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Abstract

This thesis is primarily concerned with developing methods for studying
"G

(M, SY]
the set of equivariant homotopy classes of equivariant maps from a G-manifold,
M, to a representation sphere, SY. where G is a group. The basic idea is to study
a related invariant of the orbit space, M/G. which is called twisted framed cobor-
dism. The study of twisted framed cobordism leads naturally to a formulation of
a set of axioms characterizing “twisted generalized cohomology theories”. Using
spectral sequence arguments, [ am able to make some explicit computations of

equivariant homotopy sets.
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Chapter 1

Introduction

1.1 Background

I[f G is a group which acts on two sets X and Y. a map f: X — Y is said to
be equivariant if f(g.zx) = g.f(z). [n equivariant topology we assume that the
actions and maps are continuous with respect to the topologies on .X and Y. In
this thesis. [ will be primarily concerned with (equivariant homotopy classes of
) equivariant maps from smooth compact (--manifolds, M. into representation
spheres, SV, (SY is the l-point compactification of the linear G-space V7). This
is a generalization of the classical situation of maps from a compact manifold,
M, into a sphere, S%, studied by Hopf. Pontryagin, Thom and others (see [L3] or
[19]).

In order to provide some context for the present work, it is worth reviewing
briefly some of the ideas of the aforementioned authors. Let ro € S?. Using the

smooth approximation theorem and Sard’s theorem (see [3]), one can show that



any map M — S can be approximated by a smooth map, f. that has zg as a
regular value. Moreover, one can assume that all homotopies of maps are also
smooth and have ¢ as a regular value. This means that f~!(zg) is a submanifold
of M. Now, if 7 is any disc neighbourhood of rg, then S§¢ — [/ is contractible. So,
up to homotopy at least. f is determined by its behaviour on a neighbourhood
of the submanifold f~!'(z¢). In fact, to determine f up to homotopy, it only
necessary to specify f~!(zo) and to specify the derivative, T f|-1(4), on f~'(zo).
In the case where M is orientable and dim M = d, f~'(x,) is a finite set of points
and T f|f-1(,) is determined (up to homotopy) by specifying whether f preserves
or reverses orientation around each point in f~'(zp). This leads to the concept of
the degree of the map f. If dim .M > d. the situation is a bit more complicated.
Now, f~!(ro) is a (dim M — d)-dimensional submanifold of .M and determining
the behaviour of T f|;-1(,,) amounts to specifying a framing of the normal bundle
of f~'(xp) in M. Thus. we are led to the concept of framed cobordism.

In the equivariant setting, one has several complications. Firstly. transver-
sality does not work in general. That is. it is not possible to equivariantly ap-
proximate any equivariant map by one for which a given G-fixed point of the
codomain is a regular value. However, if we assume that G acts freely on the
domain manifold then transversality does indeed work (see chapter 53). Assume
that f : M — SY is a smooth equivariant map with 0 € SV a regular value.
Then f~!(0) is a G-invariant submanifold of M of dimension dim M — dim V.
Suppose that dimG = n. As in the classical situation, the behaviour of f in a
neighbourhood of f~!(0) gives rise to an equivariant framing of the normal bun-

dle of f~(0) in M. The “equivariant dimension” of f~!(0) is dim M —dim V" —n

(8]



(note that the dimension of the orbit space, f~'(0)/G is dim M — dim V' — n)

For this reason, dim M — dim V' — n is referred to as the “geometric stem”.
The case of the geometric 0-stem has already been analyzed in [14]. In this case,
f7(0) consists of a finite collection of free G-orbits and by a careful analysis
of the local orientation properties of f, one is led to a concept of “equivariant
degree”. One of the main purposes of this thesis is to develop methods for an-
alyzing higher geometric stems. The basic idea is that rather than looking at
the (possibly high dimensional) submanifold. f=!(0). of M. it is advantageous to
factor out the action of ¢ and consider the corresponding submanifold of M/G.
The equivariant framing of the normal bundle of f=!(0) turns out to correspond
to a certain “twisted framing” of the normal bundle of f~!(0)/G. From the point
of view of making explicit computations, it seems to be easier to work with the

orbit space M/ in this manner. rather than directly with W.

1.2 Synopsis of thesis and description of main
results

Chapters 2, 3 and 4 contain some background material on fibrewise homotopy
theory and equivariant homotopy theory. All of the constructions and results
presented here are already known, although some are presented in an unorthodox
manner in order to suit our particular needs (e.g. lemma 3.3.5 or the description
of the Borel construction in defintion 3.3.1). Lemma 3.3.5 is of particular impor-

tance as this underpins the relationship between fibrewise homotopy theory and



equivariant homotopy theory. The guiding principle to bear in mind concerning
this relationship may be stated as follows: If one wants to examine equivariant
properties of a free (i-space X, it is often advantageous to consider correspond-
ing fibrewise properties “over” a certain map X/G — BG (this map classifies
X — X/G in the sense made precise in chapter 3). For example, a “map over

X/G — BG” is a commutative diagram

Y

|

X/G — BG

Chapter 5 presents some basic facts on equivariant cobordism. Again, this
material is not new, so the presentation is brief. The most important fact here
is theorem 3.0.6 which establishes that equivariant homotopy classes of equivari-
ant maps M — SV correspond to cobordism classes of equivariantly V-framed
submanifolds of M.

In chapter 6, I present the first new results. The concept of “twisted cobor-
dism” is introduced. Here. the structure on the normal bundle of a submanifold
of M is defined with respect to some fibre bundle over M. For example, in clas-
sical (untwisted) cobordism, one can think of a framing of the normal bundle
as an isomorphism from each normal space to a fixed vector space. In twisted
framed cobordism, rather than having a fixed vector space, we associate differ-
ent vector space to each point of M (i.e. we fix a vector bundle over M). A
twisted framing is an isomorphism from each normal space to the vector space
associated to that point. The main (new) result is theorem 6.0.12 which demon-

strates that the equivariant framed cobordism of M is isomorphic to the twisted
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framed cobordism of M /G where the twist is described by a specified vector bun-
dle over M/G. One can think of this theorem as being somewhat analagous to
Eilenberg's theorem (see [24], chapter VI) which says that ordinary cohomology
with twisted coefficients is isomorphic to equivariant ordinary cohomology of the
universal covering space.

Before proceeding, it must be noted that during the preparation of this thesis,
the author became aware of work by Davis and Liick ([6]) which overlaps with
the material presented in chapters 7 and 8. However, the author was not aware
of [6] until after these chapters had been completed.

In chapter T we introduce the notion of twisted generalized cohomology. We
also present the main example - at least for our purposes - of such a cohomology
theory, namely, twisted stable cohomotopy theory. Twisted stable cohomotopy
theory is the appropriate “stabilization” of twisted framed cobordism. Chapter
8 discusses an Atiyah-Hirzebruch type spectral sequence for twisted generalized
cohomology theories. This is an algebraic “machine” which will allow us to make
some explicit computations.

[n chapter 9 we use the spectral sequence to make the aforementioned com-
putations in the case of the geometric l-stem. These computations mostly take

the form of a short exact sequence
02Z/25w—o>H->0

where w is the object to be computed and H is an ordinary twisted cohomology
group which happens to be fairly easily computable. Typically, w is a twisted

stable cohomotopy group or a set of equivariant homotopy classes of equivariant



maps. Thus, we have determined w up to an extension problem. [ finish off with
an analysis of the equivariant stable homotopy group J;,?H (EG™). As pointed out
in [14] this group may be calculated via a Serre spectral sequence computation.
However, the present methods offer some insight into the geometry of the maps

which represent elements of @5, (EG*)

1.3 Acknowledgements

[ would like to thank my supervisor. Professor George Peschke for the many
discussions, mathematical and otherwise, that we had during my time at the
University of Alberta. Without his encouragement and patience. this work would
never have been completed.

The basic ideas for this work were originally suggested to me by Professor
Peschke during the course of a seminar on equivariant degree theory. [ would
like to acknowledge some fruitful discussions that [ had on this subject with two
of the other participants in that seminar, Z. Balanov and W. Krawcewicz. They
have pursued some of these ideas independently, motivated by applications in
dynamical systems.

[ would also like to thank the Department of Mathematics, University College,

Cork for allowing me the time to complete this thesis, while [ was working there.



1.4 Notation and conventions

In this section, I will describe some notations and conventions that are used in
this thesis.

Throughout this thesis, [ will assume that all spaces are compactly generated
Hausdorff. This is of particular relevance in Chapter 2 where we consider fibrewise
mapping spaces.

G will always denote a group. e is the identity element of G. [G.G] is the
commutator subgroup of G and G* := [G—GG—] is the abelianization of . If G is a
Lie group, then ad(G) := T.G denotes the adjoint representation of G.

SY := VU{cc} will denote the L-point compactification of the G-representation
V. Where the context makes it clear. n will be used to denote the trivial n-
dimensional G-representation. For example., S¥+" := SY=R" [ particular.
Sn .= SR”,

[ denotes the unit interval [0. 1]

M will always be a compact smooth manifold of dimension m and with bound-
ary dM.

EG and BG denote the a universal free G-space and a classifving space for
G, respectively.

For yo € Y, the map ¢,, : X — Y is the constant map at yo. That is to say.
cy(r) =yo forall z € X.

vap(N) denotes the normal bundle of V in M, where N is a submanifold of

M. vr,(N) denotes the normal space to NV at zq (implicitly V is a submanifold

of some manifold M).



T M denotes the tangent bundle of the manifold M. T, M denotes the tangent
space to M at zo. If f: M| — M;isasmooth map then T f denotes the derivative
of f.

? will always denote an (unstable) cobordism set of some type. So, for ex-
ample, Q. will denote (twisted) framed cobordism (defined in chapter 6) and Q€
will denote equivariant cobordism (defined in chapter 3)

[n chapter 9, I will use A, to denote the standard l-simplex and [ will use
Whitehead's notation (see [24], chapter VI) for singular chains, cycles etc.

ma(X. zo) denotes the nth homotopy group (or set), [(S™.*); (X. zq)].

[fC is a category. then [C| denotes the objects of C.



Chapter 2

Introduction to fibrewise

homotopy theory

In this chapter [ will present some basic results of fibrewise homotopy theory. It
is. of course, possible to develop a fibrewise homotopy theory in which both the
domain and codomain are nontrivial fibre bundles. see for example [3]. However.
[ am only interested in the case where the domain fibre bundle is Id : X —» X
and the codomain is a locally trivial fibre bundle. so [ only develop the theory

for this special case.

2.0.1 Definition  Given a space B. we define the category of pairs of spaces
over B, denoted T3, as follows: The objects are triples (X, A; f) where (X. 4) is

a pair of spaces and f: X — B is a continuous map. A morphisms
o: (X, 4 f) = (Y. B g)

consists of a map of pairs & : {X, A) = (Y, B) such that go o= f

9



We shall be particularly interested in the case B = BG, where G is a (compact
Lie) group, and we shall explore the relationship between T3, and the category
frG?, whose objects are pairs of free (G-spaces and whose morphisms are equiv-
ariant maps of such pairs.

Let p: EG — BG be a universal principal G-bundle (i.e. £G is contractible).
Then p induces a functor

F T, — rG?

in the following way: Given an object (X.A: f) in T3g. let ¢ : X — X be the
induced principal G-bundle over X obtained by taking pullback along f and let
A := ¢7(A). Then (X.A) € |frG?. Morphisms are also induced by taking
pullback. a

Much of this thesis will be devoted to constructing and studying certain func-

tors on the category TZ.

2.0.2 Definition Let p: E — B be a locally trivial fibre bundle and let £’
be a subspace of E such that p|g: : E' — B is also a locally trivial fibre bundle.
[ will call the quadruple (£, E’. p. B) a relative locally trivial fibre bundle. I will
also say (abusing the notation in the process) that p: (£, £’) — B is a relative

locally trivial fibre bundle.

2.0.3 Lemma  (See [18]) Let (X, A) be a relative CW-complex and let p :

E — B be a fibration. Given a commutative solid diagram

O0xXUIx A—F

l F.~ l
”~
//

IxX—F—B

10



there exists F : | x X — E which makes the resulting diagram commute.

Proof: First suppose that (X, A) = (B™, 5" !). Then there exists a homeomor-
phism A : [ x B® — [ x B™ such that A maps 0 x B*UI x S™~! homoeomorphically
onto 0 x B™. Thus k allows us to convert our original lifting problem into one of
the form

0x B"—=F

|

[x B"——B
which can be solved, since p is a fibration.
Now suppose that (.X,.4) is an arbitrary relative CW-complex. We argue
by induction over the skeleta of X. Suppose that F has been constructed on

0x XUIx X" Let e**! be an (n + 1)-cell of X with characteristic map { :

(B™*1, S™) = (X**1 X7). [ induces a lifting problem

41 - Fa(idx!)
O0x B**UlxS

I

[ x Bn+l

which has a solution G : [ x B**!' = E. G allows us to extend F to a lift
0x XUIx(X"Ue!). So clearly F can be extended to 0 x X U x X"+!. By

induction, we can solve the given lifting problem. d

2.0.4 Definition Let p: (E, E') —» B be a relative locally trivial fibre bundle.
Let (X, 4) be a pair of spaces. A relative lifting problem is a map u: 0x (X, 4) -

(E, E") together with a homotopy F : [ x X — B such that pou(0,r) = F(0, z).

11



[ will indicate such a lifting problem by a diagram of the type

0 x (X, 4)—2= (B, E

g |
[ x (.Y, A) —-;_:—** B
A solution to this lifting problem is a map F : [ x (X.4) — (E.E') such that

poF=F

2.0.5 Lemma  Let p: (E,E’) —» B be a relative locally trivial fibre bundle

and let (X, 4) be a relative CW-complex. Then any relative lifting problem

0 x (X, A) 2 (E.E)

has a solution.
Proof: First consider the lifting problem

0x A—=——F

L

[xA—8B
This has a solution £ : I x A — E’. Now, F and u combine to give a map

4:0x XUILx A — E and we get a commutative solid diagram

(0x X)U(Ix4)—25 g

l /// l
// F

[xX————B

By lemma 2.0.3, F exists making the resulting diagram commute. F is a solution

to the given relative lifting problem. ad



2.0.6 Definition Let p: (E, E’) > B be a relative locally trivial fibre bundle
and let (X, 4; f) be an object in T3. Then

map((X, A);(E.E")) :== {0 : (X, A) = (E. E') such that po o = f}
This set is topologized as a subspace of map(X, F).
[(X,A);(E. E")], := {path connected components of map,((X. A);(E. E))}

Let ¢, € map((X.A);(E, £")). We say that o and ¢ are fibrewise homotopic.
written ¢ =, v if there is a homotopy A : [ x (X, A) - (E. E') from o to @ such
that

pofl = fopry
where pry : I x X — X is the projection map.

Clearly,

[(X.A);(E.E")]; = { fibrewise homotopy classes of maps (X, A) —» (E.£)}

2.0.7 Remark  Note that if (F.F') = (p~'(b),p~}(b) N E') for some b € B,

and if ¢, : X — B is the constant map that sends everything to b then
map., (X, A); (E, £) = map((X. A); (F, F"))

So we can think of map((X, 4); (£, E’)) as a “twisted” version of the classical

mapping space.

13



2.0.8 Lemma  Let (X, 4) be a relative CW-complex with X compactly gen-
erated Hausdorff. Suppose that f; and f; are maps X — B which are homotopic
via a homotopy H. Let p: (E, E'} — B be a relative locally trivial fibre bundle

over B. Then H induces a homotopy equivalence
H. : mapy, ((.X, A); (E, E')) = mapy, ((.X. A); (E, E"))
Proof: First [ claim that the induced map
p. : map{(X.A);(E.E")) - map(X.B)
is a fibration. To see this. consider the lifting problem

0 x ¥ ——map((X.A);(E. L))

N

[xY ——F map(.X. B)

The adjoint lifting problem is

O0xY x(X.4)—=(E,E"
T
[xY x (X,.-l)T>B
Since p: (E. E') = B is a relative locally trivial fibre bundle. this has a solution
F:IxY x(X.A) > (E,E"). Let F:[x F — map((X,A);(E,E')) be the
adjoint of F. Then F is a solution to the original lifting problem. Thus p. is a
fibration as claimed. Now, f; and f, are points in the space map(.X, B) which are
joined by the path H. Thus H induces a homotopy equivalence of the fibres of p.

over f| and f, respectively. But these fibres are precisely mapy, ((X, A); (£, £'))

and mapy,((X, A); (£, E')) respectively. O

14



2.0.9 Corollary  H induces a bijection
Ha: [(X, AN (E. BN, = (X A) (B B,

Proof: Take my of the homotopy equivalence in lemma 2.0.8. O

2.1 The homotopy extension property in T3

In this section, [ will formulate the appropriate notion of the homotopy extension
property (HEP) for objects in the category T2. [ will also show that if (X, d)isa
relative C W-complex. then (.X. 4; f) has HEP. The present exposition is based on
that of Husemoller (see chapter 2 in [8]). although he looks at the same problem
from the point of view of prolongation of cross sections rather than extensions of

lifts.

2.1.1 Definition  Let (X. A: f) be an object in T3. Let p: £ — B be a locally
trivial fibre bundle. Then we say that (X..d: f) has the homotopy extension

property with respect to maps into £ if, given a commutative diagram

E
/ l
p
0x XUlxd B
foprx
there exists a map
H: IxX—>E

15



such that the following diagram commutes:

E

H /lp
H

O0x XUIxA—Ix X—B
foprx

2.1.2 Lemma Let p: £ — B be a locally trivial fibre bundle with fibre F'.

Then (B™, S™!; f) has HEP with respect to maps into E.

Proof: f*(p) is a locally trivial fibre bundle over B®. Since B™ is contractible
f*(p) is a trivial bundle. Thus the required result follows from the classical
homotopy extension property of the pair (B™.S™"!) with respect to maps into

F. O

2.1.3 Theorem Let p: £ — B be a locally trivial fibre bundle. Let (.X. )
be relative CW-complex and f : X — B. Then (X, 4; f) has HEP with respect

to maps into E.

Proof: Let A :0x XUIx 4 — E be given as in definition 2.1.1. We will proceed
by induction over the skeleta of X. Suppose that H" : 0x XUIx .X"* — E has been
constructed, extending H. Let e"*! be an (rn+1)-cell of X with characteristic map
[:(B"!,8") = (X", X"). Wehaveamap!:0x B**!UIxS™ = 0x XUIx X"
that sends (¢, z) = (£, {(z)). So H™ol : 0x B**'UIx 8" = E and po H"ol = folpr,
where pry : [ x B™! — B™*! is the projection onto the second factor. By
lemma 2.1.2 we may extend H" ol to a map F : [ x B"*' — E such that
po F = folopr,. Since!l is a characteristic map for the cell e**!, F' induces a

map H™ : 0 x X UIx (X" Ue™*!) = E such that po H™ = fopry. In this way

16



we can extend H™ to H™! : 0 x X UL x X! — E such that po H™*! = fopr,.

Now, by induction we can extend H to H : I x X = E as required. d

17



Chapter 3

Introduction to equivariant

homotopy theory

[n this chapter we will introduce some of the basic notions and conventions of
equivariant homotopy theory. Many of the results here will be stated without
proof. For complete details. the reader is referred to [2] or [21]

Throughout this chapter. ¢ will denote a compact Lie group of dimension
n. A left G-space is a space X together with a map p : ¢ x X — X such
that u(g1, (g2, 1)) = (9192, r) and p(e.x) = r. p(g,zr) will be written g.z. A
smooth left G-manifold is a manifold M which is a left G-space such that the
map u is smooth. If X and Y are G-spaces, a map f : X — Y is equivariant if
flg.z) = g.f(z) for all g € G and z € X. If f; and f, are equivariant maps, they
are equivariantly homotopic if there is a homotopy H : [ x X — Y between them
which is equivariant. The action of G on [ x X is given by g.(¢,z) := (¢,g.z).

[X, Y]€ denotes the set of equivariant homotopy classes of equivariant maps from

18



Xto?Y.

3.1 Fixed point spaces and orbit spaces

If X is a G-space and H is a subgroup of G. then X¥ := {r € Xlhr =
rforallh € H}. Forz € X. G, := {g € Glg.x = r}. X is said to he a

free G-space if G, = {e} forall z € X.

3.1.1 Lemma (,.=g¢G,g"!

i

3.1.2 Lemma ¢ X" = X9Hs~

X/G denotes space of orbits with the quotient topology.

3.1.3 Theorem  (See [7]) If M is a smooth compact free G-manifold. then
M/G has a unique smooth structure such that the quotient map p: WM — M/C

is a submersion.

In fact, in this case p: M — M/( is an example of a principal G-bundle.

3.1.4 Definition A locally trivial principal G-bundle is a map p: £ = B
such that E is a left G-space and for each z € B there is an open neighbourhood

U of z in B and an equivariant homoemorphism 4 : p~'(U/) = G x U such that

19



the following diagram commutes

——-———*G’xU

The action of G on & x U is given by g.(g1.u) := (ggi.u). From now on, I will

drop the “locally trivial”, and just refer to such bundles as principal G-bundles.

3.1.5 Theorem  (See [7] Let M be a compact smooth free G-manifold. Then

p: M — M/G is a principal G--bundle.

3.2 The universal principal G-bundle
Recall the following definition (see [21])

3.2.1 Definition  Let (XX;|j € J) be a family of topological spaces. The join

*;cs.X; 1s defined in the following way: Let
X ={(tjz;}):j€ S t;eLr; € X;,St; = 1.t; = 0 for almost all j}

Then as a set

*J"EJ‘YJ' = Y/ ~

where (¢;z;) ~ (u;y7) if and only if ¢; = u; for all j and if ¢; # 0 then r; = y;.

One has coordinate maps
t; - *jeJ.Yj = L(tjzj) =t

20



and

Di: t‘»—l(]()., l]) = X, (tjz;) = 1
The topology on *;e;.X; is the coarsest one that makes these maps continuous.

Now we can give Milnor’s construction of the universal principal G-bundle.

3.2.2 Definition  Given a compact Lie group G, let
EG:=G«Gx*...

and let

BG := EG/G

Then q : EG — BG is a principal G-bundle, and it is universal in the following

sernse.

3.2.3 Theorem Let p: X — X be a principal G-bundle where X is a para-
compact space. Then there exists an equivariant map f : X — EG and a map

f: X = BG such that the following diagram is a pullback diagram.

v—LkG
pl lq
X —BG
Moreover, f and f are unique up to homotopy and equivariant homotopy respec-
tively.
Q

This is a standard result, so the proof is omitted. The interested reader can

consult [21].



3.2.4 Definition Let £, - X| and E; — X, be principal G-bundles. A

morphism of principal G-bundles is a commutative diagram
f

Ey—F,

L]

.X’[ ——f—f .Y-}_
in which f is equivariant.

Let kg(X) denote the isomorphism classes of principal G-bundles over X. Ap-

plying theorem 3.2.3 we have the following.
3.2.5 Corollary  If X is a CW-complex then

[X.BG] = ka(X)

a
We say that BG is a classifying space for principal G-bundles.
3.2.6 Corollary
ka(S') = (G/Go)®
where Gy is the component of G containing the identity element.
Proof: kg(S') = [S'. BG] = m(BG)®*. But 7(BG) = mo(G) = G/Go a

We will also need the fact that principal G-bundles are fibrations in the cat-
egory of G-spaces, at least in the case where the domain of the lifting problem is
a G-CW-complex (the reader should consult [21] for the definition of a G-CW-

complex). More precisely,

| ]
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3.2.7 Theorem  Given a commutative solid diagram

where p : X — X is a principal G-bundle. Y is a free G-CW-complex and f
and F are equivariant, there exists an equivariant £ which makes the resulting

diagram commute.

Proof: First, we will prove the theorem in the case ¥ = G x Y’ where Y’ is a
CW-complex and G acts by left multiplication on the first factor. So we have a
lifting problem

0><G><Y'——*f Y

L)

[xGxY' ——X

We can restrict this to the nonequivariant lifting problem

0xex Y'—f—*_{’

Lol

[ x e x Y’—F—*X

where € is the identity element of G. This has a solution F:lxexY = X
(since p is a fibration). Define F : I x G x Y’ by F(t,g,y) := g.F(t,ey). Fisa
solution to the equivariant lifting problem.

Now suppose that Y is an arbitrary free G-CW-complex. Y? is a set of disjoint
free G-orbits, so clearly the lifting problem can be solved over Y°. Suppose that

we have " : I x Y™ — X which solves the lifting problem over Y. Let e**! be

23



an (n + 1)-cell of ¥ with characteristic map [ : G x (B™*!,8") — (Y"1 y"). F,

f and [ combine to give an equivariant lifting problem

O0xGx B UIxGx s —L %
l .
[x G x B™t+! = -+ X

Now, there is a homeomorphism & : [ x B*+*! — [ x B™*! which maps 0 x B**' U
[ x 8™ homeomorphically to 0 x B™*!. This allows us to transform the above

equivariant lifting problem into one of the form

0xGx Bt —L1o ¢

L)

[ x G x B"“-Tt\’

which can be solved. Thus, we can extend our partial solution F to a partial
. +1 . > . . . = - v
solution ' : Ix ¥"*! 5 Y. By induction we can find a solution F : [xY — X

as required. a



3.3 The Borel construction

3.3.1 Definition Let X and Y be left G-spaces. Then the topological tensor

produdct over (& is defined by
XxgVY:=(X xY)/G

Here G acts on X x Y via the diagonal action. that is, g.(z.y) = (g9.2.9.y). The
equivalence class of (. y) will be denoted by [z.y|. If (¥,Y”) is a pair of G-spaces
then

X xg (YY) := (X xg V. X xg Y')

3.3.2 Remark  Usually X xg Y is defined for X a right G-space and Y a left
G-space. However, as we will exclusively be dealing with left (;-spaces, the above

definition is more convenient for us.
3.3.3 Remark EG x¢g Y is often referred to as the “Borel construction”

3.3.4 Theorem Let p: £ — B be a principal G-bundle and let F' be a left
G-space. Then the map o: £ xg F = B given by o([z. f]) := p(x) is well defined
and is a locally trivial fibre bundle with fibre F'.

Now let (B, B') be CW-pair. Let p: E — B be a principal G-bundle and let
E' := p~'(B'). Suppose that
E—LEG

L

B-——f—+BG



is the pullback diagram whose existence is asserted by theorem 3.2.3 - so f clas-
sifies p: £ — B. Let (Y,Y") be a pair of G-spaces. Let g: EG xY — EG xg Y
be the principal G-bundle and let 7 : EG xg Y — BG be the induced Y-fibre
bundle. The following pair of results are of crucial importance for the rest of the

thesis.
3.3.5 Lemma

mapg((E. E'): (Y. Y")) = map,((B. B'); EG xg (Y.Y"))
Proof: Consider the following diagram:

EGxY -2 kG

L]

EG xg Y — BG
This is a pullback diagram. Now consider the following diagram
f
E-+EGxY —EG
Lo
B-2+EG xgY — BG
/
The pullback property of the right hand square establishes a bijection between
maps ¢ : B = EG xgY such that 7u = f and equivariant maps ¢ : £ - EGxY
whose projection to the first factor is f. That is. it establishes a bijection between
maps(B; EG x¢ Y) and mapg(E;Y). It is easy to check that maps which send

B’ to EG x¢ Y’ correspond precisely to equivariant maps which send £’ to Y.
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The proof of the bicontinuity of this bijection with respect to the mapping space

topologies is omitted. d

3.3.6 Remark  Note that the space map,((B, B'); EGx¢g(Y,Y")) is equivalent
to the space of sections of the bundle £ x5 Y — B which map B’ to E xg Y.

Lemma 3.3.5 is commonly formulated using this space rather than as above.
3.3.7 Corollary
(. EN: (YY) = [(B. B'): EG xg (YY),

Proof: This follows by taking 7o of the homeomorphism in lemma 3.3.5. d
3.3.5 and 3.3.7 show the close link between fibrewise homotopy theory and equiv-
ariant homotopy theory. We shall mainly work explicity with the former and then

use 3.3.5 and 3.3.7 to obtain results about the latter.

o
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Chapter 4

Equivariant stable homotopy

[t is not my intention here to present a complete introduction to the subject of
equivariant stable homotopy theory - to do justice to such a project would require
much more space than [ am prepared to devote and besides, it would divert us
too far from our main goals. [ only wish to present enough of the theory to
motivate the later sections of this thesis. In particular. [ want to demonstrate
the significance of studying the set [(X, A)(SY, oo)]G where (X, A) is a relatively
free G-space. For further details on the material in this section the reader should
consult {12] or [21].

Throughout this section X and Y will denote based G-spaces with basepoints

zo and yp respectively. The basepoints are G-fixed points.



4.1 Equivariant stabilization

[n classical nonequivariant homotopy. one stabilizes the set [.X, Y| by suspending.
That is to say, the set of stable homotopy classes of maps from (X, zo) to (¥ yo)

is defined by

{(X.20):(Y.ygo)} t=lim{[X: Y], = [S'A X: S A Y] - ...
_’

40
Note that S' = RU o is the 1-pt compactification of a l-dimensional real vector
space. The equivariant analogue of a finite dimensional real vector space is a finite
dimensional real representation of G. Suppose that V" is such a representation.

Let S¥ be the 1-pt compactification of V". Given any equivariant map
f i (X.zo) = (Y. %)

we define

(SV.00) A F:(SY.00) A(X.xg) = (SV.c0) A (Y. y0)

to be Idgv A f. This induces a suspension homomorphism (of sets)

[(X.20); (Yoyo)]® = [(8¥,00) A (X, x0); (SY.20) A (Y- yo)]G

We would like to define {(.X.zo): (¥, o)} to be the direct limit over all such sus-
pensions. However, problems arise with this naive approach since the collection
of all representations of G is not a set and thus not a very nice thing on which to
index a direct limit. [ will outline a way to deal with these problems. [t is worth
noting that these issues have been dealt with much more thoroughly elsewhere.
[ am only interested in developing the basic notions of equivariant stable homo-
topy theory as an equivariant homology theory, so [ will not deal with equivariant

spectra in full generality (see for example [12}).
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First, recall that a complete G-universe, /. is an infinite dimensional G-
representation such that, for each irreducible representation, V', of GG, U contains
countably infinitely many summands isomorphic to V. Let us fix such a universe
U. We shall use G-invariant subspaces of U to index our direct limit. Let U/
and V' be two such G-invariant subspaces. We say that U/ < V if /’ C V and if
there is a G-invariant subspace W™ of V" such that V" =1 & U (note that if G is
a compact Lie group and V is finite dimensional. then W always exists since |/
has a G-invariant inner product). Now suppose that ! <V, V= W & {/ and

suppose that we have an equivariant map
fi(SY. 20) A (X.1o) = (SY.0¢) A (Y. yo)
Then define
ov_v(f) 1 (5Y.00) A (X.z0) = (8¥.50) A (Y. o)

by the following composite

(8¥.o0) A (Y. 0)
The first and third maps are induced by the canonical G-equivalence
("9 o0) = (8%, 00) A (SY, 00)
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The map oy_y(f) is independent of the choice of W used in its definition. Thus

we have defined the suspension

mapg((S$Y, 00) A (X, 20); (5Y. 00) A (Y. yo))

awl

mapg((SY.00) A (X, ro); (§Y.20) A (Y. 10))
ov-u induces a homomorphism (of sets)
G ]G

[(5%.00) A (X, 20): (57,20 A (Vo) — [(S7.5¢) A (X 20); (7 00) A (Y. o)

Now we may define the set of stable equivariant homotopy classes of maps from

(X, o) to (Y. yo) as
{(X.20)i (¥.g0)} := lim [($". 00) A (X..20); (5¥.20) A (Y. vo)]©

where the direct limit is taken over all finite dimensional G-invariant subspaces V'
of the G-universe . Note that if V" = R?$V” then the set [(5V~ 20) A (X, yo); (Y. yg)]c
has a canonical abelian group structure (as in the nonequivariant setting). Thus
{(X,z0): (Y.yo)} has a canonical abelian group structure.

For the rest of this section we will suppress mention of the basepoints and
assume that all maps and homotopies are based. Also by “representation of G”

we shall mean finite dimensional G-invariant subspace of Y.
4.1.1 Definition Let V] and V, be representations of G. Then
G5 (X;Y) = {S" A X; 5" A Y}

Also

gy, (Y) = a§ _, (5% Y)

31



@ is an example of a (reduced) equivariant homology theory (see [12] or [21]).

As we have defined it, &€ is indexed on the set of pairs of G representations

(finite dimensional G-invariant subspaces of ¢/)

4.1.2 Lemma  Let ¢; : Vi = V| and ¢, : V5, = V] be isomorphisms of G-

representations. There is a canonical isomorphism

-G - -G
w1y (Y) = BJV]'__VJ(

Y)

Proof: ¢! and ¢, induce an isomorphism
1 p

’

; /) - ~r | - L7 - s ol "v" .
[SYASMAXSUNS2IAY:] — [b‘ NS ANISYASRAY:

By taking direct limits we get the required isomorphism L

The next lemma justifies the use of the notation V{ — V; in the subscript to &¢

4.1.3 Lemma  Suppose that V} V| V; and V, are G-representations such that

’

. . - .

L/l o "2 = Vl B

then there is a canonical isomorphism
-G

- -G
“JV1-V2(} ) - wV{—V;’(

Y)
Proof: By assumption we have an isomorphism

' ' G
[SU ASZASYAXISUAS:ASYA Y]

l

' , N G
[SU ASY2ZASAX;SYASYASY: A Y]
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for any G-representation /. The result follows from the fact that the set repre-
sentations which contain V; is cofinal and the set of representations which contain
V5 is cofinal. 0
Let RO(G) denote the real character ring of the group . Then, RO(G) =
{{V] = [U]} where [V] and [U] are isomorphism classes of representations of G.

Thus lemmas 4.1.2 and 4.1.3 allow us to think of &7 as being indexed by RO(G).

4.1.4 Remark In the context of GG-representations. we will often use an in-
teger to stand for trivial representations of that dimension. Thus. for example,

§7+n = §YIR" o O(Y) = 26.(Y)

n

4.2 The splitting of the stable equivariant ho-
motopy groups
Recall that if H is a subgroup of G then the Weyl group of H is
WH := Ng(H)/H

where Ng(H) is the normalizer of H in . Let (H) denote the conjugacy class of
the subgroup H. We have the following theorem, due to Segal for finite groups

(see [16]) and tom Dieck for compact Lie groups (see [20}).

4.2.1 Theorem

@wG(8°) = @ OVH(EW HY)
(H)

where the direct sum is taken over all conjugacy classes of subgroups of G (|
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Thus, in order to undestand the equivariant stable stems we can study them one
piece at a time. In other words, try to understand the groups &Y #(EW Ht). We

have the following basic result (see [14]).

4.2.2 Theorem

~ ~ 1 4 ~V G
W'S(EG+) = lTl [S"+”..~15»+n:bv,oc]

where the direct limit is taken over all representations V" of & and for each rep

U. Ay is the subspace of SY consisting of all the nonfree orbits.

Proof:

SG(EGY) =lim [§¥*" o0 : §¥ A EG*]°
-

Note that if f: (SY*".xc) = (SY A EG™*. %) then f must send Agv+n to the base-
point *, since all the other orbits of ¥ A EG* are free. Let pr: SYAEGT = SV
be the projection. Then pro f: (SV*+", Agv4n) = (SV.00). On the other hand.
suppose that ¢ : (SV*", Agv4a) = (SY.¢). Let a: S¥+* — 4 - EG be an equiv-
ariant map. By theorem 3.2.3 « is unique up to equivariant homotopy. Define
fr (SV+n,00) = (SYAEGH, *) by f(r) =xforr € Agvsn and f(z) = o(r)Ae(x)
for £ & Agvsn. These constructions establish a one to one correspondence be-
tween [(SVF", 00); (SY A EG"',*)]G and [(SV*", Agven); (Sv,oo)]c which com-
mutes with the suspension maps. a

This theorem illustrates the importance of studying the set [( X, A);(SY, oc)]G

where (X, A) is a relatively free G-manifold. The main purpose of this thesis is

to develop the machinery needed to study these sets.
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Chapter 5

Equivariant transversality and

equivariant framed cobordism

Let G be a compact Lie group of dimension n. Let M be compact free G-manifold
with boundary M. M := M/G. Let V be a real representation of G. If B is a
submanifold of A, v4(B) denotes the normal bundle of B in A. Throughout this
section all maps are assumed to be equivariant unless otherwise stated.

One of the big problems with trying to generalize classical cobordism theory
to the equivariant setting is that. in general. transversality does not work, as the

following example demonstrates:

5.0.3 Example Let G := Z/2 and let X := {*} with the trivial G action.
Let V' be the nontrivial 1-dimensional real representation of G and consider the

r

equivariant map f : X — SV, f(*) = 0 € S¥. f cannot be equivariantly

homotoped to any map which has 0 as a regular value, since the only fixed points

35



of SV are 0 and cc. (Recall that if f: X — Y is a smooth map then y € Y is a

regular value if, for all £ € f~!(y), T.f : T-(X) = T,(Y) is surjective.)

It is clear that the basic problem in this example is that the orbits of the do-
main manifold are not “free enough” to map equivariantly onto all the orbits
of the target manifold. Much work has been done to determine conditions un-
der which equvariant transversality will work. See for example [22] or [4]. [ am
only interested in the following special case. (My thanks to S.R. Costenoble for

communicating the basic argument used in the proof of the following theorem)

5.0.4 Theorem Let G be a compact Lie group. M a compact free G-manifold
with boundary @M and let V' be a real representation of . Then. any equivariant
map [ : (M.9M) = (S8Y.o0) is equivariantly homotopic to a map which has 0
as a regular value. Moreover, given two maps g, and g, which have 0 as a regular
value and which are equivariantly homotopic. we can find a homotopy £ between

them such that 0 is a regular value of F'.

Proof: Consider the nonequivariant map f := (Id. f)/G : (M/G.OM/G) —
M x¢ (SY,00). By nonequivariant transversality, f is homotopic to a map §
which is transverse to the zero section of the fibre bundle M xg SV — M.
Suppose that F is a homotopy of f to . Now, M x §¥ = M xg SV is a
principal G-bundle, so by theorem 3.2.7 we can lift F' to an equivariant homotopy
FoIx(M,0M)— M x (S",00) such that F(0,—) = (Id, f). Let §:= F(1,~).
§ is transverse to the zero section of M x S¥ — M. Let g := pry o § where
prz : M x S¥ — SV is the projection to the second factor. Then 0 is a regular

value of ¢ and pr; o £ is a homotopy of f to g.
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Now suppose that we are given g, and g; as in the statement of the theorem.
Let H : I x M — SV be an equivariant homotopy from g; to g;. Define maps H.

g, and g, as follows.

H:(IxM)|G - MxgS"

(t.m] — [m, H(t.m)]

and g; := (Id x ¢;)/G for i = [.2. So H is a nonequivariant homotopy between
nonequivariant maps g, and g,. Using nonequivariant transverality, we can find

amap F: I x[x M/G— (M xS")/G such that
e F(0.t.[m]) = H(t.[m])
@ F(t.0,[m]) = g,([m]) and F(t.1.[m]) = g,([m])

o F(l.—.—=) : I x M/G = M x¢g SV is transverse to the zero section of

M xg SY — M/G.

Now lift F toa G-map F:Ix[x M = M x SY. Then F:=prsv(F(l,— =)):

[ x M = $Y is a homotopy of g, to g» which has 0 as a regular value. O

5.0.5 Definition Let V be a real representation of (. Then the V'-framed
cobordism set of V-framed submanifolds of (M,dM), denoted QE(M. M), is de-
fined as follows. Let S (M. M) := {(N,d)} where N is a G-invariant submani-
fold of M such that VNAM is empty and & : 1/‘;,(1\-/) — N x V is a G-equivariant
bundle isomorphism. We define an equivalence relation, called V-framed cobor-
dism, on Sg(A;[,aM) by the following: (1\./1,451) ~ (1\72,&2) if there exists a G-

submanifold W of M x I (note that M x [ is only a manifold after we “straighten
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the corners”) and a G-equivariant bundle isomorphism @ : vy, (W) = W x V,

such that (W, ®)|y;,10 = (V1,61) and (W, )| 511y = (V2,62). Then
QL(M, M) := SE(M, M)/ ~
5.0.6 Theorem
.. G .- .
[(.-w.aM),(S",oo) = Q¥ (M. M)

Proof: This is proved exactly as in the classical nonequivariant case, given that
we have equivariant transversality (theorem 5.0.4) in this case. I shall only give a
sketch of the proof. Given f : (M,dM) — (5Y. ), we may assume (because of
theorem 5.0.4) that 0 is a regular value. So f~!(0) is a G-invariant submanifold of
M that does not intersect M. Moreover. T f (the derivative of f) sends T f~*(0)
to 0, so T f|r-1(0) factors to an equivariant bundle map T f| : vy (f~'(0)) —
To(V) = V. That is, Tf induces a V-framing of f~'(0). So corresponding
to f we have (f~4(0).Tf|) € S5(M.dM). Moreover, one shows that under
this correspondence, homotopies of maps correspond to cobordisms of V'-framed

submanifolds. Thus, we obtain a homomorphism

- . , G - .
(M.OM), (5. )] —= Q&L(M.OM).

To invert this homomorphism, we use the equivariant Pontryagin-Thom construc-
tion: Given (N,d) € Sg(z'V[,aj\;[), we have an equivariant tube map 7 : U —
vy (N) where U is some tubular neighbourhood of N. Let pry: N x V = V be
the projection onto the second factor. Then pryo¢or: U — V' is an equivariant

map. Now, if we collapse the complement of {/ to co we obtain an equivariant
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map f : (M,dM) = (5¥,00). One can show that this construction provides the

required inverse

Q¥( N9 Xr AL Qv ¢
V(M ,ON) — [(M,a.w),(s ,o0)
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Chapter 6

Twisted Cobordism

In this chapter, [ shall adopt the following convention. p: M — M is a principal
G-bundle and if ¥ € M then N = p~'(.V). More generally, X and X always will
bear the relationship that X is X with the G action “modded out”. The context
should make it clear what “modded out™ means in each case.

Now suppose that M is a free G-manifold with boundary OM. Instead
of looking at QY(M.dM) directly, we shall take the following approach. Let
[;\7,(5] € Q¥%(M.9dM). By modding out the action of ¢ we obtain a submanifold
N of M, together with a certain structure on the normal bundle of V. The nature
of this structure reflects both the action of G on M and on the representation V.
Also, since we understand manifolds of dimensions | and 2. this approach offers

the possibility of making explicit computations when dim M —dim V' —dimG < 2

6.0.7 Definition  Let M be a compact smooth manifold with boundary dM.
Let £ be a vector bundle of rank k over M. Then SF(M,0M;€) := {(N.9)}

where V is a submanifold of M of codimension k such that N N M is empty
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and ¢ : vy(N) = &|n is a vector bundle isomorphism. We will call SE(M,9M;€)
the set of “twisted framed submanifolds of M of codimension k7. We define
an equivalence relation called “twisted £-framed cobordism” on SE(M, dM; €) as
follows: (Ny. @) ~ (N2, @) if there exists a pair (W, ) where W is a submanifold
of M x I of codimension k& and ® : vy (W) — pri{€)|w is a vector bundle
isomorphism (pr, is the projection from M x [ onto the first factor) such that

(W, ®)|arxo = (V1. 01) and (W. ®)[arx1 = (Va. 02). Define
QE(M.OM:€) = SE(M.OM:€)/ ~

QF (M.OM;€) is the set of “twisted £-framed cobordism classes of twisted ¢-

framed submanifolds of M of codimension £”.
6.0.8 Remark If £ is a trivial bundle of rank 4. then
QF(M.OM:£) = QE(M,OM)

(the classical framed cobordism set, see, for example, [10]). Thus. Qf(M.IM:£)
is a generalization of classical framed cobordism. It is now apparent why we use
the term “twisted” to describe these cobordism sets. The "twist™ is introduced
by the possible nontriviality of the vector bundle . The situation is analogous
to ordinary twisted (co-)homology. In that case, the “twist” is introduced by the

possible nontriviality of the local coefficient system (or bundle of abelian groups).

6.0.9 Remark It is possible to define twisted versions of other cobordism
theories. For example, let ¢ be a line bundle over M. Let S%(M,9M;¢) =

{(N,#)} where N is a submanifold of codimension k and & : A*(vy(N)) = (|v
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is a bundle isomorphism (A* denotes the kth exterior power). Cobordisms are
defined in the obvious way. One obtains QF (M.dM:() which generalizes the

classical oriented cobordism set QF (M, 9M).

6.0.10 Theorem Let M be a compact free G-manifold with boundary 9M

and let V' be a real representation of (¢ of dimension d. Let € be the vector bundle

./"-I XeG V

|

Then there is a bijective correspondence S&(M.dM) = SE(M.OM:E€)

Proof: We will first prove the following:

6.0.11 Lemma  Let .V be a submanifold of M. Then the following diagram

is a pullback

The vertical arrows are the vector bundle projections. Tp denotes the derivative

of p

Proof of lemma: We have the following composite of vector bundle maps

g

i /‘-\
Tl —p TMy — (T M)/ TN == ()

| ] |

1{[ ) NV o + N




To prove the lemma, it suffices to show that 8 is fibrewise surjective and that
ker(6) = TN. Surjectivity follows from the fact that p is a submersion. On the
other hand, if v € ker(), then Tp(v) € TN. But (Tp)"(TN)=TN since pis a
submersion. Thus. v € TNV. This proves the lemma. a

Now, let (N, ¢) € SE(M; ). We have the following commutative solid diagram

NxV—N xgV

¥ o}

=
4

U.-I(‘V) Baa— I/M(."V)

N

where the bottom right square is a pullback by the lemma. Hence, we obtain a
map v : NxVo V_\;,(Z.) which is an equivariant bundle isomorphism.
On the other hand, let (A. 1) € $4(M.M). We have the following composite

of vector bundle maps

All these maps are G-equivariant (G acts trivially on the spaces in the right hand

column). Therefore, this composite factors to a bundle isomorphism

AxgV sy (A)

L

.'.1 —_— .4
These constructions establish a bijective correspondence between S&(M ,OM)

and SE(M,dM;¢€). ad

43



6.0.12 Theorem Let M be a compact free G-manifold with boundary dM
and let V" be a real representation of (¢ of dimension d. Let £ be the vector bundle
M xgV — M. Then

QU(M,OM) = QL(M;€)

Proof: We have established a bijection between elements of S& (M, dM) and ele-
ments of Sf.(M, dM:£). To prove the theorem, we must show that the two notions
of cobordism also correspond. Suppose that (V;,¢,), (Vi,61) € SE(M, M) are
V-framed cobordant via a cobordism (W.®). As in the proof of 6.0.10 we can
mod out the G action on (W.®) to obtain a twisted framed cobordism (W, ®)
between (Vy, @) and (V2. 02). Conversely. if (W, ®) is a twisted framed cobor-
dism between (V. ¢,) and (Ny, ¢2) € SE(M,IM:€), then as in 6.0.10 ¢ may be
pulled back to @ : vy (W) = W x V. an equivariant V-framing of W. Thus

(:\./l,él) is V'-framed cobordant to (1\72,{02). a

6.0.13 Corollary  Let M be a compact free G-manifold. let V' be real G-
representation of dimension d and let € be the vector bundle M xg V' = M,

then
- . . G
[( M, OMY; (S _.oo)] = 04 (M, IM;€).

Proof: This follows immediately from theorems 5.0.6 and 6.0.12. a

6.0.14 Corollary  If the vector bundle € in the previous corollary is trivial

then
. - (]
(M, dM); (SV,oo)] 2 [(M,M); (S%,0)] .

Proof: In this case Q&(M,IM; ) = Q3 (M, M) = [(A[,BM); (S'd,oo)]. a
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6.0.15 Remark  The representation V induces a map iy : BG — BO,. Also,
the principal G-bundle M — M induces a map f : M — BG. The condition in
the above corollary that £ is a trivial vector bundle is the same as requiring that
the composite iy o f be nullhomotopic. For example, this is the case if V' is a
trivial representation (iy is null) or if M — M is a trivial principal G-bundle (fis
nullhomotopic). Corollary 6.0.14 is the first indication that by “modding out™ the
action of G we can often replace a set of equivariant homotopy classes of maps
by something more accessible, in this case a set of (nonequivariant) homotopy
classes of maps. Essentially, 6.0.14 gives a condition under which the “twist”
introduced by the action of G on M cancels out the “twist” introduced by the
action of G on SY. This process of “modding out” the action of G will allow us

to make explicit calculations of equivariant homotopy sets later {see chapter 9).

45



Chapter 7

Twisted Generalized Cohomology

Theories

The constructions that we have seen so far are all unstable. We will now see
how Qf can be stabilized to give a “twisted cohomology theory”. First we must
say what the appropriate categories are. [t turns out that it is more convenient
to define our twisted cohomology theories on a certain category of pairs, rather
than to talk about “reduced twisted cohomology” theories. The basic reason is
that given a pair of free G spaces (X.A) there is no canonical way to collapse
the subspace A to a single free (7 orbit. Equivalently, given a map f:.X — BG
and a subspace A of X, there is no canonical way to replace f by a map which

sends A to a single point.

7.0.16 Definition  Let CW}3; be the full subcategory of T3, whose objects

are triples (X, A; f) where (X, A) is a relative CW-complex.
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7.0.17 Definition  Let (X, A; f) be an object in T3,. The prism, [x (X, A; f),
over (X, A; f) is the object (I x X,I x A; f o pry). There are inclusions :; :
(X.4;f) = [x (X, 4;f). j = 0.1, given by ig(z) := (0, r) and iy (z) := (l.z).

Let AT3; and hC'W}s denote the resulting homotopy categories.

7.0.18 Remark  Classically (see, for example. [24]) ordinary local cohomology
is defined using a category L= (see chapter VI of [24]) which is related to T3,
in the following way: Let M be a discrete ZG-module and let (X, A: f) € |TEgl-
Suppose that X = X is a principal G-bundle which is classified by f. Then
X x¢ M — X is a bundle of abelian groups over X in the sense of [24]. Also.

given ¢ : (X, A; f) = (Y. B:g) we get a commutative diagram
)‘;.
¥

where & is a map of free G-spaces. This induces a bundle map

@
—_—

g
,

— e

o

—
D

.i' xg M — }: xg W

| |

X—Y

So M induces a functor Fy : T4 — L*

We can now give the following:

7.0.19 Definition A cohomology theory on AT3. (or ACW}) is a sequence
of contravariant functors h™ : hT3,; — Abelian groups satisfying the following

axioms:



o Exactness: Given (X, A; f) we have an exact sequnce
s BN ) BN fla) s RH(XL A f) s ATH(X ) —
where § is a natural transformation.

e Excision: Let (X; .4, B) be a triad with X = AU B and B — A C int(B).

Suppose f:.X — BG. Then we have an excision isomorphism
h™(X. A f) = RY(B. AN B; f|B)
induced by the inclusion

(B.ANB: flg) = (X. 4: f)

e coefficient homotopy invariance: Given a pair (X, 4), A*( X, A; =) is a func-
tor from the fundamental groupoid II;(map(X. BG)) to abelian groups and.

if F'is a homotopy between f, and f; then the following diagram commutes

hP(A: fi) —=—s A (A: f)

: i
(X, A fi) —— AY(X. A fo)

F. denotes the homomorphism induced by the homotopy F.

[ shall refer to the map f : X — BG as the “coefficient map”. We may also

require our cohomology theories to satisfy the following axiom:

o Additivity: Let X be a disjoint union of CW-complexes X, and, for each

a suppose that we have f, : X, = BG. Let f be the disjoint union of the
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fa. Let A be a subcomplex of X and let A, = X, N 4. Then the induced
homomorphisms

RY(X. A5 ) = AY(Xa. Aas f)

represent A"( X, A; f) as a direct product.

7.0.20 Remark  The exactness. excision and additivity axioms in the above
definition are fairly straightforward analogues of their untwisted counterparts.
The coefficient homotopy invariance axiom has no untwisted counterpart. Roughly
speaking, it is there to ensure that h™ does not distinguish between objects

(X, 4; fi) and (X. 4 f;) when f, is homotopic to fs.

7.0.21 Example  Our first example will be of fundamental importance for the
rest of this thesis. Let V" be a d-dimensional representation of the group G. Let

(X, A: f) be an object in ~AT3 and consider
[(X.A):(EG xg SV . EG xg )],

(Note that we have a sphere bundle EG xg S¥Y — BG.) We think of this set
as a twisted version of [(.\’, A);(S%.20)]. In order to get a cohomology theory
we must stabilize this set. We do this as follows: Fix a relative homeomorphism

(I,31) = (S'.00). Then, there is a canonical equivariant relative homeomorphism

0 :(SY,00) x (I,3I) = (SV*, )
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which collapses SV x 91U oo x [ to co. We define the suspension map to be the

following composite:

(X, A); EG xg (¥, 00)],

l

[(X, 4) x (LA1);(EG xg (SY,00)) x (1, 31)]

lo.

[(X.A) x (LA1); EG xg (SV3R x0)]

fopryx

foprx
where pry is the projection X x I = X. We can now define w3 (X. A: f) to be

the direct limit of the following diagram:

l

[(.\'. 4) x (LA EG xq (SVER™ co)]

1

[(x. A4) x (LA EG xg (SVIRM 41 oo)}

Note that if f is a constant map, then w(.X, 4; f) = w*(.X. 4), the usual stable

fopryx

foprx

cohomotopy of (X, A).

7.0.22 Remark [t is worth pointing out the contrast between the stabiliza-
tion procedure introduced here and the equivariant stabilization described in
chapter 4. There, the set [(X, A); (Y, B)]G was stabilized by suspending with
respect to all representations of . By contrast, the stabilization procedure de-

- G -
scibed above may be viewed as stabilizing the set [(X, A); (8Y, oo)} , where X
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is a free G-space, by suspending only with respect to the trivial representation.
It might be possible to introduce a “twisted theory” which corresponds to stabi-
lizing with respect to all representations of (7, however it is not necessary for my

purposes. [t is also not clear vet if anything new would be gained in this way.

7.0.23 Theorem  wy is an additive cohomology theory on hCW}3,

Proof: First note that [(X,A) x (I,d])}, EG xg (SV**, )] is a group for

fopry
{ = | and an abelian group for : > 2. This is proved in exactly the same way as
the classical untwisted case. So (X, 4; f) is an abelian group.

Exactness: Consider the sequence

[(X.A)EG xg (§V*F. )]

l

[X.EG xg (SV**, oo)]

l

[4 EG xg (§V**, 00)]

f
f

fla

Clearly, this composition is 0. Conversely, suppose that f € map;(X.EC xg
SV+k) and that f|4 is homotopic to a map that sends 4 to EG xg oc. By 2.1.3
f may be homotoped to a map which sends A to E( xg oc. Thus the above

sequence is exact. Now, by taking direct limits we see that
Wi (X, A f) 2 wp (X3 f) = wp(As f)

is exact. To construct & : wi(4; fla) = «wPtH(X, A; f) we first make the following

unstable construction. Let

[6] € [A x (LAL); EG xg (S"*"** 00)] .,



So ¢: Ax 9l =+ EG xg oo We can extend ¢ to a map
@: X x {0} UAxI— EG xg S+

by setting o(a,t) = é(a,t) for (a,t) € A x [ and &(z.0) = o f(z) where o :
BG — EG xg §V+"—?+! is the oc-section of p: EG x¢ SY*+"~4+! 5 BG. Now,
po(x,t) = f() forall (x,¢) € X x {0}uAx1I so by the fibrewise homotopy exten-
sion property of (X, A: f) (theorem 2.1.3), ¢ extendstoamap ® : X xI —» EG x¢
SVan=dtl Let g := &(—,1). Clearly, v : (X. ) = (EGxgSV+dtl EGxeox).
Also, poo = foprx. So [v] € [(X.A); EG xg (SV*'”‘d*'l.oc)]foprx. Several
choices were made in the construction of ¢, and we must show that the fibre-
wise homotopy class [] is independent of these choices. For example. if we have
two different maps ®, and &, which extend ¢. then ®, and ®, will be fibrewise
homotopic with respect to the fibration EG xg S¥ — BG and thus will lead
to the same fibrewise homotopy class [¢’]. In this way. we see that [¢] is indeed
independent of the choices made in its construction. Thus we have constructed
a map

[-l X (Ldl). EG XG (Sv,+n_d+l'oo)]foprx

§
[(X. ) EG xg (SV4=t*t )]

Now, by taking direct limits, we get the required map

§:wp(A; fla) = «PHHX AL S)

(1)
(3]



By construction

[X x (L.3I); EG xg (SV+*,0)]

|

[A x (LOI); EG xg (5¥+*, 0)]

E

(X, A); EG xg (874 )]

l iy

[X: EG x¢ (Sv”‘,oo)]

fopry

fopry

f
is exact, so taking direct limits yields the exactness of

WX f) = @ (A f) o PP (XA f) —— (X5 )

Excision: Let (X: A. B) be a triad as in definition 7.0.19 and let f : X — BG.

We need to find an inverse to the excision homomorphism
wy (X, Bif) = wip (4,40 B fla)

Let ¢ € mapyjopr, ((A. AN B) x ([,A)* EG xg (SY*+7~4+* xc)) represent an
element of wi(A, AN B; f]4). We can extend ¢ to o € mapyjopr, (X, B) x
(1. EG xg (SVH=4t* 00)) by defining oz, (ty,....i)) := ox(f(2)) for
r € X — A. Then the assignment [¢] —» m is an inverse to the excision homo-
morphism.

Coefficient homotopy invariance: Let F': [ x X — BG be a homotopy of f; to
f2 and let ¢y : (X, 4) x (I81)* = EG xg (SY*+"4** o) represent an element of

wi( X, 45 fi). F may be lifted to a homotopy
F:Ix (X, 4) x ([,0)f - EG xg (SV+"4* o)
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such that F(0,—) = &,. Let ¢, := F(1,-) and let F.([¢1]) := [¢2]. F. is
well defined for if ', and F, are two different lifts of F then they are fibrewise
homotopic (see {17]). Thus ¢, is uniquely defined up to fibrewise homotopy.
Moreover, F. clearly satisfies the required naturality properties. See lemma 2.0.8.

Additivity: It is clear that the induced morphism

[(X.A) x (LN EG xg (SVHr=3+F o))

l

[T [(Xa. As) x (LAN* EG xg (SVH=d+k 0)]

f

fa
is a bijection. Now, take direct limits. O
The group w&(X. A; f) is a twisted version of the classical stable cohomotopy
group w¥(X. 4). The “twist” depends on two things; the action of the group on
the representation V" and the nontriviality of the homotopy class of f : X — BG.
Our main motivation for introducing these twisted cohomotopy groups is to
provide some method of computing the sets [( M.OM): (8", ~:>o)]G. So a natural
question to ask is: when is (:V[,az\;[);(sv.oo)]c > WL(M.OM: f) (d = dim V).
We can answer this question using the equivariant Freudenthal suspension theo-

rem (see chapter [I in [21]).

7.0.24 Theorem Let (X, ) be a relative free G CW-complex of cellular
dimension m (i.e. dim(X/G, A/G) = m) and suppose that dimV = d. Then the

suspension with respect to the trivial representation

is an isomorphism if m < 2d — 1 and an epimorphism if m < 2d.
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Proof: This follows immediately from theorem 2.10 of chapter 2 of [21] a
Now, we can interpret the above theorem as a result about the fibrewise

suspension maps described in the definition of w{t( X, A: f) to get:

7.0.25 Theorem  Let (X.A) be a CW pair and let f : X - BG. Suppose

that dim(.X, A) = m and that V' is a G representation of dimension d. Then

[(X.A); EG xg (5".130)]] = [(X,4) x (L,31); EG xg (8V*'. x)]

fopr
is an isomorphism if m < 2d — | and an epimorphism if m < 2d.

Proof: Let X — X be the pullback of EG — BG along f. Then we have a

commutative diagram

[(."’..,i); (S".oo)]a———+ [(.i’._ A) x (1, 8[);(5’V+‘.oo)]c

gl J’a

(X, A) EG xg (S'V,oc)]f — [(X. 4) x (LAL); EG xg¢ (Sv“.oc)]jopr

The vertical arrows are isomorphisms by lemma 3.3.7. The top arrow is an
isomorphism by theorem 7.0.24 and the theorem follows. a
Thus, under conditions given by the above theorem, computations of wé (X, A: f)
give us computations of |(X,A);(SY.oc)|. In the next section, we will develop

a tool that will give us some computational handle on w&(.X. 4; f).



Chapter 8

The Atiyah-Hirzebruch spectral
sequence for twisted cohomology

theories

Having introduced the concept of a twisted generalized cohomology theory. a nat-
ural question to ask is whether or not we can develop an appropriate analogue
of the classical Atiyah-Hirzebruch spectral sequence. By analogy with the classi-
cal situation, one would expect that such a spectral sequence would have the £,
term isomorphic to twisted ordinary cohomology with coefficients in some twisted
system whose underlying abelian group is the generalized cohomology of a point.
This indeed turns out to be the case. Having this spectral sequence will allow us
to reduce (in certain cases) computations of twisted stable cohomotopy groups
to (easier) computations of twisted ordinary cohomology groups.

Let (X, A; f) be an object in T3, and let A be a cohomology theory on T3,
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as defined in chapter 7. For each integer ¢ we can define a coefficient system. £,
on X as follows: Let L"’f(r) := h9(*; cf(r)), where cfz) 1 * = BG sends * to f(x).
A path a : I = X induces a homotopy between c.(0)) and cg(a(1)) and thus «
induces 2 homomorphism a” : L{{a(1)) — L%(a(0)) by the coefficient homotopy
invariance axiom. So L% is a coefficient system on X. The main results of this

section are the following two theorems.

8.0.26 Theorem  Let h be a cohomology theory on T3,. Let (X,A) be a

relative CW-complex and let f : X — BG. Then there is a cohomological spectral
sequence E(X. A: f) such that E37( X, A: f) = HP(X. A: £}) where H is ordinary

cohomology. If the spectral sequence converges then E(X. A; f) = A™(X, A f)

8.0.27 Theorem  Given a cellular map ¢ : (X. 4) = (Y. B) of relative CW-

complexes and a map ¢ : ¥ — BG. ¢ induces a morphism of spectral sequences
o E(Y.B:ig) = E(X,d:goo)

Whenever the spectral sequences converge, then this morphism of spectral se-

quences in turn induces the canonical homomorphism
o7+ k(Y. Big) = h*(X. Aig 0 o)

The rest of this section will be devoted to proving the two preceding theorems. So
for the rest of this section, (.X. A) will be a relative CW-complexand f: X — BG

a continuous map.

8.1 Construction of the spectral sequence
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8.1.1 Lemma  Let X* denote the k-skeleton of X. Then there is a long exact

sequence

s RT(XE AL F) o RR(XE, A f) o RO X ) o A X A f)

Proof: This is a standard cohomology arguement using the long exact coho-
mology sequences associated to (X*, d; f). (X**', 4; f) and (X**+!, XF: f) (see

[24]). u

DY = APYIXP A f)

EP? = pPHI(XP XP-L )

FPe = ker(hP*( X, A; f) = APHI(XP. AL f))
The FP?'s form a filtration of A?*7( X, A: f). Let

We have an exact couple

arising from the long exact sequences in lemma 8.1.1. If X is finite dimen-
sional, the filtration described above is a finite one, i.e FP? = 0 for p > 0 and
FP9 = hP*9(X_ A; f) for p < 0. So the resulting spectral sequence converges to
h*(X, A; f). That is

EPS = GPa
The proof of theorem 8.0.27 is now immediate. For, if ¢ : (X, ) = (Y.B) is
a cellular map, then clearly ¢ induces a morphism of the corresponding exact

couples and thus induces a morphism of the corresponding spectral sequences.
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Thus far, the development proceeds exactly as in the classical untwisted case

(see [9])

8.2 Identification of the F, term

The construction of the spectral sequence parallels closelv that of the classical
untwisted case. The major difference arises in the identification of the £, term. A
close examination of the untwisted case reveals that the crucial step in identifying

the £, term uses the following well known fact:

8.2.1 Lemma  Let f:S? — S? be any map. Then there is an integer d; (the

degree of f) such that if A is any generalized cohomology theory. then for all &
F o hR(SP) = RH(SP)
is multiplication by d; O

What is important is that the degree of a map is a concept which is independent
of any particular cohomology theory.

Turning to the twisted case the corresponding fact is given below (lemma
8.2.5). First we prove some preliminary results.

Throughout this section ¢, will denote the constant map at =

8.2.2 Lemma  For r € X let £(z) := h*(S™, *;cf(r)). Then £ is a bundle of

abelian groups (local coefficient system) over X

Proof: Certainly, £(z) is an abelian group for each £ € X. Given a path

r: I —- X with r(0) = z, and r(l) = z,, then f o r induces a homotopy
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from cf(z,) to cfs,). Thus, the coefficient homotopy invariance axiom gives us a
corresponding homomorphism £{z,) = L(z;). O
The next lemma is the twisted version of the suspension isomorphism. [t shows
that the coefficient system defined in the previous lemma depends only on the

difference & — n.
8.2.3 Lemma  The coefficient systems
Ly=h4S" xi¢p))

and

are canonically isomorphic
Proof: Let £ € X. The isomorphism £,(r) = L,(z) is the following composite:

hk+l(Sn+l

RLCH)) N

q* [

-

hk+l(Dn+l,Sn; Cf(:))
+
§ >0y

hk(sn; Cf(r))

"

R (8™, %; cqie) +—

Note that since all the coefficient maps are constant maps, we are dealing with un-
twisted cohomology here. g : (D"*!,S™) is the quotient map. § is the connecting
homomorphism of the long exact sequence of the pair (D™*!,S™). i: S™ — (5", *)

is the inclusion. All the maps in the above diagram commute with homotopies
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of the coefficient maps by the coefficient homotopy invariance axiom of defintion
7.0.19, hence, to prove the lemma. it suffices to show that v is a well defined
isomorphism. Consider the following commutative diagram (the coefficient maps

are suppressed):

hk(DnH)
T

N

RE(S, Pt (™) —— h¥ (%)

S

/‘LH'I(D“"'l. Sn)
The horizontal row is part of the long exact sequence of the pair (S™.*) and the
vertical column is part of the long exact sequence of the pair (D"*!.5"). j* is an
isomorphism. since it is induced by the homotopy equivalence * = D"*!. Now,

it is a straightforward diagram chase to show that v is an isomorphism. O

8.2.4 Lemma  Let f: D? — B(G. Then there are canonical isomorphisms
hn(Dp.Sp_lt = hn(Dp.Sp_[;Cf(o))

and

A (SP™L flse-1) 2 RM(SP i epg)

Proof: This follows immediately from the coefficient homotopy invariance axiom
and the fact that 0 € D? is a deformation retract of DP. a

Now, we come to the key lemma of this section.

8.2.5 Lemma  Let
lo: (DP,SP71) — (XP, XP71)
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and

lg : (DPF!, 8P) 5 (XPHE, XP)

be characteristic maps for a p-cell and a (p + 1)-cell respectively. Let r, := {,(0)

and let zg := (3(0). Let
XP~l:= XP — [ (int( D?))

Then, there exist paths r; : [ = X for i = 1....,d with r;{0) = r3 and ri(1) = r,

and signs ¢; = +1 such that the following diagram commutes (in this diagram

the unlabelled isomorphisms come from lemma 8.2.4):

RPFI(DP. P71 f o) e hPHI(XP, XE74 ) =2 hPFI(SP: o Ly)

~ >
hP+9(DP, 5PV cpinny) hPY(SPscp(ryy)
PSP, %:C(za)) hPHI(SP. *:cpzy)

hY(%; Cfira)) »RI(*iCp(zy))

where ¢ is defined as follows. Let L% = h%(x;cy(-)) as in lemma 8.2.2. Then

d
61 Lj(ra) = L}(z5)- g Y eiL(ri)9)

=1

The proof of this lemma is deferred till later. For now it suffices to understand
its significance. The top row of the diagram in lemma 8.2.5 is a homomorphism
that (for our purposes) will arise in two different contexts - the differential of the
spectral sequence and the differential of the cellular cochain complex of X with

coeflicients in a certain local coefficient system. The lemma characterizes these
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homomorphisms in terms of intrinsic properties of the attaching maps (namely
the paths r;) and the coefficient system L. Thus, if the two different situations
mentioned above give rise to the same coefficient system, then the corresponding
homomorphisms are the same.

Now, we will see how lemma 8.2.5 allows us to identify the E, term of the
twisted Atiyah-Hirzebruch spectral sequence. The differential d; is the following

composite
d; hp+q(Xp. XpP-L f) — hPTI(XP, A: f) .._5_> hp+q+l(4\’p+l. Xp. f)

Let A be an indexing set for the set of k-cells of .X. Then we have isomorphisms
poa( e xo-ts ) 3, [ Are(Dn. 577 fola)
Oet\p

and

hp+q+l(.\'p+l.Xp;f) (13 H hp"'q“(DpH,Sp;fold)

3€Ap41
Thus, to identify the differential d;, we need to identify the composite homomor-
phism
h?P+(DP, 571 foly,)

l

[ p7+e(Dr. 7= f o la)

a€Ap

H hPHaTL(DPHL SP: F o )

O€Ap+1

he+att(DP*, SP; f o lg,)
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for each pair (ag,30) € A, x Apyi. This suffices since there are only finitely
many cells in each dimension (See remark 8.2.6 below). Consider the following

commutative diagram

hP*a(DP, SP=Y chiz) g?jhp’“‘?(DP. 5Pl foly)

EI g};
~hPTISP *i o)) hPH(XP, XE7H f) ——— hPHI(XP, XP7L f)
A Ri(XE A f) |

€n

hp+q<_yp;:l._yp; e
13

hPH( 8P x: f 0 L)+ hPF(SP; [ o lg) ——Ss hPH9( DPFL GP: f o [y)

218.2.4 218.2.4 ) 8.2.4

N+ RPHI(SP_ x; Cf(rs)) —— hP¥(SPicp(py)) ——— RPTI(DPFY, SP; Cf(zs)

N = J

'l

The arrows marked 8.2.4 are isomorphisms by lemma 38.2.4. The region marked
A commutes by lemma 8.2.5. Also. the composite marked v is an isomorphism
(this is a simple exercise in untwisted cohomology theory). Thus we have a

commutative diagram

hPte(DP SP-L. foly) L_, Ef-q L E{J-i-lvq l,hp+q+l(pp+1’5'p; folg)

. l =

h3( 5P, ; cfiza)) rh7(SP, % cp(zy))

)
The arrow marked h; is the inclusion of one of the factors into a direct product

and the arrow marked 4, is the projection from a direct product onto one of the
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factors.

Now we apply a similar analysis to ordinary cohomology with coefficients in
the bundle of abelian groups £f. Recall that L(z) := h%(*;cs(r)). Recall (see,
for example [24]) that the cellular cochain comples of X with coefficients in £ is

the top row if the following commutative diagram:

o HA(XP XL L) 2 L HPHL(XPHL X L) s

\/

HP(XP, A L)

In order to identify the differential @ we use a similar argument to the one
used to identify the differential d, of the spectral sequence. One takes the di-
agram from the previous page and replaces every ocurrence of hP*7(—. —; f) with
HP(—, —: L}). The resulting diagram is, once again. commutative by lemma 8.2.5

and therefore for each pair (o, 3) € A\, X Ap41 we have a commutative diagram

HP(XP.XP=L L) 2 HPHE(XPHL XP: 1)

N |

HP(DP P~ LYy,)  HPRH(DPLSE LY,

El l’“

£(z.)  LY(z5)

)
where the arrow marked h; is the inclusion of one of the factors into a direct
product and the arrow marked h, is the projection from a direct product onto
one of the factors. Thus we have identified the differential d;, of the spectral
sequence, with the differential @ of the cellular cochain complex. Subject to the

proof of lemma 8.2.5, this completes the proof of theorem 8.0.26.
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8.2.6 Remark I make the assumption that X is compact, since that is the
only case that in which I am interested. However, it may be possible to obtain
useful information fron the spectral sequence for more general spaces if one makes
a more detailed study of the convergence issues. See [23] for a much more detailed

discussion of these issues.
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8.3 Proof of lemma 8.2.5

When reading this proof, one should bear in mind the analogy with the degree of
a map SP — SP? in the untwisted situation. It would probably help the reader to
review the proof of lemma 8.2.1. The proof of lemma 8.2.5 uses the same ideas,
however, we have the added complication of keeping track of all local data via
the coefficient system C}. Now for the details.

We may assume that r, is in general position with respect to {g|se. Thus

Also there is a disc neighbourhood V" of r, in X? and disjoint disc neighbour-
hoods Ufy,...,Uy of yy,....ys respectively, in SP such that {3 : ; - Visa
homeomorphism. Let ¢y : DP = V and ¢; : D?P — U; be charts. Also. we may
choose * the basepoint of S? so that * &€ [;

Fix orientations on DP and DP*!. The orientation on DP*' determines one on

SP with respect to the inward normal vector. Let
q:(DP.SP71) = (57, %)

be an orientation preserving relative homeomorphism. Let #; : [ = DP*! be a

path such that 7;(0) = 0 and 7;(l) = y;. Let r; : [ & X be defined by

T = lgof';
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Now consider the following commutative diagram of maps:

(8P,4) — L (xP XP —ing(V)) — (pr

57
\ Tlal

(SP.SP — (int({,) U - U int(Uy))

Tu?=l ¥

In cohomology this induces the top part of the following diagram:

RPHI(SP#; f o0 lg) e RPFI(NP. XP —int(V); f 0 ly) ——+ hP+9(DP. 574 f o l,)
d
heta(8P. 5P — (| fintli: £ o ly)
=1
T4, AP*9(DP.5P7Y foly o wy)
A _l e 1
RPTA(SP %1 cp(ry)) H?:x hPHI(DP SP Y cron)) —=t PH(DP SP Y ep)
¢ | o~ / dhm
7 |= x
AP+ (DP, SP=4 cpizay) + E L(zg) Li(za)

@ is defined by the commutativity of the above diagram. Let

¢J = 801']'

where

d
ij s RPY(DP, SP Y cpey) = [[ A7F(DP, 5P cea))

=1
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is the inclusion of the jth factor in the direct product. To prove the lemma, it

suffices to show that the following diagram commutes:

¢
hP¥a(DP, SP=Ls ¢y pny) ——+ RPHI(DP, SPL, Cf(z3))

El le

Eq(.ra) + ﬁ(}(.l:g)

(S

Ct}(r.,)

This follows from the commutativity of the following diagram:

d oy i e
e A2H9(DP, SP~Yicppny) ————— RPYI(DP, SP" Y cpir,)) ———

o o

l‘[i__l RPHI(DP,SP=1: f oy 0 wy) ——— RPFI(DP.SP7Y f o lg o v))
= J ‘

~

EL"’U%:I ,L.;
d
hPI(SP SP — | (U folp) ——— hPFI(SP . SP — (int(L})); f o lg)
i=1
-~ -+~ EJ
hPF1(SP, int(L';))icriey))
hp+q(5p:
=
hP¥e(DP. é’p—
- J

The unlabelled arrows are induced by the canonical inclusions.

This completes the proof of lemma 8.2.5 and thus completes the proof of

theorem 8.0.26.
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Chapter 9

Computations and examples

Throughout this chapter. H.(—:£) will mean ordinary singular homology with
coefficients in L. I shall use the same notation as [24] to describe singular sim-

plices, chains. cycles etc.

9.0.1 Theorem  Let wy be twisted stable cohomotopy as defined in chapter
7. Let (X,A) be a CW-pair with relative dimension m and let f : \' — BG.

Then there is an exact sequence

H™ (X, 4; £9) S, H™MX, AL —— el (X A f) —» HP XL ALY
where d; is the differential of the Atiyah-Hirzebruch spectral sequence (theorem
8.0.26)

Proof: The E, term of the Atiyah-Hirzebruch spectral sequence for wy (X, A; f)
is given by EF* = HPH(X, A; L%). Now, for p > m+1, H**9(X, A; L) = 0 since
dim(X, 4) = m. Also, note that the underlying abelian group of the twisted

coefficent system L% is the classical stable cohomotopy group w?(*). Thus, for
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q > 1, £ = 0 since w?(*) = 0 for ¢ > 1. The result now follows from standard
spectral sequence arguements. O
Note that the coefficient system L';l has undelying abelian group w=!(*) = Z/2
and is therefore always a trivial system. Also E(} has underlying group w°(*) = Z.
Thus £ is determined by homomorphisms (X;) = Z/2 = Aut(Z) where the
Xi’s are the connected components of X.

We will now specialize to the case (X, A) = (M.dM) where M is a connected
m-dimensional compact manifold with boundary dM. In this case. we can use
a version of Poincaré duality to make explicit computations of the cohomology

groups in theorem 9.0.1. A first result is:

9.0.2 Theorem  Under these hypothesis there is an exact sequence

H™ M, OM: L)) — Z/2—— P~ M.OM; f) —» H™ ™Y (M.OM: L)

Proof:
H'"(;l[,ﬁzﬂ:ﬁ}") = H™(M.OM;Z/2)
= Z)]2
by Poincaré duality. Now apply theorem 9.0.1. d

Now [ will examine, in more detail, the homomorphism
i:Z)2 = WP (M, OM; f)

which occurs in the above exact sequence. The following lemma essentially says

that the image of { corresponds to the nonequivariant stable l-stem of spheres.
9.0.3 Lemma  Let U be an open disc neighbourhood in the manifold M. Then
WP MM =~ U; f)=Z)/2
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Proof: Let h : (B™,S™ ') - (M, M — U) be a relative homeomorphism. By
the excision axiom

h* WP MM = U f) » WY (B™. 8™ foh)

is an isomorphism. Now B™ is contractible, so f o h ~ ¢ where ¢: B™ — BG is

a constant map. Thus

SN (B, S™ f o h)

14

LN BT, 8™ e

Now, recall that by theorem 7.0.25, if m > 3,

Wy (B™ 8™ foh) = (BTSN EG %6 (SY.00)]

> Qp(Bm, 5T h(E)
where € is the vector bundle M x¢ V' = M. Since h*(£) is a trivial vector bun-
dle, elements of QT ~'(B™. 5™~ h*(£)) are represented by framed l-dimensional
submanifolds of B™ and it is well known that the two distinct elements of
Q}?'l( B™. 5™~ h*(£)) correspond to the two different homotopy classes of fram-
ings of the trivial rank m — 1 vector bundle over S!. In this way, we can explicitly

realize the elements of w}~' (M, M - U; f).

9.0.4 Lemma  The homomorphism ¢ factors in the following way:

Wi T MM = U f) == w7 (MLOM; f)

IE/

Z/2
where j : (M,3M) = (M, M — U) is the inclusion.
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Proof: This follows from theorem 8.0.27 (naturality of the exact sequences).

O
Thus, when m > 3, we have an explicit realizations of the image under i of the
nontrivial element of Z/2 as follows: Let [ : R™ — M be a chart for M. Let
N := {(cost,sint,0) € R™0 <t < 27}. Let N :={(N). Now. [*(€) is a trivial
vector bundle over R™. Fix a trivialisation ¢ of this bundle. The nontrivial
framing of the normal bundle of ¥ in R™ induces, via ¥ and [, an isomorphism
vay(N) = €|n. Call this isomorphism ¢. Then [(V, ¢)] is the required element of

QF-Y (M. IM:E).

9.0.5 Lemma  The element, [(\V.0)], which we have just constructed. is a

nontrivial element of Q™' (M, dM:€).

Proof: Suppose that (V. 9) is bordant to the empty submanifold via a bordism
(W,®) where W is a 2-dimensional submanifold of M x [ and @ is a twisted
framing of the normal bundle. This leads to the following situation: There is
a 2-dimensional manifold W~ with boundary W = S!, a vector bundle n over
W of rank m — | and a vector bundle automorphism 8 : n — 5 such that the
following hold. n|sw is a trivial bundle over W = S* and 6w is a homotopically
nontrivial automorphism of this trivial bundle. W is homotopy equivalent to a
wedge of circles, thus & n is a trivial bundle of rank 2m =2 over W. 0& [d, is an
automorphism of &7 which restricts to a homotopically nontrival automorphism
of the trivial bundle n & n|sw. Automorphisms of trivial bundles correspond to

maps from the base space into GL(R*). So we have a map 6 : W — GL(R*™~?)
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such that

4| : St = dW — GL(R*™?)
represents the nontrivial element of 7, (G L(R*™~?)) = Z/2. I claim that such a 8
cannot exist. To see this, let 7 : W — S'V...vS! be a homotopy equivalence. It is
clear (from the classification of 2-dimensional manifolds) that if p; : S'v--.vS§!' —

S is the projection onto the ith wedge summand, then the composite

SL= W ——W —§ly...v SF— gt

a

has even degree for all ;. The claim follows easily from this. This completes the

proof of lemma 9.0.5. a

9.0.6 Corollary  [f m > 3 then there is a short exact sequence
0= Z/2— Y M OM: f) - H’“'l(;‘/I,BM;K(}) -0

Proof: Lemma 9.0.5 impies that the map Z/2 — w? ™' (M.9M: f) is injective.
The result follows from theorem 9.0.2. a

To compute the groups H¥(M,dM: L9) we can use Poincaré duality for (pos-
sibly) nonorientable manifolds. Let ® denote the orientation bundle on M. That
is.

B(r) = Ho(M. M - {2}, Z)

Note that
Hoa(M, M - {z};0) = Ho(M, M — {2} 2)0 Ha(M, M — {z}; Z)

Let a be any generator of H,,(M, M — {z}:Z) and let Z, := a ® a. Now we have

the following duality theorem:



9.0.7 Theorem  (Poincaré Duality) There is a canonical class
ZEHL(MIM;O)
characterized as follows: For each x € M the induced homomorphism
Ho(M,0M;0) = Hu(M, M — {z};0)
sends Z — Z,. Moreover,
Hn(M.OM;0)=2ZT
and there is an isomorphism
NI HTTP(MOM L) = Hp(M: LD 0).

L © 0O is the coefficient system given by

9.0.8 Corollary  There is a short exact sequence

0 ——+Z/2—— Wl Y M, OM: f) — H(M.OM; LS © 0) —0
a
Now we turn to the question of computing 'H[(.M,Bz\/[;[:? @ O). We have the
following result concerning H;(.X;L). (It is a generalization of the Hurewicz

theorem concerning H,(X;Z))

9.0.9 Theorem Let X be a connected CW-complex with basepoint zy and

let £ be a local coefficient system on X whose underlying abelian group is Z.
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Then £ is determined by a homomorphism m( X, zo) = Z/2 = Aut(L(zq)). Let
K be the kernel of this homomorphism. If we choose a generator, a, of £(z)

then there is a corresponding surjective homomorphism
Ba: Ny = Hy(X;L)
[u] = [a.y]
where u : (A,940,) = (X, zg) represents an element of Az < m (X, zg). The

kernel of this homomorphism is [A';, A’}

Proof: (Sketch) According to [24], the chain complex of singular simplices with
coefficents in £ is chain homotopy equivalent to the chain complex of singular
simplices which send all 0-simplices to o (again with coefficients in £). So in
computing H, we may restrict our attention to the latter chain complex. In this
setting is quite clear, that if u: (A, 34) = (X.ro) is a singular l-simplex, then
u is a cycle if and only if u representa an element of m(.X.rg) which is contained

in A'z. Thus one has an epimorphism
K —» 'H[(.YC)

One checks. as in the proof of the classical Hurewicz theorem (see [24]) that the

kernel of this epimorphism is [A'z, A']. a
9.0.10 Corollary  H,(X:;L) = [A—i\'ﬁ? = R
9.0.11 Corollary In the notation of theorem 9.0.9 there is an exact sequence

0 —+Z/2—+ W~ (M, 0M; [) — K ge — 0



A'C?r@@ is often relatively straightforward to compute. so corollary 9.0.11 gives us
useful information about w™ '(M,dM; f). In particular, it tells us the order of
WY ML, OM; f).

We have already analyzed the geometry underlying the homomorphism
Z[2— P Y (M.OM; f)
in lemma 9.0.5. We would also like to understand
Wi THMLOM; f) = Hy(M: LS 9 0) = A'g*.;@@

in more detail. First consider the coefficient system C‘}. Let Ly denote the bundle
of abelian groups M x¢ [S%. S¥] — M ([5%, 5Y] is 2 G-module via the action of
G on V). Clearly. Ly = L. We will assume for the moment. that we are in the

stable situation, that is
QP Y M IM €)=l M, IOM: f).

(We only make this assumption to avoid having to keep mentioning (I.4/)* in
what follows.) Let [V, 8] € Q7' (M,dM;€). We can construct the corresponding
element of H;(M; Ly © O) as follows: Clearly, we can reduce to the case N = S*.
Let u: Ay = N be a singular simplex representing a generator of H,(V;Z). We
can choose u so that it is a diffeomorphism relative to the boundary of A;. This
choice of u determines an orientation of TN. Now ¢ : vp(N) = (N xgV = N)
is 2 bundle isomorphism. Choose an orientation of vy(,)(V). Then ¢ determines
a corresponding orientation of the fibre of ¥ xg V' over u(ep). In turn, this

determines a generator, ay, of Li-(u(ey)). The aforementioned orientations of
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Vu(eo) (V) and Ty(ey)V together determine a generator, ag of ©(u(eg)).
[av ® ao.u] € Hi(M; Ly 9 O)

is the required homology class. There were various choices of orientation made in
the definition of ¢y and ae, however, it is easy to show that the homology class
[av © ag.u] is independent of these choices. For example. if we change the choice
of orientation of vy()(:V), then this will introduce a —1 into ag, but also into

ay, and the resulting homology class remains unchanged.

9.1 &f (EGT)

Throughout this section. let ¢f be a fixed complete G-universe. By G-representation.
we will mean “G-invariant finite dimensional linear subspace of {”. For any G-
representation V', Ay will denote the subspace of SV consisting of nonfree orbits.
n=dimG

Let (& be a compact Lie group. Let textad(G) be the adjoint representation
of G. It is possible, as pointed out in [14] to calculate &%, (EG?*) abstractly
as follows: According to [11] &8, (EGY) =2 i EGY Ag 534D, Applying
the classical Atiyah-Hirzebruch spectral sequence, we find that there is an exact

sequence
0 2Z/2 5 o (EGT A S*D) 5 H, [ (EGT A §5249); Z) 5 0.

To calculate H,y((EG* Ag S249);Z) we can apply the Serre spectral sequence

to the relative fibration EG xg (5%, oc) — BG to get
Hoy i (EG* Ag $*C),Z) = H,(BG; Ha(S*49))) = H\(BG; Laaic))
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in the notation of the previous section. Thus, we obtain a short exact sequence
0 Z/2 = &7 (EGY) > K3 — 0.

Now, recall from chapter 4 that

St (EGH) = lim (S, Avingn )5 (SY, 00)] ©.

In this section we will use the techniques that we have developed to compute

~V+n o' G
[(bH' +l--4V'+n+l)3(bv-°°)]

and so recover the computation of d:nG+1(EG"'). The advantage of this method is
that it gives insight into the geometry of the maps which represent elements of
59, (EG*).

Since, we already have a rigorous computation of this group, [ will attempt
to emphasize the essential geometry in the arguments that follow. [ feel that
presenting all the details of the cobordism arguments would obscure the essence
of the geometry. So the arguments may seem a little sketchy. I refer the reader
to Kosinski's excellent book ({10]) for details of some of the framed cobordism
arguments. Even though he does not consider twisted framed cobordism, the
arguments that he gives can be generalized to our situation.

For the proof of the following lemma, see lemma 2.1 in {14]

9.1.1 Lemma  [f I/ is a G-representation of dimension k& such that subspace
of free orbits, U — Ay, is nonempty, then there is a compact k-dimensional G-
submanifold My of U — Ay with boundary AM , such that Ay is a G-deformation

retract of SY — M. Thus, in particular, there is a canonical isomorphism

(57, A0 (8" 0] = (101, M)y 87 0]

9
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Let My := MU/G

9.1.2 Theorem  Let V' be a G-representation of dimension d > 3. Suppose

that V has at least one free orbit. Then there is a short exact sequence

0 —— Z/2— [(SY*™*! Ay yns1); (SY,00)] ¢ — Hi(M: Ly © ©) —0

n =dimG. M := My, is the submanifold of (SY+"+!' — Ay, .41)/G whose

existence is asserted by lemma 9.1.1 and O is the orientation bundle on My 4,4;.

Proof: Clearly. M is an orientable G-manifold of dimension n+d+ 1 with d > 3.

So, we are already in the stable range, and
. . , G
[( MLON); (Y. 00)| = wi (M, OM; f)

where wi is twisted cohomotopy with respect to the G-representation V. and
f: M — BG classifies M — M. Now, dimM = d + 1. so applying corollary

9.0.8 we obtain a short exact sequence

0 +Z[2 rwld (M.OM: f) — Hi(M.OM: LS © @) —0.

But C‘} = Ly. a
Now, we know that if V' is a representation with at least one free G-orbit.
then the free part of V' V' is connected (see [14]). Moreover, (i acts orientably
on V@& V. Thus, the set of representations on which G acts orientably and for
which the free part is connected is cofinal in the set of all representations. We
shall assume henceforth that any representation has these two properties.
Now, as above, let M = Mvh“ and let M = M /G. Our assumption on

the orientability of the G-action on V" implies that £y = Z (the trivial coefficient
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system over M). Thus we have an exact sequence
0= Z/2— [(S¥*™ Ayynp1); (S, 00)]7 & A3 = 0.

The homotopy exact sequence associated to the fibration M — M terminates as
follows:

(M, rig) — (M, mo) —2—= m0(G) = G/ Go.

Let Hg := 9(Av). So we have a sequence

which is not necessarily exact but does have the property that qi = 0. Now, we

have the following lemma whose proof can be found (implicitly) in [14].

9.1.3 Lemma  Suppose that G acts orientably on V. Let a : (A,34,) =
(M.mg) be a loop in M which preserves orientation. Then « lifts to a path
&:A; — M and a(e;) = g.@(eg) for some g € (7 such that g acts orientably on

ad(G).
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9.1.4 Corollary

Heo = Ryqq)

Now, we would like to show that the sequence

[(SV"L"H-, Avinsr): (SV- o)

is “equivariantly stably exact” in the following sense: If ¢([f]) = 0. then there is

a representation W such that [f A SW] is in the image of

; v Y g G
L Z]2—— [(bV+W+n+l. Aviwiner); (bV+W. OO)]

That would be sufficient to recover the calculation of &S, | (EG) that was given
at the start of this section. Let

(] € (8™ Avins)i (5" 00)]
and let [V, #] be the corresponding element of Q! (M, dM;€). It can be shown
([10]) that we may assume that N is connected. In order to show that [f] is in

the image of

i Z/2— [(SVHY Avian)i (SY,00)]°
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it suffices to show that the inclusion N — M is nullhomotopic. For then, N = W
may be isotoped to an inclusion N — M whose image is entirely contained within
a chart neighbourhood of M. Let 2o € N If @ : (I,3I) = (N, zo) is a relative
homeomorphism, then « lifts to a map & : [ - M and &(1l) = ¢g.&¢(0) for some g
such that gGg € [Kad(c), [\'ad(g)]. By corollary 3.2.6 there is a section 0 : N — M
over N of the principal G-bundle M — M. It is possible that the inclusion
o : N = M is not nullhomotopic, however, M x V UV x M is contained in the
free part of $¥3" and the inclusion (6,0): V5> M x VUV x M. r — (o(z).0)

certainly is nullhomotopic. Thus [f A SV] is in the image of

TENT, e G
Z/2— [(bwvﬂﬂ,-4ve9v+n+1)§(5'h”‘ -00)] .

9.2 Some interesting (unanswered) questions

The next obvious step would be an analagous computation of the geometric 2-
stem. Since 2-manifolds are well understood, this should be feasible.
A more difficult question is the following: Using the methods developed in

this thesis, we can characterize G-equivariant maps
e (SYHE, Ave) = (8Y. 00)

that represent nontrivial elements of WF(EG?Y) for k = n,n + 1. Under what
conditions do these maps remain stably essential when we restrict symmetry to

a subgroup H of G?7 That is, what maps are in the kernel of the restriction map
SE(EGT) —» o (EGH)
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In fact, this question was part of the original problem suggested to the author.
An analagous problem in equivariant A-theory has been studied in [13]. For
equivariant stable homotopy it is possible to deduce some basic results from
earlier work (see [25] or [1]). However, it appears to be quite difficult to obtain
substantial results in this direction.

As pointed out in the introduction, lemma 3.3.5 underpins the connection
between fibrewise homotopy theory and equivariant homotopy theory. From that

point of view, it would be interesting to know to what extent the homeomorphism
mapg((E. E'): (Y.Y")) = map/((B. B'); EG xg (Y,}"))

is natural with repect to homotopies of the map f : b6 — B(. Note that by the
homotopy classification of principal G-bundles, homtopic maps B — B induce
1somorphic principal G-bundles. However. a specific homotopy does not induce a

specific isomorphism of principal G-bundles.
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