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1 WHY 5 DEIMENSLOHS ?

In supcrsymmetry the consideration of theories in dimensions
D > 4 has been very fruitful, In particular the supersymmetric N=4
Yang-Miils theory has been devived from the N=| supersymmetric fang~
Mills theory in 10 dimensions (Gliozzi, Schevk & Clive, 1977 ;
Brink, Scherk &S8chwarz, 1977}, More recently, starting from the N=)
supergravity in 1) dimensions (Cremmer, Julia & Scherk, 1978) the
N=8 supergravity in & dimensions has buen derived with its unexpected
symmetries E; global x SU{8) local {Cremmer & Julia, 1975 and (979},

We would like todsy te concentrate on supevgravities in 5 di-
mensiens for essentially four resasons @

(i) For extended supergravities {especially K=8)} the structure
is simpler in 5 dimensions than in 4 dimensions becavse all the
invariances are invariances of the Lagrangian instead of invarianees
of equatiens of motion. {This is telated to the duality transform-
ations on vector fields for the theories in 4 dimensions}. This could
therafore lead to a better understanding of these extended super-
gravities,

(ii) From the theories in 5 dimensions we can obtain spontancous=
ly broken supersymmetric theories in & dimensions by a generalized
dimensianal reduction (Scherk & Schwarz, 1979). In particular,
spontaneously broken N=B supergravity with & mass paramecers has
been constructed in this way (Cremmcr, Scherk & Schwarz, 1979).

{iii) The knowledge of the theory on-shell in 5 dimensions 2tlows
-one ta have an off=-shell formulation in 4 dimensions module some
differential constraints on the fields using the dimensional re-
duccion by Legendre transformation (Sohnius, Stetle & West, 198D).

In particular, an off-shell formultation of extended H=8 Supersymmetry
has been derived (Cremmer, Fervara, Stelle & West, 1980).

{iv) From the "Lagrengian builder” point of view it shows how
the conjecture of the bosonic syemetries sllows one to construct
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the complete theory up to a few coefficients,
The plan of my talk will be the Ecllowing :

(1) 1 shall give some notaticn and definicions of symplectic
spinors In 5 dimensions.

{2) 1 shall give the particle contents of all supergravities in
5 dimensions.

(3) T shall briefly vecall some facts about global and lecal
pymmerrics in supevgravity.

(4) The main part of the talk will be devoted to the deseription
and construction of tha K=8 supevgravity in 5 dimensions.

(5) Finally, I shall give the consistent sets of truncation
which lead to the N=6, 4 and 2 supergravitias in 5 dimensions.

2  SYMPLECTIC SPTHORS
The matric of the 5-dimensicnal spacatime is
Des = (+,=3=,-,=)
The ¥ matrices ave defined by their anticommytation relations

{Yr, "'sl = 2 .'a;rs

Yo, "'(” Y., ¥y are the same as in 4 dimensions and are pure
imaginary, Since (‘b';]‘ = +1 we must define

Yy =4 s which is real, . )
Thig shows that there are ne Majorans spimors in § dlmnsxnns.'
e and ¥5 are antisymmetrie and YA, "3, 3'3 are symmetric.
The five ¥ motrices are related by ’

-(rsh...u» = El"shuv

where Wrabwy- 15 the totally antisymmetvic product of Yf ¥s
Wi Wy Ty and £ rgkuor 8 the usnal Levi-Civita symbol with 5
indices (£ 90 *1)-

in 5 dimensions the N extended supersymmetry algebra can ?nly
be defined for even W and it has & natursl isemerphism which is the

USp{N} symplectic symmetry {(compact)

[8%,Q5 = 20
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(fem0b s olo 18 &= 1.0

- . : .
The charges q’q {and consequently the spinor fields) satisfy a
generalized Msjorana condition

Q‘:. = C‘S _Q-:“'

- [
where CB satisfies Cg x,.. C5| s ¥

(9§ %

.
J%L 7 is the real symplectic metrie and is used to raise or lower

indices
b
Qo= Rab Q ;
—_ — "
from which we deduce ?q = -ﬁ,\-,Q = - @“) B’n‘a

We can choose CS :.-.".,3'5 . In this case the symplectic spinore ate

defined by
o ¥
Q = 1'5 (.Qa)

From thece definitions we deduce the important property of bilinear
expressions in Fermi fields :

—ou, =hb 4
T, N X = XYY ™

2

Finally let us give the Fierz transformatioen in 5 dimensions ¢

- - _ " rs
€.6,8,€6 =- ;«_'{e,\e,’ 2,6, + CEEVE-1EY 6T E }

3 SUPERCRAVITIES IN 5 DIMENSIONS

The physical states of 28 extended supersymmetric mussivss mul-
tiptets in 5 dimensions are classified by USp(2N) (compaet) as the
states of the masaive multiplet with central charge in 4 dimensions.
It is the 5th dimension which is related to the central charge in
4 dimensions.

In the simplest moltiplets, the representations othSp(zbl) which
appear are the antisymmetric and traceless temsors R® ™ uith

béaes m
"-rza-b' R“ =0

with m&N . Por N m& 2N an antisymmetric traceless tensor is
automatically zero because the Levi-Civita tensor with 28 indices
can be written in terms of ok
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Aty e By, Tey Y —n‘[%a: Slayuy "ﬂ-o‘“_qa:H]
The fields alse satisfy the same kind of generalized reality condi~
tion as the spinor charges
a0
n.-‘ = (}qp. a.b)

*
hﬁ ﬂbt - 1{5 Cj(¢hc )

The lowest spin supermultiplet for 2N supersymmetry has states
from spin & up to s=N (SU({2) is the little group of LoTenrz group
in 5 dimensions) and has the following content

s=N sol-1/2 s=H-1 .. ¢=0
q) q)n q)ab ¢q‘_,.a.ﬂ
where all ¢ are aptisymmerric and traceless.

Other multiplets can be obtained by combining this multiplet with
states of angular momentum J and an arbitrary represencation of
USp(Z8) (Ferrara & Zumino, 1979).

This allows a simple construction of the representations of ext-
ended supergravities in 5 dimensions. They are given, in the follow
ing table, as well as the lowest spin supermultiplet.

g 2 3/2 1 1/2 0 group
N=§ b 8 27 48 42 usp(8)
| 6 1651 16" +h i4
N=6 | usp i)
(J=§}®[l 3 14 14']
1 4 5+ A I
N=4 : USP(Q)
pay & 1 4 5] {
| 2 |
N=2 3 Usp(2)
(3= & [t , 2l

4% in & dimensions the N=§ supct’gra‘.l'lt}' mulciplet is also the
lowest spin supermultiplet.

& GLOBAL AND 1.0;2:1'\L SYMMETRIES IN SUFERGRAVITY

The dimeasional reduction shows that [or maximal extended super=
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gravities in D dimensions oktained from N=1 supergravity In 11 di-
mensions (Cremmer & Julia, 1979 ; Cremmer, 1980}, the theory is ipn-
variant under the product of a non-compact glebal grovp end a compact
local growp

SL{II = D,RYglohal % $O{!11 - D)local

50011 - D)lacal accs on Fermi fields and scalar fields.

SL{I! - D,R)glahal acts on tensor fields and scalar fields.

The scalar fields which come from the metric in 1) dimensieons are
deseribed by the coset GLOIT - D,RI/SO(I1 - D) {after a Weyl re- .
sealing). We expeet that all secalar fields can be deseribed in this
geomatric way by a coset GfH (i.c. a matrix of G defined up to a
local transformarion of H} as the vielbein ej is desecribed by
the coset GL{D,R}/50{(D - I, 1}, If G is non compact, there is no
problem af positivity if 1 {s the maximal campact subgroup of G, The
symnetries G and H can be conjectured hy simple counting arguments
if we Temember that H is the maximal growp linearly realised on all
fields., (This I is the diagonal subgroup of Gglobal X chcal >
Hglobal * Hg]obal) H) -

We shall give helow the content and cthe symmetries of r?aximal
supergravities in D=9...3 after duality transformations which convert
a p tensor field into & (D - 2 - p) tensor fiecld

D=9 GL({Z, Riglobal @ 50{2)lecal

!E': s ztl’f, M)N( L RV , 874 ., 3 scalars

D8 By, =5L43,R) X SL(2,R)global @ [s0(3) x 50(2)) local

re, | 2‘-1;’ . lft,,qg s Ay BA L . 6% , 7 scalars

EQHQ):S[,(S,R}globﬂl & 80(5)1ccal

. MP,, Shuy 0 1085, 16 X, 14 scalars

Fg(ssy=50(5, S)global @ 50(5) x $O(5) local

. y
e, ,t.lrr,sav,m»_ , 20 TR, 25 sealars

Eg(rgyBlobal & USp(8)local

. SW)_ . 27.’\)_ , 48 A, 42 scalars

1
E, U?)global & SU(8)loca

T er g Y, .28, , 56 K, 70 scalars
Pt

D*3  Eg gy 8lodal & s0(16)1local
rel . |6‘-{’”,1128‘}(, 128 scalars

¢
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Let us note that in 3 dimensions there is no degree of freedom for
the graviton and the gravitinos, The underlined tensor fields need
duality transformations to form a Tepresentation of the global group.
The global symmetry will not be a4 symmetry of the Legrangian but only
of the equations of wotion : the symmetry will exchange the Biaachi
iﬁe?tity for the field strength of the tensor with its equation of
mocion.

It has been seen that in 4 dimensions, for all extended super=
gravities, the sealar fields are described by a coset, the local
symmetry being U(N). In the same way, we can conjecture that all
extended supergravities in 5 dimensions have = global syuetry ¢
and a2 local symmetry USp{ZN), the scalar fields being described by
G/USp{2H}. This gives the following table

N=8 Ef,(w)global @ USp(B)local
N=§ SU¥(6)global & USp(H)local
N=4 USp(4) x R global & USp{4)local

N=2 USp(2)glebal & USp(2}local

5 N=8 SUPERGRAVITY IN 5 DIMENSIONS

As we have seen, the free particli‘apectrm is described by the
fields by, w,*, AP N and §* where a4 =i.,.8 and these
fields are pseudoreal in the sense previously defined, completely
antisymmetric and traceless in the internal Usp(8) indices,

We have seen thar we expect the theory to have a global symmetry
E. and a local symmetry USp(8). lat us first briefly describe E,.
Ig has 78 generators and the Fundamental representation has dimgn—
sion 27. We are interested im the non—compact form which heg 42
non-compact generators and 36 compact ones which generate the max-
imal subgroup USp{8), The 27 representation acts in the vector space
spanned by 2%¢ (o4 w 1...8) such that

M
2'“1 =~ 2(. .= (_2.;0)'
o 7S
Dup TP=0 ;5 Bz 0.y Ry 2
and the infinitesimal transformations of E(E' are given by
1Y
TE . A2V Ay 2T T,

o
vhere A" v is an-antihermitian matrix such that Adl’ is gym=
metric and EMP¥Y g4 rotally antisymmetric, traceless and pseudo=

Teal
¥ w
z et = @ﬂaﬂ)
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'rhe;.l;s is no quadratic invariant for B, : 27 x 27 )‘61 in particulatr
“2.(__ is not invariant for Eg We can form an invariant
fram 27 % 27 where 27 is spanned by &
¥ fal 4
%‘ﬂ‘ -8 o (an\) 3 —Q-qp 2= o
which transforms under E by

~ ~ oy wATE
5378 = ATy B AT 2T Ry

o
Zun B84 s an fnvariant under E,.
Both  Tupa 2l and Bup 2"%  aré invariant under the subgroup

USp(8). There exists a trilinear invariant for E, @ 27 % 27 m 21 =1+,

T2 2t T R 202,

These properties of E. are all we need to obtain the general struer~
ure of the theory.

The fields of the N=8 supergravity are :

- the graviton EMP , an element of GL{5,RYFS0{4, 1)

~ the 8 gravitinas ,° which are in the representation § of
USp(8) and singlets for l-:a

- the 37 vector fields A;@ which are singlets for USp(8) and in
the 27 Tepresentation of iﬁ y

~ the 48 spin 1/2 fields "{ which are in the vepresentation 48
of USp(8) and singlets for E " ab

— the 42 scalar ficlds will be described by an clement “aofp
of the coset E (+6 jusp(B) (78 - 36 = £2). 1t transforms as 27
under E, and 2? unaer Usp(B). The indices o) =]...8 are the
'eueved'” indices of E and %, B =1...8 are the flac indices of

USp(8) and ‘Vdp‘ €: a2 27-bein connecting these two groups.

The self=interaction of the scalar fields is described by a non
ligear & ~model associated te the coset EﬁiUSP(B) and therefore by
the Lagranglan

b ~ 2
2~ Dﬁ'hg; D”’U’,b T (Y Q.V)

~
where ¥ i3 the inverse of s

~ d
A o e d é et 1

Voap 'J.f,a = %(%‘Sb-t%ah\’*%ﬂo\nn

1] is the covariant derivgtive with respect to USp(8) using the

associgted connexion s+ Since there is oo kinetie tarm [or
SLua we can solve its equations of motion, Since 1:: is an elem-
ent of E, we have the following decomposition for B
which is §n the Lie algebra of Eg

™ ab

ab 4
q)d-‘ﬁ :}_“ ‘U.m = 2 Qﬁ@& Sd] '1-?,.. ed
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a
where Qpc belangs to the Lie algebra of USp{B} and e- abcd E8

in the orthogonal part to USp(8) {(with respect to the Xilling metric),

For S, we pet
b - [
J‘)'P“‘ - Q}aq.

The Lagrangian then becomes

2
;(S N '\ Py- abed \

b

q,)...o. and PM,'..gJ are obviousty invarisnt onder B, 1f we restrict
?urselvcs to the sealar fivlds, as in the case of “general relativ-
ity, we can describe them by a metric gom,ff instead of the 27<bein

(to be campared to  %ev  and €.7 ). The metric is invari-
;nt under the local group USp(B) and covariant under Eﬁ‘ 1t is given
¥

d

-.b
%dt}, (: = q;fp ﬂt.s RBJ ‘U-Ysc

and igs characterized by the property :

Gus, 45 = Gz, 4p

The Lagrangian is then written as

s v % Geoer 037

This metric must also be used to describe the interaction of
the vector fivlds since there is no guadratic invariant for E,. The
genetalized "kinetie' term for the veetors is then given by

F ol ¥E up vF
ivl ~ %,,(r;)';i v FEG 3 g

A5 in 11 dimensions tiere also exists a trilinenr gavge invariant
coupliog {up te a total derivative} af the vectors which is required
by supersysmelry, Since there is a trilinear £ invariant J, we do
not peed the sealnr metric (nor the metriy tensor ﬁ,,.v ]

PR LR ny 33 of
i\f!' ~ E ‘g&‘p rj.-« ﬂ"f%F?u- ‘Q'Ep H}?

The cogpliags to the fermions can na Jonger be described by the
metric, but teqnire the 23-hein . The "kinetie" terms for the
fermionic Tields 925 and ~MA®C Liil be covariant with respect
to the laeal Lorcitz grogp S04, 1) with the connexion v, rg and
the lecal group BSpL8) with the comnexioo Qﬁmb

D™ = OL5h - Qw3 ean ¥YIL )Y

of, ¥ ¥

D»Fiobc = LD» B&d _3ny¢-d + '_:;w)rs\{l“s SI“J) P}Shdd
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. . . x» 4 B abed
As usual there exists a Noether-type voupling vequived by super- 'H-" .!,c += '27, 3- v
symme LTy
? ohcd v [ v | avetx o “ Il —
¢ Foa ¥Y” Yned ~ :2 3 E ) a G ) v Ba) .ﬂ-air I
W 2
The ¢oupling of fermions te F:.,.; e must vecur anly through the E b
invariane (and scalar under the general coordinate transformation) ¢ e 5{"‘ Ty ¢ * < 4 ~ o,
™ Y +1 “l
) ¢ alo ‘U' ab Jﬂ " ‘gﬁ ﬁv Y. ‘r] L q’g“‘w“ Yabe ?%'x-zdv Yo
e = Fut € e%
¥
Let vs note that ®y? cap be written as + y
ob 42 .
{V! N (F.-‘, ‘] &, ve resents the quartie fermionic terms. Except f0r the "{’l’
b vs it n lace U o, P d By by
- i terms £t ig not epgough o taplace rs, Frabed and Ry
but Fr.‘ in no longer & curl. 9) _1__ E) ¢ man:sugercovanant gx:ensrm) to
below @
The supersymmetry transformation laws S¢ are conjeetured to reabsorb all th?‘qum‘tic terms. For completeness ve gl.ve ¢
be covarian? with respect to USp{8) and E . Therefore a £_md_8¢ ",f"-__.i[ q"’“{“q‘qb"‘{ qﬂcb_‘fc"l“ '-\". '-I‘c Yra Lh-b]
are n;w defined up to numerical coefficients, quartic -fermsomc terms
for and tritinear fermionic terms for Yoo and BYawe . 1 —_ —-—%
In particular all the non—pclynﬂmlﬂ srructure in the sealar fields + e Eﬁ o LY "rﬂ' " l*l - _ q’t"’r" [¢ "r‘b
is fixed, Supersymmetry is used to get rid of the remaining arbit- ? ¢ * >
rariness. 2 FRvl
3 [l!" ¢ ‘!‘“i?,\““"k’v. -2 ‘-l" A N Yt ]
(i) Humerical roefficients (and Lorencz structure) ip S‘-’r and &Y 4"“ s W
are determined by checking the supersymmetry invariance of in + 2,& ¥ Y uf ne ‘rt‘ b

the terms of the type & Y )E"ﬂ

j_ alx (d‘ — = ok o 4
(ii) Quartic terms in & and trilincar terms in BY and 3% ['1 K Ve ¥ “q d=h T R e Yo

are determined in two independent ways : : .1,""\1 Lt i Yube T, "ro‘.i]
- we require supercovariant equations of motion For fermionic ( ”
fields
= we require the closure of the supersymmetry algebra on the bo- Té[iob{{?f(a.-s}‘t)md'b l-fg‘ ?G‘J

senic flelds 5 A 4 &
12 i S S SPV LTI L W AL A A

[Eéwif,;] = Bg + B/ 4 3, By + By GO (Y 3 Y g S a6V o Ta i
where 85 is the general cvordinate tramsformation, ®e’ a new e ? ¥ f 2§ d )? d’%“#‘*"‘]
supersymmecry transformation, L & local Lorentz transformacion,

a lecal U5p(H) transformation and ey an Abelian pauge ]
Lransfgrmatinn on the veotor fields. At this stage only the ‘_ﬁ
terms in & are still undetermined, They sre determined by checking

in the terms of the type € "F* or by looking at the closure 1

= =d £
. " oy b €
on fermionic fields which requires the fermivnic equations of mution. '1’? ['X\,cd ¥ b 4 g "3:5 1 :

. : . of
The Lagrangian is then written, (we have put K=1) - ':IL‘JX '! Cﬁ f, rs'j ¢

eﬁof: - :-";R(w)-

L

7 obe 4 g T
~ .((r,‘ w Y, dgc‘}” rr_‘_% il )"Y,.e

v!?v

ab
5': ?’: Y,;Nf Dv"”éa _a 3»(3 g%"s "If!--'l's . *E; “fs tx '3 Tctz \‘rs'x *51
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The supersymmetry transformation laws are given by
r . *r
Se_h Y é“"ﬁ "{““
TP 5y w2 (Z = gt
cd Jp).l_,: -2:%2 (é?_'xw-l.yi _q“b €Y LJ_'D

SO0 = 2,3, (2 Y EE )

e = (0. (3Y50 Qo )eb 2 .-5-,,51"“" zn‘)e"
+iE (38 g, - 2oy 1 ¥Vt )

- & (%290, )64 Fur 304 ':% U %k, Jea X, ¥ 10

-3, es“ﬂt..‘s Yoy +_r€3"£’ L T
LY o T t r
5 ¥esCg RO g e W a3)

with )
A e  r—a — -
(8, 0= Wihes () 'r.;[“rp G, -Ta X4, -0y t&;“’. ’5{;,‘1&,

¥y

ed T Cabeg 42072 (K Kuegy « % T Tee 15ea)

-
S i o
F(nla = Fpean ~ Qt[‘r&. "['vl,] * % LIRICA A :'rz “‘ig ¥q '1‘-1-:]
Let us note that since vIVv has ne compenent in USp(8), @, .h
is supercovariant by itself hut P Lw alord 18 not.
The fermionic equations of motfon are :
N s - * bcd ' o
¥t "b ‘{"V“_ + X ﬁ»ahd’ y"}’f’){ +L 3“(‘.-"1.53':&
36 472 v

@IV RN = 0
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. AA ¥ Fravs J F
_z_a’ag;x.u“ + < YV (R el Fuygd = Trce abe )

M ] ef [ - . ,?1
- éloir Fepn Fqp¥. X =¥ rx‘%'ﬂqi’grfﬁ"‘
N e oty VX Nt ] = O

-, -

‘D[a "Yv]a. and ‘b,u ’Ya'bc are supeTcovariant extensions of %.wqa.
and Du~fn, defined such that their variation by supersymmetry has
no derivative of & .

The algebra of supersymmetry is given by

[Be, B¢l = 3 (L) B e §_ (27) 40 rWJ(“:)*%) (o)

with c
iﬁ: -t & Xh e
el,;: _g q, + [Q (aeh zcrx‘\-‘( én\\‘t%c dl-cxe}
zrs'—’ itwb;"‘ +'% ﬁu\bdb 2‘“(1{“ *“r%r 8 )é
-4 ém-ﬁf‘st LN ;ich .o,b.-x'ﬂcd

|2

= - bu
+ 4 L (\"rsh*'.'?r;’?su)ezb ﬂxchx “’(b&d

g’
- £
PN P ]-—6.,.,{-,]

o

= 879, -y flEr e
*(E,,P“!c

2
&
+
~ - )

£ «| @
U_d‘! :_..'!.QH?“ +2i T €7 €

We have seen that the coniecturcd E, global & USp(8) local was the
c¢lues to canstruct the N=8 supergravity in 5 dimensions, There still
remain some complications in the quartie fermionie terms. This could
be a sign that there is still some structure to be discovered. Ko
can hope that ft would be eagier to discover it in % than in 4

13
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dimensions. Another problem could alse be more easily solved in 5
dimensiens : the coenstruction of the multiplet containing the conn-
exion of USp(8) Q,;-b . This is of crucial importance in 4 dimen-
sions viete we conjectured that the local SU(8) could become dynam-
ical at the quantum level (Cremmer & Julia, 1979, 1980). Some con-
jectures have been made on this multiplet which could lead to a grand
unified model based on SU(3) with 3 families (Ellis, Gaillard, Malani
& Zumino, 1980 ; Zumino, 1980}.

&  SUPERCRAVITIES H=b, 4, 2

In arder to derive supergravities N=6, 4, 2 from N=8 by consist-
ent truncations, it ig useful to choose a particular representation
for & ,4 namely

We shall deseribe the consistent truncatiens for N=6, 4, 2 and give
the complete results only for H=2,

6.1 N=b6 Supergravity

The invariance of the theory is SU#{A)gplobal x USp(k). We note
by & =l...b6 the indices u‘%‘USp(ﬁ) and bye{ =1...4 thfaindigus of
5U% (6}, We keco the ficlds %, Make , Ag g M s A .

q“b. v, ’V,,ié andv}‘s m. (For ¥ we i—'.m alse to 'fn‘so the
loca?USp{&) invariance before moking the truncation). We must take
the traceless condition for N=B inte account

78 3
2_9.33.&» + -de.a\,. “ g

)
this implies that for ¥ D}‘U' (N=8) only the following components
Q and §F remain

b
Q,u.a. a P}Agbﬁd 3 ﬁbnb?! (FA""’S"B)

with the trace conditions

E. CREMER

J-Z_SbJLGd P bed = ©

)

e
)y N udbyg = 0

als
27 FL e *’2-57-?8&.;“4 =0

and ﬁ,.hd totaliy antisymmetric s this is equivalent to an anti-
symmetric Pi ab traceless which can be identified to Bl Jb3q cor-
responding to the 16 dcalar fields ( B, ahed ™ Eabcdef f;.fs' 3.
The theory is invariant under the W= supersymmetry cbtalned l?y
restricting € to €% (€7=¢8=0). The content of the theory is as
expected | graviton €. , & gravitinos 4" , 14+] vector fields
a vt , la+b spincr ficlds and 14 scalar Fields.

6,2 N=4 Supergravity

The symmetrics are {USp(4} =x yglabal @ uspi{4)local. We keepq;"'

{a =1...4) ; .ﬁ:" (ol =],,.4) ﬁ» with the condition

" 56
ﬂaﬁﬂ#n+‘+ﬂsgﬂp = O

o 56
as well as A ™ 4fined for N=6 in terms of J\,_“ and ?... - In the
same way we ﬁzup “Fuloe and “¥gge ("Kqy being function of the previous
ones) with the coadition

£
2P Yape +4L Fgge = O

d
This corresponds te & spin 1/2 singe Yaue ~ Ealcd F from
which ve deduce "Xsée~ K. On ¥ 0, L ve make the same trunecation
as en ﬂp‘f‘. This implies, [or .P‘,‘{,J andfu“cd , the relation

. S
-S’-ﬁb P_uo‘acd +£"'n' PJLS“d = O

This corresponds to | sealar field : F 4] » Eabed &

Y Piebse ~ R $
The remaining @ua- bas the form ¥ P, ¥ where ¥ is an elem-
enc of USp{4} and therefore being a pure gauge it can be reabsorbed
by redefining the fermionic ficld with the USp{4) transfomatwn‘_ '
The theory is invaciant upder N=4 supersymmetry with paramer.erE_ .
The content is )} praviton, 4 gravitinos, 3+1 vector fields, 4 spin
1/2 fields gnd | sealar field.

6.3 N=2 Supergravity
From N=4 we keep Ui’#o_ (=1, ) ﬁ).,“b with the relation
b 4
5Lt H)“’b + & ﬂa-il‘r = O
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SUPERGRAVITIES IN 5 DIMENSIONS

. N
There is no “Yale 1¢ft and we can replace ¥* st by 1", The
tTtuncation can also be directly made From N=8, keeping q&tﬁlﬂ»

s
8).54. » &.5‘ and ﬂ#gg with the relations Az

- " .-l
Aizs * Auss " Ay, 3 A2

After renormalization of the vector fields we get the Lagrangian for

. ) : !
H=*3 supergravity with Eicld e, , %.,“ (o =1, 2) and A

o - i Y Poes “ o
e d ,-%R(w) é‘f‘ ¥ tD\,("%‘?)q’(a"% Fufeg®tg”

L oY o
4,2u: E;i(f‘ EM E AA"ji?(F "Eﬂ)lrt‘i ¥y ‘*:
with

-y -
Foy = f;, + ié q:, 41,e
and Lo is given by the Ist order formalism if o is defined as

-y R
Bues = es + £ TG, g7,

After solving the equations of motion for t  we gef, as ysual

-

G = o @+ £ Pty e Py

is invariant under the following N=2 supersymmetry transform=
atien

Be, = - €°¥"Y.,
Y, = |_‘|>‘“{::,)+$3l ?e‘(yfra*zk’?s:)] €.

S 9)4 - - %E- Z;q.t*lua

Alt quagtic terms are contained in the replacement of oy and F

by Sk and in the bilinear fermionic terms. We note that
N=2 supergravity “In 5 dimensions has exactly the same structure as
the N=l supergravity in 1) dimensions where everything comes from.
This should be comparad with the partial purely geometric results
obtained by D'Auria & Fré, 1980 ; D'Auris, Fré & Regge, 1980 for
this N=2 sopergravity in 5 dimensions.

E. CREMMER
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