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Reflection groups : a reminder



Root systems

(RN , ⟨, ⟩).
Reflection orthogonal to α ̸= 0 :

σα(x) = x − 2
⟨α, x⟩
⟨α, α⟩

α.

Definition

A root system R is a collection of vectors in Rd \ {0} such
that σα(R) = R for any α ∈ R .
It is reduced if

Rα ∩ R = {±α}, ∀α ∈ R.

Type A :
R = {±(ei − ej), 1 ≤ i < j ≤ N}.
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Positive system

1 Pick v /∈ R, v ̸= 0 :

R+ := {α ∈ R, ⟨α, v⟩ > 0}.

2 Splitting : R = R+ ∪ R−.

Example (Type A)

R = {±(ei − ej), 1 ≤ i < j ≤ N}.
R+ = {(ei − ej), 1 ≤ i < j ≤ N}.
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Simple System of a positive subsystem

Theorem
In any R+, there exists a unique subset S :

Every positive root is a positive LC of vectors in S .

Definition
S is the simple system associated to R+.
α ∈ S is a simple root.
|S | is the rank of R .
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Type A

Example

R = {±(ei − ej), 1 ≤ i < j ≤ N}.
R+ = {(ei − ej), 1 ≤ i < j ≤ N}.
S = {ei − ei+1, 1 ≤ i ≤ N − 1} ⇒ r = N − 1.

Span(S) = {x1 + · · ·+ xN = 0}.
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Weyl chamber and reflection groups

(R,R+,S) :

Definition
The reflection group is generated by {σα, α ∈ R}.

Type A : W = SN .
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Another Example

Type B :
1 R = {±(ei − ej), 1 ≤ i < j ≤ d ,±ei , 1 ≤ i ≤ N}.
2 R+ = {(ei − ej), 1 ≤ i < j ≤ N, ei , 1 ≤ i ≤ N}.
3

CB = {x1 > · · · > xN > 0}.
4 W = SN ⋊ (Z2)

N .



Multiplicity function

Definition
A multiplicity function is a map k : R → C s.t.

k(α) = k(wα), w ∈ W , α ∈ R.

⇒ Takes as many values as the orbit space |R/W |.

Examples (Types A et B)

|RA/WA| = 1⇝ β,
|RB/WB | = 2⇝ (β, δ).
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Dunkl Intertwining operator



Dunkl operators

ξ ∈ RN \ {0} :

Dξ(k)f (x) = ∂ξf (x) +
∑
α∈R+

k(α)⟨α, ξ⟩ f (σαx)− f (x)

⟨α, x⟩
.

k = 0
⇓

Dξ(0)f (x) = ∂ξf (x).

Theorem (Dunkl)

For any reduced root system, the algebra generated by
{Dξ(k ,R), ξ ∈ RN \ {0}} is commutative.



Dunkl operators

ξ ∈ RN \ {0} :

Dξ(k)f (x) = ∂ξf (x) +
∑
α∈R+

k(α)⟨α, ξ⟩ f (σαx)− f (x)

⟨α, x⟩
.

k = 0
⇓

Dξ(0)f (x) = ∂ξf (x).

Theorem (Dunkl)

For any reduced root system, the algebra generated by
{Dξ(k ,R), ξ ∈ RN \ {0}} is commutative.



Example

R = AN−1 :

Dei−ej (k)f (x) = ∂ei−ej f (x)+
∑

1≤i<j≤N

k(α)(αi−αj)
f (τijx)− f (x)

xi − xj︸ ︷︷ ︸
δi,j (f )(x)

.

Properties

(δi ) satisfies the nil-Coxeter relations :
(δi )

2 = 0.
δiδi+1δi = δi+1δiδi+1.
δiδj = δjδi , |i − j | ≥ 2.
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Dunkl Intertwining operator

Seek a (linear) isomorphism Vk acting on polynomials such that
1 VkPn = Pn.
2 Vk1 = 1 (normalization).
3 Dξ(k)Vk = Vk∂ξ (= VkDξ(0)).

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

Mreg := {k , ∩ξKer [Dξ(k)] = C},

Then Vk exists and is unique.
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Construction : Heuristics

Let Uk be the operator acting on polynomials as :

Uk(p)(x) =
1
n!

(
N∑
i=1

xiDei (k)

)n

(p), p ∈ Pn.

Then for any 1 ≤ j ≤ N,

UkDej (k) = ∂ejUk .

Formally,
Vk = U−1

k .

Group algebra calculus
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Construction : Modified de Rham complex

Polynomial : p ∈ Pn.
m- form : ω = pdxi1 ∧ · · · ∧ dxim .
Action of W on forms :

w · ω := (w · p)︸ ︷︷ ︸
p◦w−1

d(w−1x)i1 ∧ · · · ∧ d(w−1x)im .

Dunkl exterior derivative :

d(k)ω :=
N∑
j=1

[
Dej (k)p

]
dxj ∧ dxi1 ∧ · · · ∧ dxim .
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Properties of d(k)

1 d(k) commutes with the W -action.
2 (d(k))2 = 0.

Theorem (Dunkl-De Jeu-Opdam)

Vk exists and is unique if and only if H1(d(k)) = 0.

Remark
All the higher cohomology groups vanish in this case.
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Integral representations

Rank-one case :

Vk(p)(x) ∝
∫ 1

−1
exy (1 − y)k−1(1 + y)kdy , k > 0.

k ≡ 1 and W -invariant polynomials.
Dihedral groups.



Another construction

Set :

γ :=
∑
α∈R+

k(α), An(p) =
∑

α∈R+

k(α)p[σα], p ∈ Pn.

Theorem (H. Youssfi, M. Maslouhi)

k ∈ Mreg iff (n + γ)− An is invertible for all n ≥ 1.
Set Hn = [(n + γ)− An]

−1. Then for any p ∈ Pn,

Vk(p)(x) = (∂xHn)
n(p).
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Expansions & Simple Hurwitz
numbers



Generalized Bessel function

Dunkl theory : Harmonic analysis beyond Lie groups.
Key role is played by the Dunkl kernel :

Dk(x , y) := Vk

(
x 7→ e⟨x ,y⟩

)
Invariant theory :

Definition (Generalized Bessel function)

DW
k (x , y) :=

1
|W |

∑
w∈W

Dk(x ,wy).
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HCIZ integral

Symmetric group SN (Weyl group of GL(N,C)).
One orbit = one multiplicity value k .

Theorem (HCIZ integral)

If x , y ,∈ RN are identified with diagonal Hermitian matrices, then

DW
1 (x , y) =

∫
U(N)

etr(xUyU⋆) dU︸︷︷︸
Haar measure
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Expansions
1 Character expansion (Fourier analysis) :

DW
1 (x , y) =

∑
κ1≥···≥κN∈NN

Schur functions︷ ︸︸ ︷
sκ(x)sκ(y)

sκ(1)|κ|!

2 String expansion (Trace observables) :

DW
1 (x , y) =

∑
κ1≥···≥κN∈NN

pκ(x)pκ(y)

|Monotone paths on Cayley(SN)|

3 Topological expansion : for z ∈ C,

DW
1 (zNx , y) =

∞∑
g=0

N2−2gFg ,N(z , x , y)

Fg ,N(z , x , y) : GFs of monotone double Hurwitz numbers.
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Our approach

Theorem (Deléaval-D-Youssfi)

The following expansion holds

DW
1 (x , y) = 1 +

1
N!

∞∑
n=1

1
n∑

w1,...,wn∈W
Cn−1(w

−1
n wn−1) . . .C1(w

−1
2 w1)

n∏
j=1

⟨wjx , y⟩

where for any w ∈ W ,

Cn(w) :=
∞∑

m=0

cm(w)

(n + γ)m+1 , γ =
N(N − 1)

2

and
cm(w) =

∑
σα1 ...σαm=w

1



k ≡ 1 : Simple Hurwitz numbers

k ≡ 1 :

cm(w) = |number of factorisations of w into m reflections|.

W = SN : simple Hurwitz numbers :
Counts the number of ramified covering of S2 with m simple
ramifications and a single ramification at ∞ of type w).



Open problem

Find the spectrum of

An : Pn → Pn?

Representation theory of SN :

Decompose Pn into irreducibles (Specht modules) ?

Relate generating series of Hurwitz numbers to Schur
polynomials ?
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