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WHY S DINENSIONS 

In supersymmetry the consideration of theories in dimensions 
D :> 4 has been very fruitful. In particular the supersymmetric N=4 
Yang-Hills theory has been derived from the N=l supersymrnetric Yang
Mills theory in 10 dimensions (Cliozzi, Scherk & Olive, 1977 ; 
Brink, Scherk & Schwarz, 1977), More recently, starting from the N=l 
supergravity in II dimensions (Crcmmcr, Julia & Scherk, 1978) the 
N=8 supergravity in 4 dimensions has been derived with its unexpected 
symmetries E7 global x SU(8) local (Crcmmer & Julia, 1978 and 1979). 

l.'e Would like today to conccntrille on supergravities in 5 di
mensions for essentially four reasons : 

(i) For extended supergravitics (especially ~·8) the structure 
is simpler in 5 dimensions than in 4 di~ensinns because all the 
invariances are inv;lrianccs of the L1grnngian instead of invnrianccs 
of equations of motion. (This is related to the duality tr.1ns(orm
ations on vector fields for the theories in 4 dimensions). This could 
therefore lead to a better understanding of these extended super
gravities. 

(ii) From the theories in 5 dimensions we c.1n obtain spontaneous
ly broken supersymmetric theories in 4 dimensions by a generalized 
dimensional reduction (Scherk & Schwarz, 1979). In particular, 
spontaneously broken N=8 supergravity \o.lith 4 mass parameters has 
been constructed in this way (Cremmer, Scherk & Schwarz, 1979). 

(iii) The knovlcdgc of the theory on-shell in 5 dimensions allows 
one to have an off-shell formulation in 4 dimensions modulo some 
differential constraints on the fields using the dimensional re
duction by Legendre transformation (Sohnius, Stelle & West, 1980), 
In particular, an off-shell formulation of extended N~S supersymmetry 
has been derived (Cremmer, Ferraril, Stelle & West, 1980). 

(iv) From the ''Lagrangian builder" point of vie!J it shows how 
the conjecture of the bosonic symmetries allows one to construct 
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the complete theory up to a few coefficients. 

The plan of my talk will be the following 

{I) I shall give some notation and definitions of symplectic 
spinors in 5 dimensions, 

{2) I shall give the particle contents of all supergravities in 
5 dimensions. 

(3) I shall briefly recall some facts about global and local 
symmetri~s in supergravity. 

(4) The main part of the talk will be devoted to the description 
and construction of the N•8 supergravity in 5 dimensions. 

{5) Finally, I shall give the consistent sets of truncation 
which lead to the N•6, 4 and 2 supergravities in 5 dimensions. 

2 SYI4PLECfiC SPINORS 

The metric of the 5-dimensional spacetime is 

?r,. = (~ ,-)-,-.,~-) 

TheY matrices are defined by their anticornmutation relations 

{Yr,'~'>! = 2 h 

'loJ "(1 J ¥l..J Ya 
2
are the same as in 4 dimensions and are pure 

imaginary. Since ('5''l) • +I we must define 

'('+ =A. Ys which is real. 
This shows that there are no Majorana spinors in 5 dimensions. 

Yo and "t''i' are antisymmetric and ""t,.J ~~.) l"~ are &}'1111!1etric. 
The five '11 matrices are related by 

"'( r,t~v- =- E,.,t""v 

where "'('r~t' ..... v-- is the totally antisyrnmetric product of "'lf r ¥~ 
)(" Y..,. ~.,. and f "~t.._,; is the usual Levi-Civita symbol with 5 
indices { t 01234 .. +J). 

In 5 dimensions the N extended supersymmetry algebra can only 
be defined for even N and it has a natural isomorphism which is the 
USp{N) symplectic symmetry (compact) 

( i'i' r.>b l - ..!1. ~b (¥"') ? 
t•~)"'"pJ- ~ ...... 
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(/'""• 0 ... 4; c( • 1 ... 4; ct.• J.,,N) 

The charges 
generalized 

C? ~ (and consequently the 
Majorana condition 

spinor fields) satisfy a 

where c~ 

.. I> 

.. ,-,• .. 
c:;> o< = C.s '1'"' 

satisfies cs ¥,..c5-' 

q" = (9:fl(. 
t 

= 't_,. 

..S't is the real symplectic metric and is used to raise or lower 
indices 

b 
<;> .. = ...Sl.,.b q 

- -'<> 
from which we deduce 9o. : .l2. o.'b q =- I!R"t' '6'. 

We can choose C5 : --6o 1{5 , In this case the symplectic spinors are 
defined by 

'\>" =- '"lfs \.9 .. )" 
From these definitions we deduce the important property of bilinear 
expressions in Fermi fields : 

- ~ b - "f..b'l. 0 U/~ 
l.\' 't)>, • • •. '6'J'M '/( - }'M .. • • p, O ... M 

) 

Finally let us give the Fierz transformation in 5 dimensions : 

6,.cz. 6a. £4 -::.- ~fl.., e., f:3 E.z + ~ ... l,E'.,. E.!o y~" €.2- i ~,. Yr:f:.4t E~ 1~"!.t2~ 

3 SUPERCRAVITIES IN 5 DniF.NSIONS 

The physical st.1tes of 2N extended supersymmetric massless mul
tiplels in 5 dimensions arc classified by USp(2N) (compact) as the 
states of the massive multiplet with central charge in 4 dimensions. 
It is the 5th dimension which is related to the central charge in 
4 dimensions. 

In the simplest multiplets, the representations of USp(2N) 
appear are the antisymmctric and traceless tensors ~0~~ • m 

,..., Rc.bc.,, rn 
-IL ~b .:: 0 

which 
wi lh 

with m ~ N • For N < m~ 2N an antisymetric traceless tensor is 
autom.1tically zero because the Levi-Civita tensor with 2N indices 
cnn be vri tten in terms of Jlo.b 
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EA...,tt.1 .... a.Z~<~·..,a.lN rv ..!lr ...... a.2S?.,b • ., .... Jlca Q,. ) 
L ~ ...... ,lN 

The fields also satisfy the same kind of generalized reality condi
tion as the spinor charges 

A "" ,.. 
~ a.bc. 

= (A,. ,b)"' 

-o 5 ("f..~·< ) * 
The lowest spin supermultiplet for 2N supersymmetry has states 

from spin s up to s=N (SU(2) is the little group of Lorentz group 
in 5 dimensions) and has the following content 

s=N s=N-1/2 s"'N-1 ,.o 

<\> t• <jl•b 4>tl~ .. a..,.,. 

c.b ..• 
where all~ are antisymmetric and traceless. 
Other multiplets can be obtained by combining this multiplet 
states of angular momentum J and an arbitrary representation 
USp(2N} (Ferrara & Zumino, 1979). 

with 
of 

This allows a simple construction of the representations of ext
ended supergravities in 5 dimensions. They are given, in the follow
ing table, as well as the lowest spin supermultiplet. 

' 2 3/2 I I /2 0 group 

N=B I 8 27 48 42 USp(S) 

l I 6 
I 1,+ l 14 I +(J ,,, 

f USp(6) N"'6 
(J·j>®ll 6 " 14' J 

l {J: I) 
4 I• I 4 

N"'4 \ l1Sp(4) 
® {I '• ;] 

l I 2 I ~ USp(2) N•2 
(J"'~) 

2 ® I I 2 I 

As in 4 di~cnsions the N•8 supergravity multiplet is also the 
lowest spin supcrmultiplet. 

4 C!.OBI\1. A~D LOCAL S't1-NETR!ES IN SUPERCRAVlTY 

The dimensional reduction shows that for m..oximal extended super-
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gravities in D dimensions obtained from N~l supergravity in II di
mensions (Cremmer & Julia, 1979 ; Cremmer, 1980), the theory is in
variant under the product of a non-compact global group and a compact 
local group 

SL{II- D,R)global x SO(II- D)local 

SO(II- D)local acts on Fermi fields and scalar fields. 
SL(I I - D,R)glohal acts on tensor fields and scalar fields. 
The scalar fields which come from the metric in II dimensions arc 
described by the coset GL(II- D,R)/SO(II- D) {after a Weyl re
sraling). We expect that all scalar fiPlds can be described in this 
geometric way by a coset G/H (i.e. a mHtdx of G defined up to a 
local transformation of H) as the vielbein e~ is described by 
the coset GL(D,R)/SO(D- I, I). If G is non compact, there is no 
problem of positivity if II is the maximal compact subgroup of G. The 
symmetries G nnd H can he conjecturc,d by simple counting arguments 
if we remember thnt H is the maximal group linearly realised on all 
fields. (This II is the diagonal subgroup of G 

1 
b 1 x H1 1 J 

H H ~ H) g o a oca 
global x global · 

We shall give belo~.o.• the content and the symmetries of maximal 
supergravities in 0=9 ... 3 after duality transformations which convert 
a p tensor field into a (D - 2 - p) tensor field 

0=9 

I er 
~ 

D-"8 

1 e; 
0=7 

1 e r 
~ 

0=6 

I e r 
# 

0=5 

1 e; 

GL(2, R)global ® S0(2)local 

2 1.\' , lAP"( ' -r 2A _.v • )A_,... , 4 A , 3 scalars 

E)(+
3

)=SL(3,R) X SL(2,R)global ®[SO()) x S0(2)) local 

, 2lf,..., JA_..."~, 3A,;A'( , 6A_... 6 ~ , 7 scalars 

E
4

(+
4

)=SI.(S,R)global ® SO(S)local 

, 4 '-t.., 5Apv , lOA./"' 

ES(+S)=SO(S, S)global (81 

, 4~, ~, .16A_... 

16 "f. 14 scalars 

S0(5) x SO(S) local 

20 -y, , 25 scalars 

E6(+6)global ® 

8 ~ , 27A_,. 

USp{8)1ocal 

48 "f. , 42 scalars 

0=4 El(+7)global ® SU(8)1ocal 

1 e; , 8 lf,.. , 28Ar , 56 "f.. - , 70 scalars 

O:J ES(+B)global ® SO(I6)1ocal 

1 e; ' 16~·- 128 '/<' 128 scalars 
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Let us note that in 3 dimensions there is no degree of freedom for 
the graviton and the gravitinos, The underlined tensor fields need 
duality transformations to form a representation of the global group. 
The global symmetry will not be a symmetry of the Lagrangian but only 
of the equations of motion : the symmetry will exchange the Bianchi 
identity for the field strength of the tensor with its equation of 
motion. 

It has been seen that in 4 dimensions, for all extended super
gravities, the scalar fields are described by a coset, the local 
symmetry being U(N). In the same way, we can conjecture that all 
extended supergravities in 5 dimensions have a global sy.Rmetry G 
and a local symmetry USp(2N), the scalar fields being described by 
G/USp(2N), This gives the following table 

N•8 

N•6 

E6 (+ 6)global ® USp(S)local 

su::(6)global ® USp(6)local 

N•4 USp(4) x R global cg) USp(4)1ocal 

N=2 USp (2) global ® USp(2)loca 1 

5 N•S SUPERGRAVITY IN 5 DIMENSIONS 

As we have seen, the free partie!\ ~pectrum is described by the 
fields ~~" J I}(,.. fl. J A """•'b 1 "(..Jo,. and ~· ' where o. •I.,, 8 and these 
fields are pseudoreal in the sense previously defined, completely 
antisy11lmetric and traceless in the internal USp(S) indices. 

We have seen that we expect the theory to have a global symmetry 
E and a local symmetry USp(8). Let us first briefly describe E

6
• IF has 78 generators and the fundamental representation has dimen

sion 27. We are interested in the non-compact form which has 42 
non-compact generators and 36 compact ones which generate the max
imal subgroup USp(S), The 27 representation acts in the vector apace 
spanned by r~t\ ( t:/

1 
(1 • I ... 8) such that 

2 J~ ; - ~ ~~ = l2·~l' 

.n~" -z"'l'> = 0 ) i!_,l' = .n., • .!'2~· 2 "IS 

and the infinit~simal transformations of E
6 

are given by 

o "2 ~":: "" r zYI'_,. 1\fl-t ~"· -t 2'"1' t' c-t, 
~ 

where " "t 
metric and 
real 

is .1n ·antihermiti.1n matrix such that 1\c~..l( is sym
'!t:.Lf\J'S is totally antisymmetric, traceless and pseudo-

z ~P><f ,... )* 
::, \.,4 Mj\ -~ 
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The.!g is no quadratic invariant for 

~I\ 2o<~ is not invariant for 

from 27 x 27 where 27 is spanned by 

E
6 

: 27 x 27 f) 1 in particular 

E
6

. We can form an invariant 
~~~ 

?"'" =- ?"C' = - ~2~~)· ' 
- ~r 

.n..,~ c = 0 

which transforms under E6 by 

c( """tt\ ~ - ..-): .._...tn,l'5""' 

bz"~ = /\ "z ...,.f'\ v? -«- ~n 

~~ 2_<>1flo is an invari:mt under E
6

• 

Both 'i.tl'- 2'.,.1\ and ~I" 2-.,(1. are invariant under the subgroup 

USp(8), There exists a trilinear invariant for E
6 

: 27 x 27 x 27 •\+ .. 

~f' -.f £" 
J":.% .!21'12 .!2Hz. .)2>-o< 

These properties of E6 
are all we need to obtain the general struct

ure of the theory. 

The fields of the N•S supergravity are : 

-the graviton e r, an element of GL(5,R)/S0(4, 1) 

- the 8 gravitin;s t., CL '"'hich are in the representation 8 of 

USp(S) and singlets fnr E6 
- the 27 vector fields A;!..(6 which are singlets for USp(S) and in 

the 27 representation of E 

- the 48 spin 1/2 fields ~--~ '"'hic:h are in the representation 48 

of USp(8) and singlets for E
6 

1$.1:1 

- the 42 scalar fields •,.:i 11 be described by an element Vol(\ _ 

of the coset E ( 6 
/USp(8) {78 - 36 .. 42). It transforms as 27 

under E
6 

and 29 tn~cr USp(8), The indices r:JJ f.> =1 ••• 8 are the 

'curved' indices ot E6 
and o.., P =\,. ,8 are the flat indices of 

USp(S) and 'V'd~ 0 is a 27-bein connecting these two groups. 

The self-interaction of the sc:alnr fields is des..:ribed by a non 

linear 6" -model associated to the coset Er/USp(8) am\ therefore by 

the Lagrangian 

" where 'It' 

i 5 N 
oi .~ "" "t J/1 

D~ ,(~ D V ob 
Tr (:;; D,.. V' )

2 

is the inversC of 1i' 
N o!(> •,. <./ G ,j d C J 1_ cd 

IIi o.b ·v"f'> = ~ ('i.~ ~b- "~ ~, + ~ n.~o n 

0~ is the covariant deriv'htive with respect to USp(B) using the 

associated connexion SJ..,_ o. • Since there is no kinetic term for 

Jl~"'b we can solve its equations of motion. Since 'It' is an elem

ent of E
6 

we have the following decomposition for 'V-'~,...'11' 

which is 1n the Lie algebra of E6 
N Jf' b 

'I) <J ;),.,. 'It,.~ .. = 2 cv "' b1 
J'o(< 'i &J 

f' o.b 
"1' #- eJ 
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where q,... cA. belongs to the Lie algebra of USp(8) 

in the orthogonal part to USp(8) {with respect to 

For .Q./"- we get 

.52 b ,......... = c;>_,. ~ b 

The Lagrangian then becomes 

z 
1.5 N \ P~ ~"<J \ 

and 
the 

~ .-..bu/ is 
Killing metric). 

b 
C\?....o. nnd ~ .. ~(J arc obviously inv.1riant under t:

6
. 1f we restrict 

ourselves to th(· sc;l1.1r fil·lds, .1s in th" c.1Si.' of ;;em•ral relativ

ity, we tan describe them hy n metric 'f}o(l.
1
t'f inste.1d of the 27-bein 

~I'.,;. (to be corr.parcd to ~ ... .,. and e_.... r). The metric is invari

ant under the local group USp(8) and covariant under E
6

. It is given 

by 

~o(~, t! = .)- .. b cd 
"I' J2 .. fl-oJ '\lr• 

and is characterized by the property 

'J,~~, tf = 'J H, -<(l 

The Lagrangian is then written as 

js rv '"() a v·(q·')"at> 
)J- d't>IP I '(f u rJ I 

T~:is r::c-·tric :oust also bt• used to describe the interaction of 

the v~ctor fi~lds since tl•ere is 110 quadratic invariant for E
7

. The 

generalized "kinetic" ter1:1 fc,r tl•e vectors is then given by 

dv' "' 
a F ~~ f 11 >-( v~ 

d'oo:;(l.) lt »V 1;'1' j 8 
/,sin 11 dim(•nsions tht•rc illsn exists il trilinc.H- i>lUj;t• invari,lnt 

('nupli11i'. (up tc' n tr"~ta\ derivative) of the vr~cturs which is required 

hy SIIJH'rsy:!::wtry. Sinu~ thvrr• is :1 trilincnr Eh invarinnt J, we do 

not n<·ed the scdnr 1wtric (nor the metric tensor 'i}_...v ) 

,..v~¢A (\"6 'i.~ ':lo( 

iv' N ~ :;/."'~ s.. n-<,F~~ SL,, A, 

Th<c cmqd i:1;·.s to tlw fl·rr~ions can no longer be described by the 

rnl·trit, l'IJt I'<.''J'Iirt.' tL<c 27-b(·in'V' , Tbt• "kintetic" terms for the 

fermi(\:1ic fields lf',...0 nnd '")<,.1:;.< will be covo.rinnt with respect 

to tlw l"c:ll 1.(\re:\lz grn:lf' S0(4, I) ... :i~ll tlll' cc,~nexion w.....,.,.. 5 
and 

tbe local );roup USp(8) t.'llh lli.c conncx1011 C?....-o. 

0 'l' ~ IIJ ~· r.. • , "' • ) b 
.#- ~ ;::. \ ,.._ b - 'r,_.. b -t '4 LV,..f'S '( ~ b t~ 

0 "!•""- _ I 7J 0b. _ 3n [, o!. w yrs 1A ) ...,bgd 
.)." - \ ..... a "Y;.o. 6 -t lt- ..... c-s 0 d 1\ 
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As usual there exists a Noether-type coupling required by super
symmetry 

p a\,cJ u; ~'""""i. ~ I J"'a. 0 bl:.d 

The coupling of fermions to F~v«~ must occur only through the E
6 invariant (and scalar unde-r the general coordinate t-ransformation) 

F 4-0 V a.b F «r;, ""' v 
r''i. = clf3 ~" e r e s 

Let us note that c/-v'2 can be written as 

iv• "' (Fr:b / 
F .b . 

but ..-~ 1n no longer a curl. 

Th<:! supersymmctry transformation laws b~ arc conjectured to 
be covariant with respect to USp(8) and E

6
. Therefore 6(. and S"lf> 

are now defined up to numerical coefficients, quartic fermionic terms 
for ci and trilinear fermionic terms for b LJ";..<t and b"f.a.~tx:. . 
In particular all Lhc tlOn-polynominl structure in tl1e sralar fields 
is fixed, Supersyuun£!try is used to get rid of the remaining arbit
rariness. 

(i) Numerical coefficients (and Lorentz structure) in bt.y andb'j 
arc determined by checking the supersymmetry invariancc of if.. in 
the terms of the type € 'f .J e "'f.. 

(ii) Quartic terms in of <1nd trilinear terms in ~If and ~1-
are determined in two independent ways : 

- we require supercovariant equations of motion for fermionic 
fields 

- we require the closure of the supersymmetry algebra on the bo
sonic fields 

[~~,'<.1 = 'bG .,. Oe' +~c.,. 'iiv<p<~l.,. bo<~J 
where ¢G is the general coordinate transformation, :;l:J a new 
supersymmctry transformation, ~L. a local Lorentz transformation, 

~ u- (R) a local USp(8) transformation and OVCAJ an Abelian gauge 
transTgrmation on the V<_>c::tor fields. At this sta)~C only the "f..'t 
terms i;~ el. are still undetermined, They arc determined by checking 
~J in the terms of the type 6 '1-1 or by looking at the closure 

on fermionic fields which requires the fermionic equations of mution. 

The Lagrangian is then written, (we have put K•l) 

.J • - • -"'f .. ~ o-"Co'"a F"~ P. vi e--1ot = .. ; R('-'J)- i lf_ "{ Dv lfCL - 'i a d <t.qo,,-.:i ,PV fq 
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. -o\, ~ J>V P. P. ..... d 
.. .._ "1. "t D~ "f..~.c .,.. ~ ~ ..... 1ocd v 

e·l ~~Vf<X ..- )~ IFf. IL ,, )"( • -• ,. l<d 
- _ c (r,.. ,. '1.~.-) "i If'-" ,. .. ..!.. l{.~ocd t rtr 'X 

'I~ gr, 

',,.bF'"{-t "( t•'t. '\' .. i. ru<..-tf"' :1. ~ ¥"'"'"'1 -1-lf -"'/\ ~v 1.1' 4. , rl b + '12 ,. ( • •be T '1 ..c<O l"o 

-t<·lf~ 

c/lt represents the quartic fermionic terms, Except for the 'fit 
terms it !,.s not euough to replace w_rs.J P1.,.\oc.G and F...b by 
~) '!:i£1 .> ~ (...., means supercovariant extension) to 
reibsorb2.all th~qunrtic terms. For completeness we give 4 below 

-•~ .r-<•""'' n.~bv -c· rsw• -~~ ,, 1 C: «o," • ij;l 'l' ' ,C• 1 •r, '\'~h- 'f 'I \ 4 ~ ( •rs "'rb 

e·l f ... v(',.>.- 4. - b -1 - eQ. II' -'o UJ 
.,. ~ '~'c '1'.-4 'l'~ "6,'1'..,"- ;r '!' 'l'. 'I' c '~b 

-. i [ q e·~> ~ •• ip~ ~ .. '~-cb -2 ;:yc•"6.,.'f'r4 'i'~b"(il -~'fb) 
.1. "i~'" y~ "('~ '" ;:;:; 'Y. + '2'f'1 ~~c. -. C• C"'b 

i [')"'"~'~"' -.d -""' ... -· *!16 •bc'l' ..-.. 't.o~-'1< "6'l<o~o,'l'c'l'ro 
- co\,.c )S'..,.tcr - d ) .ot\. ~•be '1'( 25'~ 'fQ"J 

.. .l['ii'"'<t'"-:1•'')"'" ;; "' 31 • • _. 'c• , ... 
~'l"'' ( _ ¥ <'\ "(' ,.~t yf,o~ T '!.tAd(< )'l<ol .1. ~'' "(, '\',j 

•i 'i-" (¥'''~ ,~··~"-~,.,.¥·~ 2ht'~2··"•''h" "<¥ "( "':1 1 d 0 o'o tc ,., 't'~ 

_.!. "i..~,,"( "'.J ;;: ( .. ,¥ .. 1"6"'~)'-"e 
· ,r, <• \..: • .!e ~ .. ' '" 

1 [- r be -d ..., ...,.c, 
-+ - l "'~-••• "( "/. e 'I '• 0 r r l!o .r 

- rs b< -d elo - "',.J"6 "/. e"f. r, lrs"f. • 

.. .1 1 "t'· "' .. ~, ;:; "'( "f..f~ 1 "' .. , ~ •els rs 

II 
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The supersymmetry transformation laws are given by 

:5e r - -. ,.~ "'"' 
J.4. - L t=' !J \)O>Q. 

~"" <"'\)" (- - • ) 
V <d o ~PJob ::. -2 i\""2 ~ 'l(be.l) +! -l2t•b E..,"' cd) 

'b A·~ - 2 · t"11 (c; • .yb ..1. E: y; r-t.•~) 
,._ -' "'1 "1.-,.+212- c_,.. 

1 • )~" b - ·""'- r •) b b'\',.. .. =,o~Lw o.+~. )6b-~Frs.sl• ~·2Y~ € 

+ifi(?.€"'1'''1< €."¥''1'' ...-"f.~) J; ~ obe- ,... r &c 

'2)- •lo<d - • -..!.. 1'1(,.+ 'r;. ~J 'l<.~o.ll'')C - ,. (l ..... "' 'f. .., ......... 
12 i2 C4".-.. dlr,._rJ. ~Lt " 

"" d ('~-'\. .... ~ ~"t.,c. :U P...,ob<.lC- :i '6 (Frs,_o~<)+~~bFrHjdeJ 
.... ~·· 

- 1' -,fJ 
-t>Lli[ 3€~")(~&- ")(b<J~ -£~· "):!d@..Jl.h<l 

~ - I ~ ~ -lfd r ~ E ~' "((")(...,!+"'-"f. 'f"f-1..,.._, - r 2 t• -, :!. • -r-., 
-,1 ..,., r -,IJ rs 

ti¥rs~') t•' "'Xb9P- ~~"' Y "!~~~ 

with : 

" • ·r-·r -·'( -. 1 · _...,. "'~,.= ......... (e) .,.1 '~'~ s'Yr.-'l'r ,.'l', .... '!',!','l',..c;,:~ ~ .. .,. .... 
" - 3 - e ) ~.1,.1 = ':.~,.a + 2ii'2 t 'f~!o- 'llbed) +;; ~ '1'(,"1- cd] 

F('",l, : Ft<ol, - 2i[ if(!< '1'.~,1 .,. i .!10 1, \f<''l'.-c-* 'l[:"~'.-]''l..~ J 
Let us note that since p·'dt/ has no component in USp(S),~.M&b 
is supercovat'iant by itself but ~ llllotcl is not, 

The fermionic equations of motion are : 

, ""( .., '" _.: p v~"yr bed . .- f ~F be - ... 1f ~ ,,.. + - .... b.J • 'X ... .i. "& r 'lC.,, • 
3~ +fz "' 

- :1. ( .L yfJ'~ 'f"'r") 'lC.~.,: 'ilbJ~~. "'Xc cle = 0 
~·~ G 
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· v•-' N ' v~v ("'J F"' ) ~ 0 o23.,. l'o.b.: T ~ o f\ (a.b ,....., c]J - 7roce ~ 
6 ,.. 

~ ' "' - ·'· t• - V' .• ~l-- Zol ¥ ')(•(...>, "f,'3p1¥r '1. "-¥ "f.o~e~ 'l:qld'~"'"' 
1 -AO"' ;::; vt'" N .. ~~ J - Q + 24- ~. 1'.,.\,c ,. ef!J o "' - Tr·~ -l:c -

"' ~ ..0~ lf'v).a. and ..0,..... "1 .. ~ are supcrcovari.1nt extensions of ~t.\'YJ.Q.. 
and O...,."'t .. \.( defin.cd such that their variation by supersyiiUlletry has 
no derivative of!:. 

The algebra of supers~mctry is given by 

['be:,> 'bE) = 'b« l ~) .,. 155 ( e').,. 'be 12" l ;;;IIS,t~Y'~ ~) .,.'ii,"J \ v"") 

with 
1 . -c ... 
,...::-c.E.., o~€.2 c 

~'·= -!.'<f~.,. i2 (>~ •• •,e~·\r-G,._'t(E,.."J(·><~() 
'2. ~~_., '" -•(v•~ "~)b 

rs== Wtrs .,..!:.. r.,.l)"a.bfl 0rs +~\: ~.s. t2. 
' ?. ' 

1 - '6 -· t"'-b'd - <:;; cSlA fs,~ 4b " C.d ~ 

"' - -G. ~... bc.d +f. <e,. ('ir,!, .,.,,, ?,. )e2b 'X cd o "' 

1\ b _ c<" 6 _,.[IE: t•');~rd<!_?. Jib'z "'""f) 
o.. - ~ T t.... - \ t - "'2~ 

~ ,_ 
•(6 "f. ' - " ~) J '1" cde] +;; ~~ E,~ e~ -e1eof, 

o1~ ~ "~ ::;.." -4 6 
U ;=-~ f\~ ..-2i ·u ~!, <£, E2 

\<Je have seen that the conjectured E
6 

global ® USp(8) local was the 
clues to construct the N=8 supergravity in 5 dimensions. There still 
remain some complications in the quartic ferminnic terms. This C011ld 
be a sign that there is still some structure to be discovered. Wl' 
can hope that it would be easier to discover it in 5 than in ~ 
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dimensions. Another problem could also be more easily solved in 5 
dimensions : the construction of the multiplet containing the conn
exion of USp(8) ~ • b . This is of crucial importance in 4 dimen
sions \o'here we conjectured that the local SU(8) could become dynam
ical at the quantum level (Cremrner t. Julia, 1979, 1980). Some con
jectures have been made on this multiplet \o'hich could lead to a grand 
unified model based on SU(5) \o'ith 3 families (Ellis, Gaillard, Maiani 
& Zumino, 1980; Zumino, 1980). 

6 SUPERGRAVITIES N=6, 4, 2 

In order to derive supcrgravitics N=6, 4, 2 from N=8 by consist
ent truncations, it is useful to choose a particular representation 
for ..2.c:o.~ namely 

0 d 

52.~., = I 't~f 010 
. l~ 0 

We shall describe the consistent truncations for N=6, 4, 2 and give 
the complete results only for N=Z. 

6. 1 N=6 Supergrnvily 

The invariance of the theory is su::(6)global x liSp(6). t>e note 
by a. =1 ... 6 the indices of USp(6) and bye\ =1 ... 6 the indices of 
su::C6)b we ke1f the ;~elds1}~7s· ')(o.\:.c., "'f.q_ 78 , A_..."' 11 , :}} , "'•r • 1'1)-"'78 • V""fl and 78 . (For 1r we have <llso to usc the 
loca USp(8) 1nvariance before making the truncation). We must take 
the traceless condition for N=8 into account 

2 Jl. A 78 
78 ~ ... 

this implies that for 
q and P remain 

-l(l S2,r- Ar 

v·•u v p 

b 
<\) >'-~ .) f' 

.J-4 .... bc.d ) 

with the trace conditions 

• 0 

(N=S) only the following components 

t:.b;s ( ~ H•~) 
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6b h ,. p 
J'2. ..J" _.,.bed = 0 

alop 0 
l ..n. ..... ~;, = 

.\o f' 
.52. ......... t.c::.d 

'f~ p + 2 .5l ,.. ~sed :0 

and ~-~G-J totally antisymrnetric : this is equivalent to an anti
symmetric ~ .. b traceless which can be identified to ~.lo"l:~ cor
responding to the 14 scalar fields ( f;...J,cJ N C...~cddl' r ... ~~ ). 
The theory is invariant under the N=6 supersymmetry obtained by 
restricting € to 6 ct (C7=,s .. o), The content of the theory is as 
expected I gravitoo ~,. , 6 gravitinos c..t' .... 4 

, 14+1 vector fields 
APw~, \4+6 spinor fields and 14 scalar fields, 

6.2 N=4 Supergravi ty 

The symmetries arc (USp(4) x ~global ® USp(4)local. We keeplt' 
(c. •1 .•• 4); p.;f\ ( cJ. =!.,.4) ~ ..... with the condition "" 

·~ A"' Sl."'l' ~_,.. + lt .!2s6 ,. = 0 

as well as A~ 78 ,\,.fined for N=6 in terms of A olj1 and A 
56

. ln the 
same \o'ay \o'C keep r-r.,~o.;: and 'l's,c:." ("';( 4 ~'d being f~ction oft he previous 
ones) .... ith the condition 

c.b 1. '' rv ..Q. ']:'~be +lf".J2. "s'c = 0 

d 
This corresponds to 4 spin 1/2 since ""f.aloc N~J "'/.. from 
which we deduce "'t. s~c ....,'A,, On 'V 1111 .. .b we make the same truncation 
as on Apolj1o. This implies, for ~...J..cd and~ '"'d , the relation 

~b p s~ 
.,n. .J.<.o~cd+Lt.sl. ~scad =0 

This corresponds lO 1 scalar field : ~ a\u·J N E'~,J <P 

\, ~ .~.. N .Jl...lo "' 
The rema-ining Q.)A..,. has the form V~t:l .... V" .,.,here V" is an elem-
ent of USp(4) and therefore being a pure gauge it can be reabsorbed 
by redefining the fermionic field with the USp(4) transformation 
The theory is invariant under N=4 supersymmetry with parameter Ec. . 
The content is I graviton, 4 gravitinos, 5+1 vector fields, 4 spin 
1/2 fields and I scalar field. 

6.3 N•2 Supergravi.!.l. 

From N=4 we keep ~a. 

_n.ob fl;o. .. b -T 

(A- •1, 2) AJ"- 0 bwith the relation ,,. 6 .n A.,.,,. = 0 
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11 •b There is no ')(o.bc left and we can replace c<(l by 
truncation can also be directly made from N~s. keeping 
A,.....~_., , A,....s~ and A.-n with the relations 

"1". The 
cfJo4.-.J A,....,z • 

I 
AP.78 * AP-56 .. A.,....34 •- j A./>412 

After renormalization of the 
Na2 supergravity with field 

vector fields we get the Lagrangian 
aP."J 'fJ-'-4 (o.. •1, 2) and A.J-'-. 

e:•i =- :tRCw)-! <p·~··cl> <'<!9)'/'. _! F...Ffd"13•" ... 2 .... v a. '"' '+ ..... 

with 

and W 

+ e"" c"'"1'"~ F. r. .. A~ - m c~ ... t,) if 1' 'it~··~<:~ 't':: 6~ ~ ~6 

"' F..,, = '5,.., - < ,!J ..,... '!! '1'_... 'tie ,. 
is given by the 1st order formalism if ~ 

-" 
W ..... f"S = W... rs 

·-e., .. -+ ~ Y' o,.rser'f' ~ + 

is defined as 

After solving the equations of motion for tu we get, as usual 

...... 0 • (14 -4. ,7J'4 ) '"'~,...::. w..,,...C<>)+ ~\'/'- t,<Yr .. -'i',~Y'..,+'fs tr't. .. 

'"' 

is invariant under the following N•2 supersymmetry transform-at ion 
< r -•l(ru-oe..c4 = - i. 6 l,....a. 

'i>'l',. .. ::. [c ... (w) + tf~ Fe.-CY( .. ~-~-z-r~:)J E .. 

!> A"" :: u G" 'f 4- ....... 

All quartic terms are contained in the replacement of w and F 
by ~ and Eif in the bilinear fcrmionic terms. We note that N•2 supcrgravitY in 5 dimensions has exactly the same structure as the N•l supergravity in II dimensions where everything comes from. This should be compared with the partial purely geometric results obtained by D'Auria & Fre, 1980 ; D1Auria, Fre & Regge, 1980 for this N•2 supergravity in 5 dimensions. 
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