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Introduction

The objective of this thesis is to develop a language to study differential
geometric properties in singular spaces. The singular spaces we are in-
terested in are effective orbifolds. They appear in many fields of mathe-
matics such as algebraic geometry, algebraic topology, groupoid theory,
differential geometric problems in manifolds, among others ([ALRO7],
[MP97], [CRO1], [LUO4], [Thu79]). The language we are developing is
the theory of G-structures. It relates the presence of a (linear) geometric
structure on an orbifold with an action of a Lie subgroup G < GL,(R)
on a subbundle of the frame orbibundle. The effectiveness hypothesis
gives a manifold structure on the frame orbibundle. Hence, we will study
differential geometric problems on singular spaces through non-singular
ones.

This thesis has three chapters. In the first chapter, we establish the
background needed to understand effective orbifolds: the fundamental
definitions, maps between them, some examples, and properties that
will help us develop the theory of G-structures. In particular, we are
interested in orbifolds arising as quotients of manifolds by locally free
and proper Lie group actions.

In the second chapter, we study the primary objects used to develop
the theory of G-structures: orbibundles. We will show there is a 1-1
correspondence between cone and principal orbibundles. In particular,
the tangent and the frame orbibundles are related. Besides, we will
study connections on the tangent and frame orbibundles and show a
1-1 correspondence between them. Consequently, the geometric proper-
ties due to the presence of a connection have corresponding frameworks



on both the tangent and the frame orbibundles. Also, we will introduce
two concepts of capital importance: the tautological form (characterizes
G-structures) and reductions (the essence of what a G-structure is).
The third chapter introduces the theory of G-structures on effective orb-
ifolds. We establish the basic concepts and relate them to the classical
geometric structures. We will show that the tautological form charac-
terizes when a principal G-bundle is a G-structure and when an isomor-
phism between principal G-bundles is an equivalence of G-structures.
This gives a characterization of the category of G-structures on effec-
tive orbifolds. Later, we will use the theory constructed to talk about
connections compatible with a geometric structure. We will compute the
compatibility conditions for some classical geometries. Finally, we intro-
duce a fundamental problem to be studied in the theory of G-structures:
integrability. We will characterize when a G-structure is integrable only
in terms of the frame bundle. Besides, we will talk about the torsion
and intrinsic torsion, show that its vanishing is an obstruction for inte-
grability, and compute these obstructions for some classical geometric
structures.



Chapter 1

Orbifolds

Manifolds provide a proper framework which allows the use of tools
from calculus in the study of geometric properties of a space. This is
the scope of what is usually referred to as differential geometry. Many of
the properties of a geometric structure on a manifold are captured by its
group of symmetries. It is then natural to consider the quotient space
of the manifold by the action of the symmetry group. Depending on the
behavior of the group action, this quotient space might not be a smooth
manifold. This leads us to consider more general spaces than manifolds.
Orbifolds, first called V-manifolds, were introduced by Satake [Sat57]
as a generalization of manifolds. While on manifolds there are local
charts qg : U ¢ R" — U which are homeomorphisms, on orbifolds there
is an extra information: a finite group I' acting by diffeomorphisms on
U. Then ¢ : U — U is not a homeomorphism but is I-invariant and
¢~> : (7/ I' — U is a homeomorphism. Consequently the compatibility
conditions between the charts must take into account this extra infor-
mation. Intuitively, orbifolds are spaces with good singularities which
are codified by the points with non-trivial isotropy.

This thesis deals with geometric structures, known as G-structures, on
orbifolds. In the first section we will give some basic definitions, exam-
ples and results about orbifolds (we refer to see [Sat57], [CJ19], [ALROT]
for more details). In the second section we make a crucial remark for
the development of the theory of G-structures on orbifolds: the frame



orbibundle of an effective orbifold is always a smooth manifold. This
can be thought of as a desingularization process where we associate to
a singular object, an orbifold, a non-singular one: a manifold. For this
reason we will focus on effective orbifolds in this thesis. In the third
section we will study maps between orbifolds. Be aware that there are
different notions of maps between orbifolds. We will not cover this as
deeply as we would like to, but instead we will focus on a particular
notion that will be needed in the theory of G-structures. More informa-
tions about maps could be found in [BB13].

In this thesis we will use the more classical ”charts” perspective on
orbifolds. However, orbifolds can be treated in more ways: using pseu-
dogroups, as in [CJ19]; and as proper, étale groupoids up to Morita
equivalence, [MP97]. Information about maps between orbifolds, in the
groupoid perspective, can be found in [Che06],[ALRO7], [MP97].

1.1 Orbifold fundamentals

Let T" be a group acting on a space X. The action is called effective if
the only group element that acts as the identity is the identity. In other
words

y-Z ==, forall T = v =id.

Definition 1.1. Let O be a topological Hausdorff space. A local model
is a triple (U T d)) where 0 € U C R™ is a connected open subset such
that:

1. T' a finite subgroup of the automorphism group of U, which fizes
the origin and acts effectively on U.

2. qB :U = U is a continuous map onto an open set x € U C O such

that $(0) =
3. d~> s I'-invariant and induces a homeomorphism ¢ : U/F —U.

Remark: All open sets of R™ will be written with a tilde as U. Their
corresponding images by ¢ will not have such a tilde. They will be
denoted by U, and are open subsets of O.



Example 1.2. Let a € RT, define ¢ : (—a,a) — [0,a) by

T if x>0

Pa(z) =

—x if x<O.
Define the action (y) =Zs ~R by vz = —z and
Pa: (—a,a) = (—a,a) /2o,

be the projection map. Because qga is constant on each fiber p;1(c), i.e.,
@q is invariant under the Zso action, it induces the continuous function

(~aa)
lpa *
(—a,a) /25 2~ [0,0).

The induced function ¢, : (—a,a) /Zs — [0,a) is a homeomorphism. It
follows that ((—a, a), 2, gz;a) is a local model for [0, a).

Example 1.3. Take n € N and let R : R> — R? be the rotation by the
angle 27 /n defined by

o = (oo (22 - (2 ) i (2 ) o (2.

For 0
W = {(z,y)ERQ: Ogygtan<w>x},
n
k
—_——f
define Wy = (Ro...o R)(W), where k =0,...,n — 1. Then

n—1
R = | W
i=0
Take the cone

C= {(asvyvz) ER®: Y’ + 27 = (COt (%) x>2}



and define ¢g : W — {0} — C by
do(x,y) = (\/xz + 42, cot (%) V2 + y? cos (n - arctan (%)) ,
cot (%) V% 4+ y?sin (n - arctan (%))) .

We can extend ¢(0,0) = (0,0 ,0) and obtain that do |w is a continuous
map. Define ¢y, : Wy, — C by ¢, = ¢p o R"*. Tt is continuous being
the composition of continuous functions. These functions coincide in
the intersection and, by the pasting lemma, ¢ : R2 — C defined by
é(x) = ¢r(z), where z € Wy, is a continuous function.

The map R induces an action (R) = Z, ~ R? with p : R? — R?/Z,
the projection map. Because ¢ is constant on each fiber p (o), i.e., b
is invariant under the Z,, action, it induces a continuous function

RZ
N
p
R?/Z, 2 C.
The induced function ¢ : R?/Z, — C is a homeomorphism. Therefore
(R2,Zy, ¢) is a local model for the cone C.

Remark : Note that even though R? /2, and R2 /2, are homeomor-
phic when n # m, they have different local models. We will see that
they are not isomorphic as orbifolds.

Let (Uy, Lo, ¢a) and (Ug,Fﬁ,qbﬁ) be local models. To compare them
we require that ¢o(Uys) = Us C U = ¢5(Up).

Definition 1.4. A topological embedding ¢aﬁ Uy — f]@ such that
qﬁa = qﬁﬁ o waﬁ 1s called an injection.

An injection gives rise to the following diagram
o ap -
Uyo——Us
o
Ua

—S> U



Note that, by definition, every element 7, € I'y induces an injection
(Uaaraa¢a) (Uavronqba)

Lemma 1.5. Let 91,13 : (Uy, Lo, d0) — (Ug,[‘g,@g) be two injections.
Then there exist an unique yg € I'g such that 11 = g o 19

This lemma appears firstly in [Sat57] but its proof requires a di-

mensional hypothesis on the group. However, there is a proof of the
statement without the dimensional hypothesis in [MP97].
Because the composition of injections is again an injection we have that
zﬂag 0 Yo and 1/~1a5 are both injections. It follows that there exists a
unique vg € I'g such that @Z)aﬁ 0Yq =180 1/;(15. This can be restated as
the existence of a monomorphism 0,5 : I'y = I'g, with 0,5(74) = 73,
such that

Pa =
B U5

U,

nd J/ « 6(1

Ua/Ta et il Us/Ts
U,

Jos

Ug

is a commutative diagram.

Example 1.6. Let a,b € RT, with a < b. Take two local models
((—a,a),ZQ,éa) and ((—b, b),ZQ,ng> as in example 1.2. Then

is an injection, where ¢ is the natural inclusion, I : Zo — Zo is the
identity morphism and ¢ is the induced inclusion on the quotient spaces.



Example 1.7. Let (RQ,Zn, g51> be as in example 1.3.
Define ¢y : R?2 — C by

<Z~52(90,y) = (\/m, cot (%) z, cot (%) y) .

It is a homeomorphism and then (]RQ, {e}, ¢~>2> is a local model for the
cone C. However, there can not exists an injection between the two local
models <R2,Zn,q§1> and (IR{Q, {e},@). If true, then there will exist a

Zy-invariant map ¢ : R? — R?, which means 1) can not be injective.

The previous example shows we could have different local models for
the same topological space that can not be linked by an injection.
As long as we are dealing with smooth structures, a smooth local model
is a local model such that the group I' acts by C'*°-diffeomorphisms. A
smooth injection is an injection wag Uy — U, 3 between two local models
(Ua, Ty $a)s (Us, T3, ) such that 1/1&5 is an embedding of manifolds.

Definition 1.8. Let O be a topological Hausdorff paracompact space.
An orbifold atlas associated with an open cover {Ua},c; of O is given
by the following conditions:

1. The existence of a smooth local model (Ua,Fa,gga) for every a,

such that ¢o(Us) = U,

2. For every two smooth local models (f]a,I‘a,quSa)~ and~(l~]5,f‘§, ng),
with U, C Ug, there exists a smooth injection a5 : Uy — Ug.

3. For every p € Uy NUg there exists v € I such that p € U, and
U, C U, NUg.

Orbifold atlases can be divided into equivalence classes. Two orbifold
atlases belong to the same class if their union admits a refinement that
is an orbifold atlas. These equivalence classes are represented maximal
atlas.

Definition 1.9. A n-dimensional orbifold is a topological space which
1s Hausdorff and paracompact, along with an n-dimensional mazximal
orbifold atlas on it.



Example 1.10. [0,00) has an orbifold structure induced by the local
models ((—a,a) s, $a> foralla € Z™T.

Example 1.11. The local models (R2,Z,, ¢1) and (R2, {e}, $3) define
orbifold structures for the cone C'. However, they are not the same orb-
ifold structure because there does not exist a smooth injection between
them.

Let z € O and let (U, T, $) be an orbifold chart such that ¢ (%) =
The isotropy subgroup I'; < T is given by

I'y={yel|y-z2=27}.

For every ’y € I' the groups I'z = I'y.z, which implies I'z, = I'z, for all
.’L’l,.’L‘Q S ¢ ( )

Lemma 1.12. For every z € O, there exists an orbifold chart (U,T, )
such that ¢(Z) =x and T'z =T.

Proof. Since the group elements v; € I'—T'z do not fix Z they will define
aset {v1-Z,...,7-2}. Take a metric on U such that I" acts by isometries
and an open neighborhood B¢(Z) such that

B.(%) N7 Be(F) = 0.

An injection between the orbifold chart (B.(%), Tz, ¢) and [f is given by
the inclusion 7 : Be(Z) < U. It follows that (B.(&),T'z,®) belongs to
the same orbifold atlas. O]

Hereafter we will work with these orbifold charts. The isotropy rela-
tive to the orbifold chart (Us, g, dg), with éﬁ(N) = z, can be compared
with the isotropy of the orbifold chart (Ua, Ta, ¢a) passing through an
orbifold chart (UV,FV,gbl,) with U, C Uy NUg and ¢,(0) = z. Take
smooth injections 9,5 : U, — Ug and 1/~Jl,a : U,, — Ua, with monomor-
phisms 0,5 : Ty = T'g and 0,4 : 'y — Ty. As long as 1;,,6(0) =g and
Yya(0) = Z, then, 0,5 : T, — (FB) and O, : Ty = (Ta) ;-

The proof for the following lemma can be found in [Sat57].



Lemma 1.13. Let ¥ be an injection {Ul,Fl,qﬁl} — {U,,T Ts, $o YooIf

12(B(02)) N H(C1) £ 0 with 2 € Ta , then 1o(@(0h) = $(01) and 2
belongs to the image of the monomorphism I'y — I's.

Consequently 6,5 : I') — (Pg)g and 0, : I'y — (T'n); are isomor-
phisms which implies (I‘g)g = (I'y);. For this reason, the isotropy does
not depend on the choice of orbifold charts, i.e., it is well-defined up to
isomorphisms.

Definition 1.14. Let x € O, the isotropy group 'y is by definition Iy,
where (UV,FV, ¢V) is an orbifold chart such that gb,,( ) =x.

Take the orbifold charts (w,,g( V), (Fg)y, ¢5) and (wya( V) (Ca)a, qga)
The diffeomorphism 4 o ¢V 5 ’gbl,lg( v) — q/)ya( U,), together with the

isomorphism 03, 1= 0,4 oQV L. : (I'g)y = (I'a)z, defines a 6,-equivariant
smooth diffeomorphism.

Definition 1.15. Two orbifold charts (Ul,I‘lj ¢~512 and (Nﬁg,l“g,ggg) are
isomorphic if there exists a diffeomorphism ¢ : Uy — Uz and an iso-
morphism 6 : I'y — Iy such that ¢ is 0-equivariant.

For every triple U, C U, N Ug, the orbifold charts

(&Vﬁ((?u% (Fﬁ)ﬁuﬁ(o) v&ﬁ) = ((jl,,I’l,,(%l,) o (1[;1,&([]”)’ (FO‘)JJM(O) ,q;a) 7
are isomorphic. (1.1.1)

Example 1.16. Let (R2,Zn,<]31> and <R2 — {0}, {e},q%) be as in ex-
ample 1.7. For every x € C' its isotropy group is
Zp if =0
r, =
e if x#N0.

Every orbifold chart around 0 € C' must have a group isomorphic to Z,.
That is why the second orbifold chart can not be extended to all R?.

If I'y = {e} for all z € O, then every orbifold chart have the
form (U, {e} $). The compatibility between the orbifold charts is given



by embeddings, without any group monomorphism, and O is a mani-
fold. The orbifold structures which are not manifolds appear when the
isotropy groups are not trivial.

Example 1.17. A manifold M is an orbifold such that I';, = {e}, for
all z € M.

Since the theory of G-structures over an orbifold O relates the pres-
ence of a geometric structure with a group action on the frame orbibun-
dle, it is fair to require that the local groups on the orbifold charts I',,
acts by representation on some subgroup of G L, (R).

Lemma 1.18. Every orbifold structure (Ua, T, (;Nﬁa> admits a compati-

ble orbifold structure (Ué, rs, @2) such that T, acts by a representation
of the orthogonal group.

Proof. Let <U 1 qz~5> be an orbifold chart and (-,-) a riemannian metric
on U. For X,Y € TU define the Riemannian metric

(X,Y)9 = (dv(X),dv(Y)).

vyel

For all v € T there is an induced action I' ~ TU given by dy :
TU — TU, an isometric action with respect to (-,-)9. Take the path
n(t) = expz (tX), with X € T;U fixed. Because isometries carry
geodesics to geodesics, (v-n)(t) is also a geodesic passing through & with
velocity dzy(X) so (v -n)(t) = expz (tdzy(X)). The exponential map
expz - T; ~U — U becomes I'-equivariant. Furthermore, there exist ¢ > 0
such that expz|p, is a diffeomorphism. Consequently, I'z ~ T;U acts
by a representation of the orthogonal group and letting U< = B.(0),
I“=Tand ¢ = do exp;, we get an orbifold chart (ﬁq,Fq,éq) on
U< C U. The exponential map provides an injection exp; : U — U,
which implies that this orbifold chart also belongs to the same orbifold
structure. Having constructed these new charts we can glue them to-
gether using as injections 1;2,8 : Uj — UE‘ the maps 1235 = dzﬁaﬁ, with
@Eag Uy — U, 3 the injections of the original orbifold atlas. O



This charts are called linear charts. From now on our orbifold atlases
will be given by linear orbifold charts.

1.2 Orbifolds as quotients

Let p: P x G — G be an action of a Lie group.
e P .~ G denotes a (right) action of G on P.
o /iy := u(p,-) : G — P denotes the map g — u(p, g).
o 19 :=pu(,g): P— P denotes the map p — u(p,g).
The action is called proper when the map

p:PxG—-PxP
(9,p) = (p, p(p, 9))

is a proper map. Moreover, the action is free when the isotropy group

Ge ={9€ G| p(z,g) ==},
is trivial for every p € P.

Proposition 1.19. Let P .~ G be a free and proper action of a Lie
group on a manifold P. Then P/G has a manifold structure.

For every p € P, the properness hypothesis guarantees the existence
of submanifolds S, C P, called slices. The manifold structure in P/G is
determined by the slices together with the embeddings proy : S, xG —
P. More details about this proof can be found in section 3, theorem
3.34, [AB15].

Definition 1.20. Take p € P. A slice passing through p, denoted by
Sp, s a Gp-invariant submanifold such that

1. T,P =depp (9) ® TpSp and TyP = depq (9) + T4Sp for all g € Sp.

2. If g€ S, and g € G are such that j(q,g) € Sp then g € Gp.



There are in general many slices through a point p. However, the
manifold structure will be the same no matter which slice we have cho-
sen. Slices will generate the topology on the quotient space P/G. They
are related with opens in P by the tubular neighborhood associated
with each slice.

Definition 1.21. A tubular neighborhood for a slice is Tub(S) = (S, G).

Define the action S, x G~ G, by

(5,9) *gp = (,U(S,gp),gz:l . g)
If we denote S, xa, G := (Sp x G)/Gp then S, xg, G = Tub(S)) are
diffeomorphic. As long as the action is free, we get

Tub(S,)/G = S,.

As we wil see bellow, if we allow locally free and proper actions, we will
naturally obtain orbifolds instead of manifolds as quotients.

Take € € g and let ¥ : P x g — TP denote the infinitesimal action
associated to the G-action defined by

U(p, &) = depp(8)-

Definition 1.22. A G-action on P is called locally free if U is injective.

Since for all h € G ker (dppp) = T}, (hG,), a locally free action satis-
fies g, = ker (depp) = 0. Thus, the isotropy group G, is a 0-dimensional
manifold, a discrete group. The properness hypothesis implies Gy, is
compact. Then G, is finite whenever the action is locally free and
proper.

Proposition 1.23. Let P~ G be a locally free and proper action of a
Lie group on a manifold P. Then P/G has an orbifold structure.

Proof. Let p € P and 7 : P — P/G be the projection map. Given that
the topology on P/G is the quotient topology and

(@) = | ] oU.

geG



7 is a continuous, open map. Take a slice S}, at p and
ep = pls, : Sp x G = Tub(Sp),
the restriction of the action map. Then

dge)op(Y:6) = Yy + ¥(q, §).

Because S, is a slice and the action is locally free, d(, . pp is an iso-
morphism. Furthermore, ¢,(q,g9) = pu? o ¢,(q, e), and then follows that
d(q,9)#p is an isomorphism for every ¢ € S), and g € G. By the inverse
function theorem ¢, becomes a local diffeomorphism. Note that even
though ¢, is not injective, it induces a diffeomorphism

0p : Sp X, G = Tub(Sp).

Define U, = n(Tub(Sp)). The diffeomorphism ¢, is G-invariant. Then
Sp/Gp =2 U, are homeomorphic, which implies (S, Gy, qu) is a smooth
local model for Uy, with ¢, := s,

The existence of smooth injections between the local models will guaran-
tee an orbifold structure for P/G. For, let (S,, Gp, ) and (S, Gy, dq)
be two local models with U, C U,. Since

S, x G~ G,

|

Sq ng G
defines a principal bundle structure, there exist local sections
0q :Sq xa, G =S¢ xG.

Consider the embeddings ¢, : S, < S, X, G and ¥y, : Sp < Sy defined
by tp(z) = [z, €] and

Ppg(r) = (prl 0040 goq’I 0LOppoO [,p) (r).
In addition, let ¥ : S, — G be defined by

I(r) = (prg 0dq0 goq_l 010 ppo0 Lp) (r).



Given that pu(p, 9(p)™1) = 1pe(p) = g, if g, € G, then
I(p) - gp - I(p)~' € Gy
Fix g,, the map § : S, — S, x G, defined by
O(r) = (pq(r), 9(r) - gp - 9(r) 1),

induces a monomorphism 6 : G, — G, as long as .S}, is connected, 0
continue and G discrete. Furthermore, v, is a f-equivariant map, i.e.,

Ypq : Sp — Sy is a smooth injection. O
Example 1.24. Let S?"*! = {(20,21,...,2,) € C"1 | |20)2 + |21 +
...+ |22 = 1} and let ag,ay,...,a, € Z* be co-primes. Define the
action g : S?"1 x S — §2n+1 by
1 ((zo, 21y ey 2n) ,eie) = (eiaoezo, ey . ,eianezn> )

For z = (20, 21, ..., 2zp) fixed we get an injective map

iagzo

ialzl

dyp, = . s
10, Zn,

for every z € S?"*1. Thus, this action is locally free. Moreover, it is
proper because S! is compact. By the previous proposition, the quo-
tient space S?"*!/S! has an orbifold structure. Denote this orbifold
structure by WP (ay, ..., ay,). It is called the weighted projective space
with weights aq, .. ., an.

Let z € S?"*! be a point with non-trivial isotropy. That means

w(z,e?) =z,
with e # 1. Then

eia]ﬂ

for all j. If z; # 0 and 2, # 0 for j # k then

Zj = Zj,

. a;Cp
ar = T
Gj



for two integers c¢j, ¢, € Z, with 0 < ¢; < aj and 0 < ¢ < aj. Because
the numbers aj,a; are co-primes, this equality can not hold. Then
2z = (z1,..., %) have non-trivial isotropy when all but one z; equals to
ZEro.
Take w = (0,0,...,0,w;,0,...,0) € S?""1. The isotropy group S, is
given by the elements ¢’ € S! such that e’*? = 1, the roots of the unity.
Thus S}, = <ei2”/ %Y = Za,.
Let E; = {(20,...,2n) € S™ | |2j| = 1}, with 0 < j < n. Its isotropies
are

Zaj if xe€ E]’

r,=
e if x¢FEj.

A slice passing through w; € Ej is given by
Sw; = {(z0,...,2n) € §2ntt | |2j] # 0, Arg(z;) = Arg(w;)}.
The tubular neighborhoods associated to this slices are
Tub(Sw;) = {(20,---,2n) € st |zj] # 0}.
Take 7 : S?"*1 — WP(ay, ..., ay) the projection map and let
Uw; = m(Tub(Sy,))
Hence, (Swj,Zaj,ﬂgwj) is a local model for U,,. Choosing w; € E; for
each equator, we get

U Tub(S,,) = s>+
=0

This means the local models (Swj s L, 7| Su, ) generate the orbifold struc-
ture for the weighted projective space. In fact, (Tub(Sw,), Za;,7|s,)
generate the same orbifold structure, i.e., the orbifold charts look like
the manifold charts for the projective space, plus isotropies due to the
weights.

In particular, take WP(1,a) = S3/S'. The points with non-trivial
isotropy are the ones on the equator By = {(wo,w;) € S? : |wy| = 1},



with isotropy Z,. For all w = (wp,w;) € S* — E7 there exist a unique
e such that p(w,e?) € S2, where Cx R D §2 = {(2,2) € S* : 2 > 0}.
All the equator Fq maps onto the equator of Si. Topologically, the
quotient space will be S%/ ~, with (z1,21) ~ (22,22) if and only if
21 = x5 = 0. That means Si / ~= S? are homeomorphic. However,
every chart of S? that contains the south pole is of the form (f] Ly Da),
the local model for a cone. Therefore WPP(1, a) is a 2-sphere with a cone
point on the south pole or equivalently on the north pole. WP(1,a)
looks like a teardrop.

1.3 Maps between orbifolds

Satake’s works on orbifolds (V-manifolds!) suggested a close relation-
ship with manifolds. Maps between orbifolds were defined locally. For
any injection on the source orbifold, there is another on the target orb-
ifold that commutes with the local lifts, [Sat57] section 2 (this is just
the definition of manifold maps but on the orbifold context). However,
maps are given up to an equivalence relation (this differs from the def-
inition of maps on manifolds because many liftings exist over a chart,
unlike the manifold case where only one exists). The way injections are
related do not imply the existence of group homomorphisms between
the orbifold charts. Furthermore, they do not allow us to define the
pullback of an orbibundle uniquely.

A notion of orbifold map that considers these two situations is that of
good orbifold map, see [CRO1] definition 4.4.1. Remember orbifolds can
be thought of as groupoids up to Morita invariance. Maps are smooth
homomorphisms between the groupoids, up to Morita equivalence. In
the groupoid context, this is the notion of a strong map, [MP97] sec-
tion 5. It turns out that good maps and strong maps are equivalent,
see [LUO4] proposition 5.1.7. Because G-structure theory is based on
the relation between the tangent orbibundle and frame orbibundle, we
are interested in maps between principal orbibundles that come from
an orbifold diffeomorphism between the basis orbifolds. To preserve the
structures constructed, we will need our maps to be good maps.

There are more types of orbifold maps; one of the most natural is Sa-



take’s definition but with extra information: group homomorphisms
between the local charts. These different types of orbifold maps can be
found on [BB13]. In particular, the notion of complete orbifold maps,
where the equivalence between orbifold maps is given by the germs plus
the equality of the group homomorphisms, coincides with the good orb-
ifold maps. Reduced orbifold maps are equivalent to the notion of orb-
ifold map given in [ALRO7].

Let O1 be an n—dimfansional orbifold and (?2 be an m-dimensional orb-
ifold with atlases {(Ua, Lo, #L) Yaes and {(Vy, Yo, 2) }oek, Tespectively.

Definition 1.25. A smooth local lift for a continuous map f : O1 — Oa,
around x € Oy, is given by:

1. Orbifold charts (U,F, <Z>1) and (V,T,qu) with x € U, f(x) € V
and f(U) C V.

2. A smooth map f:U — V such that f o ¢* = ¢%o f.

8. For all v € T there exists a ¥ € T with ﬁfj‘: = fq/.

The last condition does not imply the existence of a homomorphism-
fromI' to Y.

Example 1.26. Take the orbifolds C' = R?/Z;, and [0,00) = R/Z,.

Define h: R?2 = R as }

hz,y) = Va? +y>.
Given that h is Zj-invariant, it defines the lifts for a smooth orbifold
map h : C' — [0, 00).

Take a € Z* and let B1(0) C R? be the open ball centered at the
origin of radius 1. The rotation by any angle is a well-defined action on
B1(0). Consequently C 4 = B1(0)/Z, is an orbifold.

Example 1.27. Consider Ci, and WP(1,a). Recall that (0,1) €
WP(1,a) have non-trivial isotropy equal to Z,. Also, let S(g;) be a

slice passing through (0,1) as in example 1.24. Let f : B1(0) — S(o,1)

be
fla,y) = (& +iy, /1 — 22 — y2 + 0i).



The Zq-equivariant function f induces a map f : Ci,a = WP(1,a). This
map stresses that the open sets containing the points with non-trivial
isotropy looks like a cone.

Let fg Ug — Vg be a smooth local lift. If Uy C UB7 there exists
an orbifold chart (Uy, T, an) and an injection 1)} ap i Ua = Uﬁ Define

faﬁ U _>VB by faﬁ —f/301/1 8" Let (¢ﬁofa5)< ) = Vo it is a
connected open subset V, C Vg Thus, there exists an orbifold chart

(Va,Ta,¢ ) and an injection 12 ap - Vo Vg Take the lift fo, : Uy — Vi,

defined by f, = <w§ 6)_ o fag. We obtain the following commutative
diagram

-2
S

We could have chosen a different orbifold chart over V. Its injection
will be of the form 1/135 .7, for a fixed ¥ € Ty, and ¥~ ! - f, will be the

smooth local lift induced by fﬁ.

Definition 1.28. Take two smooth liftings of f, fa : Us — Va4 and
fg Ug — Vﬂ They are isomorphic if there are isomorphisms between
the orbifold charts waﬁ Uy — Ug and waﬂ Vo — Vg such that ¢

fa—fﬁowa

Hence a smooth lift for fz : Ug — Vj induces smooth lifts for every
open U, C Ug. All the possible lifts f, are isomorphic.

Definition 1.29. Two lifts fa, fﬁ are equivalent at x € Uy, NUp as
germs, denoted fo ~g fg, if there exists an orbifold chart x € U, C



Ua NUg such that the induced lifts foa : Uy = Vi, from fa, and fgg :
Uy, = V5, from fg, are isomorphic lifts.

Having defined local liftings for orbifold maps we can define a lift
for an orbifold map.

Deﬁ~niti0n 1.30. Let f: O1 — Oy be a continuous fupctionN. A smooth
lift f is given by a system of smooth local liftings fy : Uy — Vi for every
x € O1 such that f, ~. fy, for every z € U, NU,.

Definition 1.31. An orbifold map is a continuous map f: O1 — Oz
together with a germ of liftings f. If the liftings are of class C* then the
orbifold map is said to be of class CF.

Because all the injections between orbifold charts and group actions
are taken to be €', then a lift f, is of class C* if and only if any other
lift f3 is of class Ck.

Example 1.32. Define 71,72 : (—1,1) — R? by 71(t) = (¢, [t|) and
fl2(t) = (t,t). Both 7,2 project onto the same path on R?/Z4. They
are lifts of the same map n : (—1,1) — R2?/Z4 but are not on the
same equivalence class because they are not equal as germs of functions
around 0 € R2. The regularity of 7, as a map between orbifolds, depends
on the choice of the lift.

On orbifold category, a map will have certain property if this prop-
erty holds for every lifting. For example, if one lift of an orbifold map
has constant rank, then all lifts will have the same property. It fol-
lows that having constant rank is a well-defined property of an orbifold
map. In particular, that the lifts are immersions is a well-defined prop-
erty of an orbifold map. Take a lift f : U — V, and the smooth map
df : TU — TV. If the local lifts of the orbifold map f : O — Oy are
immersions, then for 1,7 € I' and § : I' = T the equation

0(n) - df(X) = 0(y2) - df (X),

implies



where the I actlon means 7y - X :=dv(X). Given that the differential is
injective 7172 . X = X. If we have chosen a point with trivial isotropy
then v1 = 9. If not, th1s will be true for almost every point, which
implies (see the proof in lemma 1 [Sat57]) v1 = ~2; that means 0 is
injective. However, if the lifts of f are submersions, it is not true that
the homomorphism 6 is surjective. For example, take R?/Z4 and R?/Zg
with the identity map ¢ : R?> — R? as injection and the homomorphism
0 : Z4 — Zg defined by 1 mod 4 — 2 mod 8. Clearly ¢ is a submersion,
but 6 is not surjective.

Definition 1.33. A smooth orbifold map f : O1 — O is a submersion
(immersion) if the local lifts are submersions (immersions) and the lo-
cal homomorphisms are surjective (injective). It is a diffeomorphism
if the local lifts are diffeomorphisms and the local homomorphisms are
1somorphisms.

The conditions imposed for submersions (immersions) on the homo-
morphisms guarantees that the maps satisfies classical theorems satis-
fied on manifold category: the local form submersion (immersion) the-
orem ([CJ19] section 3.2), the regular value theorem ([BB12] section 4)
among other classical results. This is due to the close relationship be-
tween manifolds and analysis on R™, and orbifolds and manifolds. The
techniques are similar, i.e., using analysis locally and proving that the
property does not depend on the choise of a local chart. Furthermore,
locally, some geometric constructions can induce globally defined geo-
metric structures by gluing together the local informations. The gluing
process requires the existence of partitions of unity. Take an orbifold
atlas (Ua,Fa,qba) and a partition of the unity po : Uy, — R subordi-
nate to this atlas (whose existence is guaranteed by the Hausdorff and
paracompactness hypothesis). Now define A, : U, — R by

Zﬂa
WGFQ

They are continuous functions that define a I'p-invariant partition of
the unity.



Because the orbifold structures that appears on G-structure theory
are quotients of manifolds by locally free and proper actions P/G, the
orbifold maps we are interested enjoys particular properties. For, let
01 = P1/G, Oy = P,/G be two orbifolds and 0 : G — G a group iso-
morphism. If f : P| = Ps is a f-equivariant map, then it send slices in
slices and for an arbitrary g € G,

0(9) - f(p) = f(g-p) = f(p).
It follows that for every p € P the restriction 0, : G, =+ G i) is an
isomorphism. Thus, f induces an orbifold map f : O1 — Os. The lifts
of f: O1 — Oy are pairs { f,0,}, with f a 0,-equivariant map. This last
condition is a consequence of a more general fact. Take two injections

Ypg + Sp = S¢ and g 1 Sq = S, between slices of P;. If we write
0(g) = g, the homomorphism condition becomes

9192 =91 Jz. (1.3.1)
Let f(S,) =S o) (the same for the subindices ¢ and 7). An injection
Ypg 1 Sp — Sq induces an injection
Ypa * Sip) = (g

The induced injections satisfy

Yar © Upg = PVgr © Vg (1.3.2)

Every isotropy element g € G, can be though of as an injection. Then
condition (1.3.1) is a consequence of condition (1.3.2). That means that
for every lift f : S, — S o) the existence of a group homomorphism

0, : G, - H o) such that f is f)-equivariant is a consequence of the
compatibility condition (1.3.2) between the injections on the orbifolds.

Returning to the general setting of orbifolds, without thinking them



as quotients, let f : O; — Oy be an orbifold map. Locally

Ug—— fs— V3
Vg : B2,
|
g 7 o 72
Uaif‘a*)‘/a P35
| &)
1 ! o [
¢a Uﬁffquoz**}'vﬁ
7
/
/
Ua fﬂva

The injection Yl ap induces the injection 2 B whenever the lifts fa and

f@ are chosen. We can though of as condition (1.3. 2) as associating the
injections induced by a system of lifts ( fo: Uy =V, )acr by the rule

Vo © ag = V3o 0 P2g. (1.3.3)

Definition 1.34. A system of lifts (fa : Uy = Vi)aer for an orbifold
map f: O1 — Oy is called a compatible system if the induced injections
satisfy (1.3.3).

Then, for v1,v2 € T'y, one gets
YT 2 Y2 s Y Y2 N Ve,

which implies that 6, : 'y — Y4, defined 0,(y;) = 4, is a homo-
morphism of groups. Moreover, fa is a fy-equivariant map. Hence, a
compatible system associates for every orbifold chart (Uq, T, qba) a pair
{fa, 0a} : U, — V,, with f, a O,-equivariant map.

Definition 1.35. A map f: O1 — O is called a good map if it admits
a compatible system of liftings that belongs to the same germ.

Remark: Not all the continuous functions between orbifolds are
good maps. For a counterexample, see [CRO1] example 4.4.2a.



We will see that by construction, every orbibundle will be defined in
terms of good orbifold maps. In addition, constructions associated with
orbibundles, such as tensor products or pullbacks, are given in terms of
good orbifold maps.

Proposition 1.36. Let P, ~ G, P» v G be two manifolds with a locally
free and proper action of a Lie group. Take the Lie group isomorphism
0:G — G. There is a 1-1 correspondence between 0-equivariant maps
f: P. — Py and good orbifold maps f : P, /G — P,/G with respect to
0.

Proof. (=) Done.
(«) Take a lift f, : Sp — Sf, that belongs to the compatible system.
Recall that Tub(S),) = S, Xg, G. Then we can extend f to all P; using

the tubular neighborhoods and leting f : Sp Xa, G — Sf(p) XG o G be
defined by

F(ls ) = | Fo(5).09)] -



Chapter 2

Orbibundles

The theory of G-structures happens on orbibundles. It relates the pres-
ence of (some) geometric structures on @ with a principal subbundle
Q@ C Fr(O) of the frame orbibundle. Due to the effectiveness hypothe-
sis on the orbifold charts, the frame orbibundle is a manifold (JALRO7]
theorem 1.23). In addition to geometric structures on O, also compati-
ble connections on T'O are related to connections on the frame bundle
Fr(O). Consequently, many objects we can address to our geometric
structures, such as torsion or curvature, will also have their correspond-
ing object on Fr(0O).

In the first section we study cone orbibundles, morphisms, and present
some cone orbibundles constructions whose sections are of particular in-
terest (they allow us to define geometric structures). The second section
describes cone connections, gives an equivalent approach by connection
matrices and studies parallel translation in the orbibundle setting. On
the other hand, in the third section, we define principal orbibundles and
morphisms. Since we are interested in subbundles of the frame orbibun-
dle (a manifold) we will develop the theory of principal orbibundles in
a specific context: a manifold with a proper and locally free action of a
Lie group. Later we show how to construct from a principal orbibundle
a fiber orbibundle, through associated bundles. This construction gives
a 1-1 correspondence between cone orbibundles and principal orbibun-
dles. One important object that appears is the tautological form, which
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comes from the identity morphisms Id : TO — TO, represented by a
section of T*O®TO. Finally, we will discuss reductions of the structural
group, a critical concept that connects the existence of geometric struc-
tures with a subbundle @ ~ G — O of the frame orbibundle F'r(O).
The fourth section defines principal orbibundle connections from the
perspective of horizontal distribution and principal connection. Then
we show the 1-1 correspondence between cone and principal orbibundle
connections.

This chapter’s organization is inspired by the lecture notes [Cral5]. The
material presented in this chapter develops the theory of orbibundles as
close as possible to the theory of fibre bundles over manifolds. The
orbibundle definition given by Satake were not enough to construct a
well-defined orbibundle theory since morphisms are not well-behaved.
Nevertheless, it turns out that the category of orbibundles with mor-
phisms provided by good orbifold maps is well-defined. We encourage
the reader to see the appendix of [CRO1]. Besides, when orbifolds are
treated as groupoids, there is a natural notion of orbibundles and mor-
phisms; for example, see chapter 2 of [ALROT].

2.1 Cone orbibundles

Let O be an n-dimensional orbifold with atlas (Ua,Fa,quSa)aef. The
tangent orbibundle will be our guiding example to talk about the theory
of cone orbibundles.

2.1.1 The tangent orbibundle

The I'y-action on Uy lifts to TU, by v- X = dzy(X). The natural
projection 7, : TU, — U, becomes I'y-equivariant, inducing a map on
the quotients such that




is a commutative diagram. Take an orbifold chart (U 5, 1's, <Z~>5) such that
U, C Ug. Thus, there exists a smooth injection 1[)065 U, — Uﬁ which
induces the smooth map dl;ag :TU, — TUB. Because every injection
has an associated monomorphism 0,5 : I'y — I'g, for every v € 'y, we
get

dizfaﬂ(’y : X) = dq;aﬁ(d’Y(X))
= d(lzaﬁ © ’Y)(X)
= d(Bap(7) © Pag)(X)
= 0a5(7) - ddap(X).

Therefore (dz/;ag, fop) defines a smooth injection. For every a, the quo-
tient TU, /Ty inherits the quotient topology. Define the topological
space
Y= | |ax (TUQ/FQ) :
aecl

where every a x TU, /Ty is an open. The relations between the opens
of Y allow the construction of a new topological space as follows. Let
(o, [Xa]), (B,[X5]) € Y and define the equivalence relation generated
by («, [X'a]) ~ (B, [X'/g]) if there exists an injection 1204/3 Uy Uﬁ such
that dias(X,) = Xs. Take the quotient

TO : =Y/ ~,

and the projection map p : ¥ — TO. Every open on Y is given by
arbitrary unions of elements of the form a x W C Y, where W C TU,,
is open. Moreover

P~ plax W) = | ] 8 x (ddas(W)/T5).

pel
and therefore p : Y — TO is an open continuous map. Take the re-
striction p, := p|a><(T0a/1"a)’ if pa([X1]) = pa([X2]) then there exists
~ € I'y, such that ~ - X, = )~(2~which means [Xl] = [5(2] Hence, we get
a homeomorphism p : a x (TU,/T'y) — TO onto its image. Given that
the opens pq (a X (TUa/Fa)> := TU, forms a basis for the quotient



topology on TO, we get a 2n-dimensional orbifold structure on TO.
The T'y-equivariant projections 7o : TU, — U, induces an orbifold
map 7 : TO — O because, locally, we have the following commutative
diagram

Ifz e ﬁa projects onto x € O, each tangent space Tﬂ,@Ua projects onto
z too. Consequently, each fiber is given by the quotient

7T_1<37) = Ti(}a/(Fa)j.
Remark: If (I'y)z # {e} then this is not a vector space but what is
called a cone.

2.1.2 Cone orbibundles and morphisms

The key concepts that allow the construction of the orbifold structure
on the tangent orbibundle are, firstly, the bundle structure

r, ~TU,

Famﬁa

on an orbifold atlas such that the projection is I'q-equivariant. Secondly,
for each injection ¢a5 Uy < U,B there exists an associated injection
d¢aﬁ TU, — TUg such that

Tﬁa — Tﬁg
o lm
7 ~5




commutes. The action by an element v € I, is an injection which means
that the induced action on T'U, is a consequence of this compatibility
between injections.

Definition 2.1. An orbifold £ defines an orbibundle over O if

1. For each orbifold chart (Ua,Fa, qzza) there exists an orbifold chart
(EasTa, @a) on € and a map 7o @ Ea — Uy defining a bundle
structure.

2. Each injection @Z;aﬁ Uy — Uﬁ defines an injection 1[)25 & (‘:’B

such that
.9,
Ea—>€5
b
T, —=U
“ ¢o¢[3 B
commutes.

A cone orbibundle of rank k is an orbibundle £ such that, locally,
&, =2 U, x R* are diffeomorphic and each induced injection 1j~)§ 5 1s linear
over the fibers. A trivialization, called a local frame, for a cone orbi-
bundle is a system of local sections 5% : U, — &, such that (5?(%))?21
is a basis for (é:a)gg Explicitly the diffeomorphism &, : Uy x RF — &, is
given by

Take two local frames (éa(x,ei))le and (ﬁg(x,ei))le for U, and Uj.
An injection 1/?56 . € lg, = g ’Uﬁ induces the injection
@;B:UQXR’“%UBX]R’“,

defined by
gﬂ(‘%v v) = (5/(;1 © 1#55 o §a) (f, U).



- s~
There is an explicit description for U, x RF = Usg x R* in terms of
a smooth map gag : Uy — GLi(R), because of the linearity of the
injections, given by

¢;ﬂ(j’ U) = ('([}ozﬁ (j)’ gaﬁ(‘%)v)'

Hence every v € Ty induces an action on U, x R¥, encoded on the
smooth map g, : Uy — GLE(R). The maps gop are called transition
functions associated with the orbibundle structure & — O.

Take injections @Dag U, — Uﬁ, 1,[)577 UB — U and d)m, U, — 077'
Given that the action is effective there exists a unique v € I', such that

Oan(y) © 1/~)m] = 17[;577 o g[?a/g, which implies
g@an(’Y) (&an(-%)) : gan('i) = gﬁn('ﬁz)aﬂ(i‘)) : gaﬁ(i‘)' (2'1'1)

This equation is the orbifold version of the classical cocycle condition
used to describe vector bundles over manifolds.

Definition 2.2. A cone orbibundle £ of rank k over an orbifold O
consists of

1. A system of vector bundles Tq : Eo — Uy of rank k for an orbifold
atlas on O.

2. The existence of a smooth map gap : Uy — GLL(R), for each
injection Yap : Uy — Ug, such that (2.1.1) is satisfied.

Example 2.3. The cotangent orbibundle.

Each orbifold chart defines a local trivialization for the tangent orbi-
bundle structure TU, = U, x R" denoted Ea(Zye;) = e T:U,
and defined

i
ozt |;

fal(@ + te;),
t=0

2l -t
where f: O — R is an orbifold map. The tangent orbibundle structure
is codified on the transition maps gog : Uy = GLn(R)

Jap (j) = daﬂzaﬁa



where the matrix is the one that represents the linear transformation

. The duals dz; € T*U,, characterized by
i

9 i

define a frame on T*U,,. Define 925 U, — GL,(R) by

~ 0
dz Ve, the basis —
ap on the basis 5

Jop = (ggé)T-

They satisfy the cocycle condition (2.1.1) and define an injection 1/;;/3
such that
- g -
T"Uy —T"Ug

lm

U0 2 7,

commutes. This gives a cone orbibundle structure T7*0 = O.

A natural way to compare two vector bundles is by collecting linear
maps between the fibers that vary smoothly on the base. Because the
cone orbibundles could have some fibers that are not vector spaces, but
a cone, linear maps between the fibers have to consider this information.
Furthermore, the smooth variation on the base adapts onto the orbifold
case.

Definition 2.4. Take m : & — O1 and m : & — Oy two cone or-
bibundles of rank k1 and ko. A morphism is given by orbifold maps
f:01 = 02 and h : &1 — &y satisfying

1. For allx € Oy and f(z) € Oy there exist orbifold charts (U,T,¢)
and (V, Y, Q) such that

U x RF "o {7 « RF2

frll
U




commutes and hi « {Z} x RF — {f(2)} x R* is linear for all
zeU.

2. Every z'njegtz'on};ag :Uq —>~~5 induces an injection Tog : Vo, — Vg
such that hg o wjﬁ = ~§5 o he. This means that

Ulg X Rkl hﬁ f/ﬁ X RkQ
|
U, x Rk ﬁa V., x Rk2 T

|
™ l
\V ~

7 U5 ——— - TR /A

~ 7
l waﬂ ~ i Tap
Ua - fa f/a

commutes.

Because the maps he are linear for each fiber then
ha(E,v) = (fu(Z), ka(E)v), (2.1.2)

where ko : Uy :— My, 1, (R) is a smooth map representing the linear
transformations (ﬁa):;; Take the transition maps on & and & given
by gop - Uy, — GL, (R) and giﬁ : Voo = GLj,(R). The definition of a
morphism implies that

B ($ap(®)) = 025(Ja(@)) - Ko@) - (gh(2)
Proposition 2.5. Take m : &1 — O1 and m : £ — Oy two cone
orbibundles of rank ki and ko. An orbifold map h : & — & isa

morphism if there exists a system of smooth maps ko : Uy — M, i, (R)
over an orbifold atlas such that hy satisfies (2.1.2) and (2.1.3).

Example 2.6. Let 71 : TO — O and 7o : T*O — O be the tangent and
cotangent orbibundles with the structures already given. If the charts
on O are such that g,g(Z) € O(n), then

- (2.1.3)

* —1 T
Jap = (gcxﬁ> = Gop-



Choose k, = Id for all charts. Then, because equation (2.1.3) is sat-
isfied, we obtain an orbibundle morphism h : TO — T*O covering the
identity map Id: O — O.

We will see that reducing the Lie group GL,(R) to the Lie group
O(n) on the frame orbibundle is the same as requiring the condition
supposed in the previous example.

2.1.3 Operations with cone orbibundles

Let 7 : &€ = O be a cone orbibundle with transition functions g,z asso-
ciated with the orbifold structure (Uy, s, da)acs and the local frames

(3¢)%_,. We want to construct new cone orbibundles out of &.

Example 2.7. Tensor product.
Take the (r, s)-type tensor product of &, that is
T
—~—
EP =R RERVER---QE.
N—_———

S

To make sense of this space, we want to construct an orbifold structure
that induces the orbibundle structure 7, s : £"* — O. Let 5, € £ be
characterized by

Define
Fuirts = § @ @ R @ @8
for 1 <11 <io <...<ip4s < k. All the possible values it takes defines

a local frame for éﬁ;ﬁ, inducing the diffeomorphism U, x RF(r+s) o2 £5,

For every injection ¢, let g3 : Uy — G Ly(r45)(R) be

T

050 = (05@0) @ © (5240) @ gas@) @ © gasld),

S

where ® stands for the Kronecker product of matrices. Since g,z sat-
isfies (2.1.1), it follows that g, also satisfies (2.1.1). This gives a cone
orbibundle structure £™* — O of rank k(r + s).



Remark: The action of an element v € I on § € £* is characterized
by

(v-8)(X) =3(r""- X),
where X € €.

Example 2.8. Symmetric and alternating tensor products.
Let S™ be the permutations on r-letters. Define the symmetric tensor
product by

Er(g*) = {’Ul®. . .®UT c 5T70 ‘ U1®' . ‘®v7‘ — q)a(l)®. . .®UU(T)7 o E ST}’
and the alternating tensor product by
A(E)={v'® @ €&
Ve 00 = (_1)89n(0)vﬂ(1) ® @0 oc ST

Locally, any s € ¥"(E*) is given by

5= E i, i 8T @ @S,
1<iy <--<ip <k

5 can be though of as a multilinear map § : Ex - x €= R defined by

5(X1,...,X,) = Z §ia 81 (X)) 5 (X).

1<iy <--<ip<k

Ify-Xi:)N(i for all 7 and v € I then

(v-8)(X1,..., X)) = 3(X1,..., X0).

It follows that s(Xi,...,X,) is well-defined. Furthermore, because s is
invariant under permutations the induced map s : E™ x --- x £™ - R
is a multilinear symmetric map. Similarly, every w € A"(E*) can be
tough of as a multilinear antisymmetric map w : £M x --- x £M™ = R.

Let 7 — O be a cone orbibundle with orbifold atlas (ﬁa, Ta, @a).



Example 2.9. Direct sum. . .
The direct sum, denoted by £ & F, has &, @& F,, as orbifold charts , and
gf?ﬁ as transition maps, defined by

925(&) = <g§%@) g;j;(f))

In particular, the I'-action is given by
Tvdw=(y-v)D(y w).

Example 2.10. Symmetric and alternating tensor products with
coefficients on a cone orbibundle.
Locally an element s ® f € ¥"(£*) ® F is given by

~ F_ 3. L3 5t £ .
S®f= § SitynipS @ QST Q fu,---ﬂr
1< << <k

It defines the symmetric multilinear map §: € x --- x & — F by

S(Xn X)) = Y B (X)) 5 (X)) fir,ie

1<y <<in <k
Then s ® f : EM x ... &M — Fn ig a multilinear symmetric map.

Similarly, A"(E) @ F 2w ® f : EM x ... &M — FM i5 a multilinear
antisymmetric map.

Remark: The orbibundle Hom(&,F) is £* ® F.

Example 2.11. Pullbacks.

Let Oy be an orbifold with orbifold atlas (U2,12,¢2) and f : Oy — O
be a good orbifold map with a compatible system {fa79f a} Every
injection 1/;2 U2 — Ug induces a unique injection ¥,g : Uy < Uﬁ
because of the deﬁmtlon of a good map. Take the pullback vector bundle
over Ug

fr (éa) — -,

| i
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Define giﬁ : U2 — GLk(R) by

9(215 (y) = gaﬂ(fa (©))-

This system of maps satisfies condition (2.1.1), as long as the orbifold
map is a good one, and then defines a cone orbibundle structure f*(&)
over Os.

2.1.4 Orbisections.

An orbisection for the orbibundle 7 : &€ — O is a (good) orbifold map
s : O — &£ such that m o s = id. The space of all orbisections is denoted
by Sec(&).

Example 2.12. Cone fields.

Cone fields are orbisections of a cone orbibundle. Take (U,T',¢) an
orbifold chart, 7 : £ = U, §: U — € local lifts with 0, : T — T, 6, : T —
I" their associated isomorphisms. The local lifts for the identity are given
by & +— 5o - Z, with 79 € I fixed, which implies §(Z) € 5’70.;5. Because
of O.(7) = v we get 05(7) = Y077, - It follows that 5(z) = [3(%)] is a
well-defined element on the cone space £y.7/T 2, .., s(x) € M. The
space of cone fields will be denoted by Sec(€); it is a C°°(O)-module.

Remark: 1t is always possible to take as lifts for the identity map
Z — Z because we can compose the lift & +— g - £ with the injection
Y% 1. U — U. With this lift of the identity map, the monomorphism
fs becomes the identity too. In addition, if one takes the orbibundle
TO — O then Sec(TO) := X(0).

Example 2.13. Differential forms.
A differential form of degree k is an orbisection of AF(£*). Locally
we have a section w : U — Ak(c‘)*), or equivalently, an alternating

. . . a k & . .
multilinear smooth function @(z) : & x -+ x & — R. The I'-action is
given by

('DPY('%) (X17 s 7Xk) - d)(i) (’7_1 ' Xla v 77_1 : Xk) .
Then, if vy € 'z



Hence, w(X1,...,X) € C*(0), with X;,..., X € Sec(&).

Example 2.14. Riemannian metrics.
An orbisection s € EQ(T*O) is a symmetric bilinear form. Locally is
given by 5 : TU @ TU — R and for every v € (')

8(2) (v X1,7v - X2) = 5(2) (X1, X2).

If 5(z) is positive definite, then we have a Riemannian metric on the
bundle TU — U. Denotes 3(-,-) := (-,-) and take X,Y € X(O). Its
inner product is given by (X,Y) € C*°(0O). Then a Riemannian metric
can be though as a smooth orbibundle map (-,-) : TO ® TO — R
satisfying the same properties Riemannian tensor satisfies.

Example 2.15. Differential forms with coefficients.

An orbisection of A* (T*0) ® € is a differential form with coefficients
on the cone orbibundle £. Locally @ : U — A¥(T*U) @ &, which is the
same as a multilinear alternating map (%) : T;0 % -+ x ToU — E;.
The I'-action is given by

(&) (X1, Xp) =7 @@) (v Xu, v X))

Hence, for every v € (')

T

(@) (v X1,y Xp) =7 0(2) (X, X,

where the action on the right is the one on €. If X1,..., X, € X(O)
then w(Xy,...,X;) € Sec(€) is a section for the orbibundle structure
&= 0.

Proposition 2.16. There is a 1-1 correspondence between
Sec(S7 (%) ® F) 4= Homems () (Sec("(£7)), Sec(F))

Sec(Ar((‘:*) X f) (1—71> Homcoo(@) (QT(E), S@C(f))

Proof. We will do the symmetric part. The skew-symmetric one is ana-
logue.
(=) We already saw that an element s® f € ¥"(£*) ® F can be though



of as a multilinear symmetric map s ® f : ™ x ... &M 5 Finv Fyr-
thermore, if X; € Sec(€), for i € {1,...,r}, then X; € £™. Tt follows
that s® f(X1,...,X,) € F™ i.e., it belongs to Sec(F). Given that the
multilinear map was given in terms of tensor products, the homomor-
phisms is C*°(O)-multilinear.

(<) Let h € Homge (o) (Sec(X7(E7)), Sec(F)). It induces the multi-
linear map h : E" x --- x £ — F"_ It is symmetric by defini-
tion. Because it was C°°(O)-multilinear, it defines a tensor. Then
h € Sec(X"(E*) @ F). O

Example 2.17. The identity 1-form.
Take the local section @w : U — T*U ® TU, defined by

H(7)(X) = X.

It defines a local orbisection; gluing together these orbisections, we get a
1-form with values on TO, i.e., w: O = T*ORTQO, the identity 1-form.

Remark: If, for a fixed v; € I, the local section is defined
W(T)(X) = - X,
then it is an orbisection only if v ' = I'y;.

Example 2.18. Orbiframes.

A local trivialization for the local orbibundle structure £ | = U x R¥ is
the same as a system of sections that form a basis for each fiber. Notice
that we have not made any assumption about the compatibility between
the action on the base and the bundle for each section. Some sections
are not I'-equivariant. For example, let R?/Z,, be the cone; it’s tangent
orbibundle structure is isomorphic to the cone itself. However, at the
origins, no vector is Z,-equivariant except from the zero vector itself.
Consequently, R? /Z,, admits no local orbiframe around the zero. Thus,
the existence of a local orbiframe is not the same as having a trivial-
ization for the cone orbibundle structure. However, a trivialization in
the usual (manifold) sense induces a I'-action on the trivialized chart
U x R*. A local orbiframe is a collection of orbisections 3 : U — & i



such that for every & € U the set {5'(%),...,5%(Z)} is a basis for &;.
Locally, every section s € Sec(E|y) can be written as

for a; € C*°(0), as long as the local orbiframe exists.

2.2 Cone connections

Take the trivial cone orbibundle pri : @ x RF — @ and an orbisection
s: 0 — O x RF. Tt is characterized by the orbifold map fs : O — RF.
There is a natural way of differentiating this orbisection along a cone
field. Consider dfs : TO — R¥ and take a cone field X € X(0). We get
the orbisection

Vxs = dfs(X).

Given that the space of orbisections of a cone orbibundle have a C*°(QO)-
module structure, for h € C*°(0), V satisfies

V(hs) = hVs+dh ® s,

and
Vixs =hVxs.

However, there is no canonical way of differentiating a section of a non-
trivial cone orbibundle . A cone connection allow us to differentiate
sections of cone orbibundles along cone fields.

Let w: £ — O be a cone orbibundle structure.

Definition 2.19. Take a system of local connections (Vo )acr for every

trivializing orbifold chart. If Vo : X(Ua) x Sec(Ea) — Sec(Ea) are such
that for every injection s

Vo = QﬁZgV,B,

then they define a lift for the connection V : X(O) x Sec(€) — Sec(E).



Condition v*V = V means
nyf(fy -85 = v (VXg) .

Just as orbifold maps, connections are defined up to an equivalence
relation.

Definition 2.20. Let z € O and take two lifts V', V? of a cone connec-
tion. They are equivalent at x as germs, denoted by V' ~, V2, if there
exists an orbifold chart x € U C U, NUp such that V}, = \*V%, where
A o (U) — @ZZ,B(U) 1s the diffeomorphism induced by the injections
’(;aiﬁ‘—)ﬁa andl;gtﬁ‘%ﬁg.

Two connections are equivalent, denoted by V! ~ V2 if V! ~, V2
for every xz € O.

Definition 2.21. A cone connection is the class [V] of an orbifold lift
Va for a cone connection V.

We will omit the equivalence relation notation [V] by lifting a con-
nection V representing the class.

2.2.1 Connection matrices

Take a connection V on a cone orbibundle structure 7 : £ — ~(9. The
trivialization (5{")? ; of &, induces smooth functions 7}, € C*°(U,) such

R

that 6, € I'(&,) is given by

Take a local vector field X € %(U,). By the Leibniz rule
n o k ' ~
Vb= |dal(X)+ ) alwi(X)| 5, (2.2.1)
j=1 i=1

with wf € QY(U,). It follows that the I-form matrix w, = (wg);
(e’

determines a connection over the frame (58(Z));_;. The compatibility

condition
V,Y.X’}/ . 5a =" Vj(5a,



is given in terms of the connection matrices by

wa(v- X) =7 wa(X)y =7 dy(X).

The smooth map g, : U, = GL, (R) gives the I'y-action, induced from

the trivialization (5¢)! ;.

Take two local frames (8¢

®)i, and (3;)I; over two orbifold charts U,

and UB with Ilon—trivial intersection U = Uaﬂﬁ 3. There exists a smooth
function A : U — GL,(R) such that

(@) =Y s Ak@).
k=1

The connection matrices w, and wg associated to the frames s* and s
are related by

ws(X) = A wa(X)A+ A HA(X). (2.2.2)

Proposition 2.22. There is a 1-1 correspondence between cone connec-
tions V on & and a system of connection matrices wq over an orbifold
atlas (Uy, Lo, ¢o) such that (2.2.2) is true for every non-trivial inter-
section.

Proof. Equation (2.2.1) and the Leibniz hypothesis gives a 1-1 corre-
spondence between connection matrices w, and connections V, over an
orbifold chart U,. Condition (2.2.2) guarantees that the system of local
connections V, belongs to the same germ at every point x € O. O

2.2.2 Parallel transport

Take an orbifold path n : I C R — O, with lifts 7o : Io — Us. The
isomorphism v : U, — U, induces the commutative diagram

d
Z*>]a

i'Y'na
U

[0}

&

No

e

—_—
@y



Consequently, 7 - 7o belongs to the same germ as n, for all v € I'y
(in fact, they are all the possible lifts over U,). Let £ — O be a cone
orbibundle with the connection V. The vector bundle structure n*& — [
is given locally by

oo — Ea

N

I, &0@(

Be aware that the pullback vector bundle nzc‘:’a is taken without any
group action I'y, since I,is a manifold. The pullback connections 7}V,
on n;g’a — I, defines a connection n*V on the vector bundle n*€ — I.
Take a section n*s € I'(n*E). It defines the section

\4 *
%77*3 = (W*V)d/dt (n*s),
locally characterized by

(Vo) (1) 5a(a(t))-

/
o

Notice that taking another local lift v - 1, yields the local expression

(Ve 50 10 (t) =7 (V) ) S0 (1 () ) -
Definition 2.23. A section n*s € I'(n*E) is called parallel along the
pathn: I — O if
V. .
an s =0.
forallt e 1.

A section n*s is parallel if and only if
(VOc)n/a(t) Sa(na(t)) =0,

for all & € I. In terms of a local frame (e$)?_, over U, we can write

n

sa(ma(t) =) an(t)ef (1a(1)),

=1



with a’g; : I, — R smooth functions. Then the parallel condition equa-
tion yields the ODE system

dd’ ,
szk e (t Oé(t), 1=1,...n,

where w, is the 1-form matrix connection associated to the frame ef*.
Take v € &, (4,), it can be decomposed in terms of the local frame

0= 3 e (nalto)
k=1

This give us the initial conditions ¥ (¢y) = ©* to the ODE system whose
local solution give rise to the local section

Z t)ex (na(t)).

Define T;;O’tl : (ga) o (to) = (5 (1) PY
TioM (§) = ug(ty).

Since the fibers have equal dimension and by the uniqueness of the
solutions for the ODE, Téo’tl is an isomorphism. However, for every
veTla

Tt (o) =~ -T2 (0), (2.2.3)

t1

which implies Tf,o’ is not I'p-equivariant unless I'y, - 7o = 7o

Proposition 2.24. Let n : I — O be an orbifold path that defines a
cone field over O. Then Tgo’tl : &y — &y is a homeomorphism.

Proof. Since n defines a cone field, its lifts are I'y-invariant. It follows
that

Y-n=n
for all v € I'n, @ € I. Equation (2.2.3) implies that the isomorphism
Tt s (€, e (to) — (&a Jna(ty) 18 Ta-equivariant. Hence, it induces the

homeomorphism T3 : &, — &, between the fibers. O



2.3 Principal orbibundles

Among the fiber orbibundles, we have already studied some properties
of cone orbibundles. The word cone means that locally the fibers are
vector spaces. The word principal means that locally the fibers are a
Lie group G. The G-structure theory is based on the relation between
the tangent orbibundle, a cone orbibundle, and the frame orbibundle, a
principal orbibundle. Therefore, our guiding example will be the frame
orbibundle structure. However, because our orbifolds are effective, the
frame orbibundle enjoys an exceptional property that not all principal
orbibundles enjoy: being a manifold. From now on, the frame orbibun-
dle will be called frame bundle because of its non-singular structure. Its
orbifold behavior is encoded on the isotropies of the Lie group action G
together with its transversal geometry, which means the existence and
relations between the slices (see chapter 2, section 2.2).

2.3.1 The frame orbibundle

Let (U,T,¢) be an orbifold chart. Sections 3 : U — TU such that
(5i(%))7_, is a basis for TzU gives a trivialization for TU. This trivi-
alization, called a frame, induces an action I' ~ U x R™ given by the
smooth maps g : U — GL,(R). Each frame could be thought of as a
system of linear isomorphisms p; : R” — TU defined by

ps(vt, ... 0") = Zvl@
i

Take another frame (é&;);, for TU. They are related by the smooth
coefficients a;; : U — R

&(z) = Z aij(Z)s;(2).

Let A: U — GL,(R) be A(%) = (a,](i:))g If ps is the frame induced by
(éi>?:1, then

peo A =ps.
Define the frame bundle over T as

Frz(U) = {p:R" = T:U | p is an isomorphism.}.



Every matrix A € GL,(R) defines an element in F ri(Uaz by ps o A.
They are all the possible isomorphisms between R" and T3U. Then the
GL,(R)-action on Frz(U) is transitive. Let

The diffeomorphism & : U x GL,(R) — Fr(U) gives a smooth structure
on Fr(U) by

§(2, A) = (pe o A)(Z).
The T-action T' ~ Fr(U) is

v -ps = dyops € Fr(U).
Lemma 2.25. The action T' ~ Fr(U) is free.

Proof. Take e # v € I', p € Fr(U) such that v -p = p and the Rie-
mannian metric taken in Lemma 1.18. The exponential map defines
the I'-equivariant diffeomorphism exp; : B((0) C T;U — U. For all
7 € exp;(Be(0)) there exists a Xz € B(0) such that exp;(X(Z)) = ¥.
Furthermore, there exists v € R™ such that ps(v)(Z) = Xz. Conse-
quently

v g ="-exp; (ps(v)(T)) = exp (dzy o p3(v)(F)) = exp(ps(v)(Z)) = 7.

It follows that there is an open subset W C U such that vlw =e. As
long as the action is effective v = e. O

Then Fr(U)/T is a manifold! An injection waﬂ Uy — U, 5 between
two orbifold charts induces an injection g F r(Us) < Fr(Ug) given

by 3 3
7#25(1%) = dap © Pa-
Take the same constructions as for the tangent orbibundle. Then
|_| ax (Fr(Uy)/Ty)/ ~

ael

has the structure of manifold. It is called the frame bundle of O.



The right action Fr(U,) v GL,(R) and the left action I'y ~ Fr(Uy)
commute. This implies the existence of a well-defined right action

Fr(0) ~ GL,(R).

Proposition 2.26. The (right) action Fr(O) <~ GL,(R) is locally free
and proper.

Proof. Let p € Fr(0), A € GLy(R)p, ie., po A = p. Given that
p € Fr(U)/T, there exist v € I" such that v-p =po A. It follows that

| | |
A, = d’}’(p’(el)) dv(p‘(@)) dv(p|(en))

Consequently, po A = p if and only if A € {A,,,..., A, } =T. Aslong
as the isotropy group GL,(R), is discrete, its Lie algebra will be zero
dimensional. The infinitesimal action ¥ : Fr(O) x gly(R) — TFr(O)
satisfies

dim(ker ¥p,) = dim(gl(R),,) = 0.

Then Fr(O) v~ GL,(R) is locally free.

Take sequences pr, € Fr(O), gr € GLp(R) such that pp — p and
Pk - g — q. The action is transitive on the fibers, so there exists
A € GL,(R) such that po A = ¢q. Given that the action is smooth, there

exists a subsequence of gy, such that gy, — A. Then Fr(O) ~ GL,(R)
is proper. O

By proposition 1.23, Fr(OQ)/GL,(R) has an orbifold structure. As
long as the GL,,(R) and I' actions commute, we get the homeomorphism

(Fr(U) /r) JGLn(R) & (Fr(f]) /GLH(R)) JT.
But Fr(U)/GL,(R) = U. It follows that Fr(0)/GL,(R) = O.

Let © : Fr(O) /Gi(R) O be the quotient map. Locally, it is given



by the following commutative diagram

Fr(0)
Fr(0)/T —U/T

L
Fr(U)

Theorem 2.27. Every effective orbifold is the quotient of a manifold
by a smooth, locally free and proper action of a Lie group.

2.3.2 Principal orbibundles and morphisms.

We will define principal orbibundles in the same spirit as cone orbi-
bundles. However, one crucial fact about the theory of G-structures on
effective orbifolds is that its frame bundle is a manifold. We are es-
pecially interested in this structure, so we will focus on this particular
setting as we advance through the theory.

Definition 2.28. A principal orbibundle P over O, with structure group
G, is given by

1. For each orlzz'fold chart (ffa, T, qga) a G-principal bundle structure
o Po — U,.

2. ]_i]very njection 1/30(,3 : Ua — Ug induces a G-equivariant injection
wéﬁ : Pa — Ps such that

b

ﬁ:

o —>Pls

a

¢o¢[3

commutes.



A local section § : U — P induces a trivialization. Explicitly we
have the diffeomorphisms U x G = P defined by

This diffeomorphism induces two actions on U x G. The G action, on
the right, given by
(Z,a) - b= (Z,a-b),

and the left I'-action defined by

with g, : U x G — G. Given that the actions commute, for every
a,b € G it is true that

94(Z,a-b) = g4(Z,a) - b.

Then, if g, (%) := g,(#,¢) : U — G the T-action is given by

v (#a) = (v T, 94(2) - a).

Proposition 2.29. A principal orbibundle P, with structure group G,
over an orbifold O is given by the following two conditions:

1. For every z;njectz'on 1/304/3 : Ua — ffﬁ there exists a smooth map
gag:UaﬂUgﬁG.

2. These maps satisfy

gean('y)gan = 39BnYas,

with a unique v € I'q, determined by the two injections 1/~Jaﬁ and

wﬁn'

Proof. Take a principal orbibundle structure (Pa, Lo, gEa) An injection
Yap : Uy = Ug induces a map gqg : Uy N Ug — G such that

D52, 9) = ($ap(@), 9as(E) - 9)- (2.3.1)



Given that
Gan(’y)wan = 711577904@

with v € Ty, uniquely determined, then

b0 (v)Jon = 9BnJas-

Equation (2.3.1) gives the equivalence between principal orbibundle def-
inition and the proposition conditions. O

Example 2.30. Take the local frames (5%)" ; and (§}3)f:1 trivializing

the local cone orbibundle structures TUa — Ua and TUB — U@. The
injections ¢ 53 : TUq — T'Up induce the transition maps gag defined by
U, x R" — f]g x R™
(i’, U) = (7/}046(‘%)7 Gap (i') (U)

They satisfy condition 2 of the proposition. Let §* : U, — Fr(Uy) be
defined by

(@) (o1, on) = Y 0iEL(E).
i=1
It defines the trivialization Fr(U,) = Uy x GLn(R). Let

D Uy x GLy(R) — Ug x GL,(R)
(7, A) = (Yap(E), gap(T) - A).

They define injections ¢;5 : Fr(U,) = Fr(Ug) such that the conditions
of the proposition are satisfied. It follows that the T'O structure induces
the Fr(TO) structure. We will denote Fr(Q) := Fr(TO).

Example 2.31. The orbifold structure of the cotangent bundle T*O
is related to the tangent bundle by gzﬂ = (ggﬁ)*l. Because the maps
925 also satisfy the conditions of the previous proposition, they define
a principal orbibundle structure on Fr(7T*0).

Proposition 2.32. FEvery cone orbibundle structure £ — O induces a
principal orbibundle structure Fr(E) v« GL,(R) — O.



Proof. Locally, the cone orbibundle structure is given by systems of
vector bundles & — U together with the transition maps Jap- Take
the principal bundle structure Fr(£) «~ GL,(R) — U with the same
transition maps go.g. They satisfy the same relationships we need to
construct a principal orbibundle structure. This defines the principal
orbibundle structure we were looking for. O

Because the I'-action and G-action commute, we have an orbifold
map p : P x G — P satisfying the axioms of an action. An element
b € G fixes a point p € P if p-b = - p over an orbifold chart. In a
trivialization

('iaa)'b: (jva'b) = (7'j>gﬁ(£‘)'b)'

This means that v € I'; and b = atgy (%) a If P was trivialized by
the section s : U — P then b € G), if and only if

b=0(sG@).5) -9 (7®) - 5(5 () .5),

where 6 : P xz P — G is the smooth map & := pry o (id x p)~! and
characterized by
B 3(5,0) = 4. (23.2)

It follows that G, = I'y, so the G-action on P is locally free. Locally,
the quotient P/G is given by (P/I')/G. Because the actions commute,
this quotient is homeomorphic to (P/G)/T. Nevertheless, P/G = U are
diffeomorphic. Then the orbifold structure we get onto the quotient is
locally given by (U,T, g?)) Gluing together these charts, one has that
P/G = O are diffeomorphic as orbifolds.

Proposition 2.33. Let P x, P :={(p,q) € Px P | w(p) =7(q)}. The
map id X p: P x G — P x5 P, defined by (id x p)(p,g9) = (p,p-9g) is a
local diffeomorphism.

Proof. Take (p,g) € P x G, X € T,P and £ € g. Then

d(p g (id X 1)(X,deRy(€)) = <de9 dﬁﬂ’) (de é(g))



where pg(p) := (id x p)(p, g) and pP(g) = (id x p)(p, g). Furthermore,

dgpiP (de Rg(€)) = dppg o ¥ (p,§),

where U(p, £) is the infinitesimal action of g on P. Because the action is
locally free, it follows that d(;, 4y(id x 1) is an isomorphism. Then id x p
is a local diffeomorphism. O

Let us come back to the setup of the frame bundle structure of
an effective orbifold O. It was given by a manifold Fr(O), a (right)
locally free and proper action GL,(R) such that Fr(O)/GL,(R) = O
are diffeomorphic as orbifolds.

Definition 2.34. A principal bundle P over O, with structural group
G, is a manifold P with a locally free, proper action P v G such that
P/G = O are diffeomorphic as orbifolds.

The base orbifold structure could be omitted because it is codified
on the quotient P/G. In addition, the map 7 : P — O is the quotient
map.

Definition 2.35. A morphism between two principal bundles P~ G,
Q ~ H is given by a homomorphism 0 : G — H and a smooth map
F: P — Q that is 0-equivariant.

In proposition 1.36 we proved that such a map induces the following
commutative diagram

Pp—r .Q
/Gl i/H
PGt Q/H

In G-structure theory, we deal with different bundle structures over the
same orbifold on the base. Furthermore, we want to compare all possible
orbifold structures compatible with a specific geometric structure, which
means the structural group is the same on each principal bundle. Then,



in the G-structure framework, F': P — @ is a G-equivariant map such
that

PLQ

/G /G
o—1.0

comimutes.

2.3.3 Associated bundles.

By proposition 2.32; from a cone orbibundle £ — O of rank k& we can
construct a principal bundle Fr(£) v\ GLi(R) — O. The associated
bundle allows us to construct from a principal bundle and a manifold
with an action G ~ F, an orbibundle with fibers F//G, over O. For
F = R"™, this gives us a 1-1 correspondence between cone orbibundles
and principal orbibundles. In particular, 7O and F'r(O) are in 1-1 cor-
respondence.

Let 1 : P v G — O be a principal orbibundle. Define the (right)
action P x F'\\ G by

. f)-g=@ 99" f).

Since (p, f) - g = (p, f) if and only if p-g = p and g~ - f = f, then
the action is locally free. Moreover, take sequences (pg, fr) — (p, f) in
P x F and gy in G such that (pg ~gk,gk_1 - fx) = (B, f). Then pj-gr — .
Provided that the action P v~ G is proper, there exists a subsequence
gr, — g that converges. Consequently, the action P x F' .~ G is locally
free and proper so the quotient is an orbifold.

Definition 2.36. Let P ~ G be a principal bundle and G ~ F a
manifold with a G-action. The associated bundle of the principal bundle
with fiber F', denoted by E(P, F,G), is the orbifold given by the quotient
(P x F)/G.

When the structure group is understood from the context, we will
denote the associated bundle by E(P, F) := E(P, F,G).



The smooth map pr : P x F' — P is G-equivariant inducing an orbifold
map

E(P,F,G)

|

P/G

Example 2.37. Let O be an orbifold with atlas (ﬁ,f‘,q@) and take a
cone orbibundle of rank & with orbifold charts (€,T, ¢). Its frame bundle
has an orbifold structure codified on the orbifold atlas (Fr(&),I, ¢).

Take the smooth map @ : Fr(€) x R¥ — & given by
¢(p;v) = p(v).
It induces the I'-equivariant diffeomorphism
QZD : FY’(S) XGL;C(R) Rk i> g

Then the orbifold structure of the associated bundle is generated by the
orbifold charts (€,T, ¢), which means, E(Fr(£),R¥) = & are isomor-
phic. In particular E(Fr(0),R") =TO.

Proposition 2.38. There is a 1-1 correspondence between isomorphism
classes of cone bundles of rank k and isomorphism classes of principal
GLg(R)-orbibundles over a fized orbifold O.

Proof. In proposition 2.32, we showed how to obtain a principal orbi-
bundle Fr(E) ~ GLE(R) from a cone orbibundle £ of rank k. A prin-
cipal orbibundle P\~ GLj(R), generates the cone orbibundle of rank
k defined by the associated bundle E(P,R¥, GL,(R)). In the previous
example we prove that

E(Fr(&),RF) = €.

On the other hand, take P, — U, the local principal orbibundle struc-
ture of P, with transition matrices gqo. The associated bundle has the
local structure U, x R¥, with y* ap t Ua X RF — T, B X R* given by

Yap(T:0) = ($ap(Z); gap(T)(v))-



If we construct its frame orbibundle F' 7’(E(77,R’“)),~ we get the local
structure Uy x GLg(R), with 15 : Ua X GLgx(R) < Ug x GLi(R) given
by

Sﬂ(jv A) = (waﬁ(j)a gaﬁ(j‘) : A)

Then Fr(E(P,RF)) = P. That gives us the 1-1 correspondence between
cone orbibundles and principal orbibundles. O

2.3.4 Sections and forms on the associated bundle.

Many of the main objects in G-structure theory are given in terms of
differential forms on O with values in some orbibundle. For example,
we will see that the torsion of a connection on T'O is an element of
02(0,TO) and its curvature of Q*(O, Hom(TO,TO)). The idea is to
study these objects on the frame bundle, given that it is a manifold.
Moreover, their properties show up in different perspectives that allow
the use of linear algebra and calculus to find obstructions and invariants
of certain geometric structures. Some differential forms on O will lift to
differential forms on Fr(QO) because

%O, B(Fr(0),V)) +— Qpy,(Fr(0), V)
are isomorphic, where Q) (Fr(0),V) C Q*(Fr(0),V) is a special type

bas
of differential form and V a vector space.

Take a principal bundle 7 : P .~ G — O and its associated orbibundle
g E(P,V)— O.

Proposition 2.39. The orbifold structures E(P,V)p,) = V/G, are
diffeomorphic.

Proof. Take an orbifold chart (15, Gp, é), an element P 3 gp-D—pEP

and define ¢y, .5 : E(P,V)y 2z — V by

oy ([0, 0]) = 03(gp - D)™ v = gp - 0(D) " - v,
with § defined by equation (2.3.2). Then ¢; is a Gp-equivariant diffeo-
morphism. All the group elements g, € G, induce isomorphic lifts and
then the orbifold diffeomorphism ¢, : E(P, V)., — V/G) induced by
¢p is well-defined. O



In addition, let @, : 7 (E(P,V))rqy — {p} x V/G) be defined by
wp(p, [4,v]) = (p,p(lg; v]))-
Locally, for all g, € G, the diffeomorphism
¢ 7 (E(P,V)) = PxV
satisfies
2p(9p - (9:10,0])) = (9p - P Ggyalgp - P) " - v) = (gp - P, 04(P) " - v).
That means the induced action on P x V is given by
9p - (B, v) = (9p - P, )

Hence, ¢ : m*(E(P,V)) — P x V is a vector bundle diffeomorphism (of
manifolds!). Consequently, we have the following commutative diagram

Pxv L% E@P V)

"] |
/G

P (@)

Take a k-form w € QF(O, E(P,V)). Its pullback belongs to

m*w e QF (P, (E(P,V))).

©
But 7*(E(P,V)) & P x V. Denote m*w := ¢(n*w) (note there are two
different symbols here: x and *). Then

™we QNP V).

The k-form 7*w satisfy two properties that define it: being horizontal
and G-equivariant. Horizontal means it vanishes on the vertical bundle.
The vertical bundle is defined by ¥(P x g) = TV P, where VU is the
infinitesimal action field. In fact, since 7w(p - g) = w(p) for every g € G
it follows that

dpﬂ(\I/(p7 5)) =0.



Then TV P C ker(dr) is a subbundle. In addition,
dim(ker d,m) = dim(P) — dim(O) = dim(G).

Because the action is locally free we have that TV P = ker(dr) so it is a
trivial vector bundle.

Definition 2.40. A k-form w € QF(P,V) is horizontal if

in
~—
*
*
SN—
Il
=

Ly ()W = w(W(*
forall € € g.

Because for all p € P and £ € g it is true that d,m(¥(p,&)) = 0, then
the k-form 7*w is horizontal. Furthermore, for all g € G

RA(m*w)p(X1, o, Xp) = (7@ g (R;(Xl), .. ,R;(Xk))
= ¥pg <w7r(p) (de(Xl), ce ,dp’]T(Xk>)> .
Locally
Gpg(0, 1)) =04B-9) " - f =9 @5([0, f)),
which implies ¢p., = g~! - . Then

R;(T('*w)p(Xl, oy Xg) = 971 . (W*w)p(Xl, ooy Xk).

Definition 2.41. A k-form n € QF(P, F) is:
1. G-equivariant if Ryw = g w.
2. Basic if it is horizontal and G-equivariant.

The space of basic k-forms is denoted by QF (P, F).

bas

Proposition 2.42. 7 : Q¥(O, E(P,F)) — QF

bs(PF) is an isomor-

phism.

Proof. The pullback 7* : Q*(O, E(P,F)) — QF(P,n*(E(P,F))) and
¢ (E(P,F)) — P x F are bundle morphisms. Then 7* := ¢ o 7* is
a morphism.



We already showed that the image of 7* is contained in the space of

basic k-forms. For the injectivity take @y, € QF(O,E(P,F)). If
7*(wr) = 7*(wz), then for every ¢ € P, X; € T,P we have that

e (@r) (dm(X0), - dgm(X0)) )
= ¢ (@) (dgm(X0), . dgm(Xi)) ).
Thus (@1)r(q) (X1, Xk) = (@2)n(q)(X1,-- -, Xg). That means 7* is
injective.
For the surjectivity, take w € QF (P, F). Let X; € X(0) and z € O.

Because m : P — O is a submersion there exists ¢ € P and Y; € X(P)
such that 7(¢q) = 2 and dn(Y;) = X;. Define @ € Q¥(O, E(P, F)) by

wx(Xl, - ,Xk) = [q,wq(Yl, - ,Yk)} .

Let us prove this definition is independent on the coices of ¢ and Y;.
Take other lifts Y; € X(P) of X;. Given that

dn(Y;) = X; = dn(Y;),
then Y; — )71 € TV P. Because w is basic
Ly, _y,w = 0.
We can write
w1, ...V —w(Yh, ..., V) =w(Yy = Y1, Ya, ..., Y3)
+w(Y, Yo — Yo, Ya, ..., Vi) + - +w(Y1, ..., Vi o, Vi1 — Vi1, Vi)
+w(Yi,..., Vo1, Vi — Y3) = 0.

Hence, w(Yy,...,Yx) = w(ffl, .. ,Yk) On the other hand, the elements
q that projects onto = € O are of the form ¢ - g. If we take g - g instead
of ¢, and reminding that w is G-equivariant, we obtain

We( X1y, Xp) = [0 9y weg(RE (Y1), ..., RE(YR))]
[q g, Rywq Yl,... Yk)]
[q g, " - Wy Yl,...,Yk)]

= [, wg(Y1,...,Y%)].



Then @ is well-defined and belongs to @ € Q¥(O, E(P, F)). By con-
struction, 7*w = w. Consequently, 7* is a bijection and then an isomor-
phism. ]

2.3.5 The tautological form.

Take the identity 1-form 6 € Ql(O T0O) and a local frame (3;)i; for
the local orbibundle structure T7U — U. It induces the section pz : U —
Fr(U), defined by

Ps()(vr, - vn) =D &l

The cone orbibundle diffeomorphism 70O = E(Fr(O),R") is locally
given by

(&, X) = [ps(2), ps(2) "1 (X))
It allows us to consider § as an element of Q' (O, E(Fr(0),R")). Given
that

ﬂ'*

OF(0, B(Fr(0),R") &5 0, (Fr(0),R™),
then 0 := 7*(0) is a well defined basic 1-form. Locally, 6 is defined by

05.Y) =5 (d7())

Definition 2.43. Let p € Fr(O) and Y € T,Fr(O). The tautological
form is the 1-form 6 € Q}, (Fr(0),R") defined by

0p(Y) = p~' (dpr(Y)).

The tautological form is strongly horizontal, which means, it only
vanishes on the vertical vectors

0(X)=0<—= XeT"P.

A differential form is called tensorial if it is strongly horizontal and G-
equivariant. Then 6 € Q}, (P,R"). Let P ~ G be a manifold with a
locally free and proper action such that n = dim P/G and G < GL,(R).
We will show that it is a G-structure if and only if it has a tensorial
form 6 € Qf, (P,R"). Furthermore, morphisms between G-structures
are diffeomorphisms that pullback one tautological form to the other.



2.3.6 Reductions

Take a closed Lie subgroup H < G, ¢ : H — G the inclusion and
an H-principal bundle 7g : Q@ v~ H — O. The associated bundle
1:(Q) := E(Q,G,H) has a manifold structure. Moreover, it has an
action ¢4(Q) v~ G defined by

l9,9] - 9 =g, 99].
It follows that
L(Q) A G
lm
o

defines a principal bundle structure.

Definition 2.44. A reduction of the principal bundle t1p : P NG — O
to a closed subgroup H < G is an H-principal bundle ng : Q ~ H — O
such that 1,(Q) = P.

Remark: The map ¢ : Q — 1x(Q) defined by ¢(q) = [g,€] is an
embedding. Then @) can be thought of as a submanifold of Q C P.
It follows that a reduction H < G of P v\ (G is equivalent to have an
H-invariant subbundle Q) C P.

Proposition 2.45. There is a 1-1 relation between reductions Q v H
of P ~ G and orbisections s : O — P/H.

Proof. Take a reduction @ v\ H of P\~ G and ¢ : 1.(Q) — P an

isomorphism. The local sections 54 : Uy = Qo of mg : @ — O induces
local maps 3, : Uy — 1+(Q,) defined by

However, over a non-trivial intersection of two charts U, N U 3, it could
happen that

Sa(T) = [Sa(Z), ] = [35(Z) - h,e] = [$5(Z), h] # 35(T).



5, and 5g belong to the same fiber and the element that takes 5, to 53
5(5a(#), 35(2)) € H.

Consequently, the local maps 34 : Uy — 14(Qq) defines a global orbisec-
tion

s:0 —1.(Q)/H.
Nevertheless, ¢ is a G-equivariant isomorphism. Then ¢.(Q)/H = P/H

and s induces the orbisection s : O — P/H.
Conversely, take the orbisection s : @ — P/H and define Q C P by

Q:={pe P|s(rp(p) € [ply}

It is a non-empty H-invariant set. Take a local section 7 : Py — P of
the principal bundle P — P/H and a lift §p : U — Py of the orbisection
s: O — P/H. The smooth map § := G oy is a local section §: U — P
of the principal bundle structure P v~ G — 0. Moreover, the induced
map s : U — P satisfies s(U) C Q. Then @ has a manifold structure
such that Q v\~ H — O is a principal bundle. O

Example 2.46. An {e}-reduction for 7 : P~ G — O is an orbisection
s: 0 — P. Alocal lift §: U — P of s is a local orbisection. Then the
diffeomorphism ¢ : U x G — P induces the I-action I ~ U x G given
by

V- (Z,9) = (v 2, 9).
Then (U/T) x G = P/T. However, P/T" is a manifold which implies
that O has a manifold structure.

Therefore, it is not always possible to take reductions. We will prove
that reductions are in 1-1 correspondence with geometric structures.
2.4 Principal connections.

The G-action on P induces the trivial vector bundle TVP c TP. A
connection is a choice of a G-invariant distribution H C T'P such that



H @ TV P is isomorphic to TP. Given that TV P = P x g, the presence
of a horizontal distribution induces the projection

TP —T"P—Pxg—g.

It defines a 1-form w € Q' (P, g) called principal connection. We will
show that principal connections w € Q(Fr(£), gl(R)) are in 1-1 corre-
spondence with cone connections V on & — O.

2.4.1 The Atiyah sequence.

Take the short exact sequence of vector bundles over P given by
05 PxgoTP%r(T0O) -0,

with U the infinitesimal action and m : P — O. The G-action on P
induces the locally free and proper G-actions P x g ~ G, TP~ G and
7 (T'O) ~ G given by

(.€)-g=(p- g, Ad(g~ ")),
X.g=R:X,
(Q7Y) g = (q-g,Y).

Given that U : Pxg — TVP and dr : TP — 7*(TO) are G-equivariant,
then we can take the quotient by G and obtain

0 (Pxg)/GSTP/GS x*(TO)/G — 0.

Given that the action is locally free and proper, they are not vector
bundles but orbibundles over O. Denote by Ad(P) := (P x g)/G and
notice that 7*(T'0)/G = TO.

Definition 2.47. A short exact sequence of cone orbibundles A — O,
B — O and C — O is given by two morphisms j: A — B and k : B —
C' covering the identity id : O — O, such that locally

OHA%B@CN’%O

s a short exact sequence of vector bundles.



Given that the G-action and the I-action commutes over P then
0— Ad(P) % TP/G B TO 0 (2.4.1)
is locally given by
0= Pxgg—TP/G—TU -0,

and called the Atiyah sequence.

2.4.2 Splittings and connections.
The short exact sequence of vector bundles
0—>Pxg—2>TP % 7%(TO) —0
h

splits if there exists a vector bundle morphism h : 7*(TO) — TP,
covering the identity id : P — P, such that dm o h = id. There is
a 1-1 correspondence between splittings and horizontal distributions of
H C TP, with H = h(n*(TO)). Every short exact sequence of vector
bundles splits. Then there always exists a horizontal distribution of
TP. However, the G-invariant hypothesis requires that not only this
sequence but the Atiyah sequence 2.4.1 splits.

Definition 2.48. A short exact sequence of cone orbibundles splits if
for every x € O there are orbifold charts such that

0—>Ai>Bﬁ>C~’—>O
splits.

As long as every short exact sequence of vector bundle splits, every
short exact sequence of cone orbibundles splits.

Definition 2.49. A connection on a principal bundle 7 : P — O is a
choice of a horizontal distribution H C TP (H®TVP = TP) such that

dpRg(Hp) = Hp-gv
forallg e G.



Remark: Take p € P. Its isotropy G, C G defines an action
Gp ™~ Hp such that the continuous function dpm : Hp — Tr(;,)O be-

comes the homeomorphism d,7 : H,/G, ST () O-

Proposition 2.50. There is a 1-1 correspondence between splittings

0— Ad(P) —~TP/G =TO—0
h

of the Atiyah sequence and connections H C TP on the principal bundle
m: P— 0.

Proof. Locally, take the splitting & of the short exact sequence

0—— Ad(P )HTP/GHTUHO
h

Let
Hy = {X € T3P | [X]e = h(dsr(X))}. (2.4.2)

Civen that TP = Ad(P) @ TU, the vector bundle structures on Ad(P P)
and TU induces a vector bundle structure on T'P /G such that his a

monomorphism. Hence, 7-[ has a vector space structure of rank equal
to the rank of TU. If X € H,, is such that d,7(X) = 0, then

[X] = h(dpRt(X)) = hy(0) = 0
Thus, 7:[p is a horizontal distribution. Furthermore, for every g € G

(X)) = War(5) = [§] = [m%]

It follows that R;(”z':[p) C Hpg In addition, the inverse RY_, satisfies
RZ,I(?-N[p) C Hp.g1 and then d,Ry(H,) = Hp.g. Define

L= |
pepP



It has a smooth structure given by the bijections dsm : 7-[ = x5 )U

and the smooth structure on TU. The natural projection 7 : H — P is
a well defined I'-equivariant map. That gives us the local bundle struc-
ture of the horizontal G-equivariant distribution H C TP — P.

On the other hand, if H C TP is a connection then drl|y : H — 7*(T'O)
is an isomorphism of vector bundles. Its inverse provides a G-equivariant
splitting h = dn~!|;. The definition (2.4.2) gives the 1-1 correspon-
dence between these two constructions. O

Corollary 2.51. Every principal bundle w : P — O admits a connec-
tion.

2.4.3 Connection form.

Take a connection H @ TV P = TP. It defines the vertical projection
v:TP — TV P. A principal connection associates to a vector Y € TP
the Lie algebra element ¢ € g such that

\Il(ag) = U(Y())7
with U the infinitesimal action. The existence of a connection is in

1-1 correspondence with the splitting h : TO — TP/G of the Atiyah
sequence

0—— Ad(P) —Y~TP/G "~ TO —0.
h

Given that
dr ([Y]a — (hodm)([Y]a)) =0,

then U=1([Y]g — h(dn([Y]g))) is well-defined. Let w : TP/G — Ad(P)
be

w([Y]g) =¥ ([Y]g — (hodm)([Y]g)). (2.4.3)
It satisfies w o U = id| 4q(p)
Definition 2.52. Let

0—>A-tsB-k.c o

be a short exact sequence of cone orbibundles over O. A morphism
w: B — A is a splitting of j ifwoj =1id4.



Lemma 2.53. Take a short exact sequence of cone orbibundles

0—=A—lsB_t. 0>
There exists a 1-1 correspondence between splittings w : B — A and
h:C— B.
Proof. Equation (2.4.3) gives the 1-1 correspondence. O

Hence, a connection H C TP is in 1-1 correspondence with an orbi-
bundle morphism w : TP/G — Ad(P). Take the diffeomorphism

2
Ad(P)rp) = 9/Gp,

between the orbifold structures as in proposition 2.39. Identify w,(Y")
with the composition

/G

T,P 55 T,P/Gp 8 Ad(P) () 23 0/Gp.

It is locally given by

It follows that

= ().
Then @ : TP — g is T-invariant, which implies w € Q' (P, g). It satisfies

two properties that characterize the fact that comes from a connection:

1. Rjw = Ady-1w for all g € G.

Ryw(X) = ¢pg (Wp-g([RZX]G)>

= 9_1 “op (wp([X]g))
= Adgfl(CU(X)).



2. w(¥(p,&))=¢forall £ €g.

w(¥(p,€)) = ep (W ([¥(P§]a))
= op([p, €])
= ¢

Definition 2.54. A 1-form w € Q' (P, g) such that :
1. Ryw = Adg-w for all g € G,
2. w(U(p,€) =€ for all € € g,

18 known as connection form.

Proposition 2.55. There is a 1-1 correspondence between connections
H C TP on a principal bundle P~ G — O and connection forms
w € QP g).

Proof. (=) Already done.
(«) Take a connection form w € Q!(P,g). Let X € T,P and define
w:TP/G — Ad(P) by

@([X]g) = [p,w(X)]

It is well-defined because

w([dpRgX]g) = [p- g, w(dpRy(X))]
=[p-9,Ad;1w(X)]
= [p,w(X)]
= w([X]g)-
In addition

(o W)([p,&]) = w(¥(p,§))

which means that @ : TP/G — Ad(P) is a splitting for the Atiyah
sequence. Hence, it induces a connection on P. ]



2.4.4 Fr(€) connections — £ cone connections

A principal connection w € QY(Fr(€),gl,(R)) on the frame bundle
Fr(€) induces a connection V on the cone orbibundle £. That hap-
pens because, firstly, a connection on a cone orbibundle could be given
in terms of connection matrices (see proposition 2.22). Secondly, a prin-
cipal connection w € QY (Fr(€), gl,,(R)) assigns to each vector TFr(£) a
matrix! Then, going from T'O to T'Fr(E) will give us a way to construct
the connection matrices.

Take a local frame (7). over an orbifold chart U,. Define the smooth

~ )

map 34 : Uy — Fr(&,) by

n

Sa(@) (01, 0") =D 0'E(E).

=1

Its differential induces a map ds, : TU, — TFr(&,). Define the con-
nection matrix @3 € QY(TU,, gl,,(R)) associated to the local frame 3,
by

G2(Y) = ([déa(ff)} FQ>T.

Let (E-B)?:l be a local frame over Ug, with U = U,NUg # 0. There exists

7

a smooth function g : U — GL,(R) such that s, - g = sg. Consequently

W (V) =w ([d§ﬁ<’?>]rﬂ)
N <R; {<d§a(y))h + [\wsﬁ,g—ldg(?))ha)

Ady 1w (Y) + g tdg(Y)
g wg (Vg + g~ dg(Y).

=

@

Given that the system of local matrices (w%)qes satisfies proposition
2.22; then we get a connection V on £.

Proposition 2.56. A principal connection w € QY (Fr(€), gl (R)) in-
duces a cone connection V on E.

Corollary 2.57. FEvery cone orbibundle £ admits a connection.



2.4.5 & cone connections < Fr(€) connections

Despite the manifold case, a connection on a cone orbibundle £ does
not lift a path n : I — O to a unique path u : I — Fr(£). Neverthe-
less, it lifts cone fields X € X(O) to vector fields Y € X(Fr(£)). In
addition, the cone vectors not represented by cone fields do not lift to a
unique vector but a finite collection of vectors. They define a connection
H C TFr(€). This gives a 1-1 correspondence between cone connections
V on £ — O and principal bundle connections H C TFr(E).

Take a local cone orbibundle connection V on € — U, a lift 7j: [ — U
for the path n: I — O, 7(0) = & and a trivialization (3;)%_, for £. The
trivialization induces the frame 5 : U — Fr(£). The parallel transport
along 7, with initial conditions 3(Z)(e;), gives paths p; : I — £ defined
by )

pit) = T2 (5(2) ex).

They induce the frame p; : I — Fr(€) given by
r .
ps(t) (v, 0%, .. 0") = szﬁi(t),
i=1

and called parallel frame along 7 starting at §(z). We have chosen 7)
instead of v - 77 and ps depends on this choice. Let ﬁg(t) = T,%(Ez(i‘))

and pyz : I — Fr(€) be defined by
s 0%, o) = 3 i (1),
i=1

. 70,6 70,t 1
Given that =15~ then
Dy =7 D5 g1 (T).
Let pys(t) = [Dy5(t)] be the lifts for v-n on F'r(€). They are related by

Pys(t) = ps(t) - g-1(Z).



Hence, a connection on the cone orbibundle & — O allows lifting a path
I — O to a finite set of paths I — Fr(&)

Ds
Ds - g»y;l(j)
n— .
Ps - 971—1(3})
Define h : #*(TU) — TFr(€) by
h (3,77(0)) = hs (77 (0)) = §5(0).

Because the connection is linear and the uniqueness of solutions to ODE
implies that

hs (i7,(0) + 715(0)) = hs (7(0)) + hs (7(0)) -
Given that Vg ypi(t) = 0 and -0 = 0 then
Vi@ - Ds(t) =0,

which means

h(y - 5,717 (0)) =~ h(3,7(0)).
In addition, it is true that

Then the short exact sequence

i

0——=TVFr(€) ——=TFr(€) =% 7#(TU) —=0

>

splits. Define the horizontal vector subspace by 7:15(5) = Bg(Ti;U ). Take

g € GL,(R), the frame ps - g : [ — Fr(€) is given by

n

(Ps - g)(t)(vlv c) = Zviﬁég(t),

i=1



with ﬁé_g(t) = Zgijﬁé(t). It is a frame along 77 which allow us to

calculate

psg Zgudt

Then ps.q is a parallel frame along 7 with §(Z) - g as the initial point,

which implies
W59, %) = RER(, X).

If we prove h is smooth, by proposition 2.50, we get a principal con-
nection H C TFr(€). For, firstly notice that the composition §o 7 is a
frame along 7. Given that the parallel frame p; is also a frame along 7,
there exists a smooth map A : I — GL,(R) such that

(5on)(t) = pa(t) - A().

By construction A(0) = Id; furthermore

P5(0) = dz3(17 (0)) — W(5(x), A'(0)).

Even though this equation tells us the smooth behavior of the horizon-
tal vectors, it uses the infinitesimal action associated to A’(0), which
depends on the horizontal lift p;. To avoid cyclic arguments, notice
that

n

Vi 3i(i() = Y (ws)y (7' (£)3;(7(t)),
j=1

with wz the connection matrix associated to the frame 5 and
Vir@si((t) = i Vi PLE)A(t);i
Z ( )+ A(t); 'Vﬁ'(wﬁé(t))
= > A0
j=1



Evaluating at zero and comparing both equations we obtain
Al (0) = (ws)y; (17(0)),
or equivalently, A’(0) = wz(77/(0))T. Hence

B5(0) = dz3a (77 (0)) — U (3(2), ws (77 (0))").

We conclude that for X € ¥(U), its horizontal lift is given by

h(3,X) = 5,(X) — U(5,ws(X)T). (2.4.4)
The previous equations proves h : #*(TU) — TFr(€) is smooth.

Proposition 2.58. A cone orbibundle connection V on &€ — O induces
a principal connection H C TFr(E) on Fr(&€) — O.

Proof. Take orbifold charts (UQ,NFQ, QEQ),~((~]5, Lg, ¢~>5) such that U, C Ug
and an injection Y5 : Uy — Ug. Let &, — U, be a cone orbibun~dle
structure trivialized by (5%)"_;. It induces the frame 5% : Uy — Fr(&,).

Take the path 7o : In — Uy and he @ #4(TUs) — TFr(&,) the
horizontal lift. The injection 1/1 0 En — &g induces a trivialization

57 = waﬁ (5¢). The frame it defines 3% : @/;aﬁ(ﬁa) — FT(SB) is given

by §° = d¢ g o 8% The path 7, goes to fg(t) = Q,Z)aﬁ(f]a(t)) and the
injection waﬂ 7 (TU ) = 75(TUp) is characterized by

025 (3a(@), 7,(0)) = (dzthas © 5ald), dsthas(ia(0)))

Take p; o(t) := T9 ' (34(%)(e;)) and P o the parallel frame along 7, with
initial conditions 5,(Z). As long as Vg = (1/;;/;‘>* Vo we get

(vﬁ)ﬁ%(t) Qzaxg (Di,a(t) = (va)ﬁ&(t) Pia(t) = 0.

Let psp(t) = @Zgﬁ (Ps,a(t)). If ¢ . Fr(€,) — Fr(&s) is the induced
injection on the principal orblbundle structure, then

s (dstbas 0 5a(#), ditbap(i4(0))) = 75(0).



Consequently

LAY, .
TFr(Ey) —=TFr(Ep)

J

R 3¢ .
75 (TU,) —2~ #5(TUp)

is a commutative diagram. It follows that the horizontal distributions
Ho and Hg belong to the same diffeomorphism class. The I'p-action on

TFr(&,) is free and then
H - |_| /]:za/ra

is a well-defined principal connection. O

Applying the principal connection w € QY(Fr(€),gl,(R)) to both
sides of (2.4.4) yields

W(5.(X)) = w(X)7,

with ws the connection matrix associated to the frame 5 : U — Fr(£).
Then
F*w=uwl. (2.4.5)

Proposition 2.59. There is a 1-1 correspondence between cone con-
nections V on & — O and principal connections w € QY(Fr(€), g, (R))
on Fr(€) — O.

Proof. (=) Take a cone connection V. Let wy be the principal con-
nection that comes from V and V be the connection induced by the
principal connection wy. Define by wz the connection matrices associ-
ated to V. By construction

Wz = (é*wv)T.
Moreover, because of (2.4.5), if w; is the connection matrix associated
to V then

ws = (5*wy)T.



It follows that the connections matrices of V and V are equal and then
V=V.
(<) Take a principal connection w € Q(Fr(£),gl,(R)). Let V, be
the induced connection by w. Its connection matrix wz over the frame
5:U — Fr(é) is . 3

ws(X)T = w(5,(X)).
If @ denotes the principal connection obtained from the connection V,,
by (2.4.5), it follows

Then 5@ = §*w. For every Y € Fr(€)
d (f/ ~ (30 fr)*(f/)) —0,
which guarantees the existence of £ € gl,(R) such that

V = (Go)(Y) + U(5¢).

Consequently

S(V) =@ (e 0 7) (1)) + € =w (5. 0 7)(T) ) +w(W(5,)) = w(Y),

which implies W = w. ]



Chapter 3

(G-structures

The 1-1 relation
(F'r(0),w) < (TO, V)

between the frame bundle F'r(O) with connection w € Q(Fr(0), gl,,(R))
and the tangent orbibundle T'O with connection V,, transforms differ-
ential geometric problems in T'O into differential geometric problems
in Fr(O). One of the main advantages is that, on the one hand, the
differential geometric problems on T'O involves orbifold theory, but, on
the other hand, Fr(O) is a manifold! Some geometric structures on
TO are in 1-1 correspondence with reductions of the structural group
on Fr(0O) « GL,(R). For example, Riemannian structures over O are
the same as O(n)-reductions P« O(n) — O. If we vary the structural
group, we obtain other geometric structures. For example, distributions
(GLyn—1k(R)), orientations (GL; (R)), volume forms (SL,(R)), almost
symplectic structures (Spg(R)), almost complex structures (GL(C)),
hermitian and almost Ké&hler structures (U(k)), frames and coframes

({1d}).

In the first section, we will define G-structures, give some examples
involving different structural groups and characterize when a principal
bundle is a G-structure. In the second, we will define equivalences of G-
structures, give some examples and characterize when an isomorphism
of principal bundles is an equivalence of G-structures. That allows us

77



to characterize the category of G-structures over a fixed orbifold. In the
third section, we will define connections compatible with a G-structure
and find an explicit description of it means that they are compatible
with the geometric structure. Finally, we will introduce a central prob-
lem on G-structure theory: integrability. We are going to characterize
this condition only in terms of the manifold defining the G-structure.
Besides, we will discuss the first obstruction for integrability: the intrin-
sic torsion; we will calculate the intrinsic torsion to find their first-order
obstructions for integrability.

A good reference for G-structures theory on manifolds is the lecture
notes [Cral5], our principal guide. For further reading, classical texts
about G-structure theory are [Ste99] and [Kob12].

3.1 (G-structures

Let G be a closed Lie subgroup of the general linear Lie group GL,,(R).

Definition 3.1. A G-structure is a reduction of Fr(O) «~ GL,(R) to
the group G.

A reduction to the structural group G is in 1-1 correspondence with

an orbisection s : O — Fr(0)/G (see 2.45). By definition a G-structure
is a principal G-subbundle P C Fr(O).
The idea is to take a linear geometric structure on O. It comes from
a canonical geometric structure on R”. There are canonically defined
adapted frames on R", and they differ by elements A € G (the symme-
tries of the geometric structure). A system of local sections §, : Uy —
Fr(U), induces adapted frames on TO. Over non-trivial intersections,
the local sections will differ by elements A € G too. Consequently, we
have a principal subbundle P .~ G (the space of adapted frames) of the
frame bundle Fr(O) v~ GL,(R) over O.

We will use the following arguments constantly. Let P »\ G be a
G-structure. Given that P/G = O, then the local I'-action over an
arbitrary orbifold chart (U ,F,gg) is given by a representation on the
group G. Besides, the G-structure induces a system of local sections



: U, — Fr((ja) over an orbifold atlas (Ua,Fa,¢a)aeJ such that
5 ( ,5%) € G over every non-trivial intersection U, N Ug # ), where
5. 5(5%,8%) = 3.
The section 5% : U, — Fr(U), induces the trivialization (5%)7_, of TU,
defined by ‘
Sa(T) = 5%(Z)(ei).
It satisfies
§%vy- &) =v-5%(F) 95 '(7).
An injection @Z;ag Uy Ug induces the commutative diagram

Fr(U ) i Fr(UB)

d e

U0 — 2 7,

Take the transition matrices g~ B defining the injections ¢ af" If g, 5 are

the transition matrices associated to the injections w* ap - T Uy — TU 85
then

ap = 955'
3.1.1 {e}-structures

As we already mentioned in section 2.3.6 reductions subsection, an {e}-
structure induces a manifold structure on O. In fact, in this case

O P/{e} =P
Definition 3.2. A trivialization of the principal bundle P ~ G — O is
a manifold structure on O together with an isomorphism O x G = P.

Then, an e-reduction induces a trivialization of F'r(O) ~ GL,(R).
Conversely, the trivialization ¢ : O x GL,(R) — Fr(O) induces the
section s : O — Fr(0O) defined by

s(x) = p(x,e).
Proposition 3.3. There is a 1-1 correspondence between trivializations
of Fr(O) and {e}-structures over O.



3.1.2 GLf(R)-structures

Take a GL; (R)-structure P~ GL; (R). Given that T" acts by a repre-
sentation of GL: (R), then it preserves the orientation on U. We have
a system of trivializations (5¢)aes of TO — O such that the transition
maps gop € GL;} (R) over every non-trivial intersection.

Definition 3.4. An orientation for O is a choice of trivializations
(M) ey for the orbibundle structure TO — O such that the transition

(2 ~
maps gop associated to the injections Vop has positive determinant.

Then the GL;} (R)-structure P~ GL;} (R) induces an orientation on
0. Conversely, take an orientation on O. The local sections

§9: Uy — Fr(U)a,

induced by the trivializations (53)?21, induces the principal bundle struc-
tures ~
Fr(Uy,)

|

Ua

The transition matrices g.3 associated with the injections ﬁaxﬁ belong
to GL;} (R). Hence, we have a principal bundle structure

Fr(0) c P~ GL(R)

|

O

Proposition 3.5. There is a 1-1 correspondence between orientations
on O and GL; (R)-structures over O.

3.1.3 SL,(R)-structures

Let P ~ SL,(R) be a SL,,(R)-structure. The canonical volume element
on R" is defined by
fean = dx1 A ... ANdzy,.



Take a section 5 : U — Fr(U) and define p € Q*(U) by

WX X)) = fhean (g(;z)—l(xl), N .,g(:z)—l(ffn)) .
Let v € I', we have that

ply-Xus oo Xa) (v 7)
= pewn (307 )7 (- K1), 50 8) 7 (- X))

5(5) 7 (KX)o 5(@) 7 (K))

— u(K,. ., X)),

= Hcan

Besides, over a non-trivial intersection U, N Ug #0

(X1, Xn) = fican (gﬁ(gz)—l(fg), . .,gﬁ@)—l(xn))
= lican (gaﬁ 3°(2) " (X1, - g a(g})fl(f(n)>
= det(gaﬁ " Hean (Na (Xl) ga(i‘)_l()zn))

= ,ua()N(l, e ,Xn)

It follows that the system of n-forms (pq)acs gives a well-defined global
n-form p € Q*(0O).

Definition 3.6. A volume form over an orbifold O is a no where van-
ishing top degree differential form p € Q"(O).

Then, an SL,(R)-structure P~ SL,(R) — O induces a volume
form p € Q"(0). Conversely, take a volume form p € Q"(0) and a

n

trivialization (5%)?_; of TU. Every lift u of u satisfies

w(st, ..., 8" #0.

Without loss of generality, let us assume &(%) := p(3',...,5")(F ) >0
(if not interchange two elements of the basis). Define 5 U — TU by

&(z) = Ve(@)5 (7).



The trivialization (5%)7; is such that

p(et, .. .,6") =1.

Over a non-trivial intersection U, N U 5 # () we have that

~Nn

18(6h,---,68) = palGa, .- 00)
= p1a(Gop - Thy - Gap - OF)
= det(gag) - pa((}é, SNT)
= det(gag)-

Then the transition matrices gqop associated to the principal bundle
injections 1/125 : Fr(Uy) — Fr(Ug) belong to SL,(R). Hence, we have
a principal bundle structure

Fr(O)c P~ SL,(R)

!

O

Proposition 3.7. There is a 1-1 correspondence between volume forms
on O and SL,(R)-structures over O.
3.1.4 GLj,—k(R)-structures

Let P ~ GLgp—k(R) = O be a GLj p—1(R)- structure; The canonical
k-distribution of R™ is R¥ x {0}. Take a section 3° : U — Fr(U) and
define the distribution D ¢ TU by

D; = 3(3) (Rk x {0})
A matrix A € GLj —,(R) has the form
(A1 Ay
=5 1)
with Ay € GLE(R), Ay € My, ,(R) and Az € GL,,_(R). Let i vary over

{1,...,k}. On a non-trivial intersection we have that

k
$(2)(ei) = 5(2)(A - &) = ZAﬂeJ = A;i5%(&)(e))
j=1



It follows that

Doz = 5%(2)(R" x {0}) = 5°(2)(R" x {0}) = Dg.z.

Furthermore, glven that I' acts by representatlons on GLyj p—i(R), then
the M-action on U x R” induces an action I' ~ U x R¥. Thus, I' acts on
D. The topological space

D= |_|ﬁa/ra,

has an orbifold structure given by the trivializations (5)%_;.

Definition 3.8. A distribution of rank k over O is a cone orbibundle
D C TO of rank k such that the inclusion map ¢ : D — TO 1is an
embedding.

Then, the GLj i (R)-structure P~ GLj —(R) — O induces a
distribution D C T'O on O. Conversely, take a distribution D C T'O of
rank k with trivializations (59)%_; over D - U. We can embed D — TU
so we get k linearly independent sections § : U — TU. Complete them
and form a trivialization ('), over TU. Let i vary over {1,...,k}. D
is a distribution, and then

Sp(8) = Ay (2)30,(%). (3.1.1)

Complete the change of basis matrix A = (4;;)" %, which means
§ =35 A

Because of (3.1.1), it follows that A € GLj —,(R). But A = gop is the
transition matrix associated with the orbibundle structure TO — O.
We get a principal bundle structure

FT(O) CPa~ GLk’n,k(R)

|

0

Proposition 3.9. There is a 1-1 correspondence between distributions
on O and GLj - (R)-structures over O.



3.1.5 O(n)-structures

Let P~ O(n) — O be an O(n)-structure. The canonical O(n)-
structure on R" is given by

n
{((v1,..y0n), (W1, ... W) can = Zviwi.
i=1

Define (-,-) € X2(TU*) by
(X, Y)(@) = (3(2)1(X),3(2) " (Y))ean-
Take 7 € I'; it follows that
(v Xy Y)(v-2) =30y 2) 7y X), 8307 2) 7N Y ) )ean
7)1 (X), gy - 3(2) T (Y)) can

It follows that the system of positive definite 2-symmetric tensors

(('7 '>o¢)a€J7
induces a well-defined global positive definite 2-symmetric tensor
() eTXTO).

Definition 3.10. A Riemannian structure on O is a positive definite
2-symmetric tensor {-,-) € ¥2(T*0).

Then, a O(n)-structure P+~ O(n) — O induces a Riemannian met-
ric (-,-) € X2(T*0). Conversely, let (-,-) € X2(T*O) be a Riemannian



metric over O and take a local lift (-,-) € X2(T*U). By the Gram-
Schmidt process there exist a trivialization (6°)"_; such that

(6',67) = d..
It follows that

(5 (ei), 5%(ej))a = (57(e:), 57 (e5)) 5

and then g,g € O(n). Hence, we have a principal bundle structure

Fr(O)Cc P~ O(n)

!

O

Proposition 3.11. There is a 1-1 correspondence between Riemannian
metrics on O and O(n)-structures over O.

3.1.6  Spa(R)-structures

Let P~ Spor(R) — O be an Spoy(R)-structure. Take the canonical
basis (21,91, ..., Tk yx) of R?* and dz?, dy' its duals. The canonical
Spor.(R)-structure on R?* is given by

k
Wean = Z dz' A dyi.
i=1

Define w € Q*(TU*) by

W(X,Y)(&) = wean(3(2)71(X), 3(2) 1 (V).

Take v € I'; it follows that

wly- X, v - YV)(y &) = wean(3(y- )7 (v X),3(y- &) (v-Y))



Hence, w defines an almost symplectic form on TU — U. Furthermore

It follows that the system of non-degenerate 2-forms

(wa)OcEJu

induces a well-defined global non-degenerate 2-form

w € QA(T*0).

Definition 3.12. An almost symplectic structure on O is a non-degenerate

2-form w € Q*(T*0O).

Then, an Spak(R)-structure P Spar(R) — O induces an almost
symplectic structure w € Q?(T*0O). Conversely, let w € Q?(T*O) be an
almost symplectic structure over O and take a local lift w € Q?(T*U).
We can always find a symplectic basis, which means a trivialization
(5%, p')¥_, such that

w(5',67) =0

w(p', p7) =0

w(E, p) = 5;
It follows that

wcan(xia yj) = wﬁ(&}ja 51]3)('%)
= wa (G4, P4)(E)
= wcan(g(;gl : 9%9;51 : yj)'
Similarly

Wcan(xivxj) = wcan(gaﬁ : xi,g;ﬁl ' xj)7

U-)can(yia yj) = wcan(gaﬂ “Yi, g;ﬁl : yj),



and then g,p € Spai(R). Hence, we have a principal bundle structure

Fr(O) C P~ Spar(R)

|

O
Proposition 3.13. There is a 1-1 correspondence between almost sym-
plectic structures on O and Spar(R)-structures over O.
3.1.7 GL(C)-structures

Let P~ GLi(C) — O be a GLi(C)-structure. Every z € C can be
thought of as a real 2 x 2 matrix

e (3 58)

where R(z) and J(z) are the real and imaginary parts of z. This as-
signment carries complex multiplication into matrix multiplication. In

particular
. 0 -1
1= Jean = <1 0 ) .

In general, GL;(C) = G Lok (R) are isomorphic, the isomorphism given
by

7 ZR
211 21k M., M.,
221 ... 22k M,, Mz%
= .
Zk1 ... Rkk ]\42161 Mzkk
Identify
Jean 0 0 0



and define the bundle isomorphism J : TU — TU by
J(X)(@) = 5(&) (3(2) (%) - Joan)

It satisfies J2 = —Id. In addition, let v € I', then

Jor-X)r-8) = 3(v-2) (50r- 87 (- X) - Jean)
= -3(2) - 95" (@) (9/(@) - 5(
= - J(X)(@).

Then J € QY(U,TU) is a '-equivariant form. It follows that .J induces a
map J € QY (U, TU) such that J2 = —Id. Over a non-trivial intersection
U no, 3 7 0

B
|
o
2
N
)
s
N\
8
3
N—

To(X)(@) = @) (8°@) 7 (X) - Joan)

)
= 3%(&)  gos (903 - (@) (X) - Jean)
= Jo(X)(2).
Hence, we have a well-defined global 1-form J € QY(O, TO) such that
J? = —Id.
Definition 3.14. An almost complex structure on O is a 1-form
J e Q' 0, 10),
such that J? = —Id.

Then, a GL(C)-structure P v~ GLj(C) induces an almost complex
structure J € QY(O, TO). Conversely, let J € OO, TO) be an almost
complex structure and J:TU — TU a local lift. We can always find a
TU trivialization of the form (5, J(5))¥_,. The frame it generates will
be denoted by 5;. Define the GLj(C)-action of Z € GL;(C) by

5,-7:=3; Tn.



Over a non-trivial intersection U, N U 3 # 0

k
5/23 = Z aij§£ + bijja(ggé).
j=1
Applying jg on both sides yields
Ta(55) =Y aijJa(8h) — bidh,
j=1

Hence, the transition matrix is

air b - ar  big

—bi1 ann -+ —bip  an
Jap = : :

a1 b -0 ark brgk

—bg1 a1 - —brr apgk

The isomorphism

air +ibir - arg +ibyy
9ap = I )

a1 + b1 - apr + bk

implies that go3 € GL;(C). It follows that we have a principal bundle
structure

Fr(O) c P~ GL(C)

!

O

Proposition 3.15. There is a 1-1 correspondence between almost com-
plez structures on O and G Ly(C)-structures over O.

3.1.8 U(k)-structures

Let P\~ U(n) be a U(n)-structure. Because of U(k) < GL(C), we
obtain an almost complex structure J € QL0,TO). Take a trivializa-
tion (8%, J(3%))k_,. Tt gives the C-linear diffeomorphism U x Ck — TU



defined by

k
(i'a Rlyeey Zk‘) = Z §R(Zl)gl + %(Zl)j(gl)ﬂ
i=1
which induces the complex local frame 5 : U — Fr(U ). That means
57(#) : CF = T3U is a C-linear isomorphism of complex vector spaces.

The canonical hermitian structure over CF is the map hean : CF®CF — C
defined by

hean ((21, .. ‘7Zk)7 (wlu cee 7wk)) = Zzzwz

It is C-linear on the first argument and heqp (2, w) = hegn(w, 2). Hence,
hean(z, 2) € R for all z € C'f and ‘Ehen it make sense to say that h.g, is
positive definite. Let h : TU & TU — C be

WX, Y)(F) = hean(35(F) 71 (X), 5(2)71(Y)),

= (X, Y) (%),
and
ha(X, V) (&) = hean(35(3)71(X),35(2) (V)
= Bean(9ap(F) 71 - 35(2) TH(X), gap(@) - 35(3) 1Y)
= hean(35(2)~(X), 55(2) (V)

Thus, we have a well-defined smooth orbifold map h: TO & TO — C.

Definition 3.16. An almost hermitian structure on O is a pair (J,h),
with J € QY(O, TO) an almost complex structure and h : TOSTO — C
a smooth map such that:



1. Is C-linear on the first argument.
2. M(X,Y)=h(Y,X).
3. h is positive definite.

It follows that a U(n)-structure P v~ U(n) — O induces an almost
hermitian structure (J,h) on O. Conversely, take an almost hermitian
structure (J,h). As long as we have an almost complex structure J €
QY(O,TO), then we have a GLj(C)-principal bundle structure P
GLi(C) — O. Similarly, as with Riemannian metrics, there is a Gram-
Schmidt procedure that guarantees the existence of a complex local
frame (5%)%_; such that

h(5',67) = 8.

It follows that

ha(68,50) =h (Uﬁ,aﬂ)

) o

p'r

o(9a * Tos Gas * ),

and then g, € U(k). Hence, we have a principal bundle structure

Fr(0) c P~ U(k)

|

O

Proposition 3.17. There is a 1-1 correspondence between almost her-
mitian structures on O and U (k)-structures over O.

Remark: The group equalities

1. U(k) = O(2k) N GL(C),

2. U(k) = Spar(R) N GLk(C),

3. U(k) = O(2k) N Spax(R) N GL(C),



implies relations between the geometric structures induced by their cor-
responding G-structures. The almost hermitian structure (J, h) induces
the J-invariant Riemannian structure

(X, V) :=R(h(X,Y)),
and the J-invariant almost symplectic structure
w(X,Y) = -J(h(X,Y)).
The J-invariant hypothesis stands because
h(J(X),J(Y)) =1 -h(X,Y)=h(X,Y).
Hence, an U (k)-structure induces:
1. An almost complex structure J € QY(O,TO).
2. A Riemannian structure (-,-) € ¥2(T*0).

3. An almost symplectic structure w € Q2(0O).

The equation
W(Xa Y) = <J(X)v Y>7

gives the relations between them.

3.1.9 Principal G-bundles vs. G-structures

Remember that a 1-form 7 € QL (Fr(O),R") is tensorial if it is G-
equivariant and ker 7 = TV P. The frame bundle Fr(O) has the tauto-
logical form 6 € QL,,,(Fr(O),R"). The G-structure P C Fr(O) inherits
the tensorial form by

Op = e‘p S Qtlen<P,Rn).
Then, every G-structure P possesses a tensorial form 6p. The existence

of that tensorial form allows us to distinguish between principal bundles
P ~ G — O and G-structures P C Fr(0O) ~n G — O.



Theorem 3.18. Let P ~ G — O be a principal bundle. If there exists

a tensorial form T € Qf.,,(P,R™) then there exists a unique principal

bundle embedding ® : P — Fr(Q) such that ®*0 = .

Proof. 1. Existence.
Fix a connection H C T'P. Take the principal bundle structure
P — U. We can define the tensorial form 7 € Qf, (P,R") by

7(Y) = 7([Y]).

Given that 75 : R" — 7:[15 is an isomorphism, then the tensorial
form defines the trivialization P x R™ 22 H given by

Furthermore, dr : 7-l~—> 7*(TU) is an isomorphism. It follows that
@ :PxR"— 7*(TU), defined by

P(p,v) = (dit 0 ¢1)(p, v),

is an isomorphism of vector bundles. Hence, a fixed p € P defines
the isomorphism A(p, ) : R™ — T;(5 U, which means it is a frame.
A section 5 : U — P induces the section & : U — Fr(U) given by

F(@)(v1,. .. vn) = Y 0ip(3(F), e).
=1

Define the embedding ® : P — Fr(U) by

It satisfies



and

®(y-p)=a(y-7(p)-6(3(y-7(P)):v D)
=~-6(7(p) - 95" - 6(v-5(7(B) - 957 D)
=7-5(7(p) - 95" - 8(3(7(P)) - 95", P)
=7 -6(7(p)) - 95" - gy - 6(3(7 (D)), D)
=7 ®(p).

Consequently, ® : P — Fr(0O) is a G-equivariant embedding.

. PO =T,
Let Y € T,P. Then

%0, (Y) = eé(p)(dpq)(y))
= ®(p) ™! (dp(m 0 D)(Y))
= ®(p) " (dpm(Y)).

If h: 7*(T'O) — TP is the horizontal lift, then
O (p) "1 (X) = 7p(hp(X)).-

Hence
2*0,(Y) = 7 (hp(dpm(Y))) -

Given that Y — hy(dym(Y)) € T P, then
(Y = hp(dpm(Y))) = 0.
We conclude that

2*0,(Y) = 7 (hp(dpm(Y))) + 7p(Y — hp(dpm(Y)))
= TP(Y)7

which implies ®*0 = .

. Uniqueness.
Let 1,95 : P — Fr(O) be two embeddings between principal



bundles such that ®;6 = 7. Then, for all p € P and Y € T,,P we
have

(IflkepO/) = <I>§QP(Y)
@1 (p) " (dym(Y)) = @2(p) ! (dym(Y)).

As long as 7 : P — O is a submersion, then, for all X € T,0, we
have that

©1(p) "M (X) = Pa(p)H(X)

Consequently, ®;(p) = ®2(p) and then &, = ®s.
O

Corollary 3.19. Let P~ G — O be a principal bundle. Then, P is a
G-structure if and only if there exists a tensorial form Op € QY (P,R™).

It follows that the category of G-structures over O has as objects the
pairs (P,7) with P a manifold, together with a locally free and proper
action P .~ G such that P/G = O, and a tensorial form 6 € Q'(P,R").

3.2 Morphisms

The theory of G-structures allows us to study geometric structures
through principal subbundles of the frame bundle. In order to pre-
serve the induced geometric structures, we need more than principal
bundle morphisms. For, let f : O1 — Oz be an orbifold diffeomorphism
between the orbifold structures (Ua, Ty, ¢a)a€J and (Va, Ty, QSQ)QGJ (we
assume both possesses the same local groups as long as the diffeo-
morphism f induces isomorphic groups). We can lift f U=V to
fe: Fr(U) — Fr(V) by

Fe(B)(v) = (dz, ) f 0 P)(v).

As long as f is T-equivariant, so is f,. Then, we obtain a well-defined
G L, (R)-equivariant diffeomorphism

f* : FT(Ol) — FT‘(OQ),



such that
Fr(01) —L= Fr(0,)

i f lm

O1 @)

commutes. Given that the geometric structures induced by the G-
structures are defined in terms of the adapted frames (frames that be-
longs to the G-structure), in order to carry one geometric structure to
the other, we need to carry the adapted frames of one G-structure to
adapted frames of the other.

3.2.1 Equivalence of G-structures

Definition 3.20. Let Pi C Fr(0;1) and P, C Fr(Osz) be two G-
structures. The diffeomorphism f : O1 — Os is an equivalence of
G-structures if fi(Py) = Pa.

Example 3.21. GL; (R)-morphisms
A system of local frames

o : Uy = Fr(U,),

such that gclyﬂ € GL; (R), induces an orientation on O; is induced by .
Because S P = Pyisa diffeomorphism the system of frames induced
by fox : Fr(Uy) — Fr(V,) satisfies

52(f~a*('§a)a fﬂ*(gﬁ)) € GLZ(R)

That means the orbifold structure induced by f, on Os has the same
orientation as ;.

Example 3.22. SL,(R)-morphisms

Take p2 € Q"(Va), alocal lift of the volume form on Oy and an adapted
frame 5, € Pi1o. The local frames fu.(3,) belongs to Pa,. It follows
that

12X, Kon) = ean(Fae(Ga) (K)o 521 (K-
Consequently

Ni(fa*(ga)(el)> cee fa*(ga)(en)) =1,



and then f: O; — O3 is volume-preserving.

Example 3.23. GLj ;,—;(R)-morphisms

Take the two distributions Dy C T'O; and Dy C TOy induced by P;
and P». Let §, € Pio be an adapted frame. Then (§a(ei))f:1 is a
trivialization for D;. Because fa*(éa) € Pay, it induces a trivialization
(fax(8a))k_, for Dy. Tt follows that df (D) = Ds.

Example 3.24. O(n)-morphisms
The Riemannian metric (-, -); : TO; ®TO; — R induced by P; C Fr(O;)
is given by
(X, Yi)i = (p; 1 (X3), 07 (Vi) cans
with p; € P;. Then, for p € P; we have that
(X2,Y2)2 = (fu(p) " (X2), fu(0) " (Y2))can
= (p~ " (df M (X2)),p(df T (Y2)))can-
It follows that for every Xi,Y; € TO;
(df (X1),df (Y1))2 = (P (X1),0 " (V1)) can

= (X1, Y1)1.

Hence, f: O1 — Oy is an isometry.

Example 3.25. Spyi(R)-morphisms
The symplectic structure w; € Q%(0;) induced by P; C Fr(0O;) is given
by

wi (X4, Y;) = Wcan(Pi_l(Xi)’pz‘_l(Yi))u

with p; € P;. Then, for p € P; we have that
w2 (X2, Ya) = wean (fx(p) 7 (X2), fu(p) " (Y2))
= Wean (P (df T (X2)),p~ (df 71 (Y2))).
It follows that for every Xi,Y; € TO;

w2 (df (X1), df (V1)) = wean(p™ (X1), 27 (Y1)
= (,U1(X1,Y1).

Hence, f : O1 — O, is a symplectomorphism.



Example 3.26. G Lj(C)-morphisms
Take an adapted frame §, € P14, which means

§a(€2¢) = jl(ga(egifl)) 1€ {1, . ,k‘}.

Given that fa*(éa) € Pya, then

Fae Galeai)) = Ja (fus Galesin)) i€ {1, k).

Consequently

If J; € QYO;, TO;) are the almost complex structures over O;, then
dfOJl ZJQOdf.

Example 3.27. U(k)-morphisms
First of all, by the previous example, an U (k)-morphism is a diffeomor-
phism f : O; — O such that

dfojlzjgodf.

Furthermore, if we have taken adapted frames to the almost complex
structure as above then

(dfa( )dfa( )): (( ( ) (dfa( ))7(fa*(§a>)_1(dfa(f/>))
(51X, 571(7))

i}l(X, Y).

Consequently, the diffeomorphism f satisfies

ha(df (X), df (Y)) = hi(X,Y),

with A1 and ho the almost hermitian structures on O and Os.



Remark: Given that U(k) = GLk(C) N Spar(R) N O(2k), then a
U (n)-morphism also satisfies

(df (X),df (Y))2 = (X,Y),
w(df (X), df (V)) = w1 (X, Y),

with (-,-); € 3(T*0;) and w; € 92(0;) the induced Riemannian and
almost symplectic structures (is an isometry and a symplectomorphism
t00).

Given that a geometric structure over O; is codified on the pair (P;, 7;),
that a diffeomorphism f : O1 — Oy preserves the geometric structures
induced, which means f, : P, — P» is a G-structure equivalence, could
be expressed in terms of the pairs (P, 7;).

Proposition 3.28. If f : Oy — Os is a G-structure equivalence then
(fe)*m2 =71.
Proof. Let Y € T,,P;. Then

(f)* (12)p(Y) = (TQ)f*(p)( dp f+(Y))
= (£+(0)) ™" (dp(m2 0 £)(Y)))
= (dpf op) ™ (dp(f o m)(Y))
=p ! (dpmi(Y))
= (m)p(Y).

It follows that (fy)*m = 1. O

3.2.2 Isomorphisms of Principal G-bundles vs. Equiva-
lence of G-structures

The main difference between equivalences of G-structures and G-principal
bundle morphisms is that the differential of a map must induce our mor-
phisms. More precisely, ¢ : P, — P> is an equivalence of G-structures if
there exists a diffeomorphism f : O1 — Os such that f, = ¢. This con-
dition is crucial because it is the one that guarantees that the diffeomor-
phism respects the geometric structures induced by the G-structures. If



f is an equivalence of G-structures, then (f)*m = 7. Let

P1*¢>P2

be a principal bundle isomorphism. The tautological forms associated
to both G-structures characterize when ¢ = f..

Theorem 3.29. An isomorphism ¢ of principal G-bundles is an equiv-
alence of G-structures if and only if ¢*1o = 11.

Proof. (=) Already proved.
(<) Locally, let 71, 7o, 6, fand Y € T; 771 be local lifts. Then

PN (dpm (V) = (71)p(Y)
— (7)) (A7)
= 6(p) " (dp(72 0 9)(V))
3)" (dznf ((@57)(7))).
Given that 7 is a submersion, for all X € TU, it is true that
5 = 6) " (4, (X))
In addition, p : R" = T, (5 U, is an isomorphism and then there exists
a unique v € R™ such that p(v) = X. Consequently

$p(v) = (df 0 p)(v),
which means ¢(p) = f.(p). It follows that ¢ = f.. O

3.2.3 Characterization of the category of G-structures

Every G-structure over O is characterized by (P, 7), with 7 € Q. (P,R")
a tensorial form . Thus, if we take two G-structures P; over O, we
have two objects defining the geometric structures induced: (P, 7)
and (P, 72). Furthermore, a G-equivariant diffecomorphism ¢ : P — P»
is a G-structure equivalence if and only if &1 =T11.



Theorem 3.30. The category of G-structures over O with G-structure
equivalences as morphisms is isomorphic to the category:

e Objects: (P,1) with

1. P a manifold with a locally free and proper action P~ G.
2. 7€ QL,(P,RY) a tensorial form.

e Morphisms: G-equivariant diffeomorphisms ¢ : P, — P such
that ¢* 1o = Ty.

There are no orbifolds involved in this picture. This characteriza-
tion is fascinating because, even when working with effective orbifolds,
G-structure theory happens in the setting of manifolds. The orbifold
structure on the base can be recovered from the quotient P/G.

3.3 Compatible connections

Take a connection form wp € Q(P, g). We can extend it to a connection
form w € QY(Fr(0),gl,(R)) as follows. Let Y € T,Fr(O); there exists
g € G such that p- g = q. Then

wp (Ye) = wp (Ry o Ry-i(Y,))
= Ady (wp (R;,l(yq))) .
Take the connection H = kerwp. It follows that
wp (Rya (VY + Y1) =wp (Ry(v))).
Given that R;,l(YqV) € T,P, we can define w € QY (Fr(0), gl,(R)) by
w(Yy) := Ady— (wp (R}l(l@v)>> :

Because the extension of wp does not depend on the isotropies, its
smoothness follows from the local diffeomorphism

0:Fr(O) xz Fr(O) — GL,(R).



The induced connection form satisfies
w|p € Q1P g).

On the other hand, if w € QY(Fr(0),gl,(R)) satisfies w|p € QY(P,g),
then
wp = w|p € Q(P,g),

is a connection form on P. Then, we have the 1-1 correspondence be-
tween the connection forms

{we Q' (Fr(0),g,(R) + wlp € g} ¢ {wp € QUP,g)}.
The 1-1 relation
(TO,V) — (FT(O>7wV)7
allow us to induce a connection Vp on T'O from a connection form wp

on P.

Definition 3.31. A connection form w € QY (Fr(0O), gl,,(R)) is compat-
ible with the G-structure P C Fr(O) if

wlp € Q1P g).

Proposition 3.32. Take a connection form wy € QY (Fr(0),gl,(R))
and V its induced connection on TO. The following statements are
equivalent:

1. wy s compatible with P.

2. FEvery connection matriz i@duced by the local section Se : Ug — 75.
and V satisfies ws, € Q*(Us, g).

3. Take a path m : I — O. Locally, the parallel transport along
n:I — U sends adapted frames to adapted frames. That means
for all pry € Pjjsy), there exists py, € P,y such that

j”glﬂfo (Pto (i) = D, (€1)-



Proof. (1) = (2) Given that
Wze = gth>

it follows that ws, € Q'(U,, g).

(2) = (1) Take Y € T5P,. We can write it as
Y = d3o(de(Y)) + Y — d3e(dite(Y)).
Because Y — dée(d7e(Y)) € ker(dt) then it is a vertical vector and
wy (Y — d3e(die(Y))) € g.
Given that §fwy (d7(Y)) = ws(da(Y)) € g, we conclude
wy (V) = 5iwy (d7(Y)) + we (Y — di.(d7e(Y))) € g,

which implies wy|p € ~Ql(P, g) and then is a connection form on P.
(1) = (3) Take p, € Py, Define

Bilt) := T3 (Buo (e1)).

It induces the frame p: I — Fr(U) defined

n

PO (w1, vn) = > vipi(t).

=1

By construction, its differential p'(¢o) € 7—~lf,t0 C Ty F' r(U) is a horizon-
tal vector. Given that T,ﬂ5 = 7:[q @ Tqv75, it follows that p: I — Fr(f])

must belong to P in order to have a differential defined on TP. Conse-

quently )
%mo (Do (e:)) = B(t1)(es)-

(3) = (1) For all p;, € 7577(,50), the parallel translation defines a unique

p(t1) € 75ﬁ(t1) as before. This map defines a G-equivariant diffeomor-
phism pgl’to : 7577@0) — 75,7(,51). Let @ : I — P be a smooth path with

u(0) = p and @' (0) =Y. There exists A: I — GL,(R) such that

PY(a(t)) = - A(®).



Thus

d -
@(0) =@ A0)+ | P(p)
dt|_g "
Because, by definition
s I ()
dtf—g "

is horizontal, then the vertical component is YV = W(p, A(0)). In
addition

d ~0.t/ ~ ~ / Y,
ahﬁﬁumnzwmAwnzYV
Then J
wy (V) = atl,_, P (ii(1)).

Given that ]5;] sends adapted frames to adapted frames, the path

d _ 5
Hence, o7 Pg’t(ﬂ(t)) € Tg/P & g which implies
t=0

wy|p € Q1(P,g).
O

If n: I — O is an orbifold path representing a cone field, then the
parallel transport T, ,';l’to : Tyt)O — Tyy1,)O is a homeomorphism. In
this setting, statement (3) of the previous proposition says that Tﬁl’to
is a homeomorphism that preserves the geometric structure induced by
the G-structure P.

3.3.1 Compatibility tensor

Denote by gl,, := gl,(R). The connection form w € Q'(Fr(0),gl,) is
compatible with P if and only if w|p € QY(P, g). Let C, € Q' (P, gl,,/9)
be defined by

Co(Y) = [w(Y)]g.



w is compatible with P if and only if C,, = 0. The group G ~ gl,,/g
acts by

g- [f]g = [Adg(g)]m

which implies
Cu(Ry(Y) = [Ady-1 (w(Y))lg = g7 - Cu(Y),
is G-equivariant. Moreover, as long as TV P = P x g, then
Co(Y") = w(¥)]g = 0.

It follows that C,, € Q} (P, gl,/g) is a basic form. By proposition 2.42

bas
Vs (P 01,/8) = Q1 (O, E(P,gl,,/9)) ,

so the failure of V being compatible with the G-structure is measured

by the 1-form VP € Q! (O, E(P, gl,,/g)) defined by
VP(X) = [p, [w(Y)]q];

with dm(Y) = X and 7(p) = . We want to find an explicit description
of the compatibility tensor. For that, we will prove that the fiber bundle
E(P,gl,/g) is the quotient of E(P,gl,) and E(P,g). Then, we want to
find an orbibundle &g such that

0— E(P,g) = E(P,gl,) & —0

is a short exact sequence, which implies E (P, gl,,/g) = ;. The connec-
tion V allow us to write explicitly w(Y') € gl,, as derivatives of paths
on the vertical components. The path derivatives induce elements on
E(P,gl,), and then we can view them as elements on £z. The vanishing
of the resulting expression is the condition that characterizes connec-
tions compatible with P.

Take a local section §: U — 75, it induces the local structures

Fmﬁxg[n Fnﬁxg
¢~ and ¢~
'nU remU



of E(P,gl,) and E(P,g). With the action G ~ gl,/g already defined,
we have the local orbibundle structure

L ~Uxgl,/g
LU
of E(P,gl,/g). Then

E(Pgl,/g9) = E(P,gl,)/E(P,9).
Let @ : E(P,gl,,)) - Hom(TO,TO) be locally defined by
E(P,gl,) = Hom(TU,TU)
5, Al = @5 4 : TU — TU
X = podop HX).
Take v € I'; we have that
b pa(X) =7 po Ao (v-p)HX)
—=v-podAojtody (X)
=7 b0 X)
= é?ﬁ’A] (X).

Then, ® is a I-equivariant map. Every homomorphism arises from
a n X n matrix (the columns are the action coefficients on each basis
element). Besides, if @5 4) = @4 p) then

O, = Pps(.0)-B)
'=p0d(p,g)oBod(p,q) ‘op
A=6(p,§)oBod(p,q "

It follows that [p, A] = [p, (5, q) o Bod(p,q)~'] = [p-d(p, ), B] = [¢, B].
Thus @ is a bijective map. Its inverse is given by

poAop -1

Hom(TU,TU) — E(P,gl,)
s [p,p o Do),



and
b5 0@ o) =[pp  odyodody o]
= [ﬁ,g,yo;ﬁ_l O&)Oﬁogvﬂ]
=[y-p,p todopl

Then @ : E(P,gl,) - Hom(TO,TO) is an isomorphism of cone orbi-
bundles. The embedding ¢ : E(P,g) — E(P,gl,) induces an embedded
orbibundle structure E(P,g) & Homg(TO,TO) C Hom(TO,TO).

Definition 3.33. The orbibundle Homag(T O, TO) is called the infinites-
imal automorphism bundle associated with P.

Example 3.34. Homgy, ,_,®)(T0,TO)
Take P~ GLp, (R). The Lie algebra gl , ,(R) is given by the

matrices of the form
A B C
~\0 D)’

with B € gl,, C € My, ,—i(R), and D € gl,,_. Hence
glenr(R) = {¢: R" = R" | §(R") C R*}.

If we take a section 5 : U — P, it defines the distribution D by

5(z)(R*) = Dj.
The homomorphism induced by [5(Z), 4] is

B30z, (X) = 3(2) 0 Ao 3(2)H(X).

If X € D, then 5(Z)~'(X) € R*. Because A € glg > We have that
A 5(@)*1(5(16 Rk; Consequently §(z)o Ao g(gz)*l(fq e D. It follows
that @z 4 : D — D. On the other hand, if ®5 4 : TU — TU is such
that &)[ng] : D — D, then, for all X € D

Ao 5(%)"HX) e R,
which implies A(R¥) c R¥. We conclude
Homgy, , . ®(TO,TO)={® € Hom(TO,TO) | (D) C D}.



Example 3.35. Homg,)(TO,TO)
Take P~ O(n). The Lie algebra o(n) is given by

o(n) ={A € GL(R) | (A-v,W)can + (v, A W)can = 0}.
Take §: U — P, the metric induced by P is
(X,Y) = (571(X), 571 (Y))can-
If [3, A] € E(P,0(n)), we have that
P ,A]<X> V) + (X, B0 (V)
, S

1(}7)>cam + <§_1(X), ~_l(q)[fé,A}(Y))>C¢.‘m
= A'g_l(X) (}7)>ccm <§_1( ), A ~_1( ))can

Then
HomO(n)(T(’),TO) = {® e Hom(TO,TO) | (»(X),Y)+(X,®(Y)) =0}.

Example 3.36. Homg,, &) (T0,TO)
Take P~ Spor(R). The Lie algebra spsyk is given by

5P = {A € GLok(R) | wean(A - v, w) + Wean (v, A - w) = 0}.
Take §: U — P, the almost symplectic structure induced by P is
W(X,Y) = wean(31(X),571(Y)).
If [3, A] € E(P, spyy), we have that
w(Pps,4)(X), V) + w(X, &5 4(Y))
=wean (3 (@fs,41(X)), 51 (Y) + wean(37H(X), 571 (25,4 (V)

X
=wean(A -5 1(X),57H(Y)) + wean(371(X), 4-571(Y))
=0.

Then

Homsp%(R) (TO, TO)
~ {® € Hom(TO,TO) | w(®(X),Y) +w(X,2(Y)) = 0}.



Example 3.37. Homgyp, (c)(TO,TO)
Take P~ GLi(C). The Lie algebra gl (C) is Myxx(C). A real matrix
A € Mogwor(R) represents a complex matrix if and only if

JcanA = AJcan-
It follows that
g[k((c) = {A € M2k><2k:(R) | JeanA = AJcan}~

Take a local section §: U — P. The almost complex structure induced
by P is given by
J(X)=3 (5*1(5() . Jc,m> .

If [3, A] € E(P, gl (C)), we have that

Then
Homgr,c)(TO, TO) = {® € Hom(TO,TO) | ®o J = Jo &}.

Example 3.38. Homy ) (TO,TO)
Take P\ U(k). The Lie algebra u(k) is given by

u(k) = {A € gl (C) | hean(Az, w) + hegn(z, Aw) = 0}

Let § : U — P be a local section and view it as a complex local
frame. The almost hermitian structure induced bu P is given by

iL(X7 Y/) = hcan(g_:l()z): 5—1(}}))



If [3, A] € E(P,u(k)), we have that

h(®(5.4)(X),Y) + h(X, &[5 4)(Y))
=hean(371 (P 41(X)), 5 (V) + hean(371(X), 5 (D54 (Y)))
=hean(A -5 1(X),571(Y)) + hean(371(X), A-571(Y))
=0.
Then

HomU(k) (TO,TO)
~ {® € Hom(TO,TO) | h(®(X),Y) + h(X,®(Y)) = 0}.

We want an orbibundle £z such that
0 — Homg(TO,TO) - Hom(TO,TO) — Ec — 0

is a short exact sequence. Besides, the infinitesimal automorphism bun-
dles are described in terms of the vanishing of something (tensorial).
Then, we can find out the orbibundle structure of £&;. For example,
for O(n)-structures a morphism ® € Hom(T'O,TO) is an infinitesimal
automorphism if and only if

(®(X),Y) + (X, ®(Y)) =0.
Define F(®) € ¥2(T*O) by
F(®)(X,Y) = (®(X),Y) + (X, ®(Y)).

That means we have a bundle map F : Hom(TO,TO) — ¥2(T*0O)
such that ker F' = Homp(T'O,TO). To prove the surjectivity of F', take

a symmetric 2-tensor ¢ € ¥2(T*0) and an adapted frame &;. Define
Gii :=((04,0;) € C(U); we want that

(®(5:),53) = %sz

That happens precisely if we define

1
=3 > Gisbie
j



Then F(®) = o and
0 = Homo,)(TO,TO) — Hom(TO,TO) — £*(T*0) — 0,

is the short exact sequence we were looking for. Similar arguments show
that

0 — Homgy,, &)(TO,TO) = Hom(TO,TO) — A*(0) — 0.
For almost complex structures, the map F' is
F(®)(X)=d(J(X)) — JP(X).
It satisfies

F(®)(J(X)) = —®(X) — JO(J(X))
= —J(®(J(X)) — JB(X))
= —JF(®)(X).

Let Hom*4(TO,TO) be the antiholomorphic homomorphisms defined
by

Hom4(TO,TO) = {® € Hom(TO,TO) | ®oJ = —Jo d}.

Take ®4 € Homj}‘(T(’),T(’)), to prove the surjectivity of F', we want
® € Hom(TO,TO) such that

(X)) = B(J(X)) — JB(X).

Take an adapted frame (&;, .J (6:))F_,. Assign an arbitrary value for
®(5;) and define

O(J(57)) = JO(6:) — ().

Hence, F(®) = &4 and follows that the short exact sequence associated
to almost complex structures is

0 — Homgy, c)(TO,TO) — Hom(TO,TO) — Hom}(TO,TO) — 0.



It is not necessary to do this for distributions because we already have
the condition the homomorphism ® must satisfy: ®(D) C D. For al-
most hermitian structures, as long as U (k) = Spar(R)NO(2k)NG Ly (C),
the compatibility conditions obtained from the other geometric struc-
tures characterize its compatibility.

Take a cone field X € X(0). We want to know the homomorphism
induced by [p,w(Y)]. As long as Y and p must satisfy dn(Y) = X and
m(p) = x, we can take a local section § U =P, a lift X of X and
obtain d5(X) € T'P. Because X is I-invariant, so is d5(X) € TP. Then

[p,w(Y)] = [s(x),w(ds(X))]. But s.w(X) = ws(X) is the connection
matrix over the frame s : U — P. Take the local frame &; := 5(e;), then
(I)[p w(Y Zws )ik Ok

But
VxGi =Y ws(X)ikGr,
k
and then

D, 0y (6i) = V6.
However, it is a homomorphism, and then it is not true that

P Y)]( ) # VxY,

for all Y. If Y = 3" a’é;, we have that
CI)[p w( Z a VXUz
Given that 'V x6; = Vxa's; — da'(X)5;, we obtain
(VxP)(Y)=VxY — Z da'(
Theorem 3.39. Let G < GL,(R) be one of the following groups

GLk,n—k(R)’ O(”)a Ska (R)v GLk ((C)7 U(k)

A connection V is compatible with a G-structure if and only if



1. Vx(D) C D when G = GLy,_(R).

(Y, Z)) = (VxY, Z) + (Y, Vx Z) when G = O(n).
x(@(Y,2)) = w(VxY, Z) +w(Y,VxZ) when G = Spay(R).
Vx(JY) = JVxY when G = GL(C).

5. Lx (WY, Z)) = (VxY, Z) + h(Y,VxZ) when G = U(Kk).

Proof. Take an adapted frame ;. Let Y = > a'é; and Z = > biG;.
The connection is compatible with a G-structure if and only if Vx P = 0.
The short exact sequence

Lx
L

e e

0 — Homg(TO,TO) 5 Hom(TO,TO) 5 6 — 0,

characterizes the compatibility of the connection because Vx P = 0 if
and only if F(VxP)=0.

1. In GLj 1 (R) structures, the compatibility condition means the
homomorphism V x P satisfies

VxP(D) C (D).

In addition, Vx P&; = Vx&; and, as long as (6i)§:1 generates the
distribution D, we get

Vx(D) C D.

2. Take an O(n)-structure P. We have
F(VxP)(Y,Z) = (VxP(Y),Z) + (Y,VxP(Z))
= (VxY = da'(X)64, Z)

+(Y,VxZ =) db'(X)5;).

Moreover

<Z da'(X)G;, Z) = <Z da'(X)a;, ijaj>
= da*(X)bF,
k



and

Hence

Finally, because

Lx((Y,Z)) = EX(<Z a'éi, Yy V6;))

= da"(X)VF + aFdbh(X),

we get that

F(VxP)Y,Z)=(VxY,Z)+ (Y ,VxZ)— Lx((Y,Z)).

. Take an Spor(R)-structure P. The adapted frame is given by
(5-113 5-12)521 and

F(VxP)Y,Z)=w(VxP(Y),Z) +w(Y,VxP(Z))
=w(VxY =) dai(X)5] + dah(X)57, Z)
+w(Y,VxZ =Y dbi(X)5] + db5(X)57).
Moreover
w()  dal(X)&] + dab(X)67, Z)

=w(> _ dai(X)5} + dab(X)57, ) _bi5; + byo7)

— 3 dab(X)b — dab ()b,
k



and

Zdbz Za’gdbk ) — akdbk(X).

Hence

F(VxP)(Y,Z) =w(VxY,Z)+w(Y,VxZ)
=) daf(X)bh + a5db}(X) — dab(X)bF — afdb5(X).
k

Finally, because
Lx(w(Y,2)) = Lx( Za
:Zda’f(X b+ afdbl (X) — da5(X)bf — afdby(X),

we get that
F(VxP)Y,Z)=w(VxY,Z)+w(Y,VxZ) - Lx(w(Y,Z)).

. Take a G Ly(C)-structure P. The adapted (real) frame is given by
(65, J(6:))F_, and YV = > a’G; + b J(5;). We have that

F(VxP)(Y) = VxP(J(Y)) = J(VxP(Y)).
The vanishing of F/(VxP) for the adapted frames means
Vx(J(6:) = J(Vx(54)).
Because J is an isomorphism, we have that

Vx(J(Y)) = J(Vx(Y)).

. Take a U(k)-structure P, the almost complex structure J induced
by U(k) and the hermitian structure
hMX,Y)=(X,Y) —iw(X,Y),

with (--) and w(-, -) the induced Riemannian and almost symplectic
structures. By the previous items we have that



e VxJ(Y)=J(VxY).
o Lx((Y,2))=(VxY,Z)+(Y,VxZ).
o Lx(w(Y,Z)) =w(VxY,Z)+w(Y,VxZ).
Because the Lie derivative, on the almost complex setting, splits

by
L(u+iv) = L(u) +iL(v),

then

L(W(X,Y))=L({(X,)Y)—iw(X,Y))
=L((X,)Y)) —iL(w(X,Y))
=(VxY,Z)+{(Y,VxZ) —i(w(VxY,Z)+w(Y,VxZ))
= h(VXY, Z) + h(K VXZ).

3.3.2 The space of compatible connections

Fix a connection form w € QY(P, g). If we € Q!(P, g) is another connec-
tion form, then 1 := wy —w € Q} (P, g) is a basic form. In addition,

if n € Q,,(Pg), it follows that we := n+ w € (P, g) is a connection
form.

Definition 3.40. The space of compatible connections with a fixed G-
structure P is given by

Con(P) = {w e Q' (P,g) | w(¥(-, &) =¢ and Ryw = Adgw}.

Proposition 3.41. A connection form w € QY(P, g) induces a bijection
between

Q;as(P, 9) P Con(P).

That means the space of compatible connections is an affine space
modeled on Q;GS(P, g). On the other hand, basic forms are isomorphic
to

Qtos(P,g) = QY O, Homp(TO, TO)).



Fix V¥, the 1-1 correspondence between connection forms w and con-
nections V¥ in T'O, together with the previous proposition, gives us the
bijection

QY O, Homp(TO,TO)) & {Connections Vp compatible with P}.
Explicitly, if n € QY(O, Homp(TO, TO)), the bijection is given by
VIY = V&Y +n(X,Y).

Hence, the space of connections V compatible with P is an affine space
modeled on QY (O, Homp(TO,TO)).

3.4 Integrability

Take a G-structure P ~ G — O and (Uy, Ty, ¢a) an orbifold atlas
that belongs to the same orbifold structure as P/G. Fix an orbifold
chart around 7(p) = z € © and denote it by (U, Ty, ¢). Because they
belong to the same orbifold structure, there exists a slice S, C P, a
diffeomorphism fxp U, — Sp and an isomorphism 6, : I'y — G, such
that fzp is Ozp-equivariant. It follows that

Fr(0,) 22 Fi(s,)
T

commutes and induces the orbifold commutative diagram

Fr(U,) —2™ Fr(S,)/G,

er \Lﬂp
fap

Us Sp/ G

where the horizontal arrows are diffeomorphisms. But G, < GL,(R)
and follows that the Gp-action is by linear transformations. Take the



chart ¢, : S, = R" given by the manifold structure of S;,. It defines the
commutative diagram

where all maps are Gp-equivariant. Define f; := ¢, o fgp, then

Fr(U,) —1% Fr(R") /G,

Ja

Ux Rn/Gp

is a commutative diagram such that the horizontal lines are embeddings.
Besides, we have a canonical structure R? = such that f,.(¢) € Fr(RZ,,)

if and only if ¢ € P. In addition, a local section 3 : Uy — Fr(Uy)
generates the local G-principal bundle structure Fr(U,)s defined by

Fr(Uy)e = 5U,) - G.
Then, Fr(Ux)G — P if and only if § : U, — P, is an adapted local

section.

Proposition 3.42. A local section 5 : U, — Fr(U,) is an adapted
frame if and only if

is an equivalence of G-structures.

Be aware that in the orbifold setting, there is no canonical local
model. Instead, it depends on I'z(,). The canonical local model around
p € P is the principal bundle structure F'r(R7,,) v G, — R"/G,.

can



Definition 3.43. A G-structure P is called integrable if there exists an
orbifold atlas (Uy,Ta, o) such that for all x € O, w(p) = x and all
orbifold chart U, around x

Fr(Uy)e —=% Fr(R2,)/G,

Ux fer can/ G

is an equivalence of G-structures.

By the previous proposition, P is integrable if and only if we can find
an orbifold atlas such that every induced local frame § : U — F T(U )
is an adapted frame § : U — P. The change of coordinates between
the adapted frames is given by elements of G. Hence, the change of
coordinates of the orbifold structure O belongs to G. Whether a G-
structure is integrable or not is a central question in G-structure theory.
All GL}(R)-structures are integrable by definition. Furthermore, ev-
ery SLy(R)-structure is integrable too because the difference between
an adapted and non-adapted frame is given by the multiplication of a
smooth function f : U — R and then they belong to the same orbifold
structure.

Example 3.44. GLj ,,—;(R)-structures

If P~ GLjy— k(R) is an integrable structure, then there exist orb-
ifold charts (Uk x gk Lo, o) such that the local frames (5%)%_, gen-
erates the distribution D,. Take the orbifold Op given by the atlas
( a,qﬁa) The T'p-equivariant embeddings g : U ke U ko U" k
deﬁnes an embedding Op — O. By construction TOp = D and then
an integrable distribution is a foliation. On the other hand, if we have
a foliation, we have a GLj, ,—i(R)-structure. If we complete the local
frames given by Op — O, we obtain an orbifold atlas adapted to D.
Hence, a GLj, ,—(R)-structure is integrable if and only if it is a foliation.

Example 3.45. O(n)-structures
Take the Riemannian structure (-,+) induced by P and a local frame
5§:U — P. Define

9ij (%) := (5(2)(e:), 5(2)(e;)),



we have that

g11(%) -+ g1n(T)

(5(2)(v), 5(2)(w)) = (v1,...,vn)-

(wi, ..., wy

@) - (@)

If § is an adapted frame then g¢;;(Z) = 5; for all # € U. Hence, if P is
integrable, for all x € O, there exists an orbifold chart U, such that

() =dF% + ...+ di2, (3.4.1)

with (Z1,...,Z,) the coordinate functions associated to U,. Conversely,
take a local frame §, if the Riemannian structure is given by (3.4.1),
then (3()(e;), 5(Z)(e;)) = 6} and it follows that 3 is an adapted frame.

Example 3.46. Spyi(R)-structures
As in Riemannian structures, an almost symplectic structure is inte-
grable if and only if there exists an orbifold atlas such that the almost
symplectic form w is locally given by

w=dx1 ANdy1 + ...+ dTg A dys.

The coordinates such that w has this form are called Darboux coordi-
nates.

Example 3.47. GLy(C)-structures
Take two adapted frames (5%, .J(5%))F_, and (&é, j(&g))le. Then, the
transition matrix

6% - gap =",
satisfies gop € GLi(C). Hence, 1/3015 Uy — Uﬁ is a holomorphic func-
tion (it comes from the (complex) linear map given by the multiplication
of a complex matrix varying smoothly on U, N Ug) Consequently, if P
is integrable, then O has a complex structure, which means an almost
complex structure J such that the transition functions are holomorphic
functions with respect to J.

Integrability can be thought of as extending the local properties
induced by the standard geometric structure R% (CF ) to the whole

can can



orbifold @. Then, we are interested in which properties characterizes
Fr(Ry,,)/Gp. First of all, the vector and principal bundles TR?,,, and

can can

Fr(RZ,,) are canonically trivializable by
d
(v,w) eR" X R" = —| v+tw e T,R",
dt |,
and
(v,9) ER" X G — g~ ! € Fry(R"),
with
g_l-i v—l—tw:g_l-w
dt|,_o '

The canonical tautological form is defined by

o (V) = g7 -,
with

v + tu.
t=0
Define the distribution ¢; € TFr(R"™) by

d
d(%g)'ﬂ'(Y) = a

d
i\U, = tg-ei,g).
Gi(v, 9) dttzo(vﬂLg €i,g)

It satisfies
0°"(Gi) = ei,
which implies ({;); is a (canonical) horizontal subbundle of T Fr(R"™).

Furthermore, because every canonical vector field on TR" commutes,
then

for all £ € g. Because G, ~ R" acts by fixed linear transformations,

all constructions above are Gp-equivariant. Hence, if a G-structure is
integrable, for every x € O the equivalence

P——Fr(R%,,)/Gp

can

fzp

Uﬂ? R?@m / GP




induces vector fields (; € T'P|y, such that

0(G)=ei , [G¢Gl=0 and [G,¥(E)] =0,
for all £ € g.

Proposition 3.48. A G-structure (P, ) is integrable if and only if for
every p € P there exist an open set P|y together with local vector fields
G € X(P|v) such that

0(G)=e , [G¢Gl=0 and [P (E)]=0,
forall € € g.

Proof. (=) Already done.

(<) Take the distribution ¢; € T'P|y,. By Frobenius theorem, the vector
fields ¢; defines a foliation Z C P, which means, T'Z = span((y,...,().
It follows that there exists an orbifold chart V, around z, and a local
section & : f/x — Z C P such that

95
Oazi e

R

Define ¢ : V, x G — P by ¢(&,9) = 6(Z) - g. It is a principal bundle
0

8.732‘

A . [ 00 w (=
d(£7g)g0 (8%7()) = Rg <axz> = Rg <C2> .

It follows that

isomorphism. Take a basis (

have that

)iv, for the horizontal distribution, we

~% 0 * 5 —1 can 9
(270)(z.9) ((%:Z-’O> = 0p(z,9) (Rng) =g e =0Gy(5,)
Hence, ¢*0 = 0°“"* which implies ¢ is a G-structure equivalence. O

The proposition characterizes the integrability problem in terms of
the manifold P instead of the orbifold P/G because all the informations
relies on the existence of local vector field on P satisfying conditions
expressed only in terms of the geometry of P.



3.4.1 Affine structure of the compatible connections

Fix a connection H = kerw. Let § € QY(P,R") be the tautological
form, ¥ : P x g — TP the infinitesimal action and Y, = 07;1 (v), where
v € R™. They induce the isomorphism ¢ : P x (R" @ g) — TP defined
by

If we have taken another connection H' = kerw’, the isomorphism be-
comes

(bH'(p? v+ 5) = (le)p + \P(p7 5)7
with Y, = 07;,1 (v). Given that dp7(Y,) = p(v) = d,7(Yy), we get

Y, -Y,eTVP=Pxg,
and we will identify them. We can compare the two isomorphisms with
¢l odw  Px (R"®g) = P x (R" @ g),
given by
(63 0 dn) (D0 +€) = (Do + (E+ Yy = Vo).
Define Sy 9 : P x R" — P x g by
Sy n(p,v) = (p,Y, —Y,). (3.4.2)

Denote Sﬂgﬂp(') = Sy (p,-). Sw  is a homomorphism of vector
bundles such that

(63 0 dp)(pov+ &) = (p, v+ (§+ 5%;,,%(“))) :
The 1-1 correspondence
Qpas (P, 8) ¢ Con(P),
gives for every w’ € Con(P) an element n € O}, (P, g) such that

w’:n+w.



Because 7 is horizontal, we have that
77";.[ :H— P x g,

is a well-defined homomorphism of vector bundles. Moreover, the tau-
tological form 6 € Q'(P,R") induces the isomorphism

0 :H > P x R™.

It follows that every basic form 7 defines the homomorphism of vector
bundles
noby' : PxR"— P xg.

The homomorphism Sy 7, defined on (3.4.2) is related to the previous
homomorphism by

Swia = —n005"
Thus, the difference between the two connections is identified with a
homomorphism Sy 9 : P X R" — P x g.

Define G ~ Hom(R", g) by
(9 6)(v) = Adge(g™"v),
and
C%(P, Hom(R",9))% = {n € C*(P, Hom(R",9)) | n(p-9) = ¢~ n(p)}.
Proposition 3.49. A connection H = ker w induces the bijection
C* (P, Hom(R™, g))% <5 Con(P),

defined by
Fo(m(Y) =n(0(Y)) +w(Y).

Proof. We want to recover the previous homomorphism, which means
FyH W) = =Sw .

Besides



and then
-1 -1
F7 (W) =w oty .

w

Proving that F,, is a bijection requires that F,;! is its inverse on both
sides. Firstly

(F5h o Fo) () (p)(v) = Fu(n)(0y, (v))
= 1p(6 © 03,1 () + w(by,) (v))
= np(v),
which implies F;! o F,, = Id. Secondly
(Foo FZH)(W)(Y) = F7H (W) (0(Y)) +w(Y)
oY) +w(")
M) +w'(¥Y)
);

which implies F,, o F,;1 = Id. Then F,, is a bijection.

=w' (0
=u/'(Y
=w(Y

./

Take n € C>(P, Hom(R", g))“, then F,,(n) € Con(P) because
L E,(n)(¥(E) = ¢
Fu(m(2(E)) = n(0(¥(€))) +w(¥(E) = w(¥(E)) =&
2. R:F,(n) = Ady-1F,(n).

Ry(Fu(n)p(Y) = (Fu(n))pg(Ry(Y))
—npg( (Ry(Y))) + wp(Ry(Y))
B(V)) + Adyr -, (Y)
— Ady s (g g (1)) + Ady - (1)
:Adg 1 (Mp(0p(Y)) + wp(Y))
= Adg-1 - (Fi,(n)p(Y)).



Conversely, if w’ € Con(P), it follows that
—1 —1
F7HW) - 9)(0) = (051 (1)

= wzl).g (R; (9;111) (g- U)))

= Adg‘1 : Fw(w’)(p)(g : U)v
which implies F;1(w') € C=(P, Hom(R", g))¢. O
3.4.2 First order integrability obstruction: intrinsic tor-

sion

Two G-structures (Pp,601) and (P, 62) are equivalent if and only if there
exists a G-equivariant diffeomorphism f : P; — P such that

F*05 = 0.

An integrable G-structure (0, P) is locally equivalent to the canonical
G-structure
(Ocan, Fr(RE,,)/ Gy G)

|

R?an/GP

SO f*Ocan = 6. Then, a necessary condition for the integrability of a
G-structure is
f*dOcqn = db. (3.4.3)

We want an explicit description of df. Take a connection H = kerw. It
induces the trivialization

o Px(R'"®@g)—>TP
(0 +€) - 031 (0) + W (p, ).

Fix two basis (fj)?i:n}g of g and (e;)!"_; of R™. They induce the covectors

0%, w’ € QY(P) characterized by

0= ZHiei and w= ijfj.
i J



Given that (4 is an isomorphism, the covectors (#¢,w? )i,; form a basis
of T*P. It follows that

dpt* = Y A5(p)0' Ao’ + Bfi(p)w' Aw + CEL(p)07 A O™
/[:7.j7l7m
which implies
dd=A0ANw)+BwAw)+C(ON0),

with

A: P — Hom(R" ® g,R"),

B : P — Hom(A%g,R"™),

C : P — Hom(A*R™ R"™).
Because 6 is horizontal and w vertical, we can find the coefficients A, B

and C' values using vertical and horizontal vectors. Every horizontal
vector has the form Y, (p) = 07_1117 (v), and every vertical vector will be

identified by the equation ¥(p, &) = &,.

1. A: P— Hom(R" ® g,R"™).

Given that 6(§) = 0, and by Cartan’s magic formula, we have that

ﬁé@ = dbée + Lgd@ = Léd@.

Then 3 }
dpe(ytuvf) = _dpg(ga Yv) = _Eée(Yv)
Besides,
d N _d B
Egg = % o exp(tf)Q = di o exp(—t{) 9 = g 0
Consequently

dp0(Yy, ) = € 0(Y,) =€ - v,
It follows that
Alp)(v® &) = &(v).



2. B: P — Hom(A%g,R")
dpf(&1,&2) = §10(&2) — &0(61) — 0([61,&]) =0
which implies B(p) = 0.

Until now, we have that
dd=CONO)—wANb,

with
(WA (X,)Y) =w(X)0(Y) —w(Y)I(X).

In order to find C, we need to calculate df on two horizontal
vectors. The operator

D, : QF (P,R") = Q1P R")

bas

0= Dun(Yo, ..., Vi) = dn(Yg*,... . ¥,

is an exterior derivative on the algebra of basic forms. Let V be the
connection induced by w. Define dy : QF(O,TO) — QF1(0, TO)
by

(dyw)(Yo,...,Y}) = Z(— ) Vy.w(Yo,..., Y, ..., ;)

+) (-1 “Jw (Y3, Y], Yo, .., i, ., Yy, V).

1<j

Lemma 3.50. The following diagram commutes

Qk

bas

(P, Rn) Qk—i-l(P Rn)

bas

| |

OF(0,T0) — % 10, TO)

Proof. Take k = 0, s : O — TO a cone field and f; : P — R”
defined by

fs(p) = p~ (s(w(p)))-



Given that fs(p-g) = g7 fs(p), then f € C°(P,R")%. Let Y €
TP, X =dn(Y) € X(O) and h : 7*(TO) — TP the horizontal
lift. It follows that

Do fs(Y) = dfs(Y™) = dfs(h(X)) = Vxs.

On the other hand
(dys)X = Vxs.

Then, for kK = 0, the diagram commutes. Both maps D, and dy

are R-linear and satisfy Leibniz. Furthermore, Q]gas(P, R™) is a

Q*(P)-module and QF(O,TO) a Q°*(O)-module. Hence, we can
extend this diagram for an arbitrary k& > 0. O

We have that
C(p)(uAv) = Dub(Yy, Vy) = dB(Yy, Ys).
The tautological form comes from the identity morphism
Id € QY(0,TO).

Take p(u) = dn(Y,) = X,. The previous lemma tell us that taking
D0 corresponds to

dvld(p(u),p(v)) = Vpu)p(v) = Vpwp(v) — [p(u), p(v)].
Definition 3.51. The 2-form Ty € Q*(0,TO) defined by
Tv(X,Y)=VxY - VyX — [X,Y],
is called the torsion of the connection V.
. C: P — Hom(A’R" R")
Cp)(unv) =p~" (Ty (p(u), p(v))),

and is called the torsion of w.



The coefficient Cy depends on the choice of H = kerw. Take another
connection H' = ker w’ with torsion Cy and let Y, = 9;{,1 (u). Then

Co (u,v) — Cy(u,v) = dO(Y,,Y,)) — di(Yy, Yy)

ur v

= dQ(Yé - Yu7Yv/) + d9<Yu> le - Yv)'

But V! — Y, € TVP and Y/ — Y, € TVP. Using the homomorphism
S3.2¢, and the expression for coefficient A, we have that

Cy (u,v) = Cp(u,v) = =Sy 3 (w)(v) + Sy () (u).
Definition 3.52. The linear model for the torsion
d: Hom(R", g) — Hom(A*R™ R"™),

is defined by
0S(uAv) = S(u)(v) — Sv)(u).

It follows that the torsions are related by
CH; + 857.[2”7{17 = C’Hp (3.4.4)

A fixed connection H = kerw induces the homomorphism S3; 4, that
comes from the 1-1 correspondence

C>(P, Hom(R", g))% +— Con(P)
= W (V) = (05 (V) + w(Y).
The torsion corresponds to
C°(P, Hom(R", g))¥ — P x Hom(A*R",R"™)
n = (p, 05wy 1,)-

Hence, the image of 0 gives the torsion of all the possible compatible
connections.

Definition 3.53. The intrinsic torsion of P is denoted by
Cp: P — Hom(A’R™,R™)/Im 0,

and defined by o



Theorem 3.54. If [ : P — @ is an equivalence of G-structures then
Cgof=0Cp.

Proof. Let 0p € QYP,R"), 0o € Q(Q,R™) be the tautological forms
and take a connection Hg = ker wg. Its pullback wp := f*wq is a con-
nection Hp = ker wp too. Take the coframes induced by the connections
wp and wg. The differential of the tautological forms are

dfp = Cp<9p A HP) —wp A bp,

and
dfg = CQ(@Q A QQ) —wg Nbg.

Besides, f is an equivalence, and then f*dflg = dflp, which implies
Coof=Cp.
Take 1o € C°°(Q, Hom(R"™, g))¢ and define
np :=ngo f € C™(P, Hom(R", g)).

Given that

-1

ne(®-g9)=mgo fp-9)=nq(f(p)-9) =g -npp),

we have that np € C°°(P, Hom(R", g))“. Thus
P _ q@
S AR
Consequently
(Cqo f)p) =[(Cqo fp)] = [Cr(p)] = Cr(p).
O

Let us see what happens on the canonical G-structures Fr(R7,,,)/Gp.
By proposition (3.32), the connection matrix wee, € QH(R", gl,,) defined
by

d
Wean | — v+tu | =0,
dt |,—o



induces a connection compatible with the canonical G-structure. Let
Vean be the connection that comes from weq,. The torsion of Vg4, 1S

1v,.. = 0.

Hence, the torsion Cryy @ Fr(RY,,,)/Gp — Hom(A2R™, R™) of weay, is

can
Cean(p)(u A ) = p~ (T, (p(u), p(v))) = 0.
Consequently, its intrinsic torsion
Cean : Fr(R2,)/Gp — Hom(A’R™,R™)/Im 0

satisfies
Coan = 0.

Corollary 3.55. If a G-structure P is integrable then Cp = 0.
Take p € P and fix a connection H = ker w. They give the bijection
Hom(R",g) «— Con,(P)
Sty = Wy(+) = Say 21, (094, (-)) + wp(*)

By equation (3.4.4), if (3, is the torsion of w and Cyy, of W', we have
that

d: Hom(R"™, g) — Hom(A*R™, R")
Sty 7 Sy () (x) — Sz (%) ()
— Chy — O,

Definition 3.56. The first prolongation of g is the Lie algebra
g(l) := ker 0.
Definition 3.57. The torsion space of g is given by
T () = Hom(A*R™ R™)/Im 0.

The torsion and intrinsic torsion information is codified on g(*) and

T (9).



Theorem 3.58. Take a G-structure P.

1. If T(g) = 0, then there exists a compatible connection ¥V with zero
torsion.

2. If gV = 0, then two compatible connections V1 and Vo with equal
torsion are equal.

Proof. 1. Condition 7 (g) = 0 means 0 is surjective. Take a connec-
tion w € QY(P,g) with torsion Cy. Given that 9 is surjective,
there exists Sy, € H om(R™, g) such that

0w, 0, = —Ch, .

Take the connection w’ induced by the homomorphisms SHP,H;-
Its torsion satisfies

CH; = 85;1?7% + C?-Lp =0.

The connection V' induced by w’ is a compatible connection with
zero torsion.

2. Take two connections w,w’ € Q' (P, g) with

w' = S0 (O2(-)) + w(-).

Let V, V' be the affine compatible connections induced by the con-
nection 1-forms. Condition g = 0 means ker & = 0. Moreover,
as long as C'yy = Uy, we have that

0= CH; — C’Hp = 85‘7.[1%7.%.

Then Sy, 3 = 0 for all p € P. It follows that w = w', which
implies V = V'.
O]

3.4.3 O(n)-structures

Theorem 3.59. Fundamental theorem of Riemannian geometry
Every Riemannian structure over an effective orbifold admits a unique
compatible connection with zero torsion.



Proof. By theorem 3.58, if T(o(n)) = 0 and o(n)(!) = 0, then there
exists a unique compatible connection with zero torsion. Take

d: Hom(R™, o(n)) — Hom(A?(R"),R"™).

1. o(n)® =0.
Take ¢ € o(n)), ie., ¢ € kerd. Hence, for all u,v € R™

Besides, as long as ¢(-) € o(n), we have that

<¢(U)U, w>can = _<'U, <b(u)w>can.

Consequently

and then (p(u)v, w)eqn = 0 for all u,v,w € R™. It follows that
¢ =0.

2. T(o(n)) =0

The previous item shows that 0 is injective. Given that

n?(n —1)

dim(Hom(R",0(n))) = 5

= dim Hom(A’R™, R"),

0 : Hom(R", 0(n)) — Hom(A?R",R") is an isomorphism.

3.4.4  Spy(R)-structures
For simplicity, take n = 2k.



Lemma 3.60. The sequence
S3((R™)*) X Hom(R",sl,) 5 Hom(A2(R"),R") % A%((R")")
is an exact sequence. In particular
sl = B3(R™)"),

and

T(sp,) = A°((R")").
Proof. 1. 1y : Z3((R™)*) — Hom(R", sl,,).

Let ¢ € spg). For all v,u € R™

Besides

Wcan(¢(u)va w) = _wcan<v7 ¢(u)w)7
and then, if o (u, v, w) = Wean (¢(u)v, w), we have that o € L3 (R").
Given that weq, is non-degenerate, the relation

o(u, v, W) = Wean(d(u)v, w),

is a bilateral relation between ¢ and o. That gives us the isomor-
phism

Lt D3(R™) — spl)

n

o ¢.
2. 0, : Hom(A?(R™),R") — A3((R™)*).

Take an homomorphism ¢ € Hom(R", sp,,) and let ® € Hom(A*R™, R")
be
0p = .

We have that

Wean (P(u, V), W) = Wean (P(w)v, W) — Wean (P(V)u, W),



which implies

Wean (P (u, v), W) 4+ Wean (P(w, u), v)
=Wcan (¢( ) ) Wean (¢
:wcan( ( ) ) wcan(¢

= — Wean (P(v,w),u).

w

w)v

Define 9, : Hom(A?R",R") — A3((R™)*) by
0w (P) 1= wean(P(u,v), w) + Wean (P(w, u),v) + Wean (P (v, w), u).

It follows that O(Hom(R™,sp,,)) C kerd,,. It is a surjective map
because, as long as wWean is non-degenerate, for all n € A3((R™)*)
there exists T, € Hom(A?R", R") such that

1
Wean (Ty(u,v),w) = gn(u, v,w).

Consequently
0, (Ty) (u, v, w)
=Wean (T (u, v), W) + Wean (Ty(w, u), v) + Wean Ty (v, w), w)
= 1,0, w0) + 0w, 0) + (0, w,)
=n(u,v,w).

We already show O(Hom(R",sp,,)) C kerd,. Their equality fol-
lows because they have equal dimensions. For, firstly

dim d(Hom(R",sp,,)) = dim Hom(R", sp,,) — dim ker 9
= dim Hom(R"™, sp,,) — dim X3((R™)*),
and
s, = S2((R")")
£ = wean(§(u),v).



Then

dim d(Hom(R", sp, ) = n - n(n+1) n(n+1)(n+2)

2 6
n(n? —1)
3 .

On the other hand
dim ker 9, = dim Hom(A%*(R™), R") — dim A3((R™)*)

_n(n—l)'n_n(n—l)(n—Q)
2 6

~ n(n?-1)

==

It follows that O(Hom(R™,sp,,)) = ker 0,,.

O]

Hence, if an Sp, (R)-structure is integrable, then there exists a con-

nection ‘H = kerw, with torsion Cy, such that

9(Cy) = 0.

Besides

¢ : E(P, Hom(A’R™, R"™)) — Q*(0,TO)
[p, @] = p (@ (" (X)Ap~H(Y))),

E(P,A3((R")*)) 5 Q3(0)
.= (X)Ap ' (Y)ApH(2)),

are isomorphic. The map 3J,, descends to

D, : E(P, Hom(A’R"™,R"™)) — E(P, A>((R™)*))
[p, ®] — [p, O, (®)].

is an isomorphism such that o([p, CHP]) = Ty, with V the connection
induced by H. Also



The induced map 9, : Q2(0,TO) — Q3(0) is
8W(TV)(X>Y)Z) :w(TV(X7Y)7Z)+w(TV(Z)X)7Y)+w(TV(Y7 Z)vX)

Thus, if the Sp,(R)-structure is integrable, there exists a compatible
affine connection V such that

0w(Ty) = 0.
We have
0u(Tv)(X,Y,Z) =w(VxY, Z) + w(Y,Vx Z) — w([X,Y], Z)

+w(VzX,Y) +w(X,VzY) —w(Z X],Y)
+w(VyZ, X) +w(Z,VyX) —w([Y, Z], X).

Given that V is a compatible connection we get

0u(Tw)(X,Y, Z) = Xw(Y, Z) —w([X,Y], Z)
+ Zw(X,Y) - w([Z,X],Y)
+Yw(Z, X) - w([Y, Z], X).

On the other hand

dw(X,Y,Z) = Xw(Y,Z) = Yw(X,Z) + Zw(X,Y)
—w([X,Y],Z2)+w([X,Z],Y) —w([Y, Z], X),

and then
0w(Ty) = dw.

Theorem 3.61. If an almost symplectic structure w € Q?(0) is inte-
grable then dw = 0.

3.4.5 GLj,—k(R)-structures
Lemma 3.62. The sequence
0 gl")_, — Hom(R", gly,, ;) = Hom(A’R",R")
% Hom(A2RE,R"/RF) — 0,

s an exact sequence.



Proof. 1. Op : Hom(A’R™,R") — Hom(A%RF R"/RF).
Take ¢ € Hom(R"™, gl ,,_x). Then, for all u € R", we have that
6(u)(RF) C RF,

If ® = 0¢, then for all u,v € R* we get

®(u,v) = Pp(u,v) — ¢p(v,u) € RE.
Define

dp : Hom(A’R™ R"™) — Hom(A’R*, R"/R¥)
® - ®|px mod R,

it follows that dp o @ = 0 and then Im 0 C ker dp. For the other
inclusion, take ® € kerdp. Given that ®(u,-) : R¥ — R¥ the
matrix induced by ®(u,-) : R" — R"”

O(u,e1) P(u,ez) ... P(u,en)

belongs to gl ,_j. Define ¢ € Hom(R", gly ,,_x by

We have that

GQS(U, U) = ¢(u> ’U) - d)(va u)
. % (®(u, v) — B(v, u))

= ®(u,v),

which implies ker 9p = I'm 9. Clearly Jdp is a surjective map.
O



It follows that
T(g[k,n—kz) = HOTTL(A2R'I€, Rn/Rk)a

and if a GLj ,,—,(R)-structure is integrable, then there exists a connec-
tion H = ker w such that

Op(Cy) = 0.

Let D C TO be the distribution induced by the G Ly, ;,—(R)-structure
P. By similar arguments as the ones used on almost symplectic struc-
tures, the map dp descends to

dp : (0, TO) — Q*(D,TO/D)
TV — TV|D mod D.

If P is integrable, then there exists a compatible affine connection V
such that
op(Ty) = 0.

Explicitly, if X,Y € D, then
Tv(X,Y)=VxY —VyX — [X,Y] =0 mod D,

if and only if
VxY -VyX —[X,Y] € D.

Given that V is a compatible connection and X,Y € D, we have that
VxY €D and VyX € D.
Then, dp(Ty) = 0 if and only if every X, Y € D satisfies
[X,Y] € D.
Definition 3.63. A distribution D C TO is called involutive if
[Sec(D), Sec(D)] € Sec(D).

Theorem 3.64. If a distribution D C TO is integrable, then it is in-
volutive.



3.4.6 GLi(C)-structures
Let n = 2k.

Lemma 3.65. The sequence

Hom(R™, gl (C)) 5 Hom(A*R",R")
N Hom(A?R™,R™) & Hom(A2R",R™)
18 an exact sequence.

Proof. 1. Nj: Hom(A’R" R") — Hom(A?R",R"™).

Let ¢ € Hom(R", gl (C)). It can be though of as an element
of R* @ R* by

P(u,v) = P(u)(v).
Given that ¢(-) € gl (C), then

o(u, Jv) = Jo(u,v). (3.4.5)
Take ® € Hom(A?R"™,R") defined by ® = d¢. We have that

(I)(U, U) - ¢(U, U) - (25(’0, U)

- _J((b(u? JU) - ¢(U7 Ju>)7

and

o(u, Jv) — ¢(v, Ju) = ®(u, Jv) + ¢(Jv,u) — ®(v, Ju) — ¢p(Ju,v).

Then

O (u,v) = —=JP(u, Jv) + J®(v, Ju) + ¢(Ju, Jv) — ¢p(Jv, Ju)
= —J®(Ju,v) — J®(u, Jv) + ®(Ju, Jv).

Consequently, if we define

Ny : Hom(A’R™ R™) — Hom(A’R",R")
® — O(u,v) + JO(Ju,v) + JO(u, Jv) — ®(Ju, Jv),



we have that Nyjod = 0. If ker Ny C Im 0, it follows that the
sequence is exact on Nj;. For that, take ® € ker N;. We want an
element ¢ € Hom(R™, gl;,(C)) such that

(u,v) = d(u,v) — ¢(v,u). (3.4.6)
The way we obtain Ny from ¢ uses the homomorphisms
{®(u,v), J®(Ju,v), J®(u, Jv), ®(Ju, Jv)},

where ® was 0¢. Hence, it is fair to ask for ¢ to be a linear
combination of these homomorphisms, which means

d(u,v) = a®(u,v) + bJ®(Ju,v) + cJP(u, Jv), (3.4.7)

with a,b,¢c € R" (the element ®(Ju, Jv) does not appear since
® € ker Nj). Replacing the equation (3.4.7) on equation (3.4.6)
we get

(2a — 1)®(u,v) + (b+¢) (JO(Ju,v) + J®(u, Jv)) = 0.

Moreover, ¢ must satisfy equation (3.4.5), replacing (3.4.7) we
have
(a—b+c)JP(u,v) — (a—b+c)®(u, Jv) =0.

1 1 1
Thus, a = 3 b= 1 and ¢ = 1 It follows that Im 0 = ker N.

. 07 : Hom(A’R"™,R") — Hom/(A’R™,R").
Take n € Hom(A2R™,R") equals to n = N;(®). It satisfies
n(Ju,v) = &(Ju,v) — JO(u,v) + JO(Ju, Jv) + (u, Jv),
and
n(u, Jv) = ®(u, Jv) + JO(Ju, Jv) — J®(u,v) + ®(Ju,v).

Then
n(Ju, ) + nu, Jv) + 2J5(u,v) = 0.



Define
dy : Hom(A’R",R") — Hom(A*R"™,R")
n = n(Ju,v) +n(u, Jv) + 2Jn(u, v),

we have that 95 o Ny = 0, and then Im N; C kerdy. Let
Hom j(A’R" R") be defined by

Homj(A’R™,R") := {n | n(Ju,v) = n(u, Jv) = —Jn(u,v)}.
We will show that ker 9; = Hom j(A’R",R"™).
e Homj(A*R™,R") C ker 9.

If n € Homj(A’R",R™) then

a5(n)(u,v) = n(Ju,v) + n(u, Jv) + 2Jn(u,v)
= —2Jn(u,v) + 2Jn(u,v) = 0.

e kerd; C Hom (A’R"™ R").

If n € ker 95 then
n(Ju,v) +n(u, Jv) + 2Jn(u,v) = 0. (3.4.8)
Hence, replacing u by Ju we get
—n(u,v) + n(Ju, Jv) + 2Jn(Ju,v) = 0,
and replacing v by Jv
n(Ju, Jv) — n(u,v) + 2Jn(u, Jv) = 0.
Subtracting the two equations we get
n(Ju,v) = n(u, Jv).
Replacing this expression on equation (3.4.8) we obtain
n(Ju,v) = =Jn(u,v),
and then n € Hom j(A?R" R").



The relation ker &y C I'm N stands because if n € Hom j(A2R",R"),
then

N, (;n> (1,0) = & (0ot ) + Tn(Tu, ) + nfus, Jo) = (T, Jv))
n

By the lemma
Hom(A?R",R™)/Imd S Hom;(A2R",R™)
(@] = N (D),
and then
T (g1,(C)) = Hom y(A*R™ R"™).
It follows that if a GLj(C)-structure P is integrable, then there exists
a connection H = kerw such that
Ny (Cy) = 0.
By the same arguments used on Spi(R) structures, we have an induced
map
Ny : Q*(0,TO) — Q*(0,TO)
Ty —» Ty (X, YY)+ JTv(JX,Y)+ JIv(X,JY) - Ty (JX,JY).
Then, if P is integrable, there exists a compatible affine connection V

such that
N;(Ty) = 0.

Explicitly, using the compatibility of V, we obtain
N;y(T9)(X,Y) =T (X, Y)+ JTIv(JX,Y) + JIv(X,JY) — Ty (J X, JY)
=-[X,Y]-J(JX, Y]+ [X,JY]) + [JX, JY].

Definition 3.66. The Nijenhuis tensor is the 2-form Ny € Q%(0,TO)
defined by

NJ(X,Y) = [X,Y]+ J([JX,Y] + [X,JY]) = [JX, JY].

Theorem 3.67. If an almost complex structure J € Hom(TO,TO) is
integrable, its Nijenhuis tensor Ny = 0 vanishes.
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