From the Dunkl intertwining operator to simple Hurwitz numbers

N. Demni

October 23, 2024

Plan

- Reflection groups.
- 2 The Dunkl intertwining operator.
- Topological expansion & Simple Hurwitz numbers.

Reflection groups : a reminder

Root systems

- $(\mathbb{R}^N, \langle, \rangle)$.
- Reflection orthogonal to $\alpha \neq 0$:

$$\sigma_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

Definition

- A root system R is a collection of vectors in $\mathbb{R}^d \setminus \{0\}$ such that $\sigma_{\alpha}(R) = R$ for any $\alpha \in R$.
- It is reduced if

$$\mathbb{R}\alpha \cap R = \{\pm \alpha\}, \quad \forall \alpha \in R.$$

Type A

$$R = \{ \pm (e_i - e_i), 1 \le i < j \le N \}.$$

Root systems

- $(\mathbb{R}^N, \langle, \rangle)$.
- Reflection orthogonal to $\alpha \neq 0$:

$$\sigma_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

Definition

- A root system R is a collection of vectors in $\mathbb{R}^d \setminus \{0\}$ such that $\sigma_{\alpha}(R) = R$ for any $\alpha \in R$.
- It is reduced if

$$\mathbb{R}\alpha \cap R = \{\pm \alpha\}, \quad \forall \alpha \in R.$$

Type A

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

Root systems

- $(\mathbb{R}^N, \langle, \rangle)$.
- Reflection orthogonal to $\alpha \neq 0$:

$$\sigma_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

Definition

- A root system R is a collection of vectors in $\mathbb{R}^d \setminus \{0\}$ such that $\sigma_{\alpha}(R) = R$ for any $\alpha \in R$.
- It is reduced if

$$\mathbb{R}\alpha \cap R = \{\pm \alpha\}, \quad \forall \alpha \in R.$$

Type A:

$$R = \{ \pm (e_i - e_i), 1 \le i < j \le N \}.$$

Positive system

• Pick $v \notin R, v \neq 0$:

$$R_+ := \{ \alpha \in R, \langle \alpha, \mathbf{v} \rangle > 0 \}.$$

② Splitting : $R = R_+ \cup R_-$.

Example (Type A)

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

Positive system

• Pick $v \notin R, v \neq 0$:

$$R_+ := \{ \alpha \in R, \langle \alpha, \mathbf{v} \rangle > 0 \}.$$

2 Splitting : $R = R_+ \cup R_-$.

Example (Type A)

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

Positive system

• Pick $v \notin R, v \neq 0$:

$$R_+ := \{ \alpha \in R, \langle \alpha, \mathbf{v} \rangle > 0 \}.$$

2 Splitting : $R = R_+ \cup R_-$.

Example (Type A)

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_i), 1 \le i < j \le N \}.$$

Simple System of a positive subsystem

Theorem

In any R_+ , there exists a unique subset S:

Every positive root is a positive LC of vectors in S.

Definition

S is the simple system associated to R_+ . $\alpha \in S$ is a simple root. |S| is the rank of R.

Simple System of a positive subsystem

Theorem

In any R_+ , there exists a unique subset S:

Every positive root is a positive LC of vectors in S.

Definition

S is the simple system associated to R_+ .

 $\alpha \in S$ is a simple root.

|S| is the rank of R.

Type A

Example

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

$$S = \{ e_i - e_{i+1}, 1 \le i \le N - 1 \} \Rightarrow r = N - 1.$$

$$Span(S) = \{x_1 + \cdots + x_N = 0\}.$$

Type A

Example

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

$$S = \{ e_i - e_{i+1}, 1 \le i \le N - 1 \} \Rightarrow r = N - 1.$$

$$Span(S) = \{x_1 + \cdots + x_N = 0\}.$$

Weyl chamber and reflection groups

 (R, R_+, S) :

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$

Type A : $W = S_N$.

Weyl chamber and reflection groups

$$(R, R_+, S)$$
:

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$.

Type A :
$$W = S_N$$
.

Weyl chamber and reflection groups

$$(R, R_+, S)$$
:

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$.

Type A :
$$W = S_N$$
.

Another Example

Type B:

$$P = \{ \pm (e_i - e_i), 1 \le i < j \le d, \pm e_i, 1 \le i \le N \}.$$

$$P_+ = \{(e_i - e_j), 1 \le i < j \le N, e_i, 1 \le i \le N\}.$$

3

$$C_B = \{x_1 > \cdots > x_N > 0\}.$$

Multiplicity function

Definition

A multiplicity function is a map $k : R \to \mathbb{C}$ s.t.

$$k(\alpha) = k(w\alpha), \quad w \in W, \alpha \in R.$$

 \Rightarrow Takes as many values as the orbit space |R/W|.

Examples (Types A et B)

- $\bullet |R_A/W_A| = 1 \leadsto \beta,$
- $|R_B/W_B| = 2 \rightsquigarrow (\beta, \delta)$.

Multiplicity function

Definition

A multiplicity function is a map $k : R \to \mathbb{C}$ s.t.

$$k(\alpha) = k(w\alpha), \quad w \in W, \alpha \in R.$$

 \Rightarrow Takes as many values as the orbit space |R/W|.

Examples (Types A et B)

- $|R_A/W_A| = 1 \rightsquigarrow \beta$,
- $|R_B/W_B| = 2 \rightsquigarrow (\beta, \delta)$.

Multiplicity function

Definition

A multiplicity function is a map $k : R \to \mathbb{C}$ s.t.

$$k(\alpha) = k(w\alpha), \quad w \in W, \alpha \in R.$$

 \Rightarrow Takes as many values as the orbit space |R/W|.

Examples (Types A et B)

- $|R_A/W_A| = 1 \rightsquigarrow \beta$,
- $|R_B/W_B| = 2 \leadsto (\beta, \delta)$.

Dunkl Intertwining operator

Dunkl operators

$$\xi \in \mathbb{R}_N \setminus \{0\}$$
 :

$$D_{\xi}(k)f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in R_{+}} k(\alpha)\langle \alpha, \xi \rangle \frac{f(\sigma_{\alpha}x) - f(x)}{\langle \alpha, x \rangle}.$$

$$\boxed{k = 0}$$

$$D_{\xi}(0)f(x)=\partial_{\xi}f(x).$$

Theorem (Dunkl)

For any **reduced** root system, the algebra generated by $\{D_{\xi}(k,R), \xi \in \mathbb{R}_N \setminus \{0\}\}$ is commutative.

Dunkl operators

$$\xi \in \mathbb{R}_N \setminus \{0\}$$
 :

$$D_{\xi}(k)f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in R_{+}} k(\alpha)\langle \alpha, \xi \rangle \frac{f(\sigma_{\alpha}x) - f(x)}{\langle \alpha, x \rangle}.$$

$$\boxed{k = 0}$$

$$D_{\xi}(0)f(x) = \partial_{\xi}f(x).$$

Theorem (Dunkl)

For any **reduced** root system, the algebra generated by $\{D_{\xi}(k,R), \xi \in \mathbb{R}_N \setminus \{0\}\}$ is commutative.

Example

$$R = A_{N-1}$$
:

$$D_{e_i-e_j}(k)f(x) = \partial_{e_i-e_j}f(x) + \sum_{1 \leq i < j \leq N} k(\alpha)(\alpha_i - \alpha_j) \underbrace{\frac{f(\tau_{ij}x) - f(x)}{x_i - x_j}}_{\delta_{i,j}(f)(x)}.$$

Properties

 (δ_i) satisfies the nil-Coxeter relations :

- $(\delta_i)^2 = 0$.
- $\bullet \ \delta_i \delta_{i+1} \delta_i = \delta_{i+1} \delta_i \delta_{i+1}.$
- $\delta_i \delta_j = \delta_j \delta_i$, $|i j| \ge 2$.

Example

$$R = A_{N-1}$$
:

$$D_{e_i-e_j}(k)f(x) = \partial_{e_i-e_j}f(x) + \sum_{1 \leq i < j \leq N} k(\alpha)(\alpha_i - \alpha_j) \underbrace{\frac{f(\tau_{ij}x) - f(x)}{x_i - x_j}}_{\delta_{i,j}(f)(x)}.$$

Properties

 (δ_i) satisfies the nil-Coxeter relations :

- $\bullet (\delta_i)^2 = 0.$
- $\bullet \ \delta_i \delta_{i+1} \delta_i = \delta_{i+1} \delta_i \delta_{i+1}.$
- $\delta_i \delta_j = \delta_j \delta_i$, $|i j| \ge 2$.

Dunkl Intertwining operator

Seek a (linear) isomorphism V_k acting on polynomials such that

- $V_k \mathscr{P}_n = \mathscr{P}_n.$
- $V_k 1 = 1$ (normalization).

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

$$M_{reg} := \{k, \cap_{\xi} Ker[D_{\xi}(k)] = \mathbb{C}\},\$$

Then V_k exists and is unique.

Dunkl Intertwining operator

Seek a (linear) isomorphism V_k acting on polynomials such that

- $V_k \mathscr{P}_n = \mathscr{P}_n.$
- $V_k 1 = 1$ (normalization).
- $D_{\xi}(k)V_k = V_k \partial_{\xi} (= V_k D_{\xi}(0)).$

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

$$M_{reg} := \{k, \cap_{\xi} Ker[D_{\xi}(k)] = \mathbb{C}\},$$

Then V_k exists and is unique.

Construction: Heuristics

Let U_k be the operator acting on polynomials as :

$$U_k(p)(x) = \frac{1}{n!} \left(\sum_{i=1}^N x_i D_{e_i}(k) \right)^n (p), \quad p \in \mathscr{P}_n.$$

Then for any $1 \le j \le N$,

$$U_k D_{e_j}(k) = \partial_{e_j} U_k.$$

Formally,

$$V_k = U_k^{-1}.$$

Construction: Heuristics

Let U_k be the operator acting on polynomials as :

$$U_k(p)(x) = \frac{1}{n!} \left(\sum_{i=1}^N x_i D_{e_i}(k) \right)^n (p), \quad p \in \mathscr{P}_n.$$

Then for any $1 \le j \le N$,

$$U_k D_{e_j}(k) = \partial_{e_j} U_k.$$

Formally,

$$V_k = U_k^{-1}.$$

Construction: Heuristics

Let U_k be the operator acting on polynomials as :

$$U_k(p)(x) = \frac{1}{n!} \left(\sum_{i=1}^N x_i D_{e_i}(k) \right)^n (p), \quad p \in \mathscr{P}_n.$$

Then for any $1 \le j \le N$,

$$U_k D_{e_j}(k) = \partial_{e_j} U_k.$$

Formally,

$$V_k = U_k^{-1}.$$

Construction : Heuristics

Let U_k be the operator acting on polynomials as :

$$U_k(p)(x) = \frac{1}{n!} \left(\sum_{i=1}^N x_i D_{e_i}(k) \right)^n (p), \quad p \in \mathscr{P}_n.$$

Then for any $1 \le j \le N$,

$$U_k D_{e_j}(k) = \partial_{e_j} U_k.$$

Formally,

$$V_k = U_k^{-1}.$$

Construction : Modified de Rham complex

- Polynomial : $p \in \mathscr{P}_n$.
- *m* form : $\omega = pdx_{i_1} \wedge \cdots \wedge dx_{i_m}$.
- Action of W on forms :

$$w \cdot \omega := \underbrace{(w \cdot p)}_{p \circ w^{-1}} d(w^{-1}x)_{i_1} \wedge \cdots \wedge d(w^{-1}x)_{i_m}$$

$$d(k)\omega := \sum_{i=1}^{N} [D_{e_j}(k)p] dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_m}$$

Construction: Modified de Rham complex

- Polynomial : $p \in \mathscr{P}_n$.
- m- form : $\omega = p dx_{i_1} \wedge \cdots \wedge dx_{i_m}$.
- Action of W on forms :

$$w \cdot \omega := \underbrace{(w \cdot p)}_{p \circ w^{-1}} d(w^{-1}x)_{i_1} \wedge \cdots \wedge d(w^{-1}x)_{i_m}.$$

$$d(k)\omega := \sum_{j=1}^{N} \left[D_{e_j}(k) \rho \right] dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_m}$$

Construction : Modified de Rham complex

- Polynomial : $p \in \mathscr{P}_n$.
- *m* form : $\omega = p dx_{i_1} \wedge \cdots \wedge dx_{i_m}$.
- Action of W on forms :

$$w \cdot \omega := \underbrace{(w \cdot p)}_{p \circ w^{-1}} d(w^{-1}x)_{i_1} \wedge \cdots \wedge d(w^{-1}x)_{i_m}.$$

$$d(k)\omega := \sum_{j=1}^{N} [D_{e_j}(k)p] dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_m}.$$

Construction : Modified de Rham complex

- Polynomial : $p \in \mathscr{P}_n$.
- m- form : $\omega = p dx_{i_1} \wedge \cdots \wedge dx_{i_m}$.
- Action of W on forms :

$$w \cdot \omega := \underbrace{(w \cdot p)}_{p \circ w^{-1}} d(w^{-1}x)_{i_1} \wedge \cdots \wedge d(w^{-1}x)_{i_m}.$$

$$d(k)\omega := \sum_{i=1}^{N} \left[D_{e_j}(k)p \right] dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_m}.$$

Properties of d(k)

- $(d(k))^2 = 0.$

Theorem (Dunkl-De Jeu-Opdam)

 V_k exists and is unique if and only if $H^1(d(k)) = 0$.

Remark

All the higher cohomology groups vanish in this case.

Properties of d(k)

- $(d(k))^2 = 0.$

Theorem (Dunkl-De Jeu-Opdam)

 V_k exists and is unique if and only if $H^1(d(k)) = 0$.

Remark

All the higher cohomology groups vanish in this case.

Properties of d(k)

- $(d(k))^2 = 0.$

Theorem (Dunkl-De Jeu-Opdam)

 V_k exists and is unique if and only if $H^1(d(k)) = 0$.

Remark

All the higher cohomology groups vanish in this case.

Integral representations

• Rank-one case :

$$V_k(p)(x) \propto \int_{-1}^1 e^{xy} (1-y)^{k-1} (1+y)^k dy, \quad k>0.$$

- $k \equiv 1$ and W-invariant polynomials.
- Dihedral groups.

Another construction

Set:

$$\gamma := \sum_{\alpha \in R_+} k(\alpha), \quad A_n(p) = \sum_{\alpha \in R_+} k(\alpha) p[\sigma_\alpha], \ p \in \mathscr{P}_n.$$

Theorem (H. Youssfi, M. Maslouhi)

- $k \in M_{reg}$ iff $(n + \gamma) A_n$ is invertible for all $n \ge 1$.
- Set $H_n = [(n+\gamma) A_n]^{-1}$. Then for any $p \in \mathscr{P}_n$,

$$V_k(p)(x) = (\partial_x H_n)^n(p)$$

Another construction

Set:

$$\gamma := \sum_{\alpha \in R_+} k(\alpha), \quad A_n(p) = \sum_{\alpha \in R_+} k(\alpha) p[\sigma_\alpha], \ p \in \mathscr{P}_n.$$

Theorem (H. Youssfi, M. Maslouhi)

- $k \in M_{reg}$ iff $(n + \gamma) A_n$ is invertible for all $n \ge 1$.
- Set $H_n = [(n + \gamma) A_n]^{-1}$. Then for any $p \in \mathscr{P}_n$,

$$V_k(p)(x) = (\partial_x H_n)^n(p).$$

Expansions & Simple Hurwitz numbers

Generalized Bessel function

- Dunkl theory: Harmonic analysis beyond Lie groups.
- Key role is played by the Dunkl kernel :

$$D_k(x,y) := V_k\left(x \mapsto e^{\langle x,y \rangle}\right)$$

Invariant theory :

Definition (Generalized Bessel function)

$$D_k^W(x, y) := \frac{1}{|W|} \sum_{w \in W} D_k(x, wy).$$

Generalized Bessel function

- Dunkl theory: Harmonic analysis beyond Lie groups.
- Key role is played by the Dunkl kernel :

$$D_k(x,y) := V_k\left(x \mapsto e^{\langle x,y\rangle}\right)$$

• Invariant theory :

Definition (Generalized Bessel function)

$$D_k^W(x, y) := \frac{1}{|W|} \sum_{w \in W} D_k(x, wy).$$

Generalized Bessel function

- Dunkl theory: Harmonic analysis beyond Lie groups.
- Key role is played by the Dunkl kernel :

$$D_k(x,y) := V_k\left(x \mapsto e^{\langle x,y\rangle}\right)$$

• Invariant theory :

Definition (Generalized Bessel function)

$$D_k^W(x,y) := \frac{1}{|W|} \sum_{w \in W} D_k(x, wy).$$

HCIZ integral

- Symmetric group S_N (Weyl group of $GL(N, \mathbb{C})$).
- One orbit = one multiplicity value k.

Theorem (HCIZ integral)

If $x, y, \in \mathbb{R}^{\mathbb{N}}$ are identified with diagonal Hermitian matrices, then

$$D_1^W(x,y) = \int_{U(N)} e^{tr(xUyU^*)} \underbrace{dU}_{Haar\ measure}$$

HCIZ integral

- Symmetric group S_N (Weyl group of $GL(N, \mathbb{C})$).
- One orbit = one multiplicity value k.

Theorem (HCIZ integral)

If $x, y \in \mathbb{R}^{\mathbb{N}}$ are identified with diagonal Hermitian matrices, then

$$D_1^W(x,y) = \int_{U(N)} e^{tr(xUyU^*)} \underbrace{dU}_{Haar\ measure}$$

Expansions

Character expansion (Fourier analysis) :

$$D_1^W(x,y) = \sum_{\kappa_1 \geq \cdots \geq \kappa_N \in \mathbb{N}^N} rac{\overbrace{s_{\kappa}(x)s_{\kappa}(y)}}{s_{\kappa}(1)|\kappa|!}$$

String expansion (Trace observables) :

$$D_1^W(x,y) = \sum_{\kappa_1 \ge \dots \ge \kappa_N \in \mathbb{N}^N} p_{\kappa}(x) p_{\kappa}(y)$$

| Monotone paths on $Cayley(S_N)$ |

3 Topological expansion : for $z \in \mathbb{C}$,

$$D_1^W(zNx,y) = \sum_{g=0}^{\infty} N^{2-2g} F_{g,N}(z,x,y)$$

 $F_{g,N}(z,x,y)$: GFs of monotone double Hurwitz numbers.

Expansions

Character expansion (Fourier analysis) :

$$D_1^W(x,y) = \sum_{\kappa_1 \geq \dots \geq \kappa_N \in \mathbb{N}^N} \frac{\overbrace{s_{\kappa}(x)s_{\kappa}(y)}^{Schur functions}}{s_{\kappa}(1)|\kappa|!}$$

String expansion (Trace observables) :

$$D_1^W(x,y) = \sum_{\kappa_1 \geq \cdots \geq \kappa_N \in \mathbb{N}^N} p_{\kappa}(x) p_{\kappa}(y)$$

| Monotone paths on $Cayley(S_N)$ |

3 Topological expansion : for $z \in \mathbb{C}$,

$$D_1^W(zNx,y) = \sum_{g=0}^{\infty} N^{2-2g} F_{g,N}(z,x,y)$$

 $F_{g,N}(z,x,y)$: GFs of monotone double Hurwitz numbers.

Expansions

Character expansion (Fourier analysis) :

$$D_1^W(x,y) = \sum_{\kappa_1 \geq \dots \geq \kappa_N \in \mathbb{N}^N} \frac{\overbrace{s_{\kappa}(x)s_{\kappa}(y)}^{Schur functions}}{s_{\kappa}(1)|\kappa|!}$$

String expansion (Trace observables) :

$$D_1^W(x,y) = \sum_{\kappa_1 \geq \cdots \geq \kappa_N \in \mathbb{N}^N} p_{\kappa}(x) p_{\kappa}(y)$$

| Monotone paths on $Cayley(S_N)$ |

3 Topological expansion : for $z \in \mathbb{C}$,

$$D_1^W(zNx,y) = \sum_{g=0}^{\infty} N^{2-2g} F_{g,N}(z,x,y)$$

 $F_{g,N}(z,x,y)$: GFs of monotone double Hurwitz numbers.

Our approach

Theorem (Deléaval-D-Youssfi)

The following expansion holds

$$D_1^W(x,y) = 1 + \frac{1}{N!} \sum_{n=1}^{\infty} \frac{1}{n}$$

$$\sum_{w_1,\dots,w_n \in W} C_{n-1}(w_n^{-1}w_{n-1}) \dots C_1(w_2^{-1}w_1) \prod_{j=1}^n \langle w_j x, y \rangle$$

where for any $w \in W$,

$$C_n(w) := \sum_{m=0}^{\infty} \frac{c_m(w)}{(n+\gamma)^{m+1}}, \quad \gamma = \frac{N(N-1)}{2}$$

and

$$c_m(w) = \sum_{\sigma_{\alpha_1}...\sigma_{\alpha_m} = w} 1$$

$k \equiv 1$: Simple Hurwitz numbers

- $k \equiv 1$:
 - $c_m(w) = |\text{number of factorisations of } w \text{ into } m \text{ reflections}|.$
- $W = S_N$: simple Hurwitz numbers:
- Counts the number of ramified covering of S^2 with m simple ramifications and a single ramification at ∞ of type w).

Open problem

Find the spectrum of

$$A_n: \mathscr{P}_n \to \mathscr{P}_n$$
?

Representation theory of S_N :

Decompose \mathcal{P}_n into irreducibles (Specht modules)?

Relate generating series of Hurwitz numbers to Schur polynomials?

Open problem

Find the spectrum of

$$A_n: \mathscr{P}_n \to \mathscr{P}_n$$
?

Representation theory of S_N :

Decompose \mathcal{P}_n into irreducibles (Specht modules)?

Relate generating series of Hurwitz numbers to Schur polynomials?

Open problem

Find the spectrum of

$$A_n: \mathscr{P}_n \to \mathscr{P}_n$$
?

Representation theory of S_N :

Decompose \mathcal{P}_n into irreducibles (Specht modules)?

Relate generating series of Hurwitz numbers to Schur polynomials?

References

- 1 J. E. Humphreys. Reflections groups and Coxeter groups.
- 2 C. F. Dunkl, Y. Xu. Orthogonal Polynomials of Several Variables.
- L. Deléaval, N. Demni, H. Youssfi. J. Math. Anal. App.
- J. Novak. Topological Expansion of Oscillatory BGW and HCIZ Integrals at Strong Coupling.