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1 The Category of Pointed Topological Spaces

Definition 1 A based topological space is a pair (X, ∗), where X is a nonempty space and
∗ ∈ X is a chosen basepoint. We will normally suppress basepoints from notation and write
a based space simply X, denoting all basepoints ambiguously by ∗. If X, Y are based spaces,
then a continuous map f : X → Y is said to be based if f(∗) = ∗. �

A based space or map is also said to be pointed. We can view a based space as a pair
of a nonempty space X and a map ∗ → X into it from the one-point space. Then a map
f : X → Y is based if and only if it makes the next triangle commute

∗

~~~~
~~
~~
~

  @
@@

@@
@@

X
f // Y.

(1.1)

It is for this reason that we sometimes think of based spaces as spaces under the one-
point space. Although generally unnecessary, this viewpoint can be especially useful when
categories and functors are involved.

The collection of all based spaces and maps forms a category Top∗. We denote by
Top∗(X, Y ) the set of all based maps X → Y . This is a pointed set, with distinguished
element given by the zero map X → ∗ → Y . Similarly, we denote by C∗(X, Y ) the space
of all based maps X → Y , topologised as a subspace of C(X, Y ) with the compact-open
topology. The zero map is a natural basepoint for C∗(X, Y ).

There is an obvious functor Top∗
U−→ Top which forgets basepoints, and a functor in the

opposite direction

Top
(−)+−−−→ Top∗, K 7→ K+ = K t {∗} (1.2)
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which adjoins to an unbased space K a disjoint basepoint1. These functors are both faithful,
but neither is full. Notice also that they form an adjoint pair. That is, if K is an unbased
space and Y is a based space, then there is a bijection

Top∗(K+, Y ) ∼= Top(K,Y ) (1.3)

which is natural in both variables.
The category Top∗ has all limits and colimits. Limits are created by the forgetful functor

Top∗ → Top2. Informally this means that limits in Top∗ are formed as in Top, and then
given the only sensible basepoint that makes all the canonical maps based. For instance,
the product of two based spaces X, Y is the ordinary cartesian product X × Y given the
basepoint (∗X , ∗Y ). This definition not only makes the projection maps X

prX←−− X×Y prY−−→ Y
based, but means that there are also canonical inclusions

X ↪→ X × Y ←↩ Y. (1.4)

Clearly this extends to give products
∏

i∈I Xi of arbitrary families of pointed spaces (Xi)i∈I .
Colimits in Top∗ are computed a little differently than in Top. Rather than giving a

general discussion we shall define only those which we will need. These being coproducts
and pushouts. Telescope diagrams will be discussed at a later point.

The coproduct of two based spaces X, Y is the wedge

X ∨ Y = X t Y
/

[∗X ∼ ∗Y ]. (1.5)

Adding the maps X → X × Y and Y → X × Y introduced in (1.4) we easily check:

Lemma 1.1 There is a canonical basepoint respecting map X ∨ Y → X × Y which maps
the wedge homeomorphically onto the subspace

X ∨ Y ∼= (X × ∗) ∪ (∗ × Y ) ⊆ X × Y. (1.6)

It is frequently useful to identify X ∨ Y with its image under this embedding, and we shall
frequently do so without mention.

The construction of coproducts extends to arbitrary families of pointed spaces (Xi)i∈I ,
and we can form arbitrary set-indexed wedges∨

i∈I

Xi =
⊔
i∈I

Xi

/
[∗i ∼ ∗i′ ]. (1.7)

There is still a continuous bijection

∨
i∈I

Xi →

{
(xi) ∈

∏
i∈I

Xi

∣∣∣∣xi = ∗i for all but at most one index i ∈ I

}
⊆
∏
i∈I

Xi (1.8)

but this map may fail to be homeomorphism when I is not finite (consider taking (Xi, ∗i) =
(I, 1)).

1A slicker definitions is obtained by setting X+ = X/∅.
2Reason: The forgetful functor is monadic.
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Wedges are generally well-behaved. They inherit some topological properties from their
factors, but care must be taken with others. For instance

∨
I Xi is Hausdorff whenever each

Xi is, but
∨
I Xi may fail to be locally compact even when each Xi is.

Moving on, the pushout in Top∗ of a span

Z
g←− X

f−→ Y (1.9)

is formed exactly as it is in Top. Namely as the quotient (Y t Z)/ ∼= (Y ∨ Z)/ ∼, where
∼ is the smallest equivalence relation generated by f(x) ∼ g(x), ∀x ∈ X. Notice that the
pushout space has a canonical basepoint and all structure maps are pointed.

Definition 2 For pointed spaces X, Y we define their smash product X ∧ Y by means of
the pushout

X ∨ Y

��
y

� � // X × Y

��
∗ // X ∧ Y.

(1.10)

�

Thus

X ∧ Y = X × Y

/
X ∨ Y. (1.11)

We write x ∧ y for its points, for obvious reasons. The pushout makes clear that the con-
struction is functorial in both variables, and pointed maps f : X → X ′, g : Y → Y ′ induce
a pointed map

f ∧ g : X ∧ Y → X ′ ∧ Y ′. (1.12)

Note that although the smash product is important, it is not a categorical product.
Rather it should be compared to the tensor product in the category of abelian groups. One
motivation for its introduction is that it has a natural interaction with the based function
spaces.

Proposition 1.2 Let X, Y, Z be based spaces. If Y is locally compact, then there is a bijec-
tion of sets

Top∗(X ∧ Y, Z) ∼= Top∗(X,C∗(Y, Z)). (1.13)

Proof We apply Top∗(−, Z) to the pushout square (1.10) to get a pullback of sets

Top∗(X ∧ Y, Z) //

��

Top∗(∗, Z)

��
Top∗(X × Y, Z) // Top∗(X ∨ Y, Z).

p (1.14)

Then using Top∗(∗, Z) = ∗ we can identify

Top∗(X ∧ Y, Z) ∼= {f ∈ Top∗(X × Y, Z) | f |X∨Y = ∗} ⊆ Top∗(X × Y, Z). (1.15)

Since Y is locally compact there is a bijection between the unbased mapping sets
Top(X × Y, Z) ∼= Top(X,ZY ), and we can check that this maps the subset Top∗(X ∧ Y, Z)
bijectively onto Top∗(X,ZY ).
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The smash product enjoys the following properties. Note, however, that unlike the carte-
sian product, the smash product is not always so well behaved (i.e. point 4)).

Proposition 1.3 The following properties hold for the smash product.

1) If X, Y are Hausdorff, then so is X ∧ Y .

2) For any based spaces X, Y there is a natural homeomorphism X ∧ Y ∼= Y ∧X.

3) For any based spaces X, Y, Z there is a natural homeomorphism (X ∨ Y ) ∧ Z ∼= (X ∧
Z) ∨ (Y ∧ Z).

4) Given based spaces X, Y, Z, if any two are locally compact, then there is a homeomor-
phism (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z).

5) For any based space X there are natural homeomorphisms X ∧ S0 ∼= X ∼= S0 ∧X.

6) For any based space X there are homeomorphisms X ∧ ∗ ∼= ∗ ∼= ∗ ∧X.

7) For a based space Y and an unbased space K there is a natural homeomorphism K+ ∧
Y ∼= K × Y/K × ∗. In particular, for unbased spaces K,L there is a homeomorphism
K+ ∧ L+

∼= (K × L)+.

Proof 1) Notice that the quotient map takes the difference X×Y \X∨Y homeomorphically
onto X ∧ Y \ {∗}. Thus to prove the statement it will be sufficient to separate a given non-
basepoint x∧y from ∗. To do this we use that X, Y are Hausdorff to find open neighbourhoods
Ux ⊆ X of x, Vx ⊆ X of ∗X , Uy ⊆ Y of y, and Vy ⊆ Y of ∗Y such that Ux∩Vx = ∅ = Uy∩Vy.
Then in X × Y , the set Ux × Uy is an open neighbourhood of (x, y) and

Vx × Y ∪X × Vy (1.16)

is an open neighbourhood of X ∨ Y . These sets are both saturated and they are disjoint.
Hence they give seperating neighbourhoods in X ∧ Y for x ∧ y and ∗.
2) Clear from the definition as a pushout.
3) The spaces are naturally in bijective correspondence and are both quotients of (X tY )×
Z ∼= (X × Z) t (Y × Z).
4) Using part 2) it will suffice to show the case in which X,Z are locally compact. Then
both X ∧ (Y ∧ Z) and (X ∧ Y ) ∧ Z are quotients of X × Y × Z and we have the solid part
of the following diagram

X × Y × Z
idX×qY,Z

vvmmm
mmm

mmm
mmm

m
qX,Y ×idZ

((QQ
QQQ

QQQ
QQQ

QQ

X × (Y ∧ Z)

��

(X ∧ Y )× Z

��
X ∧ (Y ∧ Z) //____________ (X ∧ Y ) ∧ Z

(1.17)

where the maps qX,Y , qY,Z as well as the unlabeled vertical arrows are quotients. In the case
that X is locally compact, the map idX × qX,Y is a quotient and the dotted arrow can be
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filled in with a continuous map which is clearly bijective. If also Z is locally compact, then
qX,Y × idZ is a quotient, and in this case the continuous bijection is a homeomorphism.
5) This follows from part 7) below after noticing that S0 ∼= (∗)+. Item 6) follows from 7)
similarly, since ∗ = ∅+.
7) Clearly K+ ∨ Y ∼= K t Y and K+ × Y ∼= K × Y t Y naturally, where basepoints live in
the disjoint copy of Y . Hence K+ ∧ Y ∼= (K+ × Y )/(K+ ∨ Y ) ∼= K × Y/K × ∗.

Note that the associativity of the smash product (i.e. item 4)) may fail without some
compactness assumptions. For instance the spaces (Q ∧ Q) ∧ Z and Q ∧ (Q ∧ Z) are not
homeomorphic. This example is originally due to D. Puppe, but see [1] §1.7 and Eric Wofsey’s
math overflow answer [2] for a complete discussion. This is really the same kind of problem
we ran into before with function spaces and adjoints. It suggests to us again that really
the category of all (pointed) topological spaces may not be quite the correct category to be
studying.

The following proposition will be useful when we study cofiber sequences at a later date.

Proposition 1.4 Let X, Y be spaces and A ⊆ X a subspace. If Y is locally compact, then
there is a homeomorphism

(X ∧ Y )/(A ∧ Y ) ∼= (X/A) ∧ Y. (1.18)

Proof Let q : X → X/A be the quotient map. Then with no assumptions on Y all the
unmarked solid maps in the next diagram are quotients.

X × Y

vvmmm
mmm

mmm
mmm

m
q×1

&&NN
NNN

NNN
NNN

X ∧ Y

��

X/A× Y

��
(X ∧ Y )/(A ∧ Y ) //_________ (X/A) ∧ Y

(1.19)

Thus X ∧ Y/A ∧ Y is a quotient of X × Y and there is a continuous map X ∧ Y/A ∧ Y →
(X/A) ∧ Y induced which is clearly bijective. If we assume that Y is locally compact, then
q × 1 is a quotient map, and in this case the induced bijection is a homeomorphism.

Before closing this section we’ll introduce another way of getting into the pointed category
other than by adding a disjoint basepoint. What we have in mind is the Alexandroff, or
one-point, compactification. This construction has some pleasant properties and sheds some
light on the relationship between the disjoint union and cartesian product, and the wedge
sum and smash product.

Recall that for an unpointed space M we denote its one-point compactification M∞. As
a set M∞ is the disjoint union of M and an additional basepoint, which we’ll generically
call ∞. The topology on M∞ is that generated by the open sets of M together with sets of
the form M∞ \ K, where K ⊆ M is compact. As such M∞ is compact. Moreover M∞ is
Hausdorff, and hence locally compact, if and only if M is both locally compact and Hausdorff.
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The obvious inclusion M ↪→ M∞ is an open embedding, which is dense if and only if M
is not compact. We turn M∞ into a pointed space by letting the point at infinity act as a
basepoint.

Given a map f : M → N we can define a function of sets

f∞ : M∞ → N∞ (1.20)

in the obvious way by letting i) f∞|M = f , ii) f∞(∞) = ∞. Then f∞ is a pointed map,
and if we can ensure that it is continuous, then we may be able to make the one-point
compactification functorial.

Proposition 1.5 If f : M → N is a map between unpointed locally compact Hausdorff
spaces, then f∞ : M∞ → N∞ is continuous if and only if f is proper.

Proof If f : M → N is proper, then f−1(K) ⊆ M is compact for each compact K ⊆ N .
In particular, f−1∞ (N∞ \K) = M∞ \ f−1(K) is open in M∞. Since also f−1∞ (V ) = f−1(V ) is
open for each open V ⊆ N , we see that f∞ is a continuous pointed map.

Conversely, assume that f∞ : M∞ → N∞ is continuous. Then for each compact K ⊆ N
we have f−1∞ (N∞ \ K) = M∞ \ f−1(K). This set is open in M∞ by assumption, and this
implies that f−1(K) is compact in M . Because M is Hausdorff and N is locally compact
Hausdorff, a sufficient condition for f to be proper is that preimages of compact sets are
compact.

A consequence of this proposition is that M 7→M∞ defines a faithful functor

H → Top∗ (1.21)

from the category H of locally compact Hausdorff spaces and proper maps. The functor
is clearly not full, but the proposition does tell us that any pointed map g : M∞ → N∞
satisfying g−1(∞) = {∞} does lie in its image. Notice that the functor takes values in the
category of pointed compact Hausdorff spaces.

The category H has coproducts but it does not have products, since in general the
required projection maps will fail to be proper. On the other hand, given locally compact
Hausdorff spaces M,N , the cartesian product M × N is again locally compact Hausdorff.
Moreover, if f, g are proper maps, then f × g is proper. Thus the situation for H is similar
to that for the pointed category with its smash product, in that we have a monoidal product
which is not categorical. The next proposition states that the one-point compactification
functor preserves this monoidal structure.

Proposition 1.6 If both M,N are locally compact Hausdorff spaces, then there are homeo-
morphisms of pointed spaces

1) (M tN)∞ ∼= M∞ ∨N∞

2) (M ×N)∞ ∼= M∞ ∧N∞.
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Proof 1) The coproduct M t N is the pushout in H of the span M ← ∅ → N . Applying
the one-point compactification functor to this diagram induces a bijective map M∞∨N∞ →
(M tN)∞ in Top∗. Since the domain is compact and the target is Hausdorff, this map is a
homeomorphism.
2) It’s not difficult to see that the obvious composition M ×N ↪→ M∞ ×N∞ → M∞ ∧N∞
is an open embedding whose complement is a single point. We claim that its image is dense
in the case that at least one of M,N is non-compact. Indeed, in this case M × N is a
saturated non-closed subset of M∞×N∞, and so its image cannot be closed in the quotient
space. Thus, since M∞ ∧ N∞ is compact Hausdorff (cf. Pr.1.3) and M × N is Hausdorff,
we can in this case appeal to the uniqueness of the one-point compactification, to get a
homeomorphism of (M ×N)∞ on M∞ ∧N∞ under M ×N .

In the case that both M,N are compact, we have M∞ = M+ and N∞ = N+, and Pr. 1.3
tells us that M+ ∧N+

∼= (M ×N)+ = (M ×N)∞.

Example 1.1 It can be shown that if X is compact Hausdorff and x ∈ X is any point, then
there is a homeomorphism

X ∼= (X \ {x})∞. (1.22)

Consider the following. Let I = [0, 1] be the interval given the basepoint 1 and, J = [0, 1] the
unit interval based at basepoint 1

2
. Then the observation (1.22) in tandem with Propositions

1.6 give us
I ∧ I ∼= [0, 1)∞ ∧ [0, 1)∞ ∼= ([0, 1)× [0, 1))∞ (1.23)

and clearly this is homeomorphic to [0, 1]2. On the other hand, the same line of reasoning
shows that

J ∧ J ∼=
4∨

[0, 1]2. (1.24)

Note that although I, J have the same underlying space, they are not homeomorphic as
pointed spaces. �

Using stereographic projection we get for any n ≥ 0 a homeomorphism

(Rn)∞ ∼= Sn (1.25)

between the one-point compactification of Rn and the unit sphere Sn ⊆ Rn+1. We will always
assume that we have chosen the homeomorphism which identifies the point at infinity with
the unit vector e1 = (1, 0, . . . , 0) ∈ Sn, which in particular will be our preferred basepoint
for Sn.

Proposition 1.5 now gives a way to construct pointed maps Sm → Sn. Namely by
compactifying proper maps Rm → Rn. In general it is not too practical to actually study
maps between spheres in this way, but since it can be useful for defining maps, and will
appear from time to time, we introduce some special notation. For a real vector space V we
write

SV = V∞ (1.26)

for its one-point compactification. The following is then a direct corollary of Proposition 1.6.
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Corollary 1.7 If V,W are finite dimensional real vector spaces and SV , SW their respective
one-point compactifications, then there is a homeomorphism

SV ∧ SW ∼= SV⊕W . (1.27)

In particular, for any n,m ≥ 0 there is a homeomorphism

Sm ∧ Sn ∼= Sm+n. (1.28)

Remark In more detail, the map (1.27) is that induced by

V ×W → V ⊕W, (v, w) 7→ v + w (1.29)

where we understand v +∞ =∞+ w =∞+∞ =∞.

1.1 Exercises

The Smash Product

1) Show that the canonical bijection (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z) is a homeomorphism
when both Y, Z are compact.

Locally Compact Hausdorff Spaces

1) Let M be locally compact Hausdorff. Assume that A ⊆M is closed and locally closed.
Show that the inclusion A∞ ⊆M∞ is a closed embedding, and that there is a basepoint
respecting homeomorphism M/A ∼= M∞/A∞.

2) Let X be compact Hausdorff. Assume U ⊆ X is an open set with compact closure U .
Show that there is a homeomorphism U∞ ∼= X/(X \U). Conclude that if x ∈ X, then
(X \ {x})∞ ∼= X.

3) Let X, Y be pointed spaces. Let H∗ be an ordinary cohomology theory with coefficients

in a field. Show that H̃∗(X ∧ Y ) ∼= H̃∗X ⊗ H̃∗Y .

4) Assume that K is locally compact and consider the following diagrams

W //

��
y

X

��
Y // Z

W ∧K //

��
y

X ∧K

��
Y ∧K // Z ∧K

(1.30)

Show that if the left-hand square is a pushout in Top∗, then so is the right-hand square.
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