PAUL SCHERRER INSTITUT

Andreas Crivellin

CERN Theory Division, PSI & UZH Heavy Flavours -- Theory

LHCP, Paris, 10.06.2021 (remote)

Work supported by **FNSNF**

Outline

- Introduction
- •Hints for Lepton Flavour Universality Violation
 - Semi-leptonic B decays
 - > Anomalous magnetic moment of the muon
 - Cabbibo Angle Anomaly
- Explanations of the Anomalies
- Common explanations
- Conclusions and outlook

Introduction

Discovering New Physics

- Cosmic Frontier Energy - Cosmic rays and neutrinos **Frontier** – Dark Matter Dark Energy Energy Frontier NP - LHC **Cosmic** Intensity - Future colliders **Frontier Frontier** Intensity Frontier - Flavour
 - Neutrino-less double-β decay
 - Test of fundamental symmetries
 - Proton decay

Finding New Physics with Flavour

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavours

Flavour observables probe higher energy scales than collider searches

Global Fit to the CKM Matrix

 Tree-level determinations of CKM elements (with light leptons) agree with ΔF=2 processes

 Picture of CKM Flavour violation established, but sub-leading NP possible

Still room for New Physics effects of O(10%)

Lepton Flavour (Universality) Violation

In the Standard Model accidental symmetry:

Lepton Flavour is conserved

(for vanishing neutrino masses)

- Excellent approximation: branching ratios smaller than 10⁻⁴⁵
- Any observation proves **new physics**
- Gauge Interactions are Lepton Flavour Universal
- Only Yukawa couplings distinguish flavors

Very small effect (except for phase space)

LFUV is an excellent probe of the SM

Overview on hints for Lepton Flavour Universality Violation

LFUV in $b \rightarrow s\ell^+ \ell^-$

$$R(K) = \frac{B \to K\mu^{+}\mu^{-}}{B \to Ke^{+}e^{-}}$$
$$R(K^{*}) = \frac{B \to K^{*}\mu^{+}\mu^{-}}{B \to K^{*}e^{+}e^{-}}$$

- Muon and electron masses can be neglected
 Clean prediction
- Supported by

$$\frac{\Lambda_b \to Kp \mu^+ \mu^-}{\Lambda_b \to Kp e^+ e^-} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

LFUV in B decays >4 σ

Global Fit to $b \rightarrow s\mu^+\mu^-$ Data

- Perform global model independent fit to include all observables (≈180)
- Several NP hypothesis give a good fit to data significantly preferred over the SM
 hypothesis

$$O_{9} = \overline{s} \gamma^{\mu} P_{L} b \overline{1} \gamma_{\mu} l$$
$$O_{10} = \overline{s} \gamma^{\mu} P_{L} b \overline{1} \gamma_{\mu} \gamma^{5} l$$

Fit is >7 σ better than the SM

$b \rightarrow c \tau v$ Transitions

- LFU test of the charged current
- Tau mode consistently enhanced
- $\Lambda \mathcal{J}_* Q \leftarrow Q / \Lambda \mathcal{I}_* Q \leftarrow Q = \begin{pmatrix} 0.4 \\ 0.35 \\ 0.3 \end{pmatrix}$ $R(D^*)$ Supported Belle17 HFLAV 0.2 + Average of SM predictions by Sprina 2019 $R(D) = 0.299 \pm 0.003$ $R(D^*) = 0.258 \pm 0.005$ $P(\chi^2) = 27\%$ $R(J/\Psi) = \frac{B_c \to J/\Psi \tau \nu}{B_c \to J/\Psi \iota \nu}$ 0.2 0.3 0.4 0.5 $R(D) = B \rightarrow D\tau v / B \rightarrow Dl v$

HFLAV average

LHCb18

3σ

+

Belle19

LHCb15

Tree-level need larger NP effect

O(10%) constructive preferred effect at 3σ

 $\Delta \chi^2 = 1.0$ contours

BaBar12

Belle15

Muon Anomalous Magnetic Moment

- Theory prediction intricate (hadronic effects) $\Delta a_{\mu} = (251 \pm 49) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822
- Need NP of the order of the SM EW contribution
- Chiral enhancement necessary for heavy NP
- Soon more experimental results from Fermilab
- Vanishes for $m_{\mu} \rightarrow 0 \implies measure of LFUV$

4.2σ deviation from the SM prediction

Cabibbo Angle Anomaly (CAA)

- Deficit in first row and first column CKM unitarity $\begin{vmatrix} V_{ud}^2 \\ + V_{us}^2 \\ + V_{ub}^2 \end{vmatrix} + \begin{vmatrix} V_{ub}^2 \\ V_{ub}^2 \\ + V_{cd}^2 \end{vmatrix} + \begin{vmatrix} V_{ub}^2 \\ V_{ud}^2 \\ + V_{cd}^2 \\ + V_{cd}^2 \end{vmatrix} = 0.9970 \pm 0.0018$ (PDG) AC, Hoferichter, Manzari, 2102.02825
- NP in the determination of V_{ud} from beta decays needed
- Can be interpreted as
 - NP in beta decays
 - NP in the Fermi constant
 - LFUV (modified Wµv coupling)

Non-Resonant Di-Leptons

- Excess in di-electrons at m_{ee}>1800GeV
- Observed: 44 events
- Expected 29.2 ± 3.6 events

- Also ATLAS (2006.12946) and HERA (1902.03048) observe slightly more electrons than expected.
- No excess in muon data

≈ 3σ hint for LFUV

Hints for New Physics

New Physics Explanations

Simultaneous Explanations

$b \rightarrow s\ell\ell and b \rightarrow c\tau v$ with a Vector Leptoquark

Pati-Salam LQ can explain the flavour anomalies

Vector Triplet in the CAA & $b \rightarrow s\ell\ell$

- Region from EW fit overlaps with
 b→sℓℓ region
- Correlations
 between
 e.g. π→μν/π→ev
 and R(K^(*)) are
 predicted
- Global fit significantly improved

Common explanation possible

M. Montull, PRD 2020

CAA and Non-Resonant Di-Leptons

4.5 σ better than SM, prediction for R(π)

Model for b \rightarrow sll, CAA, Z \rightarrow bb and $\tau \rightarrow \mu\nu\nu$

Simple model provides combined explanation

Outlook

- Flavour Anomalies require NP at the TeV scale
 Direct Searches at (HL-) LHC, FCC-pp
- This new particles in general also affect EW precision observables

Z decays at CLIC and FCC-ee, CEPC

 Flavour is directly linked to the Higgs boson
 CLIC, FCC

The flavour anomalies strengthen the physics case for future colliders significantly

Backup

Cabibbo Angle Anomaly and EW Fit

>5σ improvement over SM hypothesis

Model for b \rightarrow sll, CAA, Z \rightarrow bb and $\tau \rightarrow \mu\nu\nu$

Tree effect in Zbb and loop in Z'sb

Model for b \rightarrow sll, CAA, Z \rightarrow bb and $\tau \rightarrow \mu\nu\nu$

Simple model provides combined explanation

W' Explanation of R(V_{us})

- W' effects in LFU and EW observables
- Z' effects in LHC di-jet and di-lepton tail searches

R(V_{us}) can be explained by a left-handed W'

Correlations the neutron EDM with S1

Effect in B predicts measurable nEDM effect

b→стv Measurements

Supports R(D) & R(D*)

$R(D^{(*)})$, b \rightarrow svv with 2 Scalar LQs

PAUL SCHERRER INSTITUT

Hadronic Vacuum Polarization

New BMWc lattice QCD result

Up to 4σ tension in EW fit

b→cτv Transitions

- $B \rightarrow D\tau v, B \rightarrow D^*\tau v, \Lambda_b \rightarrow \Lambda_c \tau v$
- Tree-level decays in the SM
- Form factors needed
- With light leptons (μ, e) used to determine the CKM elements
- CKM fit works very well, i.e. tree-level in agreement with ΔF=2 processes

Largest B branching ratios, used to determine the CKM elements, usually assumed to be free of NP

b→cτν Global Fit

- Pure scalar-tensor explenations in tension with the B_c lifetime
- Pure left-handed
 vector, i.e. contribution^{-0.4}
 to the SM operator
 gives good fit

Global fit give up to 4σ preference for NP

Two Scalar Leptoquarks AC, D. Mueller, T. Ota arxiv:1703.09226

- Φ_1 scalar leptoquark singlet with Y=-2/3
- Φ_3 scalar leptoquark triplet with Y=-2/3

$R(D^{(*)}), b \rightarrow sll and a_{\mu}$

4 benchmark points

AC, D. Mueller, F. Saturnino arxiv:1912.04224

1.1	κ_{22}	κ_{32}	κ_{23}	κ_{33}	λ_{22}	λ	λ_{32}		λ_{23}		λ_{33} $\hat{\lambda}_{3}$		2	$\hat{\lambda}_{23}$
• p ₁	-0.019	-0.059	0.58	-0.11	-0.0082	-0.016		-	-1.46 -0		0.064 - 0.		19	1.34
• p ₂	-0.017	-0.070	-1.23	0.066	0.0078	-0	-0.055		.36 0.0		052 - 0.0)53	-1.47
• p ₃	0.0080	0.081	1.18	-0.073	-0.0017	0.	16		0.76	-0	.068	0.02	23	1.23
• <i>p</i> ₄	-0.0032	-0.21	0.44	-0.20	0.014	-(0.10		1.38	-0	.068	-0.0	32	0.57
	$C_9^{\mu\mu} = -C_1^{\mu}$	$^{\mu}_{0} C_{9}^{\ell \ell}$	$\frac{R(D)}{R(D)_{\rm SM}}$	$\frac{R(D^*)}{R(D^*)_{\text{SN}}}$	$\frac{B_s \to \tau}{B_s \to \tau\tau}$		$\tau \rightarrow \tau \rightarrow \tau \rightarrow 10$	$\mu\gamma_{\beta}$	$\delta a_{\mu} \times 10^{11}$		$\frac{\tilde{V}_{cb}^{e}/\tilde{V}_{cb}^{\mu}-1}{\times 10^{6}}$		$Z \rightarrow \tau \mu$ ×10 ¹⁰	
• p ₁	-0.52	-0.21	1.15	1.10	59.88	ISM 4.3		5	207		291		0.117	
• p ₂	-0.56	-0.28	1.14	1.10	99.76		0.76	56 19)	4	48	2.38	
• p ₃	-0.31	-0.31	1.14	1.09	112.5	5 3.6		2	255		17		0.129	
• p4	-0.31	-0.31	1.13	1.11	112.5	8	0.734		23(230		34	45.6	
	$C_{SL}^{\tau\tau} = -4C$	$\begin{array}{c c} \tau \tau \\ TL \end{array} C_{VL}^{\tau \tau}$	$R^{K^{(*)}}_{\nu\bar{\nu}}$	$\frac{\Delta m_{B_s}^{\rm NP}}{\Delta m_{B_s}^{\rm SM}}$	$\begin{array}{c} B \to K \tau \mu \\ \times 10^5 \end{array}$		$\begin{array}{c} \tau \rightarrow \phi \mu \\ \times 10^8 \end{array}$		$\begin{array}{c} \tau \rightarrow \mu ee \\ \times 10^{11} \end{array}$		$ \Lambda_{33}^{LQ}(0) \times 10^5$		$\frac{\Delta^L_{33}(m_Z^2)}{\Lambda^{L\ell}_{\rm SM} \times 10^{-5}}$	
• p ₁	0.023	0.040	2.33	0.1	0.512	1	1.27	.27 44.		94	1.11		-3.64	
• p ₂	0.020	0.040	0.87	0.16	3.32		4.73	3	7.78	33	0.	90	-3.02	
● p ₃	0.023	0.037	1.08	0.19	4.07		1.00		37.8	7.89 0.		89	-3.51	
• p ₄	0.010	0.047	2.43	0.18	3.69		0.00	21	18.6	60	3.	12		-10.04

Common explanation possible

Outlook: Physics at Future Colliders

- Flavour Anomalies require NP at the TeV scale
 Direct Searches at HL-LHC, HE-LHC, FCC-pp
- This new particles in general also affect EW precision observables

Z decays at CLIC and FCC-ee

 Flavour is directly linked to the Higgs boson
 CLIC, FCC

Flavour Anomalies (if confirmed) strengthen the physics case for future colliders significantly

Important Loop-Effects

 Explanation of b→cτν requires large bτ and sτ couplings (follows from SU(2) invariance)

AC, C. Greub, D. Müller, F. Saturnino, PRL 2018

Large loop effects in $b \rightarrow s \mu \mu$

R(D^(*)) and b \rightarrow s $\tau\tau$

Large couplings to the second generation

B. Capdevila, AC, S. Descotes-Genon, L. Hofer and J. Matias, PRL.120.181802

Important Loop-Effects

- Explanation of b \rightarrow c τ v requires large LQ-b τ and LQ-c-v_{τ} couplings
- Via SU(2) invariance this leads to large effects in

b→sττ processes

- Closing the tau-loop gives a LFU effect in $b \rightarrow sll$ M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, PRD, 2019
- Effect goes in the right direction

Explanation of b \rightarrow c τ v leads to loop effects in b \rightarrow sµµ

Vector LQ Phenomenology

Compatible with constraints for generic couplings

Possible UV completions

- SU(4)×SU(3)'×SU(2)_L×U(1)_Y + Vector-like fermions
 L. Di Luzio, A. Greljo, M. Nardecchia, arXiv:1708.08450
- SU(4)×U(2)_L×SU(2)_R + Vector-like fermions L. Calibbi, AC, T. Li, arXiv:1709.00692
- SU(4)×SU(4)×SU(4)
 M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv:1712.01368
- SU(4)×U(2)_L×SU(2)_R including scalar LQs and light right-handed neutrinos
 J. Heeck, D. Teresi, arXiv:1808.07492
- SU(8) might even explain ε'/ε
 S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312
- SU(4)×U(2)×SU(2)_R in RS background

M. Blanke, AC, arXiv:1801.07256

Good solution, but challenging UV completion

Pati-Salam RS Phenomenology

Model well motivated + limited but sizable effect

$B_s \rightarrow \mu \mu$ and $B_s \rightarrow \phi \mu \mu$

 B_s→µµ theoretically clean but chirality suppressed and therefore statistically limited

B_s→φµµ has a higher
 Br, but knowledge of
 the form-factor needed

Br's ≈ 20% below SM expectations

Leptoquarks in a_{μ}

• Chirally enhanced effects via top-loops

• m_t/m_μ enhanced effect $h \to \mu\mu$ • m_t^2/m_Z^2 enhanced effect in $Z \to \mu\mu$

Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

$a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure \rightarrow direct correlation

A.C., D. Mueller, F. Saturnino, 2008.02643

 $h \rightarrow \mu \mu$ at future colliders

$\tau \rightarrow \mu \nu \nu$ and $\tau \rightarrow e \nu \nu$

 $\approx 2\sigma$ hint for LFUV in tau decays

The P₅' Anomaly

- P_5 angular S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 2013 observables in $B \rightarrow K^* \mu \mu$
- Constructed in A LHCb data ATLAS data such a way that the Belle data CMS data 0 05 SM from DHMV form factor SM from ASZB dependence is minimized -0.5 Confirmed by latest LHCb analysis for 5 10 15 the chatged mode $q^2 \,[{\rm GeV}^2/c^4]$

$>3\sigma$ deviation from the SM prediction

$b \rightarrow s\mu^+\mu^-$ Processes

- Flavour Changing Neutral Current (FCNC)
- In the SM it is suppressed by
 - > The CKM elements $V_{cb} \approx 0.04$
 - Electroweak scale
 - Loop-factor
- Wilson coefficients precisely known Bobeth et al. PRD, 2013

Suppressed in the SM and very sensitive to NP

τ→μνν

A.C., F. Kirk, C. Manzari, L. Panizzi, arXiv:2012.09845

Scenarios can be distinguished by $\pi \rightarrow \mu \nu / \pi \rightarrow e \nu$