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1. Introduction to Seiberg-Witten theory: 1/23/19

Riccardo gave the first, introductory talk.
In 1982, Matsumoto conjectured that if M is a closed spin manifold, b2(M) ≥ (11/8)|σ(M)|. Here b2(M)

is the second Betti number and σ(M) is the signature. Equality holds for the K3 surface, so this is the best
one can do.

In this seminar we’ll study a theorem of Furuta which makes major progress on this conjecture.

Theorem 1.1 (10/8 theorem [Fur01]). If the intersection form of M is indefinite, b2(M) ≥ (10/8)|σ(M)|+2.

If the intersection form is definite, work of Donaldson [Don83] says that, up to a change of orientation, the
intersection form is diagonalizable, so that case is dealt with.

Furuta’s proof uses both Seiberg-Witten theory and equivariant homotopy theory. It can be pushed a
little bit farther, but not enough to prove the 11/8ths conjecture, as shown recently by Hopkins-Lin-Shi-
Xu [HLSX18].

Today we’ll discuss some background for the proof.

Definition 1.2. Let V → M be a rank-n real oriented vector bundle. A spin structure on V is data
s = (PSpin(V ), τ), where PSpin(V )→M is a principal Spinn-bundle and τ is an isomorphism

τ : PSpin(V )×Spinn Rn
∼=−→ V.

A spin structure on a manifold M is a spin structure on TM .
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Remark 1.3. There are other equivalent definitions of spin structures – for example, just as an orientation
is a trivialization of V over the 1-skeleton of M , a spin structure is equivalent to a trivialization over the
2-skeleton. (

Here’s a cool theorem about spin manifolds.

Theorem 1.4 (Rokhlin [Roh52]). If M is a spin manifold, σ(M) ≡ 0 mod 16.

The signature makes sense when 4 | dimM . Smoothness is crucial here; there are topological spin
4-manifolds, whatever that means, that do not satisfy this theorem. Freedman’s E8 manifold is an example.

Suppose M is a spin 4-manifold. The representation theory of Spin4, in particular the fact that the spin
representation S splits as S+ ⊕ S−, leads to two quaternionic line bundles S+,S− → M with Hermitian
metrics. Physics cares about these bundles, and will lead to powerful theorems in manifold topology.

These bundles have more structure: in particular, they are Clifford bundles.

Definition 1.5. Let S → M be a real vector bundle with a Euclidean metric 〈·, ·〉. A Clifford bundle
structure is data of, for each x ∈ M , the data of a Clifford algebra action C `(TxM) on Sx that varies
smoothly in x, such that the Clifford action is skew-adjoint, meaning

〈v · s1, s2〉 = −〈s1, v · s2〉.

We also require the existence of a connection which is compatible with the Levi-Civita connection on TM .

Given the data of a Clifford bundle, there’s an operator called the Dirac operator D, which is the following
composition:

(1.6) C∞(S)
∇C`
// C∞(T ∗M ⊗ S)

〈·,·〉 // C∞(TM ⊗ S)
Clifford action// C∞(S).

This operator is denoted /∂, a convention due to Feynman. It is a first-order, elliptic differential operator;
ellipticity means that its analysis is nice.

Thus we can consider the Seiberg-Witten equations on a spin 4-manifold. Let (a, ϕ) ∈ Ω1
M (iR)× Γ(S+);

then the equations are

/∂ϕ+ ρ(a)(ϕ) = 0(1.7a)

ρ(d+a)− ϕ⊗ ϕ∗ +
1

2
|ϕ2|id = 0(1.7b)

d∗a = 0.(1.7c)

On a non-spin manifold, the equations are a little more complicated.

2. The monopole equations: 1/28/19

Today, Kai spoke about the monopole equations and some of their important properties, foreshadowing
compactness next week. We begin with some motivation.

Recall that if M is a closed, oriented 4-manifold (in either the topological or smooth category), the
intersection form H2(M)×H2(M)→ Z is a unimodular, symmetric bilinear form.

Question 2.1. Which unimodular, symmetric bilinear forms arise as the intersection forms of smooth or
topological manifolds?

For example, the intersection form of S2 × S2 is H := ( 0 1
1 0 ). The intersection form of CP2 is (1). There’s

an interesting bilinear form called the E8 form

(2.2) E8 =



2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2
1 2


.
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Can this be realized as the intersection form of a smooth 4-manifold? Rokhlin’s theorem tells us the answer is
no, because such a manifold would have to be spin, and 16 - σ(E8). However, Freedman found a topological
manifold ME8 whose intersection form is E8!

The direct sum of two copies of E8 satisfies Rokhlin’s theorem, and this form is realized by the topological
4-manifold ME8 # ME8. However, Donaldson showed this manifold is not smoothable: specifically, the
intersection forms of smooth 4-manifolds can be diagonalized over Z, and E8 cannot.

There’s still more interesting example: consider the K3 surface {z4
1 + z4

2 + z4
3 + z4

4 = 0} ⊂ CP3; its
intersection form is −2E8⊕ 3H. So does it split as a connect sum of 3 copies of S2 × S2 and two copies of
ME8 (with the opposite orientation)? Freedman showed this is true topologically. Smoothly, of course, it
can’t hold, but we might still get something.

Question 2.3. Is there a smooth, oriented 4-manifold N such that, in the smooth category, K3 ∼= N#S2×s2?

This was a longstanding question.
Seiberg-Witten invariants allow us to answer questions such as this – though in this semester, we’re more

interested in the monopole map. In any case, let’s define the Seiberg-Witten equations.
Let M be a smooth, oriented 4-manifold with b+2 odd and a Riemannian metric g, and let s be a spinc

structure on M , which determines a basic class K ∈ H2(X), i.e. an integer cohomology class such that
K ≡ w2(M) mod 2. The spinc structure s defines for us spinor bundles S+ and S−. Let AL denote the space
of U1-connections, A ∈ AL, and ψ ∈ Γ(X,S+) (this is called a spinor). The Seiberg-Witten equations are

DAψ = 0(2.4a)

F+
A + iδ = iσ(ψ).(2.4b)

These equations have a gauge symmetry: if G denotes the group Map(X,S1) with pointwise multiplication,
G acts on AL × Γ(X,S+) on the first factor. Let B+

K denote the quotient minus the locus of spinors which

are identically zero; then B+
K ' CP∞, so we know its cohomology is isomorphic to Z[x], with |x| = 2.

LetMδ
K(g) ⊂ B×K denote the space of solutions to the Seiberg-Witten equations. This space has dimension

(2.5) d :=
1

4

(
K2 − (3σ(M) + 2χ(M))

)
,

and, crucially, defines a class [Mδ
K(g)] ∈ Hd(B

×
K) which does not depend on g for generic choices of the

metric. The Seiberg-Witten invariants are

(2.6) SWX(K) := 〈xd/2, [Mδ
K(g)]〉 ∈ Z.

The fact that b+2 (M) = 0 implies d is even.
This defines a map SW from the basic classes to Z. Taubes showed two important results.

Theorem 2.7 (Vanishing theorem (Taubes)). If M is diffeomorphic to a connect sum of two closed, oriented
4-manifolds X1 #X2, b+2 (X1) > 0, and b+2 (X2) > 0, then the Seiberg-Witten equations of M vanish.

Theorem 2.8 (Nonvanishing theorem (Taubes)). If s is the canonical spinc structure associated to a complex
structure on M and b+2 (M) is positive and off, then SW (±c1(M)) = ±1.

Corollary 2.9. K3 cannot split smoothly as a connect sum.

This leads to an interesting generalization: there are exotic K3 surfaces, homeomorphic but not diffeomor-
phic to the standard K3. They don’t all admit complex structures, and many of them are not symplectic.
Nonetheless, they also don’t split off an S2 × S2: this is a consequence of Furuta’s 10/8 theorem, because if
K3 ∼= N # (S2 × S2), then b2(N) = 20 and σ(N) = −16, but

(2.10) 20 6≥ 10

8
|−16|+ 2.

Now let’s discuss the monopole map. We now assume M is a spin manifold, with spin structure s and spinor
bundles S±. Let A denote a spin connection and consider the spaces

Ã := {A+ i ker d} × (Γ(S+)⊕ Ω1(X))(2.11)

C̃ := {A+ i ker d} ×
(
Γ(S−)⊕ Ω0(X)⊕H1(X;R)⊕ Ω+(X)

)
.(2.12)
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Both of these fiber over H1(X;R): for Ã, A+ α 7→ [α], and there is a map µ̃ : Ã → C defined by

(2.13) (A, φ, a) 7−→ (A,DAφ+ iaφ,d∗a, aharm,d
+a− σ(φ)).

Here

• DA is the Dirac operator DA : Γ(S+)→ Γ(S−).
• aφ denotes Clifford multiplication.
• d∗ is the adjoint of d, which sends k-forms to (k − 1)-forms, and satisfies the equation

(2.14) d∗ = ?d?.

(This is in dimension 4; the sign convention is different in other dimensions.)
• aharm is the harmonic part of a: it’s a general fact that any one-form in dimension 4 splits as
a = aharm + d∗α + dβ for some 0-form β. A form is harmonic if the Laplacian ∆ := dd∗ + d∗d
vanishes on it.
• d+a denotes the self-dual part of da.
• σ(φ) denotes the trace form of the endomorphism φ⊗ φ∗ − (1/2)‖φ‖2id.

Again the group G acts on Γ(S±) by pointwise multiplication, using S1 ∼= U1 ⊂ C. If u ∈ G, u : X → S1 also
acts on the space of spinc connections by d 7→ udu−1. Let G act trivially on forms.

Then, the map µ̃ defined in (2.13) is G-equivariant. Let G0 denote the maps which vanish at some specified

basepoint p, and let A := Ã/G0, C := C̃/G0, and µ := µ̃/G0; thus we get a map µ : A→ C.
Now, both A and C fiber over the Picard group

(2.15) Picg(X) := H1(X;R)/H1(X;Z) = H1(X;R)/G0.

Then S1 = G/G0 acts on µ−1(A, 0, 0, 0, 0), and this is the space we’re interested in.
We would like to study this space, and to do so we’ll need to consider Sobolev spaces. For a fixed integer

k > 2, let Ak be the fiberwise completion of A within L2
k and Ck−1 be the fiberwise completion of C within

L2
k−1. Then, the monopole map µ is a map Ak → Ck−1.

Claim 2.16. This monopole map µ is S1-equivariant, and is a compact perturbation of a linear Fredholm
map.

The S1-equivariance involves chasing through the definition but isn’t bad; the rest is harder. What we can
do is start by listing the terms that define a linear Fredholm map, and then check that the rest is compact.
In the definition of µ̃, the terms A, DAφ, d∗a, aharm, and d+a are linear and Fredholm; thus we just have
to check that a(φ) and σ(φ) are compact. For the first, we can use the fact that Clifford multiplication is
compact, then compose with the map Ck → Ck−1, which is also compact.

Proposition 2.17. Let T = ` + c be a compact perturbation of a linear Fredholm map ` between Hilbert
spaces. The restriction of T to any closed, bounded subset Ω is proper.

This will be restated as Claim 3.5 in the next lecture, and will be proven there.

3. Compactness of the moduli space of Seiberg-Witten solutions: 2/3/19

These are Riccardo’s notes on the lecture he gave, on the compactness of the moduli space of solutions to the
Seiberg-Witten equations. This is a crucial step in Furuta’s construction of finite-dimensional approximations,
and relies on some functional analysis.

3.1. A closer look at the Seiberg-Witten monopole map. Let X be a oriented closed spin 4-manifold.
Let s be a spin structure for it. Let S± be the positive and negative spinor bundles associated to it. Fix a
spin connection A on them.

Recall the Seiberg-Witten equations can be thought as a fiber-preserving S1-equivariant map between
these two S1-Hilbert bundles over H1(X;R):

Ã = (A+ i ker(d))×
(
Γ(S+)⊕ Ω1(X)

)
(3.1a)

C̃ = (A+ i ker(d))×
(
Γ(S−)⊕ Ω0(X)⊕H1(X;R)⊕ Ω+(X)

)
.(3.1b)

The map µ̃ : Ã → C̃ is defined by

(3.2) (A, φ, a) 7−→
(
A,DAφ+ iaφ,d∗a, aharm,d

+a− σ(φ)
)
.

4



As explained in the previous seminar, σ(φ) denotes the trace-free endomorphism i(φ⊗ φ∗ − 1
2‖φ‖

2id) of
S+, considered via the map ρ as a self-dual 2-form on X.

The gauge group G = Autid(s) ∼= Map(X,S1) acts on spinors on the 4-manifold via multiplication with
u : X → S1 and on Spinc connections via addition of ud(u−1). It acts trivially on forms.

The map µ̃ is equivariant with respect to the action of G. Dividing by the free action of the pointed gauge
group we obtain the monopole map

µ = µ̃/G0 : A → C
as a fiber preserving map between the bundles A = Ã/G0 and C = C̃/G0 over Pics(X). The preimage of the
section (A, 0, 0, 0, 0) of C, divided by the residual S1-action, is called themoduli space of monopoles.

For a fixed k > 2, consider the fiberwise L2
k Sobolev completion Ak and the fiberwise L2

k−1 Sobolev
completion Ck−1 of A and C. The monopole map extends to a continuous map Ak → Ck−1 over Pics(X),
which will also be denoted by µ.

We will use the following properties of the monopole map.

• It is S1-equivariant.
• Fiberwise, it is the sum µ = l + c of a linear Fredholm map l and a nonlinear compact operator c.
• Preimages of bounded sets are bounded.

Claim 3.3. The moment map is S1-equivariant.

Proof. Equivariance is immediate. The action is the residual action of the subgroup S1 of gauge transforma-
tions which are constant functions on X. This group acts by complex multiplication on the spaces Γ(S±) of
sections of complex vector bundles and trivially on forms. �

Claim 3.4. Fiberwise, the moment map is the sum µ = l + c of a linear Fredholm map ` and a nonlinear
compact operator c.

Proof. Restricted to a fiber, the monopole map is a sum of the linear Fredholm operator `, consisting of the
elliptic operators DA and d∗ + d+, complemented by projections to and inclusions of harmonic forms. The
nonlinear part of µ is built from the bilinear terms aφ and σ(φ). Multiplication Ak ×Ak → Ck is continuous
for k > 2. Combined with the compact restriction map Ck → Ck−1 (Rellich lemma, see [Per18, Lecture 19, p.
2]) we gain the claimed compactness for c: Images of bounded sets are contained in compact sets. �

Now let us show the following very useful property of compact perturbations of Fredholm operators.

Claim 3.5. The restriction of a compact perturbation l + c : U ′ → U of a linear Fredholm map ` between
Hilbert spaces to any bounded, closed subset is proper.

Proof. Let p denote a projection to the kernel of `. Let A be a bounded closed subset of U ′. It’s easy to see
that we have the following commutative diagram

A U × c(A)× p(A)

U × c(A)× p(A)

U

(`,c,p)

`+c

+∼=

π

We observe that the map h : A → U × c(A) × p(A) given by a 7→ (`(a), c(a), p(a)) is injective and closed.
Injectivity is clear since we are projecting on the kernel.

Closedness is a little bit more involved: let {(`n, cn, pn)}n ⊂ Im(h) converge to (`∞, c∞, p∞). In particular
there is a sequence {an}n ⊂ A such that (`n, cn, pn) = (`(an), c(an), p(an)). We want to prove that
(`∞, c∞, ρ∞) ∈ h(A). Since ` is Fredholm we have the following property: every bounded sequence {xi}i in
the domain whose image is convergent admits a convergent subsequence {xij}j . Since A is closed and bounded
(and any other closed subset of it would be bounded as well hence we can directly work with A), {an}n is
bounded. Since ` is Fredholm we can extract a convergent subsequence {a′n}n converging to a ∈ A (since A
is closed). By the uniqueness of the limit, it’s easy to prove

(3.6) (`∞, c∞, ρ∞) = (`(a), c(a), p(a))
5



which proves the closedness of h(A). This implies that h is proper, since h is an homeomorphism onto its
image.

The addition map +: (u, s, e) 7→ (u+ s, s, e) is an homeomorphism hence proper. The projection to U is
proper since the other two factors are compact. �

3.2. A collection of results. We will list here some results needed for the seminar.
Let U be an open subset of Rn. We can consider the space C∞c (U ;Rr) of compactly supported Rr-valued

functions. Fix a real number p > 1 and an integer k ≥ 0. The Sobolev Lpk norm is defined by

(3.7) ‖f‖p,k :=
∑
|α|<k

sup
U
‖Dαf‖p.

The Sobolev space Lpk(E) is defined to be the completion of Γ(E) in the Lpk norm.
Here are the basic facts about Sobolev spaces.

Sobolev inequality: If k ≤ ` then there exists a constant C such that

(3.8) ‖·‖p,k ≤ C‖·‖p,`,
and hence we have a bounded inclusion of Sobolev spaces Lpk(E) ↪→ Lp` (E).

Rellich lemma: The inclusion Lpk+1(E) ↪→ Lpk(E) is a compact operator.
Morrey inequality: Suppose ` ≥ 0 is an integer such that ` < k − n/p; then there is a constant C

such that

(3.9) ‖·‖C` ≤ C‖·‖p,k,
i.e. there is a bounded inclusion

(3.10) Lpk(E) ↪→ C`(E).

Smoothness: One has

(3.11)
⋂
k≥k0

Lpk(E) = C∞(E).

Lemma 3.12. Over a closed Riemannian 4-manifold, multiplication of smooth functions extends to a bounded
map

(3.13) L2
k(X)⊗ L2

`(X)→ L2
`(X)

provided that k ≥ 3 and k ≥ `. In particular, L2
k(X) is an algebra for k ≥ 3.

There are also bounded multiplication maps for the lower regularity Sobolev spaces in 4 dimensions, but
these bring in Sobolev spaces with p > 2.

Let now D : Γ(E) → Γ(F ) be a differential operator of order m over a closed, oriented, Riemannian
manifold (M, g). The basic point is that D extends to a bounded linear map between Hilbert spaces:

(3.14) D : L2
k+m(E)→ L2

k(F ).

Theorem 3.15 (Elliptic estimate). If D is elliptic of order m, one has estimates on the L2
k-Sobolev norms

for each k ≥ 0:

(3.16) ‖s‖2,k+m ≤ Ck(‖Ds‖2,k + ‖s‖2,k).

Moreover,

(3.17) ‖s‖2,k+m ≤ Ck‖Ds‖2,k
for s ∈ (kerD)⊥ (here ⊥ denotes the L2-orthogonal complement).

There is an analogue for Lp,k+m bounds.
As a consequence of this important theorem we have the following:

Corollary 3.18. An elliptic operator D of order m defines a Fredholm map L2
k+m(E) → L2

k(F ) for any
k ≥ 0. Its index is independent of k. Moreover, its index depends only on the symbol of D.

Let (M, g) be an oriented Riemannian manifold. Let ∇ be an orthogonal covariant derivative in a real,
Euclidean vector bundle E →M . We know that ∇ has a formal adjoint ∇∗.
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Proposition 3.19 (The Lichnérowicz formula). One has

(3.20) D2 = ∇̃∗∇̃+
1

4
scalg · idS +

1

2
ρ(F ◦).

Lemma 3.21.

(3.22)
1

2
d∗d(|s|2) = 〈∇∗∇s, s〉 − |∇s|2.

Proof sketch. See [Per18, Lecture 19, Lemma 1.1]. The idea is to study the integral

(3.23)

∫
M

f〈∇∗∇s, s〉 vol

where f has compact support. �

It’s important to remember that the one above is a pointwise equality.
Working locally one has the following result.

Lemma 3.24. For a smooth function f : M → R with compact support, if p is a local maximum, then
(d∗df)(p) ≥ 0.

The following lemma is an easy calculation.

Lemma 3.25. For φ ∈ Γ(S+), one has

(3.26) ((φφ∗)0χ, χ) = (φ, χ)2 − 1

2
|χ|2|φ|2.

In particular,

(3.27) ((φφ∗)0φ, φ) =
1

2
|φ|4.

Proof. We have

((φφ∗)0χ, χ) = ((φφ∗)χ, χ)− 1

2
(|φ|2χ, χ)

= ((φ, χ)φ, χ)− 1

2
|φ|2|χ|2

= (φ, χ)2 − 1

2
|φ|2|χ|2. �

Lemma 3.28. For η ∈ Ω2
X and φ ∈ Γ(S), one has (ρ(η)φ, φ) ≤ |η||φ|2.

Proof. It suffices to take η = e ∧ f for orthogonal unit vectors e and f . One then has

(ρ(η)φ, φ) = (ρ(e ∧ f)φ, φ)(3.29)

=
1

2
([ρ(e), ρ(f)]φ, φ)(3.30)

= −1

2
(ρ(f)φ, ρ(e)φ)(3.31)

≤ |ρ(e)φ| · |ρ(f)φ|,(3.32)

where in (3.31) we used the fact that ρ has image in the anti-skew-Hermitian matrices. Now since |e| = 1
then |ρ(e)| = 1 (similarly for f), and therefore we conclude. �

Lemma 3.33. Let A be a Clifford connection for the spinor bundle of a spinc structure of X. Let a ∈ Ω1
X(iR);

then

(3.34) DA+aφ = DAφ+ a · φ,

where the last term is the Clifford multiplication between a and φ.
7



Proof. Let’s work in local orthonormal coordinates of TX given by {e1, . . . , en}. We have

DA+aφ =
∑
i

ei · (A+ a)eiφ

=
∑
i

ei ·Aeiφ+
∑
i

ei · a(ei)φ

= DAφ+
∑
i

ei · a(ei)φ

= DAφ+ a
∑
i

eiφ

= DAφ+ a · φ.

Notice that here we used that a ∈ Ω1
X(iR) hence all the coefficients a(ei) are equal to each other, and without

loss of generality we named then a. �

3.3. Compactness of the moduli space. If the bundles A and C were finite-dimensional, then the
boundedness property would be equivalent to properness. In this infinite-dimensional setting, the argument
above can be used the same way as Heine-Borel in the finite-dimensional case to show that the boundedness
condition implies properness. It turns out that the ingredients of the compactness proof for the moduli space
also prove the stronger boundedness property.

Proposition 3.35. Preimages µ−1(B) ⊂ Ak of bounded disk bundles B ⊂ Ck−1 are contained in bounded
disk bundles.

Proof. It is sufficient to prove this fiberwise for the Sobolev completions of the restriction of the monopole
map to the space {A} × (Γ(S+)⊕ ker(d∗)), which maps to {A} ×

(
Γ(S−)⊕ Ω2

+(X)⊕H1(X;R)
)
. We start

by defining the following scalar product: using the elliptic operator D = DA + d+ and its adjoint, define the
L2
k-norm via the scalar product on the respective function spaces through

(·, ·)i = (·, ·)0 + (D·, D·)i−1 for 0 < i ≤ k(3.36a)

(·, ·)0 =

∫
X

〈·, ·〉.(3.36b)

Using the elliptic estimates and continuity (i.e. boundedness) of D it’s easy to see that this norm is equivalent
to the classic Sobolev one. A similar definition can be extended to norms for the Lpk-spaces. Let us
take µ(A, φ, a) = (A,ϕ, b, aharm) ∈ Ck−1 with the norm of the latter bounded by some constant R. The
Lichnérowicz formula (Proposition 3.19) for a connection A+ a = A′ reads

(3.37) D∗A′DA′ = A′ ◦A′ + 1

4
s · idS +

1

2
ρ(F ◦A′)

with s denoting the scalar curvature of X. As a consequence we have a pointwise estimate: using Lemma 3.21,

d∗d|φ|2 = 2〈∇∗A′∇A′φ, φ〉 − 2〈∇A′φ,∇A′φ〉.(3.38)

Then, removing the negative quantity on the left to obtain an inequality,

≤ 2〈∇∗A′∇A′φ, φ〉(3.39)

≤ 2〈D∗A′DA′φ−
s

4
φ− 1

2
ρ(F ◦A′)φ, φ〉.(3.40)

Substituting in the second Seiberg-Witten equation,

≤ 〈2D∗A′ϕ−
s

2
φ− (σ(φ) + b)φ, φ〉(3.41)

Now we move some terms to the left and use the equality DA+a = DA + a together with the fact that the
Dirac operator is self-adjoint to get

d∗d|φ|2 +
s

2
|φ|2 + 〈σ(φ), φ〉 ≤ 〈2D∗A′ϕ, φ〉 − 〈bφ, φ〉.(3.42)
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Next, use Lemma 3.25 to bound σ(φ) and obtain

d∗d|φ|2 +
s

2
|φ|2 +

1

2
|φ|4 ≤ 〈2D∗Aϕ, φ〉+ 2〈a · ϕ, φ〉 − b|φ|2(3.43)

≤ 2 (‖D∗Aϕ‖∞ + ‖a‖∞‖ϕ‖∞) · |φ|+ ‖b‖∞ · |φ|2.(3.44)

≤ c1
(

(1 + ‖a‖∞) ‖ϕ‖L2
k−1
· |φ|+ ‖b‖L2

k−1
· |φ|2

)
,(3.45)

using the Sobolev embedding theorem (Morrey’s inequality) to bound the L∞-norm with the Sobolev norm.
Now we need to estimate ‖a‖∞. First thing, for p > 4 we get a Sobolev estimate ‖a‖∞ ≤ c2‖a‖Lp1 and

then use the elliptic estimate:

‖a‖Lp1 = ‖aharm + a′‖Lp1 ≤ ‖aharm‖Lp1 + ‖a′‖Lp1(3.46)

≤ ‖aharm‖Lp0 + ‖d+a‖Lp0(3.47)

where in (3.46) we used the Hodge decomposition of a and in (3.47) we applied the elliptic estimate to both
component. Recall that d+(aharm) = 0 and d+a = d+a′.

Combining with the equality d+a = b+ σ(φ) then leads to an estimate

‖a‖∞ ≤ c4
(
‖aharm‖Lp0 + ‖b‖Lp0 + ‖σ(φ)‖Lp0

)
(3.48)

≤ c5
(
‖aharm‖Lp0 + ‖b‖L2

k−1
+ ‖φ‖2∞

)
(3.49)

In the last passage we control the Lp0-norm with the L2
k−1-one, since p > 4.

Putting these two estimates together, we get something of the form

d∗d|φ|2 +
1

2
‖s‖∞‖φ‖2∞ +

1

2
‖φ‖4∞ ≤ c

(
1 + c5

(
‖aharm‖Lp0 + ‖b‖L2

k−1
+ ‖φ‖2∞

))
‖ϕ‖L2

k−1
· ‖φ‖∞ + ‖b‖L2

k−1
· ‖φ‖2∞

(3.50)

≤ K‖φ‖3∞ +R‖φ‖2∞,(3.51)

where in (3.51) we applied the bounds we had by assumption on the elements in the image.
So our inequality is now:

d∗d|φ|2 +
1

2
‖φ‖4∞ ≤ K‖φ‖3∞ +R‖φ‖2∞ −

1

2
‖s‖∞‖φ‖2∞(3.52)

≤ K‖φ‖3∞ +R‖φ‖2∞.(3.53)

Now this inequality must hold in particular when φ achieves its maximum, and on that point the Laplacian
is positive, hence we can forget about it and get

1

2
‖φ‖4∞ ≤ K‖φ‖3∞ +R‖φ‖2∞.(3.54)

In particular we bound the 4th power of a quantity with a polynomial in that quantity of degree 3. This
implies that ‖φ‖∞ must be bounded. Therefore we can bound the Lp0-norm of (φ, a) for every p ≥ 1.

Now comes bootstrapping: for i ≤ k, assume inductively L2
i−1-bounds on (φ, a). To obtain L2

i -bounds,
compute:

‖(φ, a)‖2L2
i
− ‖(φ, a)‖2L2

0
= ‖(DAφ, d

+a)‖2L2
i−1

(3.55)

= ‖(φ+ iaφ, b− σ(φ)‖2L2(3.56)

= ‖(φ, b)‖2L2
i−1

+ ‖(iaφ, σ(φ))‖2L2
i−1
.(3.57)

The first equality holds by our definition of the Sobolev norm. The last equality holds as DA′ = DA + a.
The summands in the last expression are bounded by the assumed L2

i−1-bounds on (φ, a) together with the
Sobolev multiplication properties. Note that the steps for i = 2 and 3 require special care (see [Per18, Lecture
21, p. 4]) or use Sobolev embedding together with the fact that we have control on the Lp-norms of (φ, a) for
every p, which gives us control on the respective Sobolev norms for p = 2. �
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4. The Pin−2 -symmetry: 2/11/19

These are Arun’s prepared lecture notes on the group Pin−2 , its representations, and the Pin−2 symmetry
in the Seiberg-Witten equations associated to a spin 4-manifold.

4.1. Some avatars of Pin−2 . In the first part of the talk, I’ll tell you some basic facts about Pin−2 . In
Seiberg-Witten theory, this group is often just called Pin(2), but that could be confusing: there’s also Pin+

2 ,
which is different.

Definition 4.1. Recall that given a vector space V (over R or C) and a quadratic form Q, we can form the
Clifford algebra C `(V,Q) := TV/(v ⊗ v − Q(v)1). That is, we take the tensor algebra and introduce the
relation v2 = Q(v). This is a Z/2-graded algebra with the grading given by the length of a tensor mod 2; let
α denote the grading operator, which acts on the even subspace as 1 and on the odd subspace as −1. It is
common to think of V as sitting inside of C `(V,Q) as the length-1 tensors.

The Clifford group Γ(V,Q) is the group of x ∈ C `(V,Q)× such that α(x)yx−1 ∈ V ⊂ C `(V,Q) for all
y ∈ V .

Consider the involution β : C `(V,Q)→ C `(V,Q) sending v1⊗ · · · ⊗ vn 7→ vn⊗ · · · ⊗ v1. The Clifford norm
is N(v) := β(v) · v, which is a scalar on Γ(V,Q).

The pin group Pin(V,Q) is the kernel of the Clifford norm inside Γ(V,Q). The spin group Spin(V,Q) is
the subgroup of even elements of Pin(V,Q). The following shorthand is standard:

• If V = Rn and Q(x) = 〈x, x〉, C `(V,Q) is denoted C `n and Pin(V,Q) is denoted Pin+
n ; if Q(x) =

−〈x, x〉, they’re denoted C `−n and Pin−n .
• The spin groups in these cases are canonically isomorphic, and denoted Spinn.
• If V = Cn and Q(x) = 〈x, x〉, Pin(V,Q) is denoted Pincn, and Spin(V,Q) is denoted Spincn.

These are all compact, real Lie groups; there’s a map Spinn → SOn which is a double cover, connected if
n ≥ 2 and universal if n ≥ 3. Correspondingly there’s a double cover Pin±n → On. Pin±n has two components
if n > 1; Pin+

1
∼= Z/2× Z/2 and Pin−1

∼= Z/4.

Remark 4.2. Why would you want pin groups anyways? A posteriori, of course, we’re going to find a Pin−2
symmetry in the Seiberg-Witten equations of a spin 4-manifold, but there are other reasons to care. One
rough answer is that there are many places in geometry and physics (index theory, fermionic QFT, . . . ) where
one wants spin or spinc structures, but if you want to try to study the same story on unoriented manifolds,
the analogues are pin and pinc structures. (

Now we focus specifically on Pin−2 , with the hope of getting some intuition for what it is. We know it
contains Spin2 as an index-2 subgroup, and topologically is two circles.

We can get our hands on it by embedding it in Spin3, which we do understand. Consider the map
C `−2 ↪→ C `0−3 (i.e. into the even part of C `−3) sending e1 7→ e1e3 and e2 7→ e2e3. This also sends 1 7→ 1 and
e1e2 7→ e1e2.

There’s an identification C `0−3
∼= H via e1e3 7→ i, e2e3 7→ j, and e1e2 7→ k, which restricts to the (possibly

familiar) isomorphism Spin3
∼= Sp1 (which is also SU2). This then restricts to an identification

(4.3) Pin−2
∼= {eiθ} ∪ {jeiθ} ⊂ Sp1,

which is sometimes taken as a definition in this area, and which we will use heavily. The first thing it gives

us is a representation of Pin−2 on H. We will also let R̃ denote the real representation of Pin−2 which is trivial
on Spin2, and such that j acts by −1.

4.2. Appearance in the Seiberg-Witten equations. Furuta produces the Pin−2 symmetry in the Seiberg-
Witten equations in a very elegant way, doing everything over a point, where it’s close to obvious, and using
the associated bundle construction to move to the tangent and spinor bundles.

Definition 4.4. Here’s some notation for some representations of Spin4
∼= Sp1 × Sp1.

• Let ±H denote the left action of Sp1 × Sp1 on the quaternions H by the first factor (−H) or the
second factor (+H). These are the spinor representations.

• Let −H+ denote the action of Sp1×Sp1 on H by (p, q)·v = pvq−1. For Spin4, this is the representation
Spin4 � SO4 ↪→ GL4(R).

• Let +H+ denote the action of Sp1 × Sp1 by (p, q) · v = qvq−1.
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Given any representation or equivariant vector bundle V , we’ll let Ṽ := V ⊗ R̃.

If (X, s) is a 4-manifold with associated principal Spin4-bundle Ps → X, then we have the associated
bundles

S± ∼= Ps ×Spin4 ±H→ X(4.5a)

TX ∼= Ps ×Spin4 −H+ → X(4.5b)

Λ := R⊕ Λ2
+T
∗X ∼= Ps ×Spin4 +H+ → X.(4.5c)

Now we throw in a Pin−2 -action and extend ±H and +H± to Spin4 × Pin−2 -representations:

• Using the inclusion Pin−2 ↪→ Sp1, we define the action of g ∈ Pin−2 on ±H to be right multiplication
by g−1.

• Let Pin−2 act trivially on ±H+.

We need these to commute with the Spin4-actions but that’s easy, and therefore using (4.5), we have actions
of Pin−2 on the fibers of TX, S±, and Λ.

Proposition 4.6. The monopole map is equivariant with respect to these Pin−2 -actions.

Proof. (1) You can check in one line that the multiplication map −H+ × +H → −H is Spin4 × Pin−2 -
equivariant. Passing to associated bundles, this says Clifford multiplication C : S+ → S− is Pin−2 -
equivariant.

(2) It’s just as easy to check that the map −H+ × −H̃+ → −H̃+ sending a, b 7→ ab is Spin4 × Pin−2 -
equivariant, so the map

(4.7)
C̃ : T ∗X × T̃ ∗X −→ Λ̃

a, b 7−→ (〈a, b〉, (a ∧ b)+),

which Furuta calls “twisted Clifford multiplication,” is Pin−2 -equivariant. (Here we passed from TX
to T ∗X, of course using the metric to do so.)

(3) All named Pin−2 -representations have been unitary (orthogonal for R̃), so the actions of Pin−2 on
S± are unitary (with respect to the Hermitian metric induced from the Riemannian metric on X),

and on T ∗X, T̃ ∗X, Λ, and Λ̃ are orthogonal. Therefore the covariant derivatives associated to these
bundles are also Pin−2 -equivariant, hence so are the Dirac operators

D1 := C ◦ ∇ : Γ(S+) −→ Γ(S−)(4.8a)

D2 := C̃ ◦ ∇ : Γ(T̃ ∗X) −→ Γ(Λ̃).(4.8b)

(Here D2 can be identified with d∗ + d+.) Therefore D := D1 ⊕D2 is also Pin−2 -equivariant.
(4) Now consider the map

(4.9)
+H× −H̃+ −→ −H× +H̃+

φ, a 7−→ (aφi, φiφ).

In a similar way, one can check this is a (nonlinear) Spin4 × Pin−2 -equivariant map. It passes to a

map of associated bundles Q : Γ(S+ ⊕ T̃ ∗M)→ Γ(S− ⊕ Λ̃), which is Pin−2 -equivariant.1

Therefore the monopole map SW = D +Q is Pin−2 -equivariant. Because the Pin−2 -action is continuous, it
doesn’t matter what regularity we impose on sections: this fact is true both for smooth sections and their
Sobolev completions. �

4.3. Some computations with the representation ring. The proof of the 10/8ths theorem requires a
few more pure representation-theoretic results, and since we have time, I’ll go over them now. Let’s start by
listing some representations of Pin−2 .

Example 4.10. The first representations you’d write down are the trivial representation 1 and the sign

representation σ := C̃.
We can next define some irreducible two-dimensional representations hd, indexed by d ∈ Z, as follows:

Pin−2 = {eiθ}∪ {jeiθ}, so let the underlying complex vector space of hd be H = C2, with j acting in the usual

1In fact, since the second factor is purely imaginary, we know the image isn’t just in S− ⊕ Λ̃, but in S− ⊕ Λ2
+T

∗X.
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way and eiθ acting by (eidθ, e−idθ). You can prove these are irreducible by just choosing a nonzero quaternion
and pushing it around with elements of Pin−2 until you get a basis, and this isn’t hard.

As a particular example, h1 is H with the Pin−2 -action restricted from the usual Spin3 = Sp1-action. (

Theorem 4.11. The above is a complete list of isomorphism classes of irreducible representations of Pin−2 .

I don’t know how one proves this: it’s asserted by both Furuta and Bryan without proof.

Definition 4.12. The representation ring of a group G, denoted RU (G), is the Grothendieck ring of the
category of complex representations of G. That is, it is the abelian group freely generated by isomorphism
classes of finite-dimensional complex representations of G modulo the relations [V ] = [V ′] + [V ′′] whenever
there is a short exact sequence 0→ V ′ → V → V ′′ → 0. The ring structure is defined by [V ] · [W ] := [V ⊗W ].

Let’s begin with a simple example.

Proposition 4.13. The representation ring of Spin2 = U1 is Z[t, t−1], where t : U1 → U1 is the identity
map.

Proof. We can compute by taking the irreducible representations as generators and computing their relations.
The irreducible representations of U1 are indexed by Z, with the dth one χd sending z 7→ zd. The tensor
product of one-dimensional matrices is the ordinary product in C, so χd ⊗ χd′ = χd+d′ . Therefore χ1 7→ t
gives us Z[t, t−1]. �

Lemma 4.14. There’s an isomorphism hd1 ⊗ hd2 ∼= hd1+d2 ⊕ hd1−d2 .

Proof. Inside hd1 ⊗ hd2 ∼= H⊗C H, the subspace V := spanC{1⊗ 1, j⊗ j} is preserved by j and eiθ, hence is a

subrepresentation. The same applies to W := spanC{1⊗ j, j⊗ 1}. The vector space isomorphism V
∼=→ hd1+d2

sending 1⊗ 1 7→ e1 and j ⊗ j 7→ e2 is Pin−2 -equivariant, which you can quickly check by hand; the same idea
applies to W ∼= hd1−d2 . �

Corollary 4.15.

RU (Pin−2 ) ∼= Z[σ, hd | d ∈ Z]/(σ2, σhd = h−d, hd1hd2 = hd1+d2 + hd1−d2).

The last thing we need to do is compute the image of the restriction map RU (Pin−2 )→ RU (Spin2).

Corollary 4.16. Under the above identifications, the map RU (Pin−2 ) → RU (Spin2) sends σ 7→ 1 and
hd 7→ td + t−d.

5. Finite-dimensional approximations, I: 2/18/19

“These vector spaces are indexed by your favorite barnyard animals.”

Today, Cameron spoke about finite-dimensional approximations to the monopole map. The idea is that
taking the one-point compactification of its domain and codomain defines a Pin−2 -equivariant map between
infinite-dimensional spheres. This is pretty cool, except that infinite-dimensional spheres are contractible,
even equivariantly, so we need to take some finite-dimensional approximation in order to obtain homotopically
interesting information.

The following theorem is the goal of the next two lectures.

Theorem 5.1. Let M be a closed, spin 4-manifold such that b1(M) = 0, b+2 (M) > 0, and σ(M) < 0. Then
there are finite-dimensional Pin−2 -representations Vλ and Wλ and Pin−2 -equivariant maps Dλ : Vλ → Wλ

(linear) and Qλ : Vλ →Wλ (quadratic) such that

(1) as Pin−2 -representations, Vλ ∼= Hk+m ⊕ R̃n for some k, m, and n; and
(2) there are Pin−2 -equivariant metrics on Vλ and Wλ and an R > 0 such that (Dλ +Qλ)(v) 6= 0 for all

v ∈ SR(0).

Recall that Pin−2 acts on H through the inclusion Pin−2 ↪→ Spin3 = Sp1 that we discussed last time, and

on R̃ as the sign representation on R, which is zero on Spin2 ⊂ Pin−2 , but such that the element we called j
acts by −1.

Today we will prove (2), leaving the determination of the representations for next week.
12



There’s still plenty to say about the statement of Theorem 5.1 – what’s λ? How do we determine Vλ, Wλ,
Dλ, and Qλ? What are k, m, and n? These will all be answered during the proof.

Let S± →M be the spinor bundles, so we have a Clifford multiplication map C : T ∗M ⊗ S+ → S− and a

Dirac operator D1 : |Gamma(S+)→ Γ(S−), and a twisted Clifford multiplication map C̃ : T ∗M ⊗ T̃ ∗M → Λ̃

which defines another Dirac operator D2 : Γ(T̃ ∗M)→ Γ(Λ̃). Then D = D1 +D2, as we discussed last time.

Theorem 5.2 (Weitzenböck). D∗D is equal to ∇∗∇ up to a zeroth-order term.

Corollary 5.3 (G̊arding’s inequality). There is some k ≥ 0 such that

〈D∗Dψ,ψ〉L2 + k〈ψ,ψ〉L2 ≥ ‖ψ‖2L2
1
,

where L2
1 denote the Sobolev norm.

Along the way we’ll need another Sobolev space.

Definition 5.4. The L2
−1 norm of an f ∈ C∞(E) is the smallest C ∈ R such that 〈f, ψ〉L2 ≤ C‖ψ‖L2

1
for

ψ ∈ L2
1(E), if it exists. The completion of C∞(E) under this norm is denoted L2

−1(E) (or just L2
−1 if E is

clear from context).

Hence there is an embedding L2 ↪→ L2
−1.

Fact. The L2 inner product defines a continuous nondegenerate pairing L2
−1 ⊗ L2

1 → C, hence identifies L2
−1

as the continuous dual of L2
1, i.e. the space of continuous linear functionals on L2

1. (

Therefore we can restate G̊arding’s inequality as

(5.5) ‖(D∗D + k)ψ‖L2
−1
≥ ‖ψ‖L2

1
.

Now, D∗D is a second-order differential operator, hence is a map L2
1 → L2

−1. Thus (5.5) implies D∗D + k is
a continuous injection L2

1 ↪→ L2
−1.

Lemma 5.6. In fact, D∗D + k is onto.

Proof. The map 〈〈·, ·〉〉 : L2 × L2 → C defined by

(5.7) 〈〈ϕ,ψ〉〉 := 〈(D∗D + k)ϕ,ψ〉L2

defines an inner product on L2, and L2 is complete with respect to 〈〈·, ·〉〉. Therefore, by the Riesz
representation theorem, if f ∈ L2

−1, then on L2
1, 〈f, ·〉L2 = 〈〈ϕ, ·〉〉 for some ϕ ∈ L2

1. In particular,

(5.8) 〈(D∗D + k)ϕ,ψ〉 = 〈f, ψ〉

for all ψ ∈ L2
1, so (D∗D + k)ϕ = f . �

Therefore we can invert D∗D + k. Consider the composition

(5.9) T : L2 � � // L2
−1L

2
1 ∼=

(D∗D+k)−1

//� � // L2.

All three maps are continuous linear maps, and the third is compact, by the Kondrachov theorem. Therefore
T is compact, and since

(5.10) 〈(D∗D + k)ϕ,ψ〉 = 〈ϕ, (D∗D + k)ψ〉,

then T is self-adjoint. Therefore we can throw the nicest spectral theorem at T .

Theorem 5.11 (Spectral theorem for compact, self-adjoint operators). Let H be a separable Hilbert space
and T : H → H be a compact self-adjoint operator. Then there is an orthonormal basis2 {en} for H such that
Ten = µen for a µ ∈ R≥0, and µ1 ≥ µ2 ≥ · · · with µn ≥ 0 as n→∞.

2This is a Hilbert basis, not an algebraic basis, in that elements of H can be infinite sums of basis elements.
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In our case, we conclude that (TODO: I missed this calculation). Therefore if you fix a λ > 0, then there
are finitely many eigenvalues λn ≤ λ, meaning that if Vλ denotes the span of the eigenvectors of λn, then Vλ
is finite-dimensional.

The operator DD∗ has the same spectrum as D∗D, and the eigenspace for a given eigenvalue is the same.
So we can do exactly the same thing to define a finite-dimensional subspace Wλ ⊂W , and D(Vλ) ⊂Wλ; let
Dλ := D|Vλ .

TODO: what happened next (studying Q) was erased before I could write it down. Sorry about that.

Anyways, we have our operator Qλ : Vλ →W
pλ→Wλ. Let pλ := 1− pλ. Then,

(1) as λ→∞, limλ→∞‖pλw‖W → 0, and
(2) because every bounded sequence in a Hilbert space has a weakly convergent subsequence, then for any

bounded sequence {vn} ∈ V , there’s a subsequence {vni} weakly converging to some v∞. Because Q
is compact, {Qvni} converges strongly to some w∞, and Qv∞ = w∞.

Now, since the zero set of the monopole map D + Q is compact, there is some R, as promised, such that
D +Q does not vnaish on the sphere of radius R. To prove part (2) of Theorem 5.1, we need to bring this
down to Dλ +Qλ.

Lemma 5.12. There is an ε > 0 such that if ‖u‖V = R, then ‖(D +Q)v‖W ≥ ε.

Proof. Assume otherwise; then there’s a sequence {vn} ∈ SR(0) such that (D +Q)vi → 0. With {vni}, v∞,
and w∞ as above, we know Qvni converges strongly to Qv∞, so Dvni → −Qv∞, and therefore vni → v∞. In
particular v∞ ∈ SR(0) but (D +Q)(v∞) = 0, which is a contradiction. �

Lemma 5.13. For λ sufficiently large, if ‖v‖V = R, then ‖pλQv‖W < ε.

Proof. Assume not; then there are sequences {λn} and {vn} such that λn →∞, vn ∈ SR(0), and vi ⇀ v∞,
such that ‖pλnQvn‖ ≥ ε. Let w∞ := Qv∞ as before.

Restricting to a subsequence {vni} as before, again Qvni →∞, so limn→∞‖pλw∞‖ = 0. Therefore there’s
some N such that

(5.14) ‖pλniQv∞‖ = ‖pλniw∞‖ ≤
ε

2

whenever i ≥ N , and therefore for i� 0,

(5.15) ‖pλni (Qvni −Qv∞)‖ ≤ ε

2
.

�

Therefore, since Qλ = pλ ◦Q, if ‖v‖ = R, TODOmissed the last part.

6. Finite-dimensional approximations, II: 2/25/19

“Remember, these are not just vector spaces but Pin−2 -representations, and we can pin down
what they are. . . oh no.”

Today Leon spoke, continuing the description of the finite-dimensional approximations of the monopole map,
and with the specific goal of proving part (1) of Theorem 5.1.

Today we will heavily use the Dirac operators: Furuta uses D1 : Γ(S+)→ Γ(S−) to denote the usual Dirac

operator, and uses D2 : Γ(T̃ ∗M)→ Γ(Λ̃) to denote the operator d∗ ⊕ d+ : Ωi(M)→ Ω0(M)⊕ Ω2
+(M). Then

D := D1 ⊕D2; we’ll discuss the quadratic part later.
Last time, we defined the finite-dimensional approximations V iλ and W i

λ: given λ ∈ R, V iλ is the space
spanned by the eigenspaces of (Di)∗Di corresponding to eigenvalues less than λ, and W i

λ is defined similarly.

Because D and Q are Pin−2 -equivariant, these are in fact Pin−2 -representations. We’d like to know what
representations they are, and as a starting point, we’d like to know their dimensions. This is hard, but we
will be able to compute the relative dimension.

Lemma 6.1. For i = 1, 2, dimC V
i
λ − dimCW

i
λ = indCD

i.
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Proof. For λ′ < λ, let V i=λ′ denote the λ′-eigenspace of Di, so that V iλ is a direct sum over all such V i=λ′ ; then
define W i

=λ′ similarly. Then

indCD
i =

∑
λ′<λ

indC(Di|V i=λ : V i=λ →W i
=λ)(6.2)

=
∑
λ′<λ

dimC V
i
=λ′ − dimCW

i
=λ′ = dimC Vλ − dimCWλ. �

Now let’s recall some of the Pin−2 -representations we discussed in earlier lectures: the action on H via the

inclusion Pin−2 ↪→ Spin3 = Sp1, and the sign action on R, which is denoted R̃; this is trivial on Spin2 ⊂ Pin−2
but j ∈ Pin−2 acts by −1.

Lemma 6.3. There exist m,m′, n, n′ ∈ N such that V 1
λ
∼= Hm, W 1

λ
∼= Hm′ , V 2

λ
∼= R̃n, and W 2

λ
∼= R̃n′ .

Proof. Because V 1
λ is a finite-dimensional subspace of Γ(S+), there exist p1, . . . , p` ∈ M such that the

evaluation map

(6.4) ev : Γ(S+) −→
⊕̀
i=1

(S+)pi .

is injective when restricted to V 1
λ . Since ev is Pin−2 -equivariant and (Sp)+ ∼= H, then we have a Pin−2 -

equivariant inclusion V 1
λ ↪→ HM for some M , and since H is an irreducible Pin−2 -representation, this forces

V 1
λ
∼= Hm for some m.

The other three identities proceed in the same way. �

Now we’ll throw the Atiyah-Singer index theorem at D1. This tells us that

indR(D1) = 2〈Â(M), [M ]〉,(6.5)

where Â(M) is the Â-genus (pronounced “A-hat”) Â(M) ∈ H∗(M), a characteristic class.3 Bordism

arguments tell us that the Â-genus is a linear combination of Pontrjagin classes, and in dimension 4 we get
that

= −
〈
p1(M)

12
, [M ]

〉
,(6.6)

which by the Hirzebruch signature theorem is

= −σ(M)

4
.(6.7)

Because this is an index, it’s an integer, and since D1 is quaternionic, it’s divisible by 4.

Corollary 6.8 (Rokhlin’s theorem). If M is a closed spin 4-manifold, σ(M) is divisible by 16.

Let k := −σ(M)/16. Because this is the index of D1 over H, we know there’s an m ∈ N such that
V ′λ
∼= Hm+k and W ′λ

∼= Hm.
Now let’s compute the index of D2. This is

(6.9) − indD2 = dim coker(d∗ : Ω1 → Ω0) + dim ker(d+ : Ω1 → Ω+).

For the first factor,

(6.10) dim coker d∗ = dim ker(d: Ω0 → Ω1) = b0(M) = 1,

since M is connected. The other piece will be a little harder.

Lemma 6.11.

(1) If α ∈ Ω1(M), then d+α = 0 iff dα = 0.
(2) There’s a space H+ ⊂ Ω+

2 (M) such that Ω+
2 (M) = Im(d+)⊕H+, and

(3) dimH+ = b+2 (M).

We’ll come back to this later, but as a corollary, we know indD2 = −1− b+2 . Therefore we know that in
Lemma 6.3, n′ = n + b+2 + 1. Crucially, the indices did not depend on λ, so we’re interested in k and b+2 ,
moreso than m and n.

Now we turn to Q, the quadratic part of the monopole map. Recall that Q is a direct sum of two operators:
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• Q1 : Γ(S+ ⊕ T̃ ∗M)→ Γ(S−) sends φ, a 7→ iaφ, and

• Q2 : Γ(S+ ⊕ T̃ ∗M)→ Γ(Λ̃) = Ω0(M)⊕ Ω2
+(M) sends φ, a 7→ φaφ.

TODO: I missed this part, sorry. There’s Wλ and then you need one more dimension, which lands in a space

called W̃λ.
In summary, we have the following theorem.

Theorem 6.12. For λ� 0, the monopole map defines a Pin−2 -equivariant map Dλ +Qλ : Vλ → W̃λ between

finite-dimensional Pin−2 -equivariant representations such that Vλ ∼= Hm+k ⊕ R̃n and W̃λ
∼= Hm ⊕ R̃n+b+2 ,

where m and n may depend on λ, but k doesn’t. Moreover, there are Pin−2 -invariant inner products on Vλ
and Wλ, and an R > 0 not depending on λ, such that the image of the sphere of radius R in Vλ is nonzero.

In particular, we can restrict to SR(Vλ) and obtain a map between spheres with Pin−2 -actions. That is,
existence of M tells us that some Pin−2 -equivariant homotopy class of maps between spheres exists; we will
use some equivariant homotopy theory to show nonexistence of certain such maps, and therefore obtain the
bound on the ratio of the signature and b2(M).

Proof of Lemma 6.11. For the first part, suppose dα ∈ Ω−, which means that ?dα = −dα. Since d∗ = −?d?,
then ?dα = −d∗(?−1α), and ?−1α ∈ Ω3. Using the splitting

(6.13) Ω2 = Im(d)⊕ Im(d∗)⊕H2,

we get that d∗(?−1α) = dα.
For the second part, we use (6.13) again. Let π : Ω2 → Ω+ be defined by (1 + ?)/2. We know Ω+ =

Im(d+) + Im((d∗)+) +H+, so it suffices to show that Im d+ ⊥ H+ and Im d+ = Im((d∗)+). For the first one,
if d+α ∈ Im(d+) and β ∈ H+, we have

(6.14) 〈d+α, β〉 = 〈dα, β〉 = 〈α,d∗β〉 = 0.

For the second part, let α ∈ Ω3; then

(6.15) π(d∗α) = π(−?d?α) = −πd(?α) = −d+(?α).

For the last part, recall that b+2 is the maximal dimension of a positive-definite subspace of H with respect to
the pairing H2 ⊗H2 → R. Also recall that α ∧ ?β = 〈α, β〉dvol, so if α ∈ H2 is self-dual, then

(6.16)

∫
〈α ∧ α〉dvol =

∫
α ∧ ?α =

∫
〈α, α〉dvol ≥ 0.

with equality iff α = 0. Therefore dimH+ ≤ b+2 , and because the same argument applies to H−, we get
dimH− ≤ b−2 , so using the orthogonal splitting H2 = H2

+ ⊕H2
−, and therefore dimH+ = b+2 . �

7. Equivariant K-theory: 3/4/19

Today, Richard spoke about equivariant K-theory, following Bryan’s paper [?], which is a little simpler.
As usual, suppose X is a smooth, spin 4-manifold with b1 = 0 and nonpositive signature. Bryan is

interested in a generalization in which there is a spin diffeomorphism τ : X → X of order 2p or 2p+1, where p
is prime.

Definition 7.1. Let X be a spin n-manifold and π : P → X be the principal Spinn-bundle of frames. A spin
diffeomorphism is data of a diffeomorphism τ : X → X and a Spinn-equivariant map τ̃ : P → P which covers
τ (i.e. τ ◦ π = π ◦ τ̃), and such that τ∗P − P = 0 ∈ H1(X;Z/2) (recalling that spin structures are a torsor
over H1(X;Z/2)).

Example 7.2. On any spin manifold, there is a spin diffeomorphism called the spin flip which is the identity
on the manifold but is the nontrivial automorphism of the double cover PSpin → PSO. (

Since τ has order 2p or 2p+1, then τ2p is either the identity or the spin flip. In the former case, the
symmetry group is Gev := Pin−2 × Z/2p, and in the latter case, it’s Godd := Pin−2 ×Z/2 Z/2p−1, where ×Z/2
means modding out by the common Z/2 subgroup.

Last time, we built a nonlinear Pin−2 -equivariant map Dλ +Qλ : Vλ → W̃λ. Complexifying, we obtain a

map f : Vλ,C → W̃λ,C given by

(7.3) f(u⊗ 1 + v ⊗ i) := (Dλ +Qλ)u⊗ 1 + (Dλ +Qλ)v ⊗ i.
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Let BVλ,C denote the unit ball in Vλ,C and SVλ,C denote its boundary. Then, f(SVλ,C) does not contain zero,
so we can compose with the projection

(7.4) W̃λ,C −→ SW̃λ,C = (W̃λ,C \ 0)/R+

and obtain a Pin−2 -equivariant map f : SVλ,C → SW̃λ,C, i.e. we get a map f̃ : BVλ,C → BW̃λ,C which sends

the boundary to the boundary. Therefore it is a Pin−2 -equivariant map of pairs

(7.5) f̂ : (BVλ,C, SVλ,C) −→ (BW̃λ,C, SW̃λ,C).

This is a Pin−2 -equivariant map of spheres, and we will study it using K-theory and index theorem.

Remark 7.6. The disc mod sphere construction may remind you of the Thom space construction. Given a
rank-n vector bundle E → X with a Euclidean metric ļet D(E) denote the unit disc bundle and S(E) denote
the unit sphere. Then the Thom space of E, denoted XE , is the quotient D(E)/S(E).

If E is oriented (automatic if it’s a complex vector bundle), then there is a Thom class τE ∈ Hn(XE) such
that the map H∗(X)→ H∗+n(XE) sending a 7→ a ^ τE is an isomorphism, called the Thom isomorphism. (

Definition 7.7. The complex K-group K0(X) of a space X (also denoted KU 0(X)) is the Grothendieck
group of the category of vector bundles on X under direct sum, i.e. it is the group generated by isomorphism
classes of vector bundles with the relation [V ⊕W ] = [V ] + [W ].

Remark 7.8. If E → X is a complex vector bundle (or more generally is even-dimensional and has a spinc

structure), there is a Thom isomorphism in K-theory KU 0(X)→ KU 0(XE). Said another way, KU 0(E) is
a free KU0(X)-module on one generator. (

Now we add equivariance to the mix.

Definition 7.9. Let G be a compact Lie group acting on a topological space X. The G-equivariant complex
K-group K0

G(X) (or KU 0
G(X)) is the Grothendieck group of G-equivariant vector bundles on X under direct

sum.

Theorem 7.10 (Atiyah). If E → X is a G-equivariant complex vector bundle, there is a Thom isomorphism

K0
G(X)

∼=→ K0
G(XE).

For example, K0
G(pt) ∼= RU (G), the representation ring of G, and therefore the G-equivariant K-group of

a sphere (the Thom space of a vector space thought of as a vector bundle over a point) is also isomorphic to
RU (G).

Applied to our map f : Vλ,C →Wλ,C, we get a pullback map

(7.11) f∗ : K0
G(BW̃λ,C, SW̃λ,C) −→ K0

G(BVλ,C, SVλ,C),

where G = Pin−2 , which is a map RU (G)→ RU (G). If λV and λW denote the Bott classes in K0
G(V ), resp.

K0
G(W ),, then f∗(λW ) = αfλV for some (possibly virtual) representation αf .4 We want to understand αf ,

so we will take its character, the class function g 7→ tr(α(g)).5

Now let C ⊂ G be a topologicall cyclic subgroup of G, i.e. either a finite cyclic subgroup or an S1, and
let c be a generator (if C is finite) or a nonzero element (if C ∼= S1). We will try to study the action of f∗

on C-fixed points, which is a common technique in equivariant homotopy theory. Specifically, we have a
commutative diagram

(7.12)

K0
G(BW̃λ,C, SW̃λ,C)

resC

��

f∗ // K0
G(BVλ,C, SVλ,C)

resC

��
K0
C(BW̃C

λ,C, SW̃
C
λ,C)

(fC)∗ // K0
C(BV Cλ,C, SV

C
λ,C).

4Is αf in general an actual representation? Probably not, but we’re not sure.
5The character formula only makes sense literally for actual representations, and αf might be a difference of two representations,

in which case we take the difference of their characters. This does not depend on how we write αf as a difference of two actual

representations.
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Now C acts trivially on V Cλ,C and W̃C
λ,C, so

(7.13) (fC)∗λ
W̃C
λ,C

= d(fC)λV Cλ,C ,

where d(fC) = 0 if dim W̃C
λ,C 6= dimV Cλ,C.

Remark 7.14. αf is called the K-theoretic degree of f and d is the topological degree. (

Then, using (7.12),

(7.15) resC(λ
W̃λ,C

) = λ−1((W̃C
λ,C)⊥)λ

W̃C
λ,C
,

where

(7.16) λ−1β =
∑

(−1)iβi.

Then we compute, following tom Dieck,

(fC)∗(resC λW ) = resC(f∗(λW ))

(fC)∗((λ−1(WC)⊥)λWC ) = resC(αfλV ) = resC(αf )λV

(fC)∗(λ−1(WC)⊥)d(fC)λV C = resC(αf )λ−1((V C)⊥)λV C .

If g is the generator above, then λ−1((V C)⊥)(g) 6= 0, so

αf (c) = d(fC)λ−1((WC)⊥ − (V C)⊥)(g)(7.17)

trg(αf ) = d(fg) trg(λ−1(W⊥g − V ⊥g )).(7.18)

Here λ−1(r) = 1− r. This second equation is very useful: we will be able to throw index theory at the degree,
and representation theory at the trace, and there are good formulas for it.

8. Proof of the 10/8 theorem: 3/11/19

These are Arun’s prepared lecture notes for this talk. I’ll finish the proof of the 10/8 theorem and begin
laying the groundwork for the rest of Bryan’s results.

8.1. Recalling some facts about equivariant K-theory. Last week, Richard told us about a character
formula for equivariant K-theory. I’ll write it down first, and then explain what’s going on. Let G be
a compact Lie group, V and W be two complex G-representations, and f : (BV, SV ) → (BW,SW ) be a
G-equivariant map from the unit disc in V to the unit disc in W preserving boundaries. Then

(8.1) trg(αf ) = d(fg)(λ−1((W g)⊥ − (V g)⊥)).

Here’s what the notation means.

• αf ∈ RU (G) is the K-theoretic degree of f . The G-equivariant Thom isomorphism theorem defines
RU (G)-module isomorphisms ofK0

G(BV, SV ) andK0
G(BW,SW ) with RU (G), so f∗ : K0

G(BW,SW )→
K0
G(BV, SV ) is multiplication by some element of RU (G), and that’s αf .

• trg just denotes the trace of g ∈ G in the virtual representation αf . That is, if you write αf = ρ1− ρ2

in RU (G), where ρ1 and ρ2 are bona fide G-representations, then trg(αf ) is tr(ρ1(g))− tr(ρ2(g)).
• fg, V g, and W g denote the fixed points with respect to g. (V g)⊥ is the orthogonal complement with

respect to a G-invariant inner product on V , and similarly for (W g)⊥.
• d(fg) means the ordinary degree in topology – in particular, zero if V g and W g have different

dimensions.
• Finally, if ρ is a G-representation,

(8.2) λ−1(ρ) :=
∑
i≥0

(−1)i[Λiρ].
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8.2. The proof. First, recall the representation theory of Pin−2 :

• Two one-dimensional representations: the trivial representation 1 and the sign representation σ
(which Bryan calls 1̃). The latter is trivial on Spin2 ⊂ Pin−2 , but j acts by −1.
• Given a d ∈ Z>0, let hd be the representation of Pin−2 on H = C⊕ C where eiθ acts by (eidθ, e−idθ)

and j acts on H as normal.

These generate RU (Pin−2 ), and the relations are σ2 = 1, σhd = h−d, and hd1hd2 = hd1+d2 + h|d1−d2|. You
can verify this by chasing around some matrices.

Therefore if α = [Vλ −Wλ], we can write it as

(8.3) α = α0 + α̃0σ +
∑

αihi,

which is a finite sum (only finitely many αi are nonzero).
Let φ ∈ Spin2 generate a dense subgroup, so φ acts trivially on σ and nontrivially on every hi. Recall that

V = (k +m)h1 + nσ and W = h1m+ (n+ b+2 )σ. Since hφ1 = 0 but φ acts trivially on σ, then V φ = nσ and
Wφ = (n+ b+2 )σ. Because b+2 > 0, then dim(V φ) 6= dim(Wφ), and therefore the K-theory degree d(fφ) = 0.
Plugging into the degree formula,

(8.4) trφ(α) = 0 = α0 + α̃0 +
∑
i>0

αi(φ
i + φ−i),

recalling that hd|Spin2
∼= td + t−d. Therefore α0 = α̃0 and αi = 0 for i > 0.

Now j ∈ Pin−2 acts nontrivially on both h1 and σ, so dim(V j) = dim(W j) = 0. This means d(f j) = 1
somewhat vacuously. In particular, (V j)⊥ = V j and (W j)⊥ = W j . Let’s recall from the index-theoretic
calculation that there are m and n such that

(8.5)
V = 2(k +m)h1 + nσ

W = 2mh1 + (n+ b+2 )σ.

The factor of two that appears is because V and W have been complexified. Since σ = R̃⊗C, it doesn’t pick
up a factor of two, but h1 ⊗R C = 2h does (it was already complex).

Now let’s use the character formula applied to j ∈ Pin−2 . Since V j = 0, (V j)⊥ = V , and the same goes for
W . Therefore

trj(α) = trj(λ−1(V −W )) = trj(λ−1(b+2 σ − 2kh1)).(8.6)

Since σ is one-dimensional, Λ∗σ = 1+σ and λ−1σ = 1−σ. Since h1 is two-dimensional, Λ0h1 = 1, Λ1h1 = h1,
and Λ>2h1 = 0; one then checks that det(j : h1 → h1) = 1 to see Λ2h1 = 1 and not σ. Thus

= trj

(
(1− σ)b

+
2 (2− h1)−2k

)
.(8.7)

Since trj(σ) = −1 and trj(h1) = 0,

= 2b
+
2 −2k.(8.8)

Comparing with (8.4),

(8.9) trj(α) = trj(α0(1− σ)) = 2α0,

so the degree is α = 2b
+
2 −2k−1. Because this is an integer, 2k + 1 ≤ b+2 .

Now we’re almost home. Recalling that b2 = b+2 + b−2 and σ = b+2 − b
−
2 , and that k = −σ/16,

−1

8
σ + 1 ≤ b+2(8.10)

−1

4
σ + 2 ≤ 2b+2 = 2b+2 + b−2 − b

−
2(8.11)

= b2 + σ(8.12)

−5

4
σ + 2 ≤ b2.(8.13)

The sign on σ is kind of irrelevant: switching the orientation on X switches the sign on σ and leaves b2 alone.
So we can replace σ with |σ| and conclude.
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9. Bryan’s generalization: 3/25/19

Again, these are Arun’s notes, prepared in advance for this talk.
Recall that ifX is a spin manifold, a spin action of a groupG onX is an action through spin diffeomorphisms.

That is, for every g ∈ G, we get a map ϕg : X → X and a map of the principal Spinn-bundles of frames
ϕ̂g : PX → PX covering ϕg, and these must satisfy the usual axioms for an action (ϕgh = ϕhϕg, etc.).

Definition 9.1. Let (τ, τ̂) be a spin diffeomorphism of X, meaning τ : X → X is a diffeomorphism and τ̂ is
its lift to the bundle of spin frames.

• If τ and τ̂ both generate a Z/2p, we call this a Z/2p-action of even type.
• If τ has order 2p but τ̂ has order 2p+1, we call this a Z/2p-action of odd type.

The idea is: we have a Z/2p of ordinary diffeomorphisms and a lift to spin diffeomorphisms. This doesn’t
guarantee that τ̂2p is the identity – it could be the spin flip (the nontrivial automorphism of the double cover
PX → BSO(X)), and therefore we could get a Z/2p+1, which is what odd type is about.

Throughout let X be a closed spin 4-manifold, k := −σ(X)/16, and m := b+2 (X). Assume σ(X) ≤ 0 and
b1(X) = 0.

Remark 9.2. I think there is an implicit assumption on τ , in that we need quotients by groups generated by
powers of τ to be manifolds. So of course it suffices for τ to act freely, but I think Bryan considers more
general actions given by branched covers.

In any case, I think the assumptions we’ve made so far do not suffice: let ζ be a representation of Z/2p
in C sending the generator to a primitive 2p-th root of unity and Sζ denote its one-point compactification.
Quotients of Sζ × Sζ by subgroups of Z/2p are not in general manifolds. (

Theorem 9.3 (Bryan [?]). Suppose τ is a spin diffeomorphism generating a Z/2p-action of odd type, and
that τ acts freely, and let Xi := X/(Z/2i). If m 6= 2k + b+2 (X1), b+2 (Xi) 6= b+2 (Xj) for i 6= j, and b+2 (Xi) > 0
for all i, then 2k + 1 + p ≤ m.

The spin structure on Xi is PX/(Z/2i). TODO: why care?

Theorem 9.4. Let σ1, . . . , σq : X → X be free involutions of even type, which we will think of as a (Z/2)q-
action. Suppose b+2 (X/(Z/2)q) 6= 0 and for all g ∈ (Z/2)q, m 6= b+2 (X/〈g〉). Then 2k + 1 + q ≤ m.

In particular, when q = 1, if X admits a smooth even-type involution whose quotient has positive b+2 not
equal to that of X, then 2k + 2 ≤ m. Furuta’s theorem is equivalent to 2k + 1 ≤ m, so more commuting
involutions strengthen the 10/8 bound.

Theorem 9.5. If τ generates a Z/2p-action of either type and σ(X) 6= 0, then b−2 (X/〈τ〉) 6= 0.

Bryan then uses these somewhat esoteric-looking theorems to derive bounds for genera of embedded
surfaces.

Theorem 9.6. Let X be a compact, simply connected, oriented but not necessarily spin 4-manifold with
b+2 (M) > 1. Let Σ ↪→M be a smooth embedding of a surface representing a homology class divisible by 2 and
such that [Σ]/2 ≡ w2(X) mod 2. Then

(9.7) g(Σ) ≥ 5

4

(
[Σ]2

4
− σ(M)

)
− b2(M) + 2.

This is generally not as powerful as bounds coming from Seiberg-Witten theory, but it applies even when
the Seiberg-Witten invariants of X vanish. So it can be used to study embedded surfaces in, for example,
CP2#CP2.

9.1. The symmetries of the monopole map. The point of Bryan’s methods, of course, is that there is a
larger symmetry group on all the Seiberg-Witten-theoretic data, and the monopole map is still equivariant. In

the general situation, we have two Lie groups G and Ĝ of the “downstairs” and “upstairs” actions (i.e. on X

and on its bundle of spin frames, respectively) and a forgetful map p : Ĝ→ G. Then there are two scenarios.

(1) First suppose Ĝ doesn’t contain the spin flip.6 Then Ĝ = G and p = id. In particular, G acts on all
of the bundles by pullback, and D and Q are equivariant, so the group of symmetries is Pin−2 ×G.
This in particular includes the case of an even Z/2p-action, so we let Gev := Pin−2 × Z/2p.

6To say “the” spin flip does presuppose X is connected.
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(2) If Ĝ does contain the spin flip, then it’s an extension

(9.8) 1 // Z/2 // Ĝ
pr // G // 1,

where the Z/2 subgroup is generated by the spin flip. The spin flip can be identified with the action
of −1 ∈ Pin−2 : they’re both order-2 spin diffeomorphisms which are trivial on X. Therefore the

symmetry group is the quotient Pin−2 ×Z/2 Ĝ := (Pin−2 × Ĝ)/(Z/2), where Z/2 acts diagonally. This

in particular includes the case of an odd Z/2p-action, and we let Godd := Pin−2 ×Z/2 Z/2p+1.

9.2. The Gev - and Godd -equivariant indices of the monopole map. When we have a Z/2p-action of
even or odd type, the same story applies to obtain finite-dimensional Gev -, resp. Godd -representations and an
approximated monopole map between them. The goal of this section is to calculate the index of the monopole
map.

Because the group Z/n is cyclic, all of its irreducible representations are one-dimensional. In fact,
they’re generated by tensor powers of a representation sending 1 to a primitive nth root of unity, so
RU (Z/n) ∼= Z[ζ]/(ζn − 1).

Now, what happens for Gev and Godd?

Proposition 9.9. If G and H are Lie groups, the external tensor product defines an isomorphism RU (G)⊗
RU (H)

∼=→ RU (G×H).

Therefore we can write a general element of RU (Gev ) as

(9.10) β = β0(ζ) + β̃0(ζ)σ +

∞∑
i=0

βi(ζ)hi,

where βi and β̃0 are degree ≤ 2p − 1 polynomials, only finitely many of which are nonzero.

Proposition 9.11. Let G be a Lie group and H be a normal subgroup. Then the (isomorphism classes of)
irreducible representations of G/H are in bijection with the irreducible representations of G which are trivial
when restricted to H. In particular, if ξ denotes the generator of RU (Z/2p+1), the irreducible representations
of Godd are 1, σ, ξ2, and ξihj when i ≡ j mod 2.

Therefore we can write a general element of RU (Godd) as

(9.12) β = β0(ξ) + β̃0(ξ)σ +

∞∑
i=0

βi(ξ)hi,

where this time, β2i and β̃0 are even polynomials of degree at most 2p+1 − 2, and β2i+1 are odd polynomials
of degree at most 2p+1 − 1.

Now we’ll determine the equivariant index of the monopole map as a virtual representation; as before, it’s
the class of V −W in RU (G) (G = Gev or Godd).

Theorem 9.13. The equivariant index of the monopole map in the case of a Z/2p-action of even or of odd
type is

(9.14) indD = sh1 − tσ,
where for even type actions (hence Gev ),

(9.15a) s(ζ) =

2p∑
i=1

siζ
i t(ζ) =

2p∑
i=1

tiζ
i

and for odd type actions (hence Godd),

(9.15b) s(ξ) =

2p∑
i=1

siξ
2i−1 t(ζ) =

2p∑
i=1

tiζ
2i,

and in both cases,

(9.16)

2p∑
i=1

si = 2k
∑

i=0 mod 2j

ti = b+2 (Xj).
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Proof. First we leverage what we already know: under the restriction map r : RU (G)→ RU (Pin−2 ), r(indD) =
b+2 σ−2kh1. This is enough to imply (9.15), once we understand this forgetful map: in the even case, r(ζ) = 1,
and in the odd case, r(ξ2) = 1 and r(ξihodd) = hodd (here i is also odd). This also implies the first half
of (9.16).

Now the statement on
∑
ti and b+2 (Xj). In the even case, we can identify

(9.17)

2p∑
i=1

tiζ
i = coker

(
d∗ ⊕ d+ : Ω1

⊥ → Ω0 ⊕ Ω+
)
,

as Z/2p-representations, where Ω1
⊥ means the orthogonal complement to the constant functions. Why is this?

We basically saw this in the nonequivariant case: this corresponds to the map that Furuta calls D2 = C̃ ◦ ∇.
In the absence of a Z/2p-action, we calculated its index to be b+2 σ, and equivariantly, we get its preimage
under r. (I think the additional factor of σ goes away because we’re considering d∗ ⊕ d+ without the twisting

by R̃.)
The piece invariant under Z/2j ⊂ Z/2p is the sum over i with i ≡ 0 mod 2j , so in particular this is

dimension of the Z/2j-invariant part of H2
+(X). If Xj is indeed a manifold, this is (I think) equal to H2

+(Xj),
so we’re good.

The odd case proceeds in exactly the same way. �

10. Proofs of Bryan’s theorems: 4/1/19

Today, Jeffrey spoke, finishing the discussion of Bryan’s paper and the proofs of his theorems.
Let’s recall the notation that Bryan uses.

• We have a closed spin 4-manifold X, with k = −σ(X)/16 and m = b+2 (X).
• Gev = Pin−2 × Z/2p and Godd = Pin−2 ×Z/2 Z/2p+1.
• Given a Lie group G, RU (G) denotes its representation ring (Bryan calls it R(G)).
• In this representation ring, 1 is the trivial representation, 1̃ denotes the sign representation of Pin−2

(which I sometimes called σ), and hd is the Pin−2 -representation on H = C⊕ C where eiθ ∈ Spin2 ⊂
Pin−2 acts by (eidθ, e−idθ). We extend these to representations of Gev and Godd (in the latter case
tensoring with a nontrivial Z/2p+1-representation) as in the previous section.

• Let ζ be a representation of Z/2p sending the generator to a primitive 2pth root of unity, and similarly
ξ be a representation of Z/2p+1 sending the generator to a primitive 2p+1th root of unity.

• Let φ ∈ Spin2 generate a dense subgroup and define j ∈ Pin−2 via the inclusion Pin−2 ↪→ H.

Thus we have the formulas (9.10) and (9.12) writing a general element of RU (Gev ) or RU (Godd) as a
polynomial in ζ, resp. ξ.

Here’s some new notation: let ν ∈ Z/2p and η ∈ Z/2p+1 be generators. This is different than Bryan’s
notation, but there are typos in his notation and this seems to be the best convention.

The key tool we’re going to use is the trace formula (7.18). We’ll let α := αλ, V := Vλ,C, and W := Wλ,C.
The first case Bryan considers is that of a spin involution.

Proof of Theorem 9.4, case q = 1. In this case the symmetry group is G = Gev = Pin−2 × Z/2. In Theo-
rem 9.13, we calculated that the G-equivariant index of the finite-dimensional approximation to the monopole
map is

(10.1) V −W = (s1ζ + s2)h1 − (t1ζ + t2)1̃,

where t1 + t2 = m, s1 + s2 = 2k, and t2 = b+2 (X/σ). By assumption, this is not equal to m, so t1 + t2 6= t2,
and we have t1, t2 6= 0.

Since φ acts nontrivially on h1 but trivially on 1̃, V φ and Wφ have different dimensions, and therefore
d(fφ) = 0. Hence by the trace formula, trφ(α) = 0. Now φν also acts nontrivially on h1 and trivially on 1̃, so
by the same argument trφν(α) = 0.

We know α has the form

(10.2) α = α0 + α̃01̃ +
∑
i

αihi,
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so

(10.3) trφ(α) = 0 = α0(1) + α̃0(1)1̃ +
∑
i

αi(1)(φi + φ−i),

so αi(1) = 0 for i > 1 and α0(1) + α̃0(1) = 0. In the same way, trφν(α) = 0 implies

(10.4) α0(−1) + α̃0(−1)1̃ +
∑
i

αi(−1)(φi + φ−i) = 0,

because φ acts trivially on ζ and ν acts by −1. Thus we also have αi(−1) = 0 and α0(−1) + α̃0(−1) = 0.
Combining these,

(10.5) α = (α1
0 + α2

0)(1− 1̃).

Now we look at jν, which acts trivially on ζ1̃ but nontrivially on h1 and ζh1. Therefore d(f jν) = 0 again,
forcing α1

0 = α2
0.

Now d(f j) = 1, because V j and W j are both zero-dimensional, so as in the proof of the 10/8 theorem we
can conclude trj(α) = 2m−2k. Thus

(10.6) α = 2m−2k−2(1 + ζ)(1− 1̃),

so m ≥ 2k + 2. The extra −2 pops up because we have 1 + ζ; if we forget down to Pin−2 , this is just 2. �

The full proof is a generalization of this.

Proof of Theorem 9.4. Let ζi be the sign representation of the ith summand of (Z/2)q. Then

(10.7) α = V −W = s(ζ1, . . . , ζq)h1 − t(ζ1, . . . , ζ1)1̃.

Let g ∈ (Z/2)q. We assumed that M 6= b+2 (X/g), so t(ζ1, . . . , ζq) has some subrepresentation in which g acts

by −1. Since j acts by −1 on 1̃, Jg has some fixed subspace in t(ζ1, . . . , ζq)1̃ – but it acts nontrivially on h1,
so we can conclude trjg(α) = 0.

Now φg. Since b+2 (X/g) 6= 0, the coefficient of 1 in t(ζ1, . . . , ζq) is nonzero, and therefore φg fixes some

subspace of t(ζ1, . . . , ζq)1̃, and again, since φg acts nontrivially on s(ζ1, . . . , ζq)h1, then trφg(α) = 0.
Again, using (10.2) and the fact that trφg(α) = 0 and trjg(α) = 0, we conclude αi = 0 for i > 1 and

α0 + α̃0 = 0. Therefore α �

The proof for odd type actions follows the same line of reasoning, though showing the traces vanish is a
longer computation. One can generalize to other actions by groups of order 2p, though here one must be a
bit more careful about how the group acts.

11. Bauer-Furuta invariants: 4/15/19

Today, Leon spoke, giving the first of a few talks on Bauer-Furuta invariants.
Recall that the proof of the 10/8 theorem began by decomposing the monopole map as D ⊕ Q, where

D is Fredholm and linear, and Q is nonlinear, but continuous and compact; then we were able to make
finite-dimensional approximations and study the Pin−2 -representation theory of the index.

Bauer-Furuta [BF04, Bau04] do something roughly similar in studying the monopole map, but with a
different goal: to obtain an invariant in stable homotopy theory. That means that our finite-dimensional
approximations need to be compatible in a certain way, so that we obtain an element of the (equivariant)
stable stem. As before, this homotopy theory is supported by some infinite-dimensional topology and analysis,
and this will dominate today’s talk.

Definition 11.1. Let H and H ′ be Hilbert spaces and f : H ′ → H be a Fredholm map. We say f is a
compact perturbation of a linear Fredholm map ` : H ′ → H if there is some (possibly nonlinear) compact
operator c : H ′ → H such that f = `+ c.

If the preimage under f of a bounded set in H is bounded in H ′, then f is called bounded.

A continuous map c : H ′ → H not necessarily linear is compact if it sends bounded sets to subsets of some
compact set.

Boundedness of a compact perturbation f is equivalent to the condition that f extends to one-point
compactifications f+ : (H ′)+ → H+, which are infinite-dimensional spheres.
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Definition 11.2. A map f : X → Y is proper if it is closed and the preimages of points are compact.

Usually we ask for preimages of any compact sets to be compact, but this definition will be more useful
today. One useful fact is that proper implies closed image.

Proposition 11.3. If f : H ′ → H is a compact perturbation of some linear Fredholm map, then for any
bounded A′ ⊂ H ′, f |A′ is proper. Moreover, if f is bounded, then f and f+ : (H ′)+ → H+ are proper.

Proof. Let ρ : H ′ → ker(`) denote the orthogonal projection onto ker(`), and consider the composition

(11.4) A′
f1 // H ⊕ c(A′)⊕ ρ(A′)

f2 // H ⊕ c(A′)⊕ ρ(A)
f3 // H,

where f1(a) := (f(a), c(a), ρ(a)), f2(h, b, k) := (h+ b, b, k), and f3 is projection onto the first factor. We will
show that f1 is injective and closed, f2 is a homeomorphism, and f3 is proper; together these will imply
f3 ◦ f2 ◦ f1 = f is proper.

That f is injective isn’t too bad: if x ∈ ker(f), then c(x) + `(x) = 0. If c(x) 6= 0, we see x inside c(A′),
and if c(x) = `(x) = 0, we see x inside ker(`).

Now, why is it closed? First we ignore c(A′). We can consider ` as a map ker(`)⊥⊕ker(`)→ Im(`)⊥ → Im(`),
and under this decomposition, ` has block form ( id 0

0 0 ). Now throwing in ρ, we have a map V1⊕V2 → V1⊕V2⊕V2

given by (v1, v2) 7→ (v1, 0, v2), and this is closed. Now including in c(A) can follow from a general result, or
we can prove it directly: TODOI missed this.

The other two pieces are pretty simple: the map h, b, k 7→ h− b, b, k is an inverse to f2, and properness of
f2 follows directly from the definition.

Now we assume f is bounded, to prove the second statement. Let x ∈ H ′ and y := f(x). Let A′ be some

closed and bounded set containing x; then f(A′) is contained in some disc D ⊂ H. If A′0 := f−1(D) ∩ A′,
then any h ∈ f(A′) is also in f(A′0). Now we can use A′0 as our closed and bounded set, reduce to the first
part of the theorem, and conclude that f is proper. (We need A′0 so that the image is closed, which might
not be true of A.)

For f+, we know that the preimage of any point in H is compact, and (f+)−1(∞) = {∞} is compact, so
all we have to check is that f+ is closed. Let A′ ⊂ (H ′)+ be closed(otherwise we’re already done, because f

is proper), and suppose ∞ ∈ f(A′); then f(A′) \ {∞} is closed in H. This implies f(A′) is unbounded, so A′

is unbounded (because f = `+ c, and ` and c take bounded sets to bounded sets). Since A′ is closed, then
∞ ∈ A′ as we desired. �

Remark 11.5. This kind of proof does not generalize to families of operators. That’s not a problem today,
but if that is something you’re interested in, here’s where you have to do something different. (

Now we want to pass to finite-dimensinal spheres, and therefore a stable cohomotopy class. Let W ⊂ H
be a finite-dimensional subspace and S(W⊥) := S(H) ∩W⊥, where S(H) denotes the unit sphere in H.

Proposition 11.6. The projection map W+ → H+/S(W⊥) is a deformation retract.

Proof. We’ll write down an inverse map. We can identify H+ ∼= S(R⊕H) and H ′ = W ⊕W⊥. The map in
the proposition is explicitly, as a map W+ → S(R⊕H),

(11.7) h 7−→ (|h|2 − 1, 2h)

|h2 + 1|
.

This sends S(W⊥) to S(0⊕ 0⊕W⊥), so this does descend to the quotient as claimed.
The retraction is “along latitudes”: S(R⊕W ⊕W⊥) \ S(0⊕ 0⊕W⊥)→ S(R⊕W ⊕ 0). The idea is, if we

remove the “equator,” we can slide latitudes off to the north and south poles, which can be seen explicitly on
S1 and S2, and generalizes to the setting we care about. �

This retraction is not very far from being a projection: ρW (h) = λ(h)prW (h), where λ(h) is some positive
number. This is explicit if we let H be one- or two-dimensional, and also holds in the general case.

The key proposition, whose proof we’ll see next time, is as follows.

Proposition 11.8. There exists a finite-dimensional V ⊂ H such that H = Im(f) + V and for all finite-
dimensional W ⊃ V , if W ′ := f−1(W ), then the image of f |(W ′)+ : (W ′)+ → H+ does not intersect S(W⊥).

Moreover, if U = V ⊥ ∩W , then W ′ ∼= U ⊕ V ′, where V ′ := `−1(V ).
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Hence we can apply Proposition 11.6 and get a map of finite-dimensional spheres. And the last part
implies W+ ∼= U+ ∧ (V ′)+, and ρ ◦ f |(W ′)+ : (W ′)+ → W+ decomposes (up to homotopy equivalence) as

U+ ∧ V + → U+ ∧ V +. This is the suspension compatibility that will give us a stable class: given the classes
of W+ → H+/S(W⊥) and (W ⊕ V )+ → H+/S(W ⊕ V )⊥, the former map is the suspension of the latter, up
to homotopy equivalence.

12. Constructing the Bauer-Furuta stable homotopy class: 4/22/19

Leon spoke again this week. Recall that we’re in the setting of a nonlinear, continuous map f : H ′ → H,
where f = `+ c, with ` linear Fredholm, c compact (but nonlinear), and such that the preimages of bounded
sets are bounded. We want to show that this data defines a class in the stable homotopy classes of maps of
spheres.

Let W ⊂ H be a finite-dimensional subspace, so that, as we constructed last time, we obtain a map
W+ → H+/S(W⊥), and a map ρW : H+/S(W⊥)→ W+, but for any h ∈ H, ρU (h) = λhprW (h) for some
function λ : H → R>0.

Proof of Proposition 11.8. Let D1 ⊂ H be a ball; since the preimages of bounded sets under f are bounded,
then f−1(D) ⊂ D′, for some disc D′ ⊂ H ′. And since the images of bounded sets are bounded, then there’s
a disc Dr ⊂ H such that f(D′) ⊂ Dr. Let C := c(f−1(Dr)). Because f−1(Dr) is bounded, C is compact,
which means that for any ε > 0, we can pick a finite sequence of points {vi} ∈ H such that C ⊂

⋃
iBε(vi).

Specifically, let’s choose ε < 1/4.
Define V := span(Im(`)⊥, vi) – since ` is Fredholm and there are finitely many vi, this is a finite-dimensional

subspace of H. Suppose V ⊂ W ; then there’s a w′ ∈ W ′ such f(w′) ∈ Sr(W⊥). We also know `(w′) ∈ W
and f(w′) = `(w′) + c(w′). Hence c(w′) ∈ C but dist(C,W ) < ε.

Now the last statement. First, we can embed both W+ and U+ ∧ V + into H+ \ S(W⊥). Now we want to
show that the following diagram homotopy commutes:

(12.1)

W+
f |W+ //

o
��

H+ \ S(W⊥)

U+ ∧ (V ′)+ // U+ ∧H+ \ S(V ⊥) // U+ ∧ V +

hh

The map along the bottom is prU ◦ ` ∧ ρV ◦ f ◦ prV ′ .
Our first step is to compare the two maps D′ ∩W ′ ⇒ H+ \ S(W⊥). We can explicitly identify them with

the homotopy

(12.2) `+ ((1− t) ◦ idH + f ◦ prV ) ◦ c.

Therefore we get a homotopy `+ c ' `+ prV ◦ c. Next we have the homotopy

(12.3) `+ prV ◦ c ◦ ((1− t)idW + f ◦ prV ′),

which gets us from `+prV ◦c to `+prV ◦c◦prV ′ . And since ` = prU `+prV `, we get to prU ◦`+prV ◦(`+c)◦prV ′ .
Now the third homotopy we make is

(12.4) prU ◦ `+ ((1− t)prV + fρV ) ◦ (`+ c) ◦ prV ′ ,

which (TODO: I think) gets us

(12.5) prU ◦ `+ prV ◦ (`+ c) ◦ prV ′ ' prU ◦ `+ ρV ◦ (`+ c) ◦ prV ′ .

Next we need to show that for all w′ ∈W ′, ht(w′) 6∈ S(W ′), where ht is each of the three homotopies (12.2) –
(12.4) above. For the second and third ones, this is clear; for the first, we use the fact that dist(C(W ′),W ) ≤
ε < 1 = dist(ht(W

′), S(W⊥)).
In fact, under any of these homotopies, ∂D′ ∩W misses W⊥.

(1) For (12.2), suppose w′ ∈ ∂D′ ∩W and |w′| > 1; then, dist(w′,W ) ≤ ε and dist(ht(w
′),W⊥) ≥ 1− ε.

(2) For (12.3) and (12.4), we have prU (W⊥) = 0, so if ht(w
′) ∈W⊥, then prU (ht(w)) = 0, and therefore

prU (`(w′)) = 0, i.e. w′ ∈ V ′ ∩ ∂D. For (12.3) this suffices; for (12.4) there’s a little more to say that
(TODO) I missed. �
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As a corollary, given f : H ′ → H and V ⊂ H finite-dimensional, ρV ◦f |(V ′)+ : (V ′)+ → V +, and if we chose

V ⊕ U instead of V , we get the (homotopy class of) map ΣU (ρV ◦ f |(V ′)+ , so we in fact obtain a well-defined

element [f ] ∈ πst
ind `(S).

13. Preimages of bounded sets are bounded: 4/29/19

Today, Jeffrey spoke on the analytic underpinnings of why we can use the results from last time. Namely,
why are preimages of bounded sets under the monopole map bounded?

TODO: I was very late today. What I missed: some recap of what the monopole map is, and also a
discussion of what exactly a Hilbert bundle should be.

The monopole map descends (after quotienting by the gauge group) to a map µ̃ : A → C, where

(13.1) A := ((A+ ker d)× Γ(S+)⊕ Ω1)/G0

and

(13.2) C := ((A+ ker d)× Γ(S+)⊕ Ω+(X)⊕H1(X;R)⊕ Ω0(X))/G0,

which are bundles over Pic0(X). Fixing k sufficiently large, let Ak and Ck denote the Sobolev completions in
the Hk-norm, which are Hilbert bundles.

Proposition 13.3. Preimages of bounded disc bundles µ−1(B) ⊂ Ak are bounded disc bundles in Ck. Hence,
the monopole map µ̃ descends to an element of the parameterized stable homotopy group π0

π,H(Pic0(X);λ),

where H is the Sobolev completion of Γ(S ⊕ Λ), where λ is the virtual bunflr λ := [indD − H+] and
H+ = H2

+(X;R).

The proof is many applications of the Hodge decomposition – find the index of the linear piece of the
monopole map and then you’re essentially done. This is the main result of Bauer and Furuta’s paper.

We should also define the parameterized stable homotopy group: π0
U (B; ind `) is the colimit of [Σ−UTE, S0]

indexed by all subspaces U ⊂ U , and such that ind ` = E − U . The parameterized suspension denotes the
Thom spectrum.

Proof. Let DA + T denote the linear part of µ, which is the map

(13.4)

DA + T : Γ(S+)⊕ Ω1
X ⊕H0(X;R) −→ Γ(S+)⊕ Ω0(X)⊕H1(X;R)⊕ Ω+

(ϕ, a, [f ]) 7−→ (DHϕ,d
∗a+ [f ], aharm,d

+a

T

).

We’ll compute the kernel (harder) and the cokernel (easier).
If (a, [f ]) ∈ kerT , using that H0(X) ⊥ Im(d∗), then d∗a+ [f ] = 0, and therefore [f ] = 0, so π is injective.

Then write a = aharm + dg + d∗ω. The latter two vanish, so if d∗a+ [f ] = 0, then d∗dg = 0, giving us what
we want. (TODO: double-check this.)

Cokernel: then one observes that πharm is surjective and d∗ + IdH0
is surjective. Hence the cokernel is just

Ω+ mod d+, which by definition is H2
+(X;R). �

Riccardo brifely talked at the end: in our setting, there’s an S1-action on everything. Consider the

inclusion of the S1-fixred points i : TES
1 → TE, and let Ci denote the cofiber of i. Since cohomotopy is a

generalized cohomology theory, there is a long exact sequence

(13.5) π−1
S1,U (Σ−U (TES

1

)) // π0
S1,U (Σ−UCi) // π0

S1,U (Σ−UTE) // π0
S1,U (Σ−U (TES

1

)).

What we’ve seen so far implies the monopole map defines a class in the middle group. Next time, Riccardo
will tell us why the first and last groups vanish, so we can pull the class back to the second group. The

Hurewicz map lands us in Bredon cohomology H
|U |
S1 (TE, TES

1

). The S1-action on the pair (TE, TES
1

) is

relatively free, Thus this Bredon cohomology ring descends to the cohomology ring H∗(TE/S1, TES
1

). This
is the cohomology ring of a manifold with boundary, rel boundary, so we have a fundamental class! This will
recover the Seiberg-Witten invariant.
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14. Main results of Bauer-Furuta: 5/6/19

Today Riccardo spoke, finishing up the Bauer-Furuta story.
Last time, we defined the monopole map ϕ = `+ c, whose homotopy class lives in

(14.1) [ϕ] ∈ π0
S1,U (Pics(X), indD −H+(X;R)).

If X is spin, we can replace S1 with Pin−2 . Here the notation is π0
U (B; ind `) = [Σ−UTE, S0]U , where

` = E − U . In particular, these are homotopy classes of fiberwise maps.
We want to show that the Bauer-Furuta invariants carry at least as much information as the Seiberg-Witten

invariants (they actually carry more information, but we won’t get to that today). We’ll do this by using [ϕ]
to reproduce the Seiberg-Witten invariants.

If f ∈ π0
U (B; ind `), it corresponds to some actual map f : TE → SU . Let i : TES

1

↪→ TE and Ci denote
the cone of i. Then we have the long exact sequence‘(13.5).

Assume b+ − b1 − 1 > 0, so that there are no irreducible solutions, and in particular S1 acts freely on
the space of solutions. It’s possible to work in the setting b+ − b1 − 1 = 0, but then reducible solutions are
codimension one, and one has to invoke a wall-and-chambers argument.

Lemma 14.2. The first and last terms in (13.5) are zero.

Proof. We’ll prove π−1
S1,U (Σ−U (TES

1

)) = 0; the proof for π0
S1,U is the same.

Let G := [TES
1

, SU ], so ker(ϕ) ⊆ E. Last time, we saw that ϕ = DA ⊕ T , where T is injective, and
E = ker(DA) ⊕ ker(T ). And the S1-action on spinors is free, because it’s pointwise multiplication, so the

S1-fixed points must only be in ker(T ) – but ker(T ) = 0. Thus TES
1

is the Thom space of the zero bundle
over the Picard torus, which is the one-point compactification. We know this has topological dimension b1
(i.e. it admits a CW structure with cells in degrees at most b1).

Since U has rank b+, SU admits a CW structure with no cells (other than the basepoint) in degrees below

b+, and therefore by cellular approximation, there are no nontrivial homotopy classes of maps TES
1 → SU . �

Hence the map π0
S1,U (Σ−UCi)→ π0

S1,U (Σ−UTE) is injective, and we can consider the image of [ϕ] in the
latter group.

The unit map S→ HZ induces a Hurewicz map on S1-equivariant (Bredon) cohomology:

(14.3) π∗S1(Ci)
h−→ H∗S1(Ci) = H∗S1(TE, TES

1

) = H∗(TE/S1, TES
1

).

The latter ring is the cohomology ring of a manifold. Recall that ind(ϕ) = ind(DA)⊕ ind(T ) = E −U , where
E is a subspace of Γ(S+). Inside TE, a tubular neighborhood N of the S1-fixed points is the same as a tubular

neighborhood of the base space B and the point at infinity. Hence H∗(TE/S1, TES
1

) ∼= H∗(TE/S1, N).
Using excision, remove B ∪ {∞}, so

(14.4) H∗(TE/S1, N) ∼= H∗((TE \ (B ∪∞))/S1, N \ (B ∪∞)) ∼= H∗((E \B)/S1, N \B).

Since E \B = S(E)× (0, 1), and the S1-action is free, given by multiplication, so the quotient is P(E)× (0, 1),

and P(E) is a manifold (in fact, diffeomorphic to CPrankE−1). Now

(14.5) N ' S(E)× ([0, ε) ∪ (1− ε, 1]),

and again S1 acts only on the first component, so we’re interested in the ring

(14.6) H∗(P(E)× [0, 1],P(E)× {0, 1}),

which is the cohomology of an orientable manifold with boundary, rel boundary. We need to choose an
orientation, akin to the choice of a homology orientation in Seiberg-Witten theory, but we can induce one
from the canonical orientations of the complex vector bundles we used to build everything. So we have a
fundamental class; let Σ−U [TE] denote its Poincaré dual in cohomology.

Lemma 14.7. Σ−U [TE] lives in degree k := indR(DA) + b1 − b+ − 1.

Proof. All we have to do is compute the dimension of P(E). Assume first that DA is surjective, dimCE =
indCD, so

(14.8) dimR(P(E)) = 2(indCD − 1) + b1 = indR(D)− 2 + b1 = indRDA − 1 + b1 − b+.
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If DA isn’t surjective, indRDA − b+ is the index, so adding a cokernel and subtracting the dimension of the
kernel doesn’t change anything. �

Now we can compare with the Seiberg-Witten invariant. Recall that H∗S1(Σ−UTE,Σ−UTES
1

) is a module
over H∗S1(pt) = H∗(BS1) = Z[t] with |t| = 2.

We will define the refined Seiberg-Witten invariant of X with orientations σ to be

(14.9) sw ′X,σ :=

{
0, if k is odd

〈tk/2 ^ h(µ),Σ−U [TE]〉, if k is even.

Here µ is the monopole map. The ordinary Seiberg-Witten invariants are defined as

(14.10) swX,σ :=

{
0, if k is odd

〈tk/2, [µ−1(0)]〉, if k is even.

So it’s difficult to even cook up manifolds with nonzero Seiberg-Witten invariants! Anyways, the relationship
between sw and sw ′ follows from a beautifl lemma in Milnor’s characteristic classes book: that the Poincaré
dual of the fundamental class of a submanifold N ↪→ M , restricted to N , is the Thom class of its normal
bundle.

Now consider ΣUh(µ). We have µ∗[SU ] = µ∗[U,U \ 0] = [UMµ
, νMµ

\Mµ], where Mµ := µ−1(0) (the
moduli space). Then you show that [νMµ

, νMµ
\Mµ] ∩ [TE] = [Mµ], which leads to the result.
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