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I. INTRODUCTION 

The increased interest in non-Abelian gauge theories has in recent years 

led to computation of many higher order Feynman diagrams. l-5 Asymptotic 

form factor calculations l-2 are of especial interest, because they suggest that 

it might be possible to sum up diagrams with arbitrary numbers of soft gluons 

just as one can sum up soft photon processes in QED. In such a program the 

analysis of the momentum integrals proceeds by the traditional techniques 

developed for QED calculations. The new aspect, characteristic of non-Abelian 

gauge theories, is emergence of a group-theoretic weight (or weight, 6 for short) 

associated with each Feynman diagram. The dramatic cancellations 

between various diagrams’ occur through interplay of their group- 

theoretic weights and their momentum space integrals. So the study of weights 

becomes of interest, as it might suggest cancellation patterms needed for sum- 

mations of soft gluon diagrams. 

In this paper we give a general method for computing group-theoretic 

weights, and give explicit rules for SU(n), SO(n), Sp(n) and G2 gauge symmetry 

groups. We restrict ourselves to the models with quarks in fundamental repre- 

sentation and gluons in the adjoint (regular) representation, but the method can .- 

be extended to higher representations. 

Our evaluation procedure is very simple. First we interpret the weight 

itself as a Feynman integral over a discrete lattice, and introduce Feynman 

diagrammatic notation to replace the unwieldly algebraic expressions replete 

with dummy indices. Then we give two graphical relations (“integration rules”); 

the first eliminates all three-gluon vertices, and the second eliminates all 

internal gluon lines. The result is a sum over a unique set of irreducible 

group-theoretic tensors which form a natural basis for all Lie algebras. All 
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this is accomplished without recourse to any explicit representation of the group 

generators and structure constants. As a byproduct we learn how to count 

quickly the number of invariant couplings for arbitrary numbers of quarks and 

gluons, thus avoiding involved reductions of outer products of representations 

by Young-tableaux. 

The above approach is at variance with the customary procedure of 

expressing weights in terms of Casimir operators. 2 While it is appealing to 

express simple diagrams in terms of quadratic Casimir operators (so that the 

form of the expression is independent of the particular gauge group and the 

particular representation), for higher order diagrams there is no simple way 

of relating weights to generalized Casimir operators, 793 and such an approach 

becomes very cumbersome. 

In the past the most weight calculations have involved SU(n) and even more 

specifically SU(3). This has led to development of methods specific to 

SU(n). 9-16 For the sake of completeness and comparison, we pursue this 

traditional line for a while and find ourselves in a cul-de-sac. 

The organization of the paper is as follows. In Section II we state the 

Feynman rules and introduce diagrammatic notation. In Section III we derive - 

various relationships true for all Lie groups, while particular groups are 

defined in Section IV. The completeness relationships, which are the crux of 

our method, are derived in Section V. The ease of weight evaluation is demon- 

strated in Section VI. In Section VII we discuss group-theoretic tensor bases, 

and relations between basis tensors for specific representations. Full Feynman 

rules are stated in Appendix A. Appendix B is a long discussion of an older 

method of weight evaluation, specific to SU(n). Appendix C contains a sketchy 

discussion of the exceptional group Fq. 
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II. FEYNMAN RULES 

For our model we take a Yang-Mills theory 17 with n massive quarks and 

N massless gluons, defined by the classical Lagrangian density 

Z=-+Fy” F. 
1PV + $(Q-m)# , 

F;’ = aPA; - d”Ay + g C.. A?A” ljk j k ’ P-1) 

tiab = daba’ - ig Ay(Ti)ab , 

a,b= 1,2 ,... n , i,j=l,2 ,... N . 

The N traceless hermitian [nxn] matrices Ti belong to the fundamental 

representation of a compact, simple Lie group 9 

[I 1 Ti,Tj = i C.. T ljk k ’ (2.2) 

TrTi = 0 , 

normalized by 

(2.3) 

Tr(TiTj) = a fiij . (2.4) 

(We leave a arbitrary throughout ibis paper. ) 

The structure constants C.. 
uk 

are calculable from Ti matrices by tracing: 

iC ijk = iTr(T.T.T - TkTjTi) . 
1 J k 

They obey a Jacobi identity 

(2.5) 

C iemCmjk +c j!Im’imk 4-C kPmCijm = 0 , (2.6) 

which is nothing but the commutator (2.2) for the adjoint (or regular) repre- 

sentation of %, constructed from matrices 

(Ci)jk = -iCijk . (2.7) 
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The Lagrangian (2.1) generates the usual Feynman diagrams. There is no 

mixing between the spacetime and the gauge group 9, and the Feynman amplitude 

associated with a diagram G factorizes into WGMG, where WG is the group 

theoretic weight consisting of various (Ti)ab and Cijk, and MG arises from the 

integrals over internal momenta and is similar to QED Feynman amplitudes. 

Even though MG will not concern us in this paper, we give the rules for its 

computation in Appendix A. We note that while in momentum space there are 

four-gluon vertices, for WG there exist only 3-gluon couplings, because the 

group-theoretic factors in a four-gluon vertex have form C.. C ljk kern’ 

The group-theoretic weight WG is a product of the following factors (all 

repeated indices are summed over); 

a) for each internal quark line, a factor 6ab; a,b = 1,2, . . . n , 

b) for each internal gluon or ghost line, a factor 6ij; i, j = 1,2,. . . N , 

c) for each quark-quark-gluon vertex, a factor (Ti)ab , 

d) for each three-gluon or ghost-ghost-gluon vertex a factor -iCijk , 

e) for the four-gluon vertex vertex, the following factors 

-c imj’kQm multiplying 
@AU g/-4( - gA<gpv) 

-c ikm’mQj multiplying 
%$L%[ --%&LlJ ) 

- c. rmICmkj multiplying 
(%&4~ - gAj.lgp) 

where gluon group and Lorentz indices are paired as (i, A), (j, cl), 

0~ VI, P, 5) (see Fig. 19). 

WG can be thought of as a sum of all possible paths of the interacting 

particles over a compact, discrete lattice characterized by the group 9. SO 

WG can itself be drawn as a Feynman diagram, with rules depicted in Fig. 1. 



-6- 

According to (2.4) and (2.5) the “verticesJf (Ti)ab and Cijk scale as & , 

so that the arbitrary normalization & is a “coupling constant. I1 18 We shall 

use powers of & to count the number of vertices in W G’ 

III. LIE ALGEBRA IN DIAGRAMMATIC NOTATION 

In this section we shall transcribe the defining Lie algebra relations into 

weight diagrams WG, and derive a number of relations true for all Lie groups. 

We omit all indices; the equivalent points on the paper represent the same index 

in all terms of a diagrammatic equation. 20 

Diagrammatically, the defining equations (2.2) through (2.6) are given in 

Fig. 2. Figure 2f is a statement of the skew symmetry of C.. ijk’ Figures 2g 

and 2h count the numbers of quarks and gluons, respectively; 6:= n, 6; = N. 

The above definitions already enable us to perform some simple calculations. 

For example, to calculate the quadratic Casimir operator for the fundamental 

representation, Fig. 3a, we form a trace (join the external quark lines) and 

use Figs. 2c,g, h, as outlined in Fig. 4, to obtain 

CF=az (3.1) 

Joining gluon indices in commutators Figs. 2a and 2e leads to relations in 

Figs. 3c and 3d. Similarly, the relation Fig. 3e follows from the commutation 

relation Fig. 2a. 

The antisymmetry of C.. 
1Jk 

leads to vanishing of nonplanar diagrams of 

Fig. 5, as well as all diagrams that contain these as subdiagrams. This 

follows from the commutation relations of Fig. 2, but it is easily seen as a 

consequence of the skewness of C.. ijk’ Fig. 2f. For example, interchange of 

vertices 1 +- 2 in Fig. 5a and 1 .- 2, 3 C) 4, 5 .- 6 in Fig. 5d gives a factor 

(-1)3 from skewness of C ijk’ while the diagrams are mapped into themselves. 
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The obscure diagram of Fig. 5d is related to the Peterson graph 21 in graph 

theory, while Fig. 5a is related to the famous nonplanar Kuratowski graph. 22,23 

One quickly runs out of relations achievable by Lie algebra manipulations. 

For example, at this point we have no clue to the evaluation of the gluon Casimir 

operator CA of Fig. 3b, let alone any more complicated diagram, like the one 

of Fig. 6. For that it is necessary to concentrate on specific groups. In the 

next section we proceed to define relationships characterizing particular groups. 

IV. FUNDAMENTAL REPRESENTATIONS 

A. Special Unitary Groups SU(n) 

The fundamental representation of SU(n) is a set of all unitary (U+U= 1) and 

unimodular (det U=l) [ nxn matrix transformations acting on an n-dimensional ] 

vector space (the fundamental quark n-tuplet) . 26 -28 They can be parametrized 

exponentially by N=n2-1 Gell-Mann’s traceless hermitian [nxn] h-matrices; 29 

ie-. h. 
U=e l1 i = 1,2,. . .N 

(4.1) 

(‘i)zb = @i)ba 

They satisfy the Lie algebra of Fig. 2a, where Ti= 2 ki i. To obtain an 

element M ab of SU(n) from an arbitrary [nxn] hermitian matrix Aab, we use 

a projection operator 26 P[SU] to impose the tracelessness condition of Fig. 2b. 

P[sug = 6,Jjbd - i o cdlTab 

Diagramatic representation of P[SU] is given in Fig. 7a. 

(4.2) 

(4.3) 
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B. Special Orthogonal Groups SO(n) 

The fundamental representation of SC(n) is a set of all orthogonal (R’R = 1) 

and unimodular (det R=l) [nxn] matrix transformations over an n-dimensional 

real vector space. They can be parametrized exponentially by N=in(n-1) 

antisymmetric hermitian rotation matrices 27,28 T 
i 

R=e 
iciTi 

The antisymmetry is diagramatically depicted in Fig. Ba. As its conse- 

quence the expression for C.. 
1Jk 

of Fig. 2d.simplifies to Fig. Bb. The projection 

operator P [SO] .f rom Fig. 7b imposes the antisymmetry condition on an arbitrary 

[nxn] hermitian matrix. 

C. Symplectic Groups Sp(n) 

The fundamental representation of Sp(n) is a set of all matrix transforma- 

tions over an n-dimensional (n even) real vector space which preserve a skew 

symmetric metric 27 

g ab =R acRbdgcd 

gab = -gba 
(4.5) 

They can be parametrized exponentially by N= ; (n+l) hermitian matrices 

Ti which satisfy 

tTi) cagcb ’ gacCri) & = 0 (4.7) 

We introduce the diagrammatic notation for gab in Fig. 9 and use it to 

construct the projection operator P[Sp] of Fig. 7c. Using relations in Fig. 9 

P[Sp] can be rewritten in a number of ways, all equivalent. 
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D. Exceptional Group G2 

We have defined the classical groups by their geometric properties, such 

as length preservation for So(n). For exceptional groups it is much harder to 

find such interpretations. The original Cartan’s proof of their existence does 

not lead to any geometric intuition-it is only recently that a unified interpreta- 

tion of all exceptipnal groups as algebras over octonians has emerged. 3o In 

this framework G2 is the automorphism group of octonians, i. e. , it is a set of 

all [7x7] real matrices G ab such that the transformation 

e’ = Gab% a a,b = 1,2, . . .7 

preserves the octonic multiplication rule 31 

eaeb = -*ab + f abcec ’ 

(4.8) 

(4.9) 

where f abc is a fully antisymmetric tensor. f abc are given explicitly in Ref. 

31; for our purposes it is sufficient to note that octonians satisfy the alternativity 

condition: if 

then 

[XYZI = (XY)Z - X(YZ) , (4. 10) 

[WI = [ZXYI = [YZSI = -[$=I r (4.11) 

where x,,y,z are arbitrary octonians. In Fig. 10 we introduce diagrammatic 

notation for the tensor fabc. Then the important relation Fig. 1Oc follows from 

the multiplication rule (4.9) and the alternativity condition (4.11). 32 

To preserve the octonic multiplication rule (4.9), matrices Gab must 

satisfy 

GacGbd’cd = *ab 

‘adGbeGcf fdef = f abc 

(4.12) 

(4. 13) 
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They can be parametrized exponentially by N=14 matrices (Ti)ab satisfying 

tTi)ab = -tTi)ba i=l,2... 14 

and 

(4.14) 

(4.15) 

Equation (4.14) states that G2 is a subgroup of SO(7). Equation (4.15) is remi- 

niscent of a gauge invariance condition (Fig. 10e). That N=14 is well known; 

however, in our approach we shall eventually be able to compute N from 

Eq. (3.1). In Fig. 11 we list various derived relations. 

This time we show how to constrict the projection operator step by step, 

in Fig. 12. (By the same procedure SO(3) is the isomorphism group of 

quaternions. For quaternions the associator (4.10) is trivially zero, and 

relation from Fig. 1Oc is replaced by the familiar identity for E.. 
1Jk 

tensors, 

Eq. (B. B).) 

V. COMPLETENESS RELATIONS 

The projection operators defined in Fig. 7 will now enable us to reduce a 

group-theoretic weight WG to a sum of lower order weights, and thus evaluate 

WG without reference to any explicit matrix representation. We achieve this 

by deriving a completeness relationship for each group. 33 

A projection Pr&]& of an arbitrary hermitian matrix & is an element 

of the group %, and can be expanded in terms of a complete set of basis matrices 

(Ti)ab 3 as drawn in Fig . 13b. The expansion coefficients are evaluated by 

tracing this equation with Tj matrix, leading to the relationship Fig. 13~. As 

this is true for arbitrary &X, it can be removed from the equation, and we 

obtain a general completeness relation of Fig. 13d. (Here we have used 

P[g]T=T, i.e., projection operator leaves the elements of the algebra 

unchanged. ) 
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In Fig. 14 we write out a completeness relation for each of the groups 

considered. Now its significance is clear; it enables us to reduce a WG with an 

internal gluon line to a sum of lower order weight diagrams, multiplied by the 

square of the coupling constant &. 34 

VI. EVALUATION OF GROUP-THEORETIC WEIGHTS 

Evaluation of any WG is now trivial. It proceeds in two steps: 

1) Eliminate all three-gluon vertices C.. by Fig. 2d (or by Fig. Bb, if 
1Jk 

the group is SO(n), Sp(n) or G2). 

2) Eliminate all internal gluon lines by the appropriate completeness 

relation of Fig. 14. 

As an example, we evaluate the SO(n) quadratic Casimir operator for the 

adjoint representation (gluons) in Fig. 15. We find 

CA = a(n-2) (6 - 1) 

Other such results are tabulated in Fig. 16. 

Also note that a completeness relation fully characterizes the group. We 

can start with a completeness relation from Fig. 14 and the definition Fig. 2d 

and derive all the general results of Section III. Such computations provide 

useful checks of the correctness of our completeness relations. For example, 

the reader can check Eq. (3.1) for each group, and thus verify the expressions 

for N, the number of gluons. 

VII. KOLO BASES AND RELATIONS BETWEEN BASIS TENSORS 

The procedure outlined in the previous sections always leads us to a unique 

set of tensors; (Ti)ab and traces over Ti matrices. In other words, we are 

expressing all WG in terms of the fundamental representation. Let us illustrate 
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this by writing all irreducible tensor invariants for a process with r external 

gluons and no external quarks; the set of all distinct traces over r Ti matrices 

(Fig. 17). 

We name such basis kolo bases, because they are reminiscent of r people 

dancing a kolo (a Yugoslav folk dance; “kolo” translates as “wheel”). B,, the 

number of all distinct tensors of rank r, is the number of ways in which r : 

people can form kolos by holding hands, with a restriction that nobody dances 

alone-i. e. , tracelessness. 

/3, can be calculated in a number of painful ways, such as by Young 

tableaux, 12,35 or by the method of Appendix B. However, it turns out that p, 

has already been calculated in 1708, 36 -40 and is known as a number of derange- 

ments, or subfactorial 

p,=n! l-i++&- 
( 

. . . (&l)“-$ (7.1) . . . 

Not all kolos (tensor bases) thus enumerated are necessarily independent. 

Relations between them arise in two ways; from the group structure, and from 

the dimensionality of the fundamental representation. 

p, was calculated from a single condition, tracelessness. Thus kolos are 

natural bases for all Lie groups, and SU(n) in particular. For SC(n), Sp(n), 

G2 the antisymmetry relations of Figs. 8 and 9 relate the clockwise and anti- 

clockwise directions of loops in Fig. 17, and the number of independent bases 

is reduced 

SO(n): /?,=l, j3 =6, etc. 4 (7.2) 

Relations dependent on the dimensionality of the fundamental representation 
41 

arise from the characteristic equations for [nxn] matrices A. Characteristic 
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polynomial42 ( w h ere x is any [m] matrix) is defined as 

P(x) = det IA-Ix1 = T (-x)~-~ $- 6 a1a2- ’ ‘ak A blb2.. . bk albl’ . * k=O . Aakbk 

where 

6 ap ‘bp ” ’ 6fP 

ab.. .f 6aq %q 
6 = det pq...u 

is the generalized Kronecker delta. Identity P(A)=0 yields the characteristic 

equation for A; 

Now if we substitute A=aiTi, where Ti are generators of the gauge group 

(%, for each n we obtain various relations between tensor invariants. As an 

example, we work out n=4 case diagrammatically in Fig. 18a. The indices 

are symmetrized because the whole expression is multiplied by a symmetric 

factor aiajakal, summed over all i, j , k and P. A more familiar relationship is 

worked explicitly for SU(2) and SU(3) in Figs. 18c and 18d. The SU(3) relation- 

ship can be rewritten in terms of d.. 
1Jk 

tensors, the form in which it has been 

originally derived by Macfarlane et al. 11 
-- Higher SU(n) relationships have been 

worked out in Ref. 13. All such relations are really of little interest to us, 

because they do not affect the correctness of our general procedure for weight 

evaluation. 
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APPENDIX A 

COMPLETE FEYNMAN RULES FOR MCWC 

With the definition of the group theoretic weight WG given in Section II, the 

rules for MG are easily constructed by consulting some standard reference, such 

as Abers and Lee. 17 In this appendix we state the full rules for (unbroken) non- 

Abelian gauge theories as an extension of the rules for constructing Feynman- 

parametric integrals given previously. 43 Factors of the rule 5, of Ref. 43 are 

now replaced by the factors of Fig. 19. Additionally MG gets a factor -1 for 

each quark or ghost loop. We refrain from enumerating various renormaliza- 

tion factors, as the on-the-mass-shell renormalized amplitude suffers from 

serious infrared divergences. 
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APPENDIX B 

EVALUATION OF SU(N) WEIGHTS USING f- AND d-TENSOR BASES 

In this appendix we extend the SU(3) method of Dittner 12 to SU(n). Gener- 

alized Gell-Mann’s [nxn] A matrices together with I, i1 and ih span all complex 

matrices, 29 so we can write a multiplication law for h matrices as 

SU(n) : hihj = (%+ib) &jI+ (dijk+ifijk) hk . (B-1) 

This relation, which has no obvious analogues for other simple groups, is 

the departure point for most of the earlier attempts at weight evaluation. lo-16 

The tensors 6. ., d.. and f.. 
13 1Jk 1Jk 

are numerically invariant in the sense that they 
+ are the same for all equivalent representations hi - u Ai”, u+u=l. They are 

real by definition.b=O because of the hermiticity of Ai, while & is the arbitrary 

normalization of Eq. (2.4). 

Dittner’s approach proceeds in three steps. First, by the repeated appli- 

cation of h-multiplication formula (depicted in Fig. 20b) all products of form 

LA.. and 1 J 
. . hm are reduced to combinations of the three basic tensors 6. ., d.. 

1J 1Jk 
if.. ilk’ Second, bases of @, independent tensors for processes with r external 

gluons are constructed. Third, the weight WG is expanded in terms of the 

appropriate basis, and the expansion coefficients are--calculated by solving a set 

of B, linear equations. 

The first step results in diagrams of general form of Fig. 2,Oe, where the 

blobs involve only ,!jij, dijk and fijk. Generally we do not distinguish between 

quark colors, so one traces over the quark lines, and weight calculation is 

reduced to the problem of evaluating 9acuum blobs” consisting purely of gluons. 

Such a lrblob’Y is evaluated by looking at its subdiagrams with r=2,3, . . . external 

gluon legs, and rewriting them in terms of some basis set of tensors. 
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The simplest set of tensors for each r is easily constructed (see Fig. 21). 

To enumerate them, we start a systematic construction by drawing all 

Cablanfs379 409 44 trees in Fig. 22, whose number is Catalan’s number (the 

number of ways in which a product of n numbers can be evaluated) 

a (2r -4) ! 
r-l = (r-l)! (r-2)! ’ a30 P. 2) 

By (r-l)! permutations of all branches, and factor two for each crotch 

(f- or d-tensor), we obtain the number of all distinct connected tensors 

zi- =2 r r-2(2r-5)! ! , qo, E2=1 (B.3) 

where (2n-l)! ! is the product of first n odd integers; 7! ! s 7.5.3.1. To relate 

Er to the a r, the number of all distinct tensors (connected and unconnected) we 

introduce generating functions 

A(t) = 2 2 t’ 
r=O . 

03.4) 

a! 
A(t) 3 2 F-i” t’ = &(-1+6t+(l-4t)3’2) 

r=O ’ 
P3.5) 

The numbers of connected and disconnected graphs are related in the usual .- 

fashion 

A(t) = elitt) 

By differentiation with respect to t, this can be restated as 

Qr = 5’ (‘,‘) zr-kak 
+o 

03.6) 

(B.7) 

which enables us to calculate recursively ar listed in Fig. 21. 

However, tensors so constructed are redundant, and if we attempted to use 

them to expand an arbitrary tensor with r external gluons, we would not be able 
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to calculate the expansion coefficients, because the determinant of the system 

of or equations vanishes for r>3. 

So, our next task is to find all the relations between or tensors. These 

stem from the associativity of Ti matrices. For example, Tr(T.T.T T ) 1~ kl can be 

evaluated in two ways, by pairing matrices either as Tr(TiTj) (TkTd) or 

Tr(T.T )(T T.), and thenusing Fig. 20b. jk 11 The two evaluations give the relation- 

ship of Fig. 23a. There are (4-1)!=6 distinct connected kolos (Fig. 17) with 

four dancers each, giving us y4=6 relationships. We cast those in the form 

familiar from literature; 10-12 three equations for the real parts (Fig. 23b) and 

three for the imaginary parts (Fig. 23~). The two relations in Fig. 23b which 

involve disconnected parts are SU(n) generalizations 10,ll of SU(2) relationship 

eijk ekQm = Q tijm - “ja 6im cB.8) 

Number of such associativity relations for arbitrary r is again related to 

Catalan’s number, which is nothing but the number of associativity patterns 

Yr = (r-l)? (arBl - 1) r>2 (B-9) 

For each r there are 

P, = q -Yr = (r-l)! r>2 (B. 10) - .- 

independent: connected tensors, The total number of independent tensors /3, 

is given by 

* P 
B(t) = c -$ t’ 

r=O * 
P* 11) 

* Pr r ix(t) = x 
r=2 

T t = -t-Qn(l-t) (B .12) 

(B. 13) B(t) = eEft) - T-1 



- 18 - 

But B(t) is precisely the generating functional for subfactorials, so we have 

rederived the simple counting of (7.1) in a complicated way. 

Once a set of B, independent tensors has been constructed, the tensor to be 

simplified is expanded in this basis. By contracting all its indices with each 

basis tensor, a set of fir linear equations is obtained. Now it is necessary to 

solve these for the details, we refer the reader to Dittner’s paper. 12 equations- 

To illustrate the form of the results, we give the reduction of a gluon “box” 

diagram in two (of many possible) choices of f-, d-bases (Fig. 24a). For 

comparison with the method of Section VI, we also evaluate the same diagram 

in kolo basis, Fig. 24b. 

To summarize, f-, d-bases reduction of weights is a feasible method for 

SU(n) . However, it suffers from various drawbacks. It does not work for other 

groups. It is a method of evaluation of weights in terms of adjoint, rather than 

fundamental representation, and it tends to be messier. It introduces a tensor 

d ijk that does not appear in the original interaction Lagrangian, and leads to 

arbitrariness in the choice of tensor bases (note that the kolo bases are unique). 

Finally, it involves solving large sets of linear equations; already for r=4 we 

45 found it convenient to do the algebra on a computer. ~_ By contrast, kolo 

method requires only a sharp pencil and some paper. 
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APPENDIX C 

EXCEPTIONAL GROUP F4 

We hope to treat all exceptional groups (G2, F4, E6, E7 and ES) in an expanded 

version of this paper. Here we merely sketch a treatment of F4 based on 

Schafer . 46 F4 is the isomorphism group of the exceptional simple Jordan algebra 

of traceless hermitian [3x3] matrices x with octonian matrix elements. The 

nonassociative multiplication rule for elements x can be written as 

s=xe aa a=l, 2,. . .26 

Tr ea = 0, ea is a [3x3] basis matrix 

6 

ea% = ebea = -$ ll + dabcec 

Tlrll= 3, ll is [3X3] unit matrix. 

Transformations of F4 preserve the quadratic form Tr (x2) (the length in 

26 dimensional space, so F4 is a subgroup of SO(26)), as well as a fully sym- 

metric cubic form 

Tr (xyz) = Tr (yxz) = Tr (yzx) 

= dabc XaYbZ c 

where d abc have some formal similarities to idijk coefficients of SU(3). The 

fundamental representation of F4 algebra consists of N=52 independent [26x26] 

skew symmetric matrices (Ti)ab (i=l, 2,. . . , 52) which satisfy the condition of 

Fig, 25e. 47 The definition of Jordan algebra 

Pm2 = x(yx2) 



- 20 - 

gives a relation between contractions of three dabc tensors, Fig. 25a. The 

characteristic equation for traceless [3x3] matrices 

x3 - i Tr (x2)x -i Tr (x2) ll = 0 

(see Fig. 18) gives a relationship between contractions of pairs of dabc, drawn 

in Fig. 25b. From these identities follow various relationships (Fig. 26), which 

enable us to construct the projection operator P F4 given in Fig. 26h. [I 
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quark propagator 

FIGURE CAPTIONS 

gluon or ghost propagator 

quark-quark-gluon vertex. The arrow denotes the direction of multi- 

plication of T1 matrices. Whenever omitted, it is assumed to be 

pointing to the left for quarks going through the diagram, or anti- 

clockwise for closed quark loops. 

three-gluon or ghost-ghost-gluon vertex. Indices circle the vertex 

anticlockwise. 

Lie commutator for the fundamental representation 

tracelessness condition (“color conservation”) 

normalization convention 

-iC.. 
1Jk 

in terms of the fundamental representation 

Jacobi identity (or Lie commutator) for the adjoint representation 

skew-symmetry of C.. 
Ilk 

quark number 

gluon number. 

quadratic Casimir operator for the fundamental representation .- 

quadratic Casimir operator for the adjoint representation. 

The remaining figures are examples of the reduction of 

(c) a quark-quark-gluon vertex 

(d) a three-gluon vertex, and 

(e) another quark-quark-gluon vertex. 

4. A diagramatic computation of the quadratic Casimir operator for the 

fundamental representation. 
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5. Some diagrams that vanish because of the skew-symmetry of C ijk’ 

6. A sixth-order quark-quark-gluon vertex graph. 

7. Projection operators for the fundamental representations of (a) SU(n), 

@) Wn) y @) Sp b-d, and (4 G2. 

8. (a) skew symmetry of the fundamental representations of SC(n) and G2 

(b) -iC ijk in terms of the fundamental representation for SC(n), Sp(n) 

and G2. 

9. Diagrammatic notation for the skew-symmetric metric tensor gab for 

the symplectic group E@(n), 

10. (a) diagrammatic notation for the tensor f abc for the exceptional group 

ti 2 

It is 

(b) fully antisymmetric, and 

(c) contractions of several f abc are reducible. 

The fundamental representation of G2 is 

(d) a subgroup of SO(7) with the additional condition (e). 

11. Some derived relations between fabc tensors useful in the computations 

of weights for G2. .- 

12. A projection operator for G2 is constructed by 

(a) expansion in all available fundamental tensors 

(b) their reduction by relation Fig. lOc, and 

(c) imposition of the antisymmetry requirement. 

Finally the coefficients A’ and Dr are fixed by 

(d) the definition of a projection operator. I :. _. 

The result is given in Fig. 7d. 
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13. (a) an arbitrary [nxn] hermitian matrix dab 

(b) expansion of an arbitrary element of the group c& in terms of a basis 

set 

(c) evaluation of the expansion coefficient 

(d) a general completeness relation. 

14. Completeness relation for (a) SU(n), (b) SO(n), (c) Sp(n), (d) G2 

and-(e) F4; :-: 

15. A sample diagrammatic computation: quadratic Casimir operator for the 

adjoint representation of SO(n). 

ta) ‘ijk 
are replaced by the fundamental representation 

(b) one gluon is eliminated by the completeness relation 

(c) the remaining gluon is eliminated by the completeness relation. 

16. A tabulation of some simple weight evaluations. 

17. Kolo bases for processes with r=2,3, . . . external gluons and no external 

quarks. These are also the complete and independent bases for SU(n) 

tensors as long as nlr . 

18. (a) a characteristic equation for [4x4] matrices 

(b) symmetrization symbol 

(c) characteristic equation for SU(2); there are no dijk coefficients 

(see Fig. 2&l) 

(d) Macfarlane et al. relation for SU(3). -- 

19. Factors for the group-theoretic weights WG and Feynman. momentum 

integrals MG. 
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20* (a) notation for the (fully symmetric) numerical tensor d.. 
1Jk 

(b) multiplication rule for SU(n) matrices Ti= 2 hi i 

(c) decomposition of three-external gluon quark-loop into real and 

imaginary parts 

ld) dijk 
as its real part 

(e) reduction of products of Ti matrices to d.. and f.. tensors 
1Jk 1Jk 

(0 elimination of quark lines by tracing. 

21. Construction of all simple d- and f-tensors with r external gluons. 

22. Catalan’ trees. 

23. (a) associativity of Ti matrices leads to relations between various d- 

and f-tensors. 

All relations between (b) real and (c) imaginary parts of simple tensors 

with four external gluons . 

24. Gluon r’box” diagram evaluated in (a) two different f- and d-bases and 

(b) kolo basis. 

25. (a) diagrammatic notation for the tensor dab, of the exceptional group F4 

@) dabc is fully symmetric 

(c) Jordan identity relates contractions of three dabc’s 

(d) characteristic equation for traceless hermitian [3x3] matrices of the 

exceptional simple Jordan algebra relates contractions of two dabc’s 

(e) a condition on generators (T.) which follows from the invariance 1 ab 
of Tr (xyz). 

26. Various relationships for F4, derived from the definitions of Fig. 25. 
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(b) SO(n), Sp (n), G2, F4: A =$(g 

Fig. 8 
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