!.l. 

From N=4 we keep ~a. 

_n.ob fl;o. .. b -T 

(A- •1, 2) AJ"- 0 bwith the relation ,,. 6 .n A.,.,,. = 0 
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11 •b There is no ')(o.bc left and we can replace c<(l by 
truncation can also be directly made from N~s. keeping 
A,.....~_., , A,....s~ and A.-n with the relations 

"1". The 
cfJo4.-.J A,....,z • 

I 
AP.78 * AP-56 .. A.,....34 •- j A./>412 

After renormalization of the 
Na2 supergravity with field 

vector fields we get the Lagrangian 
aP."J 'fJ-'-4 (o.. •1, 2) and A.J-'-. 

e:•i =- :tRCw)-! <p·~··cl> <'<!9)'/'. _! F...Ffd"13•" ... 2 .... v a. '"' '+ ..... 

with 

and W 

+ e"" c"'"1'"~ F. r. .. A~ - m c~ ... t,) if 1' 'it~··~<:~ 't':: 6~ ~ ~6 

"' F..,, = '5,.., - < ,!J ..,... '!! '1'_... 'tie ,. 
is given by the 1st order formalism if ~ 

-" 
W ..... f"S = W... rs 

·-e., .. -+ ~ Y' o,.rser'f' ~ + 

is defined as 

After solving the equations of motion for tu we get, as usual 

...... 0 • (14 -4. ,7J'4 ) '"'~,...::. w..,,...C<>)+ ~\'/'- t,<Yr .. -'i',~Y'..,+'fs tr't. .. 

'"' 

is invariant under the following N•2 supersymmetry transform-at ion 
< r -•l(ru-oe..c4 = - i. 6 l,....a. 

'i>'l',. .. ::. [c ... (w) + tf~ Fe.-CY( .. ~-~-z-r~:)J E .. 

!> A"" :: u G" 'f 4- ....... 

All quartic terms are contained in the replacement of w and F 
by ~ and Eif in the bilinear fcrmionic terms. We note that N•2 supcrgravitY in 5 dimensions has exactly the same structure as the N•l supergravity in II dimensions where everything comes from. This should be compared with the partial purely geometric results obtained by D'Auria & Fre, 1980 ; D1Auria, Fre & Regge, 1980 for this N•2 supergravity in 5 dimensions. 
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